Character codes

From Rosetta Code
Character codes
You are encouraged to solve this task according to the task description, using any language you may know.

Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses). For example, the character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode). Conversely, given a code, print out the corresponding character.


In ABAP you must first cast the character to a byte field and back to a number in order to get its ASCII value. <lang ABAP>report zcharcode data: c value 'A', n type i. field-symbols <n> type x.

assign c to <n> casting. move <n> to n. write: c, '=', n left-justified.</lang>

A = 65


Similar to Common Lisp: <lang Lisp>(cw "~x0" (char-code #\a)) (cw "~x0" (code-char 97))</lang>


In ActionScript, you cannot take the character code of a character directly. Instead you must create a string and call charCodeAt with the character's position in the string as a parameter. <lang ActionScipt>trace(String.fromCharCode(97)); //prints 'a' trace("a".charCodeAt(0));//prints '97'</lang>


<lang ada>with Ada.Text_IO; use Ada.Text_IO;

procedure Char_Code is begin

  Put_Line (Character'Val (97) & " =" & Integer'Image (Character'Pos ('a')));

end Char_Code;</lang>

The predefined language attributes S'Pos and S'Val for every discrete subtype, and Character is such a type, yield the position of a value and value by its position correspondingly. Sample output:
a = 97


<lang aime># prints "97" o_integer('a'); o_byte('\n');

  1. prints "a"

o_byte(97); o_byte('\n');</lang>


In ALGOL 68 the format $g$ is type aware, hence the type conversion operators abs & repr are used to set the type. <lang algol68>main:(

 printf(($gl$, ABS "a")); # for ASCII this prints "+97" EBCDIC prints "+129" #
 printf(($gl$, REPR 97))  # for ASCII this prints "a"; EBCDIC prints "/" #

)</lang> Character conversions may be available in the standard prelude so that when a foreign tape is mounted, the characters will be converted transparently as the tape's records are read. <lang algol68>FILE tape; INT errno = open(tape, "/dev/tape1", stand out channel) make conv(tape, ebcdic conv); FOR record DO getf(tape, ( ~ )) OD; ~ # etc ... #</lang> Every channel has an associated standard character conversion that can be determined using the stand conv query routine and then the conversion applied to a particular file/tape. eg. <lang algol68> make conv(tape, stand conv(stand out channel))</lang>


<lang AutoHotkey>MsgBox % Chr(97) MsgBox % Asc("a")</lang>


AWK has no built-in way to convert a character into ASCII (or whatever) code; but a function that does so can be easily built using an associative array (where the keys are the characters). The opposite can be done using printf (or sprintf) with %c <lang awk>function ord(c) {

 return chmap[c]


 for(i=0; i < 256; i++) {
   chmap[sprintf("%c", i)] = i
 print ord("a"), ord("b")
 printf "%c %c\n", 97, 98
 s = sprintf("%c%c", 97, 98)
 print s



<lang babel>'abcdefg' str2ar {%d nl <<} eachar</lang>


97 98 99 100 101 102 103

<lang babel>(98 97 98 101 108) ls2lf ar2str nl << </lang>

Output: babel


Works with: QuickBasic version 4.5

<lang qbasic>charCode = 97 char = "a" PRINT CHR$(charCode) 'prints a PRINT ASC(char) 'prints 97</lang>

On the ZX Spectrum string variable names must be a single letter but numeric variables can be multiple characters:

Works with: ZX Spectrum Basic

<lang zxbasic>10 LET c = 97: REM c is a character code 20 LET d$ = "b": REM d$ holds the character 30 PRINT CHR$(c): REM this prints a 40 PRINT CODE(d$): REM this prints 98</lang>

Applesoft BASIC

CHR$(97) is used in place of "a" because on the older model Apple II, lower case is difficult to input. <lang qbasic>?CHR$(97)"="ASC(CHR$(97))</lang>


Output as it appears on the text display on the Apple II and Apple II plus, with the original text character ROM:



<lang bbcbasic> charCode = 97

     char$ = "a"
     PRINT CHR$(charCode) : REM prints a
     PRINT ASC(char$) : REM prints 97</lang>


The instruction . will output as an integer. , will output as ASCII character. <lang befunge>"a". 99*44*+, @</lang>


<lang bracmat>( put $ ( str

 $ ( "\nLatin a
       ISO-9959-1: "
     " = "
            UTF-8: "
     " = "
     "Cyrillic а (UTF-8): "
     " = "


Latin a
       ISO-9959-1: 97 = a
            UTF-8: 97 = a
Cyrillic а (UTF-8): 1072 = а


char is already an integer type in C, and it gets automatically promoted to int. So you can use a character where you would otherwise use an integer. Conversely, you can use an integer where you would normally use a character, except you may need to cast it, as char is smaller.

<lang c>#include <stdio.h>

int main() {

 printf("%d\n", 'a'); /* prints "97" */
 printf("%c\n", 97); /* prints "a"; we don't have to cast because printf is type agnostic */
 return 0;



char is already an integer type in C++, and it gets automatically promoted to int. So you can use a character where you would otherwise use an integer. Conversely, you can use an integer where you would normally use a character, except you may need to cast it, as char is smaller.

