Given a positive integer, return the product of its positive divisors.

Product of divisors is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

Show the result for the first 50 positive integers.



11l

Translation of: Python
F product_of_divisors(n)
   V ans = 1
   V i = 1
   V j = 1
   L i * i <= n
      I 0 == n % i
         ans *= i
         j = n I/ i
         I j != i
            ans *= j
      i++
   R ans

print((1..50).map(n -> product_of_divisors(n)))
Output:
[1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, 8000, 441, 484, 23, 331776, 125, 676, 729, 21952, 29, 810000, 31, 32768, 1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, 3111696, 43, 85184, 91125, 2116, 47, 254803968, 343, 125000]

Action!

INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit

PROC ProdOfDivisors(INT n REAL POINTER prod)
  INT i,j
  REAL r

  IntToReal(1,prod)
  i=0
  WHILE i*i<=n
  DO
    IF n MOD i=0 THEN
      IntToReal(i,r)
      RealMult(prod,r,prod)
      j=n/i
      IF j#i THEN
        IntToReal(j,r)
        RealMult(prod,r,prod)
      FI
    FI
    i==+1
  OD
RETURN

PROC Main()
  BYTE i
  REAL prod

  Put(125) PutE() ;clear the screen
  FOR i=1 TO 50
  DO
    ProdOfDivisors(i,prod)
    PrintR(prod) Put(32)
  OD
RETURN
Output:

Screenshot from Atari 8-bit computer

1 2 3 8 5 36 7 64 27 100 11 1728 13 196 225 1024 17 5832 19 8000 441 484 23
331776 125 676 729 21952 29 810000 31 32768 1089 1156 1225 10077696 37 1444
1521 2560000 41 3111696 43 85184 91125 2116 47 254803968 343 125000

ALGOL 68

Translation of: Fortran
BEGIN # product of divisors - transaltion of the Fortran sample #
    [ 1 : 50 ]INT divis;
    FOR i TO UPB divis DO divis[ i ] := 1 OD;
    FOR i TO UPB divis DO
        FOR j FROM i BY i TO UPB divis DO
            divis[ j ] *:= i
        OD
    OD;
    FOR i TO UPB divis DO
        print( ( whole( divis[ i ], -10 ) ) );
        IF i MOD 5 = 0 THEN print( ( newline ) ) FI
    OD
END
Output:
         1         2         3         8         5
        36         7        64        27       100
        11      1728        13       196       225
      1024        17      5832        19      8000
       441       484        23    331776       125
       676       729     21952        29    810000
        31     32768      1089      1156      1225
  10077696        37      1444      1521   2560000
        41   3111696        43     85184     91125
      2116        47 254803968       343    125000
Translation of: C++
BEGIN # find the product of the divisors of the first 100 positive integers #
    # calculates the number of divisors of v                                #
    PROC divisor count = ( INT v )INT:
         BEGIN
            INT total := 1, n := v;
            # Deal with powers of 2 first #
            WHILE NOT ODD n DO
                total +:= 1;
                n  OVERAB 2
            OD;
            # Odd prime factors up to the square root #
            INT p := 3;
            WHILE ( p * p ) <= n DO
                INT count := 1;
                WHILE n MOD p = 0 DO
                    count +:= 1;
                    n  OVERAB p
                OD;
                p +:= 2;
                total *:= count
            OD;
            # If n > 1 then it's prime #
            IF n > 1 THEN total *:= 2 FI;
            total
         END # divisor count #;
    # calculates the product of the divisors of v                            #
    PROC divisor product = ( INT v )LONG INT:
         BEGIN
            INT      count    = divisor count( v );
            LONG INT product := v ^ ( count OVER 2 );
            IF ODD count THEN product *:= ENTIER sqrt( v ) FI;
            product
         END # divisor product # ;
    BEGIN
        INT limit = 50;
        print( ( "Product of divisors for the first ", whole( limit, 0 ), " positive integers:", newline ) );
        FOR n TO limit DO
            print( ( whole( divisor product( n ), -10 ) ) );
            IF n MOD 5 = 0 THEN print( ( newline ) ) FI
        OD
    END
END
Output:
Product of divisors for the first 50 positive integers:
         1         2         3         8         5
        36         7        64        27       100
        11      1728        13       196       225
      1024        17      5832        19      8000
       441       484        23    331776       125
       676       729     21952        29    810000
        31     32768      1089      1156      1225
  10077696        37      1444      1521   2560000
        41   3111696        43     85184     91125
      2116        47 254803968       343    125000

ALGOL W

Translation of: Fortran
begin % product of divisors - transaltion of the Fortran sample %
    integer array divis ( 1 :: 50 );
    for i := 1 until 50 do divis( i ) := 1;
    for i := 1 until 50 do begin
        for j := i step i until 50 do divis( j ) := divis( j ) * i
    end for_i;
    for i := 1 until 50 do begin
        writeon( i_w := 10, s_w := 0, divis( i ) );
        if i rem 5 = 0 then write()
    end for_i
end.
Output:
         1         2         3         8         5
        36         7        64        27       100
        11      1728        13       196       225
      1024        17      5832        19      8000
       441       484        23    331776       125
       676       729     21952        29    810000
        31     32768      1089      1156      1225
  10077696        37      1444      1521   2560000
        41   3111696        43     85184     91125
      2116        47 254803968       343    125000
Translation of: C++
begin % find the product of the divisors of the first 100 positive integers %
    % calculates the number of divisors of v                                %
    integer procedure divisor_count( integer value v ) ; begin
        integer total, n, p;
        total := 1; n := v;
        % Deal with powers of 2 first %
        while not odd( n ) do begin
            total := total + 1;
            n     := n div 2
        end while_not_odd_n ;
        % Odd prime factors up to the square root %
        p := 3;
        while ( p * p ) <= n do begin
            integer count;
            count := 1;
            while n rem p = 0 do begin
                count := count + 1;
                n     := n div p
            end while_n_rem_p_eq_0 ;
            p     := p + 2;
            total := total * count
        end while_p_x_p_le_n ;
        % If n > 1 then it's prime %
        if n > 1 then total := total * 2;
        total
    end divisor_count ;
    % calculates the product of the divisors of v                            %
    integer procedure divisor_product( integer value v ) ; begin
        integer count, product;
        count := divisor_count( v );
        product := 1;
        for i := 1 until count div 2 do product := product * v;
        if odd( count ) then product := product * entier( sqrt( v ) );
        product
    end divisor_product ;
    begin
        integer limit;
        limit := 50;
        write( i_w := 1, s_w := 0, "Product of divisors for the first ", limit, " positive integers:" );
        for n := 1 until limit do begin
            if n rem 5 = 1 then write();
            writeon( i_w := 10, s_w := 1, divisor_product( n ) )
        end for_n
    end
end.
Output:
Product of divisors for the first 50 positive integers:
         1          2          3          8          5
        36          7         64         27        100
        11       1728         13        196        225
      1024         17       5832         19       8000
       441        484         23     331776        125
       676        729      21952         29     810000
        31      32768       1089       1156       1225
  10077696         37       1444       1521    2560000
        41    3111696         43      85184      91125
      2116         47  254803968        343     125000

APL

divprod  ×/(0=⍳|⊢)
10 5  divprod¨ 50
Output:
       1       2         3      8       5
      36       7        64     27     100
      11    1728        13    196     225
    1024      17      5832     19    8000
     441     484        23 331776     125
     676     729     21952     29  810000
      31   32768      1089   1156    1225
10077696      37      1444   1521 2560000
      41 3111696        43  85184   91125
    2116      47 254803968    343  125000

