# Sum of first n cubes

(Redirected from Som of first n cubes)
Sum of first n cubes is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Find and show sum of first   n   cubes,   where n < 50 (ie show 50 entries for n=0..49)

## 11l

Translation of: Nim
```V s = 0
L(n) 50
s += n * n * n
print(String(s).rjust(7), end' I (n + 1) % 10 == 0 {"\n"} E ‘ ’)```
Output:
```      0       1       9      36     100     225     441     784    1296    2025
3025    4356    6084    8281   11025   14400   18496   23409   29241   36100
44100   53361   64009   76176   90000  105625  123201  142884  164836  189225
216225  246016  278784  314721  354025  396900  443556  494209  549081  608400
672400  741321  815409  894916  980100 1071225 1168561 1272384 1382976 1500625
```

## Action!

```INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit

PROC Main()
BYTE i
REAL sum,r3,tmp1,tmp2

Put(125) PutE() ;clear the screen
IntToReal(0,sum)
IntToReal(3,r3)
FOR i=0 TO 49
DO
IntToReal(i,tmp1)
RealMult(tmp1,tmp1,tmp2)
RealMult(tmp1,tmp2,tmp2)
PrintR(sum) Put(32)
IF i MOD 4=3 THEN
PutE()
FI
OD
RETURN```
Output:
```0 1 9 36 100 225 441 784 1296 2025 3025 4356
6084 8281 11025 14400 18496 23409 29241 36100
44100 53361 64009 76176 90000 105625 123201 142884
164836 189225 216225 246016 278784 314721 354025 396900
443556 494209 549081 608400 672400 741321 815409 894916
980100 1071225 1168561 1272384 1382976 1500625
```

```with Ada.Text_Io;

procedure Sum_Of_First_N_Cubes is

Columns : constant := 10;
Width   : constant := 8;

package Natural_Io is new Ada.Text_Io.Integer_Io (Natural);

Sum : Natural := 0;
begin
for N in 0 .. 49 loop
Sum := Sum + N ** 3;
Put (Sum, Width => Width);
if N mod Columns = Columns - 1 then
New_Line;
end if;
end loop;
New_Line;
end Sum_Of_First_N_Cubes;
```
Output:
```       0       1       9      36     100     225     441     784    1296    2025
3025    4356    6084    8281   11025   14400   18496   23409   29241   36100
44100   53361   64009   76176   90000  105625  123201  142884  164836  189225
216225  246016  278784  314721  354025  396900  443556  494209  549081  608400
672400  741321  815409  894916  980100 1071225 1168561 1272384 1382976 1500625
```

## ALGOL 68

As noted in the second factor example, the sum of the cubes to n is (n(n + 1))/2)^2, i.e. the square of the sum of the numbers to n.

```# show the sums of the first n cubes where 0 <= n < 50 #
FOR i FROM 0 TO 49 DO
INT sum = ( i * ( i + 1 ) ) OVER 2;
print( ( whole( sum * sum, -8 ) ) );
IF i MOD 10 = 9 THEN print( ( newline ) ) FI
OD```
Output:
```       0       1       9      36     100     225     441     784    1296    2025
3025    4356    6084    8281   11025   14400   18496   23409   29241   36100
44100   53361   64009   76176   90000  105625  123201  142884  164836  189225
216225  246016  278784  314721  354025  396900  443556  494209  549081  608400
672400  741321  815409  894916  980100 1071225 1168561 1272384 1382976 1500625
```

## ALGOL W

```begin % show the sums of the cubes of n for 0 <= n < 50 %
integer cubeSum;
cubeSum := 0;
for n := 0 until 49 do begin
cubeSum := cubeSum + ( n * n * n );
writeon( i_w := 8, s_w := 0, cubeSum );
if n rem 10 = 9 then write()
end for_n
end.```
Output:
```       0       1       9      36     100     225     441     784    1296    2025
3025    4356    6084    8281   11025   14400   18496   23409   29241   36100
44100   53361   64009   76176   90000  105625  123201  142884  164836  189225
216225  246016  278784  314721  354025  396900  443556  494209  549081  608400
672400  741321  815409  894916  980100 1071225 1168561 1272384 1382976 1500625
```

## APL

```10 5⍴+\0,(⍳49)*3
```
Output:
```      0       1       9      36     100
225     441     784    1296    2025
3025    4356    6084    8281   11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625```

## AppleScript

```------------------- SUM OF FIRST N CUBES -----------------

-- sumsOfFirstNCubes :: Int -> [Int]
on sumsOfFirstNCubes(n)
script go
on |λ|(a, x)
a + (x ^ 3) as integer
end |λ|
end script

scanl(go, 0, enumFromTo(1, n - 1))
end sumsOfFirstNCubes

--------------------------- TEST -------------------------
on run

table(5, sumsOfFirstNCubes(50))

end run

------------------------- GENERIC ------------------------

-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
if m ≤ n then
set lst to {}
repeat with i from m to n
set end of lst to i
end repeat
lst
else
{}
end if
end enumFromTo

-- scanl :: (b -> a -> b) -> b -> [a] -> [b]
on scanl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
set lst to {startValue}
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
set end of lst to v
end repeat
return lst
end tell
end scanl

-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
-- 2nd class handler function lifted into 1st class script wrapper.
if script is class of f then
f
else
script
property |λ| : f
end script
end if
end mReturn

------------------------ FORMATTING ----------------------

-- table :: Int -> [String] -> String
on table(n, xs)
-- A list of strings formatted as
-- right-justified rows of n columns.
set vs to map(my str, xs)
set w to length of last item of vs
unlines(map(my unwords, ¬
chunksOf(n, map(justifyRight(w, space), vs))))
end table

-- chunksOf :: Int -> [a] -> [[a]]
on chunksOf(k, xs)
script
on go(ys)
set ab to splitAt(k, ys)
set a to item 1 of ab
if {} ≠ a then
{a} & go(item 2 of ab)
else
a
end if
end go
end script
result's go(xs)
end chunksOf

-- justifyRight :: Int -> Char -> String -> String
on justifyRight(n, cFiller)
script
on |λ|(txt)
if n > length of txt then
text -n thru -1 of ((replicate(n, cFiller) as text) & txt)
else
txt
end if
end |λ|
end script
end justifyRight

-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
-- The list obtained by applying f
-- to each element of xs.
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map

-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary
-- assembly of a target length
-- replicate :: Int -> String -> String
on replicate(n, s)
-- Egyptian multiplication - progressively doubling a list,
-- appending stages of doubling to an accumulator where needed
-- for binary assembly of a target length
script p
on |λ|({n})
n ≤ 1
end |λ|
end script

script f
on |λ|({n, dbl, out})
if (n mod 2) > 0 then
set d to out & dbl
else
set d to out
end if
{n div 2, dbl & dbl, d}
end |λ|
end script

set xs to |until|(p, f, {n, s, ""})
item 2 of xs & item 3 of xs
end replicate

-- splitAt :: Int -> [a] -> ([a], [a])
on splitAt(n, xs)
if n > 0 and n < length of xs then
if class of xs is text then
{items 1 thru n of xs as text, ¬
items (n + 1) thru -1 of xs as text}
else
{items 1 thru n of xs, items (n + 1) thru -1 of xs}
end if
else
if n < 1 then
{{}, xs}
else
{xs, {}}
end if
end if
end splitAt

-- str :: a -> String
on str(x)
x as string
end str

-- unlines :: [String] -> String
on unlines(xs)
-- A single string formed by the intercalation
-- of a list of strings with the newline character.
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set s to xs as text
set my text item delimiters to dlm
s
end unlines