In this case, the output operator << is overloaded to handle integer (outputs the decimal representation) and character (outputs just the character) types differently, so we need to cast it in both cases. <lang cpp>#include <iostream>

int main() {

 std::cout << (int)'a' << std::endl; // prints "97"
 std::cout << (char)97 << std::endl; // prints "a"
 return 0;



C# represents strings and characters internally as Unicode, so casting a char to an int returns its Unicode character encoding. <lang csharp>using System;

namespace RosettaCode.CharacterCode {

   class Program
       static void Main(string[] args)
           Console.WriteLine((int) 'a');   //Prints "97"
           Console.WriteLine((char) 97);   //Prints "a"



<lang clojure>(print (int \a)) ; prints "97" (print (char 97)) ; prints \a

Unicode is also available, as Clojure uses the underlying java Strings & chars

(print (int \π))  ; prints 960 (print (char 960)) ; prints \π

use String because char in Java can't represent characters outside Basic Multilingual Plane

(print (.codePointAt "𝅘𝅥𝅮" 0)) ; prints 119136 (print (String. (int-array 1 119136) 0 1)) ; prints 𝅘𝅥𝅮</lang>


CoffeeScript transcompiles to JavaScript, so it uses the JS standard library. <lang coffeescript>console.log 'a'.charCodeAt 0 # 97 console.log String.fromCharCode 97 # a</lang>

Common Lisp

<lang lisp>(princ (char-code #\a)) ; prints "97" (princ (code-char 97)) ; prints "a"</lang>

Component Pascal

BlackBox Component Builder <lang oberon2>PROCEDURE CharCodes*; VAR c : CHAR; BEGIN c := 'A'; StdLog.Char(c);StdLog.String(":> ");StdLog.Int(ORD(c));StdLog.Ln; c := CHR(3A9H); StdLog.Char(c);StdLog.String(":> ");StdLog.Int(ORD(c));StdLog.Ln END CharCodes;</lang>

A:>  65
Ω:>  937


<lang d>void main() {

   import std.stdio, std.utf;
   string test = "a";
   size_t index = 0;
   // Get four-byte utf32 value for index 0.
   writefln("%d", test.decode(index));
   // 'index' has moved to next character input position.
   assert(index == 1);




Example from Studio 2006. <lang delphi>program Project1;







 aChar := Chr(97);       Writeln(aChar);
 aCode := Ord(aChar);    Writeln(aCode);
 uChar := WideChar(97);  Writeln(uChar);
 uCode := Ord(uChar);    Writeln(uCode);



<lang delphi>PrintLn(Ord('a')); PrintLn(Chr(97));</lang>


<lang e>? 'a'.asInteger()

  1. value: 97

? <import:java.lang.makeCharacter>.asChar(97)

  1. value: 'a'</lang>


<lang elena>#define system.

  1. symbol Program =>


   console write:("a" getAt:0 Number).
   console write:(CharValue new &short:97).



In Erlang, lists and strings are the same, only the representation changes. Thus: <lang erlang>1> F = fun([X]) -> X end.

  1. Fun<erl_eval.6.13229925>

2> F("a"). 97</lang> If entered manually, one can also get ASCII codes by prefixing characters with $: <lang erlang>3> $a. 97</lang> Unicode is fully supported since release R13A only.


<lang Euphoria>printf(1,"%d\n", 'a') -- prints "97" printf(1,"%s\n", 97) -- prints "a"</lang>


<lang fsharp>let c = 'A' let n = 65 printfn "%d" (int c) printfn "%c" (char n)</lang>



<lang factor>CHAR: katakana-letter-a . "ア" first .

12450 1string print</lang>


<lang false>'A." "65,</lang>


A character is represented in single quotes: the 'toInt' method returns the code for the character. The 'toChar' method converts an integer into its respective character. <lang fantom>fansh> 97.toChar a fansh> 'a'.toInt 97</lang>


As with C, characters are just integers on the stack which are treated as ASCII. <lang forth>char a dup . \ 97 emit \ a</lang>


Functions ACHAR and IACHAR specifically work with the ASCII character set, while the results of CHAR and ICHAR will depend on the default character set being used. <lang fortran>WRITE(*,*) ACHAR(97), IACHAR("a") WRITE(*,*) CHAR(97), ICHAR("a")</lang>


The function char[x] in Frink returns the numerical Unicode codepoints for a string or character, or returns the Unicode string for an integer value or array of integer values. The chars[x] returns an array even if the string is a single character. These functions also correctly handle upper-plane Unicode characters as a single codepoint. <lang frink>println[char["a"]] // prints 97 println[chars["a"]] // prints [97] (an array) println[char[97]] // prints a println[char["Frink rules!"]] // prints [70, 114, 105, 110, 107, 32, 114, 117, 108, 101, 115, 33] println70, 114, 105, 110, 107, 32, 114, 117, 108, 101, 115, 33 // prints "Frink rules!"</lang>


<lang gap># Code must be in 0 .. 255. CharInt(65);

  1. 'A'


  1. 90</lang>


In Go, a character literal is simply an integer constant of the character code: <lang go>fmt.Println('a') // prints "97" fmt.Println('π') // prints "960"</lang> Literal constants in Go are not typed (named constants can be). The variable and constant types most commonly used for character data are byte, rune, and string. This example program shows character codes (as literals) stored in typed variables, and printed out with default formatting. Note that since byte and rune are integer types, the default formatting is a printable base 10 number. String is not numeric, and a little extra work must be done to print the character codes. <lang go>package main

import "fmt"

func main() { // yes, there is more concise syntax, but this makes // the data types very clear. var b byte = 'a' var r rune = 'π' var s string = "aπ"

fmt.Println(b, r, s) fmt.Println("string cast to []rune:", []rune(s)) // A range loop over a string gives runes, not bytes fmt.Print(" string range loop: ") for _, c := range s { fmt.Print(c, " ") // c is type rune } // We can also print the bytes of a string without an explicit loop fmt.Printf("\n string bytes: % #x\n", s) }</lang>

97 960 aπ
string cast to []rune: [97 960]
    string range loop: 97 960 
         string bytes: 0x61 0xcf 0x80

For the second part of the task, printing the character of a given code, the %c verb of fmt.Printf will do this directly from integer values, emitting the UTF-8 encoding of the code, (which will typically print the character depending on your hardware and operating system configuration). <lang go>b := byte(97) r := rune(960) fmt.Printf("%c %c\n%c %c\n", 97, 960, b, r)</lang>

a π
a π

You can think of the default formatting of strings as being the printable characters of the string. In fact however, it is even simpler. Since we expect our output device to interpret UTF-8, and we expect our string to contain UTF-8, The default formatting simply dumps the bytes of the string to the output.

