# Taxicab numbers

Taxicab numbers
You are encouraged to solve this task according to the task description, using any language you may know.

A   taxicab number   (the definition that is being used here)   is a positive integer that can be expressed as the sum of two positive cubes in more than one way.

The first taxicab number is   1729,   which is:

13   +   123       and also
93   +   103.

Taxicab numbers are also known as:

•   taxi numbers
•   taxi-cab numbers
•   taxi cab numbers
•   Hardy-Ramanujan numbers

• Compute and display the lowest 25 taxicab numbers (in numeric order, and in a human-readable format).
• For each of the taxicab numbers, show the number as well as it's constituent cubes.

Extra credit
• Show the 2,000th taxicab number, and a half dozen more

## 11l

Translation of: Python

<lang 11l>V cubes = (1..1199).map(x -> Int64(x) ^ 3) [Int64 = Int64] crev L(x3) cubes

```  crev[x3] = L.index + 1
```

V sums = sorted(multiloop_filtered(cubes, cubes, (x, y) -> y < x, (x, y) -> x + y))

V idx = 0 L(i) 1 .< sums.len - 1

```  I sums[i - 1] != sums[i] & sums[i] == sums[i + 1]
idx++
I (idx > 25 & idx < 2000) | idx > 2006
L.continue
```
```     V n = sums[i]
[(Int64, Int64)] p
L(x) cubes
I n - x < x
L.break
I n - x C crev
p.append((crev[x], crev[n - x]))
print(‘#4: #10’.format(idx, n), end' ‘ ’)
L(x1, x2) p
print(‘ = #4^3 + #4^3’.format(x1, x2), end' ‘ ’)
print()</lang>
```
Output:
```   1:       1729  =    1^3 +   12^3  =    9^3 +   10^3
2:       4104  =    2^3 +   16^3  =    9^3 +   15^3
3:      13832  =    2^3 +   24^3  =   18^3 +   20^3
4:      20683  =   10^3 +   27^3  =   19^3 +   24^3
5:      32832  =    4^3 +   32^3  =   18^3 +   30^3
6:      39312  =    2^3 +   34^3  =   15^3 +   33^3
7:      40033  =    9^3 +   34^3  =   16^3 +   33^3
8:      46683  =    3^3 +   36^3  =   27^3 +   30^3
9:      64232  =   17^3 +   39^3  =   26^3 +   36^3
10:      65728  =   12^3 +   40^3  =   31^3 +   33^3
11:     110656  =    4^3 +   48^3  =   36^3 +   40^3
12:     110808  =    6^3 +   48^3  =   27^3 +   45^3
13:     134379  =   12^3 +   51^3  =   38^3 +   43^3
14:     149389  =    8^3 +   53^3  =   29^3 +   50^3
15:     165464  =   20^3 +   54^3  =   38^3 +   48^3
16:     171288  =   17^3 +   55^3  =   24^3 +   54^3
17:     195841  =    9^3 +   58^3  =   22^3 +   57^3
18:     216027  =    3^3 +   60^3  =   22^3 +   59^3
19:     216125  =    5^3 +   60^3  =   45^3 +   50^3
20:     262656  =    8^3 +   64^3  =   36^3 +   60^3
21:     314496  =    4^3 +   68^3  =   30^3 +   66^3
22:     320264  =   18^3 +   68^3  =   32^3 +   66^3
23:     327763  =   30^3 +   67^3  =   51^3 +   58^3
24:     373464  =    6^3 +   72^3  =   54^3 +   60^3
25:     402597  =   42^3 +   69^3  =   56^3 +   61^3
2000: 1671816384  =  428^3 + 1168^3  =  940^3 +  944^3
2001: 1672470592  =   29^3 + 1187^3  =  632^3 + 1124^3
2002: 1673170856  =  458^3 + 1164^3  =  828^3 + 1034^3
2003: 1675045225  =  522^3 + 1153^3  =  744^3 + 1081^3
2004: 1675958167  =  492^3 + 1159^3  =  711^3 + 1096^3
2005: 1676926719  =   63^3 + 1188^3  =  714^3 + 1095^3
2006: 1677646971  =   99^3 + 1188^3  =  891^3 +  990^3
```

## AWK

<lang AWK>

1. syntax: GAWK -f TAXICAB_NUMBERS.AWK

BEGIN {

```   stop = 99
for (a=1; a<=stop; a++) {
for (b=1; b<=stop; b++) {
n1 = a^3 + b^3
for (c=1; c<=stop; c++) {
if (a == c) { continue }
for (d=1; d<=stop; d++) {
n2 = c^3 + d^3
if (n1 == n2 && (a != d || b != c)) {
if (n1 in arr) { continue }
arr[n1] = sprintf("%7d = %2d^3 + %2d^3 = %2d^3 + %2d^3",n1,a,b,c,d)
}
}
}
}
}
PROCINFO["sorted_in"] = "@ind_num_asc"
for (i in arr) {
if (++count <= 25) {
printf("%2d: %s\n",count,arr[i])
}
}
printf("\nThere are %d taxicab numbers using bounds of %d\n",length(arr),stop)
exit(0)
```

} </lang>

Output:
``` 1:    1729 =  1^3 + 12^3 =  9^3 + 10^3
2:    4104 =  2^3 + 16^3 =  9^3 + 15^3
3:   13832 =  2^3 + 24^3 = 18^3 + 20^3
4:   20683 = 10^3 + 27^3 = 19^3 + 24^3
5:   32832 =  4^3 + 32^3 = 18^3 + 30^3
6:   39312 =  2^3 + 34^3 = 15^3 + 33^3
7:   40033 =  9^3 + 34^3 = 16^3 + 33^3
8:   46683 =  3^3 + 36^3 = 27^3 + 30^3
9:   64232 = 17^3 + 39^3 = 26^3 + 36^3
10:   65728 = 12^3 + 40^3 = 31^3 + 33^3
11:  110656 =  4^3 + 48^3 = 36^3 + 40^3
12:  110808 =  6^3 + 48^3 = 27^3 + 45^3
13:  134379 = 12^3 + 51^3 = 38^3 + 43^3
14:  149389 =  8^3 + 53^3 = 29^3 + 50^3
15:  165464 = 20^3 + 54^3 = 38^3 + 48^3
16:  171288 = 17^3 + 55^3 = 24^3 + 54^3
17:  195841 =  9^3 + 58^3 = 22^3 + 57^3
18:  216027 =  3^3 + 60^3 = 22^3 + 59^3
19:  216125 =  5^3 + 60^3 = 45^3 + 50^3
20:  262656 =  8^3 + 64^3 = 36^3 + 60^3
21:  314496 =  4^3 + 68^3 = 30^3 + 66^3
22:  320264 = 18^3 + 68^3 = 32^3 + 66^3
23:  327763 = 30^3 + 67^3 = 51^3 + 58^3
24:  373464 =  6^3 + 72^3 = 54^3 + 60^3
25:  402597 = 42^3 + 69^3 = 56^3 + 61^3

There are 45 taxicab numbers using bounds of 99
```

## Befunge

This is quite slow in most interpreters, although a decent compiler should allow it to complete in a matter of seconds. Regardless of the speed, though, the range in a standard Befunge-93 implementation is limited to the first 64 numbers in the series, after which the 8-bit memory cells will overflow. That range could be extended in Befunge-98, but realistically you're not likely to wait that long for the results.

<lang befunge>v+1\$\$<_v#!`**::+1g42\$\$_v#<!`**::+1g43\g43::<<v,,.g42,< >004p:0>1+24p:24g\:24g>>1+:34p::**24g::**+-|p>9,,,14v, ,,,"^3 + ^3= ^3 + ^3".\,,,9"= ".:\_v#g40g43<^v,,,,.g<^ 5+,\$\$\$\1+:38*`#@_\::"~"1+:24p34p0\0>14p24g04^>,04g.,,5</lang>

Output:
```1729    = 10 ^3 + 9 ^3  = 12 ^3 + 1 ^3
4104    = 15 ^3 + 9 ^3  = 16 ^3 + 2 ^3
13832   = 20 ^3 + 18 ^3 = 24 ^3 + 2 ^3
20683   = 24 ^3 + 19 ^3 = 27 ^3 + 10 ^3
32832   = 30 ^3 + 18 ^3 = 32 ^3 + 4 ^3
39312   = 33 ^3 + 15 ^3 = 34 ^3 + 2 ^3
40033   = 33 ^3 + 16 ^3 = 34 ^3 + 9 ^3
46683   = 30 ^3 + 27 ^3 = 36 ^3 + 3 ^3
64232   = 36 ^3 + 26 ^3 = 39 ^3 + 17 ^3
65728   = 33 ^3 + 31 ^3 = 40 ^3 + 12 ^3
110656  = 40 ^3 + 36 ^3 = 48 ^3 + 4 ^3
110808  = 45 ^3 + 27 ^3 = 48 ^3 + 6 ^3
134379  = 43 ^3 + 38 ^3 = 51 ^3 + 12 ^3
149389  = 50 ^3 + 29 ^3 = 53 ^3 + 8 ^3
165464  = 48 ^3 + 38 ^3 = 54 ^3 + 20 ^3
171288  = 54 ^3 + 24 ^3 = 55 ^3 + 17 ^3
195841  = 57 ^3 + 22 ^3 = 58 ^3 + 9 ^3
216027  = 59 ^3 + 22 ^3 = 60 ^3 + 3 ^3
216125  = 50 ^3 + 45 ^3 = 60 ^3 + 5 ^3
262656  = 60 ^3 + 36 ^3 = 64 ^3 + 8 ^3
314496  = 66 ^3 + 30 ^3 = 68 ^3 + 4 ^3
320264  = 66 ^3 + 32 ^3 = 68 ^3 + 18 ^3
327763  = 58 ^3 + 51 ^3 = 67 ^3 + 30 ^3
373464  = 60 ^3 + 54 ^3 = 72 ^3 + 6 ^3
402597  = 61 ^3 + 56 ^3 = 69 ^3 + 42 ^3```

## C

Using a priority queue to emit sum of two cubs in order. It's reasonably fast and doesn't use excessive amount of memory (the heap is only at 245 length upon the 2006th taxi). <lang c>#include <stdio.h>

1. include <stdlib.h>

typedef unsigned long long xint; typedef unsigned uint; typedef struct { uint x, y; // x > y always xint value; } sum_t;

xint *cube; uint n_cubes;

sum_t *pq; uint pq_len, pq_cap;

void add_cube(void) { uint x = n_cubes++; cube = realloc(cube, sizeof(xint) * (n_cubes + 1)); cube[n_cubes] = (xint) n_cubes*n_cubes*n_cubes; if (x < 2) return; // x = 0 or 1 is useless

if (++pq_len >= pq_cap) { if (!(pq_cap *= 2)) pq_cap = 2; pq = realloc(pq, sizeof(*pq) * pq_cap); }

sum_t tmp = (sum_t) { x, 1, cube[x] + 1 }; // upheap uint i, j; for (i = pq_len; i >= 1 && pq[j = i>>1].value > tmp.value; i = j) pq[i] = pq[j];

pq[i] = tmp; }

void next_sum(void) { redo: while (!pq_len || pq[1].value >= cube[n_cubes]) add_cube();

sum_t tmp = pq[0] = pq[1]; // pq[0] always stores last seen value if (++tmp.y >= tmp.x) { // done with this x; throw it away tmp = pq[pq_len--]; if (!pq_len) goto redo; // refill empty heap } else tmp.value += cube[tmp.y] - cube[tmp.y-1];

uint i, j; // downheap for (i = 1; (j = i<<1) <= pq_len; pq[i] = pq[j], i = j) { if (j < pq_len && pq[j+1].value < pq[j].value) ++j; if (pq[j].value >= tmp.value) break; } pq[i] = tmp; }

uint next_taxi(sum_t *hist) { do next_sum(); while (pq[0].value != pq[1].value);

uint len = 1; hist[0] = pq[0]; do { hist[len++] = pq[1]; next_sum(); } while (pq[0].value == pq[1].value);

return len; }

int main(void) { uint i, l; sum_t x[10]; for (i = 1; i <= 2006; i++) { l = next_taxi(x); if (25 < i && i < 2000) continue; printf("%4u:%10llu", i, x[0].value); while (l--) printf(" = %4u^3 + %4u^3", x[l].x, x[l].y); putchar('\n'); } return 0; }</lang>

Output:
```   1:      1729 =   12^3 +    1^3 =   10^3 +    9^3
2:      4104 =   15^3 +    9^3 =   16^3 +    2^3
3:     13832 =   20^3 +   18^3 =   24^3 +    2^3
4:     20683 =   27^3 +   10^3 =   24^3 +   19^3
5:     32832 =   30^3 +   18^3 =   32^3 +    4^3
6:     39312 =   33^3 +   15^3 =   34^3 +    2^3
7:     40033 =   33^3 +   16^3 =   34^3 +    9^3
8:     46683 =   30^3 +   27^3 =   36^3 +    3^3
9:     64232 =   36^3 +   26^3 =   39^3 +   17^3
10:     65728 =   33^3 +   31^3 =   40^3 +   12^3
11:    110656 =   40^3 +   36^3 =   48^3 +    4^3
12:    110808 =   45^3 +   27^3 =   48^3 +    6^3
13:    134379 =   43^3 +   38^3 =   51^3 +   12^3
14:    149389 =   50^3 +   29^3 =   53^3 +    8^3
15:    165464 =   48^3 +   38^3 =   54^3 +   20^3
16:    171288 =   54^3 +   24^3 =   55^3 +   17^3
17:    195841 =   57^3 +   22^3 =   58^3 +    9^3
18:    216027 =   59^3 +   22^3 =   60^3 +    3^3
19:    216125 =   50^3 +   45^3 =   60^3 +    5^3
20:    262656 =   60^3 +   36^3 =   64^3 +    8^3
21:    314496 =   66^3 +   30^3 =   68^3 +    4^3
22:    320264 =   66^3 +   32^3 =   68^3 +   18^3
23:    327763 =   58^3 +   51^3 =   67^3 +   30^3
24:    373464 =   60^3 +   54^3 =   72^3 +    6^3
25:    402597 =   61^3 +   56^3 =   69^3 +   42^3
2000:1671816384 = 1168^3 +  428^3 =  944^3 +  940^3
2001:1672470592 = 1124^3 +  632^3 = 1187^3 +   29^3
2002:1673170856 = 1034^3 +  828^3 = 1164^3 +  458^3
2003:1675045225 = 1153^3 +  522^3 = 1081^3 +  744^3
2004:1675958167 = 1096^3 +  711^3 = 1159^3 +  492^3
2005:1676926719 = 1188^3 +   63^3 = 1095^3 +  714^3
2006:1677646971 =  990^3 +  891^3 = 1188^3 +   99^3
```

## C++

Translation of: C#

<lang cpp>#include <algorithm>

1. include <iomanip>
2. include <iostream>
3. include <map>
4. include <sstream>
5. include <vector>

template <typename T> size_t indexOf(const std::vector<T> &v, const T &k) {

```   auto it = std::find(v.cbegin(), v.cend(), k);
```
```   if (it != v.cend()) {
return it - v.cbegin();
}
return -1;
```

}

int main() {

```   std::vector<size_t> cubes;
```
```   auto dump = [&cubes](const std::string &title, const std::map<int, size_t> &items) {
std::cout << title;
for (auto &item : items) {
std::cout << "\n" << std::setw(4) << item.first << " " << std::setw(10) << item.second;
for (auto x : cubes) {
auto y = item.second - x;
if (y < x) {
break;
}
if (std::count(cubes.begin(), cubes.end(), y)) {
std::cout << " = " << std::setw(4) << indexOf(cubes, y) << "^3 + " << std::setw(3) << indexOf(cubes, x) << "^3";
}
}
}
};
```
```   std::vector<size_t> sums;
```
```   // create sorted list of cube sums
for (size_t i = 0; i < 1190; i++) {
auto cube = i * i * i;
cubes.push_back(cube);
for (auto j : cubes) {
sums.push_back(cube + j);
}
}
std::sort(sums.begin(), sums.end());
```
```   // now seek consecutive sums that match
auto nm1 = sums[0];
auto n = sums[1];
int idx = 0;
std::map<int, size_t> trips;
```
```   auto it = sums.cbegin();
auto end = sums.cend();
it++;
it++;
```
```   while (it != end) {
auto np1 = *it;
```
```       if (nm1 == np1) {
trips.emplace(idx, n);
}
if (nm1 != n && n == np1) {
if (++idx <= 25 || idx >= 2000 == idx <= 2006) {
}
}
nm1 = n;
n = np1;
```
```       it++;
}
```
```   dump("First 25 Taxicab Numbers, the 2000th, plus the next half-dozen:", task);
```
```   std::stringstream ss;
ss << "\n\nFound " << trips.size() << " triple Taxicabs under 2007:";
dump(ss.str(), trips);
```
```   return 0;
```

}</lang>

Output:
```First 25 Taxicab Numbers, the 2000th, plus the next half-dozen:
1       1729 =   12^3 +   1^3 =   10^3 +   9^3
2       4104 =   16^3 +   2^3 =   15^3 +   9^3
3      13832 =   24^3 +   2^3 =   20^3 +  18^3
4      20683 =   27^3 +  10^3 =   24^3 +  19^3
5      32832 =   32^3 +   4^3 =   30^3 +  18^3
6      39312 =   34^3 +   2^3 =   33^3 +  15^3
7      40033 =   34^3 +   9^3 =   33^3 +  16^3
8      46683 =   36^3 +   3^3 =   30^3 +  27^3
9      64232 =   39^3 +  17^3 =   36^3 +  26^3
10      65728 =   40^3 +  12^3 =   33^3 +  31^3
11     110656 =   48^3 +   4^3 =   40^3 +  36^3
12     110808 =   48^3 +   6^3 =   45^3 +  27^3
13     134379 =   51^3 +  12^3 =   43^3 +  38^3
14     149389 =   53^3 +   8^3 =   50^3 +  29^3
15     165464 =   54^3 +  20^3 =   48^3 +  38^3
16     171288 =   55^3 +  17^3 =   54^3 +  24^3
17     195841 =   58^3 +   9^3 =   57^3 +  22^3
18     216027 =   60^3 +   3^3 =   59^3 +  22^3
19     216125 =   60^3 +   5^3 =   50^3 +  45^3
20     262656 =   64^3 +   8^3 =   60^3 +  36^3
21     314496 =   68^3 +   4^3 =   66^3 +  30^3
22     320264 =   68^3 +  18^3 =   66^3 +  32^3
23     327763 =   67^3 +  30^3 =   58^3 +  51^3
24     373464 =   72^3 +   6^3 =   60^3 +  54^3
25     402597 =   69^3 +  42^3 =   61^3 +  56^3
2000 1671816384 = 1168^3 + 428^3 =  944^3 + 940^3
2001 1672470592 = 1187^3 +  29^3 = 1124^3 + 632^3
2002 1673170856 = 1164^3 + 458^3 = 1034^3 + 828^3
2003 1675045225 = 1153^3 + 522^3 = 1081^3 + 744^3
2004 1675958167 = 1159^3 + 492^3 = 1096^3 + 711^3
2005 1676926719 = 1188^3 +  63^3 = 1095^3 + 714^3
2006 1677646971 = 1188^3 +  99^3 =  990^3 + 891^3

Found 10 triple Taxicabs under 2007:
455   87539319 =  436^3 + 167^3 =  423^3 + 228^3 =  414^3 + 255^3
535  119824488 =  493^3 +  11^3 =  492^3 +  90^3 =  428^3 + 346^3
588  143604279 =  522^3 + 111^3 =  460^3 + 359^3 =  423^3 + 408^3
655  175959000 =  560^3 +  70^3 =  552^3 + 198^3 =  525^3 + 315^3
888  327763000 =  670^3 + 300^3 =  661^3 + 339^3 =  580^3 + 510^3
1299  700314552 =  872^3 + 334^3 =  846^3 + 456^3 =  828^3 + 510^3
1398  804360375 =  930^3 +  15^3 =  927^3 + 198^3 =  920^3 + 295^3
1515  958595904 =  986^3 +  22^3 =  984^3 + 180^3 =  856^3 + 692^3
1660 1148834232 = 1044^3 + 222^3 =  920^3 + 718^3 =  846^3 + 816^3
1837 1407672000 = 1120^3 + 140^3 = 1104^3 + 396^3 = 1050^3 + 630^3```

## C#

<lang csharp>using System; using System.Collections.Generic; using System.Linq; using System.Text;

namespace TaxicabNumber {

```   class Program
{
static void Main(string[] args)
{
IDictionary<long, IList<Tuple<int, int>>> taxicabNumbers = GetTaxicabNumbers(2006);
PrintTaxicabNumbers(taxicabNumbers);
}
```
```       private static IDictionary<long, IList<Tuple<int, int>>> GetTaxicabNumbers(int length)
{
SortedList<long, IList<Tuple<int, int>>> sumsOfTwoCubes = new SortedList<long, IList<Tuple<int, int>>>();
```
```           for (int i = 1; i < int.MaxValue; i++)
{
for (int j = 1; j < int.MaxValue; j++)
{
long sum = (long)(Math.Pow((double)i, 3) + Math.Pow((double)j, 3));
```
```                   if (!sumsOfTwoCubes.ContainsKey(sum))
{
}
```
```                   sumsOfTwoCubes[sum].Add(new Tuple<int, int>(i, j));
```
```                   if (j >= i)
{
break;
}
}
```
```               // Found that you need to keep going for a while after the length, because higher i values fill in gaps
if (sumsOfTwoCubes.Count(t => t.Value.Count >= 2) >= length * 1.1)
{
break;
}
}
```
```           IDictionary<long, IList<Tuple<int, int>>> values = (from t in sumsOfTwoCubes where t.Value.Count >= 2 select t)
.Take(2006)
.ToDictionary(u => u.Key, u => u.Value);
```
```           return values;
}
```
```       private static void PrintTaxicabNumbers(IDictionary<long, IList<Tuple<int, int>>> values)
{
int i = 1;
```
```           foreach (long taxicabNumber in values.Keys)
{
StringBuilder output = new StringBuilder().AppendFormat("{0,10}\t{1,4}", i, taxicabNumber);
```
```               foreach (Tuple<int, int> numbers in values[taxicabNumber])
{
output.AppendFormat("\t= {0}^3 + {1}^3", numbers.Item1, numbers.Item2);
}
```
```               if (i <= 25 || (i >= 2000 && i <= 2006))
{
Console.WriteLine(output.ToString());
}
```
```               i++;
}
}
}
```

}</lang>

### Alternate Algorithm

Based on the second Python example where only the sums are stored and sorted. Also shows the first 10 Taxicab Number triples. <lang csharp>using System; using static System.Console; using System.Collections.Generic; using System.Linq;

class Program {

``` static void Main(string[] args) {
```
```   List<uint> cubes = new List<uint>(), sums = new List<uint>();
```
```   void dump(string title, Dictionary <int, uint> items) {
Write(title); foreach (var item in items) {
Write("\n{0,4} {1,10}", item.Key, item.Value);
foreach (uint x in cubes) { uint y = item.Value - x;
if (y < x) break; if (cubes.Contains(y))
Write(" = {0,4}³ + {1,3}³", cubes.IndexOf(y), cubes.IndexOf(x));
} } }
```
```   DateTime st = DateTime.Now;
// create sorted list of cube sums
for (uint i = 0, cube; i < 1190; i++) { cube = i * i * i;
cubes.Add(cube); foreach (uint j in cubes)
// now seek consecutive sums that match
uint nm1 = sums[0], n = sums[1]; int idx = 0;
Dictionary <int, uint> task = new Dictionary <int, uint>(),
trips = new Dictionary <int, uint>();
foreach (var np1 in sums.Skip(2)) {
if (nm1 == np1) trips.Add(idx, n); if (nm1 != n && n == np1)
if (++idx <= 25 || idx >= 2000 == idx <= 2006)
// show results
dump("First 25 Taxicab Numbers, the 2000th, plus the next half-dozen:", task);
dump(string.Format("\n\nFound {0} triple Taxicabs under {1}:", trips.Count, 2007), trips);
Write("\n\nElasped: {0}ms", (DateTime.Now - st).TotalMilliseconds); }
```

}</lang>

Output:
(from TIO.run)
```First 25 Taxicab Numbers, the 2000th, plus the next half-dozen:
1       1729 =   12³ +   1³ =   10³ +   9³
2       4104 =   16³ +   2³ =   15³ +   9³
3      13832 =   24³ +   2³ =   20³ +  18³
4      20683 =   27³ +  10³ =   24³ +  19³
5      32832 =   32³ +   4³ =   30³ +  18³
6      39312 =   34³ +   2³ =   33³ +  15³
7      40033 =   34³ +   9³ =   33³ +  16³
8      46683 =   36³ +   3³ =   30³ +  27³
9      64232 =   39³ +  17³ =   36³ +  26³
10      65728 =   40³ +  12³ =   33³ +  31³
11     110656 =   48³ +   4³ =   40³ +  36³
12     110808 =   48³ +   6³ =   45³ +  27³
13     134379 =   51³ +  12³ =   43³ +  38³
14     149389 =   53³ +   8³ =   50³ +  29³
15     165464 =   54³ +  20³ =   48³ +  38³
16     171288 =   55³ +  17³ =   54³ +  24³
17     195841 =   58³ +   9³ =   57³ +  22³
18     216027 =   60³ +   3³ =   59³ +  22³
19     216125 =   60³ +   5³ =   50³ +  45³
20     262656 =   64³ +   8³ =   60³ +  36³
21     314496 =   68³ +   4³ =   66³ +  30³
22     320264 =   68³ +  18³ =   66³ +  32³
23     327763 =   67³ +  30³ =   58³ +  51³
24     373464 =   72³ +   6³ =   60³ +  54³
25     402597 =   69³ +  42³ =   61³ +  56³
2000 1671816384 = 1168³ + 428³ =  944³ + 940³
2001 1672470592 = 1187³ +  29³ = 1124³ + 632³
2002 1673170856 = 1164³ + 458³ = 1034³ + 828³
2003 1675045225 = 1153³ + 522³ = 1081³ + 744³
2004 1675958167 = 1159³ + 492³ = 1096³ + 711³
2005 1676926719 = 1188³ +  63³ = 1095³ + 714³
2006 1677646971 = 1188³ +  99³ =  990³ + 891³

Found 10 triple Taxicabs under 2007:
455   87539319 =  436³ + 167³ =  423³ + 228³ =  414³ + 255³
535  119824488 =  493³ +  11³ =  492³ +  90³ =  428³ + 346³
588  143604279 =  522³ + 111³ =  460³ + 359³ =  423³ + 408³
655  175959000 =  560³ +  70³ =  552³ + 198³ =  525³ + 315³
888  327763000 =  670³ + 300³ =  661³ + 339³ =  580³ + 510³
1299  700314552 =  872³ + 334³ =  846³ + 456³ =  828³ + 510³
1398  804360375 =  930³ +  15³ =  927³ + 198³ =  920³ + 295³
1515  958595904 =  986³ +  22³ =  984³ + 180³ =  856³ + 692³
1660 1148834232 = 1044³ + 222³ =  920³ + 718³ =  846³ + 816³
1837 1407672000 = 1120³ + 140³ = 1104³ + 396³ = 1050³ + 630³

Elasped: 78.7948ms```

## Clojure

<lang clojure>(ns test-project-intellij.core