Arturo

loop split.every:5 to [:string] map 1..50 => [product factors &] 'line [
    print map line 'i -> pad i 10
]
Output:
         1          2          3          8          5 
        36          7         64         27        100 
        11       1728         13        196        225 
      1024         17       5832         19       8000 
       441        484         23     331776        125 
       676        729      21952         29     810000 
        31      32768       1089       1156       1225 
  10077696         37       1444       1521    2560000 
        41    3111696         43      85184      91125 
      2116         47  254803968        343     125000

AWK

# syntax: GAWK -f PRODUCT_OF_DIVISORS.AWK
# converted from Go
BEGIN {
    limit = 50
    printf("The products of positive divisors for the first %d positive integers are:\n",limit)
    for (i=1; i<=limit; i++) {
      printf("%12d ",product_divisors(i))
      if (i % 10 == 0) {
        printf("\n")
      }
    }
    exit(0)
}
function product_divisors(n,  ans,i,j,k) {
    ans = 1
    i = 1
    k = (n % 2 == 0) ? 1 : 2
    while (i*i <= n) {
      if (n % i == 0) {
        ans *= i
        j = n / i
        if (j != i) {
          ans *= j
        }
      }
      i += k
    }
    return(ans)
}
Output:
The products of positive divisors for the first 50 positive integers are:
           1            2            3            8            5           36            7           64           27          100
          11         1728           13          196          225         1024           17         5832           19         8000
         441          484           23       331776          125          676          729        21952           29       810000
          31        32768         1089         1156         1225     10077696           37         1444         1521      2560000
          41      3111696           43        85184        91125         2116           47    254803968          343       125000

BASIC

10 N = 50
20 DIM D(N)
30 FOR I=1 TO N: D(I)=1: NEXT
40 FOR I=2 TO N
50 FOR J=I TO N STEP I
60 D(J) = D(J)*I
70 NEXT J
80 NEXT I
90 FOR I=1 TO N: PRINT D(I),: NEXT
Output:
 1             2             3             8             5
 36            7             64            27            100
 11            1728          13            196           225
 1024          17            5832          19            8000
 441           484           23            331776        125
 676           729           21952         29            810000
 31            32768         1089          1156          1225
 1.00777E+07   37            1444          1521          2.56E+06
 41            3.1117E+06    43            85184         91125
 2116          47            2.54804E+08   343           125000


BASIC256

for n = 1 to 50
    p = n
    for i = 2 to n/2
        if n mod i = 0 then p *= i
    next i
    if (n-1 mod 5) = 0 then print
    print p; chr(9);
next n
end

PureBasic

OpenConsole()
For n.i = 1 To 50
  p = n
  For i.i = 2 To n/2
    If n % i = 0 : p * i : EndIf
  Next i
  ;If (n-1) % 5 = 0 : PrintN("")  : EndIf
  Print(Str(p) + #TAB$)
Next n
Input()
CloseConsole()

QBasic

Works with: QBasic version 1.1
Works with: QuickBasic version 4.5
FOR n = 1 TO 50
    p = n
    FOR i = 2 TO n / 2
        IF n MOD i = 0 THEN p = p * i
    NEXT i
    IF (n - 1) MOD 5 = 0 THEN PRINT
    PRINT USING "###########"; p;
NEXT n
END

True BASIC

FOR n = 1 TO 50
    LET p = n
    FOR i = 2 TO n/2
        IF MOD(n, i) = 0 THEN LET p = p * i
    NEXT i
    IF MOD(n-1, 5) = 0 THEN PRINT
    PRINT p,
NEXT n
END

Yabasic

for n = 1 to 50
    p = n
    for i = 2 to n/2
        if mod(n, i) = 0 then p = p * i : fi
    next i
    if mod(n-1, 5) = 0 then print : fi
    print p using "###########";
next n
end

BQN

((×´⊢/˜ 0=|˜ )1+↕)¨51+↕50
Output:
┌─                                           
╵        1       2         3      8       5  
        36       7        64     27     100  
        11    1728        13    196     225  
      1024      17      5832     19    8000  
       441     484        23 331776     125  
       676     729     21952     29  810000  
        31   32768      1089   1156    1225  
  10077696      37      1444   1521 2560000  
        41 3111696        43  85184   91125  
      2116      47 254803968    343  125000  
                                            ┘

C

Translation of: C++
#include <math.h>
#include <stdio.h>

// See https://en.wikipedia.org/wiki/Divisor_function
unsigned int divisor_count(unsigned int n) {
    unsigned int total = 1;
    unsigned int p;

    // Deal with powers of 2 first
    for (; (n & 1) == 0; n >>= 1) {
        ++total;
    }
    // Odd prime factors up to the square root
    for (p = 3; p * p <= n; p += 2) {
        unsigned int count = 1;
        for (; n % p == 0; n /= p) {
            ++count;
        }
        total *= count;
    }
    // If n > 1 then it's prime
    if (n > 1) {
        total *= 2;
    }
    return total;
}

// See https://mathworld.wolfram.com/DivisorProduct.html
unsigned int divisor_product(unsigned int n) {
    return pow(n, divisor_count(n) / 2.0);
}

int main() {
    const unsigned int limit = 50;
    unsigned int n;

    printf("Product of divisors for the first %d positive integers:\n", limit);
    for (n = 1; n <= limit; ++n) {
        printf("%11d", divisor_product(n));
        if (n % 5 == 0) {
            printf("\n");
        }
    }

    return 0;
}
Output:
Product of divisors for the first 50 positive integers:
          1          2          3          8          5
         36          7         64         27        100
         11       1728         13        196        225
       1024         17       5832         19       8000
        441        484         23     331776        125
        676        729      21952         29     810000
         31      32768       1089       1156       1225
   10077696         37       1444       1521    2560000
         41    3111696         43      85184      91125
       2116         47  254803968        343     125000

C++

#include <cmath>
#include <iomanip>
#include <iostream>

// See https://en.wikipedia.org/wiki/Divisor_function
unsigned int divisor_count(unsigned int n) {
    unsigned int total = 1;
    // Deal with powers of 2 first
    for (; (n & 1) == 0; n >>= 1)
        ++total;
    // Odd prime factors up to the square root
    for (unsigned int p = 3; p * p <= n; p += 2) {
        unsigned int count = 1;
        for (; n % p == 0; n /= p)
            ++count;
        total *= count;
    }
    // If n > 1 then it's prime
    if (n > 1)
        total *= 2;
    return total;
}

// See https://mathworld.wolfram.com/DivisorProduct.html
unsigned int divisor_product(unsigned int n) {
    return static_cast<unsigned int>(std::pow(n, divisor_count(n)/2.0));
}

int main() {
    const unsigned int limit = 50;
    std::cout << "Product of divisors for the first " << limit << " positive integers:\n";
    for (unsigned int n = 1; n <= limit; ++n) {
        std::cout << std::setw(11) << divisor_product(n);
        if (n % 5 == 0)
            std::cout << '\n';
    }
}
Output:
Product of divisors for the first 50 positive integers:
          1          2          3          8          5
         36          7         64         27        100
         11       1728         13        196        225
       1024         17       5832         19       8000
        441        484         23     331776        125
        676        729      21952         29     810000
         31      32768       1089       1156       1225
   10077696         37       1444       1521    2560000
         41    3111696         43      85184      91125
       2116         47  254803968        343     125000