Examples showing strings constructed from integer constants and then printed: <lang go>fmt.Println(string(97)) // prints "a" fmt.Println(string(960)) // prints "π" fmt.Println(string([]rune{97, 960})) // prints "aπ"</lang>


To convert a number to a string, we use the array to string coercion. <lang golfscript>97[]++p</lang> To convert a string to a number, we have a many options, of which the simplest and shortest are: <lang golfscript>'a')\;p 'a'(\;p 'a'0=p 'a'{}/p</lang>


Groovy does not have a character literal at all, so one-character strings have to be coerced to char. Groovy printf (like Java, but unlike C) is not type-agnostic, so the cast or coercion from char to int is also required. The reverse direction is considerably simpler. <lang groovy>printf ("%d\n", ('a' as char) as int) printf ("%c\n", 97)</lang>



<lang haskell>import Data.Char

main = do

 print (ord 'a') -- prints "97"
 print (chr 97) -- prints "'a'"
 print (ord 'π') -- prints "960"
 print (chr 960) -- prints "'\960'"</lang>


<lang hicest>WRITE(Messagebox) ICHAR('a'), CHAR(97)</lang>

Icon and Unicon

<lang Icon>procedure main(arglist) if *arglist > 0 then L := arglist else L := [97, "a"]

every x := !L do

  write(x, " ==> ", char(integer(x)) | ord(x) )  # char produces a character, ord produces a number

end</lang> Icon and Unicon do not currently support double byte character sets.

97 ==> a
a ==> 97


<lang j> 4 u: 97 98 99 9786 abc☺

  3 u: 7 u: 'abc☺'

97 98 99 9786</lang>


char is already an integer type in Java, and it gets automatically promoted to int. So you can use a character where you would otherwise use an integer. Conversely, you can use an integer where you would normally use a character, except you may need to cast it, as char is smaller.

In this case, the println method is overloaded to handle integer (outputs the decimal representation) and character (outputs just the character) types differently, so we need to cast it in both cases. <lang java>public class Foo {

   public static void main(String[] args) {
       System.out.println((int)'a'); // prints "97"
       System.out.println((char)97); // prints "a"

}</lang> Java characters support Unicode: <lang java>public class Bar {

   public static void main(String[] args) {
       System.out.println((int)'π'); // prints "960"
       System.out.println((char)960); // prints "π"



Here character is just a string of length 1 <lang javascript>console.log('a'.charCodeAt(0)); // prints "97" console.log(String.fromCharCode(97)); // prints "a"</lang>


<lang joy>'a ord. 97 chr.</lang>


jq data strings are JSON strings, which can be "explode"d into an array of integers, each representing a Unicode codepoint. The inverse of the explode filter is implode. explode can of course be used for single-character strings, and so for example: <lang jq>"a" | explode # => [ 97 ] [97] | implode # => "a"</lang> Here is a filter which can be used to convert an integer to the corresponding character:<lang jq>def chr: [.] | implode; </lang> Example: 1024 | chr # => "Ѐ"


Julia character constants (of type Char) are treated as an integer type representing the Unicode codepoint of the character, and can easily be converted to and from other integer types. <lang julia>println(int('a')) println(char(97))</lang>



<lang K> _ic "abcABC" 97 98 99 65 66 67

 _ci 97 98 99 65 66 67



This image is a VI Snippet, an executable image of LabVIEW code. The LabVIEW version is shown on the top-right hand corner. You can download it, then drag-and-drop it onto the LabVIEW block diagram from a file browser, and it will appear as runnable, editable code.


<lang lang5>: CHAR "!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[" comb

       '\\ comb -1 remove append "]^_`abcdefghijklmnopqrstuvwxyz{|}~" comb append ;
CODE 95 iota 33 + ;  : comb "" split ;
extract' rot 1 compress index subscript expand drop ;
chr CHAR CODE extract' ;
ord CODE CHAR extract' ;

'a ord . # 97 97 chr . # a</lang>


<lang Lasso>'a'->integer 'A'->integer 97->bytes 65->bytes</lang>


65 a



In LFE/Erlang, lists and strings are the same, only the representation changes. For example: <lang lisp>> (list 68 111 110 39 116 32 80 97 110 105 99 46) "Don't Panic."</lang>

As for this exercise, here's how you could print out the ASCII code for a letter, and a letter from the ASCII code: <lang lisp>> (: io format '"~w~n" '"a") 97 ok > (: io format '"~p~n" (list '(97))) "a" ok</lang>

Liberty BASIC

<lang lb>charCode = 97 char$ = "a" print chr$(charCode) 'prints a print asc(char$) 'prints 97</lang>

Logo characters are words of length 1. <lang logo>print ascii "a  ; 97 print char 97  ; a</lang>


<lang logtalk>|?- char_code(Char, 97), write(Char). a Char = a yes</lang> <lang logtalk>|?- char_code(a, Code), write(Code). 97 Code = 97 yes</lang>


<lang lua>print(string.byte("a")) -- prints "97" print(string.char(97)) -- prints "a"</lang>


