Palindromic gapful numbers

From Rosetta Code


Task
Palindromic gapful numbers
You are encouraged to solve this task according to the task description, using any language you may know.

For this task, a number is to be understood as a positive integer expressed in base ten, and a palindromic number is one that is equal to the integer formed by reversing its decimal digits.

A number that is evenly divisible by the number formed by concatenating its first and last digits in that order is known as a gapful number. All one─ and two─digit numbers have this property and accordingly only numbers greater than or equal to 100 should be considered for this Rosetta Code task.

(Evenly divisible here means divisible with no remainder.)

Example

1037   is a   gapful   number because it is evenly divisible by the number   17   which is formed by the first and last decimal digits of   1037.

Task
  •   Show   (nine sets)   the first   20   palindromic gapful numbers that   end   with:
  •   the digit   1
  •   the digit   2
  •   the digit   3
  •   the digit   4
  •   the digit   5
  •   the digit   6
  •   the digit   7
  •   the digit   8
  •   the digit   9
  •   Show   (nine sets, like above)   of palindromic gapful numbers:
  •   the last   15   palindromic gapful numbers   (out of      100)
  •   the last   10   palindromic gapful numbers   (out of   1,000)       {optional}


For other ways of expressing the (above) requirements, see the   discussion   page.


Note

All palindromic gapful numbers are divisible by eleven.


Related tasks


Also see



AppleScript

on doTask()
    set part1 to {"First 20 palindromic gapful numbers > 100 ending with each digit from 1 to 9:"}
    set part2 to {"86th to 100th such:"}
    set part3 to {"991st to 1000th:"}
    set astid to AppleScript's text item delimiters
    set AppleScript's text item delimiters to "  "
    repeat with endDigit from 1 to 9
        set {collector1, collector2, collector3} to {{}, {}, {}}
        set outerNumber to endDigit * 11 -- Number formed from the palindromes' first and last digits.
        set oddDigitCount to true -- Starting with palindromes in the hundreds.
        set baseHi to endDigit * 10 -- Number formed from just the "high end" digits, initially endDigit and a middle 0.
        set hi to baseHi
        set carryCheck to hi + 10 -- Number reached when incrementing the "high end" number changes its first digit.
        set inc to 10 -- Incrementor for the middle digit(s) of the palindromes themselves.
        set counter to 0
        set maxNeeded to 1000
        set done to false
        repeat until (done)
            -- Work out every 10th palindrome (middle digit = 0) from the current "high end" number.
            set pal to hi
            if (oddDigitCount) then
                set temp to hi div 10
            else
                set temp to hi
            end if
            repeat until (temp is 0)
                set pal to pal * 10 + temp mod 10
                set temp to temp div 10
            end repeat
            -- Check the result and the following 9 palindromes (derived by incrementing the middle digit(s))
            -- and store as text any which are both gapful and the ones required.
            repeat 10 times
                if (pal mod outerNumber is 0) then
                    set counter to counter + 1
                    if (counter  20) then
                        set end of collector1 to intText(pal)
                    else if (counter < 86) then
                    else if (counter  100) then
                        set end of collector2 to intText(pal)
                    else if (counter < 991) then
                    else --if (counter ≤ 1000) then
                        set end of collector3 to intText(pal)
                        set done to (counter = maxNeeded)
                        if (done) then exit repeat
                    end if
                end if
                set pal to pal + inc
            end repeat
            -- Increment the high end number's penultimate digit after every 10th palindrome.
            -- If a carry changes its first digit, reset for longer palindromes.
            set hi to hi + 10
            if (hi = carryCheck) then
                set oddDigitCount to (not oddDigitCount)
                if (oddDigitCount) then
                    set baseHi to baseHi * 10
                    set carryCheck to carryCheck * 10
                    set inc to inc div 11 * 10
                else
                    set inc to inc * 11
                end if
                set hi to baseHi
            end if
        end repeat
        set {end of part1, end of part2, end of part3} to {collector1 as text, collector2 as text, collector3 as text}
    end repeat
    set AppleScript's text item delimiters to linefeed
    set output to {part1, "", part2, "", part3} as text
    set AppleScript's text item delimiters to astid
    
    return output
end doTask

on intText(n)
    if (n < 100000000) then return n as text
    set txt to text 2 thru end of ((100000000 + (n mod 100000000 as integer)) as text)
    set n to n div 100000000
    repeat
        set lo to n mod 100000000 as integer
        set n to n div 100000000
        if (n is 0) then return (lo as text) & txt
        set txt to (text 2 thru end of ((100000000 + lo) as text)) & txt
    end repeat
end intText