Common Lisp

(format t "~{~a ~}~%"
        (loop for a from 1 to 100 collect
              (loop with z = 1 for b from 1 to a
                    when (zerop (rem a b)) do (setf z (* z b))
                    finally (return z))))
Output:
1 2 3 8 5 36 7 64 27 100 11 1728 13 196 225 1024 17 5832 19 8000 441 484 23 331776 125 676 729 21952 29 810000 31 32768 1089 1156 1225 10077696 37 1444 1521 2560000 41 3111696 43 85184 91125 2116 47 254803968 343 125000 2601 140608 53 8503056 3025 9834496 3249 3364 59 46656000000 61 3844 250047 2097152 4225 18974736 67 314432 4761 24010000 71 139314069504 73 5476 421875 438976 5929 37015056 79 3276800000 59049 6724 83 351298031616 7225 7396 7569 59969536 89 531441000000 8281 778688 8649 8836 9025 782757789696 97 941192 970299 1000000000 

Clojure

Translation of: Raku
(require '[clojure.string :refer [join]])
(require '[clojure.pprint :refer [cl-format]])

(defn divisors [n] (filter #(zero? (rem n %)) (range 1 (inc n))))

(defn display-results [label per-line width nums]
   (doall (map println (cons (str "\n" label ":") (list 
   (join "\n" (map #(join " " %)
                       (partition-all per-line
                                      (map #(cl-format nil "~v:d" width %) nums)))))))))

(display-results "Tau function - first 100" 20 3
                 (take 100 (map (comp count divisors) (drop 1 (range)))))

(display-results "Tau numbers – first 100" 10 5
                 (take 100 (filter #(zero? (rem % (count (divisors %)))) (drop 1 (range)))))

(display-results "Divisor sums – first 100" 20 4
                 (take 100 (map #(reduce + (divisors %)) (drop 1 (range)))))

(display-results "Divisor products – first 100" 5 16
                 (take 100 (map #(reduce * (divisors %)) (drop 1 (range)))))
Output:

Tau function - first 100:

 1   2   2   3   2   4   2   4   3   4   2   6   2   4   4   5   2   6   2   6
 4   4   2   8   3   4   4   6   2   8   2   6   4   4   4   9   2   4   4   8
 2   8   2   6   6   4   2  10   3   6   4   6   2   8   4   8   4   4   2  12
 2   4   6   7   4   8   2   6   4   8   2  12   2   4   6   6   4   8   2  10
 5   4   2  12   4   4   4   8   2  12   4   6   4   4   4  12   2   6   6   9

Tau numbers – first 100:

   1     2     8     9    12    18    24    36    40    56
  60    72    80    84    88    96   104   108   128   132
 136   152   156   180   184   204   225   228   232   240
 248   252   276   288   296   328   344   348   360   372
 376   384   396   424   441   444   448   450   468   472
 480   488   492   504   516   536   560   564   568   584
 600   612   625   632   636   640   664   672   684   708
 712   720   732   776   792   804   808   824   828   852
 856   864   872   876   880   882   896   904   936   948
 972   996 1,016 1,040 1,044 1,048 1,056 1,068 1,089 1,096

Divisor sums – first 100:

  1    3    4    7    6   12    8   15   13   18   12   28   14   24   24   31   18   39   20   42
 32   36   24   60   31   42   40   56   30   72   32   63   48   54   48   91   38   60   56   90
 42   96   44   84   78   72   48  124   57   93   72   98   54  120   72  120   80   90   60  168
 62   96  104  127   84  144   68  126   96  144   72  195   74  114  124  140   96  168   80  186
121  126   84  224  108  132  120  180   90  234  112  168  128  144  120  252   98  171  156  217

Divisor products – first 100:

              1                2                3                8                5
             36                7               64               27              100
             11            1,728               13              196              225
          1,024               17            5,832               19            8,000
            441              484               23          331,776              125
            676              729           21,952               29          810,000
             31           32,768            1,089            1,156            1,225
     10,077,696               37            1,444            1,521        2,560,000
             41        3,111,696               43           85,184           91,125
          2,116               47      254,803,968              343          125,000
          2,601          140,608               53        8,503,056            3,025
      9,834,496            3,249            3,364               59   46,656,000,000
             61            3,844          250,047        2,097,152            4,225
     18,974,736               67          314,432            4,761       24,010,000
             71  139,314,069,504               73            5,476          421,875
        438,976            5,929       37,015,056               79    3,276,800,000
         59,049            6,724               83  351,298,031,616            7,225
          7,396            7,569       59,969,536               89  531,441,000,000
          8,281          778,688            8,649            8,836            9,025
782,757,789,696               97          941,192          970,299    1,000,000,000

COBOL

       IDENTIFICATION DIVISION.
       PROGRAM-ID.  PRODUCT-OF-DIVISORS.

       DATA DIVISION.
       WORKING-STORAGE SECTION.
       01 VARIABLES.
          03 DIVISOR-PRODUCTS    PIC 9(9) OCCURS 50 TIMES.
          03 NUM                 PIC 999.
          03 MUL                 PIC 999.
      
       01 OUTPUT-FORMAT.
          03 NUM-OUT             PIC Z(9)9.
          03 LINE-PTR            PIC 99 VALUE 1.
          03 OUT-LINE            PIC X(50) VALUE SPACES.

       PROCEDURE DIVISION.
       BEGIN.
           PERFORM INIT VARYING NUM FROM 1 BY 1
               UNTIL NUM IS GREATER THAN 50.
           PERFORM CALCULATE-MULTIPLES VARYING MUL FROM 1 BY 1
               UNTIL MUL IS GREATER THAN 50.
           PERFORM OUTPUT-NUM VARYING NUM FROM 1 BY 1
               UNTIL NUM IS GREATER THAN 50.
           STOP RUN.

       INIT.
           MOVE 1 TO DIVISOR-PRODUCTS(NUM).
       
       CALCULATE-MULTIPLES.
           PERFORM MULTIPLY-NUM VARYING NUM FROM MUL BY MUL
               UNTIL NUM IS GREATER THAN 50.
 
       MULTIPLY-NUM.
           MULTIPLY MUL BY DIVISOR-PRODUCTS(NUM).

       OUTPUT-NUM.
           MOVE DIVISOR-PRODUCTS(NUM) TO NUM-OUT.
           STRING NUM-OUT DELIMITED BY SIZE INTO OUT-LINE
               WITH POINTER LINE-PTR.
           IF LINE-PTR IS EQUAL TO 51,
               DISPLAY OUT-LINE,
               MOVE SPACES TO OUT-LINE,
               MOVE 1 TO LINE-PTR.
Output:
         1         2         3         8         5
        36         7        64        27       100
        11      1728        13       196       225
      1024        17      5832        19      8000
       441       484        23    331776       125
       676       729     21952        29    810000
        31     32768      1089      1156      1225
  10077696        37      1444      1521   2560000
        41   3111696        43     85184     91125
      2116        47 254803968       343    125000

Cowgol

include "cowgol.coh";

sub divprod(n: uint32): (prod: uint32) is
    prod := 1;
    var d := n;
    while d > 1 loop
        if n % d == 0 then
            prod := prod * d;
        end if;
        d := d - 1;
    end loop;
end sub;

var n: uint32 := 1;
while n <= 50 loop
    var dp := divprod(n);
    print_i32(dp);
    print_char('\t');
    if dp < 10000000 then
        print_char('\t');
    end if;
    if n % 5 == 0 then
        print_nl();
    end if;
    n := n + 1;
end loop;
Output:
1               2               3               8               5
36              7               64              27              100
11              1728            13              196             225
1024            17              5832            19              8000
441             484             23              331776          125
676             729             21952           29              810000
31              32768           1089            1156            1225
10077696        37              1444            1521            2560000
41              3111696         43              85184           91125
2116            47              254803968       343             125000