``` (:gen-class))
```

(defn cube [x]

``` "Cube a number through triple multiplication"
(* x x x))
```

(defn sum3 i j

```  " [i j] -> i^3 + j^3"
(+ (cube i) (cube j)))
```

(defn next-pair i j

``` " Generate next [i j] pair of sequence  (producing lower triangle pairs) "
(if (< j i)
[i (inc j)]
[(inc i) 1]))
```
Pair sequence generator [1 1] [2 1] [2 2] [3 1] [3 2] [3 3] ...

(def pairs-seq (iterate next-pair [1 1]))

(defn dict-inc [m pair]

``` " Add pair to pair map m, with the key of the map based upon the cubic sum (sum3) and the value appends the pair "
(update-in m [(sum3 pair)] (fnil #(conj % pair) [])))
```

(defn enough? [m n-to-generate]

``` " Checks if we have enough taxi numbers (i.e. if number in map >= count-needed "
(->> m                                ; hash-map of sum of cube of numbers [key] and their pairs as value
(filter #(if (> (count (second %)) 1) true false))   ; filter out ones which don't have more than 1 entry
(count)                                              ; count the item remaining
(<= n-to-generate)))                                ; true iff count-needed is less or equal to the nubmer filtered
```

(defn find-taxi-numbers [n-to-generate]

``` " Generates 1st n-to-generate taxi numbers"
(loop [m {}               ; Hash-map containing cube of pairs (key) and set of pairs that produce sum (value)
p pairs-seq        ; select pairs from our pair sequence generator (i.e. [1 1] [2 1] [2 2] ...)
num-tried 0        ; Since its expensve to count how many taxi numbers we have found
check-after 1]     ; we only check if we have enough numbers every time (num-tried equals check-after)
; num-tried increments by 1 each time we try the next pair and
; check-after doubles if we don't have enough taxi numbers
(if (and (= num-tried check-after) (enough? m n-to-generate)) ; check if we found enough taxi numbers
(sort-by first (into [] (filter #(> (count (second %)) 1) m)))  ; sort the taxi numbers and this is the result
(if (= num-tried check-after)                                   ; Check if we need to increase our count between checking
(recur (dict-inc m (first p)) (rest p) (inc num-tried) (* 2 check-after))   ; increased count between checking
(recur (dict-inc m (first p)) (rest p) (inc num-tried) check-after)))))     ; didn't increase the count
```
Generate 1st 2006 taxi numbers

(def result (find-taxi-numbers 2006))

Show First 25

(defn show-result [n sample]

``` " Prints one line of result "
(print (format "%4d:%10d" n  (first sample)))
(doseq [q  (second sample)
:let [[i j] q]]
(print (format " = %4d^3 + %4d^3" i j)))
(println))
```
1st 25 taxi numbers

(doseq [n (range 1 26)

```       :let [sample (nth result (dec n))]]
(show-result n sample))
```
taxi numbers from 2000th to 2006th

(doseq [n (range 2000 2007)

```       :let [sample (nth result (dec n))]]
(show-result n sample))
```

}</lang>

Output:
```  1:      1729 =   10^3 +    9^3 =   12^3 +    1^3
2:      4104 =   15^3 +    9^3 =   16^3 +    2^3
3:     13832 =   20^3 +   18^3 =   24^3 +    2^3
4:     20683 =   24^3 +   19^3 =   27^3 +   10^3
5:     32832 =   30^3 +   18^3 =   32^3 +    4^3
6:     39312 =   33^3 +   15^3 =   34^3 +    2^3
7:     40033 =   33^3 +   16^3 =   34^3 +    9^3
8:     46683 =   30^3 +   27^3 =   36^3 +    3^3
9:     64232 =   36^3 +   26^3 =   39^3 +   17^3
10:     65728 =   33^3 +   31^3 =   40^3 +   12^3
11:    110656 =   40^3 +   36^3 =   48^3 +    4^3
12:    110808 =   45^3 +   27^3 =   48^3 +    6^3
13:    134379 =   43^3 +   38^3 =   51^3 +   12^3
14:    149389 =   50^3 +   29^3 =   53^3 +    8^3
15:    165464 =   48^3 +   38^3 =   54^3 +   20^3
16:    171288 =   54^3 +   24^3 =   55^3 +   17^3
17:    195841 =   57^3 +   22^3 =   58^3 +    9^3
18:    216027 =   59^3 +   22^3 =   60^3 +    3^3
19:    216125 =   50^3 +   45^3 =   60^3 +    5^3
20:    262656 =   60^3 +   36^3 =   64^3 +    8^3
21:    314496 =   66^3 +   30^3 =   68^3 +    4^3
22:    320264 =   66^3 +   32^3 =   68^3 +   18^3
23:    327763 =   58^3 +   51^3 =   67^3 +   30^3
24:    373464 =   60^3 +   54^3 =   72^3 +    6^3
25:    402597 =   61^3 +   56^3 =   69^3 +   42^3
2000:1671816384 =  944^3 +  940^3 = 1168^3 +  428^3
2001:1672470592 = 1124^3 +  632^3 = 1187^3 +   29^3
2002:1673170856 = 1034^3 +  828^3 = 1164^3 +  458^3
2003:1675045225 = 1081^3 +  744^3 = 1153^3 +  522^3
2004:1675958167 = 1096^3 +  711^3 = 1159^3 +  492^3
2005:1676926719 = 1095^3 +  714^3 = 1188^3 +   63^3
2006:1677646971 =  990^3 +  891^3 = 1188^3 +   99^3
```

## D

### High Level Version

Translation of: Python

<lang d>void main() /*@safe*/ {

```   import std.stdio, std.range, std.algorithm, std.typecons, std.string;
```
```   auto iCubes = iota(1u, 1201u).map!(x => tuple(x, x ^^ 3));
bool[Tuple!(uint, uint)][uint] sum2cubes;
foreach (i, immutable i3; iCubes)
foreach (j, immutable j3; iCubes[i .. \$])
sum2cubes[i3 + j3][tuple(i, j)] = true;
```
```   const taxis = sum2cubes.byKeyValue.filter!(p => p.value.length > 1)
.array.schwartzSort!(p => p.key).release;
```
```   foreach (/*immutable*/ const r; [[0, 25], [2000 - 1, 2000 + 6]]) {
foreach (immutable i, const t; taxis[r[0] .. r[1]])
writefln("%4d: %10d =%-(%s =%)", i + r[0] + 1, t.key,
t.value.keys.sort().map!q{"%4d^3 + %4d^3".format(a[])});
writeln;
}
```

}</lang>

Output:
```   1:       1729 =   1^3 +   12^3 =   9^3 +   10^3
2:       4104 =   2^3 +   16^3 =   9^3 +   15^3
3:      13832 =   2^3 +   24^3 =  18^3 +   20^3
4:      20683 =  10^3 +   27^3 =  19^3 +   24^3
5:      32832 =   4^3 +   32^3 =  18^3 +   30^3
6:      39312 =   2^3 +   34^3 =  15^3 +   33^3
7:      40033 =   9^3 +   34^3 =  16^3 +   33^3
8:      46683 =   3^3 +   36^3 =  27^3 +   30^3
9:      64232 =  17^3 +   39^3 =  26^3 +   36^3
10:      65728 =  12^3 +   40^3 =  31^3 +   33^3
11:     110656 =   4^3 +   48^3 =  36^3 +   40^3
12:     110808 =   6^3 +   48^3 =  27^3 +   45^3
13:     134379 =  12^3 +   51^3 =  38^3 +   43^3
14:     149389 =   8^3 +   53^3 =  29^3 +   50^3
15:     165464 =  20^3 +   54^3 =  38^3 +   48^3
16:     171288 =  17^3 +   55^3 =  24^3 +   54^3
17:     195841 =   9^3 +   58^3 =  22^3 +   57^3
18:     216027 =   3^3 +   60^3 =  22^3 +   59^3
19:     216125 =   5^3 +   60^3 =  45^3 +   50^3
20:     262656 =   8^3 +   64^3 =  36^3 +   60^3
21:     314496 =   4^3 +   68^3 =  30^3 +   66^3
22:     320264 =  18^3 +   68^3 =  32^3 +   66^3
23:     327763 =  30^3 +   67^3 =  51^3 +   58^3
24:     373464 =   6^3 +   72^3 =  54^3 +   60^3
25:     402597 =  42^3 +   69^3 =  56^3 +   61^3

2000: 1671816384 = 428^3 + 1168^3 = 940^3 +  944^3
2001: 1672470592 =  29^3 + 1187^3 = 632^3 + 1124^3
2002: 1673170856 = 458^3 + 1164^3 = 828^3 + 1034^3
2003: 1675045225 = 522^3 + 1153^3 = 744^3 + 1081^3
2004: 1675958167 = 492^3 + 1159^3 = 711^3 + 1096^3
2005: 1676926719 =  63^3 + 1188^3 = 714^3 + 1095^3
2006: 1677646971 =  99^3 + 1188^3 = 891^3 +  990^3```

Run-time: about 2.9 seconds with dmd compiler.

### Heap-Based Version

Translation of: Java

<lang d>import std.stdio, std.string, std.container;

struct CubeSum {

```   ulong x, y, value;
```
```   this(in ulong x_, in ulong y_) pure nothrow @safe @nogc {
this.x = x_;
this.y = y_;
this.value = x_ ^^ 3 + y_ ^^ 3;
}
```

}

final class Taxi {

```   BinaryHeap!(Array!CubeSum, "a.value > b.value") pq;
CubeSum last;
ulong n = 0;
```
```   this() {
last = nextSum();
}
```
```   CubeSum nextSum() {
while (pq.empty || pq.front.value >= n ^^ 3)
pq.insert(CubeSum(++n, 1));
```
```       auto s = pq.front;
pq.removeFront;
if (s.x > s.y + 1)
pq.insert(CubeSum(s.x, s.y + 1));
```
```       return s;
}
```
```   CubeSum[] nextTaxi() {
CubeSum s;
typeof(return) train;
```
```       while ((s = nextSum).value != last.value)
last = s;
```
```       train ~= last;
```
```       do {
train ~= s;
} while ((s = nextSum).value == last.value);
last = s;
```
```       return train;
}
```

}

void main() {

```   auto taxi = new Taxi;
```
```   foreach (immutable i; 1 .. 2007) {
const t = taxi.nextTaxi;
if (i > 25 && i < 2000)
continue;
```
```       writef("%4d: %10d", i, t[0].value);
foreach (const s; t)
writef(" = %4d^3 + %4d^3", s.x, s.y);
writeln;
}
```

}</lang>

Output:
```   1:       1729 =   10^3 +    9^3 =   12^3 +    1^3
2:       4104 =   15^3 +    9^3 =   16^3 +    2^3
3:      13832 =   20^3 +   18^3 =   24^3 +    2^3
4:      20683 =   24^3 +   19^3 =   27^3 +   10^3
5:      32832 =   30^3 +   18^3 =   32^3 +    4^3
6:      39312 =   33^3 +   15^3 =   34^3 +    2^3
7:      40033 =   33^3 +   16^3 =   34^3 +    9^3
8:      46683 =   30^3 +   27^3 =   36^3 +    3^3
9:      64232 =   39^3 +   17^3 =   36^3 +   26^3
10:      65728 =   40^3 +   12^3 =   33^3 +   31^3
11:     110656 =   40^3 +   36^3 =   48^3 +    4^3
12:     110808 =   45^3 +   27^3 =   48^3 +    6^3
13:     134379 =   51^3 +   12^3 =   43^3 +   38^3
14:     149389 =   50^3 +   29^3 =   53^3 +    8^3
15:     165464 =   48^3 +   38^3 =   54^3 +   20^3
16:     171288 =   54^3 +   24^3 =   55^3 +   17^3
17:     195841 =   57^3 +   22^3 =   58^3 +    9^3
18:     216027 =   59^3 +   22^3 =   60^3 +    3^3
19:     216125 =   50^3 +   45^3 =   60^3 +    5^3
20:     262656 =   60^3 +   36^3 =   64^3 +    8^3
21:     314496 =   66^3 +   30^3 =   68^3 +    4^3
22:     320264 =   68^3 +   18^3 =   66^3 +   32^3
23:     327763 =   67^3 +   30^3 =   58^3 +   51^3
24:     373464 =   60^3 +   54^3 =   72^3 +    6^3
25:     402597 =   69^3 +   42^3 =   61^3 +   56^3
2000: 1671816384 = 1168^3 +  428^3 =  944^3 +  940^3
2001: 1672470592 = 1124^3 +  632^3 = 1187^3 +   29^3
2002: 1673170856 = 1164^3 +  458^3 = 1034^3 +  828^3
2003: 1675045225 = 1153^3 +  522^3 = 1081^3 +  744^3
2004: 1675958167 = 1159^3 +  492^3 = 1096^3 +  711^3
2005: 1676926719 = 1095^3 +  714^3 = 1188^3 +   63^3
2006: 1677646971 =  990^3 +  891^3 = 1188^3 +   99^3```

Run-time: about 0.31 seconds with ldc2 compiler. It's faster than the Java solution.

### Low Level Heap-Based Version

Translation of: C

<lang d>struct Taxicabs {

```   alias CubesSumT = uint; // Or ulong.
```
```   static struct Sum {
CubesSumT value;
uint x, y;
}
```
```   // The cubes can be pre-computed if CubesSumT is a BigInt.
private uint nCubes;
private Sum[] pq;
private uint pq_len;
```
```   private void addCube() pure nothrow @safe {
nCubes = nCubes ? nCubes + 1 : 2;
if (nCubes < 2)
return; // 0 or 1 is useless.
```
```       pq_len++;
if (pq_len >= pq.length)
pq.length = (pq.length == 0) ? 2 : (pq.length * 2);
```
```       immutable tmp = Sum(CubesSumT(nCubes - 2) ^^ 3 + 1,
nCubes - 2, 1);
```
```       // Upheap.
uint i = pq_len;
for (; i >= 1 && pq[i >> 1].value > tmp.value; i >>= 1)
pq[i] = pq[i >> 1];
```
```       pq[i] = tmp;
}
```

```   private void nextSum() pure nothrow @safe {
while (!pq_len || pq[1].value >= (nCubes - 1) ^^ 3)
```
```       Sum tmp = pq[0] = pq[1]; //pq[0] always stores last seen value.
tmp.y++;
if (tmp.y >= tmp.x) { // Done with this x; throw it away.
tmp = pq[pq_len];
pq_len--;
if (!pq_len)
return nextSum(); // Refill empty heap.
} else
tmp.value += tmp.y ^^ 3 - (tmp.y - 1) ^^ 3;
```
```       // Downheap.
uint i = 1;
while (true) {
uint j = i << 1;
if (j > pq_len)
break;
if (j < pq_len && pq[j + 1].value < pq[j].value)
j++;
if (pq[j].value >= tmp.value)
break;
pq[i] = pq[j];
i = j;
}
```
```       pq[i] = tmp;
}
```

```   Sum[] nextTaxi(size_t N)(ref Sum[N] hist)
pure nothrow @safe {
do {
nextSum();
} while (pq[0].value != pq[1].value);
```
```       uint len = 1;
hist[0] = pq[0];
do {
hist[len] = pq[1];
len++;
nextSum();
} while (pq[0].value == pq[1].value);
```
```       return hist[0 .. len];
}
```

}

void main() nothrow {

```   import core.stdc.stdio;
```
```   Taxicabs t;
Taxicabs.Sum[3] x;
```
```   foreach (immutable uint i; 1 .. 2007) {
const triples = t.nextTaxi(x);
if (i > 25 && i < 2000)
continue;
printf("%4u: %10lu", i, triples[0].value);
foreach_reverse (const s; triples)
printf(" = %4u^3 + %4u^3", s.x, s.y);
'\n'.putchar;
}
```

}</lang>

Output:
```   1:       1729 =   12^3 +    1^3 =   10^3 +    9^3
2:       4104 =   15^3 +    9^3 =   16^3 +    2^3
3:      13832 =   20^3 +   18^3 =   24^3 +    2^3
4:      20683 =   27^3 +   10^3 =   24^3 +   19^3
5:      32832 =   30^3 +   18^3 =   32^3 +    4^3
6:      39312 =   33^3 +   15^3 =   34^3 +    2^3
7:      40033 =   33^3 +   16^3 =   34^3 +    9^3
8:      46683 =   30^3 +   27^3 =   36^3 +    3^3
9:      64232 =   36^3 +   26^3 =   39^3 +   17^3
10:      65728 =   33^3 +   31^3 =   40^3 +   12^3
11:     110656 =   40^3 +   36^3 =   48^3 +    4^3
12:     110808 =   45^3 +   27^3 =   48^3 +    6^3
13:     134379 =   43^3 +   38^3 =   51^3 +   12^3
14:     149389 =   50^3 +   29^3 =   53^3 +    8^3
15:     165464 =   48^3 +   38^3 =   54^3 +   20^3
16:     171288 =   54^3 +   24^3 =   55^3 +   17^3
17:     195841 =   57^3 +   22^3 =   58^3 +    9^3
18:     216027 =   59^3 +   22^3 =   60^3 +    3^3
19:     216125 =   50^3 +   45^3 =   60^3 +    5^3
20:     262656 =   60^3 +   36^3 =   64^3 +    8^3
21:     314496 =   66^3 +   30^3 =   68^3 +    4^3
22:     320264 =   66^3 +   32^3 =   68^3 +   18^3
23:     327763 =   58^3 +   51^3 =   67^3 +   30^3
24:     373464 =   60^3 +   54^3 =   72^3 +    6^3
25:     402597 =   61^3 +   56^3 =   69^3 +   42^3
2000: 1671816384 = 1168^3 +  428^3 =  944^3 +  940^3
2001: 1672470592 = 1124^3 +  632^3 = 1187^3 +   29^3
2002: 1673170856 = 1034^3 +  828^3 = 1164^3 +  458^3
2003: 1675045225 = 1153^3 +  522^3 = 1081^3 +  744^3
2004: 1675958167 = 1096^3 +  711^3 = 1159^3 +  492^3
2005: 1676926719 = 1188^3 +   63^3 = 1095^3 +  714^3
2006: 1677646971 =  990^3 +  891^3 = 1188^3 +   99^3```

Run-time: about 0.08 seconds with ldc2 compiler.

## DCL

We invoke external utility SORT which I suppose technically speaking is not a formal part of the language but is darn handy at times; <lang DCL>\$ close /nolog sums_of_cubes \$ on control_y then \$ goto clean \$ open /write sums_of_cubes sums_of_cubes.txt \$ i = 1 \$ loop1: \$ write sys\$output i \$ j = 1 \$ loop2: \$ sum = i * i * i + j * j * j \$ if sum .lt. 0 \$ then \$ write sys\$output "overflow at ", j \$ goto next_i \$ endif \$ write sums_of_cubes f\$fao( "!10SL,!10SL,!10SL", sum, i, j ) \$ j = j + 1 \$ if j .le. i then \$ goto loop2 \$ next_i: \$ i = i + 1 \$ if i .le. 1289 then \$ goto loop1  ! cube_root of 2^31-1 \$ close sums_of_cubes \$ sort sums_of_cubes.txt sorted_sums_of_cubes.txt \$ close /nolog sorted_sums_of_cubes \$ open sorted_sums_of_cubes sorted_sums_of_cubes.txt \$ count = 0 \$ read sorted_sums_of_cubes prev_prev_line  ! need to detect when there are more than just 2 different sums, e.g. 456 \$ prev_prev_sum = f\$element( 0, ",", f\$edit( prev_prev_line, "collapse" )) \$ read sorted_sums_of_cubes prev_line \$ prev_sum = f\$element( 0,",", f\$edit( prev_line, "collapse" )) \$ loop3: \$ read /end_of_file = done sorted_sums_of_cubes line \$ sum = f\$element( 0, ",", f\$edit( line, "collapse" )) \$ if sum .eqs. prev_sum \$ then \$ if sum .nes. prev_prev_sum then \$ count = count + 1 \$ int_sum = f\$integer( sum ) \$ i1 = f\$integer( f\$element( 1, ",", prev_line )) \$ j1 = f\$integer( f\$element( 2, ",", prev_line )) \$ i2 = f\$integer( f\$element( 1, ",", line )) \$ j2 = f\$integer( f\$element( 2, ",", line )) \$ if count .le. 25 .or. ( count .ge. 2000 .and. count .le. 2006 ) then - \$ write sys\$output f\$fao( "!4SL:!11SL =!5SL^3 +!5SL^3 =!5SL^3 +!5SL^3", count, int_sum, i1, j1, i2, j2 ) \$ endif \$ prev_prev_line = prev_line \$ prev_prev_sum = prev_sum \$ prev_line = line \$ prev_sum = sum \$ goto loop3 \$ done: \$ close sorted_sums_of_cubes \$ exit \$ \$ clean: \$ close /nolog sorted_sums_of_cubes \$ close /nolog sums_of_cubes</lang>

Output:
```\$ @taxicab_numbers
1:       1729 =   10^3 +    9^3 =   12^3 +    1^3
2:       4104 =   15^3 +    9^3 =   16^3 +    2^3
3:      13832 =   20^3 +   18^3 =   24^3 +    2^3
4:      20683 =   24^3 +   19^3 =   27^3 +   10^3
5:      32832 =   30^3 +   18^3 =   32^3 +    4^3
6:      39312 =   33^3 +   15^3 =   34^3 +    2^3
7:      40033 =   33^3 +   16^3 =   34^3 +    9^3
8:      46683 =   30^3 +   27^3 =   36^3 +    3^3
9:      64232 =   36^3 +   26^3 =   39^3 +   17^3
10:      65728 =   33^3 +   31^3 =   40^3 +   12^3
11:     110656 =   40^3 +   36^3 =   48^3 +    4^3
12:     110808 =   45^3 +   27^3 =   48^3 +    6^3
13:     134379 =   43^3 +   38^3 =   51^3 +   12^3
14:     149389 =   50^3 +   29^3 =   53^3 +    8^3
15:     165464 =   48^3 +   38^3 =   54^3 +   20^3
16:     171288 =   54^3 +   24^3 =   55^3 +   17^3
17:     195841 =   57^3 +   22^3 =   58^3 +    9^3
18:     216027 =   59^3 +   22^3 =   60^3 +    3^3
19:     216125 =   50^3 +   45^3 =   60^3 +    5^3
20:     262656 =   60^3 +   36^3 =   64^3 +    8^3
21:     314496 =   66^3 +   30^3 =   68^3 +    4^3
22:     320264 =   66^3 +   32^3 =   68^3 +   18^3
23:     327763 =   58^3 +   51^3 =   67^3 +   30^3
24:     373464 =   60^3 +   54^3 =   72^3 +    6^3
25:     402597 =   61^3 +   56^3 =   69^3 +   42^3
2000: 1671816384 =  944^3 +  940^3 = 1168^3 +  428^3
2001: 1672470592 = 1124^3 +  632^3 = 1187^3 +   29^3
2002: 1673170856 = 1034^3 +  828^3 = 1164^3 +  458^3
2003: 1675045225 = 1081^3 +  744^3 = 1153^3 +  522^3
2004: 1675958167 = 1096^3 +  711^3 = 1159^3 +  492^3
2005: 1676926719 = 1095^3 +  714^3 = 1188^3 +   63^3
2006: 1677646971 =  990^3 +  891^3 = 1188^3 +   99^3```

See Pascal.

## EchoLisp

Using the heap library, and a heap to store the taxicab numbers. For taxi tuples - decomposition in more than two sums - we use the group function which transforms a list ( 3 5 5 6 8 ...) into ((3) (5 5) (6) ...). <lang scheme> (require '(heap compile))

(define (scube a b) (+ (* a a a) (* b b b))) (compile 'scube "-f") ; "-f" means : no bigint, no rational used

is n - a^3 a cube b^3?
if yes return b, else #f

(define (taxi? n a (b 0)) (set! b (cbrt (- n (* a a a)))) ;; cbrt is ∛ (when (and (< b a) (integer? b)) b)) (compile 'taxi? "-f")

1. |-------------------

looking for taxis

|#
remove from heap until heap-top >= a
when twins are removed, it is a taxicab number
push it
at any time (top stack) = last removed

(define (clean-taxi H limit: a min-of-heap: htop) (when (and htop (> a htop)) (when (!= (stack-top S) htop) (pop S)) (push S htop) (heap-pop H) (clean-taxi H a (heap-top H)))) (compile 'clean-taxi "-f")

loop on a and b, b <=a , until n taxicabs found

(define (taxicab (n 2100)) (for ((a (in-naturals))) (clean-taxi H (* a a a) (heap-top H)) #:break (> (stack-length S) n) (for ((b a)) (heap-push H (scube a b)))))

1. |------------------

printing taxis

|#
string of all decompositions

(define (taxi->string i n) (string-append (format "%d. %d " (1+ i) n) (for/string ((a (cbrt n))) #:when (taxi? n a) (format " = %4d^3 + %4d^3" a (taxi? n a)))))

(define (taxi-print taxis (nfrom 0) (nto 26)) (for ((i (in-naturals nfrom)) (taxi (sublist taxis nfrom nto))) (writeln (taxi->string i (first taxi))))) </lang>

Output:

<lang scheme> (define S (stack 'S)) ;; to push taxis (define H (make-heap < )) ;; make min heap of all scubes

(taxicab 2100) (define taxis (group (stack->list S))) (taxi-print taxis )

1. 1729 = 10^3 + 9^3 = 12^3 + 1^3 2. 4104 = 15^3 + 9^3 = 16^3 + 2^3 3. 13832 = 20^3 + 18^3 = 24^3 + 2^3 4. 20683 = 24^3 + 19^3 = 27^3 + 10^3

1. | ... |#

24. 373464 = 60^3 + 54^3 = 72^3 + 6^3 25. 402597 = 61^3 + 56^3 = 69^3 + 42^3 26. 439101 = 69^3 + 48^3 = 76^3 + 5^3

(taxi-print taxis 1999 2006) 2000. 1671816384 = 944^3 + 940^3 = 1168^3 + 428^3 2001. 1672470592 = 1124^3 + 632^3 = 1187^3 + 29^3 2002. 1673170856 = 1034^3 + 828^3 = 1164^3 + 458^3 2003. 1675045225 = 1081^3 + 744^3 = 1153^3 + 522^3 2004. 1675958167 = 1096^3 + 711^3 = 1159^3 + 492^3 2005. 1676926719 = 1095^3 + 714^3 = 1188^3 + 63^3 2006. 1677646971 = 990^3 + 891^3 = 1188^3 + 99^3

extra bonus
print all taxis which are triplets

(define (taxi-tuples taxis (nfrom 0) (nto 2000)) (for ((i (in-naturals nfrom)) (taxi (sublist taxis nfrom nto))) #:when (> (length taxi) 1) ;; filter for tuples is here (writeln (taxi->string i (first taxi)))))

(taxi-tuples taxis)

455. 87539319 = 414^3 + 255^3 = 423^3 + 228^3 = 436^3 + 167^3 535. 119824488 = 428^3 + 346^3 = 492^3 + 90^3 = 493^3 + 11^3 588. 143604279 = 423^3 + 408^3 = 460^3 + 359^3 = 522^3 + 111^3 655. 175959000 = 525^3 + 315^3 = 552^3 + 198^3 = 560^3 + 70^3 888. 327763000 = 580^3 + 510^3 = 661^3 + 339^3 = 670^3 + 300^3 1299. 700314552 = 828^3 + 510^3 = 846^3 + 456^3 = 872^3 + 334^3 1398. 804360375 = 920^3 + 295^3 = 927^3 + 198^3 = 930^3 + 15^3 1515. 958595904 = 856^3 + 692^3 = 984^3 + 180^3 = 986^3 + 22^3 1660. 1148834232 = 846^3 + 816^3 = 920^3 + 718^3 = 1044^3 + 222^3 1837. 1407672000 = 1050^3 + 630^3 = 1104^3 + 396^3 = 1120^3 + 140^3 </lang>

## Elixir

<lang elixir>defmodule Taxicab do

``` def numbers(n \\ 1200) do
(for i <- 1..n, j <- i..n, do: {i,j})
|> Enum.group_by(fn {i,j} -> i*i*i + j*j*j end)
|> Enum.filter(fn {_,v} -> length(v)>1 end)
|> Enum.sort
end
```

end

nums = Taxicab.numbers |> Enum.with_index Enum.each(nums, fn {x,i} ->

``` if i in 0..24 or i in 1999..2005 do
IO.puts "#{i+1} : #{inspect x}"
end
```

end)</lang>

Output:
```1 : {1729, [{9, 10}, {1, 12}]}
2 : {4104, [{9, 15}, {2, 16}]}
3 : {13832, [{18, 20}, {2, 24}]}
4 : {20683, [{19, 24}, {10, 27}]}
5 : {32832, [{18, 30}, {4, 32}]}
6 : {39312, [{15, 33}, {2, 34}]}
7 : {40033, [{16, 33}, {9, 34}]}
8 : {46683, [{27, 30}, {3, 36}]}
9 : {64232, [{26, 36}, {17, 39}]}
10 : {65728, [{31, 33}, {12, 40}]}
11 : {110656, [{36, 40}, {4, 48}]}
12 : {110808, [{27, 45}, {6, 48}]}
13 : {134379, [{38, 43}, {12, 51}]}
14 : {149389, [{29, 50}, {8, 53}]}
15 : {165464, [{38, 48}, {20, 54}]}
16 : {171288, [{24, 54}, {17, 55}]}
17 : {195841, [{22, 57}, {9, 58}]}
18 : {216027, [{22, 59}, {3, 60}]}
19 : {216125, [{45, 50}, {5, 60}]}
20 : {262656, [{36, 60}, {8, 64}]}
21 : {314496, [{30, 66}, {4, 68}]}
22 : {320264, [{32, 66}, {18, 68}]}
23 : {327763, [{51, 58}, {30, 67}]}
24 : {373464, [{54, 60}, {6, 72}]}
25 : {402597, [{56, 61}, {42, 69}]}
2000 : {1671816384, [{940, 944}, {428, 1168}]}
2001 : {1672470592, [{632, 1124}, {29, 1187}]}
2002 : {1673170856, [{828, 1034}, {458, 1164}]}
2003 : {1675045225, [{744, 1081}, {522, 1153}]}
2004 : {1675958167, [{711, 1096}, {492, 1159}]}
2005 : {1676926719, [{714, 1095}, {63, 1188}]}
2006 : {1677646971, [{891, 990}, {99, 1188}]}
```

## Fortran

<lang fortran> ! A non-bruteforce approach

```    PROGRAM POOKA
IMPLICIT NONE
```

! ! PARAMETER definitions !

