Sum of first n cubes
- Task
Find and show sum of first n cubes, where n < 50 (ie show 50 entries for n=0..49)
11l
V s = 0
L(n) 50
s += n * n * n
print(String(s).rjust(7), end' I (n + 1) % 10 == 0 {"\n"} E ‘ ’)
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Action!
INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit
PROC Main()
BYTE i
REAL sum,r3,tmp1,tmp2
Put(125) PutE() ;clear the screen
IntToReal(0,sum)
IntToReal(3,r3)
FOR i=0 TO 49
DO
IntToReal(i,tmp1)
RealMult(tmp1,tmp1,tmp2)
RealMult(tmp1,tmp2,tmp2)
RealAdd(sum,tmp2,sum)
PrintR(sum) Put(32)
IF i MOD 4=3 THEN
PutE()
FI
OD
RETURN
- Output:
Screenshot from Atari 8-bit computer
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Ada
with Ada.Text_Io;
procedure Sum_Of_First_N_Cubes is
Columns : constant := 10;
Width : constant := 8;
package Natural_Io is new Ada.Text_Io.Integer_Io (Natural);
use Ada.Text_Io, Natural_Io;
Sum : Natural := 0;
begin
for N in 0 .. 49 loop
Sum := Sum + N ** 3;
Put (Sum, Width => Width);
if N mod Columns = Columns - 1 then
New_Line;
end if;
end loop;
New_Line;
end Sum_Of_First_N_Cubes;
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
ALGOL 68
As noted in the second factor example, the sum of the cubes to n is (n(n + 1))/2)^2, i.e. the square of the sum of the numbers to n.
# show the sums of the first n cubes where 0 <= n < 50 #
FOR i FROM 0 TO 49 DO
INT sum = ( i * ( i + 1 ) ) OVER 2;
print( ( whole( sum * sum, -8 ) ) );
IF i MOD 10 = 9 THEN print( ( newline ) ) FI
OD
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
ALGOL W
begin % show the sums of the cubes of n for 0 <= n < 50 %
integer cubeSum;
cubeSum := 0;
for n := 0 until 49 do begin
cubeSum := cubeSum + ( n * n * n );
writeon( i_w := 8, s_w := 0, cubeSum );
if n rem 10 = 9 then write()
end for_n
end.
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
APL
10 5⍴+\0,(⍳49)*3
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
AppleScript
------------------- SUM OF FIRST N CUBES -----------------
-- sumsOfFirstNCubes :: Int -> [Int]
on sumsOfFirstNCubes(n)
script go
on |λ|(a, x)
a + (x ^ 3) as integer
end |λ|
end script
scanl(go, 0, enumFromTo(1, n - 1))
end sumsOfFirstNCubes
--------------------------- TEST -------------------------
on run
table(5, sumsOfFirstNCubes(50))
end run
------------------------- GENERIC ------------------------
-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
if m ≤ n then
set lst to {}
repeat with i from m to n
set end of lst to i
end repeat
lst
else
{}
end if
end enumFromTo
-- scanl :: (b -> a -> b) -> b -> [a] -> [b]
on scanl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
set lst to {startValue}
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
set end of lst to v
end repeat
return lst
end tell
end scanl
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
-- 2nd class handler function lifted into 1st class script wrapper.
if script is class of f then
f
else
script
property |λ| : f
end script
end if
end mReturn
------------------------ FORMATTING ----------------------
-- table :: Int -> [String] -> String
on table(n, xs)
-- A list of strings formatted as
-- right-justified rows of n columns.
set vs to map(my str, xs)
set w to length of last item of vs
unlines(map(my unwords, ¬
chunksOf(n, map(justifyRight(w, space), vs))))
end table
-- chunksOf :: Int -> [a] -> [[a]]
on chunksOf(k, xs)
script
on go(ys)
set ab to splitAt(k, ys)
set a to item 1 of ab
if {} ≠ a then
{a} & go(item 2 of ab)
else
a
end if
end go
end script
result's go(xs)
end chunksOf
-- justifyRight :: Int -> Char -> String -> String
on justifyRight(n, cFiller)
script
on |λ|(txt)
if n > length of txt then
text -n thru -1 of ((replicate(n, cFiller) as text) & txt)
else
txt
end if
end |λ|
end script
end justifyRight
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
-- The list obtained by applying f
-- to each element of xs.
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary
-- assembly of a target length
-- replicate :: Int -> String -> String
on replicate(n, s)
-- Egyptian multiplication - progressively doubling a list,
-- appending stages of doubling to an accumulator where needed
-- for binary assembly of a target length
script p
on |λ|({n})
n ≤ 1
end |λ|
end script
script f
on |λ|({n, dbl, out})
if (n mod 2) > 0 then
set d to out & dbl
else
set d to out
end if
{n div 2, dbl & dbl, d}
end |λ|
end script
set xs to |until|(p, f, {n, s, ""})
item 2 of xs & item 3 of xs
end replicate
-- splitAt :: Int -> [a] -> ([a], [a])
on splitAt(n, xs)
if n > 0 and n < length of xs then
if class of xs is text then
{items 1 thru n of xs as text, ¬
items (n + 1) thru -1 of xs as text}
else
{items 1 thru n of xs, items (n + 1) thru -1 of xs}
end if
else
if n < 1 then
{{}, xs}
else
{xs, {}}
end if
end if
end splitAt
-- str :: a -> String
on str(x)
x as string
end str
-- unlines :: [String] -> String
on unlines(xs)
-- A single string formed by the intercalation
-- of a list of strings with the newline character.