D

Translation of: C++
import std.math;
import std.stdio;

// See https://en.wikipedia.org/wiki/Divisor_function
uint divisorCount(uint n) {
    uint total = 1;
    // Deal with powers of 2 first
    for (; (n & 1) == 0; n >>= 1) {
        total++;
    }
    // Odd prime factors up to the square root
    for (uint p = 3; p * p <= n; p += 2) {
        uint count = 1;
        for (; n % p == 0; n /= p) {
            count++;
        }
        total *= count;
    }
    // If n > 1 then it's prime
    if (n > 1) {
        total *= 2;
    }
    return total;
}

uint divisorProduct(uint n) {
    return cast(uint) pow(n, divisorCount(n) / 2.0);
}

void main() {
    immutable limit = 50;
    writeln("Product of divisors for the first ", limit, "positive integers:");
    for (uint n = 1; n <= limit; n++) {
        writef("%11d", divisorProduct(n));
        if (n % 5 == 0) {
            writeln;
        }
    }
}
Output:
Product of divisors for the first 50positive integers:
          1          2          3          8          5
         36          7         64         27        100
         11       1728         13        196        225
       1024         17       5832         19       8000
        441        484         23     331776        124
        676        729      21952         29     810000
         31      32768       1089       1156       1225
   10077696         37       1444       1521    2560000
         41    3111696         43      85184      91125
       2116         47  254803968        343     125000

Delphi

Works with: Delphi version 6.0

This is anohter example of building hierarchial libraries of subroutines. Rather than pack all the code inside a single block of code, this code is broken into subroutines that can be reused, saving time designing and test code.

{These subroutines would normally be in a library, but they are shown here for clarity.}


function GetAllProperDivisors(N: Integer;var IA: TIntegerDynArray): integer;
{Make a list of all the "proper dividers" for N}
{Proper dividers are the of numbers the divide evenly into N}
var I: integer;
begin
SetLength(IA,0);
for I:=1 to N-1 do
 if (N mod I)=0 then
	begin
	SetLength(IA,Length(IA)+1);
	IA[High(IA)]:=I;
	end;
Result:=Length(IA);
end;


function GetAllDivisors(N: Integer;var IA: TIntegerDynArray): integer;
{Make a list of all the "proper dividers" for N, Plus N itself}
begin
Result:=GetAllProperDivisors(N,IA)+1;
SetLength(IA,Length(IA)+1);
IA[High(IA)]:=N;
end;



procedure ProductOfDivisors(Memo: TMemo);
var I,J,P: integer;
var IA: TIntegerDynArray;
var S: string;
begin
S:='';
for I:=1 to 50 do
	begin
	GetAllDivisors(I,IA);
	P:=1;
	for J:=0 to High(IA) do P:=P * IA[J];
	S:=S+Format('%12D',[P]);
	If (I mod 5)=0 then S:=S+CRLF;
	 end;
Memo.Lines.Add(S);
end;
Output:
           1           2           3           8           5
          36           7          64          27         100
          11        1728          13         196         225
        1024          17        5832          19        8000
         441         484          23      331776         125
         676         729       21952          29      810000
          31       32768        1089        1156        1225
    10077696          37        1444        1521     2560000
          41     3111696          43       85184       91125
        2116          47   254803968         343      125000
Elapsed Time: 1.418 ms.


EasyLang

Translation of: 11l
func prodivs n .
   ans = 1
   i = 1
   j = 1
   while i * i <= n
      if n mod i = 0
         ans *= i
         j = n div i
         if j <> i
            ans *= j
         .
      .
      i += 1
   .
   return ans
.
for i to 50
   write prodivs i & " "
.
Output:
1 2 3 8 5 36 7 64 27 100 11 1728 13 196 225 1024 17 5832 19 8000 441 484 23 331776 125 676 729 21952 29 810000 31 32768 1089 1156 1225 10077696 37 1444 1521 2560000 41 3111696 43 85184 91125 2116 47 254803968 343 125000 

Factor

Works with: Factor version 0.99 2020-08-14
USING: grouping io math.primes.factors math.ranges prettyprint
sequences ;

"Product of divisors for the first 50 positive integers:" print
50 [1,b] [ divisors product ] map 5 group simple-table.
Output:
Product of divisors for the first 50 positive integers:
1        2       3         8      5
36       7       64        27     100
11       1728    13        196    225
1024     17      5832      19     8000
441      484     23        331776 125
676      729     21952     29     810000
31       32768   1089      1156   1225
10077696 37      1444      1521   2560000
41       3111696 43        85184  91125
2116     47      254803968 343    125000

Fortran

       program divprod
       implicit none
       integer divis(50), i, j
       do 10 i=1, 50
 10        divis(i) = 1
       do 20 i=1, 50
           do 20 j=i, 50, i
 20            divis(j) = divis(j)*i
       do 30 i=1, 50
           write (*,'(I10)',advance='no') divis(i)
 30        if (i/5 .ne. (i-1)/5) write (*,*)            
       end program
Output:
         1         2         3         8         5
        36         7        64        27       100
        11      1728        13       196       225
      1024        17      5832        19      8000
       441       484        23    331776       125
       676       729     21952        29    810000
        31     32768      1089      1156      1225
  10077696        37      1444      1521   2560000
        41   3111696        43     85184     91125
      2116        47 254803968       343    125000

FreeBASIC

dim p as ulongint
for n as uinteger = 1 to 50
    p = n
    for i as uinteger = 2 to n/2
        if n mod i = 0 then p *= i
    next i
    print p,
next n
Output:
1             2             3             8             5             36
7             64            27            100           11            1728
13            196           225           1024          17            5832
19            8000          441           484           23            331776
125           676           729           21952         29            810000
31            32768         1089          1156          1225          10077696
37            1444          1521          2560000       41            3111696
43            85184         91125         2116          47            254803968

Go

package main

import "fmt"

func prodDivisors(n int) int {
    prod := 1
    i := 1
    k := 2
    if n%2 == 0 {
        k = 1
    }
    for i*i <= n {
        if n%i == 0 {
            prod *= i
            j := n / i
            if j != i {
                prod *= j
            }
        }
        i += k
    }
    return prod
}

func main() {
    fmt.Println("The products of positive divisors for the first 50 positive integers are:")
    for i := 1; i <= 50; i++ {
        fmt.Printf("%9d  ", prodDivisors(i))
        if i%5 == 0 {
            fmt.Println()
        }
    }
}
Output:
The products of positive divisors for the first 50 positive integers are:
        1          2          3          8          5  
       36          7         64         27        100  
       11       1728         13        196        225  
     1024         17       5832         19       8000  
      441        484         23     331776        125  
      676        729      21952         29     810000  
       31      32768       1089       1156       1225  
 10077696         37       1444       1521    2560000  
       41    3111696         43      85184      91125  
     2116         47  254803968        343     125000  

GW-BASIC

10 FOR N = 1 TO 50
20 P# = N
30 FOR I = 2 TO INT(N/2)
40 IF N MOD I = 0 THEN P# = P# * I
50 NEXT I
60 PRINT P#,
70 NEXT N
Output:
 1             2             3             8             5             36            7             64            27            100           11
 1728          13            196           225           1024          17            5832          19                8000          441           484
 23            331776        125           676           729           21952         29            810000        31            32768         1089
 1156          1225          10077696      37                1444          1521          2560000       41            3111696       43            85184
 91125         2116          47            254803968     343           125000

