Zumkeller numbers

From Rosetta Code
Task
Zumkeller numbers
You are encouraged to solve this task according to the task description, using any language you may know.

Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal.


E.G.
6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6.
10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value.
12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14.


Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0


Task
  • Write a routine (function, procedure, whatever) to find Zumkeller numbers.
  • Use the routine to find and display here, on this page, the first 220 Zumkeller numbers.
  • Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers.
  • Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5.


See Also


Related Tasks

11l

Translation of: D
F getDivisors(n)
   V divs = [1, n]
   V i = 2
   L i * i <= n
      I n % i == 0
         divs [+]= i

         V j = n I/ i
         I i != j
            divs [+]= j
      i++
   R divs

F isPartSum(divs, sum)
   I sum == 0
      R 1B

   V le = divs.len
   I le == 0
      R 0B

   V last = divs.last
   [Int] newDivs
   L(i) 0 .< le - 1
      newDivs [+]= divs[i]

   I last > sum
      R isPartSum(newDivs, sum)
   E
      R isPartSum(newDivs, sum) | isPartSum(newDivs, sum - last)

F isZumkeller(n)
   V divs = getDivisors(n)
   V s = sum(divs)

   I s % 2 == 1
      R 0B

   I n % 2 == 1
      V abundance = s - 2 * n
      R abundance > 0 & abundance % 2 == 0

   R isPartSum(divs, s I/ 2)

print(‘The first 220 Zumkeller numbers are:’)
V i = 2
V count = 0
L count < 220
   I isZumkeller(i)
      print(‘#3 ’.format(i), end' ‘’)
      count++
      I count % 20 == 0
         print()
   i++

print("\nThe first 40 odd Zumkeller numbers are:")
i = 3
count = 0
L count < 40
   I isZumkeller(i)
      print(‘#5 ’.format(i), end' ‘’)
      count++
      I count % 10 == 0
         print()
   i += 2

print("\nThe first 40 odd Zumkeller numbers which don't end in 5 are:")
i = 3
count = 0
L count < 40
   I i % 10 != 5 & isZumkeller(i)
      print(‘#7 ’.format(i), end' ‘’)
      count++
      I count % 8 == 0
         print()
   i += 2
Output:
The first 220 Zumkeller numbers are:
  6  12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96 
102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198 
204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282 
294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368 
372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462 
464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540 
544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620 
624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708 
714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810 
812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896 
906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984 

The first 40 odd Zumkeller numbers are:
  945  1575  2205  2835  3465  4095  4725  5355  5775  5985 
 6435  6615  6825  7245  7425  7875  8085  8415  8505  8925 
 9135  9555  9765 10395 11655 12285 12705 12915 13545 14175 
14805 15015 15435 16065 16695 17325 17955 18585 19215 19305 

The first 40 odd Zumkeller numbers which don't end in 5 are:
  81081  153153  171171  189189  207207  223839  243243  261261 
 279279  297297  351351  459459  513513  567567  621621  671517 
 729729  742203  783783  793611  812889  837837  891891  908523 
 960687  999999 1024947 1054053 1072071 1073709 1095633 1108107 
1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377 

AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
/* ARM assembly AARCH64 Raspberry PI 3B */
/*  program zumkellex641.s   */

/* REMARK 1 : this program use routines in a include file 
   see task Include a file language arm assembly 
   for the routine affichageMess conversion10 
   see at end of this program the instruction include */

/* REMARK 2 : this program is not optimized. 
   Not search First 40 odd Zumkeller numbers not divisible by 5 */

/*******************************************/
/* Constantes file                         */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"

.equ NBDIVISORS,             100


/*******************************************/
/* Structures                               */
/********************************************/
/* structurea area divisors  */
    .struct  0
div_ident:                     // ident
    .struct  div_ident + 8
div_flag:                      // value 0, 1 or 2
    .struct  div_flag + 8
div_fin:
/*******************************************/
/* Initialized data                        */
/*******************************************/
.data
szMessStartPgm:          .asciz "Program start \n"
szMessEndPgm:            .asciz "Program normal end.\n"
szMessErrorArea:         .asciz "\033[31mError : area divisors too small.\n"
szMessError:             .asciz "\033[31mError  !!!\n"

szCarriageReturn:        .asciz "\n"

/* datas message display */
szMessEntete:            .asciz "The first 220 Zumkeller numbers are:\n"
sNumber:                 .space 4*20,' '
                         .space 12,' '     // for end of conversion
szMessListDivi:          .asciz "Divisors list : \n"
szMessListDiviHeap:      .asciz "Heap 1 Divisors list : \n"
szMessResult:            .ascii " "
sValue:                  .space 12,' '
                         .asciz ""

szMessEntete1:           .asciz "The first 40 odd Zumkeller numbers are:\n"
/*******************************************/
/* UnInitialized data                      */
/*******************************************/
.bss 
.align 4
tbDivisors:              .skip div_fin * NBDIVISORS  // area divisors
sZoneConv:               .skip 30
/*******************************************/
/*  code section                           */
/*******************************************/
.text
.global main 
main:                               // program start
    ldr x0,qAdrszMessStartPgm       // display start message
    bl affichageMess

    ldr x0,qAdrszMessEntete         // display message
    bl affichageMess
    mov x2,#1                       // counter number
    mov x3,#0                       // counter zumkeller number
    mov x4,#0                       // counter for line display
1:
    mov x0,x2                       //  number
    mov x1,#0                       // display flag
    bl testZumkeller
    cmp x0,#1                       // zumkeller ?
    bne 3f                          // no
    mov x0,x2
    ldr x1,qAdrsZoneConv            // and convert ascii string
    bl conversion10
    ldr x0,qAdrsZoneConv            // copy result in display line
    ldr x1,qAdrsNumber   
    lsl x5,x4,#2
    add x1,x1,x5
11:
    ldrb w5,[x0],1
    cbz w5,12f
    strb w5,[x1],1
    b 11b
12:
    add x4,x4,#1
    cmp x4,#20
    blt 2f
    //add x1,x1,#3                  // carriage return at end of display line
    mov x0,#'\n'
    strb w0,[x1]
    mov x0,#0
    strb w0,[x1,#1]                 // end of display line
    ldr x0,qAdrsNumber              // display result message
    bl affichageMess
    mov x4,#0
2:
    add x3,x3,#1                    // increment counter
3:
    add x2,x2,#1                    // increment number
    cmp x3,#220                     // end ?
    blt 1b

    /* raz display line  */
    ldr x0,qAdrsNumber 
    mov x1,' '
    mov x2,0
31:
    strb w1,[x0,x2]
    add x2,x2,1
    cmp x2,4*20
    blt 31b

    /* odd zumkeller numbers  */
    ldr x0,qAdrszMessEntete1
    bl affichageMess
    mov x2,#1
    mov x3,#0
    mov x4,#0
4:
    mov x0,x2                       //  number
    mov x1,#0                       // display flag
    bl testZumkeller
    cmp x0,#1
    bne 6f
    mov x0,x2
    ldr x1,qAdrsZoneConv            // and convert ascii string
    bl conversion10
    ldr x0,qAdrsZoneConv            // copy result in display line
    ldr x1,qAdrsNumber   
    lsl x5,x4,#3
    add x1,x1,x5
41:
    ldrb w5,[x0],1
    cbz w5,42f
    strb w5,[x1],1
    b 41b
42:
    add x4,x4,#1
    cmp x4,#8
    blt 5f
    mov x0,#'\n'
    strb w0,[x1]
    strb wzr,[x1,#1]
    ldr x0,qAdrsNumber              // display result message
    bl affichageMess
    mov x4,#0
5:
    add x3,x3,#1
6:
    add x2,x2,#2
    cmp x3,#40
    blt 4b


    ldr x0,qAdrszMessEndPgm         // display end message
    bl affichageMess
    b 100f
99:                                 // display error message 
    ldr x0,qAdrszMessError
    bl affichageMess
100:                                // standard end of the program
    mov x0, #0                      // return code
    mov x8, #EXIT                   // request to exit program
    svc 0                           // perform system call
qAdrszMessStartPgm:        .quad szMessStartPgm
qAdrszMessEndPgm:          .quad szMessEndPgm
qAdrszMessError:           .quad szMessError
qAdrszCarriageReturn:      .quad szCarriageReturn
qAdrszMessResult:          .quad szMessResult
qAdrsValue:                .quad sValue
qAdrszMessEntete:          .quad szMessEntete
qAdrszMessEntete1:         .quad szMessEntete1
qAdrsNumber:               .quad sNumber
qAdrsZoneConv:             .quad sZoneConv
/******************************************************************/
/*     test if number is Zumkeller number                         */ 
/******************************************************************/
/* x0 contains the number  */
/* x1 contains display flag (<>0: display, 0: no display ) */
/* x0 return 1 if Zumkeller number else return 0  */
testZumkeller:
    stp x1,lr,[sp,-16]!         // save  registers
    stp x2,x3,[sp,-16]!         // save  registers
    stp x4,x5,[sp,-16]!         // save  registers
    stp x6,x7,[sp,-16]!         // save  registers
    mov x7,x1                   // save flag
    ldr x1,qAdrtbDivisors
    bl divisors                 // create area of divisors
    cmp x0,#0                   // 0 divisors or error ?
    ble 98f
    mov x5,x0                   // number of dividers
    mov x6,x1                   // number of odd dividers
    cmp x7,#1                   // display divisors ?
    bne 1f
    ldr x0,qAdrszMessListDivi   // yes
    bl affichageMess
    mov x0,x5
    mov x1,#0
    ldr x2,qAdrtbDivisors
    bl printHeap
1:
    tst x6,#1                   // number of odd divisors is odd ?
    bne 99f
    mov x0,x5
    mov x1,#0
    ldr x2,qAdrtbDivisors
    bl sumDivisors              // compute divisors sum
    tst x0,#1                   // sum is odd ?
    bne 99f                     // yes -> end
    lsr x6,x0,#1                // compute sum /2
    mov x0,x6                   // x0 contains sum / 2
    mov x1,#1                   // first heap
    mov x3,x5                   // number divisors
    mov x4,#0                   // N° element to start
    bl searchHeap
    cmp x0,#-2
    beq 100f                    // end 
    cmp x0,#-1
    beq 100f                    // end

    cmp x7,#1                   // print flag ?
    bne 2f
    ldr x0,qAdrszMessListDiviHeap
    bl affichageMess
    mov x0,x5                   // yes print divisors of first heap
    ldr x2,qAdrtbDivisors
    mov x1,#1
    bl printHeap
2:
    mov x0,#1                   // ok
    b 100f
98:
    mov x0,-1
    b 100f
99:
    mov x0,#0
    b 100f
100:
    ldp x6,x7,[sp],16          // restaur  2 registers
    ldp x4,x5,[sp],16          // restaur  2 registers
    ldp x2,x3,[sp],16          // restaur  2 registers
    ldp x1,lr,[sp],16          // restaur  2 registers
    ret                        // return to address lr x30
qAdrtbDivisors:          .quad tbDivisors
qAdrszMessListDiviHeap:  .quad szMessListDiviHeap
/******************************************************************/
/*     search sum divisors = sum / 2                             */ 
/******************************************************************/
/* x0 contains sum to search */
/* x1 contains  flag (1 or 2) */
/* x2 contains address of divisors area */
/* x3 contains elements number   */
/* x4 contains N° element to start */
/* x0 return -2  end search */
/* x0 return -1  no heap   */
/* x0 return 0   Ok */
/* recursive routine */
searchHeap:
    stp x3,lr,[sp,-16]!            // save  registers
    stp x4,x5,[sp,-16]!            // save  registers
    stp x6,x8,[sp,-16]!            // save  registers
1:
    cmp x4,x3                   // indice = elements number
    beq 99f
    lsl x6,x4,#4                // compute element address
    add x6,x6,x2
    ldr x7,[x6,#div_flag]       // flag equal ?
    cmp x7,#0
    bne 6f
    ldr x5,[x6,#div_ident]
    cmp x5,x0                   // element value = remaining amount
    beq 7f                      // yes
    bgt 6f                      // too large 
                                // too less
    mov x8,x0                   // save sum
    sub x0,x0,x5                // new sum to find
    add x4,x4,#1                // next divisors
    bl searchHeap               // other search
    cmp x0,#0                   // find -> ok
    beq 5f 
    mov x0,x8                   // sum begin
    sub x4,x4,#1                // prev divisors
    bl razFlags                 // zero in all flags > current element
4:
    add x4,x4,#1                // last divisors
    b 1b
5:
    str x1,[x6,#div_flag]       // flag -> area element flag
    b 100f
6:
    add x4,x4,#1                // last divisors
    b 1b
7:
    str x1,[x6,#div_flag]       // flag -> area element flag
    mov x0,#0                   // search ok
    b 100f
8:
    mov x0,#-1                  // end search 
    b 100f
99:
    mov x0,#-2
    b 100f
100:
    ldp x6,x8,[sp],16          // restaur  2 registers
    ldp x4,x5,[sp],16          // restaur  2 registers
    ldp x3,lr,[sp],16          // restaur  2 registers
    ret                        // return to address lr x30
/******************************************************************/
/*     raz flags                                                  */ 
/******************************************************************/
/* x0 contains sum to search */
/* x1 contains  flag (1 or 2) */
/* x2 contains address of divisors area */
/* x3 contains elements number   */
/* x4 contains N° element to start */
/* x5 contains current sum */
/* REMARK  : NO SAVE REGISTERS x14 x15 x16 AND LR */
razFlags:
    mov x14,x4
1:
    cmp x14,x3                   // indice > nb elements ?
    bge 100f                     // yes -> end
    lsl x15,x14,#4
    add x15,x15,x2               // compute address element
    ldr x16,[x15,#div_flag]      // load flag
    cmp x1,x16                   // equal ?
    bne 2f
    str xzr,[x15,#div_flag]      // yes -> store 0
2:
    add x14,x14,#1               // increment indice
    b 1b                         // and loop
100:
    ret                          // return to address lr x30
/******************************************************************/
/*     compute sum of divisors                         */ 
/******************************************************************/
/* x0 contains elements number */
/* x1 contains  flag (0  1 or 2)
/* x2 contains address of divisors area
/* x0 return divisors sum */
/* REMARK  : NO SAVE REGISTERS x13 x14 x15 x16 AND LR */
sumDivisors:
    mov x13,#0                   // indice
    mov x16,#0                   // sum
1:
    lsl x14,x13,#4               // N° element * 16
    add x14,x14,x2
    ldr x15,[x14,#div_flag]      // compare flag 
    cmp x15,x1
    bne 2f
    ldr x15,[x14,#div_ident]     // load value
    add x16,x16,x15              // and add
2:
    add x13,x13,#1
    cmp x13,x0
    blt 1b
    mov x0,x16                   // return sum
100:
    ret                          // return to address lr x30
/******************************************************************/
/*     print heap                         */ 
/******************************************************************/
/* x0 contains elements number */
/* x1 contains  flag (0  1 or 2) */
/* x2 contains address of divisors area */
printHeap:
    stp x2,lr,[sp,-16]!         // save  registers
    stp x3,x4,[sp,-16]!         // save  registers
    stp x5,x6,[sp,-16]!         // save  registers
    stp x1,x7,[sp,-16]!         // save  registers
    mov x6,x0
    mov x5,x1
    mov x3,#0                   // indice
1:
    lsl x1,x3,#4                // N° element * 16
    add x1,x1,x2
    ldr x4,[x1,#div_flag]
    cmp x4,x5
    bne 2f
    ldr x0,[x1,#div_ident]
    ldr x1,qAdrsValue           // and convert ascii string
    bl conversion10
    ldr x0,qAdrszMessResult     // display result message
    bl affichageMess
2:
    add x3,x3,#1
    cmp x3,x6
    blt 1b
    ldr x0,qAdrszCarriageReturn
    bl affichageMess
100:
    ldp x1,x8,[sp],16          // restaur  2 registers
    ldp x5,x6,[sp],16          // restaur  2 registers
    ldp x3,x4,[sp],16          // restaur  2 registers
    ldp x2,lr,[sp],16          // restaur  2 registers
    ret                        // return to address lr x30
/******************************************************************/
/*     divisors function                         */ 
/******************************************************************/
/* x0 contains the number  */
/* x1 contains address of divisors area
/* x0 return divisors number */
/* x1 return counter odd divisors */
/* REMARK  : NO SAVE REGISTERS x10 x11 x12 x13 x14 x15 x16 x17 x18 */
divisors:
    str lr,[sp,-16]!            // save  register LR
    cmp x0,#1                   // = 1 ?
    ble 98f
    mov x17,x0
    mov x18,x1
    mov x11,#1                  // counter odd divisors
    mov x0,#1                   // first divisor = 1
    str x0,[x18,#div_ident]
    mov x0,#0
    str x0,[x18,#div_flag]
    tst x17,#1                  // number is odd ?
    cinc  x11,x11,ne            // count odd divisors
    mov x0,x17                  // last divisor = N
    add x10,x18,#16             // store at next element
    str x0,[x10,#div_ident]
    mov x0,#0
    str x0,[x10,#div_flag]

    mov x16,#2                  // first divisor
    mov x15,#2                  // Counter divisors
2:                              // begin loop
    udiv x12,x17,x16
    msub x13,x12,x16,x17
    cmp x13,#0                  // remainder = 0 ?
    bne 3f
    cmp x12,x16
    blt 4f                      // quot<divisor  end
    lsl x10,x15,#4              // N° element * 16
    add x10,x10,x18             // and add at area begin address
    str x12,[x10,#div_ident]
    str xzr,[x10,#div_flag]
    add x15,x15,#1              // increment counter
    cmp x15,#NBDIVISORS         // area maxi ?
    bge 99f 
    tst x12,#1
    cinc  x11,x11,ne            // count odd divisors
    cmp x12,x16                 // quotient = divisor ?
    ble 4f
    lsl x10,x15,#4              // N° element * 16
    add x10,x10,x18             // and add at area begin address
    str x16,[x10,#div_ident]
    str xzr,[x10,#div_flag]
    add x15,x15,#1              // increment counter
    cmp x15,#NBDIVISORS         // area maxi ?
    bge 99f 
    tst x16,#1
    cinc  x11,x11,ne            // count odd divisors
3:
    cmp x12,x16
    ble 4f
    add x16,x16,#1              // increment divisor
    b 2b                        // and loop

4:
    mov x0,x15                  // return divisors number
    mov x1,x11                  // return count odd divisors
    b 100f
98:
    mov x0,0
    b 100f
99:                             // error
    ldr x0,qAdrszMessErrorArea
    bl affichageMess
    mov x0,-1
100:
    ldr lr,[sp],16              // restaur  1 registers
    ret                         // return to address lr x30
qAdrszMessListDivi:           .quad szMessListDivi
qAdrszMessErrorArea:          .quad szMessErrorArea
/********************************************************/
/*        File Include fonctions                        */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"

Template:Output:

Program start
The first 220 Zumkeller numbers are:
6   12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96
102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198
204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282
294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368
372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462
464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540
544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620
624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708
714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810
812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896
906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984
The first 40 odd Zumkeller numbers are:
945     1575    2205    2835    3465    4095    4725    5355
5775    5985    6435    6615    6825    7245    7425    7875
8085    8415    8505    8925    9135    9555    9765    10395
11655   12285   12705   12915   13545   14175   14805   15015
15435   16065   16695   17325   17955   18585   19215   19305
Program normal end.

AppleScript

On my machine, this takes about 0.28 seconds to perform the two main searches and a further 107 to do the stretch task. However, the latter time can be dramatically reduced to 1.7 seconds with the cheat of knowing beforehand that the first 200 or so odd Zumkellers not ending with 5 are divisible by 63. The "abundant number" optimisation's now used with odd numbers, but the cheat-free running time was only two to three seconds longer without it.

-- Sum n's proper divisors.
on aliquotSum(n)
    if (n < 2) then return 0
    set sum to 1
    set sqrt to n ^ 0.5
    set limit to sqrt div 1
    if (limit = sqrt) then
        set sum to sum + limit
        set limit to limit - 1
    end if
    repeat with i from 2 to limit
        if (n mod i is 0) then set sum to sum + i + n div i
    end repeat
    
    return sum
end aliquotSum

-- Return n's proper divisors.
on properDivisors(n)
    set output to {}
    
    if (n > 1) then
        set sqrt to n ^ 0.5
        set limit to sqrt div 1
        if (limit = sqrt) then
            set end of output to limit
            set limit to limit - 1
        end if
        repeat with i from limit to 2 by -1
            if (n mod i is 0) then
                set beginning of output to i
                set end of output to n div i
            end if
        end repeat
        set beginning of output to 1
    end if
    
    return output
end properDivisors

-- Does a subset of the given list of numbers add up to the target value?
on subsetOf:numberList sumsTo:target
    script o
        property lst : numberList
        property someNegatives : false
        
        on ssp(target, i)
            repeat while (i > 1)
                set n to item i of my lst
                set i to i - 1
                if ((n = target) or (((n < target) or (someNegatives)) and (ssp(target - n, i)))) then return true
            end repeat
            return (target = beginning of my lst)
        end ssp
    end script
    -- The search can be more efficient if it's known the list contains no negatives.
    repeat with n in o's lst
        if (n < 0) then
            set o's someNegatives to true
            exit repeat
        end if
    end repeat
    
    return o's ssp(target, count o's lst)
end subsetOf:sumsTo:

-- Is n a Zumkeller number?
on isZumkeller(n)
    -- Yes if its aliquot sum is greater than or equal to it, the difference between them is even, and
    -- either n is odd or a subset of its proper divisors sums to half the sum of the divisors and it.
    -- Using aliquotSum() to get the divisor sum and then calling properDivisors() too if a list's actually
    -- needed is generally faster than using properDivisors() in the first place and summing the result.
    set sum to aliquotSum(n)
    return ((sum  n) and ((sum - n) mod 2 = 0) and ¬
        ((n mod 2 = 1) or (my subsetOf:(properDivisors(n)) sumsTo:((sum + n) div 2))))
end isZumkeller

-- Task code:
-- Find and return q Zumkeller numbers, starting the search at n and continuing at the
-- given interval, applying the Zumkeller test only to numbers passing the given filter.
on zumkellerNumbers(q, n, interval, filter)
    script o
        property zumkellers : {}
    end script
    
    set counter to 0
    repeat until (counter = q)
        if ((filter's OK(n)) and (isZumkeller(n))) then
            set end of o's zumkellers to n
            set counter to counter + 1
        end if
        set n to n + interval
    end repeat
    
    return o's zumkellers
end zumkellerNumbers

on joinText(textList, delimiter)
    set astid to AppleScript's text item delimiters
    set AppleScript's text item delimiters to delimiter
    set txt to textList as text
    set AppleScript's text item delimiters to astid
    
    return txt
end joinText

on formatForDisplay(resultList, heading, resultsPerLine, separator)
    script o
        property input : resultList
        property output : {heading}
    end script
    
    set len to (count o's input)
    repeat with i from 1 to len by resultsPerLine
        set j to i + resultsPerLine - 1
        if (j > len) then set j to len
        set end of o's output to joinText(items i thru j of o's input, separator)
    end repeat
    
    return joinText(o's output, linefeed)
end formatForDisplay

on doTask(cheating)
    set output to {}
    script noFilter
        on OK(n)
            return true
        end OK
    end script
    set header to "1st 220 Zumkeller numbers:"
    set end of output to formatForDisplay(zumkellerNumbers(220, 1, 1, noFilter), header, 20, "  ")
    set header to "1st 40 odd Zumkeller numbers:"
    set end of output to formatForDisplay(zumkellerNumbers(40, 1, 2, noFilter), header, 10, "  ")
    