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set s to xs as text
set my text item delimiters to dlm
s
end unlines
-- until :: (a -> Bool) -> (a -> a) -> a -> a
on |until|(p, f, x)
set v to x
set mp to mReturn(p)
set mf to mReturn(f)
repeat until mp's |λ|(v)
set v to mf's |λ|(v)
end repeat
v
end |until|
-- unwords :: [String] -> String
on unwords(xs)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, space}
set s to xs as text
set my text item delimiters to dlm
return s
end unwords
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Arturo
sumCubes: 0
loop split.every: 10 map 0..49 => [sumCubes: <= sumCubes + & ^ 3] 'a ->
print map a => [pad to :string & 7]
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
AutoHotkey
pn := 0, result := ""
loop 50 {
n := SubStr(" " ((A_Index-1)**3 + pn), -6)
result .= n (Mod(A_Index, 10)?"`t":"`n")
pn := n
}
MsgBox % result
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
AWK
# syntax: GAWK -f SUM_OF_FIRST_N_CUBES.AWK
BEGIN {
start = 0
stop = 49
for (i=start; i<=stop; i++) {
sum += i * i * i
printf("%7d%1s",sum,++count%10?"":"\n")
}
printf("\nSum of cubes %d-%d: %d\n",start,stop,count)
exit(0)
}
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625 Sum of cubes 0-49: 50
BASIC
BASIC256
fila = 0
lenCubos = 49
cls
print "Suma de N cubos para n = [0..49]" + chr(10)
for n = 0 to lenCubos
sumCubos = 0
for m = 1 to n
sumCubos += int(m ^ 3)
next m
fila += 1
print "" + sumCubos + " ";
#Print Using " ####### "; sumCubos;
if (fila % 5) = 0 then print
next n
print chr(13) + "Encontrados " & fila & " cubos."
end
FreeBASIC
Dim As Integer fila = 0, lenCubos = 49, sumCubos
CLs
Print !"Suma de N cubos para n = [0..49]\n"
For n As Integer = 0 To lenCubos
sumCubos = 0
For m As Integer = 1 To n
sumCubos += (m ^3)
Next m
fila += 1
'Print "" & sumCubos & " ";
Print Using " ####### "; sumCubos;
If fila Mod 5 = 0 Then Print
Next n
Print !"\nEncontrados " & fila & " cubos."
Sleep
- Output:
Suma de N cubos para n = [0..49] 0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625 Encontrados 50 cubos.
GW-BASIC
10 FOR N=0 TO 49
20 C#=C#+N^3
30 PRINT C#;
40 NEXT N
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884
164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 138297
6 1500625
QB64
For n%% = 0 To 49
c& = c& + n%% ^ 3
Print Using " ####### "; c&;
If n%% Mod 5 = 4 Then Print
Next n%%
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
QBasic
DEFLNG A-Z
fila = 0
lenCubos = 49
CLS
PRINT "Suma de N cubos para n = [0..49]" + CHR$(10)
FOR n = 0 TO lenCubos
sumCubos = 0
FOR m = 1 TO n
sumCubos = sumCubos + (m ^ 3)
NEXT m
fila = fila + 1
PRINT USING " ####### "; sumCubos;
IF fila MOD 5 = 0 THEN PRINT
NEXT n
PRINT CHR$(13) + "Encontrados"; fila; "cubos."
END
Tiny BASIC
Limited to 0 through 19 because integers only go up to 32767.
10 LET C = 0
20 LET N = 0
30 LET C = C + N*N*N
40 PRINT C
50 LET N = N + 1
60 IF N = 19 THEN END
70 GOTO 30
Yabasic
fila = 0
lenCubos = 49
clear screen
print "Suma de N cubos para n = [0..49]\n"
for n = 0 to lenCubos
sumCubos = 0
for m = 1 to n
sumCubos = sumCubos + (m ^3)
next m
fila = fila + 1
print "", sumCubos, " ";
if mod(fila, 5) = 0 then print : fi
next n
print "\nEncontrados ", fila, " cubos.\n"
end
BQN
∘‿5⥊+`(↕50)⋆3
- Output:
┌─ ╵ 0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625 ┘
C
#include <stdio.h>
int main() {
for (int i = 0, sum = 0; i < 50; ++i) {
sum += i * i * i;
printf("%7d%c", sum, (i + 1) % 5 == 0 ? '\n' : ' ');
}
return 0;
}
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
C#
No multiplication or exponentiation, just addition.
using System; using static System.Console;
class Program { static void Main(string[] args) {
for (int i=0,j=-6,k=1,c=0,s=0;s<1600000;s+=c+=k+=j+=6)
Write("{0,-7}{1}",s, (i+=i==3?-4:1)==0?"\n":" "); } }
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
C++
#include <array>
#include <cstdio>
#include <numeric>
void PrintContainer(const auto& vec)
{
int count = 0;
for(auto value : vec)
{
printf("%7d%c", value, ++count % 10 == 0 ? '\n' : ' ');
}
}
int main()
{
// define a lambda that cubes a value
auto cube = [](auto x){return x * x * x;};
// create an array and use iota to fill it with {0, 1, 2, ... 49}
std::array<int, 50> a;
std::iota(a.begin(), a.end(), 0);
// transform_inclusive_scan will cube all of the values in the array and then
// perform a partial sum from index 0 to n and place the result back into the
// array at index n
std::transform_inclusive_scan(a.begin(), a.end(), a.begin(), std::plus{}, cube);
PrintContainer(a);
}
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
CLU
start_up = proc ()
amount = 50
po: stream := stream$primary_output()
sum: int := 0
for i: int in int$from_to(0,amount-1) do
sum := sum + i ** 3
stream$putright(po, int$unparse(sum), 8)
if i//5 = 4 then stream$putc(po, '\n') end
end
end start_up
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
COBOL
IDENTIFICATION DIVISION.