Haskell

import Data.List.Split (chunksOf)

------------------------- DIVISORS -----------------------

divisors :: Integral a => a -> [a]
divisors n =
  ((<>) <*> (rest . reverse . fmap (quot n))) $
    filter ((0 ==) . rem n) [1 .. root]
  where
    root = (floor . sqrt . fromIntegral) n
    rest
      | n == root * root = tail
      | otherwise = id

-------------- SUMS AND PRODUCTS OF DIVISORS -------------

main :: IO ()
main =
  mapM_
    putStrLn
    [ "Sums of divisors of [1..100]:",
      test sum,
      "Products of divisors of [1..100]:",
      test product
    ]

test :: (Show a, Integral a) => ([a] -> a) -> String
test f =
  let xs = show . f . divisors <$> [1 .. 100]
      w = maximum $ length <$> xs
   in unlines $
        unwords
          <$> fmap
            (fmap (justifyRight w ' '))
            (chunksOf 5 xs)

justifyRight :: Int -> Char -> String -> String
justifyRight n c = (drop . length) <*> (replicate n c <>)
Output:
Sums of divisors of [1..100]:
  1   3   4   7   6
 12   8  15  13  18
 12  28  14  24  24
 31  18  39  20  42
 32  36  24  60  31
 42  40  56  30  72
 32  63  48  54  48
 91  38  60  56  90
 42  96  44  84  78
 72  48 124  57  93
 72  98  54 120  72
120  80  90  60 168
 62  96 104 127  84
144  68 126  96 144
 72 195  74 114 124
140  96 168  80 186
121 126  84 224 108
132 120 180  90 234
112 168 128 144 120
252  98 171 156 217

Products of divisors of [1..100]:
           1            2            3            8            5
          36            7           64           27          100
          11         1728           13          196          225
        1024           17         5832           19         8000
         441          484           23       331776          125
         676          729        21952           29       810000
          31        32768         1089         1156         1225
    10077696           37         1444         1521      2560000
          41      3111696           43        85184        91125
        2116           47    254803968          343       125000
        2601       140608           53      8503056         3025
     9834496         3249         3364           59  46656000000
          61         3844       250047      2097152         4225
    18974736           67       314432         4761     24010000
          71 139314069504           73         5476       421875
      438976         5929     37015056           79   3276800000
       59049         6724           83 351298031616         7225
        7396         7569     59969536           89 531441000000
        8281       778688         8649         8836         9025
782757789696           97       941192       970299   1000000000

J

   {{ */ */@>,{ (^ i.@>:)&.>/ __ q: y }}@>:i.5 10x
  1       2    3      8     5       36   7        64   27     100
 11    1728   13    196   225     1024  17      5832   19    8000
441     484   23 331776   125      676 729     21952   29  810000
 31   32768 1089   1156  1225 10077696  37      1444 1521 2560000
 41 3111696   43  85184 91125     2116  47 254803968  343  125000

Java

Translation of: C++
public class ProductOfDivisors {
    private static long divisorCount(long n) {
        long total = 1;
        // Deal with powers of 2 first
        for (; (n & 1) == 0; n >>= 1) {
            ++total;
        }
        // Odd prime factors up to the square root
        for (long p = 3; p * p <= n; p += 2) {
            long count = 1;
            for (; n % p == 0; n /= p) {
                ++count;
            }
            total *= count;
        }
        // If n > 1 then it's prime
        if (n > 1) {
            total *= 2;
        }
        return total;
    }

    private static long divisorProduct(long n) {
        return (long) Math.pow(n, divisorCount(n) / 2.0);
    }

    public static void main(String[] args) {
        final long limit = 50;
        System.out.printf("Product of divisors for the first %d positive integers:%n", limit);
        for (long n = 1; n <= limit; n++) {
            System.out.printf("%11d", divisorProduct(n));
            if (n % 5 == 0) {
                System.out.println();
            }
        }
    }
}
Output:
Product of divisors for the first 50 positive integers:
          1          2          3          8          5
         36          7         64         27        100
         11       1728         13        196        225
       1024         17       5832         19       8000
        441        484         23     331776        125
        676        729      21952         29     810000
         31      32768       1089       1156       1225
   10077696         37       1444       1521    2560000
         41    3111696         43      85184      91125
       2116         47  254803968        343     125000

jq

Works with: jq

Works with gojq, the Go implementation of jq

gojq should be used if integer precision is to be guaranteed.

Since a `divisors` function is more likely to be generally useful than a "product of divisors" function, this entry implements the latter in terms of the former, without any appreciable cost because a streaming approach is used.

# divisors as an unsorted stream
def divisors:
  if . == 1 then 1
  else . as $n
  | label $out
  | range(1; $n) as $i
  | ($i * $i) as $i2
  | if $i2 > $n then break $out
    else if $i2 == $n
         then $i
         elif ($n % $i) == 0
         then $i, ($n/$i)
         else empty
	 end
    end
  end;

def product(s): reduce s as $x (1; . * $x);

def product_of_divisors: product(divisors);

# For pretty-printing
def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;

Example

"n   product of divisors",
(range(1; 51) | "\(lpad(3))  \(product_of_divisors|lpad(15))")
Output:
  n   product of divisors
  1                1
  2                2
  3                3
  4                8
  5                5
  6               36
  7                7
  8               64
  9               27
 10              100
 11               11
 12             1728
 13               13
 14              196
 15              225
 16             1024
 17               17
 18             5832
 19               19
 20             8000
 21              441
 22              484
 23               23
 24           331776
 25              125
 26              676
 27              729
 28            21952
 29               29
 30           810000
 31               31
 32            32768
 33             1089
 34             1156
 35             1225
 36         10077696
 37               37
 38             1444
 39             1521
 40          2560000
 41               41
 42          3111696
 43               43
 44            85184
 45            91125
 46             2116
 47               47
 48        254803968
 49              343
 50           125000

Example illustrating the use of gojq

1234567890 | [., product_of_divisors]
Output:
[1234567890,157166308290967624614434966485493540963726721698403428784891012586974258380350906625255961242443130286157885664260857440235952354925000777353590796274952836151639520964606157865934675160485092641000000000000000000000000]

Julia

using Primes

function proddivisors(n)
    f = [one(n)]
    for (p, e) in factor(n)
        f = reduce(vcat, [f * p^j for j in 1:e], init = f)
    end
    return prod(f)
end

for i in 1:50
    print(lpad(proddivisors(i), 10), i % 10 == 0 ? " \n" : "")
end
Output:
         1         2         3         8         5        36         7        64        27       100 
        11      1728        13       196       225      1024        17      5832        19      8000 
       441       484        23    331776       125       676       729     21952        29    810000
        31     32768      1089      1156      1225  10077696        37      1444      1521   2560000
        41   3111696        43     85184     91125      2116        47 254803968       343    125000

One-liner version:

proddivisors_oneliner(n) = prod(n%i==0 ? i : 1 for i in 1:n)

