# Safe and Sophie Germain primes

Safe and Sophie Germain primes is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

A prime number p is a Sophie Germain prime if 2p + 1 is also prime.
The number 2p + 1 associated with a Sophie Germain prime is called a safe prime.

Generate the first   50   Sophie Germain prime numbers.

## 11l

```F is_prime(a)
I a == 2
R 1B
I a < 2 | a % 2 == 0
R 0B
L(i) (3 .. Int(sqrt(a))).step(2)
I a % i == 0
R 0B
R 1B

V cnt = 0
L(n) 1..
I is_prime(n) & is_prime(2 * n + 1)
print(n, end' ‘ ’)
I ++cnt == 50
L.break
print()```
Output:
```2 3 5 11 23 29 41 53 83 89 113 131 173 179 191 233 239 251 281 293 359 419 431 443 491 509 593 641 653 659 683 719 743 761 809 911 953 1013 1019 1031 1049 1103 1223 1229 1289 1409 1439 1451 1481 1499
```

## ALGOL 68

```BEGIN # find some Sophie Germain primes: primes p such that 2p + 1 is prime   #
[]BOOL prime = PRIMESIEVE 10 000;              # hopefully, enough primes #
INT sg count := 0;
FOR p WHILE sg count < 50 DO    # find the first 50 Sophie Germain primes #
IF prime[ p ] THEN
IF prime[ p + p + 1 ] THEN
print( ( " ", whole( p, -6 ) ) );
IF ( sg count +:= 1 ) MOD 12 = 0 THEN print( ( newline ) ) FI
FI
FI
OD
END```
Output:
```      2      3      5     11     23     29     41     53     83     89    113    131
173    179    191    233    239    251    281    293    359    419    431    443
491    509    593    641    653    659    683    719    743    761    809    911
953   1013   1019   1031   1049   1103   1223   1229   1289   1409   1439   1451
1481   1499
```

## Arturo

```sophieG?: function [p][
and? [prime? p][prime? 1 + 2*p]
]

sophieGermaines: new [2]
i: 3
while [50 > size sophieGermaines][
if sophieG? i ->
'sophieGermaines ++ i
i: i + 2
]

loop split.every:10 sophieGermaines 'a ->
print map a => [pad to :string & 4]
```
Output:
```   2    3    5   11   23   29   41   53   83   89
113  131  173  179  191  233  239  251  281  293
359  419  431  443  491  509  593  641  653  659
683  719  743  761  809  911  953 1013 1019 1031
1049 1103 1223 1229 1289 1409 1439 1451 1481 1499```

## AWK

```# syntax: GAWK -f SAFE_AND_SOPHIE_GERMAIN_PRIMES.AWK
BEGIN {
limit = 50
printf("The first %d Sophie Germain primes:\n",limit)
while (count < limit) {
if (is_prime(++i)) {
if (is_prime(i+i+1)) {
printf("%5d%1s",i,++count%10?"":"\n")
}
}
}
exit(0)
}
function is_prime(n,  d) {
d = 5
if (n < 2) { return(0) }
if (n % 2 == 0) { return(n == 2) }
if (n % 3 == 0) { return(n == 3) }
while (d*d <= n) {
if (n % d == 0) { return(0) }
d += 2
if (n % d == 0) { return(0) }
d += 4
}
return(1)
}
```
Output:
```The first 50 Sophie Germain primes:
2     3     5    11    23    29    41    53    83    89
113   131   173   179   191   233   239   251   281   293
359   419   431   443   491   509   593   641   653   659
683   719   743   761   809   911   953  1013  1019  1031
1049  1103  1223  1229  1289  1409  1439  1451  1481  1499
```

## Delphi

Works with: Delphi version 6.0