```     INTEGER , PARAMETER  ::  NVARS = 25
```

! ! Local variables !

```     REAL  ::  f1
REAL  ::  f2
INTEGER  ::  hits
INTEGER  ::  s
INTEGER  ::  TAXICAB
```
```     hits = 0
s = 0
f1 = SECOND()
DO WHILE ( hits<NVARS )
s = s + 1
hits = hits + TAXICAB(s)
END DO
f2 = SECOND()
PRINT * , 'elapsed time = ' , f2 - f1 , 'For ' , NVARS , ' Variables'
STOP
END PROGRAM POOKA

FUNCTION TAXICAB(N)
IMPLICIT NONE
```

! ! Dummy arguments !

```     INTEGER  ::  N
INTEGER  ::  TAXICAB
INTENT (IN) N
```

! ! Local variables !

```     INTEGER  ::  holder
INTEGER  ::  oldx
INTEGER  ::  oldy
INTEGER  ::  s
INTEGER  ::  x
INTEGER  ::  y
real*8,parameter :: xpon=(1.0D0/3.0D0)
```

!

```     x = 0
holder = 0
oldx = 0
oldy = 0
TAXICAB = 0
y = INT(N**xpon)
DO WHILE ( x<=y )
s = x**3 + y**3
IF( s<N )THEN
x = x + 1
ELSE IF( s>N )THEN
y = y - 1
ELSE
IF( holder==s )THEN ! Print the last value and this one that correspond
WRITE(6 , 34)s , '(' , x**3 , y**3 , ')' , '(' , oldx**3 , oldy**3 , ')'
34            FORMAT(1x , i12 , 10x , 1A1 , i12 , 2x , i12 , 1A1 , 10x , 1A1 , i12 , 2x ,&
& i12 , 1A1)
TAXICAB = 1  ! Indicate that we found a Taxi Number
END IF
holder = s      ! Set to the number that appears a potential cab number
oldx = x       ! Retain the values for the 2 cubes
oldy = y
x = x + 1       ! Keep looking
y = y - 1
END IF
END DO
RETURN
END FUNCTION TAXICAB

```

</lang>

Output:
```  Print first 25 numbers
1729          (         729          1000)          (           1          1728)
4104          (         729          3375)          (           8          4096)
13832          (        5832          8000)          (           8         13824)
20683          (        6859         13824)          (        1000         19683)
32832          (        5832         27000)          (          64         32768)
39312          (        3375         35937)          (           8         39304)
40033          (        4096         35937)          (         729         39304)
46683          (       19683         27000)          (          27         46656)
64232          (       17576         46656)          (        4913         59319)
65728          (       29791         35937)          (        1728         64000)
110656          (       46656         64000)          (          64        110592)
110808          (       19683         91125)          (         216        110592)
134379          (       54872         79507)          (        1728        132651)
149389          (       24389        125000)          (         512        148877)
165464          (       54872        110592)          (        8000        157464)
171288          (       13824        157464)          (        4913        166375)
195841          (       10648        185193)          (         729        195112)
216027          (       10648        205379)          (          27        216000)
216125          (       91125        125000)          (         125        216000)
262656          (       46656        216000)          (         512        262144)
314496          (       27000        287496)          (          64        314432)
320264          (       32768        287496)          (        5832        314432)
327763          (      132651        195112)          (       27000        300763)
373464          (      157464        216000)          (         216        373248)
402597          (      175616        226981)          (       74088        328509)
elapsed time =    4.68750000E-02 For           25  Variables

-----   2000 to 2006 numbers
1671816384          (   830584000     841232384)          (    78402752    1593413632)
1672470592          (   252435968    1420034624)          (       24389    1672446203)
1673170856          (   567663552    1105507304)          (    96071912    1577098944)
1675045225          (   411830784    1263214441)          (   142236648    1532808577)
1675958167          (   359425431    1316532736)          (   119095488    1556862679)
1676926719          (   363994344    1312932375)          (      250047    1676676672)
1677646971          (   707347971     970299000)          (      970299    1676676672)

```

## FreeBASIC

<lang freebasic>' version 11-10-2016 ' compile with: fbc -s console

' Brute force

``` ' sort from lower bound to the highter bound
Dim As UInteger lb = LBound(s)
Dim As UInteger ub = UBound(s)
Dim As Integer done, i, inc = ub - lb
```
``` Do
inc = inc / 2.2
If inc < 1 Then inc = 1
```
```   Do
done = 0
For i = lb To ub - inc
If s(i) > s(i + inc) Then
Swap s(i), s(i + inc)
done = 1
End If
Next
Loop Until done = 0
```
``` Loop Until inc = 1
```

End Sub

' ------=< MAIN >=------

Dim As UInteger x, y, count, c, sum Dim As UInteger cube(1290) Dim As String result(), str1, str2, str3 Dim As String buf11 = Space(11), buf5 = Space(5) ReDim result(900000) ' ~1291*1291\2

' set up the cubes Print : Print " Calculate cubes" For x = 1 To 1290

``` cube(x) = x*x*x
```

Next

' combine and store Print : Print " Combine cubes" For x = 1 To 1290

``` For y = x To 1290
sum = cube(x)+cube(y)
RSet buf11, Str(sum) : str1 = buf11
RSet buf5, Str(x) : str2 = buf5
RSet buf5, Str(y) : Str3 = buf5
result(count)=buf11 + " = " + str2 + " ^ 3 + " + str3 + " ^ 3"
count = count +1
Next
```

Next

count= count -1 ReDim Preserve result(count) ' trim the array

Print : Print " Sort (takes some time)" shellsort(result()) ' sort

Print : Print " Find the Taxicab numbers" c = 1 ' start at index 1 For x = 0 To count -1

``` ' find sums that match
If Left(result(x), 11) = Left(result(x + 1), 11) Then
result(c) = result(x)
y = x +1
Do    ' merge the other solution(s)
result(c) = result(c) + Mid(result(y), 12)
y = y +1
Loop Until Left(result(x), 11) <> Left(result(y), 11)
x = y -1 ' let x point to last match result
c = c +1
End If
```

Next

c = c -1 Print : Print " "; c; " Taxicab numbers found" ReDim Preserve result(c) ' trim the array again

cls Print : Print " Print first 25 numbers" : Print For x = 1 To 25

``` Print result(x)
```

Next

Print : Print " The 2000th to the 2006th" : Print For x = 2000 To 2006

``` Print result(x)
```

Next

' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
```  Print first 25 numbers

1729 =     1 ^ 3 +    12 ^ 3 =     9 ^ 3 +    10 ^ 3
4104 =     2 ^ 3 +    16 ^ 3 =     9 ^ 3 +    15 ^ 3
13832 =     2 ^ 3 +    24 ^ 3 =    18 ^ 3 +    20 ^ 3
20683 =    10 ^ 3 +    27 ^ 3 =    19 ^ 3 +    24 ^ 3
32832 =     4 ^ 3 +    32 ^ 3 =    18 ^ 3 +    30 ^ 3
39312 =     2 ^ 3 +    34 ^ 3 =    15 ^ 3 +    33 ^ 3
40033 =     9 ^ 3 +    34 ^ 3 =    16 ^ 3 +    33 ^ 3
46683 =     3 ^ 3 +    36 ^ 3 =    27 ^ 3 +    30 ^ 3
64232 =    17 ^ 3 +    39 ^ 3 =    26 ^ 3 +    36 ^ 3
65728 =    12 ^ 3 +    40 ^ 3 =    31 ^ 3 +    33 ^ 3
110656 =     4 ^ 3 +    48 ^ 3 =    36 ^ 3 +    40 ^ 3
110808 =     6 ^ 3 +    48 ^ 3 =    27 ^ 3 +    45 ^ 3
134379 =    12 ^ 3 +    51 ^ 3 =    38 ^ 3 +    43 ^ 3
149389 =     8 ^ 3 +    53 ^ 3 =    29 ^ 3 +    50 ^ 3
165464 =    20 ^ 3 +    54 ^ 3 =    38 ^ 3 +    48 ^ 3
171288 =    17 ^ 3 +    55 ^ 3 =    24 ^ 3 +    54 ^ 3
195841 =     9 ^ 3 +    58 ^ 3 =    22 ^ 3 +    57 ^ 3
216027 =     3 ^ 3 +    60 ^ 3 =    22 ^ 3 +    59 ^ 3
216125 =     5 ^ 3 +    60 ^ 3 =    45 ^ 3 +    50 ^ 3
262656 =     8 ^ 3 +    64 ^ 3 =    36 ^ 3 +    60 ^ 3
314496 =     4 ^ 3 +    68 ^ 3 =    30 ^ 3 +    66 ^ 3
320264 =    18 ^ 3 +    68 ^ 3 =    32 ^ 3 +    66 ^ 3
327763 =    30 ^ 3 +    67 ^ 3 =    51 ^ 3 +    58 ^ 3
373464 =     6 ^ 3 +    72 ^ 3 =    54 ^ 3 +    60 ^ 3
402597 =    42 ^ 3 +    69 ^ 3 =    56 ^ 3 +    61 ^ 3

The 2000th to the 2006th

1671816384 =   428 ^ 3 +  1168 ^ 3 =   940 ^ 3 +   944 ^ 3
1672470592 =    29 ^ 3 +  1187 ^ 3 =   632 ^ 3 +  1124 ^ 3
1673170856 =   458 ^ 3 +  1164 ^ 3 =   828 ^ 3 +  1034 ^ 3
1675045225 =   522 ^ 3 +  1153 ^ 3 =   744 ^ 3 +  1081 ^ 3
1675958167 =   492 ^ 3 +  1159 ^ 3 =   711 ^ 3 +  1096 ^ 3
1676926719 =    63 ^ 3 +  1188 ^ 3 =   714 ^ 3 +  1095 ^ 3
1677646971 =    99 ^ 3 +  1188 ^ 3 =   891 ^ 3 +   990 ^ 3```

## Go

<lang go>package main

import ( "container/heap" "fmt" "strings" )

type CubeSum struct { x, y uint16 value uint64 }

func (c *CubeSum) fixvalue() { c.value = cubes[c.x] + cubes[c.y] }

type CubeSumHeap []*CubeSum

func (h CubeSumHeap) Len() int { return len(h) } func (h CubeSumHeap) Less(i, j int) bool { return h[i].value < h[j].value } func (h CubeSumHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h *CubeSumHeap) Push(x interface{}) { (*h) = append(*h, x.(*CubeSum)) } func (h *CubeSumHeap) Pop() interface{} { x := (*h)[len(*h)-1] *h = (*h)[:len(*h)-1] return x }

type TaxicabGen struct { n int h CubeSumHeap }

var cubes []uint64 // cubes[i] == i*i*i func cubesExtend(i int) { for n := uint64(len(cubes)); n <= uint64(i); n++ { cubes = append(cubes, n*n*n) } }

func (g *TaxicabGen) min() CubeSum { for len(g.h) == 0 || g.h[0].value > cubes[g.n] { g.n++ cubesExtend(g.n) heap.Push(&g.h, &CubeSum{uint16(g.n), 1, cubes[g.n] + 1}) } // Note, we use g.h[0] to "peek" at the min heap entry. c := *(g.h[0]) if c.y+1 <= c.x { // Instead of Pop and Push we modify in place and fix. g.h[0].y++ g.h[0].fixvalue() heap.Fix(&g.h, 0) } else { heap.Pop(&g.h) } return c }

// Originally this was just: type Taxicab [2]CubeSum // and we always returned two sums. Now we return all the sums. type Taxicab []CubeSum

func (t Taxicab) String() string { var b strings.Builder fmt.Fprintf(&b, "%12d", t[0].value) for _, p := range t { fmt.Fprintf(&b, " =%5d³ +%5d³", p.x, p.y) } return b.String() }

func (g *TaxicabGen) Next() Taxicab { a, b := g.min(), g.min() for a.value != b.value { a, b = b, g.min() } //return Taxicab{a,b}

// Originally this just returned Taxicab{a,b} and we didn't look // further into the heap. Since we start by looking at the next // pair, that is okay until the first Taxicab number with four // ways of expressing the cube, which doesn't happen until the // 97,235th Taxicab: // 6963472309248 = 16630³ + 13322³ = 18072³ + 10200³ // = 18948³ + 5436³ = 19083³ + 2421³ // Now we return all ways so we need to peek into the heap. t := Taxicab{a, b} for g.h[0].value == b.value { t = append(t, g.min()) } return t }

func main() { const ( low = 25 mid = 2e3 high = 4e4 ) var tg TaxicabGen firstn := 3 // To show the first triple, quadruple, etc for i := 1; i <= high+6; i++ { t := tg.Next() switch { case len(t) >= firstn: firstn++ fallthrough case i <= low || (mid <= i && i <= mid+6) || i >= high: //fmt.Printf("h:%-4d ", len(tg.h)) fmt.Printf("%5d: %v\n", i, t) } } }</lang>

Output:
```    1:         1729 =   12³ +    1³ =   10³ +    9³
2:         4104 =   16³ +    2³ =   15³ +    9³
3:        13832 =   24³ +    2³ =   20³ +   18³
4:        20683 =   27³ +   10³ =   24³ +   19³
5:        32832 =   32³ +    4³ =   30³ +   18³
6:        39312 =   34³ +    2³ =   33³ +   15³
7:        40033 =   34³ +    9³ =   33³ +   16³
8:        46683 =   36³ +    3³ =   30³ +   27³
9:        64232 =   36³ +   26³ =   39³ +   17³
10:        65728 =   40³ +   12³ =   33³ +   31³
11:       110656 =   48³ +    4³ =   40³ +   36³
12:       110808 =   48³ +    6³ =   45³ +   27³
13:       134379 =   51³ +   12³ =   43³ +   38³
14:       149389 =   53³ +    8³ =   50³ +   29³
15:       165464 =   54³ +   20³ =   48³ +   38³
16:       171288 =   55³ +   17³ =   54³ +   24³
17:       195841 =   58³ +    9³ =   57³ +   22³
18:       216027 =   60³ +    3³ =   59³ +   22³
19:       216125 =   60³ +    5³ =   50³ +   45³
20:       262656 =   64³ +    8³ =   60³ +   36³
21:       314496 =   68³ +    4³ =   66³ +   30³
22:       320264 =   66³ +   32³ =   68³ +   18³
23:       327763 =   58³ +   51³ =   67³ +   30³
24:       373464 =   72³ +    6³ =   60³ +   54³
25:       402597 =   69³ +   42³ =   61³ +   56³
455:     87539319 =  436³ +  167³ =  423³ +  228³ =  414³ +  255³
2000:   1671816384 = 1168³ +  428³ =  944³ +  940³
2001:   1672470592 = 1187³ +   29³ = 1124³ +  632³
2002:   1673170856 = 1164³ +  458³ = 1034³ +  828³
2003:   1675045225 = 1081³ +  744³ = 1153³ +  522³
2004:   1675958167 = 1096³ +  711³ = 1159³ +  492³
2005:   1676926719 = 1188³ +   63³ = 1095³ +  714³
2006:   1677646971 =  990³ +  891³ = 1188³ +   99³
40000: 976889700163 = 8659³ + 6894³ = 9891³ + 2098³
40001: 976942087381 = 7890³ + 7861³ = 8680³ + 6861³
40002: 976946344920 = 9476³ + 5014³ = 9798³ + 3312³
40003: 976962998375 = 9912³ + 1463³ = 8415³ + 7250³
40004: 976974757064 = 9365³ + 5379³ = 9131³ + 5997³
40005: 977025552984 = 9894³ + 2040³ = 9792³ + 3366³
40006: 977104161000 = 9465³ + 5055³ = 9920³ +  970³
```

<lang haskell>import Data.List (groupBy, sortOn, tails, transpose) import Data.Function (on)

TAXICAB NUMBERS --------------------

taxis :: Int -> (Int, ((Int, Int), (Int, Int))) taxis nCubes =

``` filter ((> 1) . length) \$
groupBy (on (==) fst) \$
sortOn fst
[ (fst x + fst y, (x, y))
| (x:t) <- tails \$ ((^ 3) >>= (,)) <\$> [1 .. nCubes]
, y <- t ]
```

TEST -------------------------

main :: IO () main =

``` mapM_ putStrLn \$
concat <\$>
transpose
(((<\$>) =<< flip justifyRight ' ' . maximum . (length <\$>)) <\$>
transpose (taxiRow <\$> (take 25 xs <> take 7 (drop 1999 xs))))
where
xs = zip [1 ..] (taxis 1200)
justifyRight n c = (drop . length) <*> (replicate n c <>)
```

