Character codes
You are encouraged to solve this task according to the task description, using any language you may know.
Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses). For example, the character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode). Conversely, given a code, print out the corresponding character.
ABAP
In ABAP you must first cast the character to a byte field and back to a number in order to get its ASCII value. <lang ABAP>report zcharcode data: c value 'A', n type i. field-symbols <n> type x.
assign c to <n> casting. move <n> to n. write: c, '=', n left-justified.</lang>
- Output:
A = 65
ACL2
Similar to Common Lisp: <lang Lisp>(cw "~x0" (char-code #\a)) (cw "~x0" (code-char 97))</lang>
ActionScript
In ActionScript, you cannot take the character code of a character directly. Instead you must create a string and call charCodeAt with the character's position in the string as a parameter. <lang ActionScipt>trace(String.fromCharCode(97)); //prints 'a' trace("a".charCodeAt(0));//prints '97'</lang>
Ada
<lang ada>with Ada.Text_IO; use Ada.Text_IO;
procedure Char_Code is begin
Put_Line (Character'Val (97) & " =" & Integer'Image (Character'Pos ('a')));
end Char_Code;</lang>
The predefined language attributes S'Pos and S'Val for every discrete subtype, and Character is such a type, yield the position of a value and value by its position correspondingly. Sample output:
a = 97
Aime
<lang aime># prints "97" o_integer('a'); o_byte('\n');
- prints "a"
o_byte(97); o_byte('\n');</lang>
ALGOL 68
In ALGOL 68 the format $g$ is type aware, hence the type conversion operators abs & repr are used to set the type. <lang algol68>main:(
printf(($gl$, ABS "a")); # for ASCII this prints "+97" EBCDIC prints "+129" # printf(($gl$, REPR 97)) # for ASCII this prints "a"; EBCDIC prints "/" #
)</lang> Character conversions may be available in the standard prelude so that when a foreign tape is mounted, the characters will be converted transparently as the tape's records are read. <lang algol68>FILE tape; INT errno = open(tape, "/dev/tape1", stand out channel) make conv(tape, ebcdic conv); FOR record DO getf(tape, ( ~ )) OD; ~ # etc ... #</lang> Every channel has an associated standard character conversion that can be determined using the stand conv query routine and then the conversion applied to a particular file/tape. eg. <lang algol68> make conv(tape, stand conv(stand out channel))</lang>
AutoHotkey
<lang AutoHotkey>MsgBox % Chr(97) MsgBox % Asc("a")</lang>
AWK
AWK has no built-in way to convert a character into ASCII (or whatever) code; but a function that does so can be easily built using an associative array (where the keys are the characters). The opposite can be done using printf (or sprintf) with %c <lang awk>function ord(c) {
return chmap[c]
} BEGIN {
for(i=0; i < 256; i++) { chmap[sprintf("%c", i)] = i } print ord("a"), ord("b") printf "%c %c\n", 97, 98 s = sprintf("%c%c", 97, 98) print s
}</lang>
Babel
<lang babel>'abcdefg' str2ar {%d nl <<} eachar</lang>
- Output:
97 98 99 100 101 102 103
<lang babel>(98 97 98 101 108) ls2lf ar2str nl << </lang>
Output: babel
BASIC
<lang qbasic>charCode = 97 char = "a" PRINT CHR$(charCode) 'prints a PRINT ASC(char) 'prints 97</lang>
On the ZX Spectrum string variable names must be a single letter but numeric variables can be multiple characters:
<lang zxbasic>10 LET c = 97: REM c is a character code 20 LET d$ = "b": REM d$ holds the character 30 PRINT CHR$(c): REM this prints a 40 PRINT CODE(d$): REM this prints 98</lang>
Applesoft BASIC
CHR$(97) is used in place of "a" because on the older model Apple II, lower case is difficult to input. <lang qbasic>?CHR$(97)"="ASC(CHR$(97))</lang>
- Output:
a=97
Output as it appears on the text display on the Apple II and Apple II plus, with the original text character ROM:
!=97
BBC BASIC
<lang bbcbasic> charCode = 97
char$ = "a" PRINT CHR$(charCode) : REM prints a PRINT ASC(char$) : REM prints 97</lang>
Befunge
The instruction . will output as an integer. , will output as ASCII character. <lang befunge>"a". 99*44*+, @</lang>
Bracmat
<lang bracmat>( put $ ( str
$ ( "\nLatin a ISO-9959-1: " asc$a " = " chr$97 " UTF-8: " utf$a " = " chu$97 \n "Cyrillic а (UTF-8): " utf$а " = " chu$1072 \n ) )
)</lang>
- Output:
Latin aISO-9959-1: 97 = a UTF-8: 97 = aCyrillic а (UTF-8): 1072 = а
C
char is already an integer type in C, and it gets automatically promoted to int. So you can use a character where you would otherwise use an integer. Conversely, you can use an integer where you would normally use a character, except you may need to cast it, as char is smaller.
<lang c>#include <stdio.h>
int main() {
printf("%d\n", 'a'); /* prints "97" */ printf("%c\n", 97); /* prints "a"; we don't have to cast because printf is type agnostic */ return 0;
}</lang>
C++
char is already an integer type in C++, and it gets automatically promoted to int. So you can use a character where you would otherwise use an integer. Conversely, you can use an integer where you would normally use a character, except you may need to cast it, as char is smaller.