    -- Stretch goal:
    set header to "1st 40 odd Zumkeller numbers not ending with 5:"
    script no5Multiples
        on OK(n)
            return (n mod 5 > 0)
        end OK
    end script
    if (cheating) then
        -- Knowing that the HCF of the first 203 odd Zumkellers not ending with 5
        -- is 63, just check 63 and each 126th number thereafter.
        -- For the 204th - 907th such numbers, the HCF reduces to 21, so adjust accordingly.
        -- (See Horsth's comments on the Talk page.)
        set zumkellers to zumkellerNumbers(40, 63, 126, no5Multiples)
    else
        -- Otherwise check alternate numbers from 1.
        set zumkellers to zumkellerNumbers(40, 1, 2, no5Multiples)
    end if
    set end of output to formatForDisplay(zumkellers, header, 10, "  ")
    
    return joinText(output, linefeed & linefeed)
end doTask

local cheating
set cheating to false
doTask(cheating)
Output:
"1st 220 Zumkeller numbers:
6  12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96
102  104  108  112  114  120  126  132  138  140  150  156  160  168  174  176  180  186  192  198
204  208  210  216  220  222  224  228  234  240  246  252  258  260  264  270  272  276  280  282
294  300  304  306  308  312  318  320  330  336  340  342  348  350  352  354  360  364  366  368
372  378  380  384  390  396  402  408  414  416  420  426  432  438  440  444  448  456  460  462
464  468  474  476  480  486  490  492  496  498  500  504  510  516  520  522  528  532  534  540
544  546  550  552  558  560  564  570  572  580  582  588  594  600  606  608  612  616  618  620
624  630  636  640  642  644  650  654  660  666  672  678  680  684  690  696  700  702  704  708
714  720  726  728  732  736  740  744  750  756  760  762  768  770  780  786  792  798  804  810
812  816  820  822  828  832  834  836  840  852  858  860  864  868  870  876  880  888  894  896
906  910  912  918  920  924  928  930  936  940  942  945  948  952  960  966  972  978  980  984

1st 40 odd Zumkeller numbers:
945  1575  2205  2835  3465  4095  4725  5355  5775  5985
6435  6615  6825  7245  7425  7875  8085  8415  8505  8925
9135  9555  9765  10395  11655  12285  12705  12915  13545  14175
14805  15015  15435  16065  16695  17325  17955  18585  19215  19305

1st 40 odd Zumkeller numbers not ending with 5:
81081  153153  171171  189189  207207  223839  243243  261261  279279  297297
351351  459459  513513  567567  621621  671517  729729  742203  783783  793611
812889  837837  891891  908523  960687  999999  1024947  1054053  1072071  1073709
1095633  1108107  1145529  1162161  1198197  1224531  1270269  1307691  1324323  1378377"

ARM Assembly

Works with: as version Raspberry Pi
/* ARM assembly Raspberry PI  */
/* program zumkeller4.s   */
/* new version 10/2020 */

 /* REMARK 1 : this program use routines in a include file 
   see task Include a file language arm assembly 
   for the routine affichageMess conversion10 
   see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes                       */
/************************************/
.include "../constantes.inc"

.equ NBDIVISORS,             1000

/*******************************************/
/* Initialized data                        */
/*******************************************/
.data
szMessStartPgm:          .asciz "Program start \n"
szMessEndPgm:            .asciz "Program normal end.\n"
szMessErrorArea:         .asciz "\033[31mError : area divisors too small.\n"
szMessError:             .asciz "\033[31mError  !!!\n"
szMessErrGen:            .asciz "Error end program.\n"
szMessNbPrem:            .asciz "This number is prime !!!.\n"
szMessResultFact:        .asciz "@ "

szCarriageReturn:        .asciz "\n"

/* datas message display */
szMessEntete:            .asciz "The first 220 Zumkeller numbers are:\n"
sNumber:                 .space 4*20,' '
                         .space 12,' '     @ for end of conversion
szMessListDivi:          .asciz "Divisors list : \n"
szMessListDiviHeap:      .asciz "Heap 1 Divisors list : \n"
szMessResult:            .ascii " "
sValue:                  .space 12,' '
                         .asciz ""

szMessEntete1:            .asciz "The first 40 odd Zumkeller numbers are:\n"
szMessEntete2:            .asciz "First 40 odd Zumkeller numbers not divisible by 5:\n"
/*******************************************/
/* UnInitialized data                      */
/*******************************************/
.bss 
.align 4
sZoneConv:               .skip 24
tbZoneDecom:             .skip 8 * NBDIVISORS          // facteur 4 octets, nombre 4 
/*******************************************/
/*  code section                           */
/*******************************************/
.text
.global main 
main:                               @ program start
    ldr r0,iAdrszMessStartPgm       @ display start message
    bl affichageMess

    ldr r0,iAdrszMessEntete         @ display result message
    bl affichageMess
    mov r2,#1
    mov r3,#0
    mov r4,#0
1:
    mov r0,r2                       @  number
    bl testZumkeller
    cmp r0,#1
    bne 3f
    mov r0,r2
    ldr r1,iAdrsNumber              @ and convert ascii string
    lsl r5,r4,#2
    add r1,r5
    bl conversion10
    add r4,r4,#1
    cmp r4,#20
    blt 2f
    add r1,r1,#3
    mov r0,#'\n'
    strb r0,[r1]
    mov r0,#0
    strb r0,[r1,#1]
    ldr r0,iAdrsNumber         @ display result message
    bl affichageMess
    mov r4,#0
2:
    add r3,r3,#1
3:
    add r2,r2,#1
    cmp r3,#220
    blt 1b

    /* odd zumkeller numbers  */
    ldr r0,iAdrszMessEntete1
    bl affichageMess
    mov r2,#1
    mov r3,#0
    mov r4,#0
4:
    mov r0,r2                       @  number
    bl testZumkeller
    cmp r0,#1
    bne 6f
    mov r0,r2
    ldr r1,iAdrsNumber              @ and convert ascii string
    lsl r5,r4,#3
    add r1,r5
    bl conversion10
    add r4,r4,#1
    cmp r4,#8
    blt 5f
    add r1,r1,#8
    mov r0,#'\n'
    strb r0,[r1]
    mov r0,#0
    strb r0,[r1,#1]
    ldr r0,iAdrsNumber              @ display result message
    bl affichageMess
    mov r4,#0
5:
    add r3,r3,#1
6:
    add r2,r2,#2
    cmp r3,#40
    blt 4b
    /* odd zumkeller numbers not multiple5 */
61:
    ldr r0,iAdrszMessEntete2
    bl affichageMess
    mov r3,#0
    mov r4,#0
7:
    lsr r8,r2,#3                   @ divide counter by 5
    add r8,r8,r2,lsr #4
    add r8,r8,r8,lsr #4
    add r8,r8,r8,lsr #8
    add r8,r8,r8,lsr #16
    add r9,r8,r8,lsl #2            @ multiply result by 5
    sub r9,r2,r9
    mov r6,#13
    mul r9,r6,r9
    lsr r9,#6
    add r9,r8                      @ it is a quotient
    add r9,r9,r9,lsl #2            @ multiply by 5
    sub r9,r2,r9                   @ compute remainder
    cmp r9,#0                      @ remainder = zero ?
    beq 9f
    mov r0,r2                      @  number
    bl testZumkeller
    cmp r0,#1
    bne 9f
    mov r0,r2
    ldr r1,iAdrsNumber              @ and convert ascii string
    lsl r5,r4,#3
    add r1,r5
    bl conversion10
    add r4,r4,#1
    cmp r4,#8
    blt 8f
    add r1,r1,#8
    mov r0,#'\n'
    strb r0,[r1]
    mov r0,#0
    strb r0,[r1,#1]
    ldr r0,iAdrsNumber         @ display result message
    bl affichageMess
    mov r4,#0
8:
    add r3,r3,#1
9:
    add r2,r2,#2
    cmp r3,#40
    blt 7b

    ldr r0,iAdrszMessEndPgm         @ display end message
    bl affichageMess
    b 100f
99:                                 @ display error message 
    ldr r0,iAdrszMessError
    bl affichageMess
100:                                @ standard end of the program
    mov r0, #0                      @ return code
    mov r7, #EXIT                   @ request to exit program
    svc 0                           @ perform system call
iAdrszMessStartPgm:        .int szMessStartPgm
iAdrszMessEndPgm:          .int szMessEndPgm
iAdrszMessError:           .int szMessError
iAdrszCarriageReturn:      .int szCarriageReturn
iAdrszMessResult:          .int szMessResult
iAdrsValue:                .int sValue
iAdrtbZoneDecom:           .int tbZoneDecom
iAdrszMessEntete:          .int szMessEntete
iAdrszMessEntete1:         .int szMessEntete1
iAdrszMessEntete2:         .int szMessEntete2
iAdrsNumber:               .int sNumber

/******************************************************************/
/*     test if number is Zumkeller number                         */ 
/******************************************************************/
/* r0 contains the number  */
/* r0 return 1 if Zumkeller number else return 0  */
testZumkeller:
    push {r1-r6,lr}              @ save  registers 
    mov r6,r0                    @ save number
    ldr r1,iAdrtbZoneDecom
    bl decompFact                @ create area of divisors
    cmp r0,#1                    @ no divisors
    movle r0,#0
    ble 100f
    tst r2,#1                    @ odd sum ?
    movne r0,#0
    bne 100f                     @ yes -> end
    tst r1,#1                    @ number of odd divisors is odd ?
    movne r0,#0
    bne 100f                     @ yes -> end
    lsl r5,r6,#1                 @ abondant number
    cmp r5,r2
    movgt r0,#0                  
    bgt 100f                     @ no -> end
    mov r3,r0
    mov r4,r2                    @ save sum
    ldr r0,iAdrtbZoneDecom
    mov r1,#0
    mov r2,r3
    bl shellSort                 @ sort table
 
    mov r1,r3                    @ factors number
    ldr r0,iAdrtbZoneDecom
    lsr r2,r4,#1                 @ sum / 2
    bl computePartIter           @ 

100:
    pop {r1-r6,lr}              @ restaur registers
    bx lr                       @ return

/******************************************************************/
/*     search factors to sum = entry value                         */ 
/******************************************************************/
/* r0 contains address of divisors area */
/* r1 contains elements number */
/* r2 contains divisors sum / 2  */
/* r0 return 1 if ok 0 else */
computePartIter:
    push {r1-r7,fp,lr}         @ save  registers 
    lsl r7,r1,#3               @ compute size of temp table
    sub sp,r7                  @ and reserve on stack
    mov fp,sp                  @ frame pointer = stack address = begin table
    mov r5,#0                  @ stack indice
    sub r3,r1,#1
1:
    ldr r4,[r0,r3,lsl #2]      @ load factor
    cmp r4,r2                  @ compare value
    bgt 2f
    beq 90f                    @ equal -> end ok
    cmp r3,#0                  @ first item ?
    beq 3f
    sub r3,#1                  @ push indice item in temp table
    add r6,fp,r5,lsl #3
    str r3,[r6]
    str r2,[r6,#4]             @ push sum in temp table
    add r5,#1
    sub r2,r4                  @ substract divisors from sum
    b 1b
2:
    sub r3,#1                 @ other divisors
    cmp r3,#0                 @ first item ?
    bge 1b
3:                            @ first item
    cmp r5,#0                 @ stack empty ?
    moveq r0,#0               @ no sum factors equal to value 
    beq 100f                  @ end 
    sub r5,#1                 @ else pop stack
    add r6,fp,r5,lsl #3       @ and restaur
    ldr r3,[r6]               @ indice
    ldr r2,[r6,#4]            @ and value
    b 1b                      @ and loop
    
90:
    mov r0,#1                 @ it is ok 
100:
    add sp,r7                 @ stack alignement
    pop {r1-r7,fp,lr}         @ restaur registers
    bx lr                     @ return

/******************************************************************/
/*     factor decomposition                                               */ 
/******************************************************************/
/* r0 contains number */
/* r1 contains address of divisors area */
/* r0 return divisors items in table */
/* r1 return the number of odd divisors  */
/* r2 return the sum of divisors  */
decompFact:
    push {r3-r8,lr}              @ save  registers
    mov r5,r1
    mov r8,r0                    @ save number
    bl isPrime                   @ prime ?
    cmp r0,#1
    beq 98f                      @ yes is prime
    mov r1,#1
    str r1,[r5]                  @ first factor
    mov r12,#1                   @ divisors sum
    mov r11,#1                   @ number odd divisors
    mov r4,#1                    @ indice divisors table
    mov r1,#2                    @ first divisor
    mov r6,#0                    @ previous divisor
    mov r7,#0                    @ number of same divisors
2:
    mov r0,r8                    @ dividende
    bl division                  @  r1 divisor r2 quotient r3 remainder
    cmp r3,#0
    bne 5f                       @ if remainder <> zero  -> no divisor
    mov r8,r2                    @ else quotient -> new dividende
    cmp r1,r6                    @ same divisor ?
    beq 4f                       @ yes
    mov r7,r4                    @ number factors in table
    mov r9,#0                    @ indice
21:
    ldr r10,[r5,r9,lsl #2 ]      @ load one factor
    mul r10,r1,r10               @ multiply 
    str r10,[r5,r7,lsl #2]       @ and store in the table
    tst r10,#1                   @ divisor odd ?
    addne r11,#1
    add r12,r10
    add r7,r7,#1                 @ and increment counter
    add r9,r9,#1
    cmp r9,r4  
    blt 21b
    mov r4,r7
    mov r6,r1                    @ new divisor
    b 7f
4:                               @ same divisor
    sub r9,r4,#1
    mov r7,r4
41:
    ldr r10,[r5,r9,lsl #2 ]
    cmp r10,r1
    subne r9,#1
    bne 41b
    sub r9,r4,r9
42:
    ldr  r10,[r5,r9,lsl #2 ]
    mul r10,r1,r10
    str r10,[r5,r7,lsl #2]       @ and store in the table
    tst r10,#1                   @ divsor odd ?
    addne r11,#1
    add r12,r10
    add r7,r7,#1                 @ and increment counter
    add r9,r9,#1
    cmp r9,r4  
    blt 42b
    mov r4,r7
    b 7f                         @ and loop
    
    /* not divisor -> increment next divisor */
5:
    cmp r1,#2                    @ if divisor = 2 -> add 1 
    addeq r1,#1
    addne r1,#2                  @ else add 2
    b 2b
    
    /* divisor -> test if new dividende is prime */
7: 
    mov r3,r1                    @ save divisor
    cmp r8,#1                    @ dividende = 1 ? -> end
    beq 10f
    mov r0,r8                    @ new dividende is prime ?
    mov r1,#0
    bl isPrime                   @ the new dividende is prime ?
    cmp r0,#1
    bne 10f                      @ the new dividende is not prime

    cmp r8,r6                    @ else dividende is same divisor ?
    beq 9f                       @ yes
    mov r7,r4                    @ number factors in table
    mov r9,#0                    @ indice
71:
    ldr r10,[r5,r9,lsl #2 ]      @ load one factor
    mul r10,r8,r10               @ multiply 
    str r10,[r5,r7,lsl #2]       @ and store in the table
    tst r10,#1                   @ divsor odd ?
    addne r11,#1
    add r12,r10
    add r7,r7,#1                 @ and increment counter
    add r9,r9,#1
    cmp r9,r4  
    blt 71b
    mov r4,r7
    mov r7,#0
    b 11f
9:
    sub r9,r4,#1
    mov r7,r4
91:
    ldr r10,[r5,r9,lsl #2 ]
    cmp r10,r8
    subne r9,#1
    bne 91b
    sub r9,r4,r9
92:
    ldr  r10,[r5,r9,lsl #2 ]
    mul r10,r8,r10
    str r10,[r5,r7,lsl #2]       @ and store in the table
    tst r10,#1                   @ divisor odd ?
    addne r11,#1
    add r12,r10
    add r7,r7,#1                 @ and increment counter
    add r9,r9,#1
    cmp r9,r4  
    blt 92b
    mov r4,r7
    b 11f
    
10:
    mov r1,r3                    @ current divisor = new divisor
    cmp r1,r8                    @ current divisor  > new dividende ?
    ble 2b                       @ no -> loop
    
    /* end decomposition */ 
11:
    mov r0,r4                    @ return number of table items
    mov r2,r12                   @ return sum 
    mov r1,r11                   @ return number of odd divisor 
    mov r3,#0
    str r3,[r5,r4,lsl #2]        @ store zéro in last table item
    b 100f

    
98: 
    //ldr r0,iAdrszMessNbPrem
    //bl   affichageMess
    mov r0,#1                   @ return code
    b 100f
99:
    ldr r0,iAdrszMessError
    bl   affichageMess
    mov r0,#-1                  @ error code
    b 100f
100:
    pop {r3-r8,lr}              @ restaur registers
    bx lr
iAdrszMessNbPrem:           .int szMessNbPrem
/***************************************************/
/*   check if a number is prime              */
/***************************************************/
/* r0 contains the number            */
/* r0 return 1 if prime  0 else */
@2147483647
@4294967297
@131071
isPrime:
    push {r1-r6,lr}    @ save registers 
    cmp r0,#0
    beq 90f
    cmp r0,#17
    bhi 1f
    cmp r0,#3
    bls 80f            @ for 1,2,3 return prime
    cmp r0,#5
    beq 80f            @ for 5 return prime
    cmp r0,#7
    beq 80f            @ for 7 return prime
    cmp r0,#11
    beq 80f            @ for 11 return prime
    cmp r0,#13
    beq 80f            @ for 13 return prime
    cmp r0,#17
    beq 80f            @ for 17 return prime
1:
    tst r0,#1          @ even ?
    beq 90f            @ yes -> not prime
    mov r2,r0          @ save number
    sub r1,r0,#1       @ exposant n - 1
    mov r0,#3          @ base
    bl moduloPuR32     @ compute base power n - 1 modulo n
    cmp r0,#1
    bne 90f            @ if <> 1  -> not prime
 
    mov r0,#5
    bl moduloPuR32
    cmp r0,#1
    bne 90f
    
    mov r0,#7
    bl moduloPuR32
    cmp r0,#1
    bne 90f
    
    mov r0,#11
    bl moduloPuR32
    cmp r0,#1
    bne 90f
    
    mov r0,#13
    bl moduloPuR32
    cmp r0,#1
    bne 90f
    
    mov r0,#17
    bl moduloPuR32
    cmp r0,#1
    bne 90f
80:
    mov r0,#1        @ is prime
    b 100f
90:
    mov r0,#0        @ no prime
100:                 @ fin standard de la fonction 
    pop {r1-r6,lr}   @ restaur des registres
    bx lr            @ retour de la fonction en utilisant lr 
/********************************************************/
/*   Calcul modulo de b puissance e modulo m  */
/*    Exemple 4 puissance 13 modulo 497 = 445         */
/*                                             */
/********************************************************/
/* r0  nombre  */
/* r1 exposant */
/* r2 modulo   */
/* r0 return result  */
moduloPuR32:
    push {r1-r7,lr}    @ save registers  
    cmp r0,#0          @ verif <> zero 
    beq 100f
    cmp r2,#0          @ verif <> zero 
    beq 100f           @ TODO: vérifier les cas d erreur
1:
    mov r4,r2          @ save modulo
    mov r5,r1          @ save exposant 
    mov r6,r0          @ save base
    mov r3,#1          @ start result

    mov r1,#0          @ division de r0,r1 par r2
    bl division32R
    mov r6,r2          @ base <- remainder
2:
    tst r5,#1          @  exposant even or odd
    beq 3f
    umull r0,r1,r6,r3
    mov r2,r4
    bl division32R
    mov r3,r2          @ result <- remainder
3:
    umull r0,r1,r6,r6
    mov r2,r4
    bl division32R
    mov r6,r2          @ base <- remainder

    lsr r5,#1          @ left shift 1 bit
    cmp r5,#0          @ end ?
    bne 2b
    mov r0,r3
100:                   @ fin standard de la fonction
    pop {r1-r7,lr}     @ restaur des registres
    bx lr              @ retour de la fonction en utilisant lr    

/***************************************************/
/*   division number 64 bits in 2 registers by number 32 bits */
/***************************************************/
/* r0 contains lower part dividende   */
/* r1 contains upper part dividende   */
/* r2 contains divisor   */
/* r0 return lower part quotient    */
/* r1 return upper part quotient    */
/* r2 return remainder               */
division32R:
    push {r3-r9,lr}    @ save registers
    mov r6,#0          @ init upper upper part remainder  !!
    mov r7,r1          @ init upper part remainder with upper part dividende
    mov r8,r0          @ init lower part remainder with lower part dividende
    mov r9,#0          @ upper part quotient 
    mov r4,#0          @ lower part quotient
    mov r5,#32         @ bits number
1:                     @ begin loop
    lsl r6,#1          @ shift upper upper part remainder
    lsls r7,#1         @ shift upper  part remainder
    orrcs r6,#1        
    lsls r8,#1         @ shift lower  part remainder
    orrcs r7,#1
    lsls r4,#1         @ shift lower part quotient
    lsl r9,#1          @ shift upper part quotient
    orrcs r9,#1
                       @ divisor sustract  upper  part remainder
    subs r7,r2
    sbcs  r6,#0        @ and substract carry
    bmi 2f             @ négative ?
    
                       @ positive or equal
    orr r4,#1          @ 1 -> right bit quotient
    b 3f
2:                     @ negative 
    orr r4,#0          @ 0 -> right bit quotient
    adds r7,r2         @ and restaur remainder
    adc  r6,#0 
3:
    subs r5,#1         @ decrement bit size 
    bgt 1b             @ end ?
    mov r0,r4          @ lower part quotient
    mov r1,r9          @ upper part quotient
    mov r2,r7          @ remainder
100:                   @ function end
    pop {r3-r9,lr}     @ restaur registers
    bx lr  
/***************************************************/
/*   shell Sort                                    */
/***************************************************/

/* r0 contains the address of table */
/* r1 contains the first element but not use !!   */
/*   this routine use first element at index zero !!!  */
/* r2 contains the number of element */
shellSort:
    push {r0-r7,lr}              @save registers
    sub r2,#1                    @ index last item
    mov r1,r2                    @ init gap = last item
1:                               @ start loop 1
    lsrs r1,#1                   @ gap = gap / 2
    beq 100f                     @ if gap = 0 -> end
    mov r3,r1                    @ init loop indice 1 
2:                               @ start loop 2
    ldr r4,[r0,r3,lsl #2]        @ load first value
    mov r5,r3                    @ init loop indice 2
3:                               @ start loop 3
    cmp r5,r1                    @ indice < gap
    blt 4f                       @ yes -> end loop 2
    sub r6,r5,r1                 @ index = indice - gap
    ldr r7,[r0,r6,lsl #2]        @ load second value
    cmp r4,r7                    @ compare values
    strlt r7,[r0,r5,lsl #2]      @ store if <
    sublt r5,r1                  @ indice = indice - gap
    blt 3b                       @ and loop
4:                               @ end loop 3
    str r4,[r0,r5,lsl #2]        @ store value 1 at indice 2
    add r3,#1                    @ increment indice 1
    cmp r3,r2                    @ end ?
    ble 2b                       @ no -> loop 2
    b 1b                         @ yes loop for new gap
 
100:                             @ end function
    pop {r0-r7,lr}               @ restaur registers
    bx lr                        @ return 
/******************************************************************/
/*     display divisors function                         */ 
/******************************************************************/
/* r0 contains address of divisors area */
/* r1 contains the number of area items  */
displayDivisors:
    push {r2-r8,lr}            @ save  registers 
    cmp r1,#0
    beq 100f
    mov r2,r1
    mov r3,#0                   @ indice
    mov r4,r0
1:
    add r5,r4,r3,lsl #2
    ldr r0,[r5]                 @ load factor

    ldr r1,iAdrsZoneConv
    bl conversion10             @ call décimal conversion
    ldr r0,iAdrszMessResultFact
    ldr r1,iAdrsZoneConv        @ insert conversion in message
    bl strInsertAtCharInc
    bl affichageMess            @ display message
    add r3,#1                   @ other ithem
    cmp r3,r2                   @ items maxi ?
    blt 1b
    ldr r0,iAdrszCarriageReturn
    bl affichageMess 
    b 100f

100:
    pop {r2-r8,lr}             @ restaur registers
    bx lr                       @ return
iAdrszMessResultFact:    .int szMessResultFact
iAdrsZoneConv:           .int sZoneConv
/***************************************************/
/*      ROUTINES INCLUDE                 */
/***************************************************/
.include "../affichage.inc"
Program start
The first 220 Zumkeller numbers are:
6   12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96
102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198
204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282
294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368
372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462
464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540
544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620
624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708
714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810
812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896
906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984
The first 40 odd Zumkeller numbers are:
945     1575    2205    2835    3465    4095    4725    5355
5775    5985    6435    6615    6825    7245    7425    7875
8085    8415    8505    8925    9135    9555    9765    10395
11655   12285   12705   12915   13545   14175   14805   15015
15435   16065   16695   17325   17955   18585   19215   19305
First 40 odd Zumkeller numbers not divisible by 5:
81081   153153  171171  189189  207207  223839  243243  261261
279279  297297  351351  459459  513513  567567  621621  671517
729729  742203  783783  793611  812889  837837  891891  908523
960687  999999  1024947 1054053 1072071 1073709 1095633 1108107
1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377
Program normal end.