-- until :: (a -> Bool) -> (a -> a) -> a -> a
on |until|(p, f, x)
set v to x
set mp to mReturn(p)
set mf to mReturn(f)
repeat until mp's |λ|(v)
set v to mf's |λ|(v)
end repeat
v
end |until|

-- unwords :: [String] -> String
on unwords(xs)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, space}
set s to xs as text
set my text item delimiters to dlm
return s
end unwords
```
Output:
```      0       1       9      36     100
225     441     784    1296    2025
3025    4356    6084    8281   11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625```

## Arturo

```sumCubes: 0
loop split.every: 10 map 0..49 => [sumCubes: <= sumCubes + & ^ 3] 'a ->
print map a => [pad to :string & 7]
```
Output:
```      0       1       9      36     100     225     441     784    1296    2025
3025    4356    6084    8281   11025   14400   18496   23409   29241   36100
44100   53361   64009   76176   90000  105625  123201  142884  164836  189225
216225  246016  278784  314721  354025  396900  443556  494209  549081  608400
672400  741321  815409  894916  980100 1071225 1168561 1272384 1382976 1500625```

## AutoHotkey

```pn := 0, result := ""
loop 50 {
n := SubStr("       " ((A_Index-1)**3 + pn), -6)
result .= n (Mod(A_Index, 10)?"`t":"`n")
pn := n
}
MsgBox % result
```
Output:
```      0	      1	      9	     36	    100	    225	    441	    784	   1296	   2025
3025	   4356	   6084	   8281	  11025	  14400	  18496	  23409	  29241	  36100
44100	  53361	  64009	  76176	  90000	 105625	 123201	 142884	 164836	 189225
216225	 246016	 278784	 314721	 354025	 396900	 443556	 494209	 549081	 608400
672400	 741321	 815409	 894916	 980100	1071225	1168561	1272384	1382976	1500625```

## AWK

```# syntax: GAWK -f SUM_OF_FIRST_N_CUBES.AWK
BEGIN {
start = 0
stop = 49
for (i=start; i<=stop; i++) {
sum += i * i * i
printf("%7d%1s",sum,++count%10?"":"\n")
}
printf("\nSum of cubes %d-%d: %d\n",start,stop,count)
exit(0)
}
```
Output:
```      0       1       9      36     100     225     441     784    1296    2025
3025    4356    6084    8281   11025   14400   18496   23409   29241   36100
44100   53361   64009   76176   90000  105625  123201  142884  164836  189225
216225  246016  278784  314721  354025  396900  443556  494209  549081  608400
672400  741321  815409  894916  980100 1071225 1168561 1272384 1382976 1500625

Sum of cubes 0-49: 50
```

## BASIC

### BASIC256

Translation of: FreeBASIC
```fila = 0
lenCubos = 49

cls
print "Suma de N cubos para n = [0..49]" + chr(10)

for n = 0 to lenCubos
sumCubos = 0
for m = 1 to n
sumCubos += int(m ^ 3)
next m
fila += 1
print "" + sumCubos + " ";
#Print Using " ####### "; sumCubos;
if (fila % 5) = 0 then print
next n

print chr(13) + "Encontrados " & fila & " cubos."
end```

### FreeBASIC

```Dim As Integer fila = 0, lenCubos = 49, sumCubos

CLs
Print !"Suma de N cubos para n = [0..49]\n"

For n As Integer = 0 To lenCubos
sumCubos = 0
For m As Integer = 1 To n
sumCubos += (m ^3)
Next m
fila += 1
'Print "" & sumCubos & " ";
Print Using " ####### "; sumCubos;
If fila Mod 5 = 0 Then Print
Next n

Print !"\nEncontrados " & fila & " cubos."
Sleep```
Output:
```Suma de N cubos para n = [0..49]

0        1        9       36      100
225      441      784     1296     2025
3025     4356     6084     8281    11025
14400    18496    23409    29241    36100
44100    53361    64009    76176    90000
105625   123201   142884   164836   189225
216225   246016   278784   314721   354025
396900   443556   494209   549081   608400
672400   741321   815409   894916   980100
1071225  1168561  1272384  1382976  1500625

```

### GW-BASIC

```10 FOR N=0 TO 49
20 C#=C#+N^3
30 PRINT C#;
40 NEXT N```
Output:
``` 0  1  9  36  100  225  441  784  1296  2025  3025  4356  6084  8281  11025  14400  1
8496  23409  29241  36100  44100  53361  64009  76176  90000  105625  123201  142884

164836  189225  216225  246016  278784  314721  354025  396900  443556  494209  5490

81  608400  672400  741321  815409  894916  980100  1071225  1168561  1272384  138297

6  1500625```

### QB64

```For n%% = 0 To 49
c& = c& + n%% ^ 3
Print Using " ####### "; c&;
If n%% Mod 5 = 4 Then Print
Next n%%
```
Output:
```       0        1        9       36      100
225      441      784     1296     2025
3025     4356     6084     8281    11025
14400    18496    23409    29241    36100
44100    53361    64009    76176    90000
105625   123201   142884   164836   189225
216225   246016   278784   314721   354025
396900   443556   494209   549081   608400
672400   741321   815409   894916   980100
1071225  1168561  1272384  1382976  1500625
```

### QBasic

Translation of: FreeBASIC
```DEFLNG A-Z

fila = 0
lenCubos = 49

CLS
PRINT "Suma de N cubos para n = [0..49]" + CHR\$(10)

FOR n = 0 TO lenCubos
sumCubos = 0
FOR m = 1 TO n
sumCubos = sumCubos + (m ^ 3)
NEXT m
fila = fila + 1
PRINT USING " ####### "; sumCubos;
IF fila MOD 5 = 0 THEN PRINT
NEXT n

PRINT CHR\$(13) + "Encontrados"; fila; "cubos."
END
```

### Tiny BASIC

Works with: TinyBasic

Limited to 0 through 19 because integers only go up to 32767.

```10 LET C = 0
20 LET N = 0
30 LET C = C + N*N*N
40 PRINT C
50 LET N = N + 1
60 IF N = 19 THEN END
70 GOTO 30
```

### Yabasic

Translation of: FreeBASIC
```fila = 0
lenCubos = 49

clear screen
print "Suma de N cubos para n = [0..49]\n"

for n = 0 to lenCubos
sumCubos = 0
for m = 1 to n
sumCubos = sumCubos + (m ^3)
next m
fila = fila + 1
print "", sumCubos, " ";
if mod(fila, 5) = 0 then print : fi
next n

print "\nEncontrados ", fila, " cubos.\n"
end```

## BQN

```∘‿5⥊+`(↕50)⋆3
```
Output:
```┌─
╵       0       1       9      36     100
225     441     784    1296    2025
3025    4356    6084    8281   11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625
┘```

## C

```#include <stdio.h>

int main() {
for (int i = 0, sum = 0; i < 50; ++i) {
sum += i * i * i;
printf("%7d%c", sum, (i + 1) % 5 == 0 ? '\n' : ' ');
}
return 0;
}
```
Output:
```      0       1       9      36     100
225     441     784    1296    2025
3025    4356    6084    8281   11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625
```

## C#

No multiplication or exponentiation, just addition.

```using System; using static System.Console;
class Program { static void Main(string[] args) {
for (int i=0,j=-6,k=1,c=0,s=0;s<1600000;s+=c+=k+=j+=6)
Write("{0,-7}{1}",s, (i+=i==3?-4:1)==0?"\n":" "); } }
```
Output:
```0       1       9       36      100
225     441     784     1296    2025
3025    4356    6084    8281    11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625```

## C++