DISPLAY ------------------------

taxiRow :: (Int, [(Int, ((Int, Int), (Int, Int)))]) -> [String] taxiRow (n, [(a, ((axc, axr), (ayc, ayr))), (b, ((bxc, bxr), (byc, byr)))]) =

``` concat
[ [show n, ". ", show a, " = "]
, term axr axc " + "
, term ayr ayc "  or  "
, term bxr bxc " + "
, term byr byc []
]
where
term r c l = ["(", show r, "^3=", show c, ")", l]</lang>
```
Output:
```   1.       1729 = (  1^3=        1) + (  12^3=      1728)  or  (  9^3=      729) + (  10^3=      1000)
2.       4104 = (  2^3=        8) + (  16^3=      4096)  or  (  9^3=      729) + (  15^3=      3375)
3.      13832 = (  2^3=        8) + (  24^3=     13824)  or  ( 18^3=     5832) + (  20^3=      8000)
4.      20683 = ( 10^3=     1000) + (  27^3=     19683)  or  ( 19^3=     6859) + (  24^3=     13824)
5.      32832 = (  4^3=       64) + (  32^3=     32768)  or  ( 18^3=     5832) + (  30^3=     27000)
6.      39312 = (  2^3=        8) + (  34^3=     39304)  or  ( 15^3=     3375) + (  33^3=     35937)
7.      40033 = (  9^3=      729) + (  34^3=     39304)  or  ( 16^3=     4096) + (  33^3=     35937)
8.      46683 = (  3^3=       27) + (  36^3=     46656)  or  ( 27^3=    19683) + (  30^3=     27000)
9.      64232 = ( 17^3=     4913) + (  39^3=     59319)  or  ( 26^3=    17576) + (  36^3=     46656)
10.      65728 = ( 12^3=     1728) + (  40^3=     64000)  or  ( 31^3=    29791) + (  33^3=     35937)
11.     110656 = (  4^3=       64) + (  48^3=    110592)  or  ( 36^3=    46656) + (  40^3=     64000)
12.     110808 = (  6^3=      216) + (  48^3=    110592)  or  ( 27^3=    19683) + (  45^3=     91125)
13.     134379 = ( 12^3=     1728) + (  51^3=    132651)  or  ( 38^3=    54872) + (  43^3=     79507)
14.     149389 = (  8^3=      512) + (  53^3=    148877)  or  ( 29^3=    24389) + (  50^3=    125000)
15.     165464 = ( 20^3=     8000) + (  54^3=    157464)  or  ( 38^3=    54872) + (  48^3=    110592)
16.     171288 = ( 17^3=     4913) + (  55^3=    166375)  or  ( 24^3=    13824) + (  54^3=    157464)
17.     195841 = (  9^3=      729) + (  58^3=    195112)  or  ( 22^3=    10648) + (  57^3=    185193)
18.     216027 = (  3^3=       27) + (  60^3=    216000)  or  ( 22^3=    10648) + (  59^3=    205379)
19.     216125 = (  5^3=      125) + (  60^3=    216000)  or  ( 45^3=    91125) + (  50^3=    125000)
20.     262656 = (  8^3=      512) + (  64^3=    262144)  or  ( 36^3=    46656) + (  60^3=    216000)
21.     314496 = (  4^3=       64) + (  68^3=    314432)  or  ( 30^3=    27000) + (  66^3=    287496)
22.     320264 = ( 18^3=     5832) + (  68^3=    314432)  or  ( 32^3=    32768) + (  66^3=    287496)
23.     327763 = ( 30^3=    27000) + (  67^3=    300763)  or  ( 51^3=   132651) + (  58^3=    195112)
24.     373464 = (  6^3=      216) + (  72^3=    373248)  or  ( 54^3=   157464) + (  60^3=    216000)
25.     402597 = ( 42^3=    74088) + (  69^3=    328509)  or  ( 56^3=   175616) + (  61^3=    226981)
2000. 1671816384 = (428^3= 78402752) + (1168^3=1593413632)  or  (940^3=830584000) + ( 944^3= 841232384)
2001. 1672470592 = ( 29^3=    24389) + (1187^3=1672446203)  or  (632^3=252435968) + (1124^3=1420034624)
2002. 1673170856 = (458^3= 96071912) + (1164^3=1577098944)  or  (828^3=567663552) + (1034^3=1105507304)
2003. 1675045225 = (522^3=142236648) + (1153^3=1532808577)  or  (744^3=411830784) + (1081^3=1263214441)
2004. 1675958167 = (492^3=119095488) + (1159^3=1556862679)  or  (711^3=359425431) + (1096^3=1316532736)
2005. 1676926719 = ( 63^3=   250047) + (1188^3=1676676672)  or  (714^3=363994344) + (1095^3=1312932375)
2006. 1677646971 = ( 99^3=   970299) + (1188^3=1676676672)  or  (891^3=707347971) + ( 990^3= 970299000)```

## J

<lang J>cubes=: 3^~1+i.100 NB. first 100 cubes triples=: /:~ ~. ,/ (+ , /:~@,)"0/~cubes NB. ordered pairs of cubes (each with their sum) candidates=: ;({."#. <@(0&#`({.@{.(;,)<@}."1)@.(1<#))/. ])triples

NB. we just want the first 25 taxicab numbers 25{.(,.~ <@>:@i.@#) candidates ┌──┬──────┬────────────┬─────────────┐ │1 │1729 │1 1728 │729 1000 │ ├──┼──────┼────────────┼─────────────┤ │2 │4104 │8 4096 │729 3375 │ ├──┼──────┼────────────┼─────────────┤ │3 │13832 │8 13824 │5832 8000 │ ├──┼──────┼────────────┼─────────────┤ │4 │20683 │1000 19683 │6859 13824 │ ├──┼──────┼────────────┼─────────────┤ │5 │32832 │64 32768 │5832 27000 │ ├──┼──────┼────────────┼─────────────┤ │6 │39312 │8 39304 │3375 35937 │ ├──┼──────┼────────────┼─────────────┤ │7 │40033 │729 39304 │4096 35937 │ ├──┼──────┼────────────┼─────────────┤ │8 │46683 │27 46656 │19683 27000 │ ├──┼──────┼────────────┼─────────────┤ │9 │64232 │4913 59319 │17576 46656 │ ├──┼──────┼────────────┼─────────────┤ │10│65728 │1728 64000 │29791 35937 │ ├──┼──────┼────────────┼─────────────┤ │11│110656│64 110592 │46656 64000 │ ├──┼──────┼────────────┼─────────────┤ │12│110808│216 110592 │19683 91125 │ ├──┼──────┼────────────┼─────────────┤ │13│134379│1728 132651 │54872 79507 │ ├──┼──────┼────────────┼─────────────┤ │14│149389│512 148877 │24389 125000 │ ├──┼──────┼────────────┼─────────────┤ │15│165464│8000 157464 │54872 110592 │ ├──┼──────┼────────────┼─────────────┤ │16│171288│4913 166375 │13824 157464 │ ├──┼──────┼────────────┼─────────────┤ │17│195841│729 195112 │10648 185193 │ ├──┼──────┼────────────┼─────────────┤ │18│216027│27 216000 │10648 205379 │ ├──┼──────┼────────────┼─────────────┤ │19│216125│125 216000 │91125 125000 │ ├──┼──────┼────────────┼─────────────┤ │20│262656│512 262144 │46656 216000 │ ├──┼──────┼────────────┼─────────────┤ │21│314496│64 314432 │27000 287496 │ ├──┼──────┼────────────┼─────────────┤ │22│320264│5832 314432 │32768 287496 │ ├──┼──────┼────────────┼─────────────┤ │23│327763│27000 300763│132651 195112│ ├──┼──────┼────────────┼─────────────┤ │24│373464│216 373248 │157464 216000│ ├──┼──────┼────────────┼─────────────┤ │25│402597│74088 328509│175616 226981│ └──┴──────┴────────────┴─────────────┘</lang>

Explanation:

First, generate 100 cubes.

Then, form a 3 column table of unique rows: sum, small cube, large cube

Then, gather rows where the first entry is the same. Keep the ones with at least two such entries (sorted by ascending order of sum).

Then, place an counting index (starting from 1) in front of each row, so the columns are now: counting index, sum, small cube, large cube.

Note that the cube root of the 25th entry is slightly smaller than 74, so testing against the first 100 cubes is more than sufficient.

Note that here we have elected to show the constituent cubes as themselves rather than as expressions involving their cube roots.

Extra credit:

<lang J> x:each 7 {. 1999 }. (,.~ <@>:@i.@#) ;({."#. <@(0&#`({.@{.(;,)<@}."1)@.(1<#))/. ])/:~~.,/(+,/:~@,)"0/~3^~1+i.10000 ┌────┬──────────┬────────────────────┬────────────────────┬┐ │2000│1671816384│78402752 1593413632 │830584000 841232384 ││ ├────┼──────────┼────────────────────┼────────────────────┼┤ │2001│1672470592│24389 1672446203 │252435968 1420034624││ ├────┼──────────┼────────────────────┼────────────────────┼┤ │2002│1673170856│96071912 1577098944 │567663552 1105507304││ ├────┼──────────┼────────────────────┼────────────────────┼┤ │2003│1675045225│142236648 1532808577│411830784 1263214441││ ├────┼──────────┼────────────────────┼────────────────────┼┤ │2004│1675958167│119095488 1556862679│359425431 1316532736││ ├────┼──────────┼────────────────────┼────────────────────┼┤ │2005│1676926719│250047 1676676672 │363994344 1312932375││ ├────┼──────────┼────────────────────┼────────────────────┼┤ │2006│1677646971│970299 1676676672 │707347971 970299000 ││ └────┴──────────┴────────────────────┴────────────────────┴┘</lang>

The extra blank box at the end is because when tackling this large of a data set, some sums can be achieved by three different pairs of cubes.

## Java

<lang java>import java.util.PriorityQueue; import java.util.ArrayList; import java.util.List; import java.util.Iterator;

class CubeSum implements Comparable<CubeSum> { public long x, y, value;

public CubeSum(long x, long y) { this.x = x; this.y = y; this.value = x*x*x + y*y*y; }

public String toString() { return String.format("%4d^3 + %4d^3", x, y); }

public int compareTo(CubeSum that) { return value < that.value ? -1 : value > that.value ? 1 : 0; } }

class SumIterator implements Iterator<CubeSum> { PriorityQueue<CubeSum> pq = new PriorityQueue<CubeSum>(); long n = 0;

public boolean hasNext() { return true; } public CubeSum next() { while (pq.size() == 0 || pq.peek().value >= n*n*n) pq.add(new CubeSum(++n, 1));

CubeSum s = pq.remove(); if (s.x > s.y + 1) pq.add(new CubeSum(s.x, s.y+1));

return s; } }

class TaxiIterator implements Iterator<List<CubeSum>> { Iterator<CubeSum> sumIterator = new SumIterator(); CubeSum last = sumIterator.next();

public boolean hasNext() { return true; } public List<CubeSum> next() { CubeSum s; List<CubeSum> train = new ArrayList<CubeSum>();

while ((s = sumIterator.next()).value != last.value) last = s;

do { train.add(s); } while ((s = sumIterator.next()).value == last.value); last = s;

return train; } }

public class Taxi { public static final void main(String[] args) { Iterator<List<CubeSum>> taxi = new TaxiIterator();

for (int i = 1; i <= 2006; i++) { List<CubeSum> t = taxi.next(); if (i > 25 && i < 2000) continue;

System.out.printf("%4d: %10d", i, t.get(0).value); for (CubeSum s: t) System.out.print(" = " + s); System.out.println(); } } }</lang>

Output:
```   1:       1729 =   10^3 +    9^3 =   12^3 +    1^3
2:       4104 =   15^3 +    9^3 =   16^3 +    2^3
3:      13832 =   20^3 +   18^3 =   24^3 +    2^3
4:      20683 =   24^3 +   19^3 =   27^3 +   10^3
5:      32832 =   30^3 +   18^3 =   32^3 +    4^3
6:      39312 =   33^3 +   15^3 =   34^3 +    2^3
7:      40033 =   34^3 +    9^3 =   33^3 +   16^3
8:      46683 =   30^3 +   27^3 =   36^3 +    3^3
9:      64232 =   36^3 +   26^3 =   39^3 +   17^3
10:      65728 =   33^3 +   31^3 =   40^3 +   12^3
11:     110656 =   40^3 +   36^3 =   48^3 +    4^3
12:     110808 =   45^3 +   27^3 =   48^3 +    6^3
13:     134379 =   43^3 +   38^3 =   51^3 +   12^3
14:     149389 =   50^3 +   29^3 =   53^3 +    8^3
15:     165464 =   48^3 +   38^3 =   54^3 +   20^3
16:     171288 =   54^3 +   24^3 =   55^3 +   17^3
17:     195841 =   57^3 +   22^3 =   58^3 +    9^3
18:     216027 =   59^3 +   22^3 =   60^3 +    3^3
19:     216125 =   50^3 +   45^3 =   60^3 +    5^3
20:     262656 =   60^3 +   36^3 =   64^3 +    8^3
21:     314496 =   66^3 +   30^3 =   68^3 +    4^3
22:     320264 =   66^3 +   32^3 =   68^3 +   18^3
23:     327763 =   58^3 +   51^3 =   67^3 +   30^3
24:     373464 =   60^3 +   54^3 =   72^3 +    6^3
25:     402597 =   61^3 +   56^3 =   69^3 +   42^3
2000: 1671816384 = 1168^3 +  428^3 =  944^3 +  940^3
2001: 1672470592 = 1124^3 +  632^3 = 1187^3 +   29^3
2002: 1673170856 = 1164^3 +  458^3 = 1034^3 +  828^3
2003: 1675045225 = 1153^3 +  522^3 = 1081^3 +  744^3
2004: 1675958167 = 1159^3 +  492^3 = 1096^3 +  711^3
2005: 1676926719 = 1095^3 +  714^3 = 1188^3 +   63^3
2006: 1677646971 =  990^3 +  891^3 = 1188^3 +   99^3
```

## JavaScript

<lang JavaScript>var n3s = [],

```   s3s = {}
```

for (var n = 1, e = 1200; n < e; n += 1) n3s[n] = n * n * n for (var a = 1; a < e - 1; a += 1) {

```   var a3 = n3s[a]
for (var b = a; b < e; b += 1) {
var b3 = n3s[b]
var s3 = a3 + b3,
abs = s3s[s3]
if (!abs) s3s[s3] = abs = []
abs.push([a, b])
}
```

}

var i = 0 for (var s3 in s3s) {

```   var abs = s3s[s3]
if (abs.length < 2) continue
i += 1
if (abs.length == 2 && i > 25 && i < 2000) continue
if (i > 2006) break
document.write(i, ': ', s3)
for (var ab of abs) {
document.write(' = ', ab[0], '3+', ab[1], '3')
}
document.write('')
```

}</lang>

Output:
```1: 1729 = 13+123 = 93+103
2: 4104 = 23+163 = 93+153
3: 13832 = 23+243 = 183+203
4: 20683 = 103+273 = 193+243
5: 32832 = 43+323 = 183+303
6: 39312 = 23+343 = 153+333
7: 40033 = 93+343 = 163+333
8: 46683 = 33+363 = 273+303
9: 64232 = 173+393 = 263+363
10: 65728 = 123+403 = 313+333
11: 110656 = 43+483 = 363+403
12: 110808 = 63+483 = 273+453
13: 134379 = 123+513 = 383+433
14: 149389 = 83+533 = 293+503
15: 165464 = 203+543 = 383+483
16: 171288 = 173+553 = 243+543
17: 195841 = 93+583 = 223+573
18: 216027 = 33+603 = 223+593
19: 216125 = 53+603 = 453+503
20: 262656 = 83+643 = 363+603
21: 314496 = 43+683 = 303+663
22: 320264 = 183+683 = 323+663
23: 327763 = 303+673 = 513+583
24: 373464 = 63+723 = 543+603
25: 402597 = 423+693 = 563+613
455: 87539319 = 1673+4363 = 2283+4233 = 2553+4143
535: 119824488 = 113+4933 = 903+4923 = 3463+4283
588: 143604279 = 1113+5223 = 3593+4603 = 4083+4233
655: 175959000 = 703+5603 = 1983+5523 = 3153+5253
888: 327763000 = 3003+6703 = 3393+6613 = 5103+5803
1299: 700314552 = 3343+8723 = 4563+8463 = 5103+8283
1398: 804360375 = 153+9303 = 1983+9273 = 2953+9203
1515: 958595904 = 223+9863 = 1803+9843 = 6923+8563
1660: 1148834232 = 2223+10443 = 7183+9203 = 8163+8463
1837: 1407672000 = 1403+11203 = 3963+11043 = 6303+10503
2000: 1671816384 = 4283+11683 = 9403+9443
2001: 1672470592 = 293+11873 = 6323+11243
2002: 1673170856 = 4583+11643 = 8283+10343
2003: 1675045225 = 5223+11533 = 7443+10813
2004: 1675958167 = 4923+11593 = 7113+10963
2005: 1676926719 = 633+11883 = 7143+10953
2006: 1677646971 = 993+11883 = 8913+9903
```

## jq

Works with: jq version 1.4

<lang jq># Output: an array of the form [i^3 + j^3, [i, j]] sorted by the sum.

1. Only cubes of 1 to (\$in-1) are considered; the listing is therefore truncated
2. as it might not capture taxicab numbers greater than \$in ^ 3.

def sum_of_two_cubes:

``` def cubed: .*.*.;
. as \$in
| (cubed + 1) as \$limit
| [range(1;\$in) as \$i | range(\$i;\$in) as \$j
```
``` | [ (\$i|cubed) + (\$j|cubed), [\$i, \$j] ] ] | sort
| map( select( .[0] < \$limit ) );
```
1. Output a stream of triples [t, d1, d2], in order of t,
2. where t is a taxicab number, and d1 and d2 are distinct
3. decompositions [i,j] with i^3 + j^3 == t.
4. The stream includes each taxicab number once only.

def taxicabs0:

``` sum_of_two_cubes as \$sums
| range(1;\$sums|length) as \$i
| if \$sums[\$i][0] == \$sums[\$i-1][0]
and (\$i==1 or \$sums[\$i][0] != \$sums[\$i-2][0])
then [\$sums[\$i][0], \$sums[\$i-1][1], \$sums[\$i][1]]
else empty
end;
```
1. Output a stream of \$n taxicab triples: [t, d1, d2] as described above,
2. without repeating t.

def taxicabs:

``` # If your jq includes until/2 then the following definition
# can be omitted:
def until(cond; next):
def _until: if cond then . else (next|_until) end;  _until;
. as \$n
| [10, (\$n / 10 | floor)] | max as \$increment
| [20, (\$n / 2 | floor)] | max
| [ ., [taxicabs0] ]
| until( .[1] | length >= \$m; (.[0] + \$increment) | [., [taxicabs0]] )
| .[1][0:\$n] ;</lang>
```

The task <lang jq>2006 | taxicabs as \$t | (range(0;25), range(1999;2006)) as \$i | "\(\$i+1): \(\$t[\$i][0]) ~ \(\$t[\$i][1]) and \(\$t[\$i][2])"</lang>

Output:

<lang sh>\$ jq -n -r -f Taxicab_numbers.jq 1: 1729 ~ [1,12] and [9,10] 2: 4104 ~ [2,16] and [9,15] 3: 13832 ~ [2,24] and [18,20] 4: 20683 ~ [10,27] and [19,24] 5: 32832 ~ [4,32] and [18,30] 6: 39312 ~ [2,34] and [15,33] 7: 40033 ~ [9,34] and [16,33] 8: 46683 ~ [3,36] and [27,30] 9: 64232 ~ [17,39] and [26,36] 10: 65728 ~ [12,40] and [31,33] 11: 110656 ~ [4,48] and [36,40] 12: 110808 ~ [6,48] and [27,45] 13: 134379 ~ [12,51] and [38,43] 14: 149389 ~ [8,53] and [29,50] 15: 165464 ~ [20,54] and [38,48] 16: 171288 ~ [17,55] and [24,54] 17: 195841 ~ [9,58] and [22,57] 18: 216027 ~ [3,60] and [22,59] 19: 216125 ~ [5,60] and [45,50] 20: 262656 ~ [8,64] and [36,60] 21: 314496 ~ [4,68] and [30,66] 22: 320264 ~ [18,68] and [32,66] 23: 327763 ~ [30,67] and [51,58] 24: 373464 ~ [6,72] and [54,60] 25: 402597 ~ [42,69] and [56,61] 2000: 1671816384 ~ [428,1168] and [940,944] 2001: 1672470592 ~ [29,1187] and [632,1124] 2002: 1673170856 ~ [458,1164] and [828,1034] 2003: 1675045225 ~ [522,1153] and [744,1081] 2004: 1675958167 ~ [492,1159] and [711,1096] 2005: 1676926719 ~ [63,1188] and [714,1095] 2006: 1677646971 ~ [99,1188] and [891,990]</lang>

## Julia

Translation of: Python

<lang julia>using Printf, DataStructures, IterTools

function findtaxinumbers(nmax::Integer)

```   cube2n = Dict{Int,Int}(x ^ 3 => x for x in 0:nmax)
sum2cubes = DefaultDict{Int,Set{NTuple{2,Int}}}(Set{NTuple{2,Int}})
for ((c1, _), (c2, _)) in product(cube2n, cube2n)
if c1 ≥ c2
push!(sum2cubes[c1 + c2], (cube2n[c1], cube2n[c2]))
end
end
```
```   taxied = collect((k, v) for (k, v) in sum2cubes if length(v) ≥ 2)
return sort!(taxied, by = first)
```

end taxied = findtaxinumbers(1200)

for (ith, (cube, set)) in zip(1:25, taxied[1:25])

```   @printf "%2i: %7i = %s\n" ith cube join(set, ", ")
# println(ith, ": ", cube, " = ", join(set, ", "))
```

end println("...") for (ith, (cube, set)) in zip(2000:2006, taxied[2000:2006])

```   @printf "%-4i: %i = %s\n" ith cube join(set, ", ")
```

end

1. version 2

function findtaxinumbers(nmax::Integer)

```   cubes, crev = collect(x ^ 3 for x in 1:nmax), Dict{Int,Int}()
for (x, x3) in enumerate(cubes)
crev[x3] = x
end
sums = collect(x + y for x in cubes for y in cubes if y < x)
sort!(sums)
```
```   idx = 0
for i in 2:(endof(sums) - 1)
if sums[i-1] != sums[i] && sums[i] == sums[i+1]
idx += 1
if 25 < idx < 2000 || idx > 2006 continue end
n, p = sums[i], NTuple{2,Int}[]
for x in cubes
n < 2x && break
push!(p, (crev[x], crev[n - x]))
end
end
@printf "%4d: %10d" idx n
for x in p @printf(" = %4d ^ 3 + %4d ^ 3", x...) end
println()
end
end
```

end

findtaxinumbers(1200)</lang>

Output:
``` 1:    1729 = (12, 1), (10, 9)
2:    4104 = (16, 2), (15, 9)
3:   13832 = (24, 2), (20, 18)
4:   20683 = (27, 10), (24, 19)
5:   32832 = (32, 4), (30, 18)
6:   39312 = (33, 15), (34, 2)
7:   40033 = (34, 9), (33, 16)
8:   46683 = (30, 27), (36, 3)
9:   64232 = (36, 26), (39, 17)
10:   65728 = (33, 31), (40, 12)
11:  110656 = (48, 4), (40, 36)
12:  110808 = (48, 6), (45, 27)
13:  134379 = (43, 38), (51, 12)
14:  149389 = (50, 29), (53, 8)
15:  165464 = (54, 20), (48, 38)
16:  171288 = (54, 24), (55, 17)
17:  195841 = (57, 22), (58, 9)
18:  216027 = (59, 22), (60, 3)
19:  216125 = (60, 5), (50, 45)
20:  262656 = (64, 8), (60, 36)
21:  314496 = (66, 30), (68, 4)
22:  320264 = (66, 32), (68, 18)
23:  327763 = (67, 30), (58, 51)
24:  373464 = (60, 54), (72, 6)
25:  402597 = (69, 42), (61, 56)
...
2000: 1671816384 = (944, 940), (1168, 428)
2001: 1672470592 = (1124, 632), (1187, 29)
2002: 1673170856 = (1034, 828), (1164, 458)
2003: 1675045225 = (1081, 744), (1153, 522)
2004: 1675958167 = (1159, 492), (1096, 711)
2005: 1676926719 = (1188, 63), (1095, 714)
2006: 1677646971 = (1188, 99), (990, 891)
1:       1729 =    1 ^ 3 +   12 ^ 3 =    9 ^ 3 +   10 ^ 3
2:       4104 =    2 ^ 3 +   16 ^ 3 =    9 ^ 3 +   15 ^ 3
3:      13832 =    2 ^ 3 +   24 ^ 3 =   18 ^ 3 +   20 ^ 3
4:      20683 =   10 ^ 3 +   27 ^ 3 =   19 ^ 3 +   24 ^ 3
5:      32832 =    4 ^ 3 +   32 ^ 3 =   18 ^ 3 +   30 ^ 3
6:      39312 =    2 ^ 3 +   34 ^ 3 =   15 ^ 3 +   33 ^ 3
7:      40033 =    9 ^ 3 +   34 ^ 3 =   16 ^ 3 +   33 ^ 3
8:      46683 =    3 ^ 3 +   36 ^ 3 =   27 ^ 3 +   30 ^ 3
9:      64232 =   17 ^ 3 +   39 ^ 3 =   26 ^ 3 +   36 ^ 3
10:      65728 =   12 ^ 3 +   40 ^ 3 =   31 ^ 3 +   33 ^ 3
11:     110656 =    4 ^ 3 +   48 ^ 3 =   36 ^ 3 +   40 ^ 3
12:     110808 =    6 ^ 3 +   48 ^ 3 =   27 ^ 3 +   45 ^ 3
13:     134379 =   12 ^ 3 +   51 ^ 3 =   38 ^ 3 +   43 ^ 3
14:     149389 =    8 ^ 3 +   53 ^ 3 =   29 ^ 3 +   50 ^ 3
15:     165464 =   20 ^ 3 +   54 ^ 3 =   38 ^ 3 +   48 ^ 3
16:     171288 =   17 ^ 3 +   55 ^ 3 =   24 ^ 3 +   54 ^ 3
17:     195841 =    9 ^ 3 +   58 ^ 3 =   22 ^ 3 +   57 ^ 3
18:     216027 =    3 ^ 3 +   60 ^ 3 =   22 ^ 3 +   59 ^ 3
19:     216125 =    5 ^ 3 +   60 ^ 3 =   45 ^ 3 +   50 ^ 3
20:     262656 =    8 ^ 3 +   64 ^ 3 =   36 ^ 3 +   60 ^ 3
21:     314496 =    4 ^ 3 +   68 ^ 3 =   30 ^ 3 +   66 ^ 3
22:     320264 =   18 ^ 3 +   68 ^ 3 =   32 ^ 3 +   66 ^ 3
23:     327763 =   30 ^ 3 +   67 ^ 3 =   51 ^ 3 +   58 ^ 3
24:     373464 =    6 ^ 3 +   72 ^ 3 =   54 ^ 3 +   60 ^ 3
25:     402597 =   42 ^ 3 +   69 ^ 3 =   56 ^ 3 +   61 ^ 3
2000: 1671816384 =  428 ^ 3 + 1168 ^ 3 =  940 ^ 3 +  944 ^ 3
2001: 1672470592 =   29 ^ 3 + 1187 ^ 3 =  632 ^ 3 + 1124 ^ 3
2002: 1673170856 =  458 ^ 3 + 1164 ^ 3 =  828 ^ 3 + 1034 ^ 3
2003: 1675045225 =  522 ^ 3 + 1153 ^ 3 =  744 ^ 3 + 1081 ^ 3
2004: 1675958167 =  492 ^ 3 + 1159 ^ 3 =  711 ^ 3 + 1096 ^ 3
2005: 1676926719 =   63 ^ 3 + 1188 ^ 3 =  714 ^ 3 + 1095 ^ 3
2006: 1677646971 =   99 ^ 3 + 1188 ^ 3 =  891 ^ 3 +  990 ^ 3```

## Kotlin

Translation of: Java

<lang scala>// version 1.0.6

import java.util.PriorityQueue

class CubeSum(val x: Long, val y: Long) : Comparable<CubeSum> {

```   val value: Long = x * x * x + y * y * y
```
```   override fun toString() = String.format("%4d^3 + %3d^3", x, y)

override fun compareTo(other: CubeSum) = value.compareTo(other.value)
```

}

class SumIterator : Iterator<CubeSum> {

```   private val pq = PriorityQueue<CubeSum>()
private var n = 0L

override fun hasNext() = true
```
```   override fun next(): CubeSum {
while (pq.size == 0 || pq.peek().value >= n * n * n)
val s: CubeSum = pq.remove()
if (s.x > s.y + 1) pq.add(CubeSum(s.x, s.y + 1))
return s
}
```

}

class TaxiIterator : Iterator<MutableList<CubeSum>> {

```   private val sumIterator = SumIterator()
private var last: CubeSum = sumIterator.next()
```
```   override fun hasNext() = true
```
```   override fun next(): MutableList<CubeSum> {
var s: CubeSum = sumIterator.next()
val train = mutableListOf<CubeSum>()
while (s.value != last.value) {
last = s
s = sumIterator.next()
}
do {
s = sumIterator.next()
}
while (s.value == last.value)
last = s
return train
}
```

}

fun main(args: Array<String>) {

```   val taxi = TaxiIterator()
for (i in 1..2006) {
val t = taxi.next()
if (i in 26 until 2000) continue
print(String.format("%4d: %10d", i, t[0].value))
for (s in t) print("  = \$s")
println()
}
```

}</lang>

Output:
```   1:       1729  =   10^3 +   9^3  =   12^3 +   1^3
2:       4104  =   15^3 +   9^3  =   16^3 +   2^3
3:      13832  =   20^3 +  18^3  =   24^3 +   2^3
4:      20683  =   24^3 +  19^3  =   27^3 +  10^3
5:      32832  =   30^3 +  18^3  =   32^3 +   4^3
6:      39312  =   33^3 +  15^3  =   34^3 +   2^3
7:      40033  =   33^3 +  16^3  =   34^3 +   9^3
8:      46683  =   30^3 +  27^3  =   36^3 +   3^3
9:      64232  =   39^3 +  17^3  =   36^3 +  26^3
10:      65728  =   40^3 +  12^3  =   33^3 +  31^3
11:     110656  =   40^3 +  36^3  =   48^3 +   4^3
12:     110808  =   45^3 +  27^3  =   48^3 +   6^3
13:     134379  =   51^3 +  12^3  =   43^3 +  38^3
14:     149389  =   50^3 +  29^3  =   53^3 +   8^3
15:     165464  =   48^3 +  38^3  =   54^3 +  20^3
16:     171288  =   54^3 +  24^3  =   55^3 +  17^3
17:     195841  =   57^3 +  22^3  =   58^3 +   9^3
18:     216027  =   59^3 +  22^3  =   60^3 +   3^3
19:     216125  =   50^3 +  45^3  =   60^3 +   5^3
20:     262656  =   60^3 +  36^3  =   64^3 +   8^3
21:     314496  =   66^3 +  30^3  =   68^3 +   4^3
22:     320264  =   68^3 +  18^3  =   66^3 +  32^3
23:     327763  =   67^3 +  30^3  =   58^3 +  51^3
24:     373464  =   60^3 +  54^3  =   72^3 +   6^3
25:     402597  =   69^3 +  42^3  =   61^3 +  56^3
2000: 1671816384  = 1168^3 + 428^3  =  944^3 + 940^3
2001: 1672470592  = 1124^3 + 632^3  = 1187^3 +  29^3
2002: 1673170856  = 1164^3 + 458^3  = 1034^3 + 828^3
2003: 1675045225  = 1153^3 + 522^3  = 1081^3 + 744^3
2004: 1675958167  = 1159^3 + 492^3  = 1096^3 + 711^3
2005: 1676926719  = 1095^3 + 714^3  = 1188^3 +  63^3
2006: 1677646971  =  990^3 + 891^3  = 1188^3 +  99^3
```