C#

Translation of: Go
using System;
using System.Collections.Generic;
using System.Linq;

namespace ZumkellerNumbers {
    class Program {
        static List<int> GetDivisors(int n) {
            List<int> divs = new List<int> {
                1, n
            };
            for (int i = 2; i * i <= n; i++) {
                if (n % i == 0) {
                    int j = n / i;
                    divs.Add(i);
                    if (i != j) {
                        divs.Add(j);
                    }
                }
            }
            return divs;
        }

        static bool IsPartSum(List<int> divs, int sum) {
            if (sum == 0) {
                return true;
            }
            var le = divs.Count;
            if (le == 0) {
                return false;
            }
            var last = divs[le - 1];
            List<int> newDivs = new List<int>();
            for (int i = 0; i < le - 1; i++) {
                newDivs.Add(divs[i]);
            }
            if (last > sum) {
                return IsPartSum(newDivs, sum);
            }
            return IsPartSum(newDivs, sum) || IsPartSum(newDivs, sum - last);
        }

        static bool IsZumkeller(int n) {
            var divs = GetDivisors(n);
            var sum = divs.Sum();
            // if sum is odd can't be split into two partitions with equal sums
            if (sum % 2 == 1) {
                return false;
            }
            // if n is odd use 'abundant odd number' optimization
            if (n % 2 == 1) {
                var abundance = sum - 2 * n;
                return abundance > 0 && abundance % 2 == 0;
            }
            // if n and sum are both even check if there's a partition which totals sum / 2
            return IsPartSum(divs, sum / 2);
        }

        static void Main() {
            Console.WriteLine("The first 220 Zumkeller numbers are:");
            int i = 2;
            for (int count = 0; count < 220; i++) {
                if (IsZumkeller(i)) {
                    Console.Write("{0,3} ", i);
                    count++;
                    if (count % 20 == 0) {
                        Console.WriteLine();
                    }
                }
            }

            Console.WriteLine("\nThe first 40 odd Zumkeller numbers are:");
            i = 3;
            for (int count = 0; count < 40; i += 2) {
                if (IsZumkeller(i)) {
                    Console.Write("{0,5} ", i);
                    count++;
                    if (count % 10 == 0) {
                        Console.WriteLine();
                    }
                }
            }

            Console.WriteLine("\nThe first 40 odd Zumkeller numbers which don't end in 5 are:");
            i = 3;
            for (int count = 0; count < 40; i += 2) {
                if (i % 10 != 5 && IsZumkeller(i)) {
                    Console.Write("{0,7} ", i);
                    count++;
                    if (count % 8 == 0) {
                        Console.WriteLine();
                    }
                }
            }
        }
    }
}
Output:
The first 220 Zumkeller numbers are:
  6  12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96
102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198
204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282
294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368
372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462
464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540
544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620
624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708
714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810
812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896
906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984

The first 40 odd Zumkeller numbers are:
  945  1575  2205  2835  3465  4095  4725  5355  5775  5985
 6435  6615  6825  7245  7425  7875  8085  8415  8505  8925
 9135  9555  9765 10395 11655 12285 12705 12915 13545 14175
14805 15015 15435 16065 16695 17325 17955 18585 19215 19305

The first 40 odd Zumkeller numbers which don't end in 5 are:
  81081  153153  171171  189189  207207  223839  243243  261261
 279279  297297  351351  459459  513513  567567  621621  671517
 729729  742203  783783  793611  812889  837837  891891  908523
 960687  999999 1024947 1054053 1072071 1073709 1095633 1108107
1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377

C++

#include <iostream">
#include <cmath>
#include <vector>
#include <algorithm>
#include <iomanip>
#include <numeric>

using namespace std;

// Returns n in binary right justified with length passed and padded with zeroes
const uint* binary(uint n, uint length);

// Returns the sum of the binary ordered subset of rank r.
// Adapted from Sympy implementation.
uint sum_subset_unrank_bin(const vector<uint>& d, uint r);

vector<uint> factors(uint x);

bool isPrime(uint number);

bool isZum(uint n);

ostream& operator<<(ostream& os, const vector<uint>& zumz) {
    for (uint i = 0; i < zumz.size(); i++) {
        if (i % 10 == 0)
            os << endl;
        os << setw(10) << zumz[i] << ' ';
    }
    return os;
}

int main() {
    cout << "First 220 Zumkeller numbers:" << endl;
    vector<uint> zumz;
    for (uint n = 2; zumz.size() < 220; n++)
        if (isZum(n))
            zumz.push_back(n);
    cout << zumz << endl << endl;

    cout << "First 40 odd Zumkeller numbers:" << endl;
    vector<uint> zumz2;
    for (uint n = 2; zumz2.size() < 40; n++)
        if (n % 2 && isZum(n))
            zumz2.push_back(n);
    cout << zumz2 << endl << endl;

    cout << "First 40 odd Zumkeller numbers not ending in 5:" << endl;
    vector<uint> zumz3;
    for (uint n = 2; zumz3.size() < 40; n++)
        if (n % 2 && (n % 10) !=  5 && isZum(n))
            zumz3.push_back(n);
    cout << zumz3 << endl << endl;

    return 0;
}

// Returns n in binary right justified with length passed and padded with zeroes
const uint* binary(uint n, uint length) {
    uint* bin = new uint[length];	    // array to hold result
    fill(bin, bin + length, 0);         // fill with zeroes
    // convert n to binary and store right justified in bin
    for (uint i = 0; n > 0; i++) {
        uint rem = n % 2;
        n /= 2;
        if (rem)
            bin[length - 1 - i] = 1;
    }

    return bin;
}

// Returns the sum of the binary ordered subset of rank r.
// Adapted from Sympy implementation.
uint sum_subset_unrank_bin(const vector<uint>& d, uint r) {
    vector<uint> subset;
    // convert r to binary array of same size as d
    const uint* bits = binary(r, d.size() - 1);

    // get binary ordered subset
    for (uint i = 0; i < d.size() - 1; i++)
        if (bits[i])
            subset.push_back(d[i]);

    delete[] bits;

    return accumulate(subset.begin(), subset.end(), 0u);
}

vector<uint> factors(uint x) {
    vector<uint> result;
    // this will loop from 1 to int(sqrt(x))
    for (uint i = 1; i * i <= x; i++) {
        // Check if i divides x without leaving a remainder
        if (x % i == 0) {
            result.push_back(i);

            if (x / i != i)
                result.push_back(x / i);
        }
    }

    // return the sorted factors of x
    sort(result.begin(), result.end());
    return result;
}

bool isPrime(uint number) {
    if (number < 2) return false;
    if (number == 2) return true;
    if (number % 2 == 0) return false;
    for (uint i = 3; i * i <= number; i += 2)
        if (number % i == 0) return false;

    return true;
}

bool isZum(uint n) {
    // if prime it ain't no zum
    if (isPrime(n))
        return false;

    // get sum of divisors
    const auto d = factors(n);
    uint s = accumulate(d.begin(), d.end(), 0u);

    // if sum is odd or sum < 2*n it ain't no zum
    if (s % 2 || s < 2 * n)
        return false;

    // if we get here and n is odd or n has at least 24 divisors it's a zum!
    // Valid for even n < 99504. To test n beyond this bound, comment out this condition.
    // And wait all day. Thanks to User:Horsth for taking the time to find this bound!
    if (n % 2 || d.size() >= 24)
        return true;

    if (!(s % 2) && d[d.size() - 1] <= s / 2)
        for (uint x = 2; (uint) log2(x) < (d.size() - 1); x++) // using log2 prevents overflow
            if (sum_subset_unrank_bin(d, x) == s / 2)
                return true; // congratulations it's a zum num!!

    // if we get here it ain't no zum
    return false;
}
Output:
First 220 Zumkeller numbers:

         6         12         20         24         28         30         40         42         48         54 
        56         60         66         70         78         80         84         88         90         96 
       102        104        108        112        114        120        126        132        138        140 
       150        156        160        168        174        176        180        186        192        198 
       204        208        210        216        220        222        224        228        234        240 
       246        252        258        260        264        270        272        276        280        282 
       294        300        304        306        308        312        318        320        330        336 
       340        342        348        350        352        354        360        364        366        368 
       372        378        380        384        390        396        402        408        414        416 
       420        426        432        438        440        444        448        456        460        462 
       464        468        474        476        480        486        490        492        496        498 
       500        504        510        516        520        522        528        532        534        540 
       544        546        550        552        558        560        564        570        572        580 
       582        588        594        600        606        608        612        616        618        620 
       624        630        636        640        642        644        650        654        660        666 
       672        678        680        684        690        696        700        702        704        708 
       714        720        726        728        732        736        740        744        750        756 
       760        762        768        770        780        786        792        798        804        810 
       812        816        820        822        828        832        834        836        840        852 
       858        860        864        868        870        876        880        888        894        896 
       906        910        912        918        920        924        928        930        936        940 
       942        945        948        952        960        966        972        978        980        984 

First 40 odd Zumkeller numbers:

       945       1575       2205       2835       3465       4095       4725       5355       5775       5985 
      6435       6615       6825       7245       7425       7875       8085       8415       8505       8925 
      9135       9555       9765      10395      11655      12285      12705      12915      13545      14175 
     14805      15015      15435      16065      16695      17325      17955      18585      19215      19305 

First 40 odd Zumkeller numbers not ending in 5:

     81081     153153     171171     189189     207207     223839     243243     261261     279279     297297 
    351351     459459     513513     567567     621621     671517     729729     742203     783783     793611 
    812889     837837     891891     908523     960687     999999    1024947    1054053    1072071    1073709 
   1095633    1108107    1145529    1162161    1198197    1224531    1270269    1307691    1324323    1378377

D

Translation of: C#
import std.algorithm;
import std.stdio;

int[] getDivisors(int n) {
    auto divs = [1, n];
    for (int i = 2; i * i <= n; i++) {
        if (n % i == 0) {
            divs ~= i;

            int j = n / i;
            if (i != j) {
                divs ~= j;
            }
        }
    }
    return divs;
}

bool isPartSum(int[] divs, int sum) {
    if (sum == 0) {
        return true;
    }
    auto le = divs.length;
    if (le == 0) {
        return false;
    }
    auto last = divs[$ - 1];
    int[] newDivs;
    for (int i = 0; i < le - 1; i++) {
        newDivs ~= divs[i];
    }
    if (last > sum) {
        return isPartSum(newDivs, sum);
    } else {
        return isPartSum(newDivs, sum) || isPartSum(newDivs, sum - last);
    }
}

bool isZumkeller(int n) {
    auto divs = getDivisors(n);
    auto sum = divs.sum();
    // if sum is odd can't be split into two partitions with equal sums
    if (sum % 2 == 1) {
        return false;
    }
    // if n is odd use 'abundant odd number' optimization
    if (n % 2 == 1) {
        auto abundance = sum - 2 * n;
        return abundance > 0 && abundance % 2 == 0;
    }
    // if n and sum are both even check if there's a partition which totals sum / 2
    return isPartSum(divs, sum / 2);
}

void main() {
    writeln("The first 220 Zumkeller numbers are:");
    int i = 2;
    for (int count = 0; count < 220; i++) {
        if (isZumkeller(i)) {
            writef("%3d ", i);
            count++;
            if (count % 20 == 0) {
                writeln;
            }
        }
    }

    writeln("\nThe first 40 odd Zumkeller numbers are:");
    i = 3;
    for (int count = 0; count < 40; i += 2) {
        if (isZumkeller(i)) {
            writef("%5d ", i);
            count++;
            if (count % 10 == 0) {
                writeln;
            }
        }
    }

    writeln("\nThe first 40 odd Zumkeller numbers which don't end in 5 are:");
    i = 3;
    for (int count = 0; count < 40; i += 2) {
        if (i % 10 != 5 && isZumkeller(i)) {
            writef("%7d ", i);
            count++;
            if (count % 8 == 0) {
                writeln;
            }
        }
    }
}
Output:
The first 220 Zumkeller numbers are:
  6  12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96
102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198
204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282
294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368
372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462
464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540
544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620
624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708
714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810
812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896
906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984

The first 40 odd Zumkeller numbers are:
  945  1575  2205  2835  3465  4095  4725  5355  5775  5985
 6435  6615  6825  7245  7425  7875  8085  8415  8505  8925
 9135  9555  9765 10395 11655 12285 12705 12915 13545 14175
14805 15015 15435 16065 16695 17325 17955 18585 19215 19305

The first 40 odd Zumkeller numbers which don't end in 5 are:
  81081  153153  171171  189189  207207  223839  243243  261261
 279279  297297  351351  459459  513513  567567  621621  671517
 729729  742203  783783  793611  812889  837837  891891  908523
 960687  999999 1024947 1054053 1072071 1073709 1095633 1108107
1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377

EasyLang

proc divisors n . divs[] .
   divs[] = [ 1 n ]
   for i = 2 to sqrt n
      if n mod i = 0
         j = n / i
         divs[] &= i
         if i <> j
            divs[] &= j
         .
      .
   .
.
func ispartsum divs[] sum .
   if sum = 0
      return 1
   .
   if len divs[] = 0
      return 0
   .
   last = divs[len divs[]]
   len divs[] -1
   if last > sum
      return ispartsum divs[] sum
   .
   if ispartsum divs[] sum = 1
      return 1
   .
   return ispartsum divs[] (sum - last)
.
func iszumkeller n .
   divisors n divs[]
   for v in divs[]
      sum += v
   .
   if sum mod 2 = 1
      return 0
   .
   if n mod 2 = 1
      abund = sum - 2 * n
      return if abund > 0 and abund mod 2 = 0
   .
   return ispartsum divs[] (sum / 2)
.
#
print "The first 220 Zumkeller numbers are:"
i = 2
repeat
   if iszumkeller i = 1
      write i & " "
      count += 1
   .
   until count = 220
   i += 1
.
print "\n\nThe first 40 odd Zumkeller numbers are:"
count = 0
i = 3
repeat
   if iszumkeller i = 1
      write i & " "
      count += 1
   .
   until count = 40
   i += 2
.
Output:
The first 220 Zumkeller numbers are:
6 12 20 24 28 30 40 42 48 54 56 60 66 70 78 80 84 88 90 96 102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198 204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282 294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368 372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462 464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540 544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620 624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708 714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810 812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896 906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984 

The first 40 odd Zumkeller numbers are:
945 1575 2205 2835 3465 4095 4725 5355 5775 5985 6435 6615 6825 7245 7425 7875 8085 8415 8505 8925 9135 9555 9765 10395 11655 12285 12705 12915 13545 14175 14805 15015 15435 16065 16695 17325 17955 18585 19215 19305 

F#

This task uses [1]

// Zumkeller numbers: Nigel Galloway. May 16th., 2021
let rec fG n g=match g with h::_ when h>=n->h=n |h::t->fG n t || fG(n-h) t |_->false
let fN g=function n when n&&&1=1->false
                 |n->let e=n/2-g in match compare e 0 with 0->true
                                                          |1->let l=[1..e]|>List.filter(fun n->g%n=0)
                                                              match compare(l|>List.sum) e with 1->fG e l |0->true |_->false
                                                          |_->false
Seq.initInfinite((+)1)|>Seq.map(fun n->(n,sod n))|>Seq.filter(fun(n,g)->fN n g)|>Seq.take 220|>Seq.iter(fun(n,_)->printf "%d " n); printfn "\n"
Seq.initInfinite((*)2>>(+)1)|>Seq.map(fun n->(n,sod n))|>Seq.filter(fun(n,g)->fN n g)|>Seq.take 40|>Seq.iter(fun(n,_)->printf "%d " n); printfn "\n"
Seq.initInfinite((*)2>>(+)1)|>Seq.filter(fun n->n%10<>5)|>Seq.map(fun n->(n,sod n))|>Seq.filter(fun(n,g)->fN n g)|>Seq.take 40|>Seq.iter(fun(n,_)->printf "%d " n); printfn "\n"
Output:
6 12 20 24 28 30 40 42 48 54 56 60 66 70 78 80 84 88 90 96 102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198 204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282 294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368 372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462 464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540 544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620 624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708 714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810 812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896 906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984

945 1575 2205 2835 3465 4095 4725 5355 5775 5985 6435 6615 6825 7245 7425 7875 8085 8415 8505 8925 9135 9555 9765 10395 11655 12285 12705 12915 13545 14175 14805 15015 15435 16065 16695 17325 17955 18585 19215 19305

81081 153153 171171 189189 207207 223839 243243 261261 279279 297297 351351 459459 513513 567567 621621 671517 729729 742203 783783 793611 812889 837837 891891 908523 960687 999999 1024947 1054053 1072071 1073709 1095633 1108107 1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377

Factor

Works with: Factor version 0.99 2019-10-06
USING: combinators grouping io kernel lists lists.lazy math
math.primes.factors memoize prettyprint sequences ;

MEMO: psum? ( seq n -- ? )
    {
        { [ dup zero? ] [ 2drop t ] }
        { [ over length zero? ] [ 2drop f ] }
        { [ over last over > ] [ [ but-last ] dip psum? ] }
        [
            [ [ but-last ] dip psum? ]
            [ over last - [ but-last ] dip psum? ] 2bi or
        ]
    } cond ;

: zumkeller? ( n -- ? )
    dup divisors dup sum
    {
        { [ dup odd? ] [ 3drop f ] }
        { [ pick odd? ] [ nip swap 2 * - [ 0 > ] [ even? ] bi and ] }
        [ nipd 2/ psum? ]
    } cond ;

: zumkellers ( -- list )
    1 lfrom [ zumkeller? ] lfilter ;

: odd-zumkellers ( -- list )
    1 [ 2 + ] lfrom-by [ zumkeller? ] lfilter ;

: odd-zumkellers-no-5 ( -- list )
    odd-zumkellers [ 5 mod zero? not ] lfilter ;

: show ( count list row-len -- )
    [ ltake list>array ] dip group simple-table. nl ;

"First 220 Zumkeller numbers:" print
220 zumkellers 20 show

"First 40 odd Zumkeller numbers:" print
40 odd-zumkellers 10 show

"First 40 odd Zumkeller numbers not ending with 5:" print
40 odd-zumkellers-no-5 8 show
Output:
First 220 Zumkeller numbers:
6   12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96
102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198
204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282
294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368
372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462
464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540
544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620
624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708
714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810
812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896
906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984

First 40 odd Zumkeller numbers:
945   1575  2205  2835  3465  4095  4725  5355  5775  5985
6435  6615  6825  7245  7425  7875  8085  8415  8505  8925
9135  9555  9765  10395 11655 12285 12705 12915 13545 14175
14805 15015 15435 16065 16695 17325 17955 18585 19215 19305

First 40 odd Zumkeller numbers not ending with 5:
81081   153153  171171  189189  207207  223839  243243  261261
279279  297297  351351  459459  513513  567567  621621  671517
729729  742203  783783  793611  812889  837837  891891  908523
960687  999999  1024947 1054053 1072071 1073709 1095633 1108107
1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377

Go

package main

import "fmt"

func getDivisors(n int) []int {
    divs := []int{1, n}
    for i := 2; i*i <= n; i++ {
        if n%i == 0 {
            j := n / i
            divs = append(divs, i)
            if i != j {
                divs = append(divs, j)
            }
        }
    }
    return divs
}

func sum(divs []int) int {
    sum := 0
    for _, div := range divs {
        sum += div
    }
    return sum
}

func isPartSum(divs []int, sum int) bool {
    if sum == 0 {
        return true
    }
    le := len(divs)
    if le == 0 {
        return false
    }
    last := divs[le-1]
    divs = divs[0 : le-1]
    if last > sum {
        return isPartSum(divs, sum)
    }
    return isPartSum(divs, sum) || isPartSum(divs, sum-last)
}

func isZumkeller(n int) bool {
    divs := getDivisors(n)
    sum := sum(divs)
    // if sum is odd can't be split into two partitions with equal sums
    if sum%2 == 1 {
        return false
    }
    // if n is odd use 'abundant odd number' optimization
    if n%2 == 1 {
        abundance := sum - 2*n
        return abundance > 0 && abundance%2 == 0
    }
    // if n and sum are both even check if there's a partition which totals sum / 2
    return isPartSum(divs, sum/2)
}

func main() {
    fmt.Println("The first 220 Zumkeller numbers are:")
    for i, count := 2, 0; count < 220; i++ {
        if isZumkeller(i) {
            fmt.Printf("%3d ", i)
            count++
            if count%20 == 0 {
                fmt.Println()
            }
        }
    }
    fmt.Println("\nThe first 40 odd Zumkeller numbers are:")
    for i, count := 3, 0; count < 40; i += 2 {
        if isZumkeller(i) {
            fmt.Printf("%5d ", i)
            count++
            if count%10 == 0 {
                fmt.Println()
            }
        }
    }
    fmt.Println("\nThe first 40 odd Zumkeller numbers which don't end in 5 are:")
    for i, count := 3, 0; count < 40; i += 2 {
        if (i % 10 != 5) && isZumkeller(i) {
            fmt.Printf("%7d ", i)
            count++
            if count%8 == 0 {
                fmt.Println()
            }
        }
    }
    fmt.Println()
}
Output:
The first 220 Zumkeller numbers are:
  6  12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96 
102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198 
204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282 
294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368 
372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462 
464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540 
544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620 
624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708 
714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810 
812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896 
906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984 

The first 40 odd Zumkeller numbers are:
  945  1575  2205  2835  3465  4095  4725  5355  5775  5985 
 6435  6615  6825  7245  7425  7875  8085  8415  8505  8925 
 9135  9555  9765 10395 11655 12285 12705 12915 13545 14175 
14805 15015 15435 16065 16695 17325 17955 18585 19215 19305

The first 40 odd Zumkeller numbers which don't end in 5 are:
  81081  153153  171171  189189  207207  223839  243243  261261 
 279279  297297  351351  459459  513513  567567  621621  671517 
 729729  742203  783783  793611  812889  837837  891891  908523 
 960687  999999 1024947 1054053 1072071 1073709 1095633 1108107 
1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377  

Haskell

Translation of: Python
import Data.List (group, sort)
import Data.List.Split (chunksOf)
import Data.Numbers.Primes (primeFactors)

-------------------- ZUMKELLER NUMBERS -------------------

isZumkeller :: Int -> Bool
isZumkeller n =
  let ds = divisors n
      m = sum ds
   in ( even m
          && let half = div m 2
              in elem half ds
                   || ( all (half >=) ds
                          && summable half ds
                      )
      )

summable :: Int -> [Int] -> Bool
summable _ [] = False
summable x xs@(h : t) =
  elem x xs
    || summable (x - h) t
    || summable x t

divisors :: Int -> [Int]
divisors x =
  sort
    ( foldr
        ( flip ((<*>) . fmap (*))
            . scanl (*) 1
        )
        [1]
        (group (primeFactors x))
    )

--------------------------- TEST -------------------------
main :: IO ()
main =
  mapM_
    ( \(s, n, xs) ->
        putStrLn $
          s
            <> ( '\n' :
                 tabulated
                   10
                   (take n (filter isZumkeller xs))
               )
    )
    [ ("First 220 Zumkeller numbers:", 220, [1 ..]),
      ("First 40 odd Zumkeller numbers:", 40, [1, 3 ..])
    ]

------------------------- DISPLAY ------------------------
tabulated ::
  Show a =>
  Int ->
  [a] ->
  String
tabulated nCols = go
  where
    go xs =
      let ts = show <$> xs
          w = succ (maximum (length <$> ts))
       in unlines
            ( concat
                <$> chunksOf
                  nCols
                  (justifyRight w ' ' <$> ts)
            )

justifyRight :: Int -> Char -> String -> String
justifyRight n c = (drop . length) <*> (replicate n c <>)
Output:
First 220 Zumkeller numbers:
   6  12  20  24  28  30  40  42  48  54
  56  60  66  70  78  80  84  88  90  96
 102 104 108 112 114 120 126 132 138 140
 150 156 160 168 174 176 180 186 192 198
 204 208 210 216 220 222 224 228 234 240
 246 252 258 260 264 270 272 276 280 282
 294 300 304 306 308 312 318 320 330 336
 340 342 348 350 352 354 360 364 366 368
 372 378 380 384 390 396 402 408 414 416
 420 426 432 438 440 444 448 456 460 462
 464 468 474 476 480 486 490 492 496 498
 500 504 510 516 520 522 528 532 534 540
 544 546 550 552 558 560 564 570 572 580
 582 588 594 600 606 608 612 616 618 620
 624 630 636 640 642 644 650 654 660 666
 672 678 680 684 690 696 700 702 704 708
 714 720 726 728 732 736 740 744 750 756
 760 762 768 770 780 786 792 798 804 810
 812 816 820 822 828 832 834 836 840 852
 858 860 864 868 870 876 880 888 894 896
 906 910 912 918 920 924 928 930 936 940
 942 945 948 952 960 966 972 978 980 984