```#include <array>
#include <cstdio>
#include <numeric>

void PrintContainer(const auto& vec)
{
int count = 0;
for(auto value : vec)
{
printf("%7d%c", value, ++count % 10 == 0 ? '\n' : ' ');
}
}

int main()
{
// define a lambda that cubes a value
auto cube = [](auto x){return x * x * x;};

// create an array and use iota to fill it with {0, 1, 2, ... 49}
std::array<int, 50> a;
std::iota(a.begin(), a.end(), 0);

// transform_inclusive_scan will cube all of the values in the array and then
// perform a partial sum from index 0 to n and place the result back into the
// array at index n
std::transform_inclusive_scan(a.begin(), a.end(), a.begin(), std::plus{}, cube);
PrintContainer(a);
}
```
Output:
```      0       1       9      36     100     225     441     784    1296    2025
3025    4356    6084    8281   11025   14400   18496   23409   29241   36100
44100   53361   64009   76176   90000  105625  123201  142884  164836  189225
216225  246016  278784  314721  354025  396900  443556  494209  549081  608400
672400  741321  815409  894916  980100 1071225 1168561 1272384 1382976 1500625
```

## CLU

```start_up = proc ()
amount = 50
po: stream := stream\$primary_output()

sum: int := 0
for i: int in int\$from_to(0,amount-1) do
sum := sum + i ** 3
stream\$putright(po, int\$unparse(sum), 8)
if i//5 = 4 then stream\$putc(po, '\n') end
end
end start_up```
Output:
```       0       1       9      36     100
225     441     784    1296    2025
3025    4356    6084    8281   11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625```

## COBOL

```       IDENTIFICATION DIVISION.
PROGRAM-ID.  SUM-OF-CUBES.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 VARIABLES.
03 STEP         PIC 99.
03 CUBE         PIC 9(7).
03 CUBE-SUM     PIC 9(7) VALUE 0.

01 OUTPUT-FORMAT.
03 OUT-LINE     PIC X(40) VALUE SPACES.
03 OUT-PTR      PIC 99 VALUE 1.
03 OUT-NUM      PIC Z(7)9.

PROCEDURE DIVISION.
BEGIN.
PERFORM ADD-CUBE VARYING STEP FROM 0 BY 1
UNTIL STEP IS EQUAL TO 50.
STOP RUN.

COMPUTE CUBE = STEP ** 3.
MOVE CUBE-SUM TO OUT-NUM.
STRING OUT-NUM DELIMITED BY SIZE INTO OUT-LINE
WITH POINTER OUT-PTR.
IF OUT-PTR IS EQUAL TO 41,
DISPLAY OUT-LINE,
MOVE 1 TO OUT-PTR.
```
Output:
```       0       1       9      36     100
225     441     784    1296    2025
3025    4356    6084    8281   11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625```

## Comal

```0010 ZONE 8
0020 sum:=0
0030 FOR cube:=0 TO 49 DO
0040   sum:+cube^3
0050   PRINT sum,
0060   IF cube MOD 5=4 THEN PRINT
0070 ENDFOR cube
0080 END
```
Output:
```0       1       9       36      100
225     441     784     1296    2025
3025    4356    6084    8281    11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625```

## Cowgol

```include "cowgol.coh";

sub cube(n: uint32): (r: uint32) is
r := n * n * n;
end sub;

var i: uint8 := 0;
var sum: uint32 := 0;
while i < 50 loop
sum := sum + cube(i as uint32);
print_i32(sum);
i := i + 1;
if i % 10 == 0 then
print_nl();
else
print_char(' ');
end if;
end loop;```
Output:
```0 1 9 36 100 225 441 784 1296 2025
3025 4356 6084 8281 11025 14400 18496 23409 29241 36100
44100 53361 64009 76176 90000 105625 123201 142884 164836 189225
216225 246016 278784 314721 354025 396900 443556 494209 549081 608400
672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625```

## Delphi

Works with: Delphi version 6.0

```procedure ShowSumFirst50Cubes(Memo: TMemo);
var I,Sum: integer;
var S: string;
begin
S:='';
Sum:=0;
for I:=0 to 50-1 do
begin
Sum:=Sum+I*I*I;
S:=S+Format('%11.0n',[Sum+0.0]);
if (I mod 5)=4 then S:=S+CRLF;
end;
end;
```
Output:
```          0          1          9         36        100
225        441        784      1,296      2,025
3,025      4,356      6,084      8,281     11,025
14,400     18,496     23,409     29,241     36,100
44,100     53,361     64,009     76,176     90,000
105,625    123,201    142,884    164,836    189,225
216,225    246,016    278,784    314,721    354,025
396,900    443,556    494,209    549,081    608,400
672,400    741,321    815,409    894,916    980,100
1,071,225  1,168,561  1,272,384  1,382,976  1,500,625

Elapsed Time: 1.428 ms.

```

## Draco

```proc nonrec cube(ulong n) ulong:
n * n * n
corp

proc nonrec main() void:
ulong sum;
byte n;
sum := 0;
for n from 0 upto 49 do
sum := sum + cube(n);
write(sum:8);
if n % 5 = 4 then writeln() fi
od
corp```
Output:
```       0       1       9      36     100
225     441     784    1296    2025
3025    4356    6084    8281   11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625```

## EasyLang

```for i = 0 to 49
sum += i * i * i
write sum & " "
.```

## Excel

### LAMBDA

Binding the names SUMNCUBES and BINCOEFF to the following lambda expressions in the Name Manager of the Excel WorkBook:

```SUMNCUBES
=LAMBDA(n,
BINCOEFF(1 + n)(2) ^ 2
)

BINCOEFF
=LAMBDA(n,
LAMBDA(k,
IF(n < k,
0,
QUOTIENT(FACT(n), FACT(k) * FACT(n - k))
)
)
)
```

The single formula in cell B2 below defines a dynamic array which populates the whole B2:K6 grid:

Output:
 =SUMNCUBES( SEQUENCE(5, 10, 0, 1) ) fx A B C D E F G H I J K 1 Sum of N cubes for n = [0..49] 2 0 1 9 36 100 225 441 784 1296 2025 3 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 4 44100 53361 64009 76176 89401 105625 123201 142129 164025 189225 5 216225 245025 278784 313600 352836 396900 443556 492804 549081 608400 6 670761 739600 815409 894916 980100 1069156 1168561 1270129 1382976 1500625

## F#

```// Sum of cubes: Nigel Galloway. May 20th., 2021
let fN g=g*g*g in Seq.initInfinite((+)1>>fN)|>Seq.take 49|>Seq.scan((+))(0)|>Seq.iter(printf "%d "); printfn ""
```
Output:
```0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
```

## Factor

Works with: Factor version 0.99 2021-02-05
```USING: grouping math math.functions prettyprint sequences ;

50 <iota> 0 [ 3 ^ + ] accumulate* 10 group simple-table.
```
Output:
```0      1      9      36     100    225     441     784     1296    2025
3025   4356   6084   8281   11025  14400   18496   23409   29241   36100
44100  53361  64009  76176  90000  105625  123201  142884  164836  189225
216225 246016 278784 314721 354025 396900  443556  494209  549081  608400
672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
```

Alternatively, this is the same as the triangular numbers squared, where the triangular numbers are given by

Tn = n(n + 1) / 2

Works with: Factor version 0.99 2021-02-05
```USING: grouping kernel math prettyprint sequences ;

: triangular ( n -- m ) dup 1 + * 2/ ;

50 <iota> [ triangular sq ] map 10 group simple-table.
```
Output:

As above.