```function IsPrime(N: int64): boolean;
{Fast, optimised prime test}
var I,Stop: int64;
begin
if (N = 2) or (N=3) then Result:=true
else if (n <= 1) or ((n mod 2) = 0) or ((n mod 3) = 0) then Result:= false
else
begin
I:=5;
Stop:=Trunc(sqrt(N+0.0));
Result:=False;
while I<=Stop do
begin
if ((N mod I) = 0) or ((N mod (I + 2)) = 0) then exit;
Inc(I,6);
end;
Result:=True;
end;
end;

procedure SophieGermainPrimes(Memo: TMemo);
var I,Cnt: integer;
var S: string;
begin
Cnt:=0;
S:='';
for I:=0 to high(integer) do
if IsPrime(I) then
if IsPrime(2 * I + 1) then
begin
Inc(Cnt);
S:=S+Format('%5D',[I]);
if Cnt>=50 then break;
If (Cnt mod 5)=0 then S:=S+CRLF;
end;
end;
```
Output:
```    2    3    5   11   23
29   41   53   83   89
113  131  173  179  191
233  239  251  281  293
359  419  431  443  491
509  593  641  653  659
683  719  743  761  809
911  953 1013 1019 1031
1049 1103 1223 1229 1289
1409 1439 1451 1481 1499
Count = 50
Elapsed Time: 2.520 ms.

```

## Factor

Works with: Factor version 0.99 2022-04-03
```USING: lists lists.lazy math math.primes math.primes.lists prettyprint ;

50 lprimes [ 2 * 1 + prime? ] lfilter ltake [ . ] leach
```
Output:
```2
3
5
...
1451
1481
1499
```

## Fermat

```c:=1;
n:=3;
!!2;
while c<50 do
if Isprime(n) and Isprime(2*n+1) then
c:+;
!!n;
fi;
n:+2;
od;```

## BASIC

### FreeBASIC

```function isprime(n as integer) as boolean
if n < 2 then return false
if n < 4 then return true
if n mod 2 = 0 then return false
dim as uinteger i = 1
while i*i<=n
i+=2
if n mod i = 0 then return false
wend
return true
end function

function is_sg( n as integer ) as boolean
if not isprime(n) then return false
return isprime(2*n+1)
end function

dim as uinteger c = 1, i = 1
print "2  ";
while c<50
i+=2
if is_sg(i) then
print i;"  ";
c+=1
if c mod 10 = 0 then print
end if
wend```
Output:
```2  3  5  11  23  29  41  53  83  89
113  131  173  179  191  233  239  251  281  293
359  419  431  443  491  509  593  641  653  659
683  719  743  761  809  911  953  1013  1019  1031

1049  1103  1223  1229  1289  1409  1439  1451  1481  1499```

### GW-BASIC

```10 PRINT "2  ";
20 C = 1
30 N = 3
40 WHILE C < 51
50 P = N
60 GOSUB 170
70 IF Z = 0 THEN GOTO 140
80 P = 2 * N + 1
90 GOSUB 170
100 IF Z = 0 THEN GOTO 140
110 C = C + 1
120 PRINT N;"   ";
130 IF C MOD 10 = 0 THEN PRINT
140 N = N + 2
150 WEND
160 END
170 Z = 0
180 IF P < 2 THEN RETURN
190 Z = 1
200 IF P < 4 THEN RETURN
210 Z = 0
220 IF P MOD 2 = 0 THEN RETURN
230 I = 3
240 WHILE I*I<P
250 IF P MOD I = 0 THEN RETURN
260 I = I + 1
270 WEND
280 Z = 1
290 RETURN```

### BASIC256

```function isPrime(v)
if v < 2 then return False
if v mod 2 = 0 then return v = 2
if v mod 3 = 0 then return v = 3
d = 5
while d * d <= v
if v mod d = 0 then return False else d += 2
end while
return True
end function

function isSG(n)
if not isPrime(n) then return False
return isPrime(2*n+1)
end function

c = 1
i = 1
print "2  ";
while c < 50
i += 2
if isSG(i) then
print i; chr(9);
c += 1
if c mod 10 = 0 then print
end if
end while
end```

### PureBasic

```Procedure isPrime(v.i)
If     v <= 1    : ProcedureReturn #False
ElseIf v < 4     : ProcedureReturn #True
ElseIf v % 2 = 0 : ProcedureReturn #False
ElseIf v < 9     : ProcedureReturn #True
ElseIf v % 3 = 0 : ProcedureReturn #False
Else
Protected r = Round(Sqr(v), #PB_Round_Down)
Protected f = 5
While f <= r
If v % f = 0 Or v % (f + 2) = 0 :
ProcedureReturn #False
EndIf
f + 6
Wend
EndIf
ProcedureReturn #True
EndProcedure

Procedure isSG(n.i)
If Not isPrime(n) : ProcedureReturn #False : EndIf
ProcedureReturn isPrime(2*n+1)
EndProcedure

OpenConsole()
c.i = 1
i.i = 1
Print("2  ")
While c < 50
i + 2
If isSG(i):
Print(Str(i) + #TAB\$)
c + 1
If c % 10 = 0 : PrintN("") : EndIf
EndIf
Wend
Input()
CloseConsole()```

### Yabasic