PROGRAM-ID. SUM-OF-CUBES.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 VARIABLES.
03 STEP PIC 99.
03 CUBE PIC 9(7).
03 CUBE-SUM PIC 9(7) VALUE 0.
01 OUTPUT-FORMAT.
03 OUT-LINE PIC X(40) VALUE SPACES.
03 OUT-PTR PIC 99 VALUE 1.
03 OUT-NUM PIC Z(7)9.
PROCEDURE DIVISION.
BEGIN.
PERFORM ADD-CUBE VARYING STEP FROM 0 BY 1
UNTIL STEP IS EQUAL TO 50.
STOP RUN.
ADD-CUBE.
COMPUTE CUBE = STEP ** 3.
ADD CUBE TO CUBE-SUM.
MOVE CUBE-SUM TO OUT-NUM.
STRING OUT-NUM DELIMITED BY SIZE INTO OUT-LINE
WITH POINTER OUT-PTR.
IF OUT-PTR IS EQUAL TO 41,
DISPLAY OUT-LINE,
MOVE 1 TO OUT-PTR.
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Comal
0010 ZONE 8
0020 sum:=0
0030 FOR cube:=0 TO 49 DO
0040 sum:+cube^3
0050 PRINT sum,
0060 IF cube MOD 5=4 THEN PRINT
0070 ENDFOR cube
0080 END
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Cowgol
include "cowgol.coh";
sub cube(n: uint32): (r: uint32) is
r := n * n * n;
end sub;
var i: uint8 := 0;
var sum: uint32 := 0;
while i < 50 loop
sum := sum + cube(i as uint32);
print_i32(sum);
i := i + 1;
if i % 10 == 0 then
print_nl();
else
print_char(' ');
end if;
end loop;
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Delphi
procedure ShowSumFirst50Cubes(Memo: TMemo);
var I,Sum: integer;
var S: string;
begin
S:='';
Sum:=0;
for I:=0 to 50-1 do
begin
Sum:=Sum+I*I*I;
S:=S+Format('%11.0n',[Sum+0.0]);
if (I mod 5)=4 then S:=S+CRLF;
end;
Memo.Lines.Add(S);
end;
- Output:
0 1 9 36 100 225 441 784 1,296 2,025 3,025 4,356 6,084 8,281 11,025 14,400 18,496 23,409 29,241 36,100 44,100 53,361 64,009 76,176 90,000 105,625 123,201 142,884 164,836 189,225 216,225 246,016 278,784 314,721 354,025 396,900 443,556 494,209 549,081 608,400 672,400 741,321 815,409 894,916 980,100 1,071,225 1,168,561 1,272,384 1,382,976 1,500,625 Elapsed Time: 1.428 ms.
Draco
proc nonrec cube(ulong n) ulong:
n * n * n
corp
proc nonrec main() void:
ulong sum;
byte n;
sum := 0;
for n from 0 upto 49 do
sum := sum + cube(n);
write(sum:8);
if n % 5 = 4 then writeln() fi
od
corp
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
EasyLang
for i = 0 to 49
sum += i * i * i
write sum & " "
.
Excel
LAMBDA
Binding the names SUMNCUBES and BINCOEFF to the following lambda expressions in the Name Manager of the Excel WorkBook:
(See LAMBDA: The ultimate Excel worksheet function)
SUMNCUBES
=LAMBDA(n,
BINCOEFF(1 + n)(2) ^ 2
)
BINCOEFF
=LAMBDA(n,
LAMBDA(k,
IF(n < k,
0,
QUOTIENT(FACT(n), FACT(k) * FACT(n - k))
)
)
)
The single formula in cell B2 below defines a dynamic array which populates the whole B2:K6 grid:
- Output:
fx | =SUMNCUBES( SEQUENCE(5, 10, 0, 1) ) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | K | ||
1 | Sum of N cubes for n = [0..49] | |||||||||||
2 | 0 | 1 | 9 | 36 | 100 | 225 | 441 | 784 | 1296 | 2025 | ||
3 | 3025 | 4356 | 6084 | 8281 | 11025 | 14400 | 18496 | 23409 | 29241 | 36100 | ||
4 | 44100 | 53361 | 64009 | 76176 | 89401 | 105625 | 123201 | 142129 | 164025 | 189225 | ||
5 | 216225 | 245025 | 278784 | 313600 | 352836 | 396900 | 443556 | 492804 | 549081 | 608400 | ||
6 | 670761 | 739600 | 815409 | 894916 | 980100 | 1069156 | 1168561 | 1270129 | 1382976 | 1500625 |
F#
// Sum of cubes: Nigel Galloway. May 20th., 2021
let fN g=g*g*g in Seq.initInfinite((+)1>>fN)|>Seq.take 49|>Seq.scan((+))(0)|>Seq.iter(printf "%d "); printfn ""
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Factor
USING: grouping math math.functions prettyprint sequences ;
50 <iota> 0 [ 3 ^ + ] accumulate* 10 group simple-table.
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Alternatively, this is the same as the triangular numbers squared, where the triangular numbers are given by
Tn = n(n + 1) / 2
USING: grouping kernel math prettyprint sequences ;
: triangular ( n -- m ) dup 1 + * 2/ ;
50 <iota> [ triangular sq ] map 10 group simple-table.
- Output:
As above.
