Shortest common supersequence
The shortest common supersequence is a problem closely related to the longest common subsequence, which you can use as an external function for this task.

You are encouraged to solve this task according to the task description, using any language you may know.
- Task
Given two strings and , find the shortest possible sequence , which is the shortest common super-sequence of and where both and are a subsequence of . Defined as such, is not necessarily unique.
Demonstrate this by printing where “abcbdab” and “bdcaba”.
- Also see
11l
F scs(String x, y)
I x.empty
R y
I y.empty
R x
I x[0] == y[0]
R x[0]‘’scs(x[1..], y[1..])
I scs(x, y[1..]).len <= scs(x[1..], y).len
R y[0]‘’scs(x, y[1..])
E
R x[0]‘’scs(x[1..], y)
print(scs(‘abcbdab’, ‘bdcaba’))
- Output:
abdcabdab
Ada
with Ada.Text_IO;
procedure Shortest is
function Scs (Left, Right : in String) return String is
Left_Tail : String renames Left (Left'First + 1 .. Left'Last);
Right_Tail : String renames Right (Right'First + 1 .. Right'Last);
begin
if Left = "" then return Right; end if;
if Right = "" then return Left; end if;
if Left (Left'First) = Right (Right'First) then
return Left (Left'First) & Scs (Left_Tail, Right_Tail);
end if;
declare
S1 : constant String := Scs (Left, Right_Tail);
S2 : constant String := Scs (Left_Tail, Right);
begin
return (if S1'Length <= S2'Length
then Right (Right'First) & S1
else Left (Left'First) & S2);
end;
end Scs;
procedure Exercise (Left, Right : String) is
use Ada.Text_Io;
begin
Put ("scs ( "); Put (Left); Put (" , "); Put (Right); Put ( " ) -> ");
Put (Scs (Left, Right));
New_Line;
end Exercise;
begin
Exercise ("abcbdab", "bdcaba");
Exercise ("WEASELS", "WARDANCE");
end Shortest;
- Output:
scs ( abcbdab , bdcaba ) -> abdcabdab scs ( WEASELS , WARDANCE ) -> WARDEANCSELS
ALGOL 68
BEGIN
PRIO SCS = 1;
# returns the shortest common supersequence of x and y #
OP SCS = ( STRING x, y )STRING:
IF x = "" THEN y
ELIF y = "" THEN x
ELIF x[ LWB x ] = y[ LWB y ]
THEN x[ LWB x ] + ( x[ LWB x + 1 : ] SCS y[ LWB y + 1 : ] )
ELIF STRING x y sub = x SCS y[ LWB y + 1 : ];
STRING x sub y = x[ LWB x + 1 : ] SCS y;
INT x y sub size = ( UPB x y sub - LWB x y sub ) + 1;
INT x sub y size = ( UPB x sub y - LWB x sub y ) + 1;
x y sub size <= x sub y size
THEN y[ LWB y ] + x y sub
ELSE x[ LWB x ] + x sub y
FI # SCS # ;
print( ( "abcbdab" SCS "bdcaba", newline ) )
END
- Output:
abdcabdab
C
The C99 code here isn't all that different from Levenstein distance calculation.
#include <stdio.h>
#include <string.h>
typedef struct link link_t;
struct link {
int len;
char letter;
link_t *next;
};
// Stores a copy of a SCS of x and y in out. Caller needs to make sure out is long enough.
int scs(char *x, char *y, char *out)
{
int lx = strlen(x), ly = strlen(y);
link_t lnk[ly + 1][lx + 1];
for (int i = 0; i < ly; i++)
lnk[i][lx] = (link_t) {ly - i, y[i], &lnk[i + 1][lx]};
for (int j = 0; j < lx; j++)
lnk[ly][j] = (link_t) {lx - j, x[j], &lnk[ly][j + 1]};
lnk[ly][lx] = (link_t) {0};
for (int i = ly; i--; ) {
for (int j = lx; j--; ) {
link_t *lp = &lnk[i][j];
if (y[i] == x[j]) {
lp->next = &lnk[i+1][j+1];
lp->letter = x[j];
} else if (lnk[i][j+1].len < lnk[i+1][j].len) {
lp->next = &lnk[i][j+1];
lp->letter = x[j];
} else {
lp->next = &lnk[i+1][j];
lp->letter = y[i];
}
lp->len = lp->next->len + 1;
}
}
for (link_t *lp = &lnk[0][0]; lp; lp = lp->next)
*out++ = lp->letter;
return 0;
}
int main(void)
{
char x[] = "abcbdab", y[] = "bdcaba", res[128];
scs(x, y, res);
printf("SCS(%s, %s) -> %s\n", x, y, res);
return 0;
}
- Output:
SCS(abcbdab, bdcaba) -> abdcabdab
C#
This is based on the Java version, but with added caching.