In this case, the output operator << is overloaded to handle integer (outputs the decimal representation) and character (outputs just the character) types differently, so we need to cast it in both cases. <lang cpp>#include <iostream>
int main() {
std::cout << (int)'a' << std::endl; // prints "97" std::cout << (char)97 << std::endl; // prints "a" return 0;
}</lang>
C#
C# represents strings and characters internally as Unicode, so casting a char to an int returns its Unicode character encoding. <lang csharp>using System;
namespace RosettaCode.CharacterCode {
class Program { static void Main(string[] args) { Console.WriteLine((int) 'a'); //Prints "97" Console.WriteLine((char) 97); //Prints "a" } }
}</lang>
Clojure
<lang clojure>(print (int \a)) ; prints "97" (print (char 97)) ; prints \a
- Unicode is also available, as Clojure uses the underlying java Strings & chars
(print (int \π)) ; prints 960 (print (char 960)) ; prints \π
- use String because char in Java can't represent characters outside Basic Multilingual Plane
(print (.codePointAt "𝅘𝅥𝅮" 0)) ; prints 119136 (print (String. (int-array 1 119136) 0 1)) ; prints 𝅘𝅥𝅮</lang>
CoffeeScript
CoffeeScript transcompiles to JavaScript, so it uses the JS standard library. <lang coffeescript>console.log 'a'.charCodeAt 0 # 97 console.log String.fromCharCode 97 # a</lang>
Common Lisp
<lang lisp>(princ (char-code #\a)) ; prints "97" (princ (code-char 97)) ; prints "a"</lang>
Component Pascal
BlackBox Component Builder <lang oberon2>PROCEDURE CharCodes*; VAR c : CHAR; BEGIN c := 'A'; StdLog.Char(c);StdLog.String(":> ");StdLog.Int(ORD(c));StdLog.Ln; c := CHR(3A9H); StdLog.Char(c);StdLog.String(":> ");StdLog.Int(ORD(c));StdLog.Ln END CharCodes;</lang>
- Output:
A:> 65 Ω:> 937
D
<lang d>void main() {
import std.stdio, std.utf;
string test = "a"; size_t index = 0;
// Get four-byte utf32 value for index 0. writefln("%d", test.decode(index));
// 'index' has moved to next character input position. assert(index == 1);
}</lang>
- Output:
97
Delphi
Example from Studio 2006. <lang delphi>program Project1;
{$APPTYPE CONSOLE}
uses
SysUtils;
var
aChar:Char; aCode:Byte; uChar:WideChar; uCode:Word;
begin
aChar := Chr(97); Writeln(aChar); aCode := Ord(aChar); Writeln(aCode); uChar := WideChar(97); Writeln(uChar); uCode := Ord(uChar); Writeln(uCode);
Readln;
end.</lang>
DWScript
<lang delphi>PrintLn(Ord('a')); PrintLn(Chr(97));</lang>
E
<lang e>? 'a'.asInteger()
- value: 97
? <import:java.lang.makeCharacter>.asChar(97)
- value: 'a'</lang>
Elena
<lang elena>#define system.
- symbol Program =>
[
console write:("a" getAt:0 Number). console write:(CharValue new &short:97).
].</lang>
Erlang
In Erlang, lists and strings are the same, only the representation changes. Thus: <lang erlang>1> F = fun([X]) -> X end.
- Fun<erl_eval.6.13229925>
2> F("a"). 97</lang> If entered manually, one can also get ASCII codes by prefixing characters with $: <lang erlang>3> $a. 97</lang> Unicode is fully supported since release R13A only.
Euphoria
<lang Euphoria>printf(1,"%d\n", 'a') -- prints "97" printf(1,"%s\n", 97) -- prints "a"</lang>
F#
<lang fsharp>let c = 'A' let n = 65 printfn "%d" (int c) printfn "%c" (char n)</lang>
- Output:
65 A
Factor
<lang factor>CHAR: katakana-letter-a . "ア" first .
12450 1string print</lang>
FALSE
<lang false>'A." "65,</lang>
Fantom
A character is represented in single quotes: the 'toInt' method returns the code for the character. The 'toChar' method converts an integer into its respective character. <lang fantom>fansh> 97.toChar a fansh> 'a'.toInt 97</lang>
Forth
As with C, characters are just integers on the stack which are treated as ASCII. <lang forth>char a dup . \ 97 emit \ a</lang>
Fortran
Functions ACHAR and IACHAR specifically work with the ASCII character set, while the results of CHAR and ICHAR will depend on the default character set being used. <lang fortran>WRITE(*,*) ACHAR(97), IACHAR("a") WRITE(*,*) CHAR(97), ICHAR("a")</lang>
Frink
The function char[x]
in Frink returns the numerical Unicode codepoints for a string or character, or returns the Unicode string for an integer value or array of integer values. The chars[x]
returns an array even if the string is a single character. These functions also correctly handle upper-plane Unicode characters as a single codepoint.
<lang frink>println[char["a"]] // prints 97
println[chars["a"]] // prints [97] (an array)
println[char[97]] // prints a
println[char["Frink rules!"]] // prints [70, 114, 105, 110, 107, 32, 114, 117, 108, 101, 115, 33]
println70, 114, 105, 110, 107, 32, 114, 117, 108, 101, 115, 33 // prints "Frink rules!"</lang>
GAP
<lang gap># Code must be in 0 .. 255. CharInt(65);
- 'A'
IntChar('Z');
- 90</lang>
Go
In Go, a character literal is simply an integer constant of the character code:
<lang go>fmt.Println('a') // prints "97"
fmt.Println('π') // prints "960"</lang>
Literal constants in Go are not typed (named constants can be).
The variable and constant types most commonly used for character data are byte
, rune
, and string
.
This example program shows character codes (as literals) stored in typed variables, and printed out with default formatting. Note that since byte and rune are integer types, the default formatting is a printable base 10 number. String is not numeric, and a little extra work must be done to print the character codes.
<lang go>package main
import "fmt"
func main() { // yes, there is more concise syntax, but this makes // the data types very clear. var b byte = 'a' var r rune = 'π' var s string = "aπ"
fmt.Println(b, r, s) fmt.Println("string cast to []rune:", []rune(s)) // A range loop over a string gives runes, not bytes fmt.Print(" string range loop: ") for _, c := range s { fmt.Print(c, " ") // c is type rune } // We can also print the bytes of a string without an explicit loop fmt.Printf("\n string bytes: % #x\n", s) }</lang>
- Output:
97 960 aπ string cast to []rune: [97 960] string range loop: 97 960 string bytes: 0x61 0xcf 0x80
For the second part of the task, printing the character of a given code, the %c
verb of fmt.Printf
will do this directly from integer values, emitting the UTF-8 encoding of the code, (which will typically print the character depending on your hardware and operating system configuration).