Fermat
c:=0
for n = 0 to 49 do
c:=c+n^3;
!(c,' ');
od;
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Forth
: sum-cubes ( n -- )
0 swap 0 do
i i i * * + dup 7 .r
i 1+ 5 mod 0= if cr else space then
loop drop ;
50 sum-cubes
bye
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Frink
sum = 0
result = new array
for n = 0 to 49
{
sum = sum + n^3
result.push[sum]
}
println[formatTable[columnize[result, 10], "right"]]
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Go
package main
import (
"fmt"
"rcu"
)
func main() {
fmt.Println("Cumulative sums of the first 50 cubes:")
sum := 0
for n := 0; n < 50; n++ {
sum += n * n * n
fmt.Printf("%9s ", rcu.Commatize(sum))
if n%10 == 9 {
fmt.Println()
}
}
fmt.Println()
- Output:
Cumulative sums of the first 50 cubes: 0 1 9 36 100 225 441 784 1,296 2,025 3,025 4,356 6,084 8,281 11,025 14,400 18,496 23,409 29,241 36,100 44,100 53,361 64,009 76,176 90,000 105,625 123,201 142,884 164,836 189,225 216,225 246,016 278,784 314,721 354,025 396,900 443,556 494,209 549,081 608,400 672,400 741,321 815,409 894,916 980,100 1,071,225 1,168,561 1,272,384 1,382,976 1,500,625
Haskell
import Data.List (intercalate, transpose)
import Data.List.Split (chunksOf)
import Text.Printf (printf)
------------------- SUM OF FIRST N CUBES -----------------
sumOfFirstNCubes :: Integer -> Integer
sumOfFirstNCubes =
(^ 2)
. flip binomialCoefficient 2
. succ
--------------------------- TEST -------------------------
main :: IO ()
main =
putStrLn $
table " " $
chunksOf 10 $
show . sumOfFirstNCubes <$> [0 .. 49]
------------------------- GENERIC ------------------------
binomialCoefficient :: Integer -> Integer -> Integer
binomialCoefficient n k
| n < k = 0
| otherwise =
div
(factorial n)
(factorial k * factorial (n - k))
factorial :: Integer -> Integer
factorial = product . enumFromTo 1
------------------------- DISPLAY ------------------------
table :: String -> [[String]] -> String
table gap rows =
let ws = maximum . fmap length <$> transpose rows
pw = printf . flip intercalate ["%", "s"] . show
in unlines $ intercalate gap . zipWith pw ws <$> rows
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Or, in terms of scanl:
import Data.List (intercalate, scanl, transpose)
import Data.List.Split (chunksOf)
import Text.Printf (printf)
------------------- SUM OF FIRST N CUBES -----------------
sumsOfFirstNCubes :: Int -> [Int]
sumsOfFirstNCubes n =
scanl
(\a -> (a +) . (^ 3))
0
[1 .. pred n]
--------------------------- TEST -------------------------
main :: IO ()
main =
(putStrLn . table " " . chunksOf 5) $
show <$> sumsOfFirstNCubes 50
------------------------- DISPLAY ------------------------
table :: String -> [[String]] -> String
table gap rows =
let ws = maximum . fmap length <$> transpose rows
pw = printf . flip intercalate ["%", "s"] . show
in unlines $ intercalate gap . zipWith pw ws <$> rows
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
J
10 5$+/\(i.^3:)50x
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
If we wanted specifically the sum of positive integer cubes up through n
it should be faster to use 0 0 1r4 1r2 1r4&p.
. For example:
0 0 1r4 1r2 1r4&p. 49
1500625
JavaScript
(() => {
"use strict";
// -------------- SUM OF FIRST N CUBES ---------------
// sumsOfFirstNCubes :: Int -> [Int]
const sumsOfFirstNCubes = n =>
// Cumulative sums of first n cubes.
scanl(
a => x => a + (x ** 3)
)(0)(
enumFromTo(1)(n - 1)
);
// ---------------------- TEST -----------------------
// main :: IO ()
const main = () =>
table(" ")(justifyRight)(
chunksOf(5)(
sumsOfFirstNCubes(50)
.map(x => `${x}`)
)
);
// --------------------- GENERIC ---------------------
// enumFromTo :: Int -> Int -> [Int]
const enumFromTo = m =>
n => Array.from({
length: 1 + n - m
}, (_, i) => m + i);
// scanl :: (b -> a -> b) -> b -> [a] -> [b]
const scanl = f => startValue => xs =>
// The series of interim values arising
// from a catamorphism. Parallel to foldl.
xs.reduce((a, x) => {
const v = f(a[0])(x);
return [v, a[1].concat(v)];
}, [startValue, [startValue]])[1];
// ------------------- FORMATTING --------------------
// chunksOf :: Int -> [a] -> [[a]]
const chunksOf = n => {
// xs split into sublists of length n.
// The last sublist will be short if n
// does not evenly divide the length of xs .
const go = xs => {
const chunk = xs.slice(0, n);
return 0 < chunk.length ? (
[chunk].concat(
go(xs.slice(n))
)
) : [];
};
return go;
};
// compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
const compose = (...fs) =>
// A function defined by the right-to-left
// composition of all the functions in fs.
fs.reduce(
(f, g) => x => f(g(x)),
x => x
);
// flip :: (a -> b -> c) -> b -> a -> c
const flip = op =>
// The binary function op with
// its arguments reversed.