Kotlin

Translation of: Java
import kotlin.math.pow

private fun divisorCount(n: Long): Long {
    var nn = n
    var total: Long = 1
    // Deal with powers of 2 first
    while (nn and 1 == 0L) {
        ++total
        nn = nn shr 1
    }
    // Odd prime factors up to the square root
    var p: Long = 3
    while (p * p <= nn) {
        var count = 1L
        while (nn % p == 0L) {
            ++count
            nn /= p
        }
        total *= count
        p += 2
    }
    // If n > 1 then it's prime
    if (nn > 1) {
        total *= 2
    }
    return total
}

private fun divisorProduct(n: Long): Long {
    return n.toDouble().pow(divisorCount(n) / 2.0).toLong()
}

fun main() {
    val limit: Long = 50
    println("Product of divisors for the first $limit positive integers:")
    for (n in 1..limit) {
        print("%11d".format(divisorProduct(n)))
        if (n % 5 == 0L) {
            println()
        }
    }
}
Output:
Product of divisors for the first 50 positive integers:
          1          2          3          8          5
         36          7         64         27        100
         11       1728         13        196        225
       1024         17       5832         19       8000
        441        484         23     331776        125
        676        729      21952         29     810000
         31      32768       1089       1156       1225
   10077696         37       1444       1521    2560000
         41    3111696         43      85184      91125
       2116         47  254803968        343     125000

MAD

            NORMAL MODE IS INTEGER
            DIMENSION D(50)
            THROUGH INIT, FOR I=1, 1, I.G.50
INIT        D(I)=1
            THROUGH CALC, FOR I=1, 1, I.G.50
            THROUGH CALC, FOR J=I, I, J.G.50
CALC        D(J) = D(J)*I
            THROUGH SHOW, FOR I=1, 5, I.G.50
SHOW        PRINT FORMAT F5, D(I), D(I+1), D(I+2), D(I+3), D(I+4)
            VECTOR VALUES F5 = $5(I10)*$
            END OF PROGRAM
Output:
         1         2         3         8         5
        36         7        64        27       100
        11      1728        13       196       225
      1024        17      5832        19      8000
       441       484        23    331776       125
       676       729     21952        29    810000
        31     32768      1089      1156      1225
  10077696        37      1444      1521   2560000
        41   3111696        43     85184     91125
      2116        47 254803968       343    125000

Mathematica /Wolfram Language

Divisors/*Apply[Times] /@ Range[50]
Output:
{1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, 8000, 441, 484, 23, 331776, 125, 676, 729, 21952, 29, 810000, 31, 32768, 1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, 3111696, 43, 85184, 91125, 2116, 47, 254803968, 343, 125000}

MiniScript

divisorProduct = function(n)
	ans = 1
	i = 1
	while i * i <= n
		if n % i == 0 then
			ans *= i
			j = floor(n / i)
			if j != i then ans *= j
		end if
		i += 1
	end while
	return ans
end function

products = []
for n in range(1,50)
	products.push(divisorProduct(n))
end for

print products.join(", ")
Output:
1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, 8000, 441, 484, 23, 331776, 125, 676, 729, 21952, 29, 810000, 31, 32768, 1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, 3111696, 43, 85184, 91125, 2116, 47, 254803968, 343, 125000

Nim

import math, strutils

func divisors(n: Positive): seq[int] =
  result = @[1, n]
  for i in 2..sqrt(n.toFloat).int:
    if n mod i == 0:
      let j = n div i
      result.add i
      if i != j: result.add j

echo "Product of divisors for the first 50 positive numbers:"
for n in 1..50:
  stdout.write ($prod(n.divisors)).align(10), if n mod 5 == 0: '\n' else: ' '
Output:
Product of divisors for the first 50 positive numbers:
         1          2          3          8          5
        36          7         64         27        100
        11       1728         13        196        225
      1024         17       5832         19       8000
       441        484         23     331776        125
       676        729      21952         29     810000
        31      32768       1089       1156       1225
  10077696         37       1444       1521    2560000
        41    3111696         43      85184      91125
      2116         47  254803968        343     125000

PascalABC.NET

##
uses school;

for var n := 1 to 50 do divisors(n).Aggregate(1,(p,x) -> p*x).Print;
Output:
1 2 3 8 5 36 7 64 27 100 11 1728 13 196 225 1024 17 5832 19 8000 441 484 23 331776 125 676 729 21952 29 810000 31 32768 1089 1156 1225 10077696 37 1444 1521 2560000 41 3111696 43 85184 91125 2116 47 254803968 343 125000 

Perl

#!/usr/bin/perl

use strict; # https://rosettacode.org/wiki/Product_of_divisors
use warnings;

my @products = ( 1 ) x 51;
for my $n ( 1 .. 50 )
  {
  $n % $_ or $products[$n] *= $_ for 1 .. $n;
  }
printf '' . (('%11d' x 5) . "\n") x 10, @products[1 .. 50];
Output:
          1          2          3          8          5
         36          7         64         27        100
         11       1728         13        196        225
       1024         17       5832         19       8000
        441        484         23     331776        125
        676        729      21952         29     810000
         31      32768       1089       1156       1225
   10077696         37       1444       1521    2560000
         41    3111696         43      85184      91125
       2116         47  254803968        343     125000

Phix

imperative

for i=1 to 50 do
    printf(1,"%,12d",{product(factors(i,1))})
    if remainder(i,5)=0 then puts(1,"\n") end if
end for
Output:
           1           2           3           8           5
          36           7          64          27         100
          11       1,728          13         196         225
       1,024          17       5,832          19       8,000
         441         484          23     331,776         125
         676         729      21,952          29     810,000
          31      32,768       1,089       1,156       1,225
  10,077,696          37       1,444       1,521   2,560,000
          41   3,111,696          43      85,184      91,125
       2,116          47 254,803,968         343     125,000

functional

same output

sequence r = apply(apply(true,factors,{tagset(50),{1}}),product)
puts(1,join_by(apply(true,sprintf,{{"%,12d"},r}),1,5,""))

Pike

Translation of: Python
int product_of_divisors(int n) {
	int ans, i, j;
	ans = i = j = 1;

	while(i * i <= n) {
		if(n%i == 0) {
			ans = ans * i;
			j = n / i;
			if(j != i) {
				ans = ans * j;
			}
		}
		i = i+1;
	}

	return ans;
}

int main() {
	int limit = 50;
	write("Product of divisors for the first " + (string)limit + " positive integers:\n");
	for(int i = 1; i < limit + 1; i++) {
		write("%11d", product_of_divisors(i));
		if(i%5 == 0) {
			write("\n");
		}
	}
	return 0;
}
Output:
Product of divisors for the first 50 positive integers:
          1          2          3          8          5
         36          7         64         27        100
         11       1728         13        196        225
       1024         17       5832         19       8000
        441        484         23     331776        125
        676        729      21952         29     810000
         31      32768       1089       1156       1225
   10077696         37       1444       1521    2560000
         41    3111696         43      85184      91125
       2116         47  254803968        343     125000

Python

Finding divisors efficiently

def product_of_divisors(n):
    assert(isinstance(n, int) and 0 < n)
    ans = i = j = 1
    while i*i <= n:
        if 0 == n%i:
            ans *= i
            j = n//i
            if j != i:
                ans *= j
        i += 1
    return ans
    
if __name__ == "__main__":
    print([product_of_divisors(n) for n in range(1,51)])
Output:
[1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, 8000, 441, 484, 23, 331776, 125, 676, 729, 21952, 29, 810000, 31, 32768, 1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, 3111696, 43, 85184, 91125, 2116, 47, 254803968, 343, 125000]

Choosing the right abstraction

This is really an exercise in defining a divisors function, and the only difference between the suggested Sum and Product draft tasks boils down to two trivial morphemes:

reduce(add, divisors(n), 0) vs reduce(mul, divisors(n), 1)

The goal of Rosetta code (see the landing page) is to provide contrastive insight (rather than comprehensive coverage of homework questions :-). Perhaps the scope for contrastive insight in the matter of divisors is already exhausted by the trivially different Proper divisors task.