<lang go>b := byte(97)
r := rune(960)
fmt.Printf("%c %c\n%c %c\n", 97, 960, b, r)</lang>
- Output:
a π a π
You can think of the default formatting of strings as being the printable characters of the string. In fact however, it is even simpler. Since we expect our output device to interpret UTF-8, and we expect our string to contain UTF-8, The default formatting simply dumps the bytes of the string to the output.
Examples showing strings constructed from integer constants and then printed: <lang go>fmt.Println(string(97)) // prints "a" fmt.Println(string(960)) // prints "π" fmt.Println(string([]rune{97, 960})) // prints "aπ"</lang>
Golfscript
To convert a number to a string, we use the array to string coercion. <lang golfscript>97[]++p</lang> To convert a string to a number, we have a many options, of which the simplest and shortest are: <lang golfscript>'a')\;p 'a'(\;p 'a'0=p 'a'{}/p</lang>
Groovy
Groovy does not have a character literal at all, so one-character strings have to be coerced to char. Groovy printf (like Java, but unlike C) is not type-agnostic, so the cast or coercion from char to int is also required. The reverse direction is considerably simpler. <lang groovy>printf ("%d\n", ('a' as char) as int) printf ("%c\n", 97)</lang>
- Output:
97 a
Haskell
<lang haskell>import Data.Char
main = do
print (ord 'a') -- prints "97" print (chr 97) -- prints "'a'" print (ord 'π') -- prints "960" print (chr 960) -- prints "'\960'"</lang>
HicEst
<lang hicest>WRITE(Messagebox) ICHAR('a'), CHAR(97)</lang>
Icon and Unicon
<lang Icon>procedure main(arglist) if *arglist > 0 then L := arglist else L := [97, "a"]
every x := !L do
write(x, " ==> ", char(integer(x)) | ord(x) ) # char produces a character, ord produces a number
end</lang> Icon and Unicon do not currently support double byte character sets.
- Output:
97 ==> a a ==> 97
J
<lang j> 4 u: 97 98 99 9786 abc☺
3 u: 7 u: 'abc☺'
97 98 99 9786</lang>
Java
char is already an integer type in Java, and it gets automatically promoted to int. So you can use a character where you would otherwise use an integer. Conversely, you can use an integer where you would normally use a character, except you may need to cast it, as char is smaller.
In this case, the println method is overloaded to handle integer (outputs the decimal representation) and character (outputs just the character) types differently, so we need to cast it in both cases. <lang java>public class Foo {
public static void main(String[] args) { System.out.println((int)'a'); // prints "97" System.out.println((char)97); // prints "a" }
}</lang> Java characters support Unicode: <lang java>public class Bar {
public static void main(String[] args) { System.out.println((int)'π'); // prints "960" System.out.println((char)960); // prints "π" }
}</lang>
JavaScript
Here character is just a string of length 1 <lang javascript>console.log('a'.charCodeAt(0)); // prints "97" console.log(String.fromCharCode(97)); // prints "a"</lang>
Joy
<lang joy>'a ord. 97 chr.</lang>
jq
jq data strings are JSON strings, which can be "explode"d into an array of integers, each representing a Unicode codepoint. The inverse of the explode filter is implode. explode can of course be used for single-character strings, and so for example: <lang jq>"a" | explode # => [ 97 ] [97] | implode # => "a"</lang> Here is a filter which can be used to convert an integer to the corresponding character:<lang jq>def chr: [.] | implode; </lang> Example: 1024 | chr # => "Ѐ"
Julia
Julia character constants (of type Char
) are treated as an integer type representing the Unicode codepoint of the character, and can easily be converted to and from other integer types.
<lang julia>println(int('a'))
println(char(97))</lang>
- Output:
97 a
K
<lang K> _ic "abcABC" 97 98 99 65 66 67
_ci 97 98 99 65 66 67
"abcABC"</lang>
LabVIEW
This image is a VI Snippet, an executable image of LabVIEW code. The LabVIEW version is shown on the top-right hand corner. You can download it, then drag-and-drop it onto the LabVIEW block diagram from a file browser, and it will appear as runnable, editable code.