```sub isPrime(v)
if v < 2 then return False : fi
if mod(v, 2) = 0 then return v = 2 : fi
if mod(v, 3) = 0 then return v = 3 : fi
d = 5
while d * d <= v
if mod(v, d) = 0 then return False else d = d + 2 : fi
wend
return True
end sub

sub isSG(n)
if not isPrime(n) then return False : fi
return isPrime(2*n+1)
end sub

c = 1
i = 1
print "2  ";
while c < 50
i = i + 2
if isSG(i) then
print i, "  ";
c = c + 1
if mod(c, 10) = 0 then print : fi
endif
wend
end```

## Go

Translation of: Wren
Library: Go-rcu
```package main

import (
"fmt"
"rcu"
)

func main() {
var sgp []int
p := 2
count := 0
for count < 50 {
if rcu.IsPrime(p) && rcu.IsPrime(2*p+1) {
sgp = append(sgp, p)
count++
}
if p != 2 {
p = p + 2
} else {
p = 3
}
}
fmt.Println("The first 50 Sophie Germain primes are:")
for i := 0; i < len(sgp); i++ {
fmt.Printf("%5s ", rcu.Commatize(sgp[i]))
if (i+1)%10 == 0 {
fmt.Println()
}
}
}
```
Output:
```The first 50 Sophie Germain primes are:
2     3     5    11    23    29    41    53    83    89
113   131   173   179   191   233   239   251   281   293
359   419   431   443   491   509   593   641   653   659
683   719   743   761   809   911   953 1,013 1,019 1,031
1,049 1,103 1,223 1,229 1,289 1,409 1,439 1,451 1,481 1,499
```

## J

```   5 10\$(#~ 1 2&p. e. ])p:i.1e5
2    3    5   11   23   29   41   53   83   89
113  131  173  179  191  233  239  251  281  293
359  419  431  443  491  509  593  641  653  659
683  719  743  761  809  911  953 1013 1019 1031
1049 1103 1223 1229 1289 1409 1439 1451 1481 1499
```

## jq

Works with: jq

Works with gojq, the Go implementation of jq

See e.g. Find_adjacent_primes_which_differ_by_a_square_integer#jq for suitable implementions of `is_prime/0` and `primes/0` as used here.

`limit(50; primes | select(2*. + 1|is_prime))`
Output:
```2
3
5
...
1451
1481
1499
```

## Julia

```using Primes

for (i, p) in enumerate(filter(x -> isprime(2x + 1), primes(1500)))
print(lpad(p, 5), i % 10 == 0 ? "\n" : "")
end
```
Output:
```    2    3    5   11   23   29   41   53   83   89
113  131  173  179  191  233  239  251  281  293
359  419  431  443  491  509  593  641  653  659
683  719  743  761  809  911  953 1013 1019 1031
1049 1103 1223 1229 1289 1409 1439 1451 1481 1499
```

## Mathematica / Wolfram Language

```nextSafe[n_] :=
NestWhile[NextPrime, n + 1, ! (PrimeQ[2 # + 1] && PrimeQ[#]) &]
Labeled[Grid[Partition[NestList[nextSafe, 2, 49], 10],
Alignment -> {Right,
Baseline}], "First 50 Sophie Germain primes:", Top]
```
Output:
```
First 50 Sophie Germain primes:

2    3    5   11   23   29   41   53   83   89
113  131  173  179  191  233  239  251  281  293
359  419  431  443  491  509  593  641  653  659
683  719  743  761  809  911  953 1013 1019 1031
1049 1103 1223 1229 1289 1409 1439 1451 1481 1499