public class ShortestCommonSupersequence
{
Dictionary<(string, string), string> cache = new();
public string scs(string x, string y)
{
if (x.Length == 0) return y;
if (y.Length == 0) return x;
if (cache.TryGetValue((x, y), out var result)) return result;
if (x[0] == y[0])
{
return cache[(x, y)] = x[0] + scs(x.Substring(1), y.Substring(1));
}
var xr = scs(x.Substring(1), y);
var yr = scs(x, y.Substring(1));
if (yr.Length <= xr.Length)
{
return cache[(x, y)] = y[0] + yr;
}
else
{
return cache[(x, y)] = x[0] + xr;
}
}
public static void Main(string[] args)
{
var scs = new ShortestCommonSupersequence();
Console.WriteLine(scs.scs("abcbdab", "bdcaba"));
}
}
- Output:
abdcabdab
C++
#include <iostream>
std::string scs(std::string x, std::string y) {
if (x.empty()) {
return y;
}
if (y.empty()) {
return x;
}
if (x[0] == y[0]) {
return x[0] + scs(x.substr(1), y.substr(1));
}
if (scs(x, y.substr(1)).size() <= scs(x.substr(1), y).size()) {
return y[0] + scs(x, y.substr(1));
} else {
return x[0] + scs(x.substr(1), y);
}
}
int main() {
auto res = scs("abcbdab", "bdcaba");
std::cout << res << '\n';
return 0;
}
- Output:
abdcabdab
D
import std.stdio, std.functional, std.array, std.range;
dstring scs(in dstring x, in dstring y) nothrow @safe {
alias mScs = memoize!scs;
if (x.empty) return y;
if (y.empty) return x;
if (x.front == y.front)
return x.front ~ mScs(x.dropOne, y.dropOne);
if (mScs(x, y.dropOne).length <= mScs(x.dropOne, y).length)
return y.front ~ mScs(x, y.dropOne);
else
return x.front ~ mScs(x.dropOne, y);
}
void main() @safe {
scs("abcbdab", "bdcaba").writeln;
}
- Output:
abdcabdab
EasyLang
func$ car x$ .
return substr x$ 1 1
.
func$ cdr x$ .
return substr x$ 2 9999
.
func$ scs x$ y$ .
if x$ = ""
return y$
.
if y$ = ""
return x$
.
if car x$ = car y$
return car x$ & scs cdr x$ cdr y$
.
r1$ = scs x$ cdr y$
r2$ = scs cdr x$ y$
if len r1$ <= len r2$
return car y$ & r1$
else
return car x$ & r2$
.
.
print scs "abcbdab" "bdcaba"
- Output:
abdcabdab
Elixir
uses 'LCS' from here
defmodule SCS do
def scs(u, v) do
lcs = LCS.lcs(u, v) |> to_charlist
scs(to_charlist(u), to_charlist(v), lcs, []) |> to_string
end
defp scs(u, v, [], res), do: Enum.reverse(res) ++ u ++ v
defp scs([h|ut], [h|vt], [h|lt], res), do: scs(ut, vt, lt, [h|res])
defp scs([h|_]=u, [vh|vt], [h|_]=lcs, res), do: scs(u, vt, lcs, [vh|res])
defp scs([uh|ut], v, lcs, res), do: scs(ut, v, lcs, [uh|res])
end
u = "abcbdab"
v = "bdcaba"
IO.puts "SCS(#{u}, #{v}) = #{SCS.scs(u, v)}"
- Output:
SCS(abcbdab, bdcaba) = abdcabdab
Factor
USING: combinators io kernel locals math memoize sequences ;
MEMO:: scs ( x y -- seq )
{
{ [ x empty? ] [ y ] }
{ [ y empty? ] [ x ] }
{ [ x first y first = ]
[ x rest y rest scs x first prefix ] }
{ [ x y rest scs length x rest y scs length <= ]
[ x y rest scs y first prefix ] }
[ x rest y scs x first prefix ]
} cond ;
"abcbdab" "bdcaba" scs print
- Output:
abdcabdab
FreeBASIC
Function LCS(a As String, b As String) As String
Dim As String x, y