Lang5
<lang lang5>: CHAR "!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[" comb
'\\ comb -1 remove append "]^_`abcdefghijklmnopqrstuvwxyz{|}~" comb append ;
- CODE 95 iota 33 + ; : comb "" split ;
- extract' rot 1 compress index subscript expand drop ;
- chr CHAR CODE extract' ;
- ord CODE CHAR extract' ;
'a ord . # 97 97 chr . # a</lang>
Lasso
<lang Lasso>'a'->integer 'A'->integer 97->bytes 65->bytes</lang>
- Output:
9765 a
A
LFE
In LFE/Erlang, lists and strings are the same, only the representation changes. For example: <lang lisp>> (list 68 111 110 39 116 32 80 97 110 105 99 46) "Don't Panic."</lang>
As for this exercise, here's how you could print out the ASCII code for a letter, and a letter from the ASCII code: <lang lisp>> (: io format '"~w~n" '"a") 97 ok > (: io format '"~p~n" (list '(97))) "a" ok</lang>
Liberty BASIC
<lang lb>charCode = 97 char$ = "a" print chr$(charCode) 'prints a print asc(char$) 'prints 97</lang>
Logo
Logo characters are words of length 1. <lang logo>print ascii "a ; 97 print char 97 ; a</lang>
Logtalk
<lang logtalk>|?- char_code(Char, 97), write(Char). a Char = a yes</lang> <lang logtalk>|?- char_code(a, Code), write(Code). 97 Code = 97 yes</lang>
Lua
<lang lua>print(string.byte("a")) -- prints "97" print(string.char(97)) -- prints "a"</lang>
Maple
There are two ways to do this in Maple. First, there are procedures in StringTools for this purpose. <lang Maple>> use StringTools in Ord( "A" ); Char( 65 ) end;
65
"A"
</lang> Second, the procedure convert handles conversions to and from byte values. <lang Maple>> convert( "A", bytes );
[65]
> convert( [65], bytes );
"A"
</lang>
Mathematica
Use the FromCharacterCode and ToCharacterCode functions: <lang Mathematica>ToCharacterCode["abcd"] FromCharacterCode[{97}]</lang>
- Output:
{97, 98, 99, 100} "a"
MATLAB / Octave
There are two built-in function that perform these tasks. To convert from a number to a character use: <lang MATLAB>character = char(asciiNumber)</lang>
To convert from a character to its corresponding ascii character use: <lang MATLAB>asciiNumber = double(character)</lang>
or if you need this number as an integer not a double use: <lang MATLAB>asciiNumber = uint16(character) asciiNumber = uint32(character) asciiNumber = uint64(character)</lang>
Sample Usage: <lang MATLAB>>> char(87)
ans =
W
>> double('W')
ans =
87
>> uint16('W')
ans =
87</lang>
Maxima
<lang maxima>ascii(65); "A"
cint("A"); 65</lang>
Metafont
Metafont handles only ASCII (even though codes beyond 127 can be given and used as real ASCII codes) <lang metafont>message "enter a letter: "; string a; a := readstring; message decimal (ASCII a); % writes the decimal number of the first character
% of the string a
message "enter a number: "; num := scantokens readstring; message char num; % num can be anything between 0 and 255; what will be seen
% on output depends on the encoding used by the "terminal"; e.g. % any code beyond 127 when UTF-8 encoding is in use will give % a bad encoding; e.g. to see correctly an "è", we should write
message char10; % (this add a newline...) message char hex"c3" & char hex"a8"; % since C3 A8 is the UTF-8 encoding for "è" end</lang>
Modula-2
<lang modula2>MODULE asc;
IMPORT InOut;
VAR letter : CHAR;
ascii : CARDINAL;
BEGIN
letter := 'a'; InOut.Write (letter); ascii := ORD (letter); InOut.Write (11C); (* ASCII TAB *) InOut.WriteCard (ascii, 8); ascii := ascii - ORD ('0'); InOut.Write (11C); (* ASCII TAB *) InOut.Write (CHR (ascii)); InOut.WriteLn
END asc.</lang> Producing the output: <lang Modula-2>jan@Beryllium:~/modula/rosetta$ ./asc a 97 1</lang>
Modula-3
The built in functions ORD
and VAL
work on characters, among other things.
<lang modula3>ORD('a') (* Returns 97 *)
VAL(97, CHAR); (* Returns 'a' *)</lang>
MUMPS
<lang MUMPS>WRITE $ASCII("M") WRITE $CHAR(77)</lang>
NetRexx
NetRexx provides built-in functions to convert between character and decimal/hexadecimal. <lang NetRexx>/* NetRexx */ options replace format comments java crossref symbols nobinary
runSample(arg) return
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method runSample(arg) private static
-- create some sample data: character, hex and unicode samp = ' ' || 'a'.sequence('e') || '$' || '\xa2'.sequence('\xa5') || '\u20a0'.sequence('\u20b5') -- use the C2D C2X D2C and X2C built-in functions say "'"samp"'" say ' | Chr C2D C2X D2C X2C' say '---+ --- ------ ---- --- ---' loop ci = 1 to samp.length cc = samp.substr(ci, 1) cd = cc.c2d -- char to decimal cx = cc.c2x -- char to hexadecimal dc = cd.d2c -- decimal to char xc = cx.x2c -- hexadecimal to char say ci.right(3)"| '"cc"'" cd.right(6) cx.right(4, 0) "'"dc"' '"xc"'" end ci return</lang>
- Output:
' abcde$¢£¤¥₠₡₢₣₤₥₦₧₨₩₪₫€₭₮₯₰₱₲₳₴₵' | Chr C2D C2X D2C X2C ---+ --- ------ ---- --- --- 1| ' ' 32 0020 ' ' ' ' 2| 'a' 97 0061 'a' 'a' 3| 'b' 98 0062 'b' 'b' 4| 'c' 99 0063 'c' 'c' 5| 'd' 100 0064 'd' 'd' 6| 'e' 101 0065 'e' 'e' 7| '$' 36 0024 '$' '$' 8| '¢' 162 00A2 '¢' '¢' 9| '£' 163 00A3 '£' '£' 10| '¤' 164 00A4 '¤' '¤' 11| '¥' 165 00A5 '¥' '¥' 12| '₠' 8352 20A0 '₠' '₠' 13| '₡' 8353 20A1 '₡' '₡' 14| '₢' 8354 20A2 '₢' '₢' 15| '₣' 8355 20A3 '₣' '₣' 16| '₤' 8356 20A4 '₤' '₤' 17| '₥' 8357 20A5 '₥' '₥' 18| '₦' 8358 20A6 '₦' '₦' 19| '₧' 8359 20A7 '₧' '₧' 20| '₨' 8360 20A8 '₨' '₨' 21| '₩' 8361 20A9 '₩' '₩' 22| '₪' 8362 20AA '₪' '₪' 23| '₫' 8363 20AB '₫' '₫' 24| '€' 8364 20AC '€' '€' 25| '₭' 8365 20AD '₭' '₭' 26| '₮' 8366 20AE '₮' '₮' 27| '₯' 8367 20AF '₯' '₯' 28| '₰' 8368 20B0 '₰' '₰' 29| '₱' 8369 20B1 '₱' '₱' 30| '₲' 8370 20B2 '₲' '₲' 31| '₳' 8371 20B3 '₳' '₳' 32| '₴' 8372 20B4 '₴' '₴' 33| '₵' 8373 20B5 '₵' '₵'
Nim
<lang nim>echo ord('a') # echoes 97 echo chr(97) # echoes a
import unicode
echo int("π".runeAt(0)) # echoes 960 echo Rune(960) # echoes π</lang>
Oberon-2
<lang oberon2>MODULE Ascii; IMPORT Out; VAR c: CHAR; d: INTEGER; BEGIN c := CHR(97); d := ORD("a"); Out.Int(d,3);Out.Ln; Out.Char(c);Out.Ln END Ascii.</lang>