```

## Maxima

```/* Function that generate the pairs below n */
sg_s_pairs(n):=block(
L:makelist([i,2*i+1],i,1,n),
L1:[],
for i from 1 thru length(L) do if map(primep,L[i])=[true,true] then push(L[i],L1),
reverse(L1))\$

/* Test case */
/* The first of the pairs is a Sophie Germain pair, first element of the pairs must be extracted */
map(first,sg_s_pairs(1500));
```
Output:
```[2,3,5,11,23,29,41,53,83,89,113,131,173,179,191,233,239,251,281,293,359,419,431,443,491,509,593,641,653,659,683,719,743,761,809,911,953,1013,1019,1031,1049,1103,1223,1229,1289,1409,1439,1451,1481,1499]
```

## Nim

```import std/strutils

func isPrime(n: Natural): bool =
if n < 2: return false
if (n and 1) == 0: return n == 2
if n mod 3 == 0: return n == 3
var k = 5
var delta = 2
while k * k <= n:
if n mod k == 0: return false
inc k, delta
delta = 6 - delta
result = true

iterator sophieGermainPrimes(): int =
var n = 2
while true:
if isPrime(n) and isPrime(2 * n + 1):
yield n
inc n

echo "First 50 Sophie Germain primes:"
var count = 0
for n in sophieGermainPrimes():
inc count
stdout.write align(\$n, 4)
stdout.write if count mod 10 == 0: '\n' else: ' '
if count == 50: break
```
Output:
```First 50 Sophie Germain primes:
2    3    5   11   23   29   41   53   83   89
113  131  173  179  191  233  239  251  281  293
359  419  431  443  491  509  593  641  653  659
683  719  743  761  809  911  953 1013 1019 1031
1049 1103 1223 1229 1289 1409 1439 1451 1481 1499
```

## PARI/GP

```issg(n)=if(isprime(n)&&isprime(1+2*n),1,0)
c = 0
n = 2
while(c<50,if(issg(n),print(n);c=c+1);n=n+1)```

## Perl

Library: ntheory
```#!/usr/bin/perl

use strict; # https://rosettacode.org/wiki/Safe_and_Sophie_Germain_primes
use warnings;
use ntheory qw( forprimes is_prime);

my @want;
forprimes { is_prime(2 * \$_ + 1) and (50 == push @want, \$_)
and print("@want\n" =~ s/.{65}\K /\n/gr) + exit } 2, 1e9;
```
Output:
```2 3 5 11 23 29 41 53 83 89 113 131 173 179 191 233 239 251 281 293
359 419 431 443 491 509 593 641 653 659 683 719 743 761 809 911 953
1013 1019 1031 1049 1103 1223 1229 1289 1409 1439 1451 1481 1499
```

## Phix

```with javascript_semantics
function sophie_germain(integer p)
return is_prime(2*p+1)
end function

sequence res = {}
integer n = 1
while length(res)<50 do
integer p = get_prime(n)
if sophie_germain(p) then res &= p end if
n += 1
end while
printf(1,"First 50: %s\n",{join(shorten(apply(res,sprint),"",5))})
```
Output:
```First 50: 2 3 5 11 23 ... 1409 1439 1451 1481 1499
```

## Python

```print("working...")
row = 0
limit = 1500
Sophie = []

def isPrime(n):
for i in range(2,int(n**0.5)+1):
if n%i==0:
return False
return True

for n in range(2,limit):
p = 2*n + 1
if isPrime(n) and isPrime(p):
Sophie.append(n)

print("Found ",end = "")
print(len(Sophie),end = "")
print(" Safe and Sophie primes.")

print(Sophie)
print("done...")
```
Output:
```working...
Found 50 Safe and Sophie primes.
[2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1439, 1451, 1481, 1499]
done...
```

## Quackery

`isprime` is defined at Primality by trial division#Quackery.