## Fermat

```c:=0
for n = 0 to 49 do
c:=c+n^3;
!(c,' ');
od;```
Output:
` 0  1  9  36  100  225  441  784  1296  2025  3025  4356  6084  8281  11025  14400  18496  23409  29241  36100  44100  53361  64009  76176  90000  105625  123201  142884  164836  189225  216225  246016  278784  314721  354025  396900  443556  494209  549081  608400  672400  741321  815409  894916  980100  1071225  1168561  1272384  1382976  1500625`

## Forth

Works with: Gforth
```: sum-cubes ( n -- )
0 swap 0 do
i i i * * + dup 7 .r
i 1+ 5 mod 0= if cr else space then
loop drop ;

50 sum-cubes
bye
```
Output:
```      0       1       9      36     100
225     441     784    1296    2025
3025    4356    6084    8281   11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625
```

## Frink

```sum = 0
result = new array
for n = 0 to 49
{
sum = sum + n^3
result.push[sum]
}

println[formatTable[columnize[result, 10], "right"]]```
Output:
```     0      1      9     36    100     225     441     784    1296    2025
3025   4356   6084   8281  11025   14400   18496   23409   29241   36100
44100  53361  64009  76176  90000  105625  123201  142884  164836  189225
216225 246016 278784 314721 354025  396900  443556  494209  549081  608400
672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625
```

## Go

Translation of: Wren
Library: Go-rcu
```package main

import (
"fmt"
"rcu"
)

func main() {
fmt.Println("Cumulative sums of the first 50 cubes:")
sum := 0
for n := 0; n < 50; n++ {
sum += n * n * n
fmt.Printf("%9s ", rcu.Commatize(sum))
if n%10 == 9 {
fmt.Println()
}
}
fmt.Println()
```
Output:
```Cumulative sums of the first 50 cubes:
0         1         9        36       100       225       441       784     1,296     2,025
3,025     4,356     6,084     8,281    11,025    14,400    18,496    23,409    29,241    36,100
44,100    53,361    64,009    76,176    90,000   105,625   123,201   142,884   164,836   189,225
216,225   246,016   278,784   314,721   354,025   396,900   443,556   494,209   549,081   608,400
672,400   741,321   815,409   894,916   980,100 1,071,225 1,168,561 1,272,384 1,382,976 1,500,625
```

```import Data.List (intercalate, transpose)
import Data.List.Split (chunksOf)
import Text.Printf (printf)

------------------- SUM OF FIRST N CUBES -----------------

sumOfFirstNCubes :: Integer -> Integer
sumOfFirstNCubes =
(^ 2)
. flip binomialCoefficient 2
. succ

--------------------------- TEST -------------------------
main :: IO ()
main =
putStrLn \$
table " " \$
chunksOf 10 \$
show . sumOfFirstNCubes <\$> [0 .. 49]

------------------------- GENERIC ------------------------

binomialCoefficient :: Integer -> Integer -> Integer
binomialCoefficient n k
| n < k = 0
| otherwise =
div
(factorial n)
(factorial k * factorial (n - k))

factorial :: Integer -> Integer
factorial = product . enumFromTo 1

------------------------- DISPLAY ------------------------

table :: String -> [[String]] -> String
table gap rows =
let ws = maximum . fmap length <\$> transpose rows
pw = printf . flip intercalate ["%", "s"] . show
in unlines \$ intercalate gap . zipWith pw ws <\$> rows
```
Output:
```     0      1      9     36    100     225     441     784    1296    2025
3025   4356   6084   8281  11025   14400   18496   23409   29241   36100
44100  53361  64009  76176  90000  105625  123201  142884  164836  189225
216225 246016 278784 314721 354025  396900  443556  494209  549081  608400
672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625```

Or, in terms of scanl:

```import Data.List (intercalate, scanl, transpose)
import Data.List.Split (chunksOf)
import Text.Printf (printf)

------------------- SUM OF FIRST N CUBES -----------------

sumsOfFirstNCubes :: Int -> [Int]
sumsOfFirstNCubes n =
scanl
(\a -> (a +) . (^ 3))
0
[1 .. pred n]

--------------------------- TEST -------------------------
main :: IO ()
main =
(putStrLn . table " " . chunksOf 5) \$
show <\$> sumsOfFirstNCubes 50

------------------------- DISPLAY ------------------------

table :: String -> [[String]] -> String
table gap rows =
let ws = maximum . fmap length <\$> transpose rows
pw = printf . flip intercalate ["%", "s"] . show
in unlines \$ intercalate gap . zipWith pw ws <\$> rows
```
Output:
```      0       1       9      36     100
225     441     784    1296    2025
3025    4356    6084    8281   11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625```

## J

```10 5\$+/\(i.^3:)50x
```
Output:
```      0       1       9      36     100
225     441     784    1296    2025
3025    4356    6084    8281   11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625```

If we wanted specifically the sum of positive integer cubes up through `n` it should be faster to use `0 0 1r4 1r2 1r4&p.`. For example:

```   0 0 1r4 1r2 1r4&p. 49
1500625
```

## JavaScript

```(() => {
"use strict";

// -------------- SUM OF FIRST N CUBES ---------------

// sumsOfFirstNCubes :: Int -> [Int]
const sumsOfFirstNCubes = n =>
// Cumulative sums of first n cubes.
scanl(
a => x => a + (x ** 3)
)(0)(
enumFromTo(1)(n - 1)
);

// ---------------------- TEST -----------------------
// main :: IO ()
const main = () =>
table("  ")(justifyRight)(
chunksOf(5)(
sumsOfFirstNCubes(50)
.map(x => `\${x}`)
)
);

// --------------------- GENERIC ---------------------

// enumFromTo :: Int -> Int -> [Int]
const enumFromTo = m =>
n => Array.from({
length: 1 + n - m
}, (_, i) => m + i);

// scanl :: (b -> a -> b) -> b -> [a] -> [b]
const scanl = f => startValue => xs =>
// The series of interim values arising
// from a catamorphism. Parallel to foldl.
xs.reduce((a, x) => {
const v = f(a[0])(x);

return [v, a[1].concat(v)];
}, [startValue, [startValue]])[1];

// ------------------- FORMATTING --------------------

// chunksOf :: Int -> [a] -> [[a]]
const chunksOf = n => {
// xs split into sublists of length n.
// The last sublist will be short if n
// does not evenly divide the length of xs .
const go = xs => {
const chunk = xs.slice(0, n);

return 0 < chunk.length ? (
[chunk].concat(
go(xs.slice(n))
)
) : [];
};

return go;
};

// compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
const compose = (...fs) =>
// A function defined by the right-to-left
// composition of all the functions in fs.
fs.reduce(
(f, g) => x => f(g(x)),
x => x
);

// flip :: (a -> b -> c) -> b -> a -> c
const flip = op =>
// The binary function op with
// its arguments reversed.
1 < op.length ? (
(a, b) => op(b, a)
) : (x => y => op(y)(x));

// intercalate :: String -> [String] -> String
const intercalate = s =>
// The concatenation of xs
// interspersed with copies of s.
xs => xs.join(s);

// justifyRight :: Int -> Char -> String -> String
const justifyRight = n =>
// The string s, preceded by enough padding (with
// the character c) to reach the string length n.
c => s => Boolean(s) ? (
) : "";