'''Sums and products of divisors'''

from math import floor, sqrt
from functools import reduce
from operator import add, mul


# divisors :: Int -> [Int]
def divisors(n):
    '''List of all divisors of n including n itself.
    '''
    root = floor(sqrt(n))
    lows = [x for x in range(1, 1 + root) if 0 == n % x]
    return lows + [n // x for x in reversed(lows)][
        (1 if n == (root * root) else 0):
    ]


# ------------------------- TEST -------------------------
# main :: IO ()
def main():
    '''Product and sums of divisors for each integer in range [1..50]
    '''
    print('Products of divisors:')
    for n in range(1, 1 + 50):
        print(n, '->', reduce(mul, divisors(n), 1))

    print('Sums of divisors:')
    for n in range(1, 1 + 100):
        print(n, '->', reduce(add, divisors(n), 0))


# MAIN ---
if __name__ == '__main__':
    main()

Quackery

factors is defined at Factors of an integer#Quackery.

  [ 1 swap factors witheach * ] is product-of-divisors ( n --> n )
 
  [] []
  50 times
    [ i^ 1+ product-of-divisors join ]
  witheach [ number$ nested join ]
  75 wrap$
Output:
1 2 3 8 5 36 7 64 27 100 11 1728 13 196 225 1024 17 5832 19 8000 441 484 23
331776 125 676 729 21952 29 810000 31 32768 1089 1156 1225 10077696 37 1444
1521 2560000 41 3111696 43 85184 91125 2116 47 254803968 343 125000

R

This only takes one line.

sapply(1:50, function(n) prod(c(Filter(function(x) n %% x == 0, seq_len(n %/% 2)), n)))

Raku

Yet more tasks that are tiny variations of each other. Tau function, Tau number, Sum of divisors and Product of divisors all use code with minimal changes. What the heck, post 'em all.

use Prime::Factor:ver<0.3.0+>;
use Lingua::EN::Numbers;

say "\nTau function - first 100:\n",        # ID
(1..*).map({ +.&divisors })[^100]\          # the task
.batch(20)».fmt("%3d").join("\n");          # display formatting

say "\nTau numbers - first 100:\n",         # ID
(1..*).grep({ $_ %% +.&divisors })[^100]\   # the task
.batch(10)».&comma».fmt("%5s").join("\n");  # display formatting

say "\nDivisor sums - first 100:\n",        # ID
(1..*).map({ [+] .&divisors })[^100]\       # the task
.batch(20)».fmt("%4d").join("\n");          # display formatting

say "\nDivisor products - first 100:\n",    # ID
(1..*).map({ [×] .&divisors })[^100]\       # the task
.batch(5)».&comma».fmt("%16s").join("\n");  # display formatting
Output:
Tau function - first 100:
  1   2   2   3   2   4   2   4   3   4   2   6   2   4   4   5   2   6   2   6
  4   4   2   8   3   4   4   6   2   8   2   6   4   4   4   9   2   4   4   8
  2   8   2   6   6   4   2  10   3   6   4   6   2   8   4   8   4   4   2  12
  2   4   6   7   4   8   2   6   4   8   2  12   2   4   6   6   4   8   2  10
  5   4   2  12   4   4   4   8   2  12   4   6   4   4   4  12   2   6   6   9

Tau numbers - first 100:
    1     2     8     9    12    18    24    36    40    56
   60    72    80    84    88    96   104   108   128   132
  136   152   156   180   184   204   225   228   232   240
  248   252   276   288   296   328   344   348   360   372
  376   384   396   424   441   444   448   450   468   472
  480   488   492   504   516   536   560   564   568   584
  600   612   625   632   636   640   664   672   684   708
  712   720   732   776   792   804   808   824   828   852
  856   864   872   876   880   882   896   904   936   948
  972   996 1,016 1,040 1,044 1,048 1,056 1,068 1,089 1,096

Divisor sums - first 100:
   1    3    4    7    6   12    8   15   13   18   12   28   14   24   24   31   18   39   20   42
  32   36   24   60   31   42   40   56   30   72   32   63   48   54   48   91   38   60   56   90
  42   96   44   84   78   72   48  124   57   93   72   98   54  120   72  120   80   90   60  168
  62   96  104  127   84  144   68  126   96  144   72  195   74  114  124  140   96  168   80  186
 121  126   84  224  108  132  120  180   90  234  112  168  128  144  120  252   98  171  156  217

Divisor products - first 100:
               1                2                3                8                5
              36                7               64               27              100
              11            1,728               13              196              225
           1,024               17            5,832               19            8,000
             441              484               23          331,776              125
             676              729           21,952               29          810,000
              31           32,768            1,089            1,156            1,225
      10,077,696               37            1,444            1,521        2,560,000
              41        3,111,696               43           85,184           91,125
           2,116               47      254,803,968              343          125,000
           2,601          140,608               53        8,503,056            3,025
       9,834,496            3,249            3,364               59   46,656,000,000
              61            3,844          250,047        2,097,152            4,225
      18,974,736               67          314,432            4,761       24,010,000
              71  139,314,069,504               73            5,476          421,875
         438,976            5,929       37,015,056               79    3,276,800,000
          59,049            6,724               83  351,298,031,616            7,225
           7,396            7,569       59,969,536               89  531,441,000,000
           8,281          778,688            8,649            8,836            9,025
 782,757,789,696               97          941,192          970,299    1,000,000,000

REXX

/*REXX program displays the first  N  product of divisors  (shown in a columnar format).*/
numeric digits 20                                /*ensure enough decimal digit precision*/
parse arg n cols .                               /*obtain optional argument from the CL.*/
if    n=='' |    n==","  then    n= 50           /*Not specified?  Then use the default.*/
if cols=='' | cols==","  then cols=  5           /* "      "         "   "   "     "    */
say ' index │'center("product of divisors", 102)       /*display title for the column #s*/
say '───────┼'center(""                   , 102,'─')   /*   "      "   separator (above)*/
w= max(20, length(n) )                           /*W:  used to align 1st output column. */
$=;                            idx= 1            /*$:  the output list, shown in columns*/
       do j=1  for N                             /*process  N  positive integers.       */
       $= $  ||  right( commas( sigma(j) ), 20)  /*add a sigma (sum) to the output list.*/
       if j//cols\==0  then iterate              /*Not a multiple of cols? Don't display*/
       say center(idx, 7)'│'             $       /*display partial list to the terminal.*/
       idx= idx + cols                           /*bump the index number for the output.*/
       $=                                        /*start with a blank line for next time*/
       end   /*j*/

if $\==''  then say center(idx, 7)' '    $       /*any residuals sums left to display?  */
say '───────┴'center(""                   , 102,'─')   /*   "      "   separator (above)*/
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?;  do jc=length(?)-3  to 1  by -3; ?=insert(',', ?, jc); end;  return ?
/*──────────────────────────────────────────────────────────────────────────────────────*/
sigma: procedure; parse arg x; if x==1 then return 1;  odd=x // 2    /* // ◄──remainder.*/
       p= x                                      /* [↓]  only use  EVEN or ODD integers.*/
             do k=2+odd  by 1+odd  while k*k<x   /*divide by all integers up to  √x.    */
             if x//k==0  then p= p * k * (x % k) /*multiple the two divisors to product.*/
             end   /*k*/                         /* [↑]  %  is the REXX integer division*/
       if k*k==x  then  return p * k             /*Was  X  a square?   If so, add  √ x  */
                        return p                 /*return (sigma) sum of the divisors.  */
output   when using the default input:
 index │                                         product of divisors
───────┼──────────────────────────────────────────────────────────────────────────────────────────────────────
   1   │                    1                   2                   3                   8                   5
   6   │                   36                   7                  64                  27                 100
  11   │                   11               1,728                  13                 196                 225
  16   │                1,024                  17               5,832                  19               8,000
  21   │                  441                 484                  23             331,776                 125
  26   │                  676                 729              21,952                  29             810,000
  31   │                   31              32,768               1,089               1,156               1,225
  36   │           10,077,696                  37               1,444               1,521           2,560,000
  41   │                   41           3,111,696                  43              85,184              91,125
  46   │                2,116                  47         254,803,968                 343             125,000
───────┴──────────────────────────────────────────────────────────────────────────────────────────────────────