First 40 odd Zumkeller numbers:
   945  1575  2205  2835  3465  4095  4725  5355  5775  5985
  6435  6615  6825  7245  7425  7875  8085  8415  8505  8925
  9135  9555  9765 10395 11655 12285 12705 12915 13545 14175
 14805 15015 15435 16065 16695 17325 17955 18585 19215 19305

J

Implementation:

divisors=: {{ \:~ */@>,{ (^ i.@>:)&.">/ __ q: y }}
zum=: {{ 
  if. 2|s=. +/divs=. divisors y do. 0 
  elseif. 2|y do. (0<k) * 0=2|k=. s-2*y
  else. s=. -:s for_d. divs do. if. d<:s do. s=. s-d end. end. s=0
  end.
}}@>

Task examples:

   10 22$1+I.zum 1+i.1000  NB. first 220 Zumkeller numbers
  6  12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96 102 104
108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198 204 208 210 216
220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282 294 300 304 306 308 312
318 320 330 336 340 342 348 350 352 354 360 364 366 368 372 378 380 384 390 396 402 408
414 416 420 426 432 438 440 444 448 456 460 462 464 468 474 476 480 486 490 492 496 498
500 504 510 516 520 522 528 532 534 540 544 546 550 552 558 560 564 570 572 580 582 588
594 600 606 608 612 616 618 620 624 630 636 640 642 644 650 654 660 666 672 678 680 684
690 696 700 702 704 708 714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786
792 798 804 810 812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888
894 896 906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984
   4 10$1+2*I.zum 1+2*i.1e4  NB. first 40 odd Zumkeller numbers
  945  1575  2205  2835  3465  4095  4725  5355  5775  5985
 6435  6615  6825  7245  7425  7875  8085  8415  8505  8925
 9135  9555  9765 10395 11655 12285 12705 12915 13545 14175
14805 15015 15435 16065 16695 17325 17955 18585 19215 19305
   4 10$(#~ 0~:5|])1+2*I.zum 1+2*i.1e6  NB. first 40 odd Zumkeller numbers not divisible by 5
  81081  153153  171171  189189  207207  223839  243243  261261  279279  297297
 351351  459459  513513  567567  621621  671517  729729  742203  783783  793611
 812889  837837  891891  908523  960687  999999 1024947 1054053 1072071 1073709
1095633 1108107 1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377

Java

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class ZumkellerNumbers {

    public static void main(String[] args) {
        int n = 1;
        System.out.printf("First 220 Zumkeller numbers:%n");
        for ( int count = 1 ; count <= 220 ; n += 1 ) {
            if ( isZumkeller(n) ) {
                System.out.printf("%3d  ", n);
                if ( count % 20 == 0 ) {
                    System.out.printf("%n");
                }
                count++;
            }
        }
        
        n = 1;
        System.out.printf("%nFirst 40 odd Zumkeller numbers:%n");
        for ( int count = 1 ; count <= 40 ; n += 2 ) {
            if ( isZumkeller(n) ) {
                System.out.printf("%6d", n);
                if ( count % 10 == 0 ) {
                    System.out.printf("%n");
                }
                count++;
            }
        }
        
        n = 1;
        System.out.printf("%nFirst 40 odd Zumkeller numbers that do not end in a 5:%n");
        for ( int count = 1 ; count <= 40 ; n += 2 ) {
            if ( n % 5 != 0 && isZumkeller(n) ) {
                System.out.printf("%8d", n);
                if ( count % 10 == 0 ) {
                    System.out.printf("%n");
                }
                count++;
            }
        }

    }
    
    private static boolean isZumkeller(int n) {
        //  numbers congruent to 6 or 12 modulo 18 are Zumkeller numbers
        if ( n % 18 == 6 || n % 18 == 12 ) {
            return true;
        }
        
        List<Integer> divisors = getDivisors(n);        
        int divisorSum = divisors.stream().mapToInt(i -> i.intValue()).sum();
        
        //  divisor sum cannot be odd
        if ( divisorSum % 2 == 1 ) {
            return false;
        }
        
        // numbers where n is odd and the abundance is even are Zumkeller numbers
        int abundance = divisorSum - 2 * n;
        if ( n % 2 == 1 && abundance > 0 && abundance % 2 == 0 ) {
            return true;
        }
        
        Collections.sort(divisors);
        int j = divisors.size() - 1;
        int sum = divisorSum/2;
        
        //  Largest divisor larger than sum - then cannot partition and not Zumkeller number
        if ( divisors.get(j) > sum ) {
            return false;
        }
        
        return canPartition(j, divisors, sum, new int[2]);
    }
    
    private static boolean canPartition(int j, List<Integer> divisors, int sum, int[] buckets) {
        if ( j < 0 ) {
            return true;
        }
        for ( int i = 0 ; i < 2 ; i++ ) {
            if ( buckets[i] + divisors.get(j) <= sum ) {
                buckets[i] += divisors.get(j);
                if ( canPartition(j-1, divisors, sum, buckets) ) {
                    return true;
                }
                buckets[i] -= divisors.get(j);
            }
            if( buckets[i] == 0 ) {
                break;
            }
        }
        return false;
    }
    
    private static final List<Integer> getDivisors(int number) {
        List<Integer> divisors = new ArrayList<Integer>();
        long sqrt = (long) Math.sqrt(number);
        for ( int i = 1 ; i <= sqrt ; i++ ) {
            if ( number % i == 0 ) {
                divisors.add(i);
                int div = number / i;
                if ( div != i ) {
                    divisors.add(div);
                }
            }
        }
        return divisors;
    }

}
Output:
First 220 Zumkeller numbers:
  6   12   20   24   28   30   40   42   48   54   56   60   66   70   78   80   84   88   90   96  
102  104  108  112  114  120  126  132  138  140  150  156  160  168  174  176  180  186  192  198  
204  208  210  216  220  222  224  228  234  240  246  252  258  260  264  270  272  276  280  282  
294  300  304  306  308  312  318  320  330  336  340  342  348  350  352  354  360  364  366  368  
372  378  380  384  390  396  402  408  414  416  420  426  432  438  440  444  448  456  460  462  
464  468  474  476  480  486  490  492  496  498  500  504  510  516  520  522  528  532  534  540  
544  546  550  552  558  560  564  570  572  580  582  588  594  600  606  608  612  616  618  620  
624  630  636  640  642  644  650  654  660  666  672  678  680  684  690  696  700  702  704  708  
714  720  726  728  732  736  740  744  750  756  760  762  768  770  780  786  792  798  804  810  
812  816  820  822  828  832  834  836  840  852  858  860  864  868  870  876  880  888  894  896  
906  910  912  918  920  924  928  930  936  940  942  945  948  952  960  966  972  978  980  984  

First 40 odd Zumkeller numbers:
   945  1575  2205  2835  3465  4095  4725  5355  5775  5985
  6435  6615  6825  7245  7425  7875  8085  8415  8505  8925
  9135  9555  9765 10395 11655 12285 12705 12915 13545 14175
 14805 15015 15435 16065 16695 17325 17955 18585 19215 19305

First 40 odd Zumkeller numbers that do not end in a 5:
   81081  153153  171171  189189  207207  223839  243243  261261  279279  297297
  351351  459459  513513  567567  621621  671517  729729  742203  783783  793611
  812889  837837  891891  908523  960687  999999 1024947 1054053 1072071 1073709
 1095633 1108107 1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377

jq

Works with: jq version 1.5

From a practical point of view, jq is not well-suited to these tasks, e.g. using the program shown here, the first task (computing the first 220 Zumkeller numbers) takes about 1 second.

The main point of interest here, therefore, is the partitioning function, or rather how a generic partitioning function that generates a stream of partitions is easily transformed into a specialized function that prunes irrelevant partitions efficiently.

# The factors, sorted
def factors:
  . as $num
  | reduce range(1; 1 + sqrt|floor) as $i
      ([];
       if ($num % $i) == 0 then
         ($num / $i) as $r
         | if $i == $r then . + [$i] else . + [$i, $r] end
       else . 
       end
       | sort) ;

# If the input is a sorted array of distinct non-negative integers,
# then the output will be a stream of [$x,$y] arrays,
# where $x and $y are non-empty arrays that partition the
# input, and where ($x|add) == $sum.
# If [$x,$y] is emitted, then [$y,$x] will not also be emitted.
# The items in $x appear in the same order as in the input, and similarly
# for $y.
#
def distinct_partitions($sum):
  # input: [$array, $n, $lim] where $n>0
  # output: a stream of arrays, $a, each with $n distinct items from $array,
  #         preserving the order in $array, and such that
  #         add == $lim
  def p:
     . as [$in, $n, $lim]
     | if $n==1  # this condition is very common so it saves time to check early on
       then ($in | bsearch($lim)) as $ix
       | if $ix < 0 then empty
         else [$lim]
         end
       else ($in|length) as $length
       | if $length <= $n then empty
         elif $length==$n            then $in | select(add == $lim)
         elif ($in[-$n:]|add) < $lim then empty
         else  ($in[:$n]|add) as $rsum
         | if $rsum > $lim      then empty 
           elif $rsum == $lim   then "amazing" | debug | $in[:$n]
           else range(0; 1 + $length - $n) as $i
           | [$in[$i]] + ([$in[$i+1:], $n-1, $lim - $in[$i]]|p)
           end
         end
       end;
       
  range(1; (1+length)/2) as $i
  | ([., $i, $sum]|p) as $pi
  | [ $pi, (. - $pi)]
  | select( if (.[0]|length) == (.[1]|length) then (.[0] < .[1]) else true end) #1
  ;

def zumkellerPartitions:
  factors
  | add as $sum
  | if $sum % 2 == 1 then empty
    else distinct_partitions($sum / 2)
    end;

def is_zumkeller:
  first(factors
        | add as $sum
        | if $sum % 2 == 1 then empty
          else distinct_partitions($sum / 2)
	  | select( (.[0]|add) == (.[1]|add)) // ("internal error: \(.)" | debug | empty)  #2
	  end
	| true)
  // false;
## The tasks:

"First 220:", limit(220; range(2; infinite) | select(is_zumkeller)),
""
"First 40 odd:", limit(40; range(3; infinite; 2) | select(is_zumkeller))
Output:
First 220:
6
12
20
24
28
...
984

First 40 odd:
945
1575
2205
2835
3465
...
19305

Julia

using Primes

function factorize(n)
    f = [one(n)]
    for (p, x) in factor(n)
        f = reduce(vcat, [f*p^i for i in 1:x], init=f)
    end
    f
end

function cansum(goal, list)
    if goal == 0 || list[1] == goal
         return true
    elseif length(list) > 1
        if list[1] > goal
            return cansum(goal, list[2:end])
        else
            return cansum(goal - list[1], list[2:end]) ||  cansum(goal, list[2:end])
        end
    end
    return false
end

function iszumkeller(n)
    f = reverse(factorize(n))
    fsum = sum(f)
    return iseven(fsum) && cansum(div(fsum, 2) - f[1], f[2:end])
end

function printconditionalnum(condition, maxcount, numperline = 20)
    count, spacing = 1, div(80, numperline)
    for i in 1:typemax(Int)
        if condition(i)
            count += 1
            print(rpad(i, spacing), (count - 1) % numperline == 0 ? "\n" : "")
            if count > maxcount
                return
            end
        end
    end
end

println("First 220 Zumkeller numbers:")
printconditionalnum(iszumkeller, 220)
println("\n\nFirst 40 odd Zumkeller numbers:")
printconditionalnum((n) -> isodd(n) && iszumkeller(n), 40, 8)
println("\n\nFirst 40 odd Zumkeller numbers not ending with 5:")
printconditionalnum((n) -> isodd(n) && (string(n)[end] != '5') && iszumkeller(n), 40, 8)
Output:
First 220 Zumkeller numbers:
6   12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96
102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198
204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282
294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368
372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462
464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540
544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620
624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708
714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810
812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896
906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984


First 40 odd Zumkeller numbers:
945       1575      2205      2835      3465      4095      4725      5355
5775      5985      6435      6615      6825      7245      7425      7875
8085      8415      8505      8925      9135      9555      9765      10395
11655     12285     12705     12915     13545     14175     14805     15015
15435     16065     16695     17325     17955     18585     19215     19305


First 40 odd Zumkeller numbers not ending with 5:
81081     153153    171171    189189    207207    223839    243243    261261
279279    297297    351351    459459    513513    567567    621621    671517
729729    742203    783783    793611    812889    837837    891891    908523
960687    999999    1024947   1054053   1072071   1073709   1095633   1108107
1145529   1162161   1198197   1224531   1270269   1307691   1324323   1378377

Kotlin

Translation of: Java
import java.util.ArrayList
import kotlin.math.sqrt

object ZumkellerNumbers {
    @JvmStatic
    fun main(args: Array<String>) {
        var n = 1
        println("First 220 Zumkeller numbers:")
        run {
            var count = 1
            while (count <= 220) {
                if (isZumkeller(n)) {
                    print("%3d  ".format(n))
                    if (count % 20 == 0) {
                        println()
                    }
                    count++
                }
                n += 1
            }
        }

        n = 1
        println("\nFirst 40 odd Zumkeller numbers:")
        run {
            var count = 1
            while (count <= 40) {
                if (isZumkeller(n)) {
                    print("%6d".format(n))
                    if (count % 10 == 0) {
                        println()
                    }
                    count++
                }
                n += 2
            }
        }

        n = 1
        println("\nFirst 40 odd Zumkeller numbers that do not end in a 5:")
        var count = 1
        while (count <= 40) {
            if (n % 5 != 0 && isZumkeller(n)) {
                print("%8d".format(n))
                if (count % 10 == 0) {
                    println()
                }
                count++
            }
            n += 2
        }
    }

    private fun isZumkeller(n: Int): Boolean { //  numbers congruent to 6 or 12 modulo 18 are Zumkeller numbers
        if (n % 18 == 6 || n % 18 == 12) {
            return true
        }
        val divisors = getDivisors(n)
        val divisorSum = divisors.stream().mapToInt { i: Int? -> i!! }.sum()
        //  divisor sum cannot be odd
        if (divisorSum % 2 == 1) {
            return false
        }
        // numbers where n is odd and the abundance is even are Zumkeller numbers
        val abundance = divisorSum - 2 * n
        if (n % 2 == 1 && abundance > 0 && abundance % 2 == 0) {
            return true
        }
        divisors.sort()
        val j = divisors.size - 1
        val sum = divisorSum / 2
        //  Largest divisor larger than sum - then cannot partition and not Zumkeller number
        return if (divisors[j] > sum) false else canPartition(j, divisors, sum, IntArray(2))
    }

    private fun canPartition(j: Int, divisors: List<Int>, sum: Int, buckets: IntArray): Boolean {
        if (j < 0) {
            return true
        }
        for (i in 0..1) {
            if (buckets[i] + divisors[j] <= sum) {
                buckets[i] += divisors[j]
                if (canPartition(j - 1, divisors, sum, buckets)) {
                    return true
                }
                buckets[i] -= divisors[j]
            }
            if (buckets[i] == 0) {
                break
            }
        }
        return false
    }

    private fun getDivisors(number: Int): MutableList<Int> {
        val divisors: MutableList<Int> = ArrayList()
        val sqrt = sqrt(number.toDouble()).toLong()
        for (i in 1..sqrt) {
            if (number % i == 0L) {
                divisors.add(i.toInt())
                val div = (number / i).toInt()
                if (div.toLong() != i) {
                    divisors.add(div)
                }
            }
        }
        return divisors
    }
}
Output:
First 220 Zumkeller numbers:
  6   12   20   24   28   30   40   42   48   54   56   60   66   70   78   80   84   88   90   96  
102  104  108  112  114  120  126  132  138  140  150  156  160  168  174  176  180  186  192  198  
204  208  210  216  220  222  224  228  234  240  246  252  258  260  264  270  272  276  280  282  
294  300  304  306  308  312  318  320  330  336  340  342  348  350  352  354  360  364  366  368  
372  378  380  384  390  396  402  408  414  416  420  426  432  438  440  444  448  456  460  462  
464  468  474  476  480  486  490  492  496  498  500  504  510  516  520  522  528  532  534  540  
544  546  550  552  558  560  564  570  572  580  582  588  594  600  606  608  612  616  618  620  
624  630  636  640  642  644  650  654  660  666  672  678  680  684  690  696  700  702  704  708  
714  720  726  728  732  736  740  744  750  756  760  762  768  770  780  786  792  798  804  810  
812  816  820  822  828  832  834  836  840  852  858  860  864  868  870  876  880  888  894  896  
906  910  912  918  920  924  928  930  936  940  942  945  948  952  960  966  972  978  980  984  

First 40 odd Zumkeller numbers:
   945  1575  2205  2835  3465  4095  4725  5355  5775  5985
  6435  6615  6825  7245  7425  7875  8085  8415  8505  8925
  9135  9555  9765 10395 11655 12285 12705 12915 13545 14175
 14805 15015 15435 16065 16695 17325 17955 18585 19215 19305

First 40 odd Zumkeller numbers that do not end in a 5:
   81081  153153  171171  189189  207207  223839  243243  261261  279279  297297
  351351  459459  513513  567567  621621  671517  729729  742203  783783  793611
  812889  837837  891891  908523  960687  999999 1024947 1054053 1072071 1073709
 1095633 1108107 1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377

Lobster

import std

// Derived from Julia and Python versions

def get_divisors(n: int) -> [int]:
    var i = 2
    let d = [1, n]
    let limit = sqrt(n)
    while i <= limit:
        if n % i == 0:
            let j = n / i
            push(d,i)
            if i != j:
                push(d,j)
        i += 1
    return d

def isPartSum(divs: [int], sum: int) -> bool:
    if sum == 0:
        return true
    let len = length(divs)
    if len == 0:
        return false
    let last = pop(divs)
    if last > sum:
        return isPartSum(divs, sum)
    return isPartSum(copy(divs), sum) or isPartSum(divs, sum-last)

def isZumkeller(n: int) -> bool:
    let divs = get_divisors(n)
    let sum = fold(divs, 0): _a+_b
    if sum % 2 == 1:
        // if sum is odd can't be split into two partitions with equal sums
        return false
    if n % 2 == 1:
        // if n is odd use 'abundant odd number' optimization
        let abundance = sum - 2 * n
        return abundance > 0 and abundance % 2 == 0
    return isPartSum(divs, sum/2)

def printZumkellers(q: int, oddonly: bool):
    var nprinted = 0
    var res = ""
    for(100000) n:
        if (!oddonly or n % 2 != 0):
            if isZumkeller(n):
                let s = string(n)
                let z = length(s)
                res = concat_string([res, repeat_string(" ",8-z), s], "")
                nprinted += 1
                if nprinted % 10 == 0 or nprinted >= q:
                    print res
                    res = ""
                    if nprinted >= q:
                        return

print "220 Zumkeller numbers:"
printZumkellers(220, false)
print "\n\n40 odd Zumkeller numbers:"
printZumkellers(40, true)
Output:
220 Zumkeller numbers:
       6      12      20      24      28      30      40      42      48      54
      56      60      66      70      78      80      84      88      90      96
     102     104     108     112     114     120     126     132     138     140
     150     156     160     168     174     176     180     186     192     198
     204     208     210     216     220     222     224     228     234     240
     246     252     258     260     264     270     272     276     280     282
     294     300     304     306     308     312     318     320     330     336
     340     342     348     350     352     354     360     364     366     368
     372     378     380     384     390     396     402     408     414     416
     420     426     432     438     440     444     448     456     460     462
     464     468     474     476     480     486     490     492     496     498
     500     504     510     516     520     522     528     532     534     540
     544     546     550     552     558     560     564     570     572     580
     582     588     594     600     606     608     612     616     618     620
     624     630     636     640     642     644     650     654     660     666
     672     678     680     684     690     696     700     702     704     708
     714     720     726     728     732     736     740     744     750     756
     760     762     768     770     780     786     792     798     804     810
     812     816     820     822     828     832     834     836     840     852
     858     860     864     868     870     876     880     888     894     896
     906     910     912     918     920     924     928     930     936     940
     942     945     948     952     960     966     972     978     980     984


40 odd Zumkeller numbers:
     945    1575    2205    2835    3465    4095    4725    5355    5775    5985
    6435    6615    6825    7245    7425    7875    8085    8415    8505    8925
    9135    9555    9765   10395   11655   12285   12705   12915   13545   14175
   14805   15015   15435   16065   16695   17325   17955   18585   19215   19305

Mathematica / Wolfram Language

ClearAll[ZumkellerQ]
ZumkellerQ[n_] := Module[{d = Divisors[n], t, ds, x},
   ds = Total[d];
   If[Mod[ds, 2] == 1,
    False
    ,
    t = CoefficientList[Product[1 + x^i, {i, d}], x];
    t[[1 + ds/2]] > 0
    ]
   ];
i = 1;
res = {};
While[Length[res] < 220,
  r = ZumkellerQ[i];
  If[r, AppendTo[res, i]];
  i++;
  ];
res

i = 1;
res = {};
While[Length[res] < 40,
  r = ZumkellerQ[i];
  If[r, AppendTo[res, i]];
  i += 2;
  ];
res
Output:
{6,12,20,24,28,30,40,42,48,54,56,60,66,70,78,80,84,88,90,96,102,104,108,112,114,120,126,132,138,140,150,156,160,168,174,176,180,186,192,198,204,208,210,216,220,222,224,228,234,240,246,252,258,260,264,270,272,276,280,282,294,300,304,306,308,312,318,320,330,336,340,342,348,350,352,354,360,364,366,368,372,378,380,384,390,396,402,408,414,416,420,426,432,438,440,444,448,456,460,462,464,468,474,476,480,486,490,492,496,498,500,504,510,516,520,522,528,532,534,540,544,546,550,552,558,560,564,570,572,580,582,588,594,600,606,608,612,616,618,620,624,630,636,640,642,644,650,654,660,666,672,678,680,684,690,696,700,702,704,708,714,720,726,728,732,736,740,744,750,756,760,762,768,770,780,786,792,798,804,810,812,816,820,822,828,832,834,836,840,852,858,860,864,868,870,876,880,888,894,896,906,910,912,918,920,924,928,930,936,940,942,945,948,952,960,966,972,978,980,984}
{945,1575,2205,2835,3465,4095,4725,5355,5775,5985,6435,6615,6825,7245,7425,7875,8085,8415,8505,8925,9135,9555,9765,10395,11655,12285,12705,12915,13545,14175,14805,15015,15435,16065,16695,17325,17955,18585,19215,19305}

Nim

Translation of: Go
import math, strutils

template isEven(n: int): bool = (n and 1) == 0
template isOdd(n: int): bool = (n and 1) != 0


func getDivisors(n: int): seq[int] =
  result = @[1, n]
  for i in 2..sqrt(n.toFloat).int:
    if n mod i == 0:
      let j = n div i
      result.add i
      if i != j: result.add j


func isPartSum(divs: seq[int]; sum: int): bool =
  if sum == 0: return true
  if divs.len == 0: return false
  let last = divs[^1]
  let divs = divs[0..^2]
  result = isPartSum(divs, sum)
  if not result and last <= sum:
    result = isPartSum(divs, sum - last)


func isZumkeller(n: int): bool =
  let divs = n.getDivisors()
  let sum = sum(divs)
  # If "sum" is odd, it can't be split into two partitions with equal sums.
  if sum.isOdd: return false
  # If "n" is odd use "abundant odd number" optimization.
  if n.isOdd:
    let abundance = sum - 2 * n
    return abundance > 0 and abundance.isEven
  # If "n" and "sum" are both even, check if there's a partition which totals "sum / 2".
  result = isPartSum(divs, sum div 2)


when isMainModule:

  echo "The first 220 Zumkeller numbers are:"
  var n = 2
  var count = 0
  while count < 220:
    if n.isZumkeller:
      stdout.write align($n, 3)
      inc count
      stdout.write if count mod 20 == 0: '\n' else: ' '
    inc n
  echo()

  echo "The first 40 odd Zumkeller numbers are:"
  n = 3
  count = 0
  while count < 40:
    if n.isZumkeller:
      stdout.write align($n, 5)
      inc count
      stdout.write if count mod 10 == 0: '\n' else: ' '
    inc n, 2
  echo()

  echo "The first 40 odd Zumkeller numbers which don't end in 5 are:"
  n = 3
  count = 0
  while count < 40:
    if n mod 10 != 5 and n.isZumkeller:
      stdout.write align($n, 7)
      inc count
      stdout.write if count mod 8 == 0: '\n' else: ' '
    inc n, 2
Output:
The first 220 Zumkeller numbers are:
  6  12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96
102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198
204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282
294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368
372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462
464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540
544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620
624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708
714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810
812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896
906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984