// table :: String ->
// (Int -> Char -> String -> String) ->
// [[String]] -> String
const table = gap =>
// A tabulation of rows of string values,
// with a specified gap between columns,
// and choice of cell alignment function
// (justifyLeft | center | justifyRight)
alignment => rows => {
const
colWidths = transpose(rows).map(
row => Math.max(
...row.map(x => x.length)
)
);

return rows.map(
compose(
intercalate(gap),
zipWith(
flip(alignment)(" ")
)(colWidths)
)
).join("\n");
};

// transpose :: [[a]] -> [[a]]
const transpose = rows => {
// If any rows are shorter than those that follow,
// their elements are skipped:
// > transpose [[10,11],[20],[],[30,31,32]]
//             == [[10,20,30],[11,31],[32]]
const go = xss =>
0 < xss.length ? (() => {
const
h = xss[0],
t = xss.slice(1);

return 0 < h.length ? [
[h[0]].concat(t.reduce(
(a, xs) => a.concat(
0 < xs.length ? (
[xs[0]]
) : []
),
[]
))
].concat(go([h.slice(1)].concat(
t.map(xs => xs.slice(1))
))) : go(t);
})() : [];

return go(rows);
};

// zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
const zipWith = f =>
// A list constructed by zipping with a
// custom function, rather than with the
// default tuple constructor.
xs => ys => xs.map(
(x, i) => f(x)(ys[i])
).slice(
0, Math.min(xs.length, ys.length)
);

// MAIN ---
return main();
})();
```
Output:
```      0        1        9       36      100
225      441      784     1296     2025
3025     4356     6084     8281    11025
14400    18496    23409    29241    36100
44100    53361    64009    76176    90000
105625   123201   142884   164836   189225
216225   246016   278784   314721   354025
396900   443556   494209   549081   608400
672400   741321   815409   894916   980100
1071225  1168561  1272384  1382976  1500625```

## jq

Works with: jq

Works with gojq, the Go implementation of jq

```# For the sake of stream-processing efficiency:
def add(s): reduce s as \$x (0; . + \$x);

```range(0;50) | sum_of_cubes as \$sum
| "\(.) => \(\$sum)"```
Output:
```0 => 0
1 => 0
2 => 1
3 => 9
4 => 36
5 => 100
...
45 => 980100
46 => 1071225
47 => 1168561
48 => 1272384
49 => 1382976
```

Using gojq, the Go implementation of jq, unbounded-precision integer arithmetic allows e.g.

```1000000 | sum_of_cubes #=> 249999500000250000000000
```

## Julia

```cubesumstil(N = 49, s = 0) = (foreach(n -> print(lpad(s += n^3, 8), n % 10 == 9 ? "\n" : ""), 0:N))

cubesumstil()
```
Output:
```       0       1       9      36     100     225     441     784    1296    2025
3025    4356    6084    8281   11025   14400   18496   23409   29241   36100
44100   53361   64009   76176   90000  105625  123201  142884  164836  189225
216225  246016  278784  314721  354025  396900  443556  494209  549081  608400
672400  741321  815409  894916  980100 1071225 1168561 1272384 1382976 1500625
```

Alternatively, and using the REPL, note that recent versions of Julia implement the accumulate function:

```julia> println(accumulate((x, y) -> x + y^3, 0:49))

[0, 1, 9, 36, 100, 225, 441, 784, 1296, 2025, 3025, 4356, 6084, 8281, 11025, 14400, 18496, 23409, 29241, 36100, 44100, 53361, 64009, 76176, 90000, 105625, 123201, 142884, 164836, 189225, 216225, 246016, 278784, 314721, 354025, 396900, 443556, 494209, 549081, 608400, 672400, 741321, 815409, 894916, 980100, 1071225, 1168561, 1272384, 1382976, 1500625]
```

## K

Works with: ngn/k
```5 10#+\{x*x*x}[!50]
(0 1 9 36 100 225 441 784 1296 2025
3025 4356 6084 8281 11025 14400 18496 23409 29241 36100
44100 53361 64009 76176 90000 105625 123201 142884 164836 189225
216225 246016 278784 314721 354025 396900 443556 494209 549081 608400
672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625)
```

```           NORMAL MODE IS INTEGER
SUM = 0
THROUGH LOOP, FOR STEP = 0, 1, STEP.GE.50
SUM = SUM + STEP * STEP * STEP
LOOP       PRINT FORMAT FMT, SUM
VECTOR VALUES FMT = \$I9*\$
END OF PROGRAM```
Output:
```        0
1
9
36
100
225
441
784
1296
2025
3025
4356
6084
8281
11025
14400
18496
23409
29241
36100
44100
53361
64009
76176
90000
105625
123201
142884
164836
189225
216225
246016
278784
314721
354025
396900
443556
494209
549081
608400
672400
741321
815409
894916
980100
1071225
1168561
1272384
1382976
1500625```

## Mathematica/Wolfram Language

```Accumulate[Range[0, 49]^3]
```
Output:
`{0,1,9,36,100,225,441,784,1296,2025,3025,4356,6084,8281,11025,14400,18496,23409,29241,36100,44100,53361,64009,76176,90000,105625,123201,142884,164836,189225,216225,246016,278784,314721,354025,396900,443556,494209,549081,608400,672400,741321,815409,894916,980100,1071225,1168561,1272384,1382976,1500625}`

## Nim

```import strutils

var s = 0
for n in 0..49:
s += n * n * n
stdout.write (\$s).align(7), if (n + 1) mod 10 == 0: '\n' else: ' '
```
Output:
```      0       1       9      36     100     225     441     784    1296    2025
3025    4356    6084    8281   11025   14400   18496   23409   29241   36100
44100   53361   64009   76176   90000  105625  123201  142884  164836  189225
216225  246016  278784  314721  354025  396900  443556  494209  549081  608400
672400  741321  815409  894916  980100 1071225 1168561 1272384 1382976 1500625```

## PARI/GP

`c=0;for(n=0,49,c=c+n^3;print(c))`

## Pascal

```program sumOfFirstNCubes(output);
const
N = 49;
var
i: integer;
sum: integer;
begin
sum := 0;
for i := 0 to N do
begin
sum := sum + sqr(i) * i;
{ In Extended Pascal you could also write:
sum := sum + i pow 3; }
writeLn(sum)
end
end.
```

## Perl

```#!/usr/bin/perl

use strict; # https://rosettacode.org/wiki/Sum_of_first_n_cubes
use warnings;

my \$sum = 0;
printf "%10d%s", \$sum += \$_ ** 3, \$_ % 5 == 4 && "\n" for 0 .. 49;
```
Output:
```         0         1         9        36       100
225       441       784      1296      2025
3025      4356      6084      8281     11025
14400     18496     23409     29241     36100
44100     53361     64009     76176     90000
105625    123201    142884    164836    189225
216225    246016    278784    314721    354025
396900    443556    494209    549081    608400
672400    741321    815409    894916    980100
1071225   1168561   1272384   1382976   1500625
```

## Phix

The commented out line is based on the Factor entry, and is clearly a much faster way to get the same results.