- Output:
97
a
Objeck
<lang objeck>'a'->As(Int)->PrintLine(); 97->As(Char)->PrintLine();</lang>
OCaml
<lang ocaml>Printf.printf "%d\n" (int_of_char 'a'); (* prints "97" *) Printf.printf "%c\n" (char_of_int 97); (* prints "a" *)</lang>
The following are aliases for the above functions: <lang ocaml># Char.code ;; - : char -> int = <fun>
- Char.chr;;
- : int -> char = <fun></lang>
OpenEdge/Progress
<lang Progress (Openedge ABL)>MESSAGE
CHR(97) SKIP ASC("a")
VIEW-AS ALERT-BOX.</lang>
Oz
Characters in Oz are the same as integers in the range 0-255 (ISO 8859-1 encoding). To print a number as a character, we need to use it as a string (i.e. a list of integers from 0 to 255): <lang oz>{System.show &a} %% prints "97" {System.showInfo [97]} %% prints "a"</lang>
PARI/GP
<lang parigp>print(Vecsmall("a")[1]); print(Strchr([72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33]))</lang>
Pascal
<lang pascal>writeln(ord('a')); writeln(chr(97));</lang>
Perl
Here character is just a string of length 1 <lang perl>print ord('a'), "\n"; # prints "97" print chr(97), "\n"; # prints "a"</lang>
Perl 6
Both Perl 5 and Perl 6 have good Unicode support. Note that even characters outside the BMP are considered single characters, not a surrogate pair. Here we use the character "four dragons" (with 64 strokes!) to demonstrate that. <lang perl6>say ord('𪚥').fmt('0x%04x'); say chr(0x2a6a5);</lang>
- Output:
0x2a6a5 𪚥
PHP
Here character is just a string of length 1 <lang php>echo ord('a'), "\n"; // prints "97" echo chr(97), "\n"; // prints "a"</lang>
PicoLisp
<lang PicoLisp>: (char "a") -> 97
- (char "字")
-> 23383
- (char 23383)
-> "字"
- (chop "文字")
-> ("文" "字")
- (mapcar char @)
-> (25991 23383)</lang>
PL/I
<lang PL/I>declare 1 u union,
2 c character (1), 2 i fixed binary (8) unsigned;
c = 'a'; put skip list (i); /* prints 97 */ i = 97; put skip list (c); /* prints 'a' */</lang>
PowerShell
PowerShell does not allow for character literals directly, so to get a character one first needs to convert a single-character string to a char: <lang powershell>$char = [char] 'a'</lang> Then a simple cast to int yields the character code: <lang powershell>$charcode = [int] $char # => 97</lang> This also works with Unicode: <lang powershell>[int] [char] '☺' # => 9786</lang> For converting an integral character code into the actual character, a cast to char suffices: <lang powershell>[char] 97 # a [char] 9786 # ☺</lang>
Prolog
SWI-Prolog has predefined predicate char_code/2.
?- char_code(a, X). X = 97. ?- char_code(X, 97). X = a.
PureBasic
PureBasic allows compiling code so that it will use either Ascii or a Unicode (UCS-2) encoding for representing its string content. It also allows for the source code that is being compiled to be in either Ascii or UTF-8 encoding. A one-character string is used here to hold the character and a numerical character type is used to hold the character code. The character type is either one or two bytes in size, depending on whether compiling for Ascii or Unicode respectively. <lang PureBasic>If OpenConsole()
;Results are the same when compiled for Ascii or Unicode charCode.c = 97 Char.s = "a" PrintN(Chr(charCode)) ;prints a PrintN(Str(Asc(Char))) ;prints 97
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit") Input() CloseConsole()
EndIf</lang>
This version should be compiled with Unicode setting and the source code to be encoded using UTF-8. <lang PureBasic>If OpenConsole()
;UTF-8 encoding compiled for Unicode (UCS-2) charCode.c = 960 Char.s = "π" PrintN(Chr(charCode)) ;prints π PrintN(Str(Asc(Char))) ;prints 960
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit") Input() CloseConsole()
EndIf</lang>
Python
Here character is just a string of length 1
8-bit characters: <lang python>print ord('a') # prints "97" print chr(97) # prints "a"</lang>
Unicode characters: <lang python>print ord(u'π') # prints "960" print unichr(960) # prints "π"</lang>
Here character is just a string of length 1 <lang python>print(ord('a')) # prints "97" print(ord('π')) # prints "960" print(chr(97)) # prints "a" print(chr(960)) # prints "π"</lang>
R
<lang R>ascii <- as.integer(charToRaw("hello world")); ascii text <- rawToChar(as.raw(ascii)); text</lang>
Racket
<lang Racket>#lang racket
(define (code ch)
(printf "The unicode number for ~s is ~a\n" ch (char->integer ch)))
(code #\a) (code #\λ)
(define (char n)
(printf "The unicode number ~a is the character ~s\n" n (integer->char n)))
(char 97) (char 955)</lang>
Retro
<lang Retro>'c putc</lang>
REXX
REXX supports handling of characters with built-in functions, whether it be hexadecimal, binary (bits), or decimal codes. <lang rexx>yyy='c' /*assign a lowercase c to YYY.*/ yyy='34'x /*assign hexadecimal 34 to YYY.*/
/*the X can be upper/lowercase.*/
yyy=x2c(34) /* (same as above) */ yyy='00110100'b /* (same as above) */ yyy='0011 0100'b /* (same as above) */
/*the B can be upper/lowercase.*/
yyy=d2c(97) /*assign decimal code 97 to YYY.*/
say yyy /*displays the value of YYY. */ say c2x(yyy) /*displays the value of YYY in hexadecimal. */ say c2d(yyy) /*displays the value of YYY in decimal. */ say x2b(c2x(yyy)) /*displays the value of YYY in binary (bit string). */
/*Note: some REXXes support the c2b bif */</lang>
Ruby
1.8
In Ruby 1.8 characters are usually represented directly as their integer character code. Ruby has a syntax for "character literal" which evaluates directly to the integer code: ?a evaluates to the integer 97. Subscripting a string also gives just the integer code for the character. <lang ruby>> ?a => 97 > "a"[0] => 97 > 97.chr => "a"</lang>
1.9
In Ruby 1.9 characters are represented as length-1 strings; same as in Python. The previous "character literal" syntax ?a is now the same as "a". Subscripting a string also gives a length-1 string. There is now an "ord" method of strings to convert a character into its integer code.