## Lua

<lang lua>sums, taxis, limit = {}, {}, 1200 for i = 1, limit do

``` for j = 1, i-1 do
sum = i^3 + j^3
sums[sum] = sums[sum] or {}
table.insert(sums[sum], i.."^3 + "..j.."^3")
end
```

end for k,v in pairs(sums) do

``` if #v > 1 then table.insert(taxis, { sum=k, num=#v, terms=table.concat(v," = ") }) end
```

end table.sort(taxis, function(a,b) return a.sum<b.sum end) for i=1,2006 do

``` if i<=25 or i>=2000 or taxis[i].num==3 then
print(string.format("%4d%s: %10d = %s", i, taxis[i].num==3 and "*" or " ", taxis[i].sum, taxis[i].terms))
end
```

end print("* n=3")</lang>

Output:
```   1 :       1729 = 10^3 + 9^3 = 12^3 + 1^3
2 :       4104 = 15^3 + 9^3 = 16^3 + 2^3
3 :      13832 = 20^3 + 18^3 = 24^3 + 2^3
4 :      20683 = 24^3 + 19^3 = 27^3 + 10^3
5 :      32832 = 30^3 + 18^3 = 32^3 + 4^3
6 :      39312 = 33^3 + 15^3 = 34^3 + 2^3
7 :      40033 = 33^3 + 16^3 = 34^3 + 9^3
8 :      46683 = 30^3 + 27^3 = 36^3 + 3^3
9 :      64232 = 36^3 + 26^3 = 39^3 + 17^3
10 :      65728 = 33^3 + 31^3 = 40^3 + 12^3
11 :     110656 = 40^3 + 36^3 = 48^3 + 4^3
12 :     110808 = 45^3 + 27^3 = 48^3 + 6^3
13 :     134379 = 43^3 + 38^3 = 51^3 + 12^3
14 :     149389 = 50^3 + 29^3 = 53^3 + 8^3
15 :     165464 = 48^3 + 38^3 = 54^3 + 20^3
16 :     171288 = 54^3 + 24^3 = 55^3 + 17^3
17 :     195841 = 57^3 + 22^3 = 58^3 + 9^3
18 :     216027 = 59^3 + 22^3 = 60^3 + 3^3
19 :     216125 = 50^3 + 45^3 = 60^3 + 5^3
20 :     262656 = 60^3 + 36^3 = 64^3 + 8^3
21 :     314496 = 66^3 + 30^3 = 68^3 + 4^3
22 :     320264 = 66^3 + 32^3 = 68^3 + 18^3
23 :     327763 = 58^3 + 51^3 = 67^3 + 30^3
24 :     373464 = 60^3 + 54^3 = 72^3 + 6^3
25 :     402597 = 61^3 + 56^3 = 69^3 + 42^3
455*:   87539319 = 414^3 + 255^3 = 423^3 + 228^3 = 436^3 + 167^3
535*:  119824488 = 428^3 + 346^3 = 492^3 + 90^3 = 493^3 + 11^3
588*:  143604279 = 423^3 + 408^3 = 460^3 + 359^3 = 522^3 + 111^3
655*:  175959000 = 525^3 + 315^3 = 552^3 + 198^3 = 560^3 + 70^3
888*:  327763000 = 580^3 + 510^3 = 661^3 + 339^3 = 670^3 + 300^3
1299*:  700314552 = 828^3 + 510^3 = 846^3 + 456^3 = 872^3 + 334^3
1398*:  804360375 = 920^3 + 295^3 = 927^3 + 198^3 = 930^3 + 15^3
1515*:  958595904 = 856^3 + 692^3 = 984^3 + 180^3 = 986^3 + 22^3
1660*: 1148834232 = 846^3 + 816^3 = 920^3 + 718^3 = 1044^3 + 222^3
1837*: 1407672000 = 1050^3 + 630^3 = 1104^3 + 396^3 = 1120^3 + 140^3
2000 : 1671816384 = 944^3 + 940^3 = 1168^3 + 428^3
2001 : 1672470592 = 1124^3 + 632^3 = 1187^3 + 29^3
2002 : 1673170856 = 1034^3 + 828^3 = 1164^3 + 458^3
2003 : 1675045225 = 1081^3 + 744^3 = 1153^3 + 522^3
2004 : 1675958167 = 1096^3 + 711^3 = 1159^3 + 492^3
2005 : 1676926719 = 1095^3 + 714^3 = 1188^3 + 63^3
2006 : 1677646971 = 990^3 + 891^3 = 1188^3 + 99^3
* n=3```

## Mathematica/Wolfram Language

<lang Mathematica>findTaxi[n_] := Sort[Keys[Select[Counts[Flatten[Table[x^3 + y^3, {x, 1, n}, {y, x, n}]]], GreaterThan[1]]]]; Take[findTaxiNumbers[100], 25] found=findTaxiNumbers[1200]2000 ;; 2005 Map[Reduce[x^3 + y^3 == # && x >= y && x > 0 && y > 0, {x, y}, Integers] &, found]</lang>

Output:
```{1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, 65728, 110656, 110808, 134379, 149389, 165464, 171288, 195841, 216027, 216125, 262656, 314496, 320264, 327763, 373464, 402597}
{1671816384, 1672470592, 1673170856, 1675045225, 1675958167, 1676926719}
{(x == 944 && y == 940) || (x == 1168 && y == 428),
(x == 1124 && y == 632) || (x == 1187 && y == 29),
(x == 1034 && y == 828) || (x == 1164 && y == 458),
(x == 1081 && y == 744) || (x == 1153 && y == 522),
(x == 1096 && y == 711) || (x == 1159 && y == 492),
(x == 1095 &&  y == 714) || (x == 1188 && y == 63)}```

## Nim

Translation of: Python

This is a translation of the Python version which uses a heap.

Python generators have been translated as Nim iterators. We used inline iterators as code expansion is not a problem in this case and performances are better. We formatted the output as in the D version.

Execution time is excellent: about 45 ms on our laptop (I5).

<lang Nim>import heapqueue, strformat

type

``` CubeSum = tuple[x, y, value: int]
```
1. Comparison function needed for the heap queues.

proc `<`(c1, c2: CubeSum): bool = c1.value < c2.value

template cube(n: int): int = n * n * n

iterator cubesum(): CubeSum =

``` var queue: HeapQueue[CubeSum]
var n = 1
while true:
while queue.len == 0 or queue[0].value > cube(n):
queue.push (n, 1, cube(n) + 1)
inc n
var s = queue.pop()
yield s
inc s.y
if s.y < s.x: queue.push (s.x, s.y, cube(s.x) + cube(s.y))
```

iterator taxis(): seq[CubeSum] =

``` var result: seq[CubeSum] = @[(0, 0, 0)]
for s in cubesum():
if s.value == result[^1].value:
else:
if result.len > 1: yield result
result.setLen(0)
result.add s      # These two statements are faster than the single result = @[s].
```

var n = 0 for t in taxis():

``` inc n
if n > 2006: break
if n <= 25 or n >= 2000:
stdout.write &"{n:4}: {t[0].value:10}"
for s in t:
stdout.write &" = {s.x:4}^3 + {s.y:4}^3"
echo()</lang>
```
Output:
```   1:       1729 =   10^3 +    9^3 =   12^3 +    1^3
2:       4104 =   15^3 +    9^3 =   16^3 +    2^3
3:      13832 =   20^3 +   18^3 =   24^3 +    2^3
4:      20683 =   24^3 +   19^3 =   27^3 +   10^3
5:      32832 =   30^3 +   18^3 =   32^3 +    4^3
6:      39312 =   33^3 +   15^3 =   34^3 +    2^3
7:      40033 =   34^3 +    9^3 =   33^3 +   16^3
8:      46683 =   30^3 +   27^3 =   36^3 +    3^3
9:      64232 =   39^3 +   17^3 =   36^3 +   26^3
10:      65728 =   33^3 +   31^3 =   40^3 +   12^3
11:     110656 =   40^3 +   36^3 =   48^3 +    4^3
12:     110808 =   45^3 +   27^3 =   48^3 +    6^3
13:     134379 =   43^3 +   38^3 =   51^3 +   12^3
14:     149389 =   50^3 +   29^3 =   53^3 +    8^3
15:     165464 =   54^3 +   20^3 =   48^3 +   38^3
16:     171288 =   54^3 +   24^3 =   55^3 +   17^3
17:     195841 =   58^3 +    9^3 =   57^3 +   22^3
18:     216027 =   59^3 +   22^3 =   60^3 +    3^3
19:     216125 =   50^3 +   45^3 =   60^3 +    5^3
20:     262656 =   60^3 +   36^3 =   64^3 +    8^3
21:     314496 =   66^3 +   30^3 =   68^3 +    4^3
22:     320264 =   68^3 +   18^3 =   66^3 +   32^3
23:     327763 =   67^3 +   30^3 =   58^3 +   51^3
24:     373464 =   60^3 +   54^3 =   72^3 +    6^3
25:     402597 =   61^3 +   56^3 =   69^3 +   42^3
2000: 1671816384 =  944^3 +  940^3 = 1168^3 +  428^3
2001: 1672470592 = 1124^3 +  632^3 = 1187^3 +   29^3
2002: 1673170856 = 1034^3 +  828^3 = 1164^3 +  458^3
2003: 1675045225 = 1153^3 +  522^3 = 1081^3 +  744^3
2004: 1675958167 = 1096^3 +  711^3 = 1159^3 +  492^3
2005: 1676926719 = 1095^3 +  714^3 = 1188^3 +   63^3
2006: 1677646971 = 1188^3 +   99^3 =  990^3 +  891^3```

## PARI/GP

<lang parigp>taxicab(n)=my(t); for(k=sqrtnint((n-1)\2,3)+1, sqrtnint(n,3), if(ispower(n-k^3, 3), if(t, return(1), t=1))); 0; cubes(n)=my(t); for(k=sqrtnint((n-1)\2,3)+1, sqrtnint(n,3), if(ispower(n-k^3, 3, &t), print(n" = \t"k"^3\t+ "t"^3"))) select(taxicab, [1..402597]) apply(cubes, %);</lang>

Output:
```%1 = [1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, 65728, 110656, 110808, 134379, 149389, 165464, 171288, 195841, 216027, 216125, 262656, 314496, 320264, 327763, 373464, 402597]
1729 =          10^3    + 9^3
1729 =          12^3    + 1^3
4104 =          15^3    + 9^3
4104 =          16^3    + 2^3
13832 =         20^3    + 18^3
13832 =         24^3    + 2^3
20683 =         24^3    + 19^3
20683 =         27^3    + 10^3
32832 =         30^3    + 18^3
32832 =         32^3    + 4^3
39312 =         33^3    + 15^3
39312 =         34^3    + 2^3
40033 =         33^3    + 16^3
40033 =         34^3    + 9^3
46683 =         30^3    + 27^3
46683 =         36^3    + 3^3
64232 =         36^3    + 26^3
64232 =         39^3    + 17^3
65728 =         33^3    + 31^3
65728 =         40^3    + 12^3
110656 =        40^3    + 36^3
110656 =        48^3    + 4^3
110808 =        45^3    + 27^3
110808 =        48^3    + 6^3
134379 =        43^3    + 38^3
134379 =        51^3    + 12^3
149389 =        50^3    + 29^3
149389 =        53^3    + 8^3
165464 =        48^3    + 38^3
165464 =        54^3    + 20^3
171288 =        54^3    + 24^3
171288 =        55^3    + 17^3
195841 =        57^3    + 22^3
195841 =        58^3    + 9^3
216027 =        59^3    + 22^3
216027 =        60^3    + 3^3
216125 =        50^3    + 45^3
216125 =        60^3    + 5^3
262656 =        60^3    + 36^3
262656 =        64^3    + 8^3
314496 =        66^3    + 30^3
314496 =        68^3    + 4^3
320264 =        66^3    + 32^3
320264 =        68^3    + 18^3
327763 =        58^3    + 51^3
327763 =        67^3    + 30^3
373464 =        60^3    + 54^3
373464 =        72^3    + 6^3
402597 =        61^3    + 56^3
402597 =        69^3    + 42^3```

## Pascal

Works with: Free Pascal

Brute force: Create all combinations x³+ y³ | y < x one by on and test if there is a combination v < x and v> w > y with the same cube-sum. Combinations to check = n*(n-1)/2.The mean distance of one Combination m is m/2 from m³+1³ to m³+(m-1)³. searchSameSum checks one half of this distance == m/4.So O(n) ~ n³ /8 checks are needed. searchSameSum takes most of the time (>95% ), sorting is neglectable. [[1]]C-Version is ~6 times faster aka 43 vs 247 ms for max = 1290^3. Here limit set to 1190 to just reach the goal of element 2006 ;-) so 200ms are possible. Its impressive, that over all one check takes ~3.5 cpu-cycles on i4330 3.5Ghz

<lang pascal>program taxiCabNo; uses

``` sysutils;
```

type

``` tPot3    = Uint32;
tPot3Sol = record
p3Sum : tPot3;
i1,j1,
i2,j2 : Word;
end;
tpPot3    = ^tPot3;
tpPot3Sol = ^tPot3Sol;
```

var //1290^3 = 2'146'689'000 < 2^31-1 //1190 is the magic number of the task ;-)

``` pot3 : array[0..1190{1290}] of tPot3;//
AllSol : array[0..3000] of tpot3Sol;
AllSolHigh : NativeInt;
```

procedure SolOut(const s:tpot3Sol;no: NativeInt); begin

``` with s do
writeln(no:5,p3Sum:12,' = ',j1:5,'^3 +',i1:5,'^3 =',j2:5,'^3 +',i2:5,'^3');
```

end;

procedure InsertAllSol;

var

``` tmp: tpot3Sol;
p :tpPot3Sol;
p3Sum: tPot3;
i: NativeInt;
```

Begin

``` i := AllSolHigh;
IF i > 0 then
Begin
p := @AllSol[i];
tmp := p^;
p3Sum := p^.p3Sum;
//search the right place for insertion
repeat
dec(i);
dec(p);
IF (p^.p3Sum <= p3Sum) then
BREAK;
until  (i<=0);
IF p^.p3Sum = p3Sum then
EXIT;
//free the right place by moving one place up
inc(i);
inc(p);
IF i<AllSolHigh then
Begin
move(p^,AllSol[i+1],SizeOf(AllSol[0])*(AllSolHigh-i));
p^ := tmp;
end;
end;
inc(AllSolHigh);
```

end;

function searchSameSum(var sol:tpot3Sol):boolean; //try to find a new combination for the same sum //within the limits given by lo and hi var

``` Sum,
SumLo: tPot3;
hi,lo: NativeInt;
```

Begin

``` with Sol do
Begin
Sum := p3Sum;
lo:= i1;
hi:= j1;
end;
```
``` repeat
//Move hi down
dec(hi);
SumLo := Sum-Pot3[hi];
//Move lo up an check until new combination found or implicite lo> hi
repeat
inc(lo)
until (SumLo<=Pot3[lo]);
//found?
IF SumLo = Pot3[lo] then
BREAK;
until lo>=hi;
```
``` IF lo<hi then
Begin
sol.i2:= lo;
sol.j2:= hi;
searchSameSum := true;
end
else
searchSameSum := false;
```

end;

procedure Search; var

``` i,j: LongInt;
```

Begin

``` AllSolHigh := 0;
For j := 2 to High(pot3)-1 do
Begin
For i := 1 to j-1 do
Begin
with AllSol[AllSolHigh] do
Begin
p3Sum:= pot3[i]+pot3[j];
i1:= i;
j1:= j;
end;
IF searchSameSum(AllSol[AllSolHigh]) then
BEGIN
InsertAllSol;
IF AllSolHigh>High(AllSol) then EXIT;
end;
end;
end;
```

end;

var

``` i: LongInt;
```

Begin

``` For i := Low(pot3) to High(pot3) do
pot3[i] := i*i*i;
AllSolHigh := 0;
Search;
For i :=    0 to   24 do SolOut(AllSol[i],i+1);
For i := 1999 to 2005 do SolOut(AllSol[i],i+1);
writeln('count of solutions         ',AllSolHigh);
```

end. </lang>

```    1        1729 =    12^3 +    1^3 =   10^3 +    9^3
2        4104 =    16^3 +    2^3 =   15^3 +    9^3
3       13832 =    24^3 +    2^3 =   20^3 +   18^3
......
24      373464 =    72^3 +    6^3 =   60^3 +   54^3
25      402597 =    69^3 +   42^3 =   61^3 +   56^3
2000  1671816384 =  1168^3 +  428^3 =  944^3 +  940^3
2001  1672470592 =  1187^3 +   29^3 = 1124^3 +  632^3
...
2005  1676926719 =  1188^3 +   63^3 = 1095^3 +  714^3
2006  1677646971 =  1188^3 +   99^3 =  990^3 +  891^3
count of solutions         2050
//checks              196438017
real  0m0.196s```

## Perl

Uses segmentation so memory use is constrained as high values are searched for. Also has parameter to look for Ta(3) and Ta(4) numbers (which is when segmentation is really needed). By default shows the first 25 numbers; with one argument shows that many; with two arguments shows results in the range.

<lang perl>my(\$beg, \$end) = (@ARGV==0) ? (1,25) : (@ARGV==1) ? (1,shift) : (shift,shift);

my \$lim = 1e14; # Ought to be dynamic as should segment size my @basis = map { \$_*\$_*\$_ } (1 .. int(\$lim ** (1.0/3.0) + 1)); my \$paira = 2; # We're looking for Ta(2) and larger

my (\$segsize, \$low, \$high, \$i) = (500_000_000, 0, 0, 0);

while (\$i < \$end) {

``` \$low = \$high+1;
die "lim too low" if \$low > \$lim;
\$high = \$low + \$segsize - 1;
\$high = \$lim if \$high > \$lim;
foreach my \$p (_find_pairs_segment(\@basis, \$paira, \$low, \$high,
sub { sprintf("%4d^3 + %4d^3", \$_[0], \$_[1]) })    ) {
\$i++;
next if \$i < \$beg;
last if \$i > \$end;
my \$n = shift @\$p;
printf "%4d: %10d  = %s\n", \$i, \$n, join("  = ", @\$p);
}
```

}

sub _find_pairs_segment {

``` my(\$p, \$len, \$start, \$end, \$formatsub) = @_;
my \$plen = \$#\$p;
```
``` my %allpairs;
foreach my \$i (0 .. \$plen) {
my \$pi = \$p->[\$i];
next if (\$pi+\$p->[\$plen]) < \$start;
last if (2*\$pi) > \$end;
foreach my \$j (\$i .. \$plen) {
my \$sum = \$pi + \$p->[\$j];
next if \$sum < \$start;
last if \$sum > \$end;
push @{ \$allpairs{\$sum} }, \$i, \$j;
}
# If we wanted to save more memory, we could filter and delete every entry
# where \$n < 2 * \$p->[\$i+1].  This can cut memory use in half, but is slow.
}
```
``` my @retlist;
foreach my \$list (grep { scalar @\$_ >= \$len*2 } values %allpairs) {
my \$n = \$p->[\$list->[0]] + \$p->[\$list->[1]];
my @pairlist;
while (@\$list) {
push @pairlist, \$formatsub->(1 + shift @\$list, 1 + shift @\$list);
}
push @retlist, [\$n, @pairlist];
}
@retlist = sort { \$a->[0] <=> \$b->[0] } @retlist;
return @retlist;
```

}</lang>

Output:
```   1:       1729  =    1^3 +   12^3  =    9^3 +   10^3
2:       4104  =    2^3 +   16^3  =    9^3 +   15^3
3:      13832  =    2^3 +   24^3  =   18^3 +   20^3
4:      20683  =   10^3 +   27^3  =   19^3 +   24^3
5:      32832  =    4^3 +   32^3  =   18^3 +   30^3
6:      39312  =    2^3 +   34^3  =   15^3 +   33^3
7:      40033  =    9^3 +   34^3  =   16^3 +   33^3
8:      46683  =    3^3 +   36^3  =   27^3 +   30^3
9:      64232  =   17^3 +   39^3  =   26^3 +   36^3
10:      65728  =   12^3 +   40^3  =   31^3 +   33^3
11:     110656  =    4^3 +   48^3  =   36^3 +   40^3
12:     110808  =    6^3 +   48^3  =   27^3 +   45^3
13:     134379  =   12^3 +   51^3  =   38^3 +   43^3
14:     149389  =    8^3 +   53^3  =   29^3 +   50^3
15:     165464  =   20^3 +   54^3  =   38^3 +   48^3
16:     171288  =   17^3 +   55^3  =   24^3 +   54^3
17:     195841  =    9^3 +   58^3  =   22^3 +   57^3
18:     216027  =    3^3 +   60^3  =   22^3 +   59^3
19:     216125  =    5^3 +   60^3  =   45^3 +   50^3
20:     262656  =    8^3 +   64^3  =   36^3 +   60^3
21:     314496  =    4^3 +   68^3  =   30^3 +   66^3
22:     320264  =   18^3 +   68^3  =   32^3 +   66^3
23:     327763  =   30^3 +   67^3  =   51^3 +   58^3
24:     373464  =    6^3 +   72^3  =   54^3 +   60^3
25:     402597  =   42^3 +   69^3  =   56^3 +   61^3
```

With arguments 2000 2006:

```2000: 1671816384  =  428^3 + 1168^3  =  940^3 +  944^3
2001: 1672470592  =   29^3 + 1187^3  =  632^3 + 1124^3
2002: 1673170856  =  458^3 + 1164^3  =  828^3 + 1034^3
2003: 1675045225  =  522^3 + 1153^3  =  744^3 + 1081^3
2004: 1675958167  =  492^3 + 1159^3  =  711^3 + 1096^3
2005: 1676926719  =   63^3 + 1188^3  =  714^3 + 1095^3
2006: 1677646971  =   99^3 + 1188^3  =  891^3 +  990^3
```

## Phix

Translation of: Raku

Uses a dictionary to map sum of cubes to either the first/only pair or an integer index into the result set. Turned out to be a fair bit slower (15s) than I first expected. <lang Phix>function get_taxis(integer last)

```   sequence taxis = {}
integer c1 = 1, maxc1 = 0, c2
atom c3, h3 = 0
while maxc1=0 or c1<maxc1 do
c3 = power(c1,3)
for c2 = 1 to c1 do
atom this = power(c2,3)+c3
integer node = getd_index(this)
if node=NULL then
setd(this,{c2,c1})
else
if this>h3 then h3 = this end if
object data = getd_by_index(node)
if not integer(data) then
taxis = append(taxis,{this,{data}})
data = length(taxis)
setd(this,data)
if data=last then
maxc1 = ceil(power(h3,1/3))
end if
end if
taxis[data][2] &= Template:C2,c1
end if
end for
c1 += 1
end while
destroy_dict(1,justclear:=true)
taxis = sort(taxis)
return taxis
```

end function

sequence taxis = get_taxis(2006) constant sets = {{1,25},{2000,2006}} for s=1 to length(sets) do

```   integer {first,last} = sets[s]
for i=first to last do
printf(1,"%d: %d: %s\n",{i,taxis[i][1],sprint(taxis[i][2])})
end for
```

end for</lang>

Output:
```1: 1729: {{9,10},{1,12}}
2: 4104: {{9,15},{2,16}}
3: 13832: {{18,20},{2,24}}
4: 20683: {{19,24},{10,27}}
5: 32832: {{18,30},{4,32}}
6: 39312: {{15,33},{2,34}}
7: 40033: {{16,33},{9,34}}
8: 46683: {{27,30},{3,36}}
9: 64232: {{26,36},{17,39}}
10: 65728: {{31,33},{12,40}}
11: 110656: {{36,40},{4,48}}
12: 110808: {{27,45},{6,48}}
13: 134379: {{38,43},{12,51}}
14: 149389: {{29,50},{8,53}}
15: 165464: {{38,48},{20,54}}
16: 171288: {{24,54},{17,55}}
17: 195841: {{22,57},{9,58}}
18: 216027: {{22,59},{3,60}}
19: 216125: {{45,50},{5,60}}
20: 262656: {{36,60},{8,64}}
21: 314496: {{30,66},{4,68}}
22: 320264: {{32,66},{18,68}}
23: 327763: {{51,58},{30,67}}
24: 373464: {{54,60},{6,72}}
25: 402597: {{56,61},{42,69}}
2000: 1671816384: {{940,944},{428,1168}}
2001: 1672470592: {{632,1124},{29,1187}}
2002: 1673170856: {{828,1034},{458,1164}}
2003: 1675045225: {{744,1081},{522,1153}}
2004: 1675958167: {{711,1096},{492,1159}}
2005: 1676926719: {{714,1095},{63,1188}}
2006: 1677646971: {{891,990},{99,1188}}
```
Translation of: C

Using a priority queue, otherwise based on C, quite a bit (18.5x) faster.
Copes with 40000..6, same results as Go, though that increases the runtime from 0.8s to 1min 15s. <lang Phix>sequence cubes = {}

```   integer n = length(cubes)+1
cubes = append(cubes,n*n*n)
```

end procedure

constant VALUE = PRIORITY

function next_sum()

```   while length(pq)<=2 or pq[1][VALUE]>=cubes[\$] do add_cube() end while
sequence res = pq_pop()
integer {x,y} = res[DATA]
y += 1
if y<x then
end if
return res
```

end function

function next_taxi()

```   sequence top
while 1 do
top = next_sum()
if pq[1][VALUE]=top[VALUE] then exit end if
end while
sequence res = {top}
atom v = top[PRIORITY]
while 1 do
top = next_sum()
res = append(res,top[DATA])
if pq[1][VALUE]!=v then exit end if
end while
return res
```

end function

for i=1 to 2006 do

```   sequence x = next_taxi()
if i<=25 or i>=2000 then
atom v = x[1][VALUE]
x[1] = x[1][DATA]
string y = sprintf("%11d+%-10d",sq_power(x[1],3))
for j=2 to length(x) do
y &= sprintf(",%11d+%-10d",sq_power(x[j],3))
end for
printf(1,"%4d: %10d: %-23s [%s]\n",{i,v,sprint(x),y})
end if
```

end for</lang>

Output:
```   1:       1729: {{10,9},{12,1}}         [       1000+729       ,       1728+1         ]
2:       4104: {{15,9},{16,2}}         [       3375+729       ,       4096+8         ]
3:      13832: {{20,18},{24,2}}        [       8000+5832      ,      13824+8         ]
4:      20683: {{24,19},{27,10}}       [      13824+6859      ,      19683+1000      ]
5:      32832: {{30,18},{32,4}}        [      27000+5832      ,      32768+64        ]
6:      39312: {{33,15},{34,2}}        [      35937+3375      ,      39304+8         ]
7:      40033: {{33,16},{34,9}}        [      35937+4096      ,      39304+729       ]
8:      46683: {{30,27},{36,3}}        [      27000+19683     ,      46656+27        ]
9:      64232: {{39,17},{36,26}}       [      59319+4913      ,      46656+17576     ]
10:      65728: {{40,12},{33,31}}       [      64000+1728      ,      35937+29791     ]
11:     110656: {{40,36},{48,4}}        [      64000+46656     ,     110592+64        ]
12:     110808: {{45,27},{48,6}}        [      91125+19683     ,     110592+216       ]
13:     134379: {{51,12},{43,38}}       [     132651+1728      ,      79507+54872     ]
14:     149389: {{50,29},{53,8}}        [     125000+24389     ,     148877+512       ]
15:     165464: {{48,38},{54,20}}       [     110592+54872     ,     157464+8000      ]
16:     171288: {{54,24},{55,17}}       [     157464+13824     ,     166375+4913      ]
17:     195841: {{57,22},{58,9}}        [     185193+10648     ,     195112+729       ]
18:     216027: {{59,22},{60,3}}        [     205379+10648     ,     216000+27        ]
19:     216125: {{50,45},{60,5}}        [     125000+91125     ,     216000+125       ]
20:     262656: {{60,36},{64,8}}        [     216000+46656     ,     262144+512       ]
21:     314496: {{66,30},{68,4}}        [     287496+27000     ,     314432+64        ]
22:     320264: {{68,18},{66,32}}       [     314432+5832      ,     287496+32768     ]
23:     327763: {{67,30},{58,51}}       [     300763+27000     ,     195112+132651    ]
24:     373464: {{60,54},{72,6}}        [     216000+157464    ,     373248+216       ]
25:     402597: {{69,42},{61,56}}       [     328509+74088     ,     226981+175616    ]
2000: 1671816384: {{1168,428},{944,940}}  [ 1593413632+78402752  ,  841232384+830584000 ]
2001: 1672470592: {{1124,632},{1187,29}}  [ 1420034624+252435968 , 1672446203+24389     ]
2002: 1673170856: {{1164,458},{1034,828}} [ 1577098944+96071912  , 1105507304+567663552 ]
2003: 1675045225: {{1153,522},{1081,744}} [ 1532808577+142236648 , 1263214441+411830784 ]
2004: 1675958167: {{1159,492},{1096,711}} [ 1556862679+119095488 , 1316532736+359425431 ]
2005: 1676926719: {{1095,714},{1188,63}}  [ 1312932375+363994344 , 1676676672+250047    ]
2006: 1677646971: {{990,891},{1188,99}}   [  970299000+707347971 , 1676676672+970299    ]
```

## PicoLisp

(off 'B) (for L (subsets 2 (range 1 1200))