There are two ways to do this in Maple. First, there are procedures in StringTools for this purpose. <lang Maple>> use StringTools in Ord( "A" ); Char( 65 ) end;


</lang> Second, the procedure convert handles conversions to and from byte values. <lang Maple>> convert( "A", bytes );


> convert( [65], bytes );




Use the FromCharacterCode and ToCharacterCode functions: <lang Mathematica>ToCharacterCode["abcd"] FromCharacterCode[{97}]</lang>

{97, 98, 99, 100}

MATLAB / Octave

There are two built-in function that perform these tasks. To convert from a number to a character use: <lang MATLAB>character = char(asciiNumber)</lang>

To convert from a character to its corresponding ascii character use: <lang MATLAB>asciiNumber = double(character)</lang>

or if you need this number as an integer not a double use: <lang MATLAB>asciiNumber = uint16(character) asciiNumber = uint32(character) asciiNumber = uint64(character)</lang>

Sample Usage: <lang MATLAB>>> char(87)

ans =


>> double('W')

ans =


>> uint16('W')

ans =



<lang maxima>ascii(65); "A"

cint("A"); 65</lang>


Metafont handles only ASCII (even though codes beyond 127 can be given and used as real ASCII codes) <lang metafont>message "enter a letter: "; string a; a := readstring; message decimal (ASCII a); % writes the decimal number of the first character

                          % of the string a

message "enter a number: "; num := scantokens readstring; message char num;  % num can be anything between 0 and 255; what will be seen

                   % on output depends on the encoding used by the "terminal"; e.g.
                   % any code beyond 127 when UTF-8 encoding is in use will give
                   % a bad encoding; e.g. to see correctly an "è", we should write

message char10;  % (this add a newline...) message char hex"c3" & char hex"a8";  % since C3 A8 is the UTF-8 encoding for "è" end</lang>


<lang modula2>MODULE asc;


VAR letter  : CHAR;

       ascii           : CARDINAL;


 letter := 'a';
 InOut.Write (letter);
 ascii := ORD (letter);
 InOut.Write (11C);            (*  ASCII TAB   *)
 InOut.WriteCard (ascii, 8);
 ascii := ascii - ORD ('0');
 InOut.Write (11C);            (*  ASCII TAB   *)
 InOut.Write (CHR (ascii));

END asc.</lang> Producing the output: <lang Modula-2>jan@Beryllium:~/modula/rosetta$ ./asc a 97 1</lang>


The built in functions ORD and VAL work on characters, among other things. <lang modula3>ORD('a') (* Returns 97 *) VAL(97, CHAR); (* Returns 'a' *)</lang>


<lang MUMPS>WRITE $ASCII("M") WRITE $CHAR(77)</lang>


NetRexx provides built-in functions to convert between character and decimal/hexadecimal. <lang NetRexx>/* NetRexx */ options replace format comments java crossref symbols nobinary

runSample(arg) return

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method runSample(arg) private static

 -- create some sample data: character, hex and unicode
 samp = ' ' || 'a'.sequence('e') || '$' || '\xa2'.sequence('\xa5') || '\u20a0'.sequence('\u20b5')
 -- use the C2D C2X D2C and X2C built-in functions
 say "'"samp"'"
 say '   | Chr    C2D  C2X D2C X2C'
 say '---+ --- ------ ---- --- ---'
 loop ci = 1 to samp.length
   cc = samp.substr(ci, 1)
   cd = cc.c2d -- char to decimal
   cx = cc.c2x -- char to hexadecimal
   dc = cd.d2c -- decimal to char
   xc = cx.x2c -- hexadecimal to char
   say ci.right(3)"| '"cc"'" cd.right(6) cx.right(4, 0) "'"dc"' '"xc"'"
   end ci
' abcde$¢£¤¥₠₡₢₣₤₥₦₧₨₩₪₫€₭₮₯₰₱₲₳₴₵'
   | Chr    C2D  C2X D2C X2C
---+ --- ------ ---- --- ---
  1| ' '     32 0020 ' ' ' '
  2| 'a'     97 0061 'a' 'a'
  3| 'b'     98 0062 'b' 'b'
  4| 'c'     99 0063 'c' 'c'
  5| 'd'    100 0064 'd' 'd'
  6| 'e'    101 0065 'e' 'e'
  7| '$'     36 0024 '$' '$'
  8| '¢'    162 00A2 '¢' '¢'
  9| '£'    163 00A3 '£' '£'
 10| '¤'    164 00A4 '¤' '¤'
 11| '¥'    165 00A5 '¥' '¥'
 12| '₠'   8352 20A0 '₠' '₠'
 13| '₡'   8353 20A1 '₡' '₡'
 14| '₢'   8354 20A2 '₢' '₢'
 15| '₣'   8355 20A3 '₣' '₣'
 16| '₤'   8356 20A4 '₤' '₤'
 17| '₥'   8357 20A5 '₥' '₥'
 18| '₦'   8358 20A6 '₦' '₦'
 19| '₧'   8359 20A7 '₧' '₧'
 20| '₨'   8360 20A8 '₨' '₨'
 21| '₩'   8361 20A9 '₩' '₩'
 22| '₪'   8362 20AA '₪' '₪'
 23| '₫'   8363 20AB '₫' '₫'
 24| '€'   8364 20AC '€' '€'
 25| '₭'   8365 20AD '₭' '₭'
 26| '₮'   8366 20AE '₮' '₮'
 27| '₯'   8367 20AF '₯' '₯'
 28| '₰'   8368 20B0 '₰' '₰'
 29| '₱'   8369 20B1 '₱' '₱'
 30| '₲'   8370 20B2 '₲' '₲'
 31| '₳'   8371 20B3 '₳' '₳'
 32| '₴'   8372 20B4 '₴' '₴'
 33| '₵'   8373 20B5 '₵' '₵'