The first 40 odd Zumkeller numbers are:
  945  1575  2205  2835  3465  4095  4725  5355  5775  5985
 6435  6615  6825  7245  7425  7875  8085  8415  8505  8925
 9135  9555  9765 10395 11655 12285 12705 12915 13545 14175
14805 15015 15435 16065 16695 17325 17955 18585 19215 19305

The first 40 odd Zumkeller numbers which don't end in 5 are:
  81081  153153  171171  189189  207207  223839  243243  261261
 279279  297297  351351  459459  513513  567567  621621  671517
 729729  742203  783783  793611  812889  837837  891891  908523
 960687  999999 1024947 1054053 1072071 1073709 1095633 1108107
1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377

PARI/GP

\\ Define a function to check if a number is Zumkeller
isZumkeller(n) = {
  my(d = divisors(n));
  my(ds = sum(i=1, #d, d[i])); \\ Total of divisors
  if (ds % 2, return(0)); \\ If sum of divisors is odd, return false
  my(coeffs = vector(ds+1, i, 0)); \\ Create a vector to store coefficients
  coeffs[1] = 1;
  for(i=1, #d, coeffs = Pol(coeffs) * (1 + x^d[i]); coeffs = Vecrev(coeffs); if(#coeffs > ds + 1, coeffs = coeffs[^1])); \\ Generate coefficients
  coeffs[ds \ 2 + 1] > 0; \\ Check if the middle coefficient is positive
}

\\ Generate a list of Zumkeller numbers
ZumkellerList(limit) = {
  my(res = List(), i = 1);
  while(#res < limit,
    if(isZumkeller(i), listput(res, i));
    i++;
  );
  Vec(res); \\ Convert list to vector
}

\\ Generate a list of odd Zumkeller numbers
OddZumkellerList(limit) = {
  my(res = List(), i = 1);
  while(#res < limit,
    if(isZumkeller(i), listput(res, i));
    i += 2; \\ Only check odd numbers
  );
  Vec(res); \\ Convert list to vector
}

\\ Call the functions to get the lists
zumkeller220 = ZumkellerList(220);
oddZumkeller40 = OddZumkellerList(40);

\\ Print the results
print(zumkeller220);
print(oddZumkeller40);
Output:
[6, 12, 20, 24, 28, 30, 40, 42, 48, 54, 56, 60, 66, 70, 78, 80, 84, 88, 90, 96, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 150, 156, 160, 168, 174, 176, 180, 186, 192, 198, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270, 272, 276, 280, 282, 294, 300, 304, 306, 308, 312, 318, 320, 330, 336, 340, 342, 348, 350, 352, 354, 360, 364, 366, 368, 372, 378, 380, 384, 390, 396, 402, 408, 414, 416, 420, 426, 432, 438, 440, 444, 448, 456, 460, 462, 464, 468, 474, 476, 480, 486, 490, 492, 496, 498, 500, 504, 510, 516, 520, 522, 528, 532, 534, 540, 544, 546, 550, 552, 558, 560, 564, 570, 572, 580, 582, 588, 594, 600, 606, 608, 612, 616, 618, 620, 624, 630, 636, 640, 642, 644, 650, 654, 660, 666, 672, 678, 680, 684, 690, 696, 700, 702, 704, 708, 714, 720, 726, 728, 732, 736, 740, 744, 750, 756, 760, 762, 768, 770, 780, 786, 792, 798, 804, 810, 812, 816, 820, 822, 828, 832, 834, 836, 840, 852, 858, 860, 864, 868, 870, 876, 880, 888, 894, 896, 906, 910, 912, 918, 920, 924, 928, 930, 936, 940, 942, 945, 948, 952, 960, 966, 972, 978, 980, 984]
[945, 1575, 2205, 2835, 3465, 4095, 4725, 5355, 5775, 5985, 6435, 6615, 6825, 7245, 7425, 7875, 8085, 8415, 8505, 8925, 9135, 9555, 9765, 10395, 11655, 12285, 12705, 12915, 13545, 14175, 14805, 15015, 15435, 16065, 16695, 17325, 17955, 18585, 19215, 19305]

Pascal

Using sieve for primedecomposition
Now using the trick, that one partition sum must include n and improved recursive search.
Limit is ~1.2e11

program zumkeller;
//https://oeis.org/A083206/a083206.txt
{$IFDEF FPC}
  {$MODE DELPHI}  {$OPTIMIZATION ON,ALL}  {$COPERATORS ON}
//  {$O+,I+}
{$ELSE}
  {$APPTYPE CONSOLE}
{$ENDIF}
uses
  sysutils
{$IFDEF WINDOWS},Windows{$ENDIF}
  ;
//######################################################################
//prime decomposition
const
//HCN(86) > 1.2E11 = 128,501,493,120     count of divs = 4096   7 3 1 1 1 1 1 1 1
  HCN_DivCnt  = 4096;
//stop never ending recursion 
  RECCOUNTMAX = 100*1000*1000;
  DELTAMAX    = 1000*1000;
type
  tItem     = Uint64;
  tDivisors = array [0..HCN_DivCnt-1] of tItem;
  tpDivisor = pUint64;
const
  SizePrDeFe = 12697;//*72 <= 1 or 2 Mb ~ level 2 cache -32kB for DIVS
type
  tdigits    = packed record
                 dgtDgts : array [0..31] of Uint32;
               end;

  //the first number with 11 different divisors =
  // 2*3*5*7*11*13*17*19*23*29*31 = 2E11
  tprimeFac = packed record
                 pfSumOfDivs,
                 pfRemain  : Uint64;  //n div (p[0]^[pPot[0] *...) can handle primes <=821641^2 = 6.7e11
                 pfpotPrim : array[0..9] of UInt32;//+10*4 = 56 Byte
                 pfpotMax  : array[0..9] of byte;  //10  = 66
                 pfMaxIdx  : Uint16; //68
                 pfDivCnt  : Uint32; //72
               end;

  tPrimeDecompField = array[0..SizePrDeFe-1] of tprimeFac;
  tPrimes = array[0..65535] of Uint32;

var
  SmallPrimes: tPrimes;
//######################################################################
//prime decomposition
procedure InitSmallPrimes;
//only odd numbers
const
  MAXLIMIT = (821641-1) shr 1;
var
  pr : array[0..MAXLIMIT] of byte;
  p,j,d,flipflop :NativeUInt;
Begin
  SmallPrimes[0] := 2;
  fillchar(pr[0],SizeOf(pr),#0);
  p := 0;
  repeat
    repeat
      p +=1
    until pr[p]= 0;
    j := (p+1)*p*2;
    if j>MAXLIMIT then
      BREAK;
    d := 2*p+1;
    repeat
      pr[j] := 1;
      j += d;
    until j>MAXLIMIT;
  until false;

  SmallPrimes[1] := 3;
  SmallPrimes[2] := 5;
  j := 3;
  d := 7;
  flipflop := 3-1;
  p := 3;
  repeat
    if pr[p] = 0 then
    begin
      SmallPrimes[j] := d;
      inc(j);
    end;
    d += 2*flipflop;
    p+=flipflop;
    flipflop := 3-flipflop;
  until (p > MAXLIMIT) OR (j>High(SmallPrimes));
end;

function OutPots(const pD:tprimeFac;n:NativeInt):Ansistring;
var
  s: String[31];
Begin
  str(n,s);
  result := s+' :';
  with pd do
  begin
    str(pfDivCnt:3,s);
    result += s+' : ';
    For n := 0 to pfMaxIdx-1 do
    Begin
      if n>0 then
        result += '*';
      str(pFpotPrim[n],s);
      result += s;
      if pfpotMax[n] >1 then
      Begin
        str(pfpotMax[n],s);
        result += '^'+s;
      end;
    end;
    If pfRemain >1 then
    Begin
      str(pfRemain,s);
      result += '*'+s;
    end;
    str(pfSumOfDivs,s);
    result += '_SoD_'+s+'<';
  end;
end;

function CnvtoBASE(var dgt:tDigits;n:Uint64;base:NativeUint):NativeInt;
//n must be multiple of base
var
  q,r: Uint64;
  i : NativeInt;
Begin
  with dgt do
  Begin
    fillchar(dgtDgts,SizeOf(dgtDgts),#0);
    i := 0;
//    dgtNum:= n;
    n := n div base;
    result := 0;
    repeat
      r := n;
      q := n div base;
      r  -= q*base;
      n := q;
      dgtDgts[i] := r;
      inc(i);
    until (q = 0);

    result := 0;
    while (result<i) AND (dgtDgts[result] = 0) do
      inc(result);
    inc(result);
  end;
end;

function IncByBaseInBase(var dgt:tDigits;base:NativeInt):NativeInt;
var
  q :NativeInt;
Begin
  with dgt do
  Begin
    result := 0;
    q := dgtDgts[result]+1;
//    inc(dgtNum,base);
    if q = base then
    begin
      repeat
        dgtDgts[result] := 0;
        inc(result);
        q := dgtDgts[result]+1;
      until q <> base;
    end;
    dgtDgts[result] := q;
    result +=1;
  end;
end;

procedure SieveOneSieve(var pdf:tPrimeDecompField;n:nativeUInt);
var
  dgt:tDigits;
  i, j, k,pr,fac : NativeUInt;
begin
  //init
  for i := 0 to High(pdf) do
    with pdf[i] do
    Begin
      pfDivCnt := 1;
      pfSumOfDivs := 1;
      pfRemain := n+i;
      pfMaxIdx := 0;
    end;

  //first 2 make n+i even
  i := n AND 1;
  repeat
    with pdf[i] do
      if n+i > 0 then
      begin
        j := BsfQWord(n+i);
        pfMaxIdx := 1;
        pfpotPrim[0] := 2;
        pfpotMax[0] := j;
        pfRemain := (n+i) shr j;
        pfSumOfDivs := (1 shl (j+1))-1;
        pfDivCnt := j+1;
      end;
    i += 2;
  until i >High(pdf);

  // i now index in SmallPrimes
  i := 0;
  repeat
    //search next prime that is in bounds of sieve
    repeat
      inc(i);
      if i >= High(SmallPrimes) then
        BREAK;
      pr := SmallPrimes[i];
      k := pr-n MOD pr;
      if (k = pr) AND (n>0) then
        k:= 0;
      if k < SizePrDeFe then
        break;
    until false;
    if i >= High(SmallPrimes) then
      BREAK;
    //no need to use higher primes
    if pr*pr > n+SizePrDeFe then
      BREAK;

    // j is power of prime
    j := CnvtoBASE(dgt,n+k,pr);
    repeat
      with pdf[k] do
      Begin
        pfpotPrim[pfMaxIdx] := pr;
        pfpotMax[pfMaxIdx] := j;
        pfDivCnt *= j+1;
        fac := pr;
        repeat
          pfRemain := pfRemain DIV pr;
          dec(j);
          fac *= pr;
        until j<= 0;
        pfSumOfDivs *= (fac-1)DIV(pr-1);
        inc(pfMaxIdx);
      end;
      k += pr;
      j := IncByBaseInBase(dgt,pr);
    until k >= SizePrDeFe;
  until false;

  //correct sum of & count of divisors
  for i := 0 to High(pdf) do
  Begin
    with pdf[i] do
    begin
      j := pfRemain;
      if j <> 1 then
      begin
        pfSumOFDivs *= (j+1);
        pfDivCnt *=2;
      end;
    end;
  end;
end;
//prime decomposition
//######################################################################
procedure Init_Check_rec(const pD:tprimeFac;var Divs,SumOfDivs:tDivisors);forward;

var
{$ALIGN 32}
  PrimeDecompField:tPrimeDecompField;
{$ALIGN 32}
  Divs :tDivisors;
  SumOfDivs : tDivisors;
  DivUsedIdx : tDivisors;

  pDiv :tpDivisor;
  T0: Int64;
  count,rec_Cnt: NativeInt;
  depth : Int32;
  finished :Boolean;

procedure Check_rek_depth(SoD : Int64;i: NativeInt);
var
  sum : Int64;
begin
  if finished then
    EXIT;
  inc(rec_Cnt);

  WHILE (i>0) AND (pDiv[i]>SoD) do
    dec(i);

  while i >= 0 do
  Begin
    DivUsedIdx[depth] := pDiv[i];
    sum := SoD-pDiv[i];
    if sum = 0 then
    begin
      finished := true;
      EXIT;
    end;
    dec(i);
    inc(depth);
    if (i>= 0) AND (sum <= SumOfDivs[i]) then
      Check_rek_depth(sum,i);
    if finished then
      EXIT;
//  DivUsedIdx[depth] := 0;
    dec(depth);
  end;
end;

procedure Out_One_Sol(const pd:tprimefac;n:NativeUInt;isZK : Boolean);
var
  sum : NativeInt;
Begin
  if n< 7 then
    exit;
  with pd do
  begin
    writeln(OutPots(pD,n));
    if isZK then
    Begin
      Init_Check_rec(pD,Divs,SumOfDivs);
      Check_rek_depth(pfSumOfDivs shr 1-n,pFDivCnt-1);
      write(pfSumOfDivs shr 1:10,' = ');
      sum := n;
      while depth >= 0 do
      Begin
        sum += DivUsedIdx[depth];
        write(DivUsedIdx[depth],'+');
        dec(depth);
      end;
      write(n,' =  ',sum);
    end
    else
      write(' no zumkeller ');
  end;
end;

procedure InsertSort(pDiv:tpDivisor; Left, Right : NativeInt );
var
  I, J: NativeInt;
  Pivot : tItem;
begin
  for i:= 1 + Left to Right do
  begin
    Pivot:= pDiv[i];
    j:= i - 1;
    while (j >= Left) and (pDiv[j] > Pivot) do
    begin
      pDiv[j+1]:=pDiv[j];
      Dec(j);
    end;
    pDiv[j+1]:= pivot;
  end;
end;

procedure GetDivs(const pD:tprimeFac;var Divs,SumOfDivs:tDivisors);
var
  pDivs : tpDivisor;
  pPot : UInt64;
  i,len,j,l,p,k: Int32;
Begin
  i := pD.pfDivCnt;
  pDivs := @Divs[0];
  pDivs[0] := 1;
  len := 1;
  l   := 1;
  with pD do
  Begin
    For i := 0 to pfMaxIdx-1 do
    begin
      //Multiply every divisor before with the new primefactors
      //and append them to the list
      k := pfpotMax[i];
      p := pfpotPrim[i];
      pPot :=1;
      repeat
        pPot *= p;
        For j := 0 to len-1 do
        Begin
          pDivs[l]:= pPot*pDivs[j];
          inc(l);
        end;
        dec(k);
      until k<=0;
      len := l;
    end;
    p := pfRemain;
    If p >1 then
    begin
      For j := 0 to len-1 do
      Begin
        pDivs[l]:= p*pDivs[j];
        inc(l);
      end;
      len := l;
    end;
  end;
  //Sort. Insertsort much faster than QuickSort in this special case
  InsertSort(pDivs,0,len-1);

  pPot := 0;
  For i := 0 to len-1 do
  begin
    pPot += pDivs[i];
    SumOfDivs[i] := pPot;
  end;
end;

procedure Init_Check_rec(const pD:tprimeFac;var Divs,SumOfDivs:tDivisors);
begin
  GetDivs(pD,Divs,SUmOfDivs);
  finished := false;
  depth := 0;
  pDiv := @Divs[0];
end;

procedure Check_rek(SoD : Int64;i: NativeInt);
var
  sum : Int64;
begin
  if finished then
    EXIT;
  if rec_Cnt >RECCOUNTMAX then
  begin
    rec_Cnt := -1;
    finished := true;
    exit;
  end;
  inc(rec_Cnt);

  WHILE (i>0) AND (pDiv[i]>SoD) do
    dec(i);

  while i >= 0 do
  Begin
    sum := SoD-pDiv[i];
    if sum = 0 then
    begin
      finished := true;
      EXIT;
    end;
    dec(i);
    if (i>= 0) AND (sum <= SumOfDivs[i]) then
      Check_rek(sum,i);
    if finished then
      EXIT;
 end;
end;

function GetZumKeller(n: NativeUint;var pD:tPrimefac): boolean;
var
  SoD,sum : Int64;
  Div_cnt,i,pracLmt: NativeInt;
begin
  rec_Cnt := 0;
  SoD:= pd.pfSumOfDivs;
  //sum must be even and n not deficient
  if Odd(SoD) or (SoD<2*n) THEN
    EXIT(false);
//if Odd(n) then Exit(Not(odd(sum)));// to be tested

  SoD := SoD shr 1-n;
  If SoD < 2 then //0,1 is always true
    Exit(true);

  Div_cnt := pD.pfDivCnt;

  if Not(odd(n)) then
    if ((n mod 18) in [6,12]) then
      EXIT(true);

  //Now one needs to get the divisors
  Init_check_rec(pD,Divs,SumOfDivs);

  pracLmt:= 0;
  if Not(odd(n)) then
  begin
    For i := 1 to Div_Cnt do
    Begin
      sum := SumOfDivs[i];
      If (sum+1<Divs[i+1]) AND (sum<SoD) then
      Begin
        pracLmt := i;
        BREAK;
      end;
     IF (sum>=SoD) then break;
    end;
    if pracLmt = 0 then
      Exit(true);
  end;
  //number is practical followed by one big prime
  if pracLmt = (Div_Cnt-1) shr 1 then
  begin
    i := SoD mod Divs[pracLmt+1];
    with pD do
    begin
      if pfRemain > 1 then
        EXIT((pfRemain<=i) OR (i<=sum))
      else
        EXIT((pfpotPrim[pfMaxIdx-1]<=i)OR (i<=sum));
    end;
  end;

  Begin
    IF Div_cnt <= HCN_DivCnt then
    Begin
      Check_rek(SoD,Div_cnt-1);
      IF rec_Cnt = -1 then
        exit(true);
      exit(finished);
    end;
  end;
  result := false;
end;

var
  Ofs,i,n : NativeUInt;
  Max: NativeUInt;

procedure Init_Sieve(n:NativeUint);
//Init Sieve i,oFs are Global
begin
  i := n MOD SizePrDeFe;
  Ofs := (n DIV SizePrDeFe)*SizePrDeFe;
  SieveOneSieve(PrimeDecompField,Ofs);
end;

procedure GetSmall(MaxIdx:Int32);
var
  ZK: Array of Uint32;
  idx: UInt32;
Begin
  If MaxIdx<1 then
    EXIT;
  writeln('The first ',MaxIdx,' zumkeller numbers');
  Init_Sieve(0);
  setlength(ZK,MaxIdx);
  idx := Low(ZK);
  repeat
    if GetZumKeller(n,PrimeDecompField[i]) then
    Begin
      ZK[idx] := n;
      inc(idx);
    end;
    inc(i);
    inc(n);
    If i > High(PrimeDecompField) then
    begin
      dec(i,SizePrDeFe);
      inc(ofs,SizePrDeFe);
      SieveOneSieve(PrimeDecompField,Ofs);
    end;
  until idx >= MaxIdx;
  For idx := 0 to MaxIdx-1 do
  begin
    if idx MOD 20 = 0 then
      writeln;
    write(ZK[idx]:4);
  end;
  setlength(ZK,0);
  writeln;
  writeln;
end;

procedure GetOdd(MaxIdx:Int32);
var
  ZK: Array of Uint32;
  idx: UInt32;
Begin
  If MaxIdx<1 then
    EXIT;
  writeln('The first odd 40 zumkeller numbers');
  n := 1;
  Init_Sieve(n);
  setlength(ZK,MaxIdx);
  idx := Low(ZK);
  repeat
    if GetZumKeller(n,PrimeDecompField[i]) then
    Begin
      ZK[idx] := n;
      inc(idx);
    end;
    inc(i,2);
    inc(n,2);
    If i > High(PrimeDecompField) then
    begin
      dec(i,SizePrDeFe);
      inc(ofs,SizePrDeFe);
      SieveOneSieve(PrimeDecompField,Ofs);
    end;
  until idx >= MaxIdx;
  For idx := 0 to MaxIdx-1 do
  begin
    if idx MOD (80 DIV 8) = 0 then
      writeln;
    write(ZK[idx]:8);
  end;
  setlength(ZK,0);
  writeln;
  writeln;
end;

procedure GetOddNot5(MaxIdx:Int32);
var
  ZK: Array of Uint32;
  idx: UInt32;
Begin
  If MaxIdx<1 then
    EXIT;
  writeln('The first odd 40 zumkeller numbers not ending in 5');
  n := 1;
  Init_Sieve(n);
  setlength(ZK,MaxIdx);
  idx := Low(ZK);
  repeat
    if GetZumKeller(n,PrimeDecompField[i]) then
    Begin
      ZK[idx] := n;
      inc(idx);
    end;
    inc(i,2);
    inc(n,2);
    If n mod 5 = 0 then
    begin
      inc(i,2);
      inc(n,2);
    end;
    If i > High(PrimeDecompField) then
    begin
      dec(i,SizePrDeFe);
      inc(ofs,SizePrDeFe);
      SieveOneSieve(PrimeDecompField,Ofs);
    end;
  until idx >= MaxIdx;
  For idx := 0 to MaxIdx-1 do
  begin
    if idx MOD (80 DIV 8) = 0 then
      writeln;
    write(ZK[idx]:8);
  end;
  setlength(ZK,0);
  writeln;
  writeln;
end;
BEGIN
  InitSmallPrimes;

  T0 := GetTickCount64;
  GetSmall(220);
  GetOdd(40);
  GetOddNot5(40);

  writeln;
  n := 1;//8996229720;//1;
  Init_Sieve(n);
  writeln('Start ',n,' at ',i);
  T0 := GetTickCount64;
  MAX := (n DIV DELTAMAX+1)*DELTAMAX;
  count := 0;
  repeat
    writeln('Count of zumkeller numbers up to ',MAX:12);
    repeat
      if GetZumKeller(n,PrimeDecompField[i]) then
        inc(count);
      inc(i);
      inc(n);
      If i > High(PrimeDecompField) then
      begin
        dec(i,SizePrDeFe);
        inc(ofs,SizePrDeFe);
        SieveOneSieve(PrimeDecompField,Ofs);
      end;
    until n > MAX;
    writeln(n-1:10,' tested found ',count:10,' ratio ',count/n:10:7);
    MAX += DELTAMAX;
  until MAX>10*DELTAMAX;
  writeln('runtime ',(GetTickCount64-T0)/1000:8:3,' s');
  writeln;
  writeln('Count of recursion 59,641,327 for 8,996,229,720');
  n := 8996229720;
  Init_Sieve(n);
  T0 := GetTickCount64;
  Out_One_Sol(PrimeDecompField[i],n,true);
  writeln;
  writeln('runtime ',(GetTickCount64-T0)/1000:8:3,' s');
END.
Output:
TIO.RUN
The first 220 zumkeller numbers

   6  12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96
 102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198
 204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282
 294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368
 372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462
 464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540
 544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620
 624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708
 714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810
 812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896
 906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984

The first odd 40 zumkeller numbers

     945    1575    2205    2835    3465    4095    4725    5355    5775    5985
    6435    6615    6825    7245    7425    7875    8085    8415    8505    8925
    9135    9555    9765   10395   11655   12285   12705   12915   13545   14175
   14805   15015   15435   16065   16695   17325   17955   18585   19215   19305

The first odd 40 zumkeller numbers not ending in 5

   81081  153153  171171  189189  207207  223839  243243  261261  279279  297297
  351351  459459  513513  567567  621621  671517  729729  742203  783783  793611
  812889  837837  891891  908523  960687  999999 1024947 1054053 1072071 1073709
 1095633 1108107 1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377

Start 1 at 1
Count of zumkeller numbers up to      1000000
   1000000 tested found     229026 ratio  0.2290258
Count of zumkeller numbers up to      2000000
   2000000 tested found     457658 ratio  0.2288289
Count of zumkeller numbers up to      3000000
   3000000 tested found     686048 ratio  0.2286826
Count of zumkeller numbers up to      4000000
   4000000 tested found     914806 ratio  0.2287014
Count of zumkeller numbers up to      5000000
   5000000 tested found    1143521 ratio  0.2287042
Count of zumkeller numbers up to      6000000
   6000000 tested found    1372208 ratio  0.2287013
Count of zumkeller numbers up to      7000000
   7000000 tested found    1600977 ratio  0.2287110
Count of zumkeller numbers up to      8000000
   8000000 tested found    1829932 ratio  0.2287415
Count of zumkeller numbers up to      9000000
   9000000 tested found    2058883 ratio  0.2287648
Count of zumkeller numbers up to     10000000
  10000000 tested found    2287889 ratio  0.2287889
runtime    1.268 s
//zumkeller number with highest recursion count til 1e11
Count of recursion 59,641,327 for 8,996,229,720
8996229720 : 96 : 2^3*3^2*5*2237*11171_SoD_29253435120<
14626717560 = 36+45+60+72+90+120+180+360+201330+804312+805320+2010780+4021560+1124528715+4498114860+8996229720 =  14626717560
runtime    7.068 s  // at home 9.5s 