1 < op.length ? (
(a, b) => op(b, a)
) : (x => y => op(y)(x));
// intercalate :: String -> [String] -> String
const intercalate = s =>
// The concatenation of xs
// interspersed with copies of s.
xs => xs.join(s);
// justifyRight :: Int -> Char -> String -> String
const justifyRight = n =>
// The string s, preceded by enough padding (with
// the character c) to reach the string length n.
c => s => Boolean(s) ? (
s.padStart(n, c)
) : "";
// table :: String ->
// (Int -> Char -> String -> String) ->
// [[String]] -> String
const table = gap =>
// A tabulation of rows of string values,
// with a specified gap between columns,
// and choice of cell alignment function
// (justifyLeft | center | justifyRight)
alignment => rows => {
const
colWidths = transpose(rows).map(
row => Math.max(
...row.map(x => x.length)
)
);
return rows.map(
compose(
intercalate(gap),
zipWith(
flip(alignment)(" ")
)(colWidths)
)
).join("\n");
};
// transpose :: [[a]] -> [[a]]
const transpose = rows => {
// If any rows are shorter than those that follow,
// their elements are skipped:
// > transpose [[10,11],[20],[],[30,31,32]]
// == [[10,20,30],[11,31],[32]]
const go = xss =>
0 < xss.length ? (() => {
const
h = xss[0],
t = xss.slice(1);
return 0 < h.length ? [
[h[0]].concat(t.reduce(
(a, xs) => a.concat(
0 < xs.length ? (
[xs[0]]
) : []
),
[]
))
].concat(go([h.slice(1)].concat(
t.map(xs => xs.slice(1))
))) : go(t);
})() : [];
return go(rows);
};
// zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
const zipWith = f =>
// A list constructed by zipping with a
// custom function, rather than with the
// default tuple constructor.
xs => ys => xs.map(
(x, i) => f(x)(ys[i])
).slice(
0, Math.min(xs.length, ys.length)
);
// MAIN ---
return main();
})();
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
jq
Works with gojq, the Go implementation of jq
# For the sake of stream-processing efficiency:
def add(s): reduce s as $x (0; . + $x);
def sum_of_cubes: add(range(0;.) | .*.*.);
The task
range(0;50) | sum_of_cubes as $sum
| "\(.) => \($sum)"
- Output:
0 => 0 1 => 0 2 => 1 3 => 9 4 => 36 5 => 100 ... 45 => 980100 46 => 1071225 47 => 1168561 48 => 1272384 49 => 1382976
Using gojq, the Go implementation of jq, unbounded-precision integer arithmetic allows e.g.
1000000 | sum_of_cubes #=> 249999500000250000000000
Julia
cubesumstil(N = 49, s = 0) = (foreach(n -> print(lpad(s += n^3, 8), n % 10 == 9 ? "\n" : ""), 0:N))
cubesumstil()
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Alternatively, and using the REPL, note that recent versions of Julia implement the accumulate function:
julia> println(accumulate((x, y) -> x + y^3, 0:49))
[0, 1, 9, 36, 100, 225, 441, 784, 1296, 2025, 3025, 4356, 6084, 8281, 11025, 14400, 18496, 23409, 29241, 36100, 44100, 53361, 64009, 76176, 90000, 105625, 123201, 142884, 164836, 189225, 216225, 246016, 278784, 314721, 354025, 396900, 443556, 494209, 549081, 608400, 672400, 741321, 815409, 894916, 980100, 1071225, 1168561, 1272384, 1382976, 1500625]
K
5 10#+\{x*x*x}[!50]
(0 1 9 36 100 225 441 784 1296 2025
3025 4356 6084 8281 11025 14400 18496 23409 29241 36100
44100 53361 64009 76176 90000 105625 123201 142884 164836 189225
216225 246016 278784 314721 354025 396900 443556 494209 549081 608400
672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625)
MAD
NORMAL MODE IS INTEGER
SUM = 0
THROUGH LOOP, FOR STEP = 0, 1, STEP.GE.50
SUM = SUM + STEP * STEP * STEP
LOOP PRINT FORMAT FMT, SUM
VECTOR VALUES FMT = $I9*$
END OF PROGRAM
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Mathematica /Wolfram Language
Accumulate[Range[0, 49]^3]
- Output:
{0,1,9,36,100,225,441,784,1296,2025,3025,4356,6084,8281,11025,14400,18496,23409,29241,36100,44100,53361,64009,76176,90000,105625,123201,142884,164836,189225,216225,246016,278784,314721,354025,396900,443556,494209,549081,608400,672400,741321,815409,894916,980100,1071225,1168561,1272384,1382976,1500625}
Nim
import strutils
var s = 0
for n in 0..49:
s += n * n * n
stdout.write ($s).align(7), if (n + 1) mod 10 == 0: '\n' else: ' '
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
PARI/GP
c=0;for(n=0,49,c=c+n^3;print(c))
Pascal
program sumOfFirstNCubes(output);
const
N = 49;
var
i: integer;
sum: integer;
begin
sum := 0;
for i := 0 to N do
begin
sum := sum + sqr(i) * i;
{ In Extended Pascal you could also write:
sum := sum + i pow 3; }
writeLn(sum)
end
end.
Perl
#!/usr/bin/perl
use strict; # https://rosettacode.org/wiki/Sum_of_first_n_cubes
use warnings;
my $sum = 0;
printf "%10d%s", $sum += $_ ** 3, $_ % 5 == 4 && "\n" for 0 .. 49;
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Phix
The commented out line is based on the Factor entry, and is clearly a much faster way to get the same results.