```function sum_first_n_cubes(integer n) return sum(sq_power(tagset(n),3)) end function
--function sum_first_n_cubes(integer n) return power(n*(n+1)/2,2) end function
sequence res = apply(tagset(49,0),sum_first_n_cubes)
printf(1,"%s\n",{join_by(apply(true,sprintf,{{"%,9d"},res}),1,10)})
```
Output:
```        0           1           9          36         100         225         441         784       1,296       2,025
3,025       4,356       6,084       8,281      11,025      14,400      18,496      23,409      29,241      36,100
44,100      53,361      64,009      76,176      90,000     105,625     123,201     142,884     164,836     189,225
216,225     246,016     278,784     314,721     354,025     396,900     443,556     494,209     549,081     608,400
672,400     741,321     815,409     894,916     980,100   1,071,225   1,168,561   1,272,384   1,382,976   1,500,625
```

## PILOT

```C :sum=0
:n=0
:max=50
*loop
C :cube=n*(n*#n)
:sum=sum+cube
:n=n+1
T :#n: #sum
J (n<max):*loop
E :```
Output:
```1: 0
2: 1
3: 9
4: 36
5: 100
6: 225
7: 441
8: 784
9: 1296
10: 2025
11: 3025
12: 4356
13: 6084
14: 8281
15: 11025
16: 14400
17: 18496
18: 23409
19: 29241
20: 36100
21: 44100
22: 53361
23: 64009
24: 76176
25: 90000
26: 105625
27: 123201
28: 142884
29: 164836
30: 189225
31: 216225
32: 246016
33: 278784
34: 314721
35: 354025
36: 396900
37: 443556
38: 494209
39: 549081
40: 608400
41: 672400
42: 741321
43: 815409
44: 894916
45: 980100
46: 1071225
47: 1168561
48: 1272384
49: 1382976
50: 1500625```

## Plain English

```To run:
Start up.
Show the sums of cubes given 49.
Wait for the escape key.
Shut down.

To show the sums of cubes given a number:
If a counter is past the number, exit.
Put the counter plus 1 times the counter into a result number.
Cut the result in half.
Raise the result to 2.
Write the result then " " on the console without advancing.
If the counter is evenly divisible by 5, write "" on the console.
Repeat.```
Output:
```0 1 9 36 100
225 441 784 1296 2025
3025 4356 6084 8281 11025
14400 18496 23409 29241 36100
44100 53361 64009 76176 90000
105625 123201 142884 164836 189225
216225 246016 278784 314721 354025
396900 443556 494209 549081 608400
672400 741321 815409 894916 980100
1071225 1168561 1272384 1382976 1500625
```

## PL/I

```cubeSum: procedure options(main);
declare (i, csum) fixed decimal(7);
csum = 0;
do i=0 to 49;
csum = csum + i * i * i;
put list(csum);
if mod(i,5) = 4 then put skip;
end;
end cubeSum;```
Output:
```         0          1          9         36        100
225        441        784       1296       2025
3025       4356       6084       8281      11025
14400      18496      23409      29241      36100
44100      53361      64009      76176      90000
105625     123201     142884     164836     189225
216225     246016     278784     314721     354025
396900     443556     494209     549081     608400
672400     741321     815409     894916     980100
1071225    1168561    1272384    1382976    1500625```

## PL/M

The original 8080 PL/M compiler only supported 8 and 16 bit unsigned arithmetic, so this sample only shows the sums < 65536.

```100H: /* SHOW THE SUMS OF THE FIRST N CUBES, 0 <= N < 23                    */

/* CP/M BDOS SYSTEM CALL                                                 */
BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5; END;
/* I/O ROUTINES                                                          */
PRINT\$CHAR:   PROCEDURE( C ); DECLARE C BYTE;    CALL BDOS( 2, C ); END;
PRINT\$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S ); END;
PRINT\$NUMBER: PROCEDURE( N );
DECLARE V ADDRESS, N\$STR( 6 ) BYTE, W BYTE;
N\$STR( W := LAST( N\$STR ) ) = '\$';
N\$STR( W := W - 1         ) = '0' + ( ( V := N ) MOD 10 );
DO WHILE( W > 0 );
N\$STR( W := W - 1 ) = ' ';
IF V > 0 THEN DO;
IF ( V := V / 10 ) > 0 THEN N\$STR( W ) = '0' + ( V MOD 10 );
END;
END;
CALL PRINT\$STRING( .N\$STR );
END PRINT\$NUMBER;

/* SHOW SUMS OF CUBES                                                    */
DECLARE ( I, SUM ) ADDRESS;
DO I = 0 TO 22;
SUM = ( I * ( I + 1 ) ) / 2;
CALL PRINT\$CHAR( ' ' );
CALL PRINT\$NUMBER( SUM * SUM );
IF I MOD 10 = 9 THEN CALL PRINT\$STRING( .( 0DH, 0AH, '\$' ) );
END;

EOF```
Output:
```     0     1     9    36   100   225   441   784  1296  2025
3025  4356  6084  8281 11025 14400 18496 23409 29241 36100
44100 53361 64009
```

## Python

### Python :: Procedural

Translation of: FreeBASIC
```def main():
fila = 0
lenCubos = 51

print("Suma de N cubos para n = [0..49]\n")

for n in range(1, lenCubos):
sumCubos = 0
for m in range(1, n):
sumCubos = sumCubos + (m ** 3)

fila += 1
print(f'{sumCubos:7} ', end='')
if fila % 5 == 0:
print(" ")

if __name__ == '__main__': main()
```
Output:
```Suma de N cubos para n = [0..49]

0       1       9      36     100
225     441     784    1296    2025
3025    4356    6084    8281   11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625

```

### Python :: Functional

```'''Sum of first N cubes'''

from math import factorial

# sumOfFirstNCubes :: Int -> Int
def sumOfFirstNCubes(n):
'''The sum of the first n cubes.'''
return binomialCoefficient(1 + n)(2) ** 2

# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''First fifty values (N drawn from [0 .. 49])
'''
print(
table(10)([
str(sumOfFirstNCubes(n)) for n
in range(0, 1 + 49)
])
)

# ----------------------- GENERIC ------------------------

# binomialCoefficient :: Int -> Int -> Int
def binomialCoefficient(n):
'''The coefficient of the term x^k in the polynomial
expansion of the binomial power (1 + x)^n
'''
def go(k):
return 0 if n < k else factorial(n) // (
factorial(k) * factorial(n - k)
)
return go

# ----------------------- DISPLAY ------------------------

# chunksOf :: Int -> [a] -> [[a]]
def chunksOf(n):
'''A series of lists of length n, subdividing the
contents of xs. Where the length of xs is not evenly
divisible, the final list will be shorter than n.
'''
def go(xs):
return (
xs[i:n + i] for i in range(0, len(xs), n)
) if 0 < n else None
return go

# table :: Int -> [String] -> String
def table(n):
'''A list of strings formatted as
right-justified rows of n columns.
'''
def go(xs):
w = len(xs[-1])
return '\n'.join(
' '.join(row) for row in chunksOf(n)([
s.rjust(w, ' ') for s in xs
])
)
return go