```  (let K (sum '((N) (** N 3)) L)
(ifn (lup B K)
(idx 'B (list K 1 (list L)) T)
(inc (cdr @))
(push (cddr @) L) ) ) )
```

(setq R

```  (filter
(idx 'B)) )
```

```  (println (car L) (caddr L)) )
```

(for L (head 7 (nth R 2000))

```  (println (car L) (caddr L)) )</lang>
```
Output:
```1729 ((9 10) (1 12))
4104 ((9 15) (2 16))
13832 ((18 20) (2 24))
20683 ((19 24) (10 27))
32832 ((18 30) (4 32))
39312 ((15 33) (2 34))
40033 ((16 33) (9 34))
46683 ((27 30) (3 36))
64232 ((26 36) (17 39))
65728 ((31 33) (12 40))
110656 ((36 40) (4 48))
110808 ((27 45) (6 48))
134379 ((38 43) (12 51))
149389 ((29 50) (8 53))
165464 ((38 48) (20 54))
171288 ((24 54) (17 55))
195841 ((22 57) (9 58))
216027 ((22 59) (3 60))
216125 ((45 50) (5 60))
262656 ((36 60) (8 64))
314496 ((30 66) (4 68))
320264 ((32 66) (18 68))
327763 ((51 58) (30 67))
373464 ((54 60) (6 72))
402597 ((56 61) (42 69))
1671816384 ((940 944) (428 1168))
1672470592 ((632 1124) (29 1187))
1673170856 ((828 1034) (458 1164))
1675045225 ((744 1081) (522 1153))
1675958167 ((711 1096) (492 1159))
1676926719 ((714 1095) (63 1188))
1677646971 ((891 990) (99 1188))
```

## PureBasic

<lang PureBasic>#MAX=1189

Macro q3(a,b)

``` a*a*a+b*b*b
```

EndMacro

Structure Cap

``` x.i
y.i
s.i
```

EndStructure

NewList Taxi.Cap()

For i=1 To #MAX

``` For j=i To #MAX
AddElement(Taxi()) : Taxi()\s=q3(i,j) : Taxi()\x=i : Taxi()\y=j
Next j
```

Next i

SortStructuredList(Taxi(),#PB_Sort_Ascending,OffsetOf(Cap\s),TypeOf(Cap\s))

If OpenConsole()

``` ForEach Taxi()
If sum=Taxi()\s
r\$+"="+RSet(Str(Taxi()\x),4)+"³ +"+RSet(Str(Taxi()\y),4)+"³ " : Continue
EndIf
If CountString(r\$,"=")>=2 : c+1 : EndIf
If CountString(r\$,"=")=2
Select c
Case 1 To 25, 2000 To 2006 : PrintN(RSet(Str(c),5)+": "+RSet(Str(sum),10)+r\$)
Case Bool(c>2006) : Break
EndSelect
EndIf
r\$=""
sum=Taxi()\s : r\$="="+RSet(Str(Taxi()\x),4)+"³ +"+RSet(Str(Taxi()\y),4)+"³ "
Next
PrintN("FIN.") : Input()
```
EndIf</lang>
Output:
```    1:       1729=   1³ +  12³ =   9³ +  10³
2:       4104=   2³ +  16³ =   9³ +  15³
3:      13832=   2³ +  24³ =  18³ +  20³
4:      20683=  10³ +  27³ =  19³ +  24³
5:      32832=   4³ +  32³ =  18³ +  30³
6:      39312=   2³ +  34³ =  15³ +  33³
7:      40033=   9³ +  34³ =  16³ +  33³
8:      46683=   3³ +  36³ =  27³ +  30³
9:      64232=  17³ +  39³ =  26³ +  36³
10:      65728=  12³ +  40³ =  31³ +  33³
11:     110656=   4³ +  48³ =  36³ +  40³
12:     110808=   6³ +  48³ =  27³ +  45³
13:     134379=  12³ +  51³ =  38³ +  43³
14:     149389=   8³ +  53³ =  29³ +  50³
15:     165464=  20³ +  54³ =  38³ +  48³
16:     171288=  17³ +  55³ =  24³ +  54³
17:     195841=   9³ +  58³ =  22³ +  57³
18:     216027=   3³ +  60³ =  22³ +  59³
19:     216125=   5³ +  60³ =  45³ +  50³
20:     262656=   8³ +  64³ =  36³ +  60³
21:     314496=   4³ +  68³ =  30³ +  66³
22:     320264=  18³ +  68³ =  32³ +  66³
23:     327763=  30³ +  67³ =  51³ +  58³
24:     373464=   6³ +  72³ =  54³ +  60³
25:     402597=  42³ +  69³ =  56³ +  61³
2000: 1671816384= 428³ +1168³ = 940³ + 944³
2001: 1672470592=  29³ +1187³ = 632³ +1124³
2002: 1673170856= 458³ +1164³ = 828³ +1034³
2003: 1675045225= 522³ +1153³ = 744³ +1081³
2004: 1675958167= 492³ +1159³ = 711³ +1096³
2005: 1676926719=  63³ +1188³ = 714³ +1095³
2006: 1677646971=  99³ +1188³ = 891³ + 990³
FIN.```

## Python

(Magic number 1201 found by trial and error) <lang python>from collections import defaultdict from itertools import product from pprint import pprint as pp

cube2n = {x**3:x for x in range(1, 1201)} sum2cubes = defaultdict(set) for c1, c2 in product(cube2n, cube2n): if c1 >= c2: sum2cubes[c1 + c2].add((cube2n[c1], cube2n[c2]))

taxied = sorted((k, v) for k,v in sum2cubes.items() if len(v) >= 2)

1. pp(len(taxied)) # 2068

for t in enumerate(taxied[:25], 1):

```   pp(t)
```

print('...') for t in enumerate(taxied[2000-1:2000+6], 2000):

```   pp(t)</lang>
```
Output:
```(1, (1729, {(12, 1), (10, 9)}))
(2, (4104, {(16, 2), (15, 9)}))
(3, (13832, {(20, 18), (24, 2)}))
(4, (20683, {(27, 10), (24, 19)}))
(5, (32832, {(30, 18), (32, 4)}))
(6, (39312, {(33, 15), (34, 2)}))
(7, (40033, {(33, 16), (34, 9)}))
(8, (46683, {(30, 27), (36, 3)}))
(9, (64232, {(36, 26), (39, 17)}))
(10, (65728, {(33, 31), (40, 12)}))
(11, (110656, {(48, 4), (40, 36)}))
(12, (110808, {(48, 6), (45, 27)}))
(13, (134379, {(51, 12), (43, 38)}))
(14, (149389, {(50, 29), (53, 8)}))
(15, (165464, {(54, 20), (48, 38)}))
(16, (171288, {(54, 24), (55, 17)}))
(17, (195841, {(57, 22), (58, 9)}))
(18, (216027, {(60, 3), (59, 22)}))
(19, (216125, {(60, 5), (50, 45)}))
(20, (262656, {(64, 8), (60, 36)}))
(21, (314496, {(66, 30), (68, 4)}))
(22, (320264, {(66, 32), (68, 18)}))
(23, (327763, {(58, 51), (67, 30)}))
(24, (373464, {(72, 6), (60, 54)}))
(25, (402597, {(69, 42), (61, 56)}))
...
(2000, (1671816384, {(1168, 428), (944, 940)}))
(2001, (1672470592, {(1187, 29), (1124, 632)}))
(2002, (1673170856, {(1164, 458), (1034, 828)}))
(2003, (1675045225, {(1153, 522), (1081, 744)}))
(2004, (1675958167, {(1159, 492), (1096, 711)}))
(2005, (1676926719, {(1188, 63), (1095, 714)}))
(2006, (1677646971, {(990, 891), (1188, 99)}))```

Although, for this task it's simply faster to look up the cubes in the sum when we need to print them, because we can now store and sort only the sums: <lang python>cubes, crev = [x**3 for x in range(1,1200)], {}

1. for cube root lookup

for x,x3 in enumerate(cubes): crev[x3] = x + 1

sums = sorted(x+y for x in cubes for y in cubes if y < x)

idx = 0 for i in range(1, len(sums)-1):

```   if sums[i-1] != sums[i] and sums[i] == sums[i+1]:
idx += 1
if idx > 25 and idx < 2000 or idx > 2006: continue
```
```       n,p = sums[i],[]
for x in cubes:
if n-x < x: break
if n-x in crev:
p.append((crev[x], crev[n-x]))
print "%4d: %10d"%(idx,n),
for x in p: print " = %4d^3 + %4d^3"%x,
print</lang>
```
Output:
Output trimmed to reduce clutter.
```   1:       1729  =    1^3 +   12^3  =    9^3 +   10^3
2:       4104  =    2^3 +   16^3  =    9^3 +   15^3
3:      13832  =    2^3 +   24^3  =   18^3 +   20^3
4:      20683  =   10^3 +   27^3  =   19^3 +   24^3
5:      32832  =    4^3 +   32^3  =   18^3 +   30^3
...
2004: 1675958167  =  492^3 + 1159^3  =  711^3 + 1096^3
2005: 1676926719  =   63^3 + 1188^3  =  714^3 + 1095^3
2006: 1677646971  =   99^3 + 1188^3  =  891^3 +  990^3
```

### Using heapq module

A priority queue that holds cube sums. When consecutive sums come out with the same value, they are taxis. <lang python>from heapq import heappush, heappop

def cubesum():

```   h,n = [],1
while True:
while not h or h[0][0] > n**3: # could also pre-calculate cubes
heappush(h, (n**3 + 1, n, 1))
n += 1
```
```       (s, x, y) = heappop(h)
yield((s, x, y))
y += 1
if y < x:    # should be y <= x?
heappush(h, (x**3 + y**3, x, y))
```

def taxis():

```   out = [(0,0,0)]
for s in cubesum():
if s[0] == out[-1][0]:
out.append(s)
else:
if len(out) > 1: yield(out)
out = [s]
```

n = 0 for x in taxis():

```   n += 1
if n >= 2006: break
if n <= 25 or n >= 2000:
print(n, x)</lang>
```
Output:
```(1, [(1729, 10, 9), (1729, 12, 1)])
(2, [(4104, 15, 9), (4104, 16, 2)])
(3, [(13832, 20, 18), (13832, 24, 2)])
(4, [(20683, 24, 19), (20683, 27, 10)])
(5, [(32832, 30, 18), (32832, 32, 4)])
(6, [(39312, 33, 15), (39312, 34, 2)])
(7, [(40033, 33, 16), (40033, 34, 9)])
(8, [(46683, 30, 27), (46683, 36, 3)])
(9, [(64232, 36, 26), (64232, 39, 17)])
(10, [(65728, 33, 31), (65728, 40, 12)])
(11, [(110656, 40, 36), (110656, 48, 4)])
(12, [(110808, 45, 27), (110808, 48, 6)])
(13, [(134379, 43, 38), (134379, 51, 12)])
(14, [(149389, 50, 29), (149389, 53, 8)])
(15, [(165464, 48, 38), (165464, 54, 20)])
(16, [(171288, 54, 24), (171288, 55, 17)])
(17, [(195841, 57, 22), (195841, 58, 9)])
(18, [(216027, 59, 22), (216027, 60, 3)])
(19, [(216125, 50, 45), (216125, 60, 5)])
(20, [(262656, 60, 36), (262656, 64, 8)])
(21, [(314496, 66, 30), (314496, 68, 4)])
(22, [(320264, 66, 32), (320264, 68, 18)])
(23, [(327763, 58, 51), (327763, 67, 30)])
(24, [(373464, 60, 54), (373464, 72, 6)])
(25, [(402597, 61, 56), (402597, 69, 42)])
(2000, [(1671816384, 944, 940), (1671816384, 1168, 428)])
(2001, [(1672470592, 1124, 632), (1672470592, 1187, 29)])
(2002, [(1673170856, 1034, 828), (1673170856, 1164, 458)])
(2003, [(1675045225, 1081, 744), (1675045225, 1153, 522)])
(2004, [(1675958167, 1096, 711), (1675958167, 1159, 492)])
(2005, [(1676926719, 1095, 714), (1676926719, 1188, 63)])
```

## Racket

This is the straighforward implementation, so it finds only the first 25 values in a sensible amount of time. <lang Racket>#lang racket

(define (cube x) (* x x x))

floor of cubic root

(define (cubic-root x)

``` (let ([aprox (inexact->exact (round (expt x (/ 1 3))))])
(if (> (cube aprox) x)
(- aprox 1)
aprox)))
```

(let loop ([p 1] [n 1])

``` (let ()
(define pairs
(for*/list ([j (in-range 1 (add1 (cubic-root (quotient n 2))))]
[k (in-value (cubic-root (- n (cube j))))]
#:when (= n (+ (cube j) (cube k))))
(cons j k)))
(if (>= (length pairs) 2)
(begin
(printf "~a: ~a" p n)
(for ([pair (in-list pairs)])
(printf " = ~a^3 + ~a^3" (car pair) (cdr pair)))
(newline)
(when (< p 25)
```
Output:
```1: 1729 = 1^3 + 12^3 = 9^3 + 10^3
2: 4104 = 2^3 + 16^3 = 9^3 + 15^3
3: 13832 = 2^3 + 24^3 = 18^3 + 20^3
4: 20683 = 10^3 + 27^3 = 19^3 + 24^3
5: 32832 = 4^3 + 32^3 = 18^3 + 30^3
6: 39312 = 2^3 + 34^3 = 15^3 + 33^3
7: 40033 = 9^3 + 34^3 = 16^3 + 33^3
8: 46683 = 3^3 + 36^3 = 27^3 + 30^3
9: 64232 = 17^3 + 39^3 = 26^3 + 36^3
10: 65728 = 12^3 + 40^3 = 31^3 + 33^3
11: 110656 = 4^3 + 48^3 = 36^3 + 40^3
12: 110808 = 6^3 + 48^3 = 27^3 + 45^3
13: 134379 = 12^3 + 51^3 = 38^3 + 43^3
14: 149389 = 8^3 + 53^3 = 29^3 + 50^3
15: 165464 = 20^3 + 54^3 = 38^3 + 48^3
16: 171288 = 17^3 + 55^3 = 24^3 + 54^3
17: 195841 = 9^3 + 58^3 = 22^3 + 57^3
18: 216027 = 3^3 + 60^3 = 22^3 + 59^3
19: 216125 = 5^3 + 60^3 = 45^3 + 50^3
20: 262656 = 8^3 + 64^3 = 36^3 + 60^3
21: 314496 = 4^3 + 68^3 = 30^3 + 66^3
22: 320264 = 18^3 + 68^3 = 32^3 + 66^3
23: 327763 = 30^3 + 67^3 = 51^3 + 58^3
24: 373464 = 6^3 + 72^3 = 54^3 + 60^3
25: 402597 = 42^3 + 69^3 = 56^3 + 61^3```

## Raku

(formerly Perl 6)

This uses a pretty simple search algorithm that doesn't necessarily return the Taxicab numbers in order. Assuming we want all the Taxicab numbers within some range S to N, we'll search until we find N values. When we find the Nth value, we continue to search up to the cube root of the largest Taxicab number found up to that point. That ensures we will find all of them inside the desired range without needing to search arbitrarily or use magic numbers. Defaults to returning the Taxicab numbers from 1 to 25. Pass in a different start and end value if you want some other range. <lang perl6>constant @cu = (^Inf).map: { .³ }

sub MAIN (\$start = 1, \$end = 25) {

```   my %taxi;
my int \$taxis = 0;
my \$terminate = 0;
my int \$max = 0;
```
```   for 1 .. * -> \$c1 {
last if ?\$terminate && (\$terminate < \$c1);
for 1 .. \$c1 -> \$c2 {
my \$this = @cu[\$c1] + @cu[\$c2];
%taxi{\$this}.push: [\$c2, \$c1];
if %taxi{\$this}.elems == 2 {
++\$taxis;
\$max max= \$this;
}
\$terminate = ceiling \$max ** (1/3) if \$taxis == \$end and !\$terminate;
}
}
```
```   display( %taxi, \$start, \$end );
```

}

sub display (%this_stuff, \$start, \$end) {

```   my \$i = \$start;
printf "%4d %10d  =>\t%s\n", \$i++, \$_.key,
(.value.map({ sprintf "%4d³ + %-s\³", |\$_ })).join: ",\t"
for %this_stuff.grep( { \$_.value.elems > 1 } ).sort( +*.key )[\$start-1..\$end-1];
```

}</lang>

Output:
With no passed parameters (default)
```   1       1729  =>	   9³ + 10³,	   1³ + 12³
2       4104  =>	   9³ + 15³,	   2³ + 16³
3      13832  =>	  18³ + 20³,	   2³ + 24³
4      20683  =>	  19³ + 24³,	  10³ + 27³
5      32832  =>	  18³ + 30³,	   4³ + 32³
6      39312  =>	  15³ + 33³,	   2³ + 34³
7      40033  =>	  16³ + 33³,	   9³ + 34³
8      46683  =>	  27³ + 30³,	   3³ + 36³
9      64232  =>	  26³ + 36³,	  17³ + 39³
10      65728  =>	  31³ + 33³,	  12³ + 40³
11     110656  =>	  36³ + 40³,	   4³ + 48³
12     110808  =>	  27³ + 45³,	   6³ + 48³
13     134379  =>	  38³ + 43³,	  12³ + 51³
14     149389  =>	  29³ + 50³,	   8³ + 53³
15     165464  =>	  38³ + 48³,	  20³ + 54³
16     171288  =>	  24³ + 54³,	  17³ + 55³
17     195841  =>	  22³ + 57³,	   9³ + 58³
18     216027  =>	  22³ + 59³,	   3³ + 60³
19     216125  =>	  45³ + 50³,	   5³ + 60³
20     262656  =>	  36³ + 60³,	   8³ + 64³
21     314496  =>	  30³ + 66³,	   4³ + 68³
22     320264  =>	  32³ + 66³,	  18³ + 68³
23     327763  =>	  51³ + 58³,	  30³ + 67³
24     373464  =>	  54³ + 60³,	   6³ + 72³
25     402597  =>	  56³ + 61³,	  42³ + 69³```

With passed parameters 2000 2006:

```2000 1671816384  =>	 940³ + 944³,	 428³ + 1168³
2001 1672470592  =>	 632³ + 1124³,	  29³ + 1187³
2002 1673170856  =>	 828³ + 1034³,	 458³ + 1164³
2003 1675045225  =>	 744³ + 1081³,	 522³ + 1153³
2004 1675958167  =>	 711³ + 1096³,	 492³ + 1159³
2005 1676926719  =>	 714³ + 1095³,	  63³ + 1188³
2006 1677646971  =>	 891³ + 990³,	  99³ + 1188³```

## REXX

Programming note:   to ensure that the taxicab numbers are in order, an extra 10% are generated. <lang rexx>/*REXX program displays the specified first (lowest) taxicab numbers (for three ranges).*/ parse arg L.1 H.1 L.2 H.2 L.3 H.3 . /*obtain optional arguments from the CL*/

```  if L.1== | L.1==","  then L.1=   1          /*L1  is the low  part of 1st range.   */
if H.1== | H.1==","  then H.1=  25          /*H1   "  "  high   "   "  "    "      */
if L.2== | L.2==","  then L.2= 454          /*L2   "  "  low    "   " 2nd   "      */
if H.2== | H.2==","  then H.2= 456          /*H2   "  "  high   "   "  "    "      */
if L.3== | L.3==","  then L.3=2000          /*L3   "  "  low    "   " 3rd   "      */
if H.3== | H.3==","  then H.3=2006          /*H3   "  "  high   "   "  "    "      */
```

mx= max(H.1, H.2, H.3) /*find how many taxicab numbers needed.*/ mx= mx + mx % 10 /*cushion; compensate for the triples.*/ ww= length(mx) * 3; w= ww % 2 /*widths used for formatting the output*/ numeric digits max(9, ww) /*prepare to use some larger numbers. */ @.=.; #= 0; @@.= 0; @and= " ──and── " /*set some REXX vars and handy literals*/ \$.= /* [↓] generate extra taxicab numbers.*/

```   do j=1  until #>=mx;            C= j**3      /*taxicab numbers may not be in order. */
!.j= C                                       /*use memoization for cube calculation.*/
do k=1  for j-1;              s= C + !.k   /*define a whole bunch of cube sums.   */
if @.s==.  then do;  @.s= j;  b.s= k       /*Cube not defined?   Then process it. */
iterate               /*define  @.S  and  B.S≡sum  of 2 cubes*/
end                        /* [↑]  define one cube sum at a time. */
has= @@.s                                  /*has this number been defined before? */
if has  then \$.s= \$.s @and U(j,'   +')U(k) /* ◄─ build a display string. [↓]      */
else \$.s= right(s,ww)  '───►'   U(@.s,"   +")U(b.s)   @and   U(j,'   +')U(k)
@@.s= 1                                    /*mark taxicab number as a sum of cubes*/
if has   then iterate                      /*S  is a triple (or sometimes better).*/
#= # + 1;    #.#= s                        /*bump taxicab counter; define taxicab#*/
end   /*k*/                                /* [↑]  build the cubes one─at─a─time. */
end      /*j*/                               /* [↑]  complete with overage numbers. */
```

A.=

```      do k=1  for mx;   _= #.k;    A.k= \$._     /*re─assign disjoint \$. elements to A. */
end   /*k*/
```

call Esort mx /*sort taxicab #s with an exchange sort*/

```      do grp=1  for 3;  call tell L.grp, H.grp  /*display the three grps of numbers. */
end   /*grp*/
```

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ tell: do t=arg(1) to arg(2); say right(t, 9)':' A.t; end; say; return U: return right(arg(1), w)'^3'arg(2) /*right─justify a number, append "^3" */ /*──────────────────────────────────────────────────────────────────────────────────────*/ Esort: procedure expose A.; parse arg N; h= N /*Esort when items have blanks.*/

```        do  while h>1;     h= h % 2
do i=1  for N-h;           k=h + i;   j= i
do forever;   parse var A.k xk .;  parse var A.j xj .;  if xk>=xj then leave
_= A.j;       A.j= A.k; A.k= _             /*swap two elements of A. array*/
if h>=j  then leave;    j=j - h;   k= k - h
end   /*forever*/
end      /*i*/
end        /*while h>1*/;               return</lang>
```
output   when using the default inputs:
```
1:         1729 ───►     10^3   +     9^3   ──and──      12^3   +     1^3
2:         4104 ───►     15^3   +     9^3   ──and──      16^3   +     2^3
3:        13832 ───►     20^3   +    18^3   ──and──      24^3   +     2^3
4:        20683 ───►     24^3   +    19^3   ──and──      27^3   +    10^3
5:        32832 ───►     30^3   +    18^3   ──and──      32^3   +     4^3
6:        39312 ───►     33^3   +    15^3   ──and──      34^3   +     2^3
7:        40033 ───►     33^3   +    16^3   ──and──      34^3   +     9^3
8:        46683 ───►     30^3   +    27^3   ──and──      36^3   +     3^3
9:        64232 ───►     36^3   +    26^3   ──and──      39^3   +    17^3
10:        65728 ───►     33^3   +    31^3   ──and──      40^3   +    12^3
11:       110656 ───►     40^3   +    36^3   ──and──      48^3   +     4^3
12:       110808 ───►     45^3   +    27^3   ──and──      48^3   +     6^3
13:       134379 ───►     43^3   +    38^3   ──and──      51^3   +    12^3
14:       149389 ───►     50^3   +    29^3   ──and──      53^3   +     8^3
15:       165464 ───►     48^3   +    38^3   ──and──      54^3   +    20^3
16:       171288 ───►     54^3   +    24^3   ──and──      55^3   +    17^3
17:       195841 ───►     57^3   +    22^3   ──and──      58^3   +     9^3
18:       216027 ───►     59^3   +    22^3   ──and──      60^3   +     3^3
19:       216125 ───►     50^3   +    45^3   ──and──      60^3   +     5^3
20:       262656 ───►     60^3   +    36^3   ──and──      64^3   +     8^3
21:       314496 ───►     66^3   +    30^3   ──and──      68^3   +     4^3
22:       320264 ───►     66^3   +    32^3   ──and──      68^3   +    18^3
23:       327763 ───►     58^3   +    51^3   ──and──      67^3   +    30^3
24:       373464 ───►     60^3   +    54^3   ──and──      72^3   +     6^3
25:       402597 ───►     61^3   +    56^3   ──and──      69^3   +    42^3

454:     87483968 ───►    363^3   +   341^3   ──and──     440^3   +   132^3
455:     87539319 ───►    414^3   +   255^3   ──and──     423^3   +   228^3   ──and──     436^3   +   167^3
456:     87579037 ───►    370^3   +   333^3   ──and──     444^3   +    37^3

2000:   1671816384 ───►    944^3   +   940^3   ──and──    1168^3   +   428^3
2001:   1672470592 ───►   1124^3   +   632^3   ──and──    1187^3   +    29^3
2002:   1673170856 ───►   1034^3   +   828^3   ──and──    1164^3   +   458^3
2003:   1675045225 ───►   1081^3   +   744^3   ──and──    1153^3   +   522^3
2004:   1675958167 ───►   1096^3   +   711^3   ──and──    1159^3   +   492^3
2005:   1676926719 ───►   1095^3   +   714^3   ──and──    1188^3   +    63^3
2006:   1677646971 ───►    990^3   +   891^3   ──and──    1188^3   +    99^3
```