If Len(a) = 0 Or Len(b) = 0 Then
Return ""
Elseif Right(a, 1) = Right(b, 1) Then
LCS = LCS(Left(a, Len(a) - 1), Left(b, Len(b) - 1)) + Right(a, 1)
Else
x = LCS(a, Left(b, Len(b) - 1))
y = LCS(Left(a, Len(a) - 1), b)
If Len(x) > Len(y) Then Return x Else Return y
End If
End Function
Function SCS(u As String, v As String) As String
Dim lcsStr As String = LCS(u, v)
Dim As Integer i, ui = 0, vi = 0
Dim As String sb = ""
For i = 1 To Len(lcsStr)
While ui < Len(u) Andalso Mid(u, ui + 1, 1) <> Mid(lcsStr, i, 1)
sb += Mid(u, ui + 1, 1)
ui += 1
Wend
While vi < Len(v) Andalso Mid(v, vi + 1, 1) <> Mid(lcsStr, i, 1)
sb += Mid(v, vi + 1, 1)
vi += 1
Wend
sb += Mid(lcsStr, i, 1)
ui += 1
vi += 1
Next
If ui < Len(u) Then sb += Right(u, Len(u) - ui)
If vi < Len(v) Then sb += Right(v, Len(v) - vi)
Return sb
End Function
Print SCS("abcbdab", "bdcaba")
Print SCS("WEASELS", "WARDANCE")
Sleep
- Output:
abdcabdab WEASRDANCELS
Go
package main
import (
"fmt"
"strings"
)
func lcs(x, y string) string {
xl, yl := len(x), len(y)
if xl == 0 || yl == 0 {
return ""
}
x1, y1 := x[:xl-1], y[:yl-1]
if x[xl-1] == y[yl-1] {
return fmt.Sprintf("%s%c", lcs(x1, y1), x[xl-1])
}
x2, y2 := lcs(x, y1), lcs(x1, y)
if len(x2) > len(y2) {
return x2
} else {
return y2
}
}
func scs(u, v string) string {
ul, vl := len(u), len(v)
lcs := lcs(u, v)
ui, vi := 0, 0
var sb strings.Builder
for i := 0; i < len(lcs); i++ {
for ui < ul && u[ui] != lcs[i] {
sb.WriteByte(u[ui])
ui++
}
for vi < vl && v[vi] != lcs[i] {
sb.WriteByte(v[vi])
vi++
}
sb.WriteByte(lcs[i])
ui++
vi++
}
if ui < ul {
sb.WriteString(u[ui:])
}
if vi < vl {
sb.WriteString(v[vi:])
}
return sb.String()
}
func main() {
u := "abcbdab"
v := "bdcaba"
fmt.Println(scs(u, v))
}
- Output:
abdcabdab
Haskell
scs :: Eq a => [a] -> [a] -> [a]
scs [] ys = ys
scs xs [] = xs
scs xss@(x:xs) yss@(y:ys)
| x == y = x : scs xs ys
| otherwise = ws
where
us = scs xs yss
vs = scs xss ys
ws | length us < length vs = x : us
| otherwise = y : vs
main = putStrLn $ scs "abcbdab" "bdcaba"
- Output:
abdcabdab
Java
public class ShortestCommonSuperSequence {
private static boolean isEmpty(String s) {
return null == s || s.isEmpty();
}
private static String scs(String x, String y) {
if (isEmpty(x)) {
return y;
}
if (isEmpty(y)) {
return x;
}
if (x.charAt(0) == y.charAt(0)) {
return x.charAt(0) + scs(x.substring(1), y.substring(1));
}
if (scs(x, y.substring(1)).length() <= scs(x.substring(1), y).length()) {
return y.charAt(0) + scs(x, y.substring(1));
} else {
return x.charAt(0) + scs(x.substring(1), y);
}
}
public static void main(String[] args) {
System.out.println(scs("abcbdab", "bdcaba"));
}
}
- Output:
abdcabdab
jq
Works with gojq, the Go implementation of jq
# largest common substring
# Uses recursion, taking advantage of jq's TCO
def lcs:
. as [$x, $y]
| if ($x|length == 0) or ($y|length == 0) then ""
else $x[:-1] as $x1
| $y[:-1] as $y1
| if $x[-1:] == $y[-1:] then ([$x1, $y1] | lcs) + $x[-1:]
else ([$x, $y1] | lcs) as $x2
| ([$x1, $y] | lcs) as $y2