Real time: 8.689 s  CPU share: 98.74 %

//at home til 1e11 with 85 numbers with recursion count > 1e8
9900000000 tested found 2262797501 ratio  0.2285654 recursion 10.479
runtime   48.805 s
Count of zumkeller numbers up to  10000000000
rek_ -1 @ 9998443080 : 96 : 2^3*3^2*5*3041*9133_SoD_32509184760<

10000000000 tested found 2285655276 ratio  0.2285655 recursion 10.520
runtime   28.976 s

real  40m7,478s user  40m7,039s sys 0m0,057s
only 4 til 4,512,612,672
out_1e10.txt:104: rek_ -1 @ 584818848 : 72 : 2^5*3^2*1423*1427_SoD_1665413568<
out_1e10.txt:105: rek_ -1 @ 589754016 : 72 : 2^5*3^2*1429*1433_SoD_1679457780<
out_1e10.txt:174: rek_ -1 @ 1956249450 : 72 : 2*3^2*5^2*2083*2087_SoD_5260832928<
out_1e10.txt:291: rek_ -1 @ 4512612672 : 84 : 2^6*3^2*2797*2801_SoD_12943833396<

Perl

Library: ntheory
use strict;
use warnings;
use feature 'say';
use ntheory <is_prime divisor_sum divisors vecsum forcomb lastfor>;

sub in_columns {
    my($columns, $values) = @_;
    my @v = split ' ', $values;
    my $width = int(80/$columns);
    printf "%${width}d"x$columns."\n", @v[$_*$columns .. -1+(1+$_)*$columns] for 0..-1+@v/$columns;
    print "\n";
}

sub is_Zumkeller {
    my($n) = @_;
    return 0 if is_prime($n);
    my @divisors = divisors($n);
    return 0 unless @divisors > 2 && 0 == @divisors % 2;
    my $sigma = divisor_sum($n);
    return 0 unless 0 == $sigma%2 && ($sigma/2) >= $n;
    if (1 == $n%2) {
        return 1
    } else {
        my $Z = 0;
        forcomb { $Z++, lastfor if vecsum(@divisors[@_]) == $sigma/2 } @divisors;
        return $Z;
    }
}

use constant Inf  => 1e10;

say 'First 220 Zumkeller numbers:';
my $n = 0; my $z;
$z .= do { $n < 220 ? (is_Zumkeller($_) and ++$n and "$_ ") : last } for 1 .. Inf;
in_columns(20, $z);

say 'First 40 odd Zumkeller numbers:';
$n = 0; $z = '';
$z .= do { $n < 40 ? (!!($_%2) and is_Zumkeller($_) and ++$n and "$_ ") : last } for 1 .. Inf;
in_columns(10, $z);

say 'First 40 odd Zumkeller numbers not divisible by 5:';
$n = 0; $z = '';
$z .= do { $n < 40 ? (!!($_%2 and $_%5) and is_Zumkeller($_) and ++$n and "$_ ") : last } for 1 .. Inf;
in_columns(10, $z);
Output:
First 220 Zumkeller numbers:
   6  12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96
 102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198
 204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282
 294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368
 372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462
 464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540
 544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620
 624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708
 714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810
 812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896
 906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984

First 40 odd Zumkeller numbers:
     945    1575    2205    2835    3465    4095    4725    5355    5775    5985
    6435    6615    6825    7245    7425    7875    8085    8415    8505    8925
    9135    9555    9765   10395   11655   12285   12705   12915   13545   14175
   14805   15015   15435   16065   16695   17325   17955   18585   19215   19305

First 40 odd Zumkeller numbers not divisible by 5:
   81081  153153  171171  189189  207207  223839  243243  261261  279279  297297
  351351  459459  513513  567567  621621  671517  729729  742203  783783  793611
  812889  837837  891891  908523  960687  999999 1024947 1054053 1072071 1073709
 1095633 1108107 1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377

Phix

Translation of: Go
with javascript_semantics
function isPartSum(sequence f, integer l, t)
    if t=0 then return true end if
    if l=0 then return false end if
    integer last = f[l]
    return (t>=last and isPartSum(f, l-1, t-last))
        or isPartSum(f, l-1, t)
end function
 
function isZumkeller(integer n)
    sequence f = factors(n,1)
    integer t = sum(f)
    -- an odd sum cannot be split into two equal sums
    if odd(t) then return false end if
    -- if n is odd use 'abundant odd number' optimization
    if odd(n) then
        integer abundance := t - 2*n
        return abundance>0 and even(abundance)
    end if
    -- if n and t both even check for any partition of t/2
    return isPartSum(f, length(f), t/2)
end function
 
sequence tests = {{220,1,0,20,"%3d %n"},
                  {40,2,0,10,"%5d %n"},
                  {40,2,5,8,"%7d %n"}}
integer lim, step, rem, cr; string fmt
for t=1 to length(tests) do
    {lim, step, rem, cr, fmt} = tests[t]
    string o = iff(step=1?"":"odd "),
           w = iff(rem=0?"":"which don't end in 5 ")
    printf(1,"The first %d %sZumkeller numbers %sare:\n",{lim,o,w})
    integer i = step+1, count = 0
    while count<lim do
        if (rem=0 or remainder(i,10)!=rem)
        and isZumkeller(i) then
            count += 1
            printf(1,fmt,{i,remainder(count,cr)=0})
        end if
        i += step
    end while
    printf(1,"\n")
end for
Output:
The first 220 Zumkeller numbers are:
  6  12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96
102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198
204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282
294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368
372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462
464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540
544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620
624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708
714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810
812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896
906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984

The first 40 odd Zumkeller numbers are:
  945  1575  2205  2835  3465  4095  4725  5355  5775  5985
 6435  6615  6825  7245  7425  7875  8085  8415  8505  8925
 9135  9555  9765 10395 11655 12285 12705 12915 13545 14175
14805 15015 15435 16065 16695 17325 17955 18585 19215 19305

The first 40 odd Zumkeller numbers which don't end in 5 are:
  81081  153153  171171  189189  207207  223839  243243  261261
 279279  297297  351351  459459  513513  567567  621621  671517
 729729  742203  783783  793611  812889  837837  891891  908523
 960687  999999 1024947 1054053 1072071 1073709 1095633 1108107
1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377

Aside: not that it really matters here, but passing an explicit length to isPartSum (ie, l) is generally quite a bit faster than trimming (and therefore cloning) the contents of f, just so that we can rely on length(f), and obviously that would get more significant were f much longer, though it does in fact max out at a mere 80 here.
In contrast, reversing the "or" tests on the final return of isPartSum() has a significant detrimental effect, since it triggers a full recursive search for almost all l=0 failures before ever letting a single t=0 succeed. Quite why I don't get anything like the same slowdown when I modify the Go code is beyond me...

PicoLisp

(de propdiv (N)
   (make
      (for I N
         (and (=0 (% N I)) (link I)) ) ) )
(de sum? (G L)
   (cond
      ((=0 G) T)
      ((= (car L) G) T)
      ((cdr L)
         (if (> (car L) G)
            (sum? G (cdr L))
            (or
               (sum? (- G (car L)) (cdr L))
               (sum? G (cdr L)) ) ) ) ) )
(de zum? (N)
   (let (L (propdiv N)  S (sum prog L))
      (and
         (not (bit? 1 S))
         (if (bit? 1 N)
            (let A (- S (* 2 N))
               (and (gt0 A) (not (bit? 1 A)))
            )
            (sum?
               (- (/ S 2) (car L))
               (cdr L) ) ) ) ) )
(zero C)
(for (I 2 (> 220 C) (inc I))
   (when (zum? I)
      (prin (align 3 I) " ")
      (inc 'C)
      (and
         (=0 (% C 20))
         (prinl) ) ) )
(prinl)
(zero C)
(for (I 1 (> 40 C) (inc 'I 2))
   (when (zum? I)
      (prin (align 9 I) " ")
      (inc 'C)
      (and
         (=0 (% C 8))
         (prinl) ) ) )
(prinl)
(zero C)
# cheater
(for (I 81079 (> 40 C) (inc 'I 2))
   (when (and (<> 5 (% I 10)) (zum? I))
      (prin (align 9 I) " ")
      (inc 'C)
      (and
         (=0 (% C 8))
         (prinl) ) ) )
Output:
  6  12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96
102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198
204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282
294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368
372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462
464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540
544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620
624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708
714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810
812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896
906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984

      945      1575      2205      2835      3465      4095      4725      5355
     5775      5985      6435      6615      6825      7245      7425      7875
     8085      8415      8505      8925      9135      9555      9765     10395
    11655     12285     12705     12915     13545     14175     14805     15015
    15435     16065     16695     17325     17955     18585     19215     19305

    81081    153153    171171    189189    207207    223839    243243    261261
   279279    297297    351351    459459    513513    567567    621621    671517
   729729    742203    783783    793611    812889    837837    891891    908523
   960687    999999   1024947   1054053   1072071   1073709   1095633   1108107
  1145529   1162161   1198197   1224531   1270269   1307691   1324323   1378377

Python

Procedural

Modified from a footnote at OEIS A083207 (see reference in problem text) by Charles R Greathouse IV.

from sympy import divisors

from sympy.combinatorics.subsets import Subset

def isZumkeller(n):
    d = divisors(n)
    s = sum(d)
    if not s % 2 and max(d) <= s/2:
        for x in range(1, 2**len(d)):
            if sum(Subset.unrank_binary(x, d).subset) == s/2:
                return True

    return False



def printZumkellers(N, oddonly=False):
    nprinted = 0
    for n in range(1, 10**5):
        if (oddonly == False or n % 2) and isZumkeller(n):
            print(f'{n:>8}', end='')
            nprinted += 1
            if nprinted % 10 == 0:
                print()
            if nprinted >= N:
                return


print("220 Zumkeller numbers:")
printZumkellers(220)
print("\n\n40 odd Zumkeller numbers:")
printZumkellers(40, True)
Output:
220 Zumkeller numbers:
       6      12      20      24      28      30      40      42      48      54
      56      60      66      70      78      80      84      88      90      96
     102     104     108     112     114     120     126     132     138     140
     150     156     160     168     174     176     180     186     192     198
     204     208     210     216     220     222     224     228     234     240
     246     252     258     260     264     270     272     276     280     282
     294     300     304     306     308     312     318     320     330     336
     340     342     348     350     352     354     360     364     366     368
     372     378     380     384     390     396     402     408     414     416
     420     426     432     438     440     444     448     456     460     462
     464     468     474     476     480     486     490     492     496     498
     500     504     510     516     520     522     528     532     534     540
     544     546     550     552     558     560     564     570     572     580
     582     588     594     600     606     608     612     616     618     620
     624     630     636     640     642     644     650     654     660     666
     672     678     680     684     690     696     700     702     704     708
     714     720     726     728     732     736     740     744     750     756
     760     762     768     770     780     786     792     798     804     810
     812     816     820     822     828     832     834     836     840     852
     858     860     864     868     870     876     880     888     894     896
     906     910     912     918     920     924     928     930     936     940
     942     945     948     952     960     966     972     978     980     984


40 odd Zumkeller numbers:
     945    1575    2205    2835    3465    4095    4725    5355    5775    5985
    6435    6615    6825    7245    7425    7875    8085    8415    8505    8925
    9135    9555    9765   10395   11655   12285   12705   12915   13545   14175
   14805   15015   15435   16065   16695   17325   17955   18585   19215   19305

Functional

Relying on the standard Python libraries, as an alternative to importing SymPy:

'''Zumkeller numbers'''

from itertools import (
    accumulate, chain, count, groupby, islice, product
)
from functools import reduce
from math import floor, sqrt
import operator


# ---------------------- ZUMKELLER -----------------------

# isZumkeller :: Int -> Bool
def isZumkeller(n):
    '''True if there exists a disjoint partition
       of the divisors of m, such that the two sets have
       the same sum.
       (In other words, if n is in OEIS A083207)
    '''
    ds = divisors(n)
    m = sum(ds)
    if even(m):
        half = m // 2
        return half in ds or (
            all(map(ge(half), ds)) and (
                summable(half, ds)
            )
        )
    else:
        return False


# summable :: Int -> [Int] -> Bool
def summable(x, xs):
    '''True if any subset of the sorted
       list xs sums to x.
    '''
    if xs:
        if x in xs:
            return True
        else:
            t = xs[1:]
            return summable(x - xs[0], t) or summable(x, t)
    else:
        return False


# ------------------------- TEST -------------------------
# main :: IO ()
def main():
    '''First 220 Zumkeller numbers,
       and first 40 odd Zumkellers.
    '''

    tenColumns = tabulated(10)

    print('First 220 Zumkeller numbers:\n')
    print(tenColumns(
        take(220)(
            filter(isZumkeller, count(1))
        )
    ))
    print('\nFirst 40 odd Zumkeller numbers:\n')
    print(tenColumns(
        take(40)(
            filter(isZumkeller, enumFromThen(1)(3))
        )
    ))


# ---------------------- TABULATION ----------------------

# tabulated :: Int -> [a] -> String
def tabulated(nCols):
    '''String representation of a list
       of values as rows of n columns.
    '''
    def go(xs):
        ts = [str(x) for x in xs]
        w = 1 + max(len(x) for x in ts)
        return '\n'.join([
            ''.join(row) for row
            in chunksOf(nCols)([
                t.rjust(w, ' ') for t in ts
            ])
        ])
    return go


# ----------------------- GENERIC ------------------------

# chunksOf :: Int -> [a] -> [[a]]
def chunksOf(n):
    '''A series of lists of length n, subdividing the
       contents of xs. Where the length of xs is not evenly
       divible, the final list will be shorter than n.
    '''
    def go(xs):
        return (
            xs[i:n + i] for i in range(0, len(xs), n)
        ) if 0 < n else None
    return go


# divisors :: Int -> [Int]
def divisors(n):
    '''The ordered divisors of n.
    '''
    def go(a, x):
        return [a * b for a, b in product(
            a,
            accumulate(chain([1], x), operator.mul)
        )]
    return sorted(
        reduce(go, [
            list(g) for _, g in groupby(primeFactors(n))
        ], [1])
    ) if 1 < n else [1]


# enumFromThen :: Int -> Int -> [Int]
def enumFromThen(m):
    '''A non-finite stream of integers
       starting at m, and continuing
       at the interval between m and n.
    '''
    return lambda n: count(m, n - m)


# even :: Int -> Bool
def even(x):
    '''True if x is an integer
       multiple of two.
    '''
    return 0 == x % 2


# ge :: Eq a => a -> a -> Bool
def ge(a):
    def go(b):
        return operator.ge(a, b)
    return go


# primeFactors :: Int -> [Int]
def primeFactors(n):
    '''A list of the prime factors of n.
    '''
    def f(qr):
        r = qr[1]
        return step(r), 1 + r

    def step(x):
        return 1 + (x << 2) - ((x >> 1) << 1)

    def go(x):
        root = floor(sqrt(x))

        def p(qr):
            q = qr[0]
            return root < q or 0 == (x % q)

        q = until(p)(f)(
            (2 if 0 == x % 2 else 3, 1)
        )[0]
        return [x] if q > root else [q] + go(x // q)

    return go(n)


# take :: Int -> [a] -> [a]
# take :: Int -> String -> String
def take(n):
    '''The prefix of xs of length n,
       or xs itself if n > length xs.
    '''
    def go(xs):
        return (
            xs[0:n]
            if isinstance(xs, (list, tuple))
            else list(islice(xs, n))
        )
    return go


# until :: (a -> Bool) -> (a -> a) -> a -> a
def until(p):
    '''The result of repeatedly applying f until p holds.
       The initial seed value is x.
    '''
    def go(f):
        def g(x):
            v = x
            while not p(v):
                v = f(v)
            return v
        return g
    return go


# MAIN ---
if __name__ == '__main__':
    main()
Output:
First 220 Zumkeller numbers:

   6  12  20  24  28  30  40  42  48  54
  56  60  66  70  78  80  84  88  90  96
 102 104 108 112 114 120 126 132 138 140
 150 156 160 168 174 176 180 186 192 198
 204 208 210 216 220 222 224 228 234 240
 246 252 258 260 264 270 272 276 280 282
 294 300 304 306 308 312 318 320 330 336
 340 342 348 350 352 354 360 364 366 368
 372 378 380 384 390 396 402 408 414 416
 420 426 432 438 440 444 448 456 460 462
 464 468 474 476 480 486 490 492 496 498
 500 504 510 516 520 522 528 532 534 540
 544 546 550 552 558 560 564 570 572 580
 582 588 594 600 606 608 612 616 618 620
 624 630 636 640 642 644 650 654 660 666
 672 678 680 684 690 696 700 702 704 708
 714 720 726 728 732 736 740 744 750 756
 760 762 768 770 780 786 792 798 804 810
 812 816 820 822 828 832 834 836 840 852
 858 860 864 868 870 876 880 888 894 896
 906 910 912 918 920 924 928 930 936 940
 942 945 948 952 960 966 972 978 980 984

First 40 odd Zumkeller numbers:

   945  1575  2205  2835  3465  4095  4725  5355  5775  5985
  6435  6615  6825  7245  7425  7875  8085  8415  8505  8925
  9135  9555  9765 10395 11655 12285 12705 12915 13545 14175
 14805 15015 15435 16065 16695 17325 17955 18585 19215 19305

Racket

Translation of: Zkl
#lang racket

(require math/number-theory)

(define (zum? n)
  (let* ((set (divisors n))
         (sum (apply + set)))
    (cond
      [(odd? sum) #f]
      [(odd? n) ; if n is odd use 'abundant odd number' optimization
       (let ((abundance (- sum (* n 2)))) (and (positive? abundance) (even? abundance)))]
      [else
       (let ((sum/2 (quotient sum 2)))
         (let loop ((acc (car set)) (set (cdr set)))
           (cond [(= acc sum/2) #t]
                 [(> acc sum/2) #f]
                 [(null? set) #f]
                 [else (or (loop (+ (car set) acc) (cdr set))
                           (loop acc (cdr set)))])))])))

(define (first-n-matching-naturals count pred)
  (for/list ((i count) (j (stream-filter pred (in-naturals 1)))) j))

(define (tabulate title ns (row-width 132))
  (displayln title)
  (let* ((cell-width (+ 2 (order-of-magnitude (apply max ns))))
         (cells/row (quotient row-width cell-width)))
    (let loop ((ns ns) (col cells/row))
      (cond [(null? ns) (unless (= col cells/row) (newline))]
            [(zero? col) (newline) (loop ns cells/row)]
            [else (display (~a #:width cell-width #:align 'right (car ns)))
                  (loop (cdr ns) (sub1 col))]))))


(tabulate  "First 220 Zumkeller numbers:" (first-n-matching-naturals 220 zum?))
(newline)
(tabulate "First 40 odd Zumkeller numbers:"
          (first-n-matching-naturals 40 (λ (n) (and (odd? n) (zum? n)))))
(newline)
(tabulate "First 40 odd Zumkeller numbers not ending in 5:"
          (first-n-matching-naturals 40 (λ (n) (and (odd? n) (not (= 5 (modulo n 10))) (zum? n)))))
Output:
First 220 Zumkeller numbers:
   6  12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96 102 104 108 112 114 120 126 132 138 140 150 156 160
 168 174 176 180 186 192 198 204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282 294 300 304 306 308 312
 318 320 330 336 340 342 348 350 352 354 360 364 366 368 372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460
 462 464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540 544 546 550 552 558 560 564 570 572 580 582 588
 594 600 606 608 612 616 618 620 624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708 714 720 726 728 732
 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810 812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888
 894 896 906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984

First 40 odd Zumkeller numbers:
   945  1575  2205  2835  3465  4095  4725  5355  5775  5985  6435  6615  6825  7245  7425  7875  8085  8415  8505  8925  9135  9555
  9765 10395 11655 12285 12705 12915 13545 14175 14805 15015 15435 16065 16695 17325 17955 18585 19215 19305

First 40 odd Zumkeller numbers not ending in 5:
   81081  153153  171171  189189  207207  223839  243243  261261  279279  297297  351351  459459  513513  567567  621621  671517
  729729  742203  783783  793611  812889  837837  891891  908523  960687  999999 1024947 1054053 1072071 1073709 1095633 1108107
 1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377

Raku

(formerly Perl 6)

Library: ntheory
use ntheory:from<Perl5> <factor is_prime>;

sub zumkeller ($range)  {
    $range.grep: -> $maybe {
        next if $maybe < 3 or $maybe.&is_prime;
        my @divisors = $maybe.&factor.combinations».reduce( &[×] ).unique.reverse;
        next unless [and] @divisors > 2, @divisors %% 2, (my $sum = @divisors.sum) %% 2, ($sum /= 2) ≥ $maybe;
        my $zumkeller = False;
        if $maybe % 2 {
            $zumkeller = True
        } else {
            TEST: for 1 ..^ @divisors/2 -> $c {
                @divisors.combinations($c).map: -> $d {
                    next if $d.sum != $sum;
                    $zumkeller = True and last TEST
                }
            }
        }
        $zumkeller
    }
}

say "First 220 Zumkeller numbers:\n" ~
    zumkeller(^Inf)[^220].rotor(20)».fmt('%3d').join: "\n";

put "\nFirst 40 odd Zumkeller numbers:\n" ~
    zumkeller((^Inf).map: * × 2 + 1)[^40].rotor(10)».fmt('%7d').join: "\n";

# Stretch. Slow to calculate. (minutes) 
put "\nFirst 40 odd Zumkeller numbers not divisible by 5:\n" ~
    zumkeller(flat (^Inf).map: {my \p = 10 * $_; p+1, p+3, p+7, p+9} )[^40].rotor(10)».fmt('%7d').join: "\n";
Output:
First 220 Zumkeller numbers:
  6  12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96
102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198
204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282
294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368
372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462
464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540
544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620
624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708
714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810
812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896
906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984

First 40 odd Zumkeller numbers:
    945    1575    2205    2835    3465    4095    4725    5355    5775    5985
   6435    6615    6825    7245    7425    7875    8085    8415    8505    8925
   9135    9555    9765   10395   11655   12285   12705   12915   13545   14175
  14805   15015   15435   16065   16695   17325   17955   18585   19215   19305

First 40 odd Zumkeller numbers not divisible by 5:
  81081  153153  171171  189189  207207  223839  243243  261261  279279  297297
 351351  459459  513513  567567  621621  671517  729729  742203  783783  793611
 812889  837837  891891  908523  960687  999999 1024947 1054053 1072071 1073709
1095633 1108107 1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377

REXX

The construction of the partitions were created in the order in which the most likely partitions would match.