return doTask()
Output:
"First 20 palindromic gapful numbers > 100 ending with each digit from 1 to 9:
121  1001  1111  1221  1331  1441  1551  1661  1771  1881  1991  10901  11011  12221  13431  14641  15851  17171  18381  19591
242  2002  2112  2222  2332  2442  2552  2662  2772  2882  2992  20702  21912  22022  23232  24442  25652  26862  28182  29392
363  3003  3333  3663  3993  31713  33033  36663  300003  303303  306603  309903  312213  315513  318813  321123  324423  327723  330033  333333
484  4004  4224  4444  4664  4884  40304  42724  44044  46464  48884  400004  401104  402204  403304  404404  405504  406604  407704  408804
5005  5115  5225  5335  5445  5555  5665  5775  5885  5995  50105  51315  52525  53735  54945  55055  56265  57475  58685  59895
6006  6336  6666  6996  61116  64746  66066  69696  600006  603306  606606  609906  612216  615516  618816  621126  624426  627726  630036  633336
7007  7777  77077  700007  707707  710017  717717  720027  727727  730037  737737  740047  747747  750057  757757  760067  767767  770077  777777  780087
8008  8448  8888  80608  86768  88088  800008  802208  804408  806608  808808  821128  823328  825528  827728  829928  840048  842248  844448  846648
9009  9999  94149  99099  900009  909909  918819  927729  936639  945549  954459  963369  972279  981189  990099  999999  9459549  9508059  9557559  9606069

86th to 100th such:
165561  166661  167761  168861  169961  170071  171171  172271  173371  174471  175571  176671  177771  178871  179971
265562  266662  267762  268862  269962  270072  271172  272272  273372  274472  275572  276672  277772  278872  279972
30366303  30399303  30422403  30455403  30488403  30511503  30544503  30577503  30600603  30633603  30666603  30699603  30722703  30755703  30788703
4473744  4485844  4497944  4607064  4619164  4620264  4632364  4644464  4656564  4668664  4681864  4693964  4803084  4815184  4827284
565565  566665  567765  568865  569965  570075  571175  572275  573375  574475  575575  576675  577775  578875  579975
60399306  60422406  60455406  60488406  60511506  60544506  60577506  60600606  60633606  60666606  60699606  60722706  60755706  60788706  60811806
72299227  72322327  72399327  72422427  72499427  72522527  72599527  72622627  72699627  72722727  72799727  72822827  72899827  72922927  72999927
80611608  80622608  80633608  80644608  80655608  80666608  80677608  80688608  80699608  80800808  80811808  80822808  80833808  80844808  80855808
95311359  95400459  95499459  95588559  95677659  95766759  95855859  95944959  96033069  96122169  96211269  96300369  96399369  96488469  96577569

991st to 1000th:
17799771  17800871  17811871  17822871  17833871  17844871  17855871  17866871  17877871  17888871
27799772  27800872  27811872  27822872  27833872  27844872  27855872  27866872  27877872  27888872
3084004803  3084334803  3084664803  3084994803  3085225803  3085555803  3085885803  3086116803  3086446803  3086776803
482282284  482414284  482535284  482656284  482777284  482898284  482909284  483020384  483141384  483262384
57800875  57811875  57822875  57833875  57844875  57855875  57866875  57877875  57888875  57899875
6084004806  6084334806  6084664806  6084994806  6085225806  6085555806  6085885806  6086116806  6086446806  6086776806
7452992547  7453223547  7453993547  7454224547  7454994547  7455225547  7455995547  7456226547  7456996547  7457227547
8085995808  8086006808  8086116808  8086226808  8086336808  8086446808  8086556808  8086666808  8086776808  8086886808
9675005769  9675995769  9676886769  9677777769  9678668769  9679559769  9680440869  9681331869  9682222869  9683113869"

Translation of Phix "Ludicrously fast …"

See the original's comments for an explanation of the logic. While this translation was developed directly from the Phix, comparing the two may be difficult as I've pulled things around a bit for AppleScript efficiency and have relabelled some of the variables for consistency and to help me understand the process myself. On my machine, this version takes 0.12 seconds to carry out the set tasks — only a tad slower than the hard-wired script above. The batch of extreme tests in the Phix demo takes around 1.6 seconds.

-- Return a script object containing the main handlers.
-- It could be loaded as a library instead if there were any point in having such a library.
on getWorks()
    script theWorks
        property outerX11 : missing value
        property countLimit : missing value
        property to_skip : missing value
        property palcount : missing value
        property skipd : {{}, {}, {}, {}, {}, {}, {}, {}, {}}
        property skipdOuter : missing value
        property pals : missing value
        
        -- Work out the remainder from the division of the positive decimal integer value which is
        -- one or two instances of digit 'digit' separated by 'gap' zeros and followed by 'shift' zeros
        -- (which may not be realisable as an AppleScript number) by 'outerX11', a multiple of 11.
        on rmdr(digit, gap, shift)
            -- Remainders from the division of left-shifted decimals by multiples of 11 reliably repeat
            -- every six places shifted > 2, so use a dividend with the equivalent digit shifts < 9.
            set coefficient to 10 ^ ((shift - 3) mod 6 + 3)
            if (gap > -1) then set coefficient to coefficient + 10 ^ ((gap + shift - 2) mod 6 + 3)
            