| if ($x2|length) > ($y2|length) then $x2 else $y2 end
end
end;
def scs:
def eq($s;$i; $t;$j): $s[$i:$i+1] == $t[$j:$j+1];
. as [$u, $v]
| lcs as $lcs
| reduce range(0; $lcs|length) as $i ( { ui: 0, vi: 0, sb: "" };
until( .ui == ($u|length) or eq($u;.ui; $lcs;$i);
.ui as $ui
| .sb += $u[$ui:$ui+1]
| .ui += 1 )
| until(.vi == ($v|length) or eq($v;.vi; $lcs;$i);
.vi as $vi
| .sb += $v[$vi:$vi+1]
| .vi += 1 )
| .sb += $lcs[$i:$i+1]
| .ui += 1
| .vi += 1
)
| if .ui < ($u|length) then .sb = .sb + $u[.ui:] else . end
| if .vi < ($v|length) then .sb = .sb + $v[.vi:] else . end
| .sb ;
[ "abcbdab", "bdcaba" ] | scs
- Output:
"abdcabdab"
Julia
using Memoize
@memoize function scs(x, y)
if x == ""
return y
elseif y == ""
return x
elseif x[1] == y[1]
return "$(x[1])$(scs(x[2:end], y[2:end]))"
elseif length(scs(x, y[2:end])) <= length(scs(x[2:end], y))
return "$(y[1])$(scs(x, y[2:end]))"
else
return "$(x[1])$(scs(x[2:end], y))"
end
end
println(scs("abcbdab", "bdcaba"))
- Output:
abdcabdab
Kotlin
Uses 'lcs' function from Longest common subsequence#Kotlin:
// version 1.1.2
fun lcs(x: String, y: String): String {
if (x.length == 0 || y.length == 0) return ""
val x1 = x.dropLast(1)
val y1 = y.dropLast(1)
if (x.last() == y.last()) return lcs(x1, y1) + x.last()
val x2 = lcs(x, y1)
val y2 = lcs(x1, y)
return if (x2.length > y2.length) x2 else y2
}
fun scs(u: String, v: String): String{
val lcs = lcs(u, v)
var ui = 0
var vi = 0
val sb = StringBuilder()
for (i in 0 until lcs.length) {
while (ui < u.length && u[ui] != lcs[i]) sb.append(u[ui++])
while (vi < v.length && v[vi] != lcs[i]) sb.append(v[vi++])
sb.append(lcs[i])
ui++; vi++
}
if (ui < u.length) sb.append(u.substring(ui))
if (vi < v.length) sb.append(v.substring(vi))
return sb.toString()
}
fun main(args: Array<String>) {
val u = "abcbdab"
val v = "bdcaba"
println(scs(u, v))
}
- Output:
abdcabdab
Mathematica /Wolfram Language
ClearAll[RosettaShortestCommonSuperSequence]
RosettaShortestCommonSuperSequence[aa_String, bb_String] :=
Module[{lcs, scs, a = aa, b = bb},
lcs = LongestCommonSubsequence[aa, bb];
scs = "";
While[StringLength[lcs] > 0,
If[StringTake[a, 1] == StringTake[lcs, 1] \[And] StringTake[b, 1] == StringTake[lcs, 1],
scs = StringJoin[scs, StringTake[lcs, 1]];
lcs = StringDrop[lcs, 1];
a = StringDrop[a, 1];
b = StringDrop[b, 1];
,
If[StringTake[a, 1] == StringTake[lcs, 1],
scs = StringJoin[scs, StringTake[b, 1]];
b = StringDrop[b, 1];
,
scs = StringJoin[scs, StringTake[a, 1]];
a = StringDrop[a, 1];
]
]
];
StringJoin[scs, a, b]
]
RosettaShortestCommonSuperSequence["abcbdab", "bdcaba"]
RosettaShortestCommonSuperSequence["WEASELS", "WARDANCE"]
- Output:
bdcabcbdaba WEASELSARDANCE
Nim
proc lcs(x, y: string): string =
if x.len == 0 or y.len == 0: return
let x1 = x[0..^2]
let y1 = y[0..^2]
if x[^1] == y[^1]: return lcs(x1, y1) & x[^1]
let x2 = lcs(x, y1)
let y2 = lcs(x1, y)
result = if x2.len > y2.len: x2 else: y2
proc scs(u, v: string): string =
let lcs = lcs(u, v)
var ui, vi = 0