Ring

limit = 50
row = 0

see "working..." + nl

for n = 1 to limit 
    pro = 1
    for m = 1 to n
        if n%m = 0
           pro = pro*m
        ok
    next
    see "" + pro + " "
    row = row + 1
    if row % 5 = 0
       see nl
    ok
next

see "done..." + nl
Output:
working...
1 2 3 8 5 
36 7 64 27 100 
11 1728 13 196 225 
1024 17 5832 19 8000 
441 484 23 331776 125 
676 729 21952 29 810000 
31 32768 1089 1156 1225 
10077696 37 1444 1521 2560000 
41 3111696 43 85184 91125 
2116 47 254803968 343 125000 
done...

RPL

Works with: Halcyon Calc version 4.2.7
RPL code Comment
 ≪ 
  DUP 1 1 ROT √ FOR k 
     OVER k 
     IF DUP2 MOD NOT 
     THEN DUP2 SQ ≠ ROT ROT IFTE * 
     ELSE DROP2 END 
  NEXT SWAP DROP
≫ ‘PRODIV’ STO
( n -- div1 *..*divn ) 
Initialize result and loop
   Put n and k in stack
   if k divides n then
      multiply by n or k, depending on n ≠ k²
   otherwise drop both n and k
get rid of n

The following line of command delivers what is required:

 ≪ {} 1 50 FOR j j PRODIV + NEXT ≫ EVAL
Output:
1: { 1 2 3 8 5 36 7 64 27 100 11 1728 13 196 225 1024 17 5832 19 8000 441 484 23 331776 125 676 729 21952 29 810000 31 32768 1089 1156 1225 10077696 37 1444 1521 2560000 41 3111696 43 85184 91125 2116 47 254803968 343 125000 }

Ruby

Translation of: C++
def divisor_count(n)
    total = 1
    # Deal with powers of 2 first
    while n % 2 == 0 do
        total = total + 1
        n = n >> 1
    end
    # Odd prime factors up to the square root
    p = 3
    while p * p <= n do
        count = 1
        while n % p == 0 do
            count = count + 1
            n = n / p
        end
        total = total * count
        p = p + 2
    end
    # If n > 1 then it's prime
    if n > 1 then
        total = total * 2
    end
    return total
end

def divisor_product(n)
    return (n ** (divisor_count(n) / 2.0)).floor
end

LIMIT = 50
print "Product of divisors for the first ", LIMIT, " positive integers:\n"
for n in 1 .. LIMIT
    print "%11d" % [divisor_product(n)]
    if n % 5 == 0 then
        print "\n"
    end
end
Output:
Product of divisors for the first 50 positive integers:
          1          2          3          8          5
         36          7         64         27        100
         11       1728         13        196        225
       1024         17       5832         19       8000
        441        484         23     331776        125
        676        729      21952         29     810000
         31      32768       1089       1156       1225
   10077696         37       1444       1521    2560000
         41    3111696         43      85184      91125
       2116         47  254803968        343     125000

SETL

program product_of_divisors;
    loop for n in [1..50] do
        nprint(lpad(str divprod n, 16));
        if (col +:= 1) mod 5 = 0 then
            print;
        end if;
    end loop;

    op divprod(n);
        return 1 */ [x in [1..n] | n mod x=0];
    end op;
end program;
Output:
               1               2               3               8               5
              36               7              64              27             100
              11            1728              13             196             225
            1024              17            5832              19            8000
             441             484              23          331776             125
             676             729           21952              29          810000
              31           32768            1089            1156            1225
        10077696              37            1444            1521         2560000
              41         3111696              43           85184           91125
            2116              47       254803968             343          125000

Sidef

1..50 -> map { .divisors.prod }.say         # simple
1..50 -> map {|n| isqrt(n**tau(n)) }.say    # more efficient
Output:
[1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, 8000, 441, 484, 23, 331776, 125, 676, 729, 21952, 29, 810000, 31, 32768, 1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, 3111696, 43, 85184, 91125, 2116, 47, 254803968, 343, 125000]

Verilog

module main;
  integer p, n, i;
  
  initial begin
    for(n = 1; n <= 50; n=n+1) 
    begin
      p = n;
      for(i = 2; i <= n/2; i=i+1) if (n % i == 0) p = p * i;
      $display(p);
    end
    $finish ;
  end
endmodule

VTL-2

This sample only shows the divisor products of the first 20 numbers as (the original) VTL-2 only handles numbers in the range 0-65535. The divisor product of 24 would overflow.
Note, all VTL-2 operators are single characters, however though the "<" operator does a lexx-than test, the ">" operator tests greater-than-or-equal.

100 M=20
110 I=0
120 I=I+1
130 :I)=1
140 #=I<M*120
150 I=0
160 I=I+1
170 J=0
180 J=J+I
190 :J)=:J)*I
200 #=J<M*180
210 #=I<M*160
220 I=0
230 I=I+1
240 V=:I)
250 #=V>10*270
260 $=32
270 #=V>100*290
280 $=32
290 #=V>1000*310
300 $=32
310 #=V>10000*330
320 $=32
330 ?=:I)
340 $=32
350 #=I/5*0+%=0=0*370
360 ?=""
370 #=I<M*230
Output:
    1     2     3     8     5
   36     7    64    27   100
   11  1728    13   196   225
 1024    17  5832    19  8000

Wren

Library: Wren-math
Library: Wren-fmt
import "./math" for Int, Nums
import "./fmt" for Fmt

System.print("The products of positive divisors for the first 50 positive integers are:")
for (i in 1..50) {
    Fmt.write("$9d  ", Nums.prod(Int.divisors(i)))
    if (i % 5 == 0) System.print()
}
Output:
The products of positive divisors for the first 50 positive integers are:
        1          2          3          8          5  
       36          7         64         27        100  
       11       1728         13        196        225  
     1024         17       5832         19       8000  
      441        484         23     331776        125  
      676        729      21952         29     810000  
       31      32768       1089       1156       1225  
 10077696         37       1444       1521    2560000  
       41    3111696         43      85184      91125  
     2116         47  254803968        343     125000  

XPL0

func ProdDiv(N);        \Return product of divisors of N
int  N, Prod, Div;
[Prod:= 1;
for Div:= 2 to N do
    if rem(N/Div) = 0 then
        Prod:= Prod * Div;
return Prod;
];

int C, N;
[Format(10, 0);
C:= 0;
for N:= 1 to 50 do
    [RlOut(0, float(ProdDiv(N)));
    C:= C+1;
    if rem(C/5) = 0 then CrLf(0)];
]
Output:
         1         2         3         8         5
        36         7        64        27       100
        11      1728        13       196       225
      1024        17      5832        19      8000
       441       484        23    331776       125
       676       729     21952        29    810000
        31     32768      1089      1156      1225
  10077696        37      1444      1521   2560000
        41   3111696        43     85184     91125
      2116        47 254803968       343    125000