<lang ruby>> "a".ord => 97 > 97.chr => "a"</lang>
Run BASIC
<lang runbasic>print chr$(97) 'prints a print asc("a") 'prints 97</lang>
Sather
<lang sather>class MAIN is
main is #OUT + 'a'.int + "\n"; -- or #OUT + 'a'.ascii_int + "\n"; #OUT + CHAR::from_ascii_int(97) + "\n"; end;
end;</lang>
Scala
Scala supports unicode characters, but each character is UTF-16, so there is not a 1-to-1 relationship for supplementary character sets.
In a REPL session
<lang scala>scala> 'a' toInt res2: Int = 97
scala> 97 toChar res3: Char = a
scala> '\u0061' res4: Char = a
scala> "\uD869\uDEA5" res5: String = 𪚥</lang>
Full swing workout
Taken the supplemental character sets in account. <lang scala>import java.lang.Character._; import scala.annotation.tailrec
object CharacterCode extends App {
def intToChars(n: Int): Array[Char] = java.lang.Character.toChars(n)
def UnicodeToList(UTFstring: String) = { @tailrec def inner(str: List[Char], acc: List[String], surrogateHalf: Option[Char]): List[String] = { (str, surrogateHalf) match { case (Nil, _) => acc case (ch :: rest, None) => if (ch.isSurrogate) inner(rest, acc, Some(ch)) else inner(rest, acc :+ ch.toString, None) case (ch :: rest, Some(f)) => inner(rest, (acc :+ (f.toString + ch)), None) } } inner(UTFstring.toList, Nil, None) }
def UnicodeToInt(utf: String) = { def charToInt(high: Char, low: Char) = { if (isSurrogatePair(high, low)) toCodePoint(high, low) else high.toInt } charToInt(utf(0), if (utf.size > 1) utf(1) else 0) }
def UTFtoHexString(utf: String) = { utf.map(ch => f"${ch.toInt}%04X").mkString("\"\\u", "\\u", "\"") }
def flags(ch: String) = { // Testing Unicode character properties (if (ch matches "\\p{M}") "Y" else "N") + (if (ch matches "\\p{Mn}") "Y" else "N") }
val str = '\uFEFF' /*big-endian BOM*/ + "\u0301a" + "$áabcde¢£¤¥©ÇßIJijŁłʒλπक्तु•₠₡₢₣₤₥₦₧₨₩₪₫€₭₮₯₰₱₲₳₴₵℃←→⇒∙⌘☃☹☺☻ア字文𠀀" + intToChars(173733).mkString
println(s"Example string: $str") println(""" | Chr C/C++/Java source Code Point Hex Dec Mn Name
!----+ --- ------------------------- ------- -------- -- """.stripMargin('!') + "-" * 27)
(UnicodeToList(str)).zipWithIndex.map { case (coll, nr) => f"$nr%4d: $coll\t${UTFtoHexString(coll)}%27s U+${UnicodeToInt(coll)}%05X" + f"${"(" + UnicodeToInt(coll).toString}%8s) ${flags(coll)} ${getName(coll(0).toInt)} " }.foreach(println)
}</lang>
- Output:
Example string: ́a$áabcde¢£¤¥©ÇßIJijŁłʒλπक्तु•₠₡₢₣₤₥₦₧₨₩₪₫€₭₮₯₰₱₲₳₴₵℃←→⇒∙⌘☃☹☺☻ア字文𠀀𪚥 | Chr C/C++/Java source Code Point Hex Dec Mn Name ----+ --- ------------------------- ------- -------- -- --------------------------- 0: "\uFEFF" U+0FEFF (65279) NN ZERO WIDTH NO-BREAK SPACE 1: ́ "\u0301" U+00301 (769) YY COMBINING ACUTE ACCENT 2: a "\u0061" U+00061 (97) NN LATIN SMALL LETTER A 3: $ "\u0024" U+00024 (36) NN DOLLAR SIGN 4: á "\u00E1" U+000E1 (225) NN LATIN SMALL LETTER A WITH ACUTE 5: a "\u0061" U+00061 (97) NN LATIN SMALL LETTER A 6: b "\u0062" U+00062 (98) NN LATIN SMALL LETTER B 7: c "\u0063" U+00063 (99) NN LATIN SMALL LETTER C 8: d "\u0064" U+00064 (100) NN LATIN SMALL LETTER D 9: e "\u0065" U+00065 (101) NN LATIN SMALL LETTER E 10: ¢ "\u00A2" U+000A2 (162) NN CENT SIGN 11: £ "\u00A3" U+000A3 (163) NN POUND SIGN 12: ¤ "\u00A4" U+000A4 (164) NN CURRENCY SIGN 13: ¥ "\u00A5" U+000A5 (165) NN YEN SIGN 14: © "\u00A9" U+000A9 (169) NN COPYRIGHT SIGN 15: Ç "\u00C7" U+000C7 (199) NN LATIN CAPITAL LETTER C WITH CEDILLA 16: ß "\u00DF" U+000DF (223) NN LATIN SMALL LETTER SHARP S 17: IJ "\u0132" U+00132 (306) NN LATIN CAPITAL LIGATURE IJ 18: ij "\u0133" U+00133 (307) NN LATIN SMALL LIGATURE IJ 19: Ł "\u0141" U+00141 (321) NN LATIN CAPITAL LETTER L WITH STROKE 20: ł "\u0142" U+00142 (322) NN LATIN SMALL LETTER L WITH STROKE 21: ʒ "\u0292" U+00292 (658) NN LATIN SMALL LETTER EZH 22: λ "\u03BB" U+003BB (955) NN GREEK SMALL LETTER LAMDA 23: π "\u03C0" U+003C0 (960) NN GREEK SMALL LETTER PI 24: क "\u0915" U+00915 (2325) NN DEVANAGARI LETTER KA 25: ् "\u094D" U+0094D (2381) YY DEVANAGARI SIGN VIRAMA 26: त "\u0924" U+00924 (2340) NN DEVANAGARI LETTER TA 27: ु "\u0941" U+00941 (2369) YY DEVANAGARI VOWEL SIGN U 28: • "\u2022" U+02022 (8226) NN BULLET 29: ₠ "\u20A0" U+020A0 (8352) NN EURO-CURRENCY SIGN 30: ₡ "\u20A1" U+020A1 (8353) NN COLON SIGN 31: ₢ "\u20A2" U+020A2 (8354) NN CRUZEIRO SIGN 32: ₣ "\u20A3" U+020A3 (8355) NN FRENCH FRANC SIGN 33: ₤ "\u20A4" U+020A4 (8356) NN LIRA SIGN 34: ₥ "\u20A5" U+020A5 (8357) NN MILL SIGN 35: ₦ "\u20A6" U+020A6 (8358) NN NAIRA SIGN 36: ₧ "\u20A7" U+020A7 (8359) NN PESETA SIGN 37: ₨ "\u20A8" U+020A8 (8360) NN RUPEE SIGN 38: ₩ "\u20A9" U+020A9 (8361) NN WON SIGN 39: ₪ "\u20AA" U+020AA (8362) NN NEW SHEQEL SIGN 40: ₫ "\u20AB" U+020AB (8363) NN DONG SIGN 41: € "\u20AC" U+020AC (8364) NN EURO SIGN 42: ₭ "\u20AD" U+020AD (8365) NN KIP SIGN 43: ₮ "\u20AE" U+020AE (8366) NN TUGRIK SIGN 44: ₯ "\u20AF" U+020AF (8367) NN DRACHMA SIGN 45: ₰ "\u20B0" U+020B0 (8368) NN GERMAN PENNY SIGN 46: ₱ "\u20B1" U+020B1 (8369) NN PESO SIGN 47: ₲ "\u20B2" U+020B2 (8370) NN GUARANI SIGN 48: ₳ "\u20B3" U+020B3 (8371) NN AUSTRAL SIGN 49: ₴ "\u20B4" U+020B4 (8372) NN HRYVNIA SIGN 50: ₵ "\u20B5" U+020B5 (8373) NN CEDI SIGN 51: ℃ "\u2103" U+02103 (8451) NN DEGREE CELSIUS 52: ← "\u2190" U+02190 (8592) NN LEFTWARDS ARROW 53: → "\u2192" U+02192 (8594) NN RIGHTWARDS ARROW 54: ⇒ "\u21D2" U+021D2 (8658) NN RIGHTWARDS DOUBLE ARROW 55: ∙ "\u2219" U+02219 (8729) NN BULLET OPERATOR 56: ⌘ "\u2318" U+02318 (8984) NN PLACE OF INTEREST SIGN 57: ☃ "\u2603" U+02603 (9731) NN SNOWMAN 58: ☹ "\u2639" U+02639 (9785) NN WHITE FROWNING FACE 59: ☺ "\u263A" U+0263A (9786) NN WHITE SMILING FACE 60: ☻ "\u263B" U+0263B (9787) NN BLACK SMILING FACE 61: ア "\u30A2" U+030A2 (12450) NN KATAKANA LETTER A 62: 字 "\u5B57" U+05B57 (23383) NN CJK UNIFIED IDEOGRAPHS 5B57 63: 文 "\u6587" U+06587 (25991) NN CJK UNIFIED IDEOGRAPHS 6587 64: "\uF8FF" U+0F8FF (63743) NN PRIVATE USE AREA F8FF 65: 𠀀 "\uD840\uDC00" U+20000 (131072) NN HIGH SURROGATES D840 66: 𪚥 "\uD869\uDEA5" U+2A6A5 (173733) NN HIGH SURROGATES D869
More background info: "Java: a rough guide to character encoding"
Scheme
<lang scheme>(display (char->integer #\a)) (newline) ; prints "97" (display (integer->char 97)) (newline) ; prints "a"</lang>
Seed7
<lang seed7>writeln(ord('a')); writeln(chr(97));</lang>
Sidef
<lang ruby>say 'a'.ord; # => 97 say 97.chr; # => 'a' (of type Char)</lang>
Slate
<lang slate>$a code. 97 as: String Character.</lang>
Smalltalk
<lang smalltalk>($a asInteger) displayNl. "output 97" (Character value: 97) displayNl. "output a"</lang>
SNOBOL4
Snobol implementations may or may not have built-in char( ) and ord ( ) or asc( ). These are based on examples in the Snobol4+ tutorial and work with the native (1-byte) charset. <lang SNOBOL4> define('chr(n)') :(chr_end) chr &alphabet tab(n) len(1) . chr :s(return)f(freturn) chr_end
define('asc(str)c') :(asc_end)
asc str len(1) . c
&alphabet break(c) @asc :s(return)f(freturn)
asc_end
- # Test and display
output = char(65) ;* Built-in output = chr(65) output = asc('A')
end</lang>
- Output:
A A 65
Standard ML
<lang sml>print (Int.toString (ord #"a") ^ "\n"); (* prints "97" *) print (Char.toString (chr 97) ^ "\n"); (* prints "a" *)</lang>
Swift
The type that represent a Unicode code point is UnicodeScalar
. You can initialize it with a string literal:
<lang swift>let c1: UnicodeScalar = "a"
println(c1.value) // prints "97"
let c2: UnicodeScalar = "π"
println(c2.value) // prints "960"</lang>
Or, you can get it by iterating a string's unicode scalars view:
<lang swift>let s1 = "a"
for c in s1.unicodeScalars {
println(c.value) // prints "97"
} let s2 = "π" for c in s2.unicodeScalars {
println(c.value) // prints "960"
}</lang>
You can also initialize it from a UInt32
integer:
<lang swift>let i1: UInt32 = 97
println(UnicodeScalar(i1)) // prints "a"
let i2: UInt32 = 960
println(UnicodeScalar(i2)) // prints "π"</lang>
Tcl
<lang tcl># ASCII puts [scan "a" %c] ;# ==> 97 puts [format %c 97] ;# ==> a
- Unicode is the same
puts [scan "π" %c] ;# ==> 960 puts [format %c 960] ;# ==> π</lang>
TI-83 BASIC
TI-83 BASIC provides no built in way to do this, so in all String<-->List routines and anything else which requires character codes, a workaround using inString( and sub( is used. In this example, the code of 'A' is displayed, and then the character matching a user-defined code is displayed. <lang ti83b>"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789→Str1 Disp inString(Str1,"A Input "CODE? ",A Disp sub(Str1,A,1</lang>
TI-89 BASIC
The TI-89 uses an 8-bit charset/encoding which is similar to ISO-8859-1, but with more mathematical symbols and Greek letters. At least codes 14-31, 128-160, 180 differ. The ASCII region is unmodified. (TODO: Give a complete list.)