function sum_first_n_cubes(integer n) return sum(sq_power(tagset(n),3)) end function --function sum_first_n_cubes(integer n) return power(n*(n+1)/2,2) end function sequence res = apply(tagset(49,0),sum_first_n_cubes) printf(1,"%s\n",{join_by(apply(true,sprintf,{{"%,9d"},res}),1,10)})
- Output:
0 1 9 36 100 225 441 784 1,296 2,025 3,025 4,356 6,084 8,281 11,025 14,400 18,496 23,409 29,241 36,100 44,100 53,361 64,009 76,176 90,000 105,625 123,201 142,884 164,836 189,225 216,225 246,016 278,784 314,721 354,025 396,900 443,556 494,209 549,081 608,400 672,400 741,321 815,409 894,916 980,100 1,071,225 1,168,561 1,272,384 1,382,976 1,500,625
PILOT
C :sum=0
:n=0
:max=50
*loop
C :cube=n*(n*#n)
:sum=sum+cube
:n=n+1
T :#n: #sum
J (n<max):*loop
E :
- Output:
1: 0 2: 1 3: 9 4: 36 5: 100 6: 225 7: 441 8: 784 9: 1296 10: 2025 11: 3025 12: 4356 13: 6084 14: 8281 15: 11025 16: 14400 17: 18496 18: 23409 19: 29241 20: 36100 21: 44100 22: 53361 23: 64009 24: 76176 25: 90000 26: 105625 27: 123201 28: 142884 29: 164836 30: 189225 31: 216225 32: 246016 33: 278784 34: 314721 35: 354025 36: 396900 37: 443556 38: 494209 39: 549081 40: 608400 41: 672400 42: 741321 43: 815409 44: 894916 45: 980100 46: 1071225 47: 1168561 48: 1272384 49: 1382976 50: 1500625
Plain English
To run:
Start up.
Show the sums of cubes given 49.
Wait for the escape key.
Shut down.
To show the sums of cubes given a number:
If a counter is past the number, exit.
Put the counter plus 1 times the counter into a result number.
Cut the result in half.
Raise the result to 2.
Write the result then " " on the console without advancing.
If the counter is evenly divisible by 5, write "" on the console.
Repeat.
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
PL/I
cubeSum: procedure options(main);
declare (i, csum) fixed decimal(7);
csum = 0;
do i=0 to 49;
csum = csum + i * i * i;
put list(csum);
if mod(i,5) = 4 then put skip;
end;
end cubeSum;
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
PL/M
The original 8080 PL/M compiler only supported 8 and 16 bit unsigned arithmetic, so this sample only shows the sums < 65536.
100H: /* SHOW THE SUMS OF THE FIRST N CUBES, 0 <= N < 23 */
/* CP/M BDOS SYSTEM CALL */
BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5; END;
/* I/O ROUTINES */
PRINT$CHAR: PROCEDURE( C ); DECLARE C BYTE; CALL BDOS( 2, C ); END;
PRINT$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S ); END;
PRINT$NUMBER: PROCEDURE( N );
DECLARE N ADDRESS;
DECLARE V ADDRESS, N$STR( 6 ) BYTE, W BYTE;
N$STR( W := LAST( N$STR ) ) = '$';
N$STR( W := W - 1 ) = '0' + ( ( V := N ) MOD 10 );
DO WHILE( W > 0 );
N$STR( W := W - 1 ) = ' ';
IF V > 0 THEN DO;
IF ( V := V / 10 ) > 0 THEN N$STR( W ) = '0' + ( V MOD 10 );
END;
END;
CALL PRINT$STRING( .N$STR );
END PRINT$NUMBER;
/* SHOW SUMS OF CUBES */
DECLARE ( I, SUM ) ADDRESS;
DO I = 0 TO 22;
SUM = ( I * ( I + 1 ) ) / 2;
CALL PRINT$CHAR( ' ' );
CALL PRINT$NUMBER( SUM * SUM );
IF I MOD 10 = 9 THEN CALL PRINT$STRING( .( 0DH, 0AH, '$' ) );
END;
EOF
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009
Python
Python :: Procedural
def main():
fila = 0
lenCubos = 51
print("Suma de N cubos para n = [0..49]\n")
for n in range(1, lenCubos):
sumCubos = 0
for m in range(1, n):
sumCubos = sumCubos + (m ** 3)
fila += 1
print(f'{sumCubos:7} ', end='')
if fila % 5 == 0:
print(" ")
print(f"\nEncontrados {fila} cubos.")
if __name__ == '__main__': main()
- Output:
Suma de N cubos para n = [0..49] 0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625 Encontrados 50 cubos.
Python :: Functional
'''Sum of first N cubes'''
from math import factorial
# sumOfFirstNCubes :: Int -> Int
def sumOfFirstNCubes(n):
'''The sum of the first n cubes.'''
return binomialCoefficient(1 + n)(2) ** 2
# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''First fifty values (N drawn from [0 .. 49])
'''
print(
table(10)([
str(sumOfFirstNCubes(n)) for n
in range(0, 1 + 49)
])
)
# ----------------------- GENERIC ------------------------
# binomialCoefficient :: Int -> Int -> Int
def binomialCoefficient(n):
'''The coefficient of the term x^k in the polynomial
expansion of the binomial power (1 + x)^n
'''
def go(k):
return 0 if n < k else factorial(n) // (
factorial(k) * factorial(n - k)
)
return go
# ----------------------- DISPLAY ------------------------
# chunksOf :: Int -> [a] -> [[a]]
def chunksOf(n):
'''A series of lists of length n, subdividing the
contents of xs. Where the length of xs is not evenly
divisible, the final list will be shorter than n.
'''
def go(xs):
return (
xs[i:n + i] for i in range(0, len(xs), n)
) if 0 < n else None
return go
# table :: Int -> [String] -> String
def table(n):
'''A list of strings formatted as
right-justified rows of n columns.
'''
def go(xs):
w = len(xs[-1])
return '\n'.join(
' '.join(row) for row in chunksOf(n)([
s.rjust(w, ' ') for s in xs
])
)
return go
# MAIN ---
if __name__ == '__main__':
main()
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
or, as a scanning accumulation:
'''Sum of first N cubes'''
from itertools import accumulate
# sumsOfFirstNCubes :: Int -> [Int]
def sumsOfFirstNCubes(n):
'''Cumulative sums of the first N cubes.