for ch in lcs:
while ui < u.len and u[ui] != ch:
result.add u[ui]
inc ui
while vi < v.len and v[vi] != ch:
result.add v[vi]
inc vi
result.add ch
inc ui
inc vi
if ui < u.len: result.add u.substr(ui)
if vi < v.len: result.add v.substr(vi)
when isMainModule:
let u = "abcbdab"
let v = "bdcaba"
echo scs(u, v)
- Output:
abdcabdab
Perl
sub lcs { # longest common subsequence
my( $u, $v ) = @_;
return '' unless length($u) and length($v);
my $longest = '';
for my $first ( 0..length($u)-1 ) {
my $char = substr $u, $first, 1;
my $i = index( $v, $char );
next if -1==$i;
my $next = $char;
$next .= lcs( substr( $u, $first+1), substr( $v, $i+1 ) ) unless $i==length($v)-1;
$longest = $next if length($next) > length($longest);
}
return $longest;
}
sub scs { # shortest common supersequence
my( $u, $v ) = @_;
my @lcs = split //, lcs $u, $v;
my $pat = "(.*)".join("(.*)",@lcs)."(.*)";
my @u = $u =~ /$pat/;
my @v = $v =~ /$pat/;
my $scs = shift(@u).shift(@v);
$scs .= $_.shift(@u).shift(@v) for @lcs;
return $scs;
}
my $u = "abcbdab";
my $v = "bdcaba";
printf "Strings %s %s\n", $u, $v;
printf "Longest common subsequence: %s\n", lcs $u, $v;
printf "Shortest common supersquence: %s\n", scs $u, $v;
- Output:
Strings abcbdab bdcaba Longest common subsequence: bcba Shortest common supersquence: abdcabdab
Phix
with javascript_semantics function longest_common_subsequence(sequence a, b) sequence res = "" if length(a) and length(b) then if a[$]=b[$] then res = longest_common_subsequence(a[1..-2],b[1..-2])&a[$] else sequence l = longest_common_subsequence(a,b[1..-2]), r = longest_common_subsequence(a[1..-2],b) res = iff(length(l)>length(r)?l:r) end if end if return res end function function shortest_common_supersequence(string a, b) string lcs = longest_common_subsequence(a, b), scs = "" -- Consume lcs while length(lcs) do integer c = lcs[1] if a[1]==c and b[1]==c then -- Part of the lcs, so consume from all strings scs &= c lcs = lcs[2..$] a = a[2..$] b = b[2..$] elsif a[1]==c then scs &= b[1] b = b[2..$] else scs &= a[1] a = a[2..$] end if end while -- append remaining characters return scs & a & b end function ?shortest_common_supersequence("abcbdab", "bdcaba") ?shortest_common_supersequence("WEASELS", "WARDANCE")
- Output:
"abdcabdab" "WEASRDANCELS"
Python
# Use the Longest Common Subsequence algorithm
def shortest_common_supersequence(a, b):
lcs = longest_common_subsequence(a, b)
scs = ""
# Consume lcs
while len(lcs) > 0:
if a[0]==lcs[0] and b[0]==lcs[0]:
# Part of the LCS, so consume from all strings
scs += lcs[0]
lcs = lcs[1:]
a = a[1:]
b = b[1:]
elif a[0]==lcs[0]:
scs += b[0]
b = b[1:]
else:
scs += a[0]
a = a[1:]
# append remaining characters
return scs + a + b
- Output:
Seq1: WEASELS Seq2: WARDANCE SCS: WEASRDANCELS
Racket
This program is based on the C implementation, but use memorization instead of dynamic programming. More explanations about the memorization part in http://blog.racket-lang.org/2012/08/dynamic-programming-versus-memoization.html .