/*REXX pgm finds & shows Zumkeller numbers: 1st N; 1st odd M; 1st odd V not ending in 5.*/
parse arg n m v .                                /*obtain optional arguments from the CL*/
if n=='' | n==","  then n= 220                   /*Not specified?  Then use the default.*/
if m=='' | m==","  then m=  40                   /* "      "         "   "   "     "    */
if v=='' | v==","  then v=  40                   /* "      "         "   "   "     "    */
@zum= ' Zumkeller numbers are: '                 /*literal used for displaying messages.*/
sw= linesize() - 1                               /*obtain the usable screen width.      */
say
if n>0  then say center(' The first '       n       @zum,  sw, "═")
#= 0                                             /*the count of Zumkeller numbers so far*/
$=                                               /*initialize the  $  list  (to a null).*/
        do j=1  until #==n                       /*traipse through integers 'til done.  */
        if \Zum(j)  then iterate                 /*if not a Zumkeller number, then skip.*/
        #= # + 1;           call add$            /*bump Zumkeller count;  add to $ list.*/
        end   /*j*/

if $\==''  then say $                            /*Are there any residuals? Then display*/
say
if m>0  then say center(' The first odd '   m       @zum,  sw, "═")
#= 0                                             /*the count of Zumkeller numbers so far*/
$=                                               /*initialize the  $  list  (to a null).*/
        do j=1  by 2  until #==m                 /*traipse through integers 'til done.  */
        if \Zum(j)  then iterate                 /*if not a Zumkeller number, then skip.*/
        #= # + 1;           call add$            /*bump Zumkeller count;  add to $ list.*/
        end   /*j*/

if $\==''  then say $                            /*Are there any residuals? Then display*/
say
if v>0  then say center(' The first odd '   v       " (not ending in 5) " @zum,  sw, '═')
#= 0                                             /*the count of Zumkeller numbers so far*/
$=                                               /*initialize the  $  list  (to a null).*/
        do j=1  by 2  until #==v                 /*traipse through integers 'til done.  */
        if right(j,1)==5  then iterate           /*skip if odd number ends in digit "5".*/
        if \Zum(j)  then iterate                 /*if not a Zumkeller number, then skip.*/
        #= # + 1;           call add$            /*bump Zumkeller count;  add to $ list.*/
        end   /*j*/

if $\==''  then say $                            /*Are there any residuals? Then display*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
add$: _= strip($ j, 'L');   if length(_)<sw  then do;  $= _;  return;  end    /*add to $*/
      say  strip($, 'L');                              $= j;  return          /*say, add*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
iSqrt: procedure; parse arg x;  r= 0;  q= 1;                    do while q<=x; q=q*4;  end
          do while q>1; q= q%4; _= x-r-q; r= r%2; if _>=0  then do; x= _; r= r+q; end; end
       return r                                  /*R  is the integer square root of  X. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
PDaS: procedure; parse arg x 1 b;  odd= x//2     /*obtain  X  and  B (the 1st argument).*/
      if x==1  then return 1 1                   /*handle special case for unity.       */
      r= iSqrt(x)                                /*calculate integer square root of  X. */
      a= 1                                       /* [↓]  use all, or only odd numbers.  */
      sig= a + b                                 /*initialize the sigma  (so far)   ___ */
          do j=2+odd  by 1+odd  to r - (r*r==x)  /*divide by some integers up to   √ X  */
          if x//j==0  then do;  a=a j;  b= x%j b /*if ÷, add both divisors to α & ß.    */
                                sig= sig +j +x%j /*bump the sigma (the sum of divisors).*/
                           end
          end   /*j*/                            /* [↑]  %  is the REXX integer division*/
                                                 /* [↓]  adjust for a square.        ___*/
      if j*j==x  then  return sig+j  a j b       /*Was  X  a square?    If so, add  √ X */
                       return sig    a   b       /*return the divisors  (both lists).   */
/*──────────────────────────────────────────────────────────────────────────────────────*/
Zum:  procedure; parse arg x .                   /*obtain a # to be tested for Zumkeller*/
      if x<6    then return 0                    /*test if X is too low     "      "    */
      if x<945  then if x//2==1  then return 0   /*  "   " "  "  "   "  for odd    "    */
      parse value  PDaS(x)  with  sigma pdivs    /*obtain sigma and the proper divisors.*/
      if sigma//2  then return 0                 /*Is the  sigma  odd?    Not Zumkeller.*/
      #= words(pdivs)                            /*count the number of divisors for  X. */
      if #<3       then return 0                 /*Not enough divisors?    "      "     */
      if x//2      then do; _= sigma - x - x     /*use abundant optimization for odd #'s*/
                            return _>0 & _//2==0 /*Abundant is > 0 and even?  It's a Zum*/
                        end
      if #>23      then return 1                 /*# divisors is 24 or more?  It's a Zum*/

           do i=1  for #;   @.i= word(pdivs, i)  /*assign proper divisors to the @ array*/
           end   /*i*/
      c=0;            u= 2**#;   !.= .
          do p=1  for u-2;       b= x2b(d2x(p))  /*convert P──►binary with leading zeros*/
          b= right(strip(b, 'L', 0), #, 0)       /*ensure enough leading zeros for  B.  */
          r= reverse(b); if !.r\==. then iterate /*is this binary# a palindrome of prev?*/
          c= c + 1;   yy.c= b;   !.b=            /*store this particular combination.   */
          end   /*p*/

          do part=1  for c;      p1= 0;   p2= 0  /*test of two partitions add to same #.*/
          _= yy.part                             /*obtain one method of partitioning.   */
            do cp=1  for #                       /*obtain the sums of the two partitions*/
            if substr(_, cp, 1)  then p1= p1 + @.cp     /*if a  one, then add it to  P1.*/
                                 else p2= p2 + @.cp     /* " " zero,   "   "   "  "  P2.*/
            end   /*cp*/
          if p1==p2  then return 1               /*Partition sums equal?  Then X is Zum.*/
          end   /*part*/
      return 0                                   /*no partition sum passed.  X isn't Zum*/
output   when using the default inputs:
══════════════════════════════════════════════ The first  220  Zumkeller numbers are: ═══════════════════════════════════════════════
6 12 20 24 28 30 40 42 48 54 56 60 66 70 78 80 84 88 90 96 102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186
192 198 204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282 294 300 304 306 308 312 318 320 330 336 340
342 348 350 352 354 360 364 366 368 372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462 464 468 474 476
480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540 544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612
616 618 620 624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708 714 720 726 728 732 736 740 744 750 756
760 762 768 770 780 786 792 798 804 810 812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896 906 910 912
918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984

═════════════════════════════════════════════ The first odd  40  Zumkeller numbers are: ═════════════════════════════════════════════
945 1575 2205 2835 3465 4095 4725 5355 5775 5985 6435 6615 6825 7245 7425 7875 8085 8415 8505 8925 9135 9555 9765 10395 11655 12285
12705 12915 13545 14175 14805 15015 15435 16065 16695 17325 17955 18585 19215 19305

═══════════════════════════════════ The first odd  40  (not ending in 5)   Zumkeller numbers are: ═══════════════════════════════════
81081 153153 171171 189189 207207 223839 243243 261261 279279 297297 351351 459459 513513 567567 621621 671517 729729 742203 783783
793611 812889 837837 891891 908523 960687 999999 1024947 1054053 1072071 1073709 1095633 1108107 1145529 1162161 1198197 1224531
1270269 1307691 1324323 1378377

Ring

load "stdlib.ring"

see "working..." + nl
see "The first 220 Zumkeller numbers are:" + nl

permut = []
zumind = []
zumodd = []
limit = 19305
num1 = 0
num2 = 0

for n = 2 to limit
    zumkeller = []
    zumList = []
    permut = []
    calmo = []
    zumind = []
    num = 0
    nold = 0
    for m = 1 to n
        if n % m = 0 
           num = num + 1
           add(zumind,m)
        ok
    next
    for p = 1 to num
        add(zumList,1)
        add(zumList,2)
    next
    permut(zumList)
    lenZum = len(zumList)

    for n2 = 1 to len(permut)/lenZum 
        str = ""
        for m = (n2-1)*lenZum+1 to n2*lenZum
            str = str + string(permut[m])
        next
        if str != ""
           strNum = number(str)
           add(calmo,strNum)
        ok
    next

    calmo = sort(calmo)

    for x = len(calmo) to 2 step -1
        if calmo[x] = calmo[x-1]
           del(calmo,x)
        ok
    next

    zumkeller = []
    calmoLen = len(string(calmo[1]))
    calmoLen2 = calmoLen/2
    for y = 1 to len(calmo)
        tmpStr = string(calmo[y])
        tmp1 = left(tmpStr,calmoLen2)
        tmp2 = number(tmp1)
        add(zumkeller,tmp2)
    next

    zumkeller = sort(zumkeller)

    for x = len(zumkeller) to 2 step -1
        if zumkeller[x] = zumkeller[x-1]
           del(zumkeller,x)
        ok
    next

    for z = 1 to len(zumkeller)
        zumsum1 = 0
        zumsum2 = 0
        zum1 = []
        zum2 = []

        for m = 1 to len(string(zumkeller[z]))
            zumstr = string(zumkeller[z])
            tmp = number(zumstr[m])
            if tmp = 1
               add(zum1,zumind[m])
            else
               add(zum2,zumind[m])
            ok
        next 

        for z1 = 1 to len(zum1)
            zumsum1 = zumsum1 + zum1[z1]
        next

        for z2 = 1 to len(zum2)
            zumsum2 = zumsum2 + zum2[z2]
        next

        if zumsum1 = zumsum2
           num1 = num1 + 1
           if n != nold
              if num1 < 221
                 if (n-1)%22 = 0
                    see nl + " " + n
                 else
                    see " " + n
                 ok
              ok
              if zumsum1%2 = 1
                 num2 = num2 + 1
                 if num2 < 41
                    add(zumodd,n)
                 ok
              ok
           ok
           nold = n
        ok
    next    
next

see "The first 40 odd Zumkeller numbers are:" + nl
for n = 1 to len(zumodd)
    if (n-1)%8 = 0
       see nl + " " + zumodd[n]
    else
       see " " + zumodd[n]
    ok
next

see nl + "done..." + nl

func permut(list)
     for perm = 1 to factorial(len(list))
         for i = 1 to len(list)
             add(permut,list[i])
         next
         perm(list)
     next
 
func perm(a)
     elementcount = len(a)
     if elementcount < 1 
        return 
     ok
     pos = elementcount-1
     while a[pos] >= a[pos+1] 
           pos -= 1
           if pos <= 0 permutationReverse(a, 1, elementcount)
              return
           ok
     end
     last = elementcount
     while a[last] <= a[pos]
           last -= 1
     end
     temp = a[pos]
     a[pos] = a[last]
     a[last] = temp
     permReverse(a, pos+1, elementcount)
 
 func permReverse(a,first,last)
      while first < last
            temp = a[first]
            a[first] = a[last]
            a[last] = temp
            first += 1
            last -= 1
      end

Output:

working...
The first 220 Zumkeller numbers are:
6   12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96
102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198
204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282
294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368
372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462
464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540
544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620
624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708
714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810
812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896
906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984
The first 40 odd Zumkeller numbers are:
945     1575    2205    2835    3465    4095    4725    5355
5775    5985    6435    6615    6825    7245    7425    7875
8085    8415    8505    8925    9135    9555    9765    10395
11655   12285   12705   12915   13545   14175   14805   15015
15435   16065   16695   17325   17955   18585   19215   19305
done...

Ruby

class Integer
  
  def divisors
    res = [1, self]
    (2..Integer.sqrt(self)).each do |n|
      div, mod = divmod(n)
      res << n << div if mod.zero?
    end
    res.uniq.sort
  end
  
  def zumkeller?
    divs = divisors
    sum  = divs.sum
    return false unless sum.even? && sum >= self*2
    half = sum / 2
    max_combi_size = divs.size / 2
    1.upto(max_combi_size).any? do |combi_size|
      divs.combination(combi_size).any?{|combi| combi.sum == half}
    end
  end
  
end

def p_enum(enum, cols = 10, col_width = 8)
  enum.each_slice(cols) {|slice| puts "%#{col_width}d"*slice.size % slice}
end

puts "#{n=220} Zumkeller numbers:"
p_enum 1.step.lazy.select(&:zumkeller?).take(n), 14, 6

puts "\n#{n=40} odd Zumkeller numbers:"
p_enum 1.step(by: 2).lazy.select(&:zumkeller?).take(n)

puts "\n#{n=40} odd Zumkeller numbers not ending with 5:"
p_enum 1.step(by: 2).lazy.select{|x| x % 5 > 0 && x.zumkeller?}.take(n)
Output:
220 Zumkeller numbers:
     6    12    20    24    28    30    40    42    48    54    56    60    66    70
    78    80    84    88    90    96   102   104   108   112   114   120   126   132
   138   140   150   156   160   168   174   176   180   186   192   198   204   208
   210   216   220   222   224   228   234   240   246   252   258   260   264   270
   272   276   280   282   294   300   304   306   308   312   318   320   330   336
   340   342   348   350   352   354   360   364   366   368   372   378   380   384
   390   396   402   408   414   416   420   426   432   438   440   444   448   456
   460   462   464   468   474   476   480   486   490   492   496   498   500   504
   510   516   520   522   528   532   534   540   544   546   550   552   558   560
   564   570   572   580   582   588   594   600   606   608   612   616   618   620
   624   630   636   640   642   644   650   654   660   666   672   678   680   684
   690   696   700   702   704   708   714   720   726   728   732   736   740   744
   750   756   760   762   768   770   780   786   792   798   804   810   812   816
   820   822   828   832   834   836   840   852   858   860   864   868   870   876
   880   888   894   896   906   910   912   918   920   924   928   930   936   940
   942   945   948   952   960   966   972   978   980   984

40 odd Zumkeller numbers:
     945    1575    2205    2835    3465    4095    4725    5355    5775    5985
    6435    6615    6825    7245    7425    7875    8085    8415    8505    8925
    9135    9555    9765   10395   11655   12285   12705   12915   13545   14175
   14805   15015   15435   16065   16695   17325   17955   18585   19215   19305

40 odd Zumkeller numbers not ending with 5:
   81081  153153  171171  189189  207207  223839  243243  261261  279279  297297
  351351  459459  513513  567567  621621  671517  729729  742203  783783  793611
  812889  837837  891891  908523  960687  999999 1024947 1054053 1072071 1073709
 1095633 1108107 1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377

Rust

use std::convert::TryInto;

/// Gets all divisors of a number, including itself
fn get_divisors(n: u32) -> Vec<u32> {
    let mut results = Vec::new();

    for i in 1..(n / 2 + 1) {
        if n % i == 0 {
            results.push(i);
        }
    }
    results.push(n);
    results
}

/// Calculates whether the divisors can be partitioned into two disjoint
/// sets that sum to the same value
fn is_summable(x: i32, divisors: &[u32]) -> bool {
    if !divisors.is_empty() {
        if divisors.contains(&(x as u32)) {
            return true;
        } else if let Some((first, t)) = divisors.split_first() {
            return is_summable(x - *first as i32, &t) || is_summable(x, &t);
        }
    }
    false
}

/// Calculates whether the number is a Zumkeller number
/// Zumkeller numbers are the set of numbers whose divisors can be partitioned
/// into two disjoint sets that sum to the same value. Each sum must contain
/// divisor values that are not in the other sum, and all of the divisors must
/// be in one or the other.
fn is_zumkeller_number(number: u32) -> bool {
    if number % 18 == 6 || number % 18 == 12 {
        return true;
    }

    let div = get_divisors(number);
    let divisor_sum: u32 = div.iter().sum();
    if divisor_sum == 0 {
        return false;
    }
    if divisor_sum % 2 == 1 {
        return false;
    }

    // numbers where n is odd and the abundance is even are Zumkeller numbers
    let abundance = divisor_sum as i32 - 2 * number as i32;
    if number % 2 == 1 && abundance > 0 && abundance % 2 == 0 {
        return true;
    }

    let half = divisor_sum / 2;
    return div.contains(&half)
        || (div.iter().filter(|&&d| d < half).count() > 0
            && is_summable(half.try_into().unwrap(), &div));
}

fn main() {
    println!("\nFirst 220 Zumkeller numbers:");
    let mut counter: u32 = 0;
    let mut i: u32 = 0;
    while counter < 220 {
        if is_zumkeller_number(i) {
            print!("{:>3}", i);
            counter += 1;
            print!("{}", if counter % 20 == 0 { "\n" } else { "," });
        }
        i += 1;
    }

    println!("\nFirst 40 odd Zumkeller numbers:");
    let mut counter: u32 = 0;
    let mut i: u32 = 3;
    while counter < 40 {
        if is_zumkeller_number(i) {
            print!("{:>5}", i);
            counter += 1;
            print!("{}", if counter % 20 == 0 { "\n" } else { "," });
        }
        i += 2;
    }
}
Output:
First 220 Zumkeller numbers:
  6, 12, 20, 24, 28, 30, 40, 42, 48, 54, 56, 60, 66, 70, 78, 80, 84, 88, 90, 96
102,104,108,112,114,120,126,132,138,140,150,156,160,168,174,176,180,186,192,198
204,208,210,216,220,222,224,228,234,240,246,252,258,260,264,270,272,276,280,282
294,300,304,306,308,312,318,320,330,336,340,342,348,350,352,354,360,364,366,368
372,378,380,384,390,396,402,408,414,416,420,426,432,438,440,444,448,456,460,462
464,468,474,476,480,486,490,492,496,498,500,504,510,516,520,522,528,532,534,540
544,546,550,552,558,560,564,570,572,580,582,588,594,600,606,608,612,616,618,620
624,630,636,640,642,644,650,654,660,666,672,678,680,684,690,696,700,702,704,708
714,720,726,728,732,736,740,744,750,756,760,762,768,770,780,786,792,798,804,810
812,816,820,822,828,832,834,836,840,852,858,860,864,868,870,876,880,888,894,896
906,910,912,918,920,924,928,930,936,940,942,945,948,952,960,966,972,978,980,984

Sidef

func is_Zumkeller(n) {

    return false if n.is_prime
    return false if n.is_square

    var sigma = n.sigma

    # n must have an even abundance
    return false if (sigma.is_odd || (sigma < 2*n))

    # true if n is odd and has an even abundance
    return true if n.is_odd    # conjecture

    var divisors = n.divisors

    for k in (2 .. divisors.end) {
        divisors.combinations(k, {|*a|
            if (2*a.sum == sigma) {
                return true
            }
        })
    }

    return false
}

say "First 220 Zumkeller numbers:"
say (1..Inf -> lazy.grep(is_Zumkeller).first(220).join(' '))

say "\nFirst 40 odd Zumkeller numbers: "
say (1..Inf `by` 2 -> lazy.grep(is_Zumkeller).first(40).join(' '))

say "\nFirst 40 odd Zumkeller numbers not divisible by 5: "
say (1..Inf `by` 2 -> lazy.grep { _ % 5 != 0 }.grep(is_Zumkeller).first(40).join(' '))
Output:
First 220 Zumkeller numbers:
6 12 20 24 28 30 40 42 48 54 56 60 66 70 78 80 84 88 90 96 102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198 204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282 294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368 372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462 464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540 544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620 624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708 714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810 812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896 906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984

First 40 odd Zumkeller numbers: 
945 1575 2205 2835 3465 4095 4725 5355 5775 5985 6435 6615 6825 7245 7425 7875 8085 8415 8505 8925 9135 9555 9765 10395 11655 12285 12705 12915 13545 14175 14805 15015 15435 16065 16695 17325 17955 18585 19215 19305

First 40 odd Zumkeller numbers not divisible by 5: 
81081 153153 171171 189189 207207 223839 243243 261261 279279 297297 351351 459459 513513 567567 621621 671517 729729 742203 783783 793611 812889 837837 891891 908523 960687 999999 1024947 1054053 1072071 1073709 1095633 1108107 1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377

Standard ML

exception Found of string ;

val divisors  = fn n =>
let
 val rec divr = fn  ( c, divlist ,i) =>
    if c <2*i then c::divlist
              else divr  (if c mod i = 0 then (c,i::divlist,i+1)  else (c,divlist,i+1) )
in
   divr  (n,[],1) 
end;


val subsetSums = fn M => fn input =>
let
 val getnrs = fn (v,x) =>                                 (* out: list of numbers index where v is true + x *)
  let
     val rec runthr =  fn (v,i,x,lst)=> if i>=M then (v,i,x,lst) else  runthr (v,i+1,x,if Vector.sub(v,i) then (i+x)::lst else lst) ;
  in
     #4 (runthr (v,0,x,[]))
  end;

 val nwVec =  fn  (v,nrs) =>
  let
    val rec upd = fn (v,i,[])   => (v,i,[])
                  | (v,i,h::t)  => upd ( case Int.compare (h,M) of
		            LESS    => ( Vector.update (v,h,true),i+1,t) 
		          | GREATER => (v,i+1,t)
		          | EQUAL   => raise Found ("done "^(Int.toString h))  ) 
  in
    #1 (upd (v,0,nrs))
  end;
  
 val rec setSums = fn ([],v)  => ([],v)
                   | (x::t,v) => setSums(t, nwVec(v, getnrs (v,x))) 
in

  #2 (setSums (input,Vector.tabulate (M+1,fn 0=> true|_=>false) ))

end;


val rec Zumkeller =  fn n =>
  let
   val d    =  divisors n;
   val s    =  List.foldr op+ 0 d ;
   val hs   =  s div 2 -n ;
  in
   
   if s mod 2 = 1 orelse 0 > hs then false else
       Vector.sub (  subsetSums hs (tl d) ,hs)             handle Found nr => true

end;

call loop and output - interpreter

- val Zumkellerlist = fn step =>   fn no5 =>
let
   val rec loop = fn incr => fn  (i,n,v) =>
        if i=  (case  incr of 1 => 221  | 2 => 41 | _ => 5 )
	        then (0,n,v)
                else  if n mod 5 = 0 andalso no5 then loop incr (i,n+incr,v) else
		   if Zumkeller n  then loop incr (i+1,n+incr,(i,n)::v) else loop incr (i,n+incr,v)
in
    rev (#3 ( loop step (1,3,[])))
end;
- List.app (fn x=> print (Int.toString (#2 x) ^ ", "))  (Zumkellerlist 1 false) ;
6, 12, 20, 24, 28, 30, 40, 42, 48, 54, 56, 60, 66, 70, 78, 80, 84, 88, 90, 96, 102, 104, 108, 112, 114, 120, 126, 132,
138, 140, 150, 156, 160, 168, 174, 176, 180, 186, 192, 198, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252,
258, 260, 264, 270, 272, 276, 280, 282, 294, 300, 304, 306, 308, 312, 318, 320, 330, 336, 340, 342, 348, 350, 352, 354,
360, 364, 366, 368, 372, 378, 380, 384, 390, 396, 402, 408, 414, 416, 420, 426, 432, 438, 440, 444, 448, 456, 460, 462,
464, 468, 474, 476, 480, 486, 490, 492, 496, 498, 500, 504, 510, 516, 520, 522, 528, 532, 534, 540, 544, 546, 550, 552,
558, 560, 564, 570, 572, 580, 582, 588, 594, 600, 606, 608, 612, 616, 618, 620, 624, 630, 636, 640, 642, 644, 650, 654,
660, 666, 672, 678, 680, 684, 690, 696, 700, 702, 704, 708, 714, 720, 726, 728, 732, 736, 740, 744, 750, 756, 760, 762,
768, 770, 780, 786, 792, 798, 804, 810, 812, 816, 820, 822, 828, 832, 834, 836, 840, 852, 858, 860, 864, 868, 870, 876,
880, 888, 894, 896, 906, 910, 912, 918, 920, 924, 928, 930, 936, 940, 942, 945, 948, 952, 960, 966, 972, 978, 980, 984

- List.app (fn x=> print (Int.toString (#2 x) ^ ", "))  (Zumkellerlist 2 false) ;

945, 1575, 2205, 2835, 3465, 4095, 4725, 5355, 5775, 5985, 6435, 6615, 6825, 7245, 7425, 7875, 8085, 8415, 8505, 8925,
9135, 9555, 9765, 10395, 11655, 12285, 12705, 12915, 13545, 14175, 14805, 15015, 15435, 16065, 16695, 17325, 17955, 
8585, 19215, 19305


-  List.app (fn x=> print (Int.toString (#2 x) ^ ", "))  (Zumkellerlist 2 true) ;
81081, 153153, 171171, 189189, 207207, 223839, 243243, 261261, 279279, 297297, 351351, 459459, 513513, 567567, 621621, 671517, 729729,
742203, 783783, 793611, 812889, 837837, 891891, 908523, 960687, 999999, 1024947, 1054053, 1072071, 1073709, 1095633, 1108107, 1145529,
1162161, 1198197, 1224531, 1270269, 1307691, 1324323, 1378377

Swift

Translation of: Go
import Foundation

extension BinaryInteger {
  @inlinable
  public var isZumkeller: Bool {
    let divs = factors(sorted: false)
    let sum = divs.reduce(0, +)

    guard sum & 1 != 1 else {
      return false
    }

    guard self & 1 != 1 else {
      let abundance = sum - 2*self

      return abundance > 0 && abundance & 1 == 0
    }

    return isPartSum(divs: divs[...], sum: sum / 2)
  }

  @inlinable
  public func factors(sorted: Bool = true) -> [Self] {
    let maxN = Self(Double(self).squareRoot())
    var res = Set<Self>()

    for factor in stride(from: 1, through: maxN, by: 1) where self % factor == 0 {
      res.insert(factor)
      res.insert(self / factor)
    }

    return sorted ? res.sorted() : Array(res)
  }
}

@usableFromInline
func isPartSum<T: BinaryInteger>(divs: ArraySlice<T>, sum: T) -> Bool {
  guard sum != 0 else {
    return true
  }

  guard !divs.isEmpty else {
    return false
  }

  let last = divs.last!