```  [ temp put [] 0
[ 1+
dup isprime until
dup 2 * 1+ isprime until
dup dip join
over size temp share = until ]
drop
temp release ]                 is sgprimes ( n --> [ )

50 sgprimes witheach [ echo sp ]```
Output:
`2 3 5 11 23 29 41 53 83 89 113 131 173 179 191 233 239 251 281 293 359 419 431 443 491 509 593 641 653 659 683 719 743 761 809 911 953 1013 1019 1031 1049 1103 1223 1229 1289 1409 1439 1451 1481 1499 `

## Raku

```put join "\n", (^∞ .grep: { .is-prime && (\$_*2+1).is-prime } )[^50].batch(10)».fmt: "%4d";
```
Output:
```   2    3    5   11   23   29   41   53   83   89
113  131  173  179  191  233  239  251  281  293
359  419  431  443  491  509  593  641  653  659
683  719  743  761  809  911  953 1013 1019 1031
1049 1103 1223 1229 1289 1409 1439 1451 1481 1499```

## Ring

```load "stdlib.ring"
see "working..." +nl
row = 0
limit = 1500
Sophie = []

for n = 1 to limit
p = 2*n + 1
if isprime(n) and isprime(p)
ok
next

see "Found " + len(Sophie) + " Safe and Sophie German primes."+nl

for n = 1 to len(Sophie)
row++
see "" + Sophie[n] + " "
if row % 10 = 0
see nl
ok
next

see "done..." + nl```
Output:
```working...
Found 50 Safe and Sophie primes.
2 3 5 11 23 29 41 53 83 89
113 131 173 179 191 233 239 251 281 293
359 419 431 443 491 509 593 641 653 659
683 719 743 761 809 911 953 1013 1019 1031
1049 1103 1223 1229 1289 1409 1439 1451 1481 1499
done...
```

## RPL

Works with: HP version 49g
```≪ DUP + 1 + ISPRIME?
≫ 'SOPHIE?' STO

≪ → function count
≪ { } 2
WHILE OVER SIZE count < REPEAT
IF DUP function EVAL THEN SWAP OVER + SWAP END
NEXTPRIME
END
DROP
≫ ≫ 'FIRSTSEQ' STO
```
```≪ SOPHIE? ≫ 50 FIRSTSEQ
```

{{out}

```1: {2 3 5 11 23 29 41 53 83 89 113 131 173 179 191 233 239 251 281 293 359 419 431 443 491 509 593 641 653 659 683 719 743 761 809 911 953 1013 1019 1031 1049 1103 1223 1229 1289 1409 1439 1451 1481 1499}
```

## Sidef

```^Inf -> lazy.grep{|p| all_prime(p, 2*p + 1) }.first(50).slices(10).each{
.join(', ').say
}
```
Output:
```2, 3, 5, 11, 23, 29, 41, 53, 83, 89
113, 131, 173, 179, 191, 233, 239, 251, 281, 293
359, 419, 431, 443, 491, 509, 593, 641, 653, 659
683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031
1049, 1103, 1223, 1229, 1289, 1409, 1439, 1451, 1481, 1499
```

## Wren

Library: Wren-math
Library: Wren-fmt
```import "./math" for Int
import "./fmt"  for Fmt

var sgp = []
var p = 2
var count = 0
while (count < 50) {
if (Int.isPrime(p) && Int.isPrime(2*p+1)) {
count = count + 1
}
p = (p != 2) ? p + 2 : 3
}
System.print("The first 50 Sophie Germain primes are:")
Fmt.tprint("\$,5d", sgp, 10)
```
Output:
```The first 50 Sophie Germain primes are:
2     3     5    11    23    29    41    53    83    89
113   131   173   179   191   233   239   251   281   293
359   419   431   443   491   509   593   641   653   659
683   719   743   761   809   911   953 1,013 1,019 1,031
1,049 1,103 1,223 1,229 1,289 1,409 1,439 1,451 1,481 1,499
```

## XPL0

```func IsPrime(N);        \Return 'true' if N is a prime number
int  N, I;
[for I:= 2 to sqrt(N) do
if rem(N/I) = 0 then return false;
return true;
];

int N, Count;
[N:= 2;
Count:= 0;
repeat  if IsPrime(N) & IsPrime(2*N+1) then
[IntOut(0, N);  ChOut(0, 9\tab\);
Count:= Count+1;
if rem(Count/10) = 0 then CrLf(0);
];
N:= N+1;
until   Count >= 50;
]```
Output:
```2       3       5       11      23      29      41      53      83      89
113     131     173     179     191     233     239     251     281     293
359     419     431     443     491     509     593     641     653     659
683     719     743     761     809     911     953     1013    1019    1031
1049    1103    1223    1229    1289    1409    1439    1451    1481    1499
```