## Ring

<lang ring>

1. Project : Taxicab numbers

num = 0 for n = 1 to 500000

```   nr = 0
tax = []
for m = 1 to 75
for p = m + 1 to 75
if n = pow(m, 3) + pow(p, 3)
nr = nr + 1
ok
next
next
if nr > 1
num = num + 1
see "" + num + " " + n + " => " + tax[1] + "^3 + " + tax[2] + "^3" + ", "
see "" + tax[3] + "^3 +" + tax[4] + "^3" + nl
if num = 25
exit
ok
ok
```

next see "ok" + nl </lang> Output:

```   1       1729  =>	   9³ + 10³,	   1³ + 12³
2       4104  =>	   9³ + 15³,	   2³ + 16³
3      13832  =>	  18³ + 20³,	   2³ + 24³
4      20683  =>	  19³ + 24³,	  10³ + 27³
5      32832  =>	  18³ + 30³,	   4³ + 32³
6      39312  =>	  15³ + 33³,	   2³ + 34³
7      40033  =>	  16³ + 33³,	   9³ + 34³
8      46683  =>	  27³ + 30³,	   3³ + 36³
9      64232  =>	  26³ + 36³,	  17³ + 39³
10     65728  =>	  31³ + 33³,	  12³ + 40³
11     110656  =>	  36³ + 40³,	   4³ + 48³
12     110808  =>	  27³ + 45³,	   6³ + 48³
13     134379  =>	  38³ + 43³,	  12³ + 51³
14     149389  =>	  29³ + 50³,	   8³ + 53³
15     165464  =>	  38³ + 48³,	  20³ + 54³
16     171288  =>	  24³ + 54³,	  17³ + 55³
17     195841  =>	  22³ + 57³,	   9³ + 58³
18     216027  =>	  22³ + 59³,	   3³ + 60³
19     216125  =>	  45³ + 50³,	   5³ + 60³
20     262656  =>	  36³ + 60³,	   8³ + 64³
21     314496  =>	  30³ + 66³,	   4³ + 68³
22     320264  =>	  32³ + 66³,	  18³ + 68³
23     327763  =>	  51³ + 58³,	  30³ + 67³
24     373464  =>	  54³ + 60³,	   6³ + 72³
25     402597  =>	  56³ + 61³,	  42³ + 69³
ok
```

## Ruby

<lang ruby>def taxicab_number(nmax=1200)

``` [*1..nmax].repeated_combination(2).group_by{|x,y| x**3 + y**3}.select{|k,v| v.size>1}.sort
```

end

t = [0] + taxicab_number

[*1..25, *2000...2007].each do |i|

``` puts "%4d: %10d" % [i, t[i][0]] + t[i][1].map{|a| " = %4d**3 + %4d**3" % a}.join
```

end</lang>

Output:
```   1:       1729 =    1**3 +   12**3 =    9**3 +   10**3
2:       4104 =    2**3 +   16**3 =    9**3 +   15**3
3:      13832 =    2**3 +   24**3 =   18**3 +   20**3
4:      20683 =   10**3 +   27**3 =   19**3 +   24**3
5:      32832 =    4**3 +   32**3 =   18**3 +   30**3
6:      39312 =    2**3 +   34**3 =   15**3 +   33**3
7:      40033 =    9**3 +   34**3 =   16**3 +   33**3
8:      46683 =    3**3 +   36**3 =   27**3 +   30**3
9:      64232 =   17**3 +   39**3 =   26**3 +   36**3
10:      65728 =   12**3 +   40**3 =   31**3 +   33**3
11:     110656 =    4**3 +   48**3 =   36**3 +   40**3
12:     110808 =    6**3 +   48**3 =   27**3 +   45**3
13:     134379 =   12**3 +   51**3 =   38**3 +   43**3
14:     149389 =    8**3 +   53**3 =   29**3 +   50**3
15:     165464 =   20**3 +   54**3 =   38**3 +   48**3
16:     171288 =   17**3 +   55**3 =   24**3 +   54**3
17:     195841 =    9**3 +   58**3 =   22**3 +   57**3
18:     216027 =    3**3 +   60**3 =   22**3 +   59**3
19:     216125 =    5**3 +   60**3 =   45**3 +   50**3
20:     262656 =    8**3 +   64**3 =   36**3 +   60**3
21:     314496 =    4**3 +   68**3 =   30**3 +   66**3
22:     320264 =   18**3 +   68**3 =   32**3 +   66**3
23:     327763 =   30**3 +   67**3 =   51**3 +   58**3
24:     373464 =    6**3 +   72**3 =   54**3 +   60**3
25:     402597 =   42**3 +   69**3 =   56**3 +   61**3
2000: 1671816384 =  428**3 + 1168**3 =  940**3 +  944**3
2001: 1672470592 =   29**3 + 1187**3 =  632**3 + 1124**3
2002: 1673170856 =  458**3 + 1164**3 =  828**3 + 1034**3
2003: 1675045225 =  522**3 + 1153**3 =  744**3 + 1081**3
2004: 1675958167 =  492**3 + 1159**3 =  711**3 + 1096**3
2005: 1676926719 =   63**3 + 1188**3 =  714**3 + 1095**3
2006: 1677646971 =   99**3 + 1188**3 =  891**3 +  990**3
```

## Rust

<lang rust> use std::collections::HashMap; use itertools::Itertools;

fn cubes(n: u64) -> Vec<u64> { let mut cube_vector = Vec::new(); for i in 1..=n { cube_vector.push(i.pow(3)); } cube_vector }

fn main() { let c = cubes(1201); let it = c.iter().combinations(2); let mut m = HashMap::new(); for x in it { let sum = x[0] + x[1]; m.entry(sum).or_insert(Vec::new()).push(x) }

let mut result = Vec::new();

for (k,v) in m.iter() { if v.len() > 1 { result.push((k,v)); } }

result.sort(); for f in result { println!("{:?}", f); } } </lang>

Output:
```
(1729, [[1, 1728], [729, 1000]])
(4104, [[8, 4096], [729, 3375]])
(13832, [[8, 13824], [5832, 8000]])
(20683, [[1000, 19683], [6859, 13824]])
(32832, [[64, 32768], [5832, 27000]])
(39312, [[8, 39304], [3375, 35937]])
(40033, [[729, 39304], [4096, 35937]])
(46683, [[27, 46656], [19683, 27000]])
(64232, [[4913, 59319], [17576, 46656]])
(65728, [[1728, 64000], [29791, 35937]])
(110656, [[64, 110592], [46656, 64000]])
(110808, [[216, 110592], [19683, 91125]])
(134379, [[1728, 132651], [54872, 79507]])
(149389, [[512, 148877], [24389, 125000]])
(165464, [[8000, 157464], [54872, 110592]])
(171288, [[4913, 166375], [13824, 157464]])
(195841, [[729, 195112], [10648, 185193]])
(216027, [[27, 216000], [10648, 205379]])
(216125, [[125, 216000], [91125, 125000]])
(262656, [[512, 262144], [46656, 216000]])
(314496, [[64, 314432], [27000, 287496]])
```

## Scala

<lang scala>import scala.math.pow

implicit class Pairs[A, B]( p:List[(A, B)]) {

``` def collectPairs: Map[A, List[B]] = p.groupBy(_._1).mapValues(_.map(_._2)).filterNot(_._2.size<2)
```

}

// Make a sorted List of Taxi Cab Numbers. Limit it to the cube of 1200 because we know it's high enough. val taxiNums = {

``` (1 to 1200).toList            // Start with a sequential list of integers
.combinations(2).toList     // Find all two number combinations
.map {
case a :: b :: nil => ((pow(a, 3) + pow(b, 3)).toInt, (a, b))
case _ => 0 ->(0, 0)
}                           // Turn the list into the sum of two cubes and
//      remember what we started with, eg. 28->(1,3)
.collectPairs               // Only keep taxi cab numbers with a duplicate
.toList.sortBy(_._1)        // Sort the results
```

}

def output() : Unit = {

``` println( "%20s".format( "Taxi Cab Numbers" ) )
println( "%20s%15s%15s".format( "-"*20, "-"*15, "-"*15 ) )
```
``` taxiNums.take(25) foreach {
case (p, a::b::Nil) => println( "%20d\t(%d\u00b3 + %d\u00b3)\t\t(%d\u00b3 + %d\u00b3)".format(p,a._1,a._2,b._1,b._2) )
}
```
``` taxiNums.slice(1999,2007) foreach {
case (p, a::b::Nil) => println( "%20d\t(%d\u00b3 + %d\u00b3)\t(%d\u00b3 + %d\u00b3)".format(p,a._1,a._2,b._1,b._2) )
}
```

} </lang>

Output:
```    Taxi Cab Numbers
--------------------------------------------------
1729	(1³ + 12³)	(9³ + 10³)
4104	(2³ + 16³)	(9³ + 15³)
13832	(2³ + 24³)	(18³ + 20³)
20683	(10³ + 27³)	(19³ + 24³)
32832	(4³ + 32³)	(18³ + 30³)
39312	(2³ + 34³)	(15³ + 33³)
40033	(9³ + 34³)	(16³ + 33³)
46683	(3³ + 36³)	(27³ + 30³)
64232	(17³ + 39³)	(26³ + 36³)
65728	(12³ + 40³)	(31³ + 33³)
110656	(4³ + 48³)	(36³ + 40³)
110808	(6³ + 48³)	(27³ + 45³)
134379	(12³ + 51³)	(38³ + 43³)
149389	(8³ + 53³)	(29³ + 50³)
165464	(20³ + 54³)	(38³ + 48³)
171288	(17³ + 55³)	(24³ + 54³)
195841	(9³ + 58³)	(22³ + 57³)
216027	(3³ + 60³)	(22³ + 59³)
216125	(5³ + 60³)	(45³ + 50³)
262656	(8³ + 64³)	(36³ + 60³)
314496	(4³ + 68³)	(30³ + 66³)
320264	(18³ + 68³)	(32³ + 66³)
327763	(30³ + 67³)	(51³ + 58³)
373464	(6³ + 72³)	(54³ + 60³)
402597	(42³ + 69³)	(56³ + 61³)
1671816384	(428³ + 1168³)	(940³ + 944³)
1672470592	(29³ + 1187³)	(632³ + 1124³)
1673170856	(458³ + 1164³)	(828³ + 1034³)
1675045225	(522³ + 1153³)	(744³ + 1081³)
1675958167	(492³ + 1159³)	(711³ + 1096³)
1676926719	(63³ + 1188³)	(714³ + 1095³)
1677646971	(99³ + 1188³)	(891³ + 990³)
```

## Scheme

Library: Scheme/SRFIs

<lang scheme> (import (scheme base)

```       (scheme write)
(srfi 1)        ; lists
(srfi 69)       ; hash tables
(srfi 132))     ; sorting
```

(define *max-n* 1500) ; let's go up to here, maximum for x and y (define *numbers* (make-hash-table eqv?)) ; hash table for total -> list of list of pairs

(define (retrieve key) (hash-table-ref/default *numbers* key '()))

add all combinations to the hash table

(do ((i 1 (+ i 1)))

``` ((= i *max-n*) )
(do ((j (+ 1 i) (+ j 1)))
((= j *max-n*) )
(let ((n (+ (* i i i) (* j j j))))
(hash-table-set! *numbers* n
(cons (list i j) (retrieve n))))))
```

(define (display-number i key)

``` (display (+ 1 i)) (display ": ")
(display key) (display " -> ")
(display (retrieve key)) (newline))

```

(let ((sorted-keys (list-sort <

```                             (filter (lambda (key) (> (length (retrieve key)) 1))
(hash-table-keys *numbers*)))))
;; first 25
(for-each (lambda (i) (display-number i (list-ref sorted-keys i)))
(iota 25))
;; 2000-2006
(for-each (lambda (i) (display-number i (list-ref sorted-keys i)))
(iota 7 1999))
)
```

</lang>

Output:
```1: 1729 -> ((9 10) (1 12))
2: 4104 -> ((9 15) (2 16))
3: 13832 -> ((18 20) (2 24))
4: 20683 -> ((19 24) (10 27))
5: 32832 -> ((18 30) (4 32))
6: 39312 -> ((15 33) (2 34))
7: 40033 -> ((16 33) (9 34))
8: 46683 -> ((27 30) (3 36))
9: 64232 -> ((26 36) (17 39))
10: 65728 -> ((31 33) (12 40))
11: 110656 -> ((36 40) (4 48))
12: 110808 -> ((27 45) (6 48))
13: 134379 -> ((38 43) (12 51))
14: 149389 -> ((29 50) (8 53))
15: 165464 -> ((38 48) (20 54))
16: 171288 -> ((24 54) (17 55))
17: 195841 -> ((22 57) (9 58))
18: 216027 -> ((22 59) (3 60))
19: 216125 -> ((45 50) (5 60))
20: 262656 -> ((36 60) (8 64))
21: 314496 -> ((30 66) (4 68))
22: 320264 -> ((32 66) (18 68))
23: 327763 -> ((51 58) (30 67))
24: 373464 -> ((54 60) (6 72))
25: 402597 -> ((56 61) (42 69))
2000: 1671816384 -> ((940 944) (428 1168))
2001: 1672470592 -> ((632 1124) (29 1187))
2002: 1673170856 -> ((828 1034) (458 1164))
2003: 1675045225 -> ((744 1081) (522 1153))
2004: 1675958167 -> ((711 1096) (492 1159))
2005: 1676926719 -> ((714 1095) (63 1188))
2006: 1677646971 -> ((891 990) (99 1188))
```

## Sidef

Translation of: Raku

<lang ruby>var (start=1, end=25) = ARGV.map{.to_i}...   func display (h, start, end) {

```   var i = start
for n in [h.grep {|_,v| v.len > 1 }.keys.sort_by{.to_i}[start-1 .. end-1]] {
printf("%4d %10d  =>\t%s\n", i++, n,
h{n}.map{ "%4d³ + %-s" % (.first, "#{.last}³") }.join(",\t"))
}
```

}   var taxi = Hash() var taxis = 0 var terminate = 0   for c1 (1..Inf) {

```   if (0<terminate && terminate<c1) {
display(taxi, start, end)
break
}
var c = c1**3
for c2 (1..c1) {
var this = (c2**3 + c)
taxi{this} := [] << [c2, c1]
++taxis if (taxi{this}.len == 2)
if (taxis==end && !terminate) {
terminate = taxi.grep{|_,v| v.len > 1 }.keys.map{.to_i}.max.root(3)
}
}
```

}</lang>

Output:
```   1       1729  =>	   9³ + 10³,	   1³ + 12³
2       4104  =>	   9³ + 15³,	   2³ + 16³
3      13832  =>	  18³ + 20³,	   2³ + 24³
4      20683  =>	  19³ + 24³,	  10³ + 27³
5      32832  =>	  18³ + 30³,	   4³ + 32³
6      39312  =>	  15³ + 33³,	   2³ + 34³
7      40033  =>	  16³ + 33³,	   9³ + 34³
8      46683  =>	  27³ + 30³,	   3³ + 36³
9      64232  =>	  26³ + 36³,	  17³ + 39³
10      65728  =>	  31³ + 33³,	  12³ + 40³
11     110656  =>	  36³ + 40³,	   4³ + 48³
12     110808  =>	  27³ + 45³,	   6³ + 48³
13     134379  =>	  38³ + 43³,	  12³ + 51³
14     149389  =>	  29³ + 50³,	   8³ + 53³
15     165464  =>	  38³ + 48³,	  20³ + 54³
16     171288  =>	  24³ + 54³,	  17³ + 55³
17     195841  =>	  22³ + 57³,	   9³ + 58³
18     216027  =>	  22³ + 59³,	   3³ + 60³
19     216125  =>	  45³ + 50³,	   5³ + 60³
20     262656  =>	  36³ + 60³,	   8³ + 64³
21     314496  =>	  30³ + 66³,	   4³ + 68³
22     320264  =>	  32³ + 66³,	  18³ + 68³
23     327763  =>	  51³ + 58³,	  30³ + 67³
24     373464  =>	  54³ + 60³,	   6³ + 72³
25     402597  =>	  56³ + 61³,	  42³ + 69³
```

With passed parameters 2000 and 2006:

```2000 1671816384  =>	 940³ + 944³,	 428³ + 1168³
2001 1672470592  =>	 632³ + 1124³,	  29³ + 1187³
2002 1673170856  =>	 828³ + 1034³,	 458³ + 1164³
2003 1675045225  =>	 744³ + 1081³,	 522³ + 1153³
2004 1675958167  =>	 711³ + 1096³,	 492³ + 1159³
2005 1676926719  =>	 714³ + 1095³,	  63³ + 1188³
2006 1677646971  =>	 891³ + 990³,	  99³ + 1188³
```

## Swift

<lang swift>extension Array {

``` func combinations(_ k: Int) -> Element {
return Self._combinations(slice: self[startIndex...], k)
}
```
``` static func _combinations(slice: Self.SubSequence, _ k: Int) -> Element {
guard k != 1 else {
return slice.map({ [\$0] })
}
```
```   guard k != slice.count else {
return [slice.map({ \$0 })]
}
```
```   let chopped = slice[slice.index(after: slice.startIndex)...]
```
```   var res = _combinations(slice: chopped, k - 1).map({ [[slice.first!], \$0].flatMap({ \$0 }) })
```
```   res += _combinations(slice: chopped, k)
```
```   return res
}
```

}

let cubes = (1...).lazy.map({ \$0 * \$0 * \$0 }) let taxis =

``` Array(cubes.prefix(1201))
.combinations(2)
.reduce(into: [Int: Int](), { \$0[\$1[0] + \$1[1], default: []].append(\$1) })
```

let res =

``` taxis
.lazy
.filter({ \$0.value.count > 1 })
.sorted(by: { \$0.key < \$1.key })
.map({ (\$0.key, \$0.value) })
.prefix(2006)
```

print("First 25 taxicab numbers:") for taxi in res[..<25] {

``` print(taxi)
```

}

print("\n2000th through 2006th taxicab numbers:") for taxi in res[1999..<2006] {

``` print(taxi)
```

}</lang>

Output:
```First 25 taxicab numbers:
(1729, [[1, 1728], [729, 1000]])
(4104, [[8, 4096], [729, 3375]])
(13832, [[8, 13824], [5832, 8000]])
(20683, [[1000, 19683], [6859, 13824]])
(32832, [[64, 32768], [5832, 27000]])
(39312, [[8, 39304], [3375, 35937]])
(40033, [[729, 39304], [4096, 35937]])
(46683, [[27, 46656], [19683, 27000]])
(64232, [[4913, 59319], [17576, 46656]])
(65728, [[1728, 64000], [29791, 35937]])
(110656, [[64, 110592], [46656, 64000]])
(110808, [[216, 110592], [19683, 91125]])
(134379, [[1728, 132651], [54872, 79507]])
(149389, [[512, 148877], [24389, 125000]])
(165464, [[8000, 157464], [54872, 110592]])
(171288, [[4913, 166375], [13824, 157464]])
(195841, [[729, 195112], [10648, 185193]])
(216027, [[27, 216000], [10648, 205379]])
(216125, [[125, 216000], [91125, 125000]])
(262656, [[512, 262144], [46656, 216000]])
(314496, [[64, 314432], [27000, 287496]])
(320264, [[5832, 314432], [32768, 287496]])
(327763, [[27000, 300763], [132651, 195112]])
(373464, [[216, 373248], [157464, 216000]])
(402597, [[74088, 328509], [175616, 226981]])

2000th through 2006th taxicab numbers:
(1671816384, [[78402752, 1593413632], [830584000, 841232384]])
(1672470592, [[24389, 1672446203], [252435968, 1420034624]])
(1673170856, [[96071912, 1577098944], [567663552, 1105507304]])
(1675045225, [[142236648, 1532808577], [411830784, 1263214441]])
(1675958167, [[119095488, 1556862679], [359425431, 1316532736]])
(1676926719, [[250047, 1676676672], [363994344, 1312932375]])
(1677646971, [[970299, 1676676672], [707347971, 970299000]])```

## Tcl

Works with: Tcl version 8.6
Translation of: Python

<lang tcl>package require Tcl 8.6

proc heappush {heapName item} {

```   upvar 1 \$heapName heap
set idx [lsearch -bisect -index 0 -integer \$heap [lindex \$item 0]]
set heap [linsert \$heap [expr {\$idx + 1}] \$item]
```

} coroutine cubesum apply {{} {

```   yield
set h {}
set n 1
while true {
```

while {![llength \$h] || [lindex \$h 0 0] > \$n**3} { heappush h [list [expr {\$n**3 + 1}] \$n 1] incr n } set h [lassign \$h item] yield \$item lassign \$item s x y if {[incr y] < \$x} { heappush h [list [expr {\$x**3 + \$y**3}] \$x \$y] }

```   }
```

}} coroutine taxis apply {{} {

```   yield
set out Template:0 0 0
while true {
```

set s [cubesum] if {[lindex \$s 0] == [lindex \$out end 0]} { lappend out \$s } else { if {[llength \$out] > 1} {yield \$out} set out [list \$s] }

```   }
```

}}

1. Put a cache in front for convenience

variable taxis {} proc taxi {n} {

```   variable taxis
while {\$n > [llength \$taxis]} {lappend taxis [taxis]}
return [lindex \$taxis [expr {\$n-1}]]
```

}

set 3 "\u00b3" for {set n 1} {\$n <= 25} {incr n} {

```   puts \${n}:[join [lmap t [taxi \$n] {format " %d = %d\$3 + %d\$3" {*}\$t}] ","]
```

} for {set n 2000} {\$n <= 2006} {incr n} {

```   puts \${n}:[join [lmap t [taxi \$n] {format " %d = %d\$3 + %d\$3" {*}\$t}] ","]
```

}</lang>

Output:
```1: 1729 = 10³ + 9³, 1729 = 12³ + 1³
2: 4104 = 15³ + 9³, 4104 = 16³ + 2³
3: 13832 = 20³ + 18³, 13832 = 24³ + 2³
4: 20683 = 24³ + 19³, 20683 = 27³ + 10³
5: 32832 = 30³ + 18³, 32832 = 32³ + 4³
6: 39312 = 33³ + 15³, 39312 = 34³ + 2³
7: 40033 = 33³ + 16³, 40033 = 34³ + 9³
8: 46683 = 30³ + 27³, 46683 = 36³ + 3³
9: 64232 = 36³ + 26³, 64232 = 39³ + 17³
10: 65728 = 33³ + 31³, 65728 = 40³ + 12³
11: 110656 = 40³ + 36³, 110656 = 48³ + 4³
12: 110808 = 45³ + 27³, 110808 = 48³ + 6³
13: 134379 = 43³ + 38³, 134379 = 51³ + 12³
14: 149389 = 50³ + 29³, 149389 = 53³ + 8³
15: 165464 = 48³ + 38³, 165464 = 54³ + 20³
16: 171288 = 54³ + 24³, 171288 = 55³ + 17³
17: 195841 = 57³ + 22³, 195841 = 58³ + 9³
18: 216027 = 59³ + 22³, 216027 = 60³ + 3³
19: 216125 = 50³ + 45³, 216125 = 60³ + 5³
20: 262656 = 60³ + 36³, 262656 = 64³ + 8³
21: 314496 = 66³ + 30³, 314496 = 68³ + 4³
22: 320264 = 66³ + 32³, 320264 = 68³ + 18³
23: 327763 = 58³ + 51³, 327763 = 67³ + 30³
24: 373464 = 60³ + 54³, 373464 = 72³ + 6³
25: 402597 = 61³ + 56³, 402597 = 69³ + 42³
2000: 1671816384 = 944³ + 940³, 1671816384 = 1168³ + 428³
2001: 1672470592 = 1124³ + 632³, 1672470592 = 1187³ + 29³
2002: 1673170856 = 1034³ + 828³, 1673170856 = 1164³ + 458³
2003: 1675045225 = 1081³ + 744³, 1675045225 = 1153³ + 522³
2004: 1675958167 = 1096³ + 711³, 1675958167 = 1159³ + 492³
2005: 1676926719 = 1095³ + 714³, 1676926719 = 1188³ + 63³
2006: 1677646971 = 990³ + 891³, 1677646971 = 1188³ + 99³
```

## VBA

<lang vb>Public Type tuple

```   i As Variant
j As Variant
sum As Variant
```

End Type Public Type tuple3

```   i1 As Variant
j1 As Variant
i2 As Variant
j2 As Variant
i3 As Variant
j3 As Variant
sum As Variant
```

End Type Sub taxicab_numbers()

```   Dim i As Variant, j As Variant
Dim k As Long
Const MAX = 2019
Dim p(MAX) As Variant
Const bigMAX = (MAX + 1) * (MAX / 2)
Dim big(1 To bigMAX) As tuple
Const resMAX = 4400
Dim res(1 To resMAX) As tuple3
For i = 1 To MAX
p(i) = CDec(i * i * i) 'convert Variant to Decimal
Next i                     'wich hold numbers upto 10^28

k = 1
For i = 1 To MAX
For j = i To MAX
big(k).i = CDec(i)
big(k).j = CDec(j)
big(k).sum = CDec(p(i) + p(j))
k = k + 1
Next j
Next i
n = 1
Quicksort big, LBound(big), UBound(big)
For i = 1 To bigMAX - 1
If big(i).sum = big(i + 1).sum Then
res(n).i1 = CStr(big(i).i)
res(n).j1 = CStr(big(i).j)
res(n).i2 = CStr(big(i + 1).i)
res(n).j2 = CStr(big(i + 1).j)
If big(i + 1).sum = big(i + 2).sum Then
res(n).i3 = CStr(big(i + 2).i)
res(n).j3 = CStr(big(i + 2).j)
i = i + 1
End If
res(n).sum = CStr(big(i).sum)
n = n + 1
i = i + 1
End If
Next i
Debug.Print n - 1; " taxis"
For i = 1 To 25
With res(i)
Debug.Print String\$(4 - Len(CStr(i)), " "); i;
Debug.Print String\$(11 - Len(.sum), " "); .sum; " = ";
Debug.Print String\$(4 - Len(.i1), " "); .i1; "^3 +";
Debug.Print String\$(4 - Len(.j1), " "); .j1; "^3 = ";
Debug.Print String\$(4 - Len(.i2), " "); .i2; "^3 +";
Debug.Print String\$(4 - Len(.j2), " "); .j2; "^3"
End With
Next i
Debug.Print
For i = 2000 To 2006
With res(i)
Debug.Print String\$(4 - Len(CStr(i)), " "); i;
Debug.Print String\$(11 - Len(.sum), " "); .sum; " = ";
Debug.Print String\$(4 - Len(.i1), " "); .i1; "^3 +";
Debug.Print String\$(4 - Len(.j1), " "); .j1; "^3 = ";
Debug.Print String\$(4 - Len(.i2), " "); .i2; "^3 +";
Debug.Print String\$(4 - Len(.j2), " "); .j2; "^3"
End With
```
```   Next i
Debug.Print
For i = 1 To resMAX
If res(i).i3 <> "" Then
With res(i)
Debug.Print String\$(4 - Len(CStr(i)), " "); i;
Debug.Print String\$(11 - Len(.sum), " "); .sum; " = ";
Debug.Print String\$(4 - Len(.i1), " "); .i1; "^3 +";
Debug.Print String\$(4 - Len(.j1), " "); .j1; "^3 = ";
Debug.Print String\$(4 - Len(.i2), " "); .i2; "^3 +";
Debug.Print String\$(4 - Len(.j2), " "); .j2; "^3";
Debug.Print String\$(4 - Len(.i3), " "); .i3; "^3 +";
Debug.Print String\$(4 - Len(.j3), " "); .j3; "^3"
End With
End If
Next i
```

End Sub Sub Quicksort(vArray() As tuple, arrLbound As Long, arrUbound As Long)