#lang racket
(struct link (len letters))
(define (link-add li n letter)
(link (+ n (link-len li))
(cons letter (link-letters li))))
(define (memoize f)
(local ([define table (make-hash)])
(lambda args
(dict-ref! table args (λ () (apply f args))))))
(define scs/list
(memoize
(lambda (x y)
(cond
[(null? x)
(link (length y) y)]
[(null? y)
(link (length x) x)]
[(eq? (car x) (car y))
(link-add (scs/list (cdr x) (cdr y)) 1 (car x))]
[(<= (link-len (scs/list x (cdr y)))
(link-len (scs/list (cdr x) y)))
(link-add (scs/list x (cdr y)) 1 (car y))]
[else
(link-add (scs/list (cdr x) y) 1 (car x))]))))
(define (scs x y)
(list->string (link-letters (scs/list (string->list x) (string->list y)))))
(scs "abcbdab" "bdcaba")
- Output:
"abdcabdab"
Raku
(formerly Perl 6)
Using 'lcs' routine from Longest common subsequence task
sub lcs(Str $xstr, Str $ystr) { # longest common subsequence
return "" unless $xstr && $ystr;
my ($x, $xs, $y, $ys) = $xstr.substr(0, 1), $xstr.substr(1), $ystr.substr(0, 1), $ystr.substr(1);
return $x eq $y
?? $x ~ lcs($xs, $ys)
!! max(:by{ $^a.chars }, lcs($xstr, $ys), lcs($xs, $ystr) );
}
sub scs ($u, $v) { # shortest common supersequence
my @lcs = (lcs $u, $v).comb;
my $pat = '(.*)' ~ join('(.*)',@lcs) ~ '(.*)';
my $regex = "rx/$pat/".EVAL;
my @u = ($u ~~ $regex).list;
my @v = ($v ~~ $regex).list;
my $scs = shift(@u) ~ shift(@v);
$scs ~= $_ ~ shift(@u) ~ shift(@v) for @lcs;
return $scs;
}
my $u = 'abcbdab';
my $v = 'bdcaba';
printf "Strings: %s %s\n", $u, $v;
printf "Longest common subsequence: %s\n", lcs $u, $v;
printf "Shortest common supersquence: %s\n", scs $u, $v;
- Output:
Strings: abcbdab bdcaba Longest common subsequence: bcba Shortest common supersquence: abdcabdab
REXX
/*REXX program finds the Shortest common supersequence (SCS) of two character strings.*/
parse arg u v . /*obtain optional arguments from the CL*/
if u=='' | u=="," then u= 'abcbdab' /*Not specified? Then use the default.*/
if v=='' | v=="," then v= 'bdcaba' /* " " " " " " */
say ' string u=' u /*echo the value of string U to term.*/
say ' string v=' v /* " " " " " V " " */
$= u /*define initial value for the output. */
do n=1 to length(u) /*process the whole length of string U.*/
do m=n to length(v) - 1 /* " right─ish part " " V.*/
p= pos( substr(v, m, 1), $) /*position of mTH V char in $ string.*/
_= substr(v, m+1, 1) /*obtain a single character of string V*/
if p\==0 & _\==substr($, p+1, 1) then $= insert(_, $, p)
end /*m*/ /* [↑] insert _ in $ after position P.*/
end /*n*/
say
say 'shortest common supersequence=' $ /*stick a fork in it, we're all done. */
- output when using the default inputs:
string u= abcbdab string v= bdcaba shortest common supersequence= abdcabdab
- output when using the inputs values: ab ac
string u= ab string v= ac shortest common supersequence= acb
- output when using the inputs values: ac ab
string u= ac string v= ab shortest common supersequence= abc
Ring
# Project : Shortest common supersequence
str1 = "a b c b d a b"
str2 = "bdcaba"
str3 = str2list(substr(str1, " ", nl))
for n = 1 to len(str3)
for m = n to len(str2)-1
pos = find(str3, str2[m])
if pos > 0 and str2[m+1] != str3[pos+1]
insert(str3, pos, str2[m+1])
ok
next
next
showarray(str3)
func showarray(vect)
svect = ""
for n = 1 to len(vect)
svect = svect + vect[n]
next
see svect
Output:
Shortest common supersequence: abdcabdab
Ruby
uses 'lcs' from here
require 'lcs'
def scs(u, v)
lcs = lcs(u, v)
u, v = u.dup, v.dup
scs = ""
# Iterate over the characters until LCS processed
until lcs.empty?