'''
def go(a, x):
return a + x ** 3
return accumulate(range(0, n), go)
# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''Cumulative sums of first 50 cubes'''
print(
table(5)([
str(n) for n in sumsOfFirstNCubes(50)
])
)
# ---------------------- FORMATTING ----------------------
# chunksOf :: Int -> [a] -> [[a]]
def chunksOf(n):
'''A series of lists of length n, subdividing the
contents of xs. Where the length of xs is not evenly
divisible, the final list will be shorter than n.
'''
def go(xs):
return (
xs[i:n + i] for i in range(0, len(xs), n)
) if 0 < n else None
return go
# table :: Int -> [String] -> String
def table(n):
'''A list of strings formatted as
right-justified rows of n columns.
'''
def go(xs):
w = len(xs[-1])
return '\n'.join(
' '.join(row) for row in chunksOf(n)([
s.rjust(w, ' ') for s in xs
])
)
return go
# MAIN ---
if __name__ == '__main__':
main()
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Quackery
$ "" 0
50 times
[ i^ 3 ** +
dup dip
[ number$ join
space join ] ]
drop
nest$ 65 wrap$
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
R
This only takes one line.
cumsum((0:49)^3)
- Output:
[1] 0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 [17] 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 [33] 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 [49] 1382976 1500625
Raku
my @sums_of_all_cubes = [\+] ^Inf X** 3;
say .fmt('%7d') for @sums_of_all_cubes.head(50).batch(10);
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Red
Red ["Sum of cubes"]
sum: 0
repeat i 50 [
sum: i - 1 ** 3 + sum
prin pad sum 8
if i % 10 = 0 [prin newline]
]
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
REXX
/*REXX program finds and displays a number of sums of the first N cubes, where N < 50 */
parse arg n cols . /*obtain optional argument from the CL.*/
if n=='' | n=="," then n= 50 /*Not specified? Then use the default.*/
if cols=='' | cols=="," then cols= 10 /* " " " " " " */
w= 12 /*width of a number in any column. */
title= ' cube sums, where N < ' commas(n)
say ' index │'center(title, 1 + cols*(w+1) )
say '───────┼'center("" , 1 + cols*(w+1), '─')
found= 0; idx= 0 /*initialize the number for the index. */
$=; sum= 0 /*a list of the sum of N cubes. . */
do j=0 for n; sum= sum + j**3 /*compute the sum of this cube + others*/
found= found + 1 /*bump the number of sums shown. */
c= commas(sum) /*maybe add commas to the number. */
$= $ right(c, max(w, length(c) ) ) /*add a sum of N cubes to the $ list.*/
if found//cols\==0 then iterate /*have we populated a line of output? */
say center(idx, 7)'│' substr($, 2); $= /*display what we have so far (cols). */
idx= idx + cols /*bump the index count for the output*/
end /*j*/
if $\=='' then say center(idx, 7)"│" substr($, 2) /*possible display residual output.*/
say '───────┴'center("" , 1 + cols*(w+1), '─')
say
say 'Found ' commas(found) title
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?; do jc=length(?)-3 to 1 by -3; ?=insert(',', ?, jc); end; return ?
- output when using the default inputs:
(Shown at five-sixth size.)
index │ cube sums, where N < 50 ───────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── 0 │ 0 1 9 36 100 225 441 784 1,296 2,025 10 │ 3,025 4,356 6,084 8,281 11,025 14,400 18,496 23,409 29,241 36,100 20 │ 44,100 53,361 64,009 76,176 90,000 105,625 123,201 142,884 164,836 189,225 30 │ 216,225 246,016 278,784 314,721 354,025 396,900 443,556 494,209 549,081 608,400 40 │ 672,400 741,321 815,409 894,916 980,100 1,071,225 1,168,561 1,272,384 1,382,976 1,500,625 ───────┴─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── Found 50 cube sums, where N < 50
Ring
see "working..." + nl
see "Sum of first n cubes:" + nl
row = 0
lenCubes = 49
for n = 0 to lenCubes
sumCubes = 0
for m = 1 to n
sumCubes = sumCubes + pow(m,3)
next
row = row + 1
see "" + sumCubes + " "
if row%5 = 0
see nl
ok
next
see "Found " + row + " cubes" + nl
see "done..." + nl
- Output:
working... Sum of first n cubes: 0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625 Found 50 cubes done...
RPL
≪ { } 0 0 49 FOR n n 3 ^ + SWAP OVER + SWAP NEXT DROP ≫ EVAL
- Output:
1: { 0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625 }
Direct calculation
≪ DUP 1 + * 2 / SQ ≫ '∑CUBE' STO 49 ∑CUBE
- Output:
1: 1500625
Ruby
sum = 0
(0...50).each do |n|
print (sum += n**3).to_s.ljust(10)
puts "" if (n+1) % 10 == 0
end
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Rust
fn main() {
(0..50)
.scan(0, |sum, x| {
*sum += x * x * x;
Some(*sum)
})
.enumerate()
.for_each(|(i, n)| {
print!("{:7}", n);
if (i + 1) % 5 == 0 {
println!();
} else {
print!(" ");
}
});
}
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Seed7
$ include "seed7_05.s7i";
const proc: main is func
local
var integer: n is 0;
begin
for n range 0 to 49 do
write((n * (n + 1) >> 1) ** 2 lpad 8);
if n rem 5 = 4 then
writeln;
end if;
end for;
end func;
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
SETL
program sum_of_first_cubes;
cubes := [n**3 : n in [0..49]];
loop for i in [2..#cubes] do
cubes(i) +:= cubes(i-1);
end loop;
printtab(cubes, 5, 10);
proc printtab(list, cols, width);
lines := [list(k..cols+k-1) : k in [1, cols+1..#list]];
loop for line in lines do
print(+/[lpad(str item, width+1) : item in line]);
end loop;
end proc;
end program;
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Sidef
0..49 -> map { .faulhaber_sum(3) }.slices(5).each { .join(' ').say }
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
VTL-2
Based on the TinyBASIC sample but with multiple sums per line and showing the first 23 values as VTL-2 has unsigned 16-bit integers.