```   'https://wellsr.com/vba/2018/excel/vba-quicksort-macro-to-sort-arrays-fast/
'Sorts a one-dimensional VBA array from smallest to largest
'using a very fast quicksort algorithm variant.
Dim pivotVal As Variant
Dim vSwap    As tuple
Dim tmpLow   As Long
Dim tmpHi    As Long

tmpLow = arrLbound
tmpHi = arrUbound
pivotVal = vArray((arrLbound + arrUbound) \ 2).sum

While (tmpLow <= tmpHi) 'divide
While (vArray(tmpLow).sum < pivotVal And tmpLow < arrUbound)
tmpLow = tmpLow + 1
Wend

While (pivotVal < vArray(tmpHi).sum And tmpHi > arrLbound)
tmpHi = tmpHi - 1
Wend

If (tmpLow <= tmpHi) Then
vSwap.i = vArray(tmpLow).i
vSwap.j = vArray(tmpLow).j
vSwap.sum = vArray(tmpLow).sum
vArray(tmpLow).i = vArray(tmpHi).i
vArray(tmpLow).j = vArray(tmpHi).j
vArray(tmpLow).sum = vArray(tmpHi).sum
vArray(tmpHi).i = vSwap.i
vArray(tmpHi).j = vSwap.j
vArray(tmpHi).sum = vSwap.sum
tmpLow = tmpLow + 1
tmpHi = tmpHi - 1
End If
Wend

If (arrLbound < tmpHi) Then Quicksort vArray, arrLbound, tmpHi 'conquer
If (tmpLow < arrUbound) Then Quicksort vArray, tmpLow, arrUbound 'conquer
```
End Sub</lang>
Output:
``` 4399  taxis
1        1729 =    9^3 +  10^3 =    1^3 +  12^3
2        4104 =    2^3 +  16^3 =    9^3 +  15^3
3       13832 =    2^3 +  24^3 =   18^3 +  20^3
4       20683 =   19^3 +  24^3 =   10^3 +  27^3
5       32832 =   18^3 +  30^3 =    4^3 +  32^3
6       39312 =   15^3 +  33^3 =    2^3 +  34^3
7       40033 =   16^3 +  33^3 =    9^3 +  34^3
8       46683 =   27^3 +  30^3 =    3^3 +  36^3
9       64232 =   26^3 +  36^3 =   17^3 +  39^3
10       65728 =   31^3 +  33^3 =   12^3 +  40^3
11      110656 =    4^3 +  48^3 =   36^3 +  40^3
12      110808 =   27^3 +  45^3 =    6^3 +  48^3
13      134379 =   12^3 +  51^3 =   38^3 +  43^3
14      149389 =   29^3 +  50^3 =    8^3 +  53^3
15      165464 =   38^3 +  48^3 =   20^3 +  54^3
16      171288 =   24^3 +  54^3 =   17^3 +  55^3
17      195841 =    9^3 +  58^3 =   22^3 +  57^3
18      216027 =   22^3 +  59^3 =    3^3 +  60^3
19      216125 =   45^3 +  50^3 =    5^3 +  60^3
20      262656 =   36^3 +  60^3 =    8^3 +  64^3
21      314496 =    4^3 +  68^3 =   30^3 +  66^3
22      320264 =   32^3 +  66^3 =   18^3 +  68^3
23      327763 =   51^3 +  58^3 =   30^3 +  67^3
24      373464 =   54^3 +  60^3 =    6^3 +  72^3
25      402597 =   56^3 +  61^3 =   42^3 +  69^3

2000  1671816384 =  940^3 + 944^3 =  428^3 +1168^3
2001  1672470592 =   29^3 +1187^3 =  632^3 +1124^3
2002  1673170856 =  828^3 +1034^3 =  458^3 +1164^3
2003  1675045225 =  744^3 +1081^3 =  522^3 +1153^3
2004  1675958167 =  492^3 +1159^3 =  711^3 +1096^3
2005  1676926719 =  714^3 +1095^3 =   63^3 +1188^3
2006  1677646971 =   99^3 +1188^3 =  891^3 + 990^3

455    87539319 =  167^3 + 436^3 =  228^3 + 423^3 255^3 + 414^3
535   119824488 =   90^3 + 492^3 =  346^3 + 428^3  11^3 + 493^3
588   143604279 =  408^3 + 423^3 =  359^3 + 460^3 111^3 + 522^3
655   175959000 =   70^3 + 560^3 =  315^3 + 525^3 198^3 + 552^3
888   327763000 =  300^3 + 670^3 =  339^3 + 661^3 510^3 + 580^3
1299   700314552 =  334^3 + 872^3 =  456^3 + 846^3 510^3 + 828^3
1398   804360375 =   15^3 + 930^3 =  295^3 + 920^3 198^3 + 927^3
1515   958595904 =   22^3 + 986^3 =  180^3 + 984^3 692^3 + 856^3
1660  1148834232 =  718^3 + 920^3 =  816^3 + 846^3 222^3 +1044^3
1837  1407672000 =  140^3 +1120^3 =  396^3 +1104^3 630^3 +1050^3
2100  1840667192 =  681^3 +1151^3 =  372^3 +1214^3 225^3 +1223^3
2143  1915865217 =    9^3 +1242^3 =  484^3 +1217^3 969^3 +1002^3
2365  2363561613 =  501^3 +1308^3 =  684^3 +1269^3 765^3 +1242^3
2480  2622104000 = 1020^3 +1160^3 =  600^3 +1340^3 678^3 +1322^3
2670  3080802816 =  904^3 +1328^3 =   81^3 +1455^3 456^3 +1440^3
2732  3235261176 =   33^3 +1479^3 =  270^3 +1476^31038^3 +1284^3
2845  3499524728 =  116^3 +1518^3 =  350^3 +1512^31169^3 +1239^3
2895  3623721192 =  348^3 +1530^3 =  761^3 +1471^31098^3 +1320^3
2979  3877315533 = 1224^3 +1269^3 = 1077^3 +1380^3 333^3 +1566^3
3293  4750893000 =  210^3 +1680^3 =  945^3 +1575^3 594^3 +1656^3
3562  5544709352 =  207^3 +1769^3 = 1076^3 +1626^3 842^3 +1704^3
3589  5602516416 =  912^3 +1692^3 = 1020^3 +1656^3 668^3 +1744^3
3826  6434883000 =  590^3 +1840^3 =   30^3 +1860^3 396^3 +1854^3
4162  7668767232 =   44^3 +1972^3 = 1384^3 +1712^3 360^3 +1968^3
4359  8849601000 = 1017^3 +1983^3 = 1530^3 +1740^3 900^3 +2010^3```

## Visual Basic .NET

Translation of: C#

<lang vbnet> Imports System.Text

Module Module1

```   Function GetTaxicabNumbers(length As Integer) As IDictionary(Of Long, IList(Of Tuple(Of Integer, Integer)))
Dim sumsOfTwoCubes As New SortedList(Of Long, IList(Of Tuple(Of Integer, Integer)))
```
```       For i = 1 To Integer.MaxValue - 1
For j = 1 To Integer.MaxValue - 1
Dim sum = CLng(Math.Pow(i, 3) + Math.Pow(j, 3))
```
```               If Not sumsOfTwoCubes.ContainsKey(sum) Then
sumsOfTwoCubes.Add(sum, New List(Of Tuple(Of Integer, Integer)))
End If
```
```               sumsOfTwoCubes(sum).Add(Tuple.Create(i, j))
```
```               If j >= i Then
Exit For
End If
Next
```
```           REM Found that you need to keep going for a while after the length, because higher i values fill in gaps
If sumsOfTwoCubes.AsEnumerable.Count(Function(t) t.Value.Count >= 2) >= length * 1.1 Then
Exit For
End If
Next
```
```       Dim values = (From t In sumsOfTwoCubes Where t.Value.Count >= 2 Select t) _
.Take(2006) _
.ToDictionary(Function(u) u.Key, Function(u) u.Value)
Return values
End Function
```
```   Sub PrintTaxicabNumbers(values As IDictionary(Of Long, IList(Of Tuple(Of Integer, Integer))))
Dim i = 1
For Each taxicabNumber In values.Keys
Dim output As New StringBuilder
output.AppendFormat("{0,10}" + vbTab + "{1,4}", i, taxicabNumber)
```
```           For Each numbers In values(taxicabNumber)
output.AppendFormat(vbTab + "= {0}^3 + {1}^3", numbers.Item1, numbers.Item2)
Next
```
```           If i <= 25 OrElse (i >= 2000 AndAlso i <= 2006) Then
Console.WriteLine(output.ToString)
End If
```
```           i += 1
Next
End Sub
```
```   Sub Main()
Dim taxicabNumbers = GetTaxicabNumbers(2006)
PrintTaxicabNumbers(taxicabNumbers)
End Sub
```

End Module</lang>

Output:
```         1      1729    = 10^3 + 9^3    = 12^3 + 1^3
2      4104    = 15^3 + 9^3    = 16^3 + 2^3
3      13832   = 20^3 + 18^3   = 24^3 + 2^3
4      20683   = 24^3 + 19^3   = 27^3 + 10^3
5      32832   = 30^3 + 18^3   = 32^3 + 4^3
6      39312   = 33^3 + 15^3   = 34^3 + 2^3
7      40033   = 33^3 + 16^3   = 34^3 + 9^3
8      46683   = 30^3 + 27^3   = 36^3 + 3^3
9      64232   = 36^3 + 26^3   = 39^3 + 17^3
10      65728   = 33^3 + 31^3   = 40^3 + 12^3
11      110656  = 40^3 + 36^3   = 48^3 + 4^3
12      110808  = 45^3 + 27^3   = 48^3 + 6^3
13      134379  = 43^3 + 38^3   = 51^3 + 12^3
14      149389  = 50^3 + 29^3   = 53^3 + 8^3
15      165464  = 48^3 + 38^3   = 54^3 + 20^3
16      171288  = 54^3 + 24^3   = 55^3 + 17^3
17      195841  = 57^3 + 22^3   = 58^3 + 9^3
18      216027  = 59^3 + 22^3   = 60^3 + 3^3
19      216125  = 50^3 + 45^3   = 60^3 + 5^3
20      262656  = 60^3 + 36^3   = 64^3 + 8^3
21      314496  = 66^3 + 30^3   = 68^3 + 4^3
22      320264  = 66^3 + 32^3   = 68^3 + 18^3
23      327763  = 58^3 + 51^3   = 67^3 + 30^3
24      373464  = 60^3 + 54^3   = 72^3 + 6^3
25      402597  = 61^3 + 56^3   = 69^3 + 42^3
2000      1671816384      = 944^3 + 940^3 = 1168^3 + 428^3
2001      1672470592      = 1124^3 + 632^3        = 1187^3 + 29^3
2002      1673170856      = 1034^3 + 828^3        = 1164^3 + 458^3
2003      1675045225      = 1081^3 + 744^3        = 1153^3 + 522^3
2004      1675958167      = 1096^3 + 711^3        = 1159^3 + 492^3
2005      1676926719      = 1095^3 + 714^3        = 1188^3 + 63^3
2006      1677646971      = 990^3 + 891^3 = 1188^3 + 99^3```

## Wren

Library: Wren-sort
Library: Wren-fmt

<lang ecmascript>import "/sort" for Sort import "/fmt" for Fmt

var cubesSum = {} var taxicabs = []

for (i in 1..1199) {

```   for (j in i+1..1200) {
var sum = i*i*i + j*j*j
if (!cubesSum[sum]) {
cubesSum[sum] = [i, j]
} else {
}
}
```

} var cmp = Fn.new { |a, b| (a[0] - b[0]).sign } Sort.quick(taxicabs, 0, taxicabs.count-1, cmp) // remove those numbers which have additional pairs of cubes for (i in taxicabs.count-2..0) {

```   if (taxicabs[i][0] == taxicabs[i+1][0]) taxicabs.removeAt(i+1)
```

}

System.print("The first 25 taxicab numbers are:") for (i in 1..25) {

```   var t = taxicabs[i-1]
Fmt.lprint("\$2d: \$,7d = \$2d³ + \$2d³ = \$2d³ + \$2d³", [i, t[0], t[1][0], t[1][1], t[2][0], t[2][1]])
```

}

System.print("\nThe 2,000th to 2,006th taxicab numbers are:") for (i in 2000..2006) {

```   var t = taxicabs[i-1]
Fmt.lprint("\$,5d: \$,13d = \$3d³ + \$,5d³ = \$3d³ + \$,5d³", [i, t[0], t[1][0], t[1][1], t[2][0], t[2][1]])
```

}</lang>

Output:
```The first 25 taxicab numbers are:
1:   1,729 =  1³ + 12³ =  9³ + 10³
2:   4,104 =  2³ + 16³ =  9³ + 15³
3:  13,832 =  2³ + 24³ = 18³ + 20³
4:  20,683 = 10³ + 27³ = 19³ + 24³
5:  32,832 =  4³ + 32³ = 18³ + 30³
6:  39,312 =  2³ + 34³ = 15³ + 33³
7:  40,033 =  9³ + 34³ = 16³ + 33³
8:  46,683 =  3³ + 36³ = 27³ + 30³
9:  64,232 = 17³ + 39³ = 26³ + 36³
10:  65,728 = 12³ + 40³ = 31³ + 33³
11: 110,656 =  4³ + 48³ = 36³ + 40³
12: 110,808 =  6³ + 48³ = 27³ + 45³
13: 134,379 = 12³ + 51³ = 38³ + 43³
14: 149,389 =  8³ + 53³ = 29³ + 50³
15: 165,464 = 20³ + 54³ = 38³ + 48³
16: 171,288 = 17³ + 55³ = 24³ + 54³
17: 195,841 =  9³ + 58³ = 22³ + 57³
18: 216,027 =  3³ + 60³ = 22³ + 59³
19: 216,125 =  5³ + 60³ = 45³ + 50³
20: 262,656 =  8³ + 64³ = 36³ + 60³
21: 314,496 =  4³ + 68³ = 30³ + 66³
22: 320,264 = 18³ + 68³ = 32³ + 66³
23: 327,763 = 30³ + 67³ = 51³ + 58³
24: 373,464 =  6³ + 72³ = 54³ + 60³
25: 402,597 = 42³ + 69³ = 56³ + 61³

The 2,000th to 2,006th taxicab numbers are:
2,000: 1,671,816,384 = 428³ + 1,168³ = 940³ +   944³
2,001: 1,672,470,592 =  29³ + 1,187³ = 632³ + 1,124³
2,002: 1,673,170,856 = 458³ + 1,164³ = 828³ + 1,034³
2,003: 1,675,045,225 = 522³ + 1,153³ = 744³ + 1,081³
2,004: 1,675,958,167 = 492³ + 1,159³ = 711³ + 1,096³
2,005: 1,676,926,719 =  63³ + 1,188³ = 714³ + 1,095³
2,006: 1,677,646,971 =  99³ + 1,188³ = 891³ +   990³
```

## zkl

Translation of: D

An array of bytes is used to hold n, where array[n³+m³]==n. <lang zkl>fcn taxiCabNumbers{

```  const HeapSZ=0d5_000_000;
iCubes:=[1..120].apply("pow",3);
sum2cubes:=Data(HeapSZ).fill(0);  // BFheap of 1 byte zeros
taxiNums:=List();
foreach i,i3 in ([1..].zip(iCubes)){
foreach j,j3 in ([i+1..].zip(iCubes[i,*])){
ij3:=i3+j3;
```

if(z:=sum2cubes[ij3]){ taxiNums.append(T(ij3, z,(ij3-z.pow(3)).toFloat().pow(1.0/3).round().toInt(), i,j)); } else sum2cubes[ij3]=i;

```     }
}
taxiNums.sort(fcn([(a,_)],[(b,_)]){ a<b })
```

}</lang> <lang zkl>fcn print(n,taxiNums){

```  [n..].zip(taxiNums).pump(Console.println,fcn([(n,t)]){
"%4d: %10,d = %2d\u00b3 + %2d\u00b3 =  %2d\u00b3 + %2d\u00b3".fmt(n,t.xplode())
})
```

} taxiNums:=taxiCabNumbers(); // 63 pairs taxiNums[0,25]:print(1,_);</lang>

Output:
```   1:      1,729 =  1³ + 12³ =   9³ + 10³
2:      4,104 =  2³ + 16³ =   9³ + 15³
3:     13,832 =  2³ + 24³ =  18³ + 20³
4:     20,683 = 10³ + 27³ =  19³ + 24³
5:     32,832 =  4³ + 32³ =  18³ + 30³
6:     39,312 =  2³ + 34³ =  15³ + 33³
7:     40,033 =  9³ + 34³ =  16³ + 33³
8:     46,683 =  3³ + 36³ =  27³ + 30³
9:     64,232 = 17³ + 39³ =  26³ + 36³
10:     65,728 = 12³ + 40³ =  31³ + 33³
11:    110,656 =  4³ + 48³ =  36³ + 40³
12:    110,808 =  6³ + 48³ =  27³ + 45³
13:    134,379 = 12³ + 51³ =  38³ + 43³
14:    149,389 =  8³ + 53³ =  29³ + 50³
15:    165,464 = 20³ + 54³ =  38³ + 48³
16:    171,288 = 17³ + 55³ =  24³ + 54³
17:    195,841 =  9³ + 58³ =  22³ + 57³
18:    216,027 =  3³ + 60³ =  22³ + 59³
19:    216,125 =  5³ + 60³ =  45³ + 50³
20:    262,656 =  8³ + 64³ =  36³ + 60³
21:    314,496 =  4³ + 68³ =  30³ + 66³
22:    320,264 = 18³ + 68³ =  32³ + 66³
23:    327,763 = 30³ + 67³ =  51³ + 58³
24:    373,464 =  6³ + 72³ =  54³ + 60³
25:    402,597 = 42³ + 69³ =  56³ + 61³
```
Translation of: Python

Using a binary heap: <lang zkl>fcn cubeSum{

```  heap,n:=Heap(fcn([(a,_)],[(b,_)]){ a<=b }), 1;  // heap cnt maxes out @ 244
while(1){
while(heap.empty or heap.top[0]>n.pow(3)){ # could also pre-calculate cubes
```

heap.push(T(n.pow(3) + 1, n,1)); n+=1;

```     }
s,x,y:= sxy:=heap.pop();
vm.yield(sxy);
y+=1;
if(y<x)    # should be y <= x?
```

heap.push(T(x.pow(3) + y.pow(3), x,y));

```  }
```

} fcn taxis{

```  out:=List(T(0,0,0));
foreach s in (Utils.Generator(cubeSum)){
if(s[0]==out[-1][0]) out.append(s);
else{
```

if(out.len()>1) vm.yield(out); out.clear(s)

```     }
}
```

} n:=0; foreach x in (Utils.Generator(taxis)){

```  n += 1;
if(n >= 2006) break;
if(n <= 25 or n >= 2000) println(n,": ",x);
```

}</lang> And a quickie heap implementation: <lang zkl>class Heap{ // binary heap

```  fcn init(lteqFcn='<=){
var [const, private] heap=List().pad(64,Void); // a power of 2
var cnt=0, cmp=lteqFcn;
}
fcn push(v){
```

// Resize the heap if it is too small to hold another item

```     if (cnt==heap.len()) heap.pad(cnt*2,Void);
```
```     index:=cnt; cnt+=1; while(index){	 // Find out where to put the element
```

parent:=(index - 1)/2; if(cmp(heap[parent],v)) break; heap[index] = heap[parent]; index = parent;

```     }
heap[index] = v;
}
fcn pop{  // Remove the biggest element and return it
if(not cnt) return(Void);
v,temp:=heap[0], heap[cnt-=1];
```
```     // Reorder the elements
index:=0; while(1){   // Find the child to swap with
```

swap:=index*2 + 1; if (swap>=cnt) break; // If there are no children, the heap is reordered other:=swap + 1; if(other<cnt and cmp(heap[other],heap[swap])) swap = other; if(cmp(temp,heap[swap])) break; // If the bigger child is less than or equal to its parent, the heap is reordered

heap[index]=heap[swap]; index = swap;

```     }
heap[index] = temp;
v
}
var [proxy] top=fcn  { if(cnt==0) Void else heap[0] };
var [proxy] empty=fcn{ (not cnt) };
```

}</lang>

Output:
```1: L(L(1729,10,9),L(1729,12,1))
...
23: L(L(327763,67,30),L(327763,58,51))
24: L(L(373464,60,54),L(373464,72,6))
25: L(L(402597,61,56),L(402597,69,42))
2000: L(L(1671816384,944,940),L(1671816384,1168,428))
2001: L(L(1672470592,1124,632),L(1672470592,1187,29))
2002: L(L(1673170856,1034,828),L(1673170856,1164,458))
2003: L(L(1675045225,1153,522),L(1675045225,1081,744))
2004: L(L(1675958167,1096,711),L(1675958167,1159,492))
2005: L(L(1676926719,1188,63),L(1676926719,1095,714))
```

## ZX Spectrum Basic

This will, in the strictest sense, work. Don't hold your breath though; after six hours on an emulator at full speed it had generated the first 10 numbers. Getting to 2006 may take a while longer.

You cannot fit the whole 1625-entry table of cubes (and this program on top) into the 16K ZX Spectrum. Replace all 1625s with 1200s to resolve; numerically unjustified as an exhaustive search, but we know this will be sufficient to find the 2006th number. Eventually.

<lang zxbasic>10 DIM f(1625): REM populating a cube table at the start will be faster than computing the cubes on the fly 20 FOR x=1 TO 1625 30 LET f(x)=x*x*x: REM x*x*x rather than x^3 as the ZX Spectrum's exponentiation function is legendarily slow 40 NEXT x 50 LET c=0 60 FOR x=1 TO 4294967295: REM the highest number the ZX Spectrum Basic can accurately hold internally; floor (cuberoot max)=1625, hence the table limit 70 LET k=0 80 FOR m=1 TO 1625 90 FOR n=m+1 TO 1625 100 IF f(m)+f(n)=x THEN GOTO 160 110 IF f(n)>=x THEN LET n=1625: REM overshot, break out of the loop 120 IF f(m)>=x THEN LET m=1625 130 NEXT n 140 NEXT m 150 NEXT x 160 IF k=1 THEN LET q=m: LET r=n: GO TO 230: REM got one! 170 LET o=m 180 LET p=n 190 LET k=1 200 NEXT n 210 NEXT m 220 NEXT x 230 LET c=c+1 240 IF c>25 AND c<2000 THEN GO TO 330 250 LET t\$="": REM convert number to string; while ZX Spectrum Basic can store all the digits of integers up to 2^32-1... 260 LET t=INT (x/100000): REM ...it will resort to scientific notation trying to display any more than eight digits 270 LET b=x-t*100000 280 IF t=0 THEN GO TO 300: REM omit leading zero 290 LET t\$=STR\$ t 300 LET t\$=t\$+STR\$ b 310 PRINT c;":";t\$;"=";q;"^3+";r;"^3=";o;"^3+";p;"^3" 320 POKE 23692,10: REM suppress "scroll?" prompt when screen fills up at c=22 330 IF c=2006 THEN LET x=4294967295: LET n=1625: LET m=1625 340 NEXT n 350 NEXT m 360 NEXT x</lang>

Output:
```1:1729=9^3+10^3=1^3+12^3
2:4104=9^3+15^3=2^3+16^3
3:13832=18^3+20^3=2^3+24^3
4:20683=19^3+24^3=10^3+27^3
5:32832=18^3+30^3=4^3+32^3
6:39312=15^3+33^3=2^3+34^3
7:40033=16^3+33^3=9^3+34^3
8:46683=27^3+30^3=3^3+36^3
9:64232=26^3+36^3=17^3+39^3
10:65728=31^3+33^3=12^3+40^3

D BREAK into program, 100:1```

This program produces the first 25 Taxicab numbers. It is written with speed in mind. The runtime is about 45 minutes on a ZX Spectrum (3.5 Mhz). <lang zxbasic> 10 LET T=0: DIM F(72): LET D=0: LET S=0: LET B=0: LET A=0: LET C=0

``` 20 DIM H(50): DIM Y(50,2): FOR D=1 TO 72: LET F(D)=D*D*D: NEXT D
30 FOR A=1 TO 58: FOR B=A+1 TO 72: LET S=F(A)+F(B): FOR D=B-1 TO A STEP -1
40 LET T=S-F(D): IF T>F(D) THEN NEXT B: NEXT A: GO TO 90
45 IF s>405224 THEN GO TO 70
50 IF F(INT (EXP (LN (T)/3)+.5))=T THEN GO TO 80
60 NEXT D
70 NEXT B: NEXT A: GO TO 90
80 PRINT S,: LET C=C+1: LET H(C)=S: LET Y(C,1)=A*65536+B: LET Y(C,2)=INT (EXP (LN (T)/3)+.5)*65536+D: GO TO 70
90 LET S=INT (C/2)
100 LET T=0: FOR A=1 TO C-S: IF H(A)>H(A+S) THEN LET T=H(A): LET H(A)=H(A+S): LET H(A+S)=T: LET T=Y(A,1): LET Y(A,1)=Y(A+S,1): LET Y(A+S,1)=T: LET T=Y(A,2): LET Y(A,2)=Y(A+S,2): LET Y(A+S,2)=T
110 NEXT A: IF T<>0 THEN GO TO 100
120 IF S<>1 THEN LET S=INT (S/2): GO TO 100
130 CLS : FOR A=1 TO 25: PRINT A;":";H(A);"=";
131 LPRINT A;":";H(A);"=";:
140 LET T=INT (Y(A,1)/65536): PRINT T;"^3+";Y(A,1)-T*65536;"^3=";
141 LPRINT T;"^3+";Y(A,1)-T*65536;"^3=";
150 LET T=INT (Y(A,2)/65536): PRINT T;"^3+";Y(A,2)-T*65536;"^3"
151 LPRINT T;"^3+";Y(A,2)-T*65536;"^3"
160 NEXT A: PRINT
170 STOP</lang>
```
Output:
```1:1729=1^3+12^3=9^3+10^3
2:4104=2^3+16^3=9^3+15^3
3:13832=2^3+24^3=18^3+20^3
4:20683=10^3+27^3=19^3+24^3
5:32832=4^3+32^3=18^3+30^3
6:39312=2^3+34^3=15^3+33^3
7:40033=9^3+34^3=16^3+33^3
8:46683=3^3+36^3=27^3+30^3
9:64232=17^3+39^3=26^3+36^3
10:65728=12^3+40^3=31^3+33^3
11:110656=4^3+48^3=36^3+40^3
12:110808=6^3+48^3=27^3+45^3
13:134379=12^3+51^3=38^3+43^3
14:149389=8^3+53^3=29^3+50^3
15:165464=20^3+54^3=38^3+48^3
16:171288=17^3+55^3=24^3+54^3
17:195841=9^3+58^3=22^3+57^3
18:216027=3^3+60^3=22^3+59^3
19:216125=5^3+60^3=45^3+50^3
20:262656=8^3+64^3=36^3+60^3
21:314496=4^3+68^3=30^3+66^3
22:320264=18^3+68^3=32^3+66^3
23:327763=30^3+67^3=51^3+58^3
24:373464=6^3+72^3=54^3+60^3
25:402597=42^3+69^3=56^3+61^3```