            return (digit * coefficient mod outerX11) as integer
        end rmdr
        
        -- Recursively infer from remainder arithmetic any palindromic gapful numbers with
        -- ((count lhs) * 2 + gap) digits whose outer digit is the first value in lhs.
        -- Append text versions of any falling in the current keep range to the 'pals' list.
        on palindromicGapfuls(lhs, gap, remainder)
            -- lhs: eg {9, 4, 5} of a potential 945…549 result.
            -- gap: length of inner to be filled in
            -- remainder: remainder of outer, eg 9400049 mod 11, but derived from rmdr() results.
            set shift to (count lhs) --  left shift of inner (same as its right shift).    
            -- This translation's 'skipd' is a four-deep AppleScript list structure indexed with the elements
            -- of the original dictionary's keys: (skipd) -> outermost digit -> shift -> gap -> remainder (+ 1).
            -- The outermost digit element doesn't change during a search based on it, so the script property
            -- 'skipdOuter' has been preset to skipd's outer-th sublist in the set-up for the current search.        
            -- Populate it just enough here to ensure that the slot about to be checked for a 'skip' value exists.
            repeat (shift - (count my skipdOuter)) times
                set end of my skipdOuter to {}
            end repeat
            repeat (gap - (count item shift of my skipdOuter)) times
                set end of item shift of my skipdOuter to {}
            end repeat
            repeat (remainder + 1 - (count item gap of item shift of my skipdOuter)) times
                set end of item gap of item shift of my skipdOuter to missing value
            end repeat
            set skip to item (remainder + 1) of item gap of item shift of my skipdOuter
            if ((skip is missing value) or (palcount + skip > to_skip)) then
                set skip to 0
                set nextGap to gap - 2
                repeat with d from 0 to 9
                    set nextRem to (remainder + rmdr(d, nextGap, shift)) mod outerX11
                    if (gap > 2) then
                        set skip to skip + palindromicGapfuls(lhs & d, nextGap, nextRem)
                    else if (nextRem is 0) then
                        -- A palindrome of lhs's contents around gap ds would be … gapful.
                        set palcount to palcount + 1
                        if (palcount > to_skip) then
                            -- This one would be in the current keep range, so realise it as text and store it.
                            if (gap is 2) then set d to {d, d} -- Not d * 11 as d could be 0.
                            set end of my pals to (lhs & d & reverse of lhs) as text
                        else
                            set skip to skip + 1
                        end if
                    end if
                    if (palcount = countLimit) then exit repeat
                end repeat
                if (palcount < to_skip) then set item (remainder + 1) of item gap of item shift of my skipdOuter to skip
            else
                set palcount to palcount + skip
            end if
            
            return skip
        end palindromicGapfuls
        
        -- Set up a search for the last 'keep' of the first 'countLimit' PGNs > 100 whose outer digit is 'outer',
        -- call the recursive process for each palindrome width, and eventually return the stored numeric texts.
        on collect(outer, countLimit, keep)
            -- Initialise script object properties for the current search.
            set outerX11 to outer * 11
            set my countLimit to countLimit
            set to_skip to countLimit - keep
            set palcount to 0
            set skipdOuter to item outer of my skipd
            set pals to {}
            -- Also locals and TIDs.
            set lhs to {outer}
            set gap to 1 -- Number of digits between outer pair.
            set astid to AppleScript's text item delimiters
            set AppleScript's text item delimiters to "" -- For list-to-text coercions.
            repeat until (palcount = countLimit)
                set remainder to rmdr(outer, gap, 0)
                palindromicGapfuls(lhs, gap, remainder)
                set gap to gap + 1
            end repeat
            set AppleScript's text item delimiters to astid
            
            return pals
        end collect
    end script
    
    return theWorks
end getWorks

(* Test code *)

-- Return an integer as text with the appropriate English ordinal suffix
on ordinalise(n)
    -- Adapted from Victor Yee (adapted from NG (adapted from Jason Bourque) & Paul Skinner)
    set units to n mod 10
    if ((units > 3) or ((n - units) mod 100 is 10) or (units < 1) or (units mod 1 > 0)) then return (n as text) & "th"
    return (n as text) & item units of {"st", "nd", "rd"}
end ordinalise

on doTask()
    set tests to {{20, 20, 1, 9}, {100, 15, 1, 9}, {1000, 10, 1, 9}, {10000, 5, 1, 9}, ¬
        {100000, 1, 1, 9}, {1000000, 1, 1, 9}, {10000000, 1, 1, 9}, ¬
        {100000000, 1, 9, 9}, {1.0E+9, 1, 9, 9}, {1.0E+10, 1, 9, 9}, ¬
        {1.0E+11, 1, 9, 9}, {1.0E+12, 1, 9, 9}, ¬
        {1.0E+13, 1, 9, 9}, {1.0E+14, 1, 9, 9}, ¬
        {1.0E+15, 1, 2, 4}}
    -- set tests to {{20, 20, 1, 9}, {100, 15, 1, 9}, {1000, 10, 1, 9}} -- The RC task.
    
    set output to {}
    set theWorks to getWorks()
    set astid to AppleScript's text item delimiters
    set AppleScript's text item delimiters to "  "
    repeat with i from 1 to (count tests)
        set {countLimit, keep, firstOuter, lastOuter} to item i of tests
        if (countLimit = keep) then
            set h to "First " & countLimit
        else if (keep > 1) then
            set h to "Last " & keep & (" of first " & countLimit)
        else
            set h to ordinalise(countLimit)