<lang nim>echo ord('a') # echoes 97 echo chr(97) # echoes a

import unicode

echo int("π".runeAt(0)) # echoes 960 echo Rune(960) # echoes π</lang>


<lang oberon2>MODULE Ascii; IMPORT Out; VAR c: CHAR; d: INTEGER; BEGIN c := CHR(97); d := ORD("a"); Out.Int(d,3);Out.Ln; Out.Char(c);Out.Ln END Ascii.</lang>





<lang objeck>'a'->As(Int)->PrintLine(); 97->As(Char)->PrintLine();</lang>


<lang ocaml>Printf.printf "%d\n" (int_of_char 'a'); (* prints "97" *) Printf.printf "%c\n" (char_of_int 97); (* prints "a" *)</lang>

The following are aliases for the above functions: <lang ocaml># Char.code ;; - : char -> int = <fun>

  1. Char.chr;;

- : int -> char = <fun></lang>


<lang Progress (Openedge ABL)>MESSAGE

  CHR(97) SKIP



Characters in Oz are the same as integers in the range 0-255 (ISO 8859-1 encoding). To print a number as a character, we need to use it as a string (i.e. a list of integers from 0 to 255): <lang oz>{ &a}  %% prints "97" {System.showInfo [97]}  %% prints "a"</lang>


<lang parigp>print(Vecsmall("a")[1]); print(Strchr([72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33]))</lang>


<lang pascal>writeln(ord('a')); writeln(chr(97));</lang>


Here character is just a string of length 1 <lang perl>print ord('a'), "\n"; # prints "97" print chr(97), "\n"; # prints "a"</lang>

Perl 6

Both Perl 5 and Perl 6 have good Unicode support. Note that even characters outside the BMP are considered single characters, not a surrogate pair. Here we use the character "four dragons" (with 64 strokes!) to demonstrate that. <lang perl6>say ord('𪚥').fmt('0x%04x'); say chr(0x2a6a5);</lang>



Here character is just a string of length 1 <lang php>echo ord('a'), "\n"; // prints "97" echo chr(97), "\n"; // prints "a"</lang>


<lang PicoLisp>: (char "a") -> 97

(char "字")

-> 23383

(char 23383)

-> "字"

(chop "文字")

-> ("文" "字")

(mapcar char @)

-> (25991 23383)</lang>


<lang PL/I>declare 1 u union,

         2 c character (1),
         2 i fixed binary (8) unsigned;

c = 'a'; put skip list (i); /* prints 97 */ i = 97; put skip list (c); /* prints 'a' */</lang>


PowerShell does not allow for character literals directly, so to get a character one first needs to convert a single-character string to a char: <lang powershell>$char = [char] 'a'</lang> Then a simple cast to int yields the character code: <lang powershell>$charcode = [int] $char # => 97</lang> This also works with Unicode: <lang powershell>[int] [char] '☺' # => 9786</lang> For converting an integral character code into the actual character, a cast to char suffices: <lang powershell>[char] 97 # a [char] 9786 # ☺</lang>


SWI-Prolog has predefined predicate char_code/2.

?- char_code(a, X).
X = 97.

?- char_code(X, 97).
X = a.


PureBasic allows compiling code so that it will use either Ascii or a Unicode (UCS-2) encoding for representing its string content. It also allows for the source code that is being compiled to be in either Ascii or UTF-8 encoding. A one-character string is used here to hold the character and a numerical character type is used to hold the character code. The character type is either one or two bytes in size, depending on whether compiling for Ascii or Unicode respectively. <lang PureBasic>If OpenConsole()

 ;Results are the same when compiled for Ascii or Unicode
 charCode.c = 97
 Char.s = "a"
 PrintN(Chr(charCode))   ;prints a
 PrintN(Str(Asc(Char)))  ;prints 97
 Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")


This version should be compiled with Unicode setting and the source code to be encoded using UTF-8. <lang PureBasic>If OpenConsole()

 ;UTF-8 encoding compiled for Unicode (UCS-2)
 charCode.c = 960 
 Char.s = "π"            
 PrintN(Chr(charCode))   ;prints π
 PrintN(Str(Asc(Char)))  ;prints 960
 Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")



Works with: Python version 2.x

Here character is just a string of length 1

8-bit characters: <lang python>print ord('a') # prints "97" print chr(97) # prints "a"</lang>

Unicode characters: <lang python>print ord(u'π') # prints "960" print unichr(960) # prints "π"</lang>

Works with: Python version 3.x

Here character is just a string of length 1 <lang python>print(ord('a')) # prints "97" print(ord('π')) # prints "960" print(chr(97)) # prints "a" print(chr(960)) # prints "π"</lang>


<lang R>ascii <- as.integer(charToRaw("hello world")); ascii text <- rawToChar(as.raw(ascii)); text</lang>


<lang Racket>#lang racket

(define (code ch)

 (printf "The unicode number for ~s is ~a\n" ch (char->integer ch)))

(code #\a) (code #\λ)

(define (char n)

 (printf "The unicode number ~a is the character ~s\n" n (integer->char n)))

(char 97) (char 955)</lang>


<lang Retro>'c putc</lang>


REXX supports handling of characters with built-in functions, whether it be hexadecimal, binary (bits), or decimal codes. <lang rexx>yyy='c' /*assign a lowercase c to YYY.*/ yyy='34'x /*assign hexadecimal 34 to YYY.*/