if u[0]==lcs[0] and v[0]==lcs[0]
# Part of the LCS, so consume from all strings
scs << lcs.slice!(0)
u.slice!(0)
v.slice!(0)
elsif u[0]==lcs[0]
# char of u = char of LCS, but char of LCS v doesn't so consume just that
scs << v.slice!(0)
else
# char of u != char of LCS, so consume just that
scs << u.slice!(0)
end
end
# append remaining characters, which are not in common
scs + u + v
end
u = "abcbdab"
v = "bdcaba"
puts "SCS(#{u}, #{v}) = #{scs(u, v)}"
- Output:
SCS(abcbdab, bdcaba) = abcbdcaba
Sidef
Uses the lcs function defined here.
func scs(u, v) {
var ls = lcs(u, v).chars
var pat = Regex('(.*)'+ls.join('(.*)')+'(.*)')
u.scan!(pat)
v.scan!(pat)
var ss = (u.shift + v.shift)
ls.each { |c| ss += (c + u.shift + v.shift) }
return ss
}
say scs("abcbdab", "bdcaba")
- Output:
abdcabdab
Tcl
This example uses either of the lcs
implementations from here, assumed renamed to lcs…
proc scs {u v} {
set lcs [lcs $u $v]
set scs ""
# Iterate over the characters until LCS processed
for {set ui [set vi [set li 0]]} {$li<[string length $lcs]} {} {
set uc [string index $u $ui]
set vc [string index $v $vi]
set lc [string index $lcs $li]
if {$uc eq $lc} {
if {$vc eq $lc} {
# Part of the LCS, so consume from all strings
append scs $lc
incr ui
incr li
} else {
# char of u = char of LCS, but char of LCS v doesn't so consume just that
append scs $vc
}
incr vi
} else {
# char of u != char of LCS, so consume just that
append scs $uc
incr ui
}
}
# append remaining characters, which are not in common
append scs [string range $u $ui end] [string range $v $vi end]
return $scs
}
Demonstrating:
set u "abcbdab"
set v "bdcaba"
puts "SCS($u,$v) = [scs $u $v]"
- Output:
SCS(abcbdab,bdcaba) = abdcabdab
Wren
var lcs // recursive
lcs = Fn.new { |x, y|
if (x.count == 0 || y.count == 0) return ""
var x1 = x[0...-1]
var y1 = y[0...-1]
if (x[-1] == y[-1]) return lcs.call(x1, y1) + x[-1]
var x2 = lcs.call(x, y1)
var y2 = lcs.call(x1, y)
return (x2.count > y2.count) ? x2 : y2
}
var scs = Fn.new { |u, v|
var lcs = lcs.call(u, v)
var ui = 0
var vi = 0
var sb = ""
for (i in 0...lcs.count) {
while (ui < u.count && u[ui] != lcs[i]) {
sb = sb + u[ui]
ui = ui + 1
}
while (vi < v.count && v[vi] != lcs[i]) {
sb = sb + v[vi]
vi = vi + 1
}
sb = sb + lcs[i]
ui = ui + 1
vi = vi + 1
}
if (ui < u.count) sb = sb + u[ui..-1]
if (vi < v.count) sb = sb + v[vi..-1]
return sb
}
var u = "abcbdab"
var v = "bdcaba"
System.print(scs.call(u, v))
- Output:
abdcabdab
zkl
class Link{ var len,letter,next;
fcn init(l=0,c="",lnk=Void){ len,letter,next=l,c,lnk; }
}
fcn scs(x,y,out){
lx,ly:=x.len(),y.len();
lnk:=(ly+1).pump(List,'wrap(_){ (lx+1).pump(List(),Link.create) });
foreach i in (ly){ lnk[i][lx]=Link(ly-i, y[i]) }
foreach j in (lx){ lnk[ly][j]=Link(lx-j, x[j]) }
foreach i,j in ([ly-1..0,-1],[lx-1..0,-1]){
lp:=lnk[i][j];
if (y[i]==x[j]){
lp.next =lnk[i+1][j+1];
lp.letter=x[j];
}else if(lnk[i][j+1].len < lnk[i+1][j].len){
lp.next =lnk[i][j+1];
lp.letter=x[j];
}else{
lp.next =lnk[i+1][j];
lp.letter=y[i];
}
lp.len=lp.next.len + 1;
}
lp:=lnk[0][0]; while(lp){ out.write(lp.letter); lp=lp.next; }
out.close()
}
scs("abcbdab","bdcaba", Sink(String)).println();
- Output:
abdcabdab