  if last > sum {
    return isPartSum(divs: divs.dropLast(), sum: sum)
  }

  return isPartSum(divs: divs.dropLast(), sum: sum) || isPartSum(divs: divs.dropLast(), sum: sum - last)
}

let zums = (2...).lazy.filter({ $0.isZumkeller })
let oddZums = zums.filter({ $0 & 1 == 1 })
let oddZumsWithout5 = oddZums.filter({ String($0).last! != "5" })

print("First 220 zumkeller numbers are \(Array(zums.prefix(220)))")
print("First 40 odd zumkeller numbers are \(Array(oddZums.prefix(40)))")
print("First 40 odd zumkeller numbers that don't end in a 5 are: \(Array(oddZumsWithout5.prefix(40)))")
Output:
First 220 zumkeller numbers are: [6, 12, 20, 24, 28, 30, 40, 42, 48, 54, 56, 60, 66, 70, 78, 80, 84, 88, 90, 96, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 150, 156, 160, 168, 174, 176, 180, 186, 192, 198, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270, 272, 276, 280, 282, 294, 300, 304, 306, 308, 312, 318, 320, 330, 336, 340, 342, 348, 350, 352, 354, 360, 364, 366, 368, 372, 378, 380, 384, 390, 396, 402, 408, 414, 416, 420, 426, 432, 438, 440, 444, 448, 456, 460, 462, 464, 468, 474, 476, 480, 486, 490, 492, 496, 498, 500, 504, 510, 516, 520, 522, 528, 532, 534, 540, 544, 546, 550, 552, 558, 560, 564, 570, 572, 580, 582, 588, 594, 600, 606, 608, 612, 616, 618, 620, 624, 630, 636, 640, 642, 644, 650, 654, 660, 666, 672, 678, 680, 684, 690, 696, 700, 702, 704, 708, 714, 720, 726, 728, 732, 736, 740, 744, 750, 756, 760, 762, 768, 770, 780, 786, 792, 798, 804, 810, 812, 816, 820, 822, 828, 832, 834, 836, 840, 852, 858, 860, 864, 868, 870, 876, 880, 888, 894, 896, 906, 910, 912, 918, 920, 924, 928, 930, 936, 940, 942, 945, 948, 952, 960, 966, 972, 978, 980, 984]
First 40 odd zumkeller numbers are: [945, 1575, 2205, 2835, 3465, 4095, 4725, 5355, 5775, 5985, 6435, 6615, 6825, 7245, 7425, 7875, 8085, 8415, 8505, 8925, 9135, 9555, 9765, 10395, 11655, 12285, 12705, 12915, 13545, 14175, 14805, 15015, 15435, 16065, 16695, 17325, 17955, 18585, 19215, 19305]
First 40 odd zumkeller numbers that don't end in a 5 are: [81081, 153153, 171171, 189189, 207207, 223839, 243243, 261261, 279279, 297297, 351351, 459459, 513513, 567567, 621621, 671517, 729729, 742203, 783783, 793611, 812889, 837837, 891891, 908523, 960687, 999999, 1024947, 1054053, 1072071, 1073709, 1095633, 1108107, 1145529, 1162161, 1198197, 1224531, 1270269, 1307691, 1324323, 1378377]

Typescript

Translation of: Go
/**
 * return an array of divisors of a number(n)
 * @params {number} n The number to find divisors from
 * @return {number[]} divisors of n
*/
function getDivisors(n: number): number[] {
    //initialize divisors array
    let divisors: number[] = [1, n]
    //loop through all numbers from 2 to sqrt(n)
    for (let i = 2; i*i <= n; i++) {
      // if i is a divisor of n 
      if (n % i == 0) {
        // add i to divisors array
        divisors.push(i);
        // quotient of n/i is also a divisor of n
        let j = n/i;
        // if quotient is not equal to i
        if (i != j) {
          // add quotient to divisors array
          divisors.push(j);
        }
      } 
    }

    return divisors
  }
  
  /**
   * return sum of an array of number
   * @param {number[]} arr The array we need to sum
   * @return {number} sum of arr
   */
  function getSum(arr: number[]): number {
    return arr.reduce((prev, curr) => prev + curr, 0)
  }
  
  /**
   * check if there is a subset of divisors which sums to a specific number
   * @param {number[]} divs The array of divisors
   * @param {number} sum The number to check if there's a subset of divisors which sums to it
   * @return {boolean} true if sum is 0, false if divisors length is 0
   */
  function isPartSum(divs: number[], sum: number): boolean {
    // if sum is 0, the partition is sum up to the number(sum) 
    if (sum == 0) return true;
    //get length of divisors array
    let len = divs.length;
    // if divisors array is empty the partion doesnt not sum up to the number(sum)
    if (len == 0) return false;
    //get last element of divisors array
    let last = divs[len - 1];
    //create a copy of divisors array without the last element
    const newDivs = [...divs];
    newDivs.pop();
    // if last element is greater than sum
    if (last > sum) {
      // recursively check if there's a subset of divisors which sums to sum using the new divisors array
      return isPartSum(newDivs, sum);
    }
    // recursively check if there's a subset of divisors which sums to sum using the new divisors array
    // or if there's a subset of divisors which sums to sum - last using the new divisors array
    return isPartSum(newDivs, sum) || isPartSum(newDivs, sum - last);
  }
  
  /**
   * check if a number is a Zumkeller number
   * @param {number} n The number to check if it's a Zumkeller number
   * @returns {boolean} true if n is a Zumkeller number, false otherwise
   */
  function isZumkeller(n: number): boolean {
    // get divisors of n
    let divs = getDivisors(n);
    // get sum of divisors of n
    let sum = getSum(divs);
    // if sum is odd can't be split into two partitions with equal sums
    if (sum % 2 == 1) return false;
    // if n is odd use 'abundant odd number' optimization
    if (n % 2 == 1) {
      let abundance = sum - 2 * n
      return abundance > 0 && abundance%2 == 0;
    }
    
    // if n and sum are both even check if there's a partition which totals sum / 2
    return isPartSum(divs, sum/2);
  }
  
  /**
   * find x zumkeller numbers
   * @param {number} x The number of zumkeller numbers to find
   * @returns {number[]} array of x zumkeller numbers
   */
  function getXZumkelers(x: number): number[] {
    let zumkellers: number[] = [];
    let i = 2;
    let count= 0; 
    while (count < x) {
        if (isZumkeller(i)) {
            zumkellers.push(i);
            count++;
        }
        i++;
    }

    return zumkellers;
  }

  /**
   * find x Odd Zumkeller numbers 
   * @param {number} x The number of odd zumkeller numbers to find
   * @returns {number[]} array of x odd zumkeller numbers
   */
  function getXOddZumkelers(x: number): number[] {
    let oddZumkellers: number[] = [];
    let i = 3;
    let count = 0;
    while (count < x) {
      if (isZumkeller(i)) {
        oddZumkellers.push(i);
        count++;
      }
      i += 2;
    }

    return oddZumkellers;
  }

  /**
   * find x odd zumkeller number which are not end with 5
   * @param {number} x The number of odd zumkeller numbers to find
   * @returns {number[]} array of x odd zumkeller numbers
   */
  function getXOddZumkellersNotEndWith5(x: number): number[] {
    let oddZumkellers: number[] = [];
    let i = 3;
    let count = 0;
    while (count < x) {
      if (isZumkeller(i) && i % 10 != 5) {
        oddZumkellers.push(i);
        count++;
      }
      i += 2;
    }

    return oddZumkellers;
  }

//get the first 220 zumkeller numbers
console.log("First 220 Zumkeller numbers: ", getXZumkelers(220));

//get the first 40 odd zumkeller numbers
console.log("First 40 odd Zumkeller numbers: ", getXOddZumkelers(40));

//get the first 40 odd zumkeller numbers which are not end with 5
console.log("First 40 odd Zumkeller numbers which are not end with 5: ", getXOddZumkellersNotEndWith5(40));
Output:
"First 220 Zumkeller numbers: ",  [6, 12, 20, 24, 28, 30, 40, 42, 48, 54, 56, 60, 66, 70, 78, 80, 84, 88, 90, 96, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 150, 156, 160, 168, 174, 176, 180, 186, 192, 198, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270, 272, 276, 280, 282, 294, 300, 304, 306, 308, 312, 318, 320, 330, 336, 340, 342, 348, 350, 352, 354, 360, 364, 366, 368, 372, 378, 380, 384, 390, 396, 402, 408, 414, 416, 420, 426, 432, 438, 440, 444, 448, 456, 460, 462, 464, 468, 474, 476, 480, 486, 490, 492, 496, 498, 500, 504, 510, 516, 520, 522, 528, 532, 534, 540, 544, 546, 550, 552, 558, 560, 564, 570, 572, 580, 582, 588, 594, 600, 606, 608, 612, 616, 618, 620, 624, 630, 636, 640, 642, 644, 650, 654, 660, 666, 672, 678, 680, 684, 690, 696, 700, 702, 704, 708, 714, 720, 726, 728, 732, 736, 740, 744, 750, 756, 760, 762, 768, 770, 780, 786, 792, 798, 804, 810, 812, 816, 820, 822, 828, 832, 834, 836, 840, 852, 858, 860, 864, 868, 870, 876, 880, 888, 894, 896, 906, 910, 912, 918, 920, 924, 928, 930, 936, 940, 942, 945, 948, 952, 960, 966, 972, 978, 980, 984] 
"First 40 odd Zumkeller numbers: ",  [945, 1575, 2205, 2835, 3465, 4095, 4725, 5355, 5775, 5985, 6435, 6615, 6825, 7245, 7425, 7875, 8085, 8415, 8505, 8925, 9135, 9555, 9765, 10395, 11655, 12285, 12705, 12915, 13545, 14175, 14805, 15015, 15435, 16065, 16695, 17325, 17955, 18585, 19215, 19305] 
"First 40 odd Zumkeller numbers which are not end with 5: ",  [81081, 153153, 171171, 189189, 207207, 223839, 243243, 261261, 279279, 297297, 351351, 459459, 513513, 567567, 621621, 671517, 729729, 742203, 783783, 793611, 812889, 837837, 891891, 908523, 960687, 999999, 1024947, 1054053, 1072071, 1073709, 1095633, 1108107, 1145529, 1162161, 1198197, 1224531, 1270269, 1307691, 1324323, 1378377]

Visual Basic .NET

Translation of: C#
Module Module1
    Function GetDivisors(n As Integer) As List(Of Integer)
        Dim divs As New List(Of Integer) From {
            1, n
        }
        Dim i = 2
        While i * i <= n
            If n Mod i = 0 Then
                Dim j = n \ i
                divs.Add(i)
                If i <> j Then
                    divs.Add(j)
                End If
            End If
            i += 1
        End While
        Return divs
    End Function

    Function IsPartSum(divs As List(Of Integer), sum As Integer) As Boolean
        If sum = 0 Then
            Return True
        End If
        Dim le = divs.Count
        If le = 0 Then
            Return False
        End If
        Dim last = divs(le - 1)
        Dim newDivs As New List(Of Integer)
        For i = 1 To le - 1
            newDivs.Add(divs(i - 1))
        Next
        If last > sum Then
            Return IsPartSum(newDivs, sum)
        End If
        Return IsPartSum(newDivs, sum) OrElse IsPartSum(newDivs, sum - last)
    End Function

    Function IsZumkeller(n As Integer) As Boolean
        Dim divs = GetDivisors(n)
        Dim sum = divs.Sum()
        REM if sum is odd can't be split into two partitions with equal sums
        If sum Mod 2 = 1 Then
            Return False
        End If
        REM if n is odd use 'abundant odd number' optimization
        If n Mod 2 = 1 Then
            Dim abundance = sum - 2 * n
            Return abundance > 0 AndAlso abundance Mod 2 = 0
        End If
        REM if n and sum are both even check if there's a partition which totals sum / 2
        Return IsPartSum(divs, sum \ 2)
    End Function

    Sub Main()
        Console.WriteLine("The first 220 Zumkeller numbers are:")
        Dim i = 2
        Dim count = 0
        While count < 220
            If IsZumkeller(i) Then
                Console.Write("{0,3} ", i)
                count += 1
                If count Mod 20 = 0 Then
                    Console.WriteLine()
                End If
            End If
            i += 1
        End While
        Console.WriteLine()

        Console.WriteLine("The first 40 odd Zumkeller numbers are:")
        i = 3
        count = 0
        While count < 40
            If IsZumkeller(i) Then
                Console.Write("{0,5} ", i)
                count += 1
                If count Mod 10 = 0 Then
                    Console.WriteLine()
                End If
            End If
            i += 2
        End While
        Console.WriteLine()

        Console.WriteLine("The first 40 odd Zumkeller numbers which don't end in 5 are:")
        i = 3
        count = 0
        While count < 40
            If i Mod 10 <> 5 AndAlso IsZumkeller(i) Then
                Console.Write("{0,7} ", i)
                count += 1
                If count Mod 8 = 0 Then
                    Console.WriteLine()
                End If
            End If
            i += 2
        End While
    End Sub
End Module
Output:
The first 220 Zumkeller numbers are:
  6  12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96
102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198
204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282
294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368
372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462
464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540
544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620
624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708
714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810
812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896
906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984

The first 40 odd Zumkeller numbers are:
  945  1575  2205  2835  3465  4095  4725  5355  5775  5985
 6435  6615  6825  7245  7425  7875  8085  8415  8505  8925
 9135  9555  9765 10395 11655 12285 12705 12915 13545 14175
14805 15015 15435 16065 16695 17325 17955 18585 19215 19305

The first 40 odd Zumkeller numbers which don't end in 5 are:
  81081  153153  171171  189189  207207  223839  243243  261261
 279279  297297  351351  459459  513513  567567  621621  671517
 729729  742203  783783  793611  812889  837837  891891  908523
 960687  999999 1024947 1054053 1072071 1073709 1095633 1108107
1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377

V (Vlang)

Translation of: Go
fn get_divisors(n int) []int {
    mut divs := [1, n]
    for i := 2; i*i <= n; i++ {
        if n%i == 0 {
            j := n / i
            divs << i
            if i != j {
                divs << j
            }
        }
    }
    return divs
}
 
fn sum(divs []int) int {
    mut sum := 0
    for div in divs {
        sum += div
    }
    return sum
}
 
fn is_part_sum(d []int, sum int) bool {
    mut divs := d.clone()
    if sum == 0 {
        return true
    }
    le := divs.len
    if le == 0 {
        return false
    }
    last := divs[le-1]
    divs = divs[0 .. le-1]
    if last > sum {
        return is_part_sum(divs, sum)
    }
    return is_part_sum(divs, sum) || is_part_sum(divs, sum-last)
}
 
fn is_zumkeller(n int) bool {
    divs := get_divisors(n)
    s := sum(divs)
    // if sum is odd can't be split into two partitions with equal sums
    if s%2 == 1 {
        return false
    }
    // if n is odd use 'abundant odd number' optimization
    if n%2 == 1 {
        abundance := s - 2*n
        return abundance > 0 && abundance%2 == 0
    }
    // if n and sum are both even check if there's a partition which totals sum / 2
    return is_part_sum(divs, s/2)
}
 
fn main() {
    println("The first 220 Zumkeller numbers are:")
    for i, count := 2, 0; count < 220; i++ {
        if is_zumkeller(i) {
            print("${i:3} ")
            count++
            if count%20 == 0 {
                println('')
            }
        }
    }
    println("\nThe first 40 odd Zumkeller numbers are:")
    for i, count := 3, 0; count < 40; i += 2 {
        if is_zumkeller(i) {
            print("${i:5} ")
            count++
            if count%10 == 0 {
                println('')
            }
        }
    }
    println("\nThe first 40 odd Zumkeller numbers which don't end in 5 are:")
    for i, count := 3, 0; count < 40; i += 2 {
        if (i % 10 != 5) && is_zumkeller(i) {
            print("${i:7} ")
            count++
            if count%8 == 0 {
                println('')
            }
        }
    }
    println('')
}
Output:
The first 220 Zumkeller numbers are:
  6  12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96 
102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198 
204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282 
294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368 
372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462 
464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540 
544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620 
624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708 
714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810 
812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896 
906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984 

The first 40 odd Zumkeller numbers are:
  945  1575  2205  2835  3465  4095  4725  5355  5775  5985 
 6435  6615  6825  7245  7425  7875  8085  8415  8505  8925 
 9135  9555  9765 10395 11655 12285 12705 12915 13545 14175 
14805 15015 15435 16065 16695 17325 17955 18585 19215 19305 

The first 40 odd Zumkeller numbers which don't end in 5 are:
  81081  153153  171171  189189  207207  223839  243243  261261 
 279279  297297  351351  459459  513513  567567  621621  671517 
 729729  742203  783783  793611  812889  837837  891891  908523 
 960687  999999 1024947 1054053 1072071 1073709 1095633 1108107 
1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377 

Wren

Translation of: Go
Library: Wren-math
Library: Wren-fmt

I've reversed the order of the recursive calls in the last line of the isPartSum function which, as noted in the Phix entry, seems to make little difference to Go but (as one might have expected) speeds up this Wren script enormously. The first part is now near instant but was taking several minutes previously. Overall it's now only about 5.5 times slower than Go itself which is a good result for the Wren interpreter.

import "./math" for Int, Nums
import "./fmt" for Fmt
import "io" for Stdout

var isPartSum // recursive
isPartSum = Fn.new { |divs, sum|
    if (sum == 0) return true
    if (divs.count == 0) return false
    var last = divs[-1]
    divs = divs[0...-1]
    if (last > sum) return isPartSum.call(divs, sum)
    return isPartSum.call(divs, sum-last) || isPartSum.call(divs, sum)
}

var isZumkeller = Fn.new { |n|
    var divs = Int.divisors(n)
    var sum = Nums.sum(divs)
    // if sum is odd can't be split into two partitions with equal sums
    if (sum % 2 == 1) return false
    // if n is odd use 'abundant odd number' optimization
    if (n % 2 == 1) {
        var abundance = sum - 2 * n
        return abundance > 0 && abundance % 2 == 0
    }
    // if n and sum are both even check if there's a partition which totals sum / 2
    return isPartSum.call(divs, sum / 2)
}

System.print("The first 220 Zumkeller numbers are:")
var count = 0
var i = 2
while (count < 220) {
    if (isZumkeller.call(i)) {
        Fmt.write("$3d ", i)
        Stdout.flush()
        count = count + 1
        if (count % 20 ==  0) System.print()
    }
    i = i + 1
}

System.print("\nThe first 40 odd Zumkeller numbers are:")
count = 0
i = 3
while (count < 40) {
    if (isZumkeller.call(i)) {
        Fmt.write("$5d ", i)
        Stdout.flush()
        count = count + 1
        if (count % 10 == 0) System.print()
    }
    i = i + 2
}

System.print("\nThe first 40 odd Zumkeller numbers which don't end in 5 are:")
count = 0
i = 3
while (count < 40) {
    if ((i % 10 != 5) && isZumkeller.call(i)) {
        Fmt.write("$7d ", i)
        Stdout.flush()
        count = count + 1
        if (count % 8 == 0) System.print()
    }
    i = i + 2
}
System.print()
Output:
The first 220 Zumkeller numbers are:
  6  12  20  24  28  30  40  42  48  54  56  60  66  70  78  80  84  88  90  96 
102 104 108 112 114 120 126 132 138 140 150 156 160 168 174 176 180 186 192 198 
204 208 210 216 220 222 224 228 234 240 246 252 258 260 264 270 272 276 280 282 
294 300 304 306 308 312 318 320 330 336 340 342 348 350 352 354 360 364 366 368 
372 378 380 384 390 396 402 408 414 416 420 426 432 438 440 444 448 456 460 462 
464 468 474 476 480 486 490 492 496 498 500 504 510 516 520 522 528 532 534 540 
544 546 550 552 558 560 564 570 572 580 582 588 594 600 606 608 612 616 618 620 
624 630 636 640 642 644 650 654 660 666 672 678 680 684 690 696 700 702 704 708 
714 720 726 728 732 736 740 744 750 756 760 762 768 770 780 786 792 798 804 810 
812 816 820 822 828 832 834 836 840 852 858 860 864 868 870 876 880 888 894 896 
906 910 912 918 920 924 928 930 936 940 942 945 948 952 960 966 972 978 980 984 

The first 40 odd Zumkeller numbers are:
  945  1575  2205  2835  3465  4095  4725  5355  5775  5985 
 6435  6615  6825  7245  7425  7875  8085  8415  8505  8925 
 9135  9555  9765 10395 11655 12285 12705 12915 13545 14175 
14805 15015 15435 16065 16695 17325 17955 18585 19215 19305 

The first 40 odd Zumkeller numbers which don't end in 5 are:
  81081  153153  171171  189189  207207  223839  243243  261261 
 279279  297297  351351  459459  513513  567567  621621  671517 
 729729  742203  783783  793611  812889  837837  891891  908523 
 960687  999999 1024947 1054053 1072071 1073709 1095633 1108107 
1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377 

zkl

Translation of: Julia
Translation of: Go
fcn properDivs(n){ // does not include n
//   if(n==1) return(T);	// we con't care about this case
   ( pd:=[1..(n).toFloat().sqrt()].filter('wrap(x){ n%x==0 }) )
   .pump(pd,'wrap(pd){ if(pd!=1 and (y:=n/pd)!=pd ) y else Void.Skip })
}
fcn canSum(goal,divs){
   if(goal==0 or divs[0]==goal) return(True);
   if(divs.len()>1){
      if(divs[0]>goal) return(canSum(goal,divs[1,*]));  // tail recursion
      else return(canSum(goal - divs[0], divs[1,*]) or canSum(goal, divs[1,*]));
   }
   False
}
fcn isZumkellerW(n){	// a filter for a iterator
   ds,sum := properDivs(n), ds.sum(0) + n;
   // if sum is odd, it can't be split into two partitions with equal sums
   if(sum.isOdd) return(Void.Skip);
   // if n is odd use 'abundant odd number' optimization
   if(n.isOdd){
      abundance:=sum - 2*n;
      return( if(abundance>0 and abundance.isEven) n else Void.Skip);
   }
   canSum(sum/2,ds) and n or Void.Skip	// sum is even
}
println("First 220 Zumkeller numbers:");
zw:=[2..].tweak(isZumkellerW);
do(11){ zw.walk(20).pump(String,"%4d ".fmt).println() }

println("\nFirst 40 odd Zumkeller numbers:");
zw:=[3..*, 2].tweak(isZumkellerW);
do(4){ zw.walk(10).pump(String,"%5d ".fmt).println() }

println("\nThe first 40 odd Zumkeller numbers which don't end in 5 are:");
zw:=[3..*, 2].tweak(fcn(n){ if(n%5) isZumkellerW(n) else Void.Skip });
do(5){ zw.walk(8).pump(String,"%7d ".fmt).println() }
Output:
First 220 Zumkeller numbers:
   6   12   20   24   28   30   40   42   48   54   56   60   66   70   78   80   84   88   90   96 
 102  104  108  112  114  120  126  132  138  140  150  156  160  168  174  176  180  186  192  198 
 204  208  210  216  220  222  224  228  234  240  246  252  258  260  264  270  272  276  280  282 
 294  300  304  306  308  312  318  320  330  336  340  342  348  350  352  354  360  364  366  368 
 372  378  380  384  390  396  402  408  414  416  420  426  432  438  440  444  448  456  460  462 
 464  468  474  476  480  486  490  492  496  498  500  504  510  516  520  522  528  532  534  540 
 544  546  550  552  558  560  564  570  572  580  582  588  594  600  606  608  612  616  618  620 
 624  630  636  640  642  644  650  654  660  666  672  678  680  684  690  696  700  702  704  708 
 714  720  726  728  732  736  740  744  750  756  760  762  768  770  780  786  792  798  804  810 
 812  816  820  822  828  832  834  836  840  852  858  860  864  868  870  876  880  888  894  896 
 906  910  912  918  920  924  928  930  936  940  942  945  948  952  960  966  972  978  980  984 

First 40 odd Zumkeller numbers:
  945  1575  2205  2835  3465  4095  4725  5355  5775  5985 
 6435  6615  6825  7245  7425  7875  8085  8415  8505  8925 
 9135  9555  9765 10395 11655 12285 12705 12915 13545 14175 
14805 15015 15435 16065 16695 17325 17955 18585 19215 19305 

The first 40 odd Zumkeller numbers which don't end in 5 are:
  81081  153153  171171  189189  207207  223839  243243  261261 
 279279  297297  351351  459459  513513  567567  621621  671517 
 729729  742203  783783  793611  812889  837837  891891  908523 
 960687  999999 1024947 1054053 1072071 1073709 1095633 1108107 
1145529 1162161 1198197 1224531 1270269 1307691 1324323 1378377 

Link title