                     /*the  X  can be upper/lowercase.*/ 

yyy=x2c(34) /* (same as above) */ yyy='00110100'b /* (same as above) */ yyy='0011 0100'b /* (same as above) */

                     /*the  B  can be upper/lowercase.*/ 

yyy=d2c(97) /*assign decimal code 97 to YYY.*/

say yyy /*displays the value of YYY. */ say c2x(yyy) /*displays the value of YYY in hexadecimal. */ say c2d(yyy) /*displays the value of YYY in decimal. */ say x2b(c2x(yyy)) /*displays the value of YYY in binary (bit string). */

                     /*Note:  some REXXes support the    c2b    bif      */</lang>



In Ruby 1.8 characters are usually represented directly as their integer character code. Ruby has a syntax for "character literal" which evaluates directly to the integer code: ?a evaluates to the integer 97. Subscripting a string also gives just the integer code for the character. <lang ruby>> ?a => 97 > "a"[0] => 97 > 97.chr => "a"</lang>


In Ruby 1.9 characters are represented as length-1 strings; same as in Python. The previous "character literal" syntax ?a is now the same as "a". Subscripting a string also gives a length-1 string. There is now an "ord" method of strings to convert a character into its integer code.

<lang ruby>> "a".ord => 97 > 97.chr => "a"</lang>


<lang runbasic>print chr$(97) 'prints a print asc("a") 'prints 97</lang>


<lang sather>class MAIN is

 main is
   #OUT + 'a'.int + "\n"; -- or
   #OUT + 'a'.ascii_int + "\n";
   #OUT + CHAR::from_ascii_int(97) + "\n";



Library: Scala

Scala supports unicode characters, but each character is UTF-16, so there is not a 1-to-1 relationship for supplementary character sets.

In a REPL session

<lang scala>scala> 'a' toInt res2: Int = 97

scala> 97 toChar res3: Char = a

scala> '\u0061' res4: Char = a

scala> "\uD869\uDEA5" res5: String = 𪚥</lang>

Full swing workout

Taken the supplemental character sets in account. <lang scala>import java.lang.Character._; import scala.annotation.tailrec

object CharacterCode extends App {

 def intToChars(n: Int): Array[Char] = java.lang.Character.toChars(n)
 def UnicodeToList(UTFstring: String) = {
   def inner(str: List[Char], acc: List[String], surrogateHalf: Option[Char]): List[String] = {
     (str, surrogateHalf) match {
       case (Nil, _) => acc
       case (ch :: rest, None) => if (ch.isSurrogate) inner(rest, acc, Some(ch))
       else inner(rest, acc :+ ch.toString, None)
       case (ch :: rest, Some(f)) => inner(rest, (acc :+ (f.toString + ch)), None)
   inner(UTFstring.toList, Nil, None)
 def UnicodeToInt(utf: String) = {
   def charToInt(high: Char, low: Char) =
     { if (isSurrogatePair(high, low)) toCodePoint(high, low) else high.toInt }
   charToInt(utf(0), if (utf.size > 1) utf(1) else 0)
 def UTFtoHexString(utf: String) = { => f"${ch.toInt}%04X").mkString("\"\\u", "\\u", "\"") }
 def flags(ch: String) = { // Testing Unicode character properties
   (if (ch matches "\\p{M}") "Y" else "N") + (if (ch matches "\\p{Mn}") "Y" else "N")
 val str = '\uFEFF' /*big-endian BOM*/ + "\u0301a" +
   "$áabcde¢£¤¥©ÇßIJijŁłʒλπक्तु•₠₡₢₣₤₥₦₧₨₩₪₫€₭₮₯₰₱₲₳₴₵℃←→⇒∙⌘☃☹☺☻ア字文𠀀" + intToChars(173733).mkString
 println(s"Example string: $str")
 println("""    | Chr C/C++/Java source  Code Point Hex      Dec Mn Name

!----+ --- ------------------------- ------- -------- -- """.stripMargin('!') + "-" * 27)

 (UnicodeToList(str)) {
   case (coll, nr) =>
     f"$nr%4d: $coll\t${UTFtoHexString(coll)}%27s U+${UnicodeToInt(coll)}%05X" +
       f"${"(" + UnicodeToInt(coll).toString}%8s) ${flags(coll)}  ${getName(coll(0).toInt)} "