# MAIN ---
if __name__ == '__main__':
main()
```
Output:
```      0       1       9      36     100     225     441     784    1296    2025
3025    4356    6084    8281   11025   14400   18496   23409   29241   36100
44100   53361   64009   76176   90000  105625  123201  142884  164836  189225
216225  246016  278784  314721  354025  396900  443556  494209  549081  608400
672400  741321  815409  894916  980100 1071225 1168561 1272384 1382976 1500625```

or, as a scanning accumulation:

```'''Sum of first N cubes'''

from itertools import accumulate

# sumsOfFirstNCubes :: Int -> [Int]
def sumsOfFirstNCubes(n):
'''Cumulative sums of the first N cubes.
'''
def go(a, x):
return a + x ** 3

return accumulate(range(0, n), go)

# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''Cumulative sums of first 50 cubes'''
print(
table(5)([
str(n) for n in sumsOfFirstNCubes(50)
])
)

# ---------------------- FORMATTING ----------------------

# chunksOf :: Int -> [a] -> [[a]]
def chunksOf(n):
'''A series of lists of length n, subdividing the
contents of xs. Where the length of xs is not evenly
divisible, the final list will be shorter than n.
'''
def go(xs):
return (
xs[i:n + i] for i in range(0, len(xs), n)
) if 0 < n else None
return go

# table :: Int -> [String] -> String
def table(n):
'''A list of strings formatted as
right-justified rows of n columns.
'''
def go(xs):
w = len(xs[-1])
return '\n'.join(
' '.join(row) for row in chunksOf(n)([
s.rjust(w, ' ') for s in xs
])
)
return go

# MAIN ---
if __name__ == '__main__':
main()
```
Output:
```      0       1       9      36     100
225     441     784    1296    2025
3025    4356    6084    8281   11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625```

## Quackery

```  \$ "" 0
50 times
[ i^ 3 ** +
dup dip
[ number\$ join
space join  ] ]
drop
nest\$ 65 wrap\$```
Output:
```0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025
14400 18496 23409 29241 36100 44100 53361 64009 76176 90000
105625 123201 142884 164836 189225 216225 246016 278784 314721
354025 396900 443556 494209 549081 608400 672400 741321 815409
894916 980100 1071225 1168561 1272384 1382976 1500625
```

## R

This only takes one line.

`cumsum((0:49)^3)`
Output:
``` [1]       0       1       9      36     100     225     441     784    1296    2025    3025    4356    6084    8281   11025   14400
[17]   18496   23409   29241   36100   44100   53361   64009   76176   90000  105625  123201  142884  164836  189225  216225  246016
[33]  278784  314721  354025  396900  443556  494209  549081  608400  672400  741321  815409  894916  980100 1071225 1168561 1272384
[49] 1382976 1500625```

## Raku

```my @sums_of_all_cubes = [\+] ^Inf X** 3;

```
Output:
```     0       1       9      36     100     225     441     784    1296    2025
3025    4356    6084    8281   11025   14400   18496   23409   29241   36100
44100   53361   64009   76176   90000  105625  123201  142884  164836  189225
216225  246016  278784  314721  354025  396900  443556  494209  549081  608400
672400  741321  815409  894916  980100 1071225 1168561 1272384 1382976 1500625
```

## Red

```Red ["Sum of cubes"]

sum: 0
repeat i 50 [
sum: i - 1 ** 3 + sum
if i % 10 = 0 [prin newline]
]
```
Output:
```0       1       9       36      100     225     441     784     1296    2025
3025    4356    6084    8281    11025   14400   18496   23409   29241   36100
44100   53361   64009   76176   90000   105625  123201  142884  164836  189225
216225  246016  278784  314721  354025  396900  443556  494209  549081  608400
672400  741321  815409  894916  980100  1071225 1168561 1272384 1382976 1500625
```

## REXX

```/*REXX program finds and displays a number of sums of the first  N  cubes, where N < 50 */
parse arg n cols .                               /*obtain optional argument from the CL.*/
if    n=='' |    n==","  then    n=   50         /*Not specified?  Then use the default.*/
if cols=='' | cols==","  then cols=   10         /* "      "         "   "   "     "    */
w= 12                                            /*width of a number in any column.     */
title= ' cube sums,  where  N  < '     commas(n)
say ' index │'center(title,  1 + cols*(w+1)     )
say '───────┼'center(""   ,  1 + cols*(w+1), '─')
found= 0;                  idx= 0                /*initialize the number for the index. */
\$=;                        sum= 0                /*a list of the sum of  N  cubes.  .   */
do j=0  for n;        sum= sum + j**3       /*compute the sum of this cube + others*/
found= found + 1                            /*bump the number of  sums  shown.     */
c= commas(sum)                              /*maybe add commas to the number.      */
\$= \$ right(c, max(w, length(c) ) )          /*add a sum of  N  cubes to the \$ list.*/
if found//cols\==0  then iterate            /*have we populated a line of output?  */
say center(idx, 7)'│'  substr(\$, 2);   \$=   /*display what we have so far  (cols). */
idx= idx + cols                             /*bump the  index  count for the output*/
end   /*j*/

if \$\==''  then say center(idx, 7)"│"  substr(\$, 2)  /*possible display residual output.*/
say '───────┴'center(""   ,  1 + cols*(w+1), '─')
say
say 'Found '       commas(found)       title
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?;  do jc=length(?)-3  to 1  by -3; ?=insert(',', ?, jc); end;  return ?
```
output   when using the default inputs:

(Shown at five-sixth size.)

``` index │                                                    cube sums,  where  N  <  50
───────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
0   │            0            1            9           36          100          225          441          784        1,296        2,025
10   │        3,025        4,356        6,084        8,281       11,025       14,400       18,496       23,409       29,241       36,100
20   │       44,100       53,361       64,009       76,176       90,000      105,625      123,201      142,884      164,836      189,225
30   │      216,225      246,016      278,784      314,721      354,025      396,900      443,556      494,209      549,081      608,400
40   │      672,400      741,321      815,409      894,916      980,100    1,071,225    1,168,561    1,272,384    1,382,976    1,500,625
───────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────

Found  50  cube sums,  where  N  <  50
```

## Ring

```see "working..." + nl
see "Sum of first n cubes:" + nl
row = 0
lenCubes = 49

for n = 0 to lenCubes
sumCubes = 0
for m = 1 to n
sumCubes = sumCubes + pow(m,3)
next
row = row + 1
see "" + sumCubes + " "
if row%5 = 0
see nl
ok
next

see "Found " + row + " cubes" + nl
see "done..." + nl```
Output:
```working...
Sum of first n cubes:
0 1 9 36 100
225 441 784 1296 2025
3025 4356 6084 8281 11025
14400 18496 23409 29241 36100
44100 53361 64009 76176 90000
105625 123201 142884 164836 189225
216225 246016 278784 314721 354025
396900 443556 494209 549081 608400
672400 741321 815409 894916 980100
1071225 1168561 1272384 1382976 1500625
Found 50 cubes
done...
```

## RPL

```≪ { } 0 0 49 FOR n n 3 ^ + SWAP OVER + SWAP NEXT DROP ≫ EVAL
```
Output:
```1: { 0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 53361 64009 76176 90000 105625 123201 142884 164836 189225 216225 246016 278784 314721 354025 396900 443556 494209 549081 608400 672400 741321 815409 894916 980100 1071225 1168561 1272384 1382976 1500625 }
```

### Direct calculation

```≪ DUP 1 + * 2 / SQ ≫ '∑CUBE' STO
49 ∑CUBE
```
Output:
```1: 1500625
```

## Ruby

```sum = 0
(0...50).each do |n|
print (sum += n**3).to_s.ljust(10)
puts "" if (n+1) % 10 == 0
end
```
Output:
```0         1         9         36        100       225       441       784       1296      2025
3025      4356      6084      8281      11025     14400     18496     23409     29241     36100
44100     53361     64009     76176     90000     105625    123201    142884    164836    189225
216225    246016    278784    314721    354025    396900    443556    494209    549081    608400
672400    741321    815409    894916    980100    1071225   1168561   1272384   1382976   1500625 ```

## Rust

```fn main() {
(0..50)
.scan(0, |sum, x| {
*sum += x * x * x;
Some(*sum)
})
.enumerate()
.for_each(|(i, n)| {
print!("{:7}", n);
if (i + 1) % 5 == 0 {
println!();
} else {
print!(" ");
}
});
}
```
Output:
```      0       1       9      36     100
225     441     784    1296    2025
3025    4356    6084    8281   11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625
```

## Seed7