10 C=0
20 N=0
30 C=N*N*N+C
40 ?=C
50 $=9
60 N=N+1
70 #=N/6*0+%>1*90
80 ?=""
90 #=N<23*30
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009
Wren
import "./fmt" for Fmt
System.print("Cumulative sums of the first 50 cubes:")
var sum = 0
for (n in 0..49) {
sum = sum + n * n * n
Fmt.write("$,9d ", sum)
if ((n % 10) == 9) System.print()
}
System.print()
- Output:
Cumulative sums of the first 50 cubes: 0 1 9 36 100 225 441 784 1,296 2,025 3,025 4,356 6,084 8,281 11,025 14,400 18,496 23,409 29,241 36,100 44,100 53,361 64,009 76,176 90,000 105,625 123,201 142,884 164,836 189,225 216,225 246,016 278,784 314,721 354,025 396,900 443,556 494,209 549,081 608,400 672,400 741,321 815,409 894,916 980,100 1,071,225 1,168,561 1,272,384 1,382,976 1,500,625
X86 Assembly
1 ;Assemble with: tasm, tlink /t
2 0000 .model tiny
3 0000 .code
4 .386
5 org 100h ;.com program starts here
6
7 ; eax: working register
8 ; ebx: 10 for divide
9 ; cx: numout digit counter
10 ; edx: divide remainder
11 ; esi: Sum
12 ; edi: N
13 ; bp: column position for tab
14
15 0100 66| 33 F6 start: xor esi, esi ;Sum:= 0
16 0103 33 ED xor bp, bp ;reset column position
17 0105 66| 33 FF xor edi, edi ;N:= 0
18 0108 66| 8B C7 sum: mov eax, edi ;Sum:= N^3 + Sum
19 010B 66| F7 EF imul edi ;eax:= edi^3 + esi
20 010E 66| F7 EF imul edi
21 0111 66| 03 C6 add eax, esi
22
23 0114 66| 8B F0 mov esi, eax
24 0117 66| BB 0000000A mov ebx, 10 ;output number in eax
25 011D 33 C9 xor cx, cx ;digit counter
26 011F 66| 99 no10: cdq ;edx:= 0 (extend sign of eax into edx)
27 0121 66| F7 FB idiv ebx ;(edx:eax)/ebx
28 0124 52 push dx ;save remainder
29 0125 41 inc cx ;count digit
30 0126 66| 85 C0 test eax, eax ;loop for all digits
31 0129 75 F4 jne no10
32
33 012B 58 no20: pop ax ;get remainder
34 012C 04 30 add al, '0' ;convert to ASCII
35 012E CD 29 int 29h ;output digit
36 0130 45 inc bp ;bump column position
37 0131 E2 F8 loop no20 ;loop for cx digits
38
39 0133 B0 20 tab: mov al, 20h ;output spaces until tab stop
40 0135 CD 29 int 29h
41 0137 45 inc bp ;bump column position
42 0138 F7 C5 0007 test bp, 7 ;loop until it's a multiple of 8
43 013C 75 F5 jne tab
44
45 013E 8B C7 mov ax, di ;if remainder(di/5) = 4 then CR LF
46 0140 D4 05 aam 5 ;ah:= al/5; al:= remainder
47 0142 3C 04 cmp al, 4
48 0144 75 0A jne next
49 0146 B0 0D mov al, 0Dh ;CR
50 0148 CD 29 int 29h
51 014A 33 ED xor bp, bp ;reset column position
52 014C B0 0A mov al, 0Ah ;LF
53 014E CD 29 int 29h
54 0150 47 next: inc di ;next N
55 0151 83 FF 32 cmp di, 50 ;loop until done
56 0154 7C B2 jl sum
57 0156 C3 ret
58
59 end start
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
XPL0
int N, S;
[S:= 0;
for N:= 0 to 49 do
[S:= S + N*N*N;
IntOut(0, S);
ChOut(0, 9\tab\);
if rem(N/5) = 4 then CrLf(0);
];
]
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
Zig
pub fn main() !void {
const stdout = @import("std").io.getStdOut().writer();
var sum: u32 = 0;
var i: u32 = 0;
while (i < 50) : (i += 1) {
sum += i * i * i;
try stdout.print("{d:8}", .{sum});
if (i % 5 == 4) try stdout.print("\n", .{});
}
}
- Output:
0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
- Draft Programming Tasks
- 11l
- Action!
- Action! Tool Kit
- Ada
- ALGOL 68
- ALGOL W
- APL
- AppleScript
- Arturo
- AutoHotkey
- AWK
- BASIC
- BASIC256
- FreeBASIC
- GW-BASIC
- QB64
- QBasic
- Tiny BASIC
- Yabasic
- BQN
- C
- C sharp
- C++
- CLU
- COBOL
- Comal
- Cowgol
- Delphi
- SysUtils,StdCtrls
- Draco
- EasyLang
- Excel
- F Sharp
- Factor
- Fermat
- Forth
- Frink
- Go
- Go-rcu
- Haskell
- J
- JavaScript
- Jq
- Julia
- K
- MAD
- Mathematica
- Wolfram Language
- Nim
- PARI/GP
- Pascal
- Perl
- Phix
- PILOT
- Plain English
- PL/I
- PL/M
- Python
- Quackery
- R
- Raku
- Red
- REXX
- Ring
- RPL
- Ruby
- Rust
- Seed7
- SETL
- Sidef
- VTL-2
- Wren
- X86 Assembly
- XPL0
- Zig