Example string: ́a$áabcde¢£¤¥©ÇßIJijŁłʒλπक्तु•₠₡₢₣₤₥₦₧₨₩₪₫€₭₮₯₰₱₲₳₴₵℃←→⇒∙⌘☃☹☺☻ア字文𠀀𪚥
    | Chr C/C++/Java source  Code Point Hex      Dec Mn Name
----+ --- ------------------------- ------- -------- -- ---------------------------
   0: 	                   "\uFEFF" U+0FEFF  (65279) NN  ZERO WIDTH NO-BREAK SPACE 
   1: ́	                   "\u0301" U+00301    (769) YY  COMBINING ACUTE ACCENT 
   2: a	                   "\u0061" U+00061     (97) NN  LATIN SMALL LETTER A 
   3: $	                   "\u0024" U+00024     (36) NN  DOLLAR SIGN 
   4: á	                   "\u00E1" U+000E1    (225) NN  LATIN SMALL LETTER A WITH ACUTE 
   5: a	                   "\u0061" U+00061     (97) NN  LATIN SMALL LETTER A 
   6: b	                   "\u0062" U+00062     (98) NN  LATIN SMALL LETTER B 
   7: c	                   "\u0063" U+00063     (99) NN  LATIN SMALL LETTER C 
   8: d	                   "\u0064" U+00064    (100) NN  LATIN SMALL LETTER D 
   9: e	                   "\u0065" U+00065    (101) NN  LATIN SMALL LETTER E 
  10: ¢	                   "\u00A2" U+000A2    (162) NN  CENT SIGN 
  11: £	                   "\u00A3" U+000A3    (163) NN  POUND SIGN 
  12: ¤	                   "\u00A4" U+000A4    (164) NN  CURRENCY SIGN 
  13: ¥	                   "\u00A5" U+000A5    (165) NN  YEN SIGN 
  14: ©	                   "\u00A9" U+000A9    (169) NN  COPYRIGHT SIGN 
  15: Ç	                   "\u00C7" U+000C7    (199) NN  LATIN CAPITAL LETTER C WITH CEDILLA 
  16: ß	                   "\u00DF" U+000DF    (223) NN  LATIN SMALL LETTER SHARP S 
  17: IJ	                   "\u0132" U+00132    (306) NN  LATIN CAPITAL LIGATURE IJ 
  18: ij	                   "\u0133" U+00133    (307) NN  LATIN SMALL LIGATURE IJ 
  19: Ł	                   "\u0141" U+00141    (321) NN  LATIN CAPITAL LETTER L WITH STROKE 
  20: ł	                   "\u0142" U+00142    (322) NN  LATIN SMALL LETTER L WITH STROKE 
  21: ʒ	                   "\u0292" U+00292    (658) NN  LATIN SMALL LETTER EZH 
  22: λ	                   "\u03BB" U+003BB    (955) NN  GREEK SMALL LETTER LAMDA 
  23: π	                   "\u03C0" U+003C0    (960) NN  GREEK SMALL LETTER PI 
  24: क	                   "\u0915" U+00915   (2325) NN  DEVANAGARI LETTER KA 
  25: ्	                   "\u094D" U+0094D   (2381) YY  DEVANAGARI SIGN VIRAMA 
  26: त	                   "\u0924" U+00924   (2340) NN  DEVANAGARI LETTER TA 
  27: ु	                   "\u0941" U+00941   (2369) YY  DEVANAGARI VOWEL SIGN U 
  28: •	                   "\u2022" U+02022   (8226) NN  BULLET 
  29: ₠	                   "\u20A0" U+020A0   (8352) NN  EURO-CURRENCY SIGN 
  30: ₡	                   "\u20A1" U+020A1   (8353) NN  COLON SIGN 
  31: ₢	                   "\u20A2" U+020A2   (8354) NN  CRUZEIRO SIGN 
  32: ₣	                   "\u20A3" U+020A3   (8355) NN  FRENCH FRANC SIGN 
  33: ₤	                   "\u20A4" U+020A4   (8356) NN  LIRA SIGN 
  34: ₥	                   "\u20A5" U+020A5   (8357) NN  MILL SIGN 
  35: ₦	                   "\u20A6" U+020A6   (8358) NN  NAIRA SIGN 
  36: ₧	                   "\u20A7" U+020A7   (8359) NN  PESETA SIGN 
  37: ₨	                   "\u20A8" U+020A8   (8360) NN  RUPEE SIGN 
  38: ₩	                   "\u20A9" U+020A9   (8361) NN  WON SIGN 
  39: ₪	                   "\u20AA" U+020AA   (8362) NN  NEW SHEQEL SIGN 
  40: ₫	                   "\u20AB" U+020AB   (8363) NN  DONG SIGN 
  41: €	                   "\u20AC" U+020AC   (8364) NN  EURO SIGN 
  42: ₭	                   "\u20AD" U+020AD   (8365) NN  KIP SIGN 
  43: ₮	                   "\u20AE" U+020AE   (8366) NN  TUGRIK SIGN 
  44: ₯	                   "\u20AF" U+020AF   (8367) NN  DRACHMA SIGN 
  45: ₰	                   "\u20B0" U+020B0   (8368) NN  GERMAN PENNY SIGN 
  46: ₱	                   "\u20B1" U+020B1   (8369) NN  PESO SIGN 
  47: ₲	                   "\u20B2" U+020B2   (8370) NN  GUARANI SIGN 
  48: ₳	                   "\u20B3" U+020B3   (8371) NN  AUSTRAL SIGN 
  49: ₴	                   "\u20B4" U+020B4   (8372) NN  HRYVNIA SIGN 
  50: ₵	                   "\u20B5" U+020B5   (8373) NN  CEDI SIGN 
  51: ℃	                   "\u2103" U+02103   (8451) NN  DEGREE CELSIUS 
  52: ←	                   "\u2190" U+02190   (8592) NN  LEFTWARDS ARROW 
  53: →	                   "\u2192" U+02192   (8594) NN  RIGHTWARDS ARROW 
  54: ⇒	                   "\u21D2" U+021D2   (8658) NN  RIGHTWARDS DOUBLE ARROW 
  55: ∙	                   "\u2219" U+02219   (8729) NN  BULLET OPERATOR 
  56: ⌘	                   "\u2318" U+02318   (8984) NN  PLACE OF INTEREST SIGN 
  57: ☃	                   "\u2603" U+02603   (9731) NN  SNOWMAN 
  58: ☹	                   "\u2639" U+02639   (9785) NN  WHITE FROWNING FACE 
  59: ☺	                   "\u263A" U+0263A   (9786) NN  WHITE SMILING FACE 
  60: ☻	                   "\u263B" U+0263B   (9787) NN  BLACK SMILING FACE 
  61: ア	                   "\u30A2" U+030A2  (12450) NN  KATAKANA LETTER A 
  62: 字	                   "\u5B57" U+05B57  (23383) NN  CJK UNIFIED IDEOGRAPHS 5B57 
  63: 文	                   "\u6587" U+06587  (25991) NN  CJK UNIFIED IDEOGRAPHS 6587 
  64: 	                   "\uF8FF" U+0F8FF  (63743) NN  PRIVATE USE AREA F8FF 
  65: 𠀀	             "\uD840\uDC00" U+20000 (131072) NN  HIGH SURROGATES D840 
  66: 𪚥	             "\uD869\uDEA5" U+2A6A5 (173733) NN  HIGH SURROGATES D869
More background info: "Java: a rough guide to character encoding"