The TI Connect X desktop software converts between this unique character set and Unicode characters, though sometimes in a consistent but inappropriate fashion.
The below program will display the character and code for any key pressed. Some keys do not correspond to characters and have codes greater than 255. The portion of the program actually implementing the task is marked with a line of “©”s. <lang ti89b>Prgm
Local k, s ClrIO Loop Disp "Press a key, or ON to exit." getKey() © clear buffer 0 → k : While k = 0 : getKey() → k : EndWhile ClrIO If k ≥ 256 Then Disp "Not a character." Disp "Code: " & string(k) Else
char(k) → s © © char() and ord() are inverses. © Disp "Character: " & s © Disp "Code: " & string(ord(s)) ©
EndIf EndLoop
EndPrgm</lang>
Trith
Characters are Unicode code points, so the solution is the same for Unicode characters as it is for ASCII characters: <lang trith>"a" ord print 97 chr print</lang> <lang trith>"π" ord print 960 chr print</lang>
TUSCRIPT
<lang tuscript>$$ MODE TUSCRIPT SET character ="a", code=DECODE (character,byte) PRINT character,"=",code</lang>
- Output:
a=97
Ursala
Character code functions are not built in but easily defined as reifications of the character table. <lang Ursala>#import std
- import nat
chr = -: num characters asc = -:@rlXS num characters
- cast %cnX
test = (chr97,asc`a)</lang>
- Output:
(`a,97)
VBA
<lang vba>Debug.Print Chr(97) 'Prints a Debug.Print [Code("a")] ' Prints 97</lang>
Vim Script
The behavior of the two functions depends on the value of the option encoding
.
<lang vim>"encoding is set to utf-8
echo char2nr("a")
"Prints 97
echo nr2char(97) "Prints a</lang>
Visual Basic .NET
<lang vbnet>Console.WriteLine(Chr(97)) 'Prints a Console.WriteLine(Asc("a")) 'Prints 97</lang>
XPL0
A character is represented by an integer value equal to its ASCII code. The up-arrow character is used to convert the immediately following character to an integer equal to its ASCII code.
<lang XPL0>IntOut(0, ^a); \(Integer Out) displays "97" on the console (device 0) ChOut(0, 97); \(Character Out) displays "a" on the console (device 0)</lang>
zkl
The character set is 8 bit ASCII (but doesn't care if you use UTF-8 or unicode characters). <lang zkl> "a".toAsc() //-->97 (97).toChar() //-->"a"</lang>
- Programming Tasks
- Text processing
- Basic language learning
- String manipulation
- Simple
- ABAP
- ACL2
- ActionScript
- Ada
- Aime
- ALGOL 68
- AutoHotkey
- AWK
- Babel
- BASIC
- Applesoft BASIC
- BBC BASIC
- Befunge
- Bracmat
- C
- C++
- C sharp
- Clojure
- CoffeeScript
- Common Lisp
- Component Pascal
- D
- Delphi
- DWScript
- E
- Elena
- Erlang
- Euphoria
- F Sharp
- Factor
- FALSE
- Fantom
- Forth
- Fortran
- Frink
- GAP
- Go
- Golfscript
- Groovy
- Haskell
- HicEst
- Icon
- Unicon
- J
- Java
- JavaScript
- Joy
- Jq
- Julia
- K
- LabVIEW
- Lang5
- Lasso
- LFE
- Liberty BASIC
- Logo
- Logtalk
- Lua
- Maple
- Mathematica
- MATLAB
- Octave
- Maxima
- Metafont
- Modula-2
- Modula-3
- MUMPS
- NetRexx
- Nim
- Oberon-2
- Objeck
- OCaml
- OpenEdge/Progress
- Oz
- PARI/GP
- Pascal
- Perl
- Perl 6
- PHP
- PicoLisp
- PL/I
- PowerShell
- Prolog
- PureBasic
- Python
- R
- Racket
- Retro
- REXX
- Ruby
- Run BASIC
- Sather
- Scala
- Scheme
- Seed7
- Sidef
- Slate
- Smalltalk
- SNOBOL4
- Standard ML
- Swift
- Tcl
- TI-83 BASIC
- TI-89 BASIC
- Trith
- TUSCRIPT
- Ursala
- VBA
- Vim Script
- Visual Basic .NET
- XPL0
- Zkl
- Bc/Omit
- GUISS/Omit