```\$ include "seed7_05.s7i";

const proc: main is func
local
var integer: n is 0;
begin
for n range 0 to 49 do
write((n * (n + 1) >> 1) ** 2 lpad 8);
if n rem 5 = 4 then
writeln;
end if;
end for;
end func;```
Output:
```       0       1       9      36     100
225     441     784    1296    2025
3025    4356    6084    8281   11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625
```

## SETL

```program sum_of_first_cubes;
cubes := [n**3 : n in [0..49]];

loop for i in [2..#cubes] do
cubes(i) +:= cubes(i-1);
end loop;

printtab(cubes, 5, 10);

proc printtab(list, cols, width);
lines := [list(k..cols+k-1) : k in [1, cols+1..#list]];
loop for line in lines do
print(+/[lpad(str item, width+1) : item in line]);
end loop;
end proc;
end program;```
Output:
```          0          1          9         36        100
225        441        784       1296       2025
3025       4356       6084       8281      11025
14400      18496      23409      29241      36100
44100      53361      64009      76176      90000
105625     123201     142884     164836     189225
216225     246016     278784     314721     354025
396900     443556     494209     549081     608400
672400     741321     815409     894916     980100
1071225    1168561    1272384    1382976    1500625```

## Sidef

```0..49 -> map { .faulhaber_sum(3) }.slices(5).each { .join(' ').say }
```
Output:
```0 1 9 36 100
225 441 784 1296 2025
3025 4356 6084 8281 11025
14400 18496 23409 29241 36100
44100 53361 64009 76176 90000
105625 123201 142884 164836 189225
216225 246016 278784 314721 354025
396900 443556 494209 549081 608400
672400 741321 815409 894916 980100
1071225 1168561 1272384 1382976 1500625
```

## VTL-2

Based on the TinyBASIC sample but with multiple sums per line and showing the first 23 values as VTL-2 has unsigned 16-bit integers.

```10 C=0
20 N=0
30 C=N*N*N+C
40 ?=C
50 \$=9
60 N=N+1
70 #=N/6*0+%>1*90
80 ?=""
90 #=N<23*30```
Output:
```0       1       9       36      100     225
441     784     1296    2025    3025    4356
6084    8281    11025   14400   18496   23409
29241   36100   44100   53361   64009
```

## Wren

```import "./fmt" for Fmt

System.print("Cumulative sums of the first 50 cubes:")
var sum = 0
for (n in 0..49) {
sum = sum + n * n * n
Fmt.write("\$,9d ", sum)
if ((n % 10) == 9) System.print()
}
System.print()
```
Output:
```Cumulative sums of the first 50 cubes:
0         1         9        36       100       225       441       784     1,296     2,025
3,025     4,356     6,084     8,281    11,025    14,400    18,496    23,409    29,241    36,100
44,100    53,361    64,009    76,176    90,000   105,625   123,201   142,884   164,836   189,225
216,225   246,016   278,784   314,721   354,025   396,900   443,556   494,209   549,081   608,400
672,400   741,321   815,409   894,916   980,100 1,071,225 1,168,561 1,272,384 1,382,976 1,500,625
```

## X86 Assembly

```      1                                  ;Assemble with: tasm, tlink /t
2     0000                                 .model  tiny
3     0000                                 .code
4                                          .386
5                                          org     100h            ;.com program starts here
6
7                                  ; eax: working register
8                                  ; ebx: 10 for divide
9                                  ; cx:  numout digit counter
10                                  ; edx: divide remainder
11                                  ; esi: Sum
12                                  ; edi: N
13                                  ; bp:  column position for tab
14
15     0100  66| 33 F6              start:  xor     esi, esi        ;Sum:= 0
16     0103  33 ED                          xor     bp, bp          ;reset column position
17     0105  66| 33 FF                      xor     edi, edi        ;N:= 0
18     0108  66| 8B C7              sum:    mov     eax, edi        ;Sum:= N^3 + Sum
19     010B  66| F7 EF                      imul    edi             ;eax:= edi^3 + esi
20     010E  66| F7 EF                      imul    edi
21     0111  66| 03 C6                      add     eax, esi
22
23     0114  66| 8B F0                      mov     esi, eax
24     0117  66| BB 0000000A                mov     ebx, 10         ;output number in eax
25     011D  33 C9                          xor     cx, cx          ;digit counter
26     011F  66| 99                 no10:   cdq                     ;edx:= 0 (extend sign of eax into edx)
27     0121  66| F7 FB                      idiv    ebx             ;(edx:eax)/ebx
28     0124  52                             push    dx              ;save remainder
29     0125  41                             inc     cx              ;count digit
30     0126  66| 85 C0                      test    eax, eax        ;loop for all digits
31     0129  75 F4                          jne     no10
32
33     012B  58                     no20:   pop     ax              ;get remainder
34     012C  04 30                          add     al, '0'         ;convert to ASCII
35     012E  CD 29                          int     29h             ;output digit
36     0130  45                             inc     bp              ;bump column position
37     0131  E2 F8                          loop    no20            ;loop for cx digits
38
39     0133  B0 20                  tab:    mov     al, 20h         ;output spaces until tab stop
40     0135  CD 29                          int     29h
41     0137  45                             inc     bp              ;bump column position
42     0138  F7 C5 0007                     test    bp, 7           ;loop until it's a multiple of 8
43     013C  75 F5                          jne     tab
44
45     013E  8B C7                          mov     ax, di          ;if remainder(di/5) = 4 then CR LF
46     0140  D4 05                          aam     5               ;ah:= al/5; al:= remainder
47     0142  3C 04                          cmp     al, 4
48     0144  75 0A                          jne     next
49     0146  B0 0D                           mov    al, 0Dh         ;CR
50     0148  CD 29                           int    29h
51     014A  33 ED                           xor    bp, bp          ;reset column position
52     014C  B0 0A                           mov    al, 0Ah         ;LF
53     014E  CD 29                           int    29h
54     0150  47                     next:   inc     di              ;next N
55     0151  83 FF 32                       cmp     di, 50          ;loop until done
56     0154  7C B2                          jl      sum
57     0156  C3                             ret
58
59                                          end     start
```
Output:
```0       1       9       36      100
225     441     784     1296    2025
3025    4356    6084    8281    11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625
```

## XPL0

```int  N, S;
[S:= 0;
for N:= 0 to 49 do
[S:= S + N*N*N;
IntOut(0, S);
ChOut(0, 9\tab\);
if rem(N/5) = 4 then CrLf(0);
];
]```
Output:
```0       1       9       36      100
225     441     784     1296    2025
3025    4356    6084    8281    11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625
```

## Zig

```pub fn main() !void {
const stdout = @import("std").io.getStdOut().writer();

var sum: u32 = 0;
var i: u32 = 0;

while (i < 50) : (i += 1) {
sum += i * i * i;
try stdout.print("{d:8}", .{sum});
if (i % 5 == 4) try stdout.print("\n", .{});
}
}
```
Output:
```       0       1       9      36     100
225     441     784    1296    2025
3025    4356    6084    8281   11025
14400   18496   23409   29241   36100
44100   53361   64009   76176   90000
105625  123201  142884  164836  189225
216225  246016  278784  314721  354025
396900  443556  494209  549081  608400
672400  741321  815409  894916  980100
1071225 1168561 1272384 1382976 1500625```