<lang scheme>(display (char->integer #\a)) (newline) ; prints "97" (display (integer->char 97)) (newline) ; prints "a"</lang>


<lang seed7>writeln(ord('a')); writeln(chr(97));</lang>


<lang ruby>say 'a'.ord; # => 97 say 97.chr; # => 'a' (of type Char)</lang>


<lang slate>$a code. 97 as: String Character.</lang>


<lang smalltalk>($a asInteger) displayNl. "output 97" (Character value: 97) displayNl. "output a"</lang>


Snobol implementations may or may not have built-in char( ) and ord ( ) or asc( ). These are based on examples in the Snobol4+ tutorial and work with the native (1-byte) charset. <lang SNOBOL4> define('chr(n)') :(chr_end) chr &alphabet tab(n) len(1) . chr :s(return)f(freturn) chr_end

       define('asc(str)c') :(asc_end)

asc str len(1) . c

       &alphabet break(c) @asc :s(return)f(freturn)


  • # Test and display
       output = char(65) ;* Built-in
       output = chr(65)
       output = asc('A')



Standard ML

<lang sml>print (Int.toString (ord #"a") ^ "\n"); (* prints "97" *) print (Char.toString (chr 97) ^ "\n"); (* prints "a" *)</lang>


The type that represent a Unicode code point is UnicodeScalar. You can initialize it with a string literal: <lang swift>let c1: UnicodeScalar = "a" println(c1.value) // prints "97" let c2: UnicodeScalar = "π" println(c2.value) // prints "960"</lang> Or, you can get it by iterating a string's unicode scalars view: <lang swift>let s1 = "a" for c in s1.unicodeScalars {

 println(c.value) // prints "97"

} let s2 = "π" for c in s2.unicodeScalars {

 println(c.value) // prints "960"


You can also initialize it from a UInt32 integer: <lang swift>let i1: UInt32 = 97 println(UnicodeScalar(i1)) // prints "a" let i2: UInt32 = 960 println(UnicodeScalar(i2)) // prints "π"</lang>


<lang tcl># ASCII puts [scan "a" %c]  ;# ==> 97 puts [format %c 97]  ;# ==> a

  1. Unicode is the same

puts [scan "π" %c]  ;# ==> 960 puts [format %c 960] ;# ==> π</lang>


TI-83 BASIC provides no built in way to do this, so in all String<-->List routines and anything else which requires character codes, a workaround using inString( and sub( is used. In this example, the code of 'A' is displayed, and then the character matching a user-defined code is displayed. <lang ti83b>"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789→Str1 Disp inString(Str1,"A Input "CODE? ",A Disp sub(Str1,A,1</lang>


The TI-89 uses an 8-bit charset/encoding which is similar to ISO-8859-1, but with more mathematical symbols and Greek letters. At least codes 14-31, 128-160, 180 differ. The ASCII region is unmodified. (TODO: Give a complete list.)

The TI Connect X desktop software converts between this unique character set and Unicode characters, though sometimes in a consistent but inappropriate fashion.

The below program will display the character and code for any key pressed. Some keys do not correspond to characters and have codes greater than 255. The portion of the program actually implementing the task is marked with a line of “©”s. <lang ti89b>Prgm

 Local k, s
   Disp "Press a key, or ON to exit."
   getKey() © clear buffer
   0 → k : While k = 0 : getKey() → k : EndWhile
   If k ≥ 256 Then
     Disp "Not a character."
     Disp "Code: " & string(k)
     char(k) → s                           ©
     © char() and ord() are inverses.      ©
     Disp "Character: " & s                ©
     Disp "Code: " & string(ord(s))        ©



Characters are Unicode code points, so the solution is the same for Unicode characters as it is for ASCII characters: <lang trith>"a" ord print 97 chr print</lang> <lang trith>"π" ord print 960 chr print</lang>


<lang tuscript>$$ MODE TUSCRIPT SET character ="a", code=DECODE (character,byte) PRINT character,"=",code</lang>



Character code functions are not built in but easily defined as reifications of the character table. <lang Ursala>#import std

  1. import nat

chr = -: num characters asc = -:@rlXS num characters

  1. cast %cnX

test = (chr97,asc`a)</lang>



<lang vba>Debug.Print Chr(97) 'Prints a Debug.Print [Code("a")] ' Prints 97</lang>

Vim Script

The behavior of the two functions depends on the value of the option encoding. <lang vim>"encoding is set to utf-8 echo char2nr("a") "Prints 97

echo nr2char(97) "Prints a</lang>

Visual Basic .NET

<lang vbnet>Console.WriteLine(Chr(97)) 'Prints a Console.WriteLine(Asc("a")) 'Prints 97</lang>


A character is represented by an integer value equal to its ASCII code. The up-arrow character is used to convert the immediately following character to an integer equal to its ASCII code.

<lang XPL0>IntOut(0, ^a); \(Integer Out) displays "97" on the console (device 0) ChOut(0, 97); \(Character Out) displays "a" on the console (device 0)</lang>


The character set is 8 bit ASCII (but doesn't care if you use UTF-8 or unicode characters). <lang zkl> "a".toAsc() //-->97 (97).toChar() //-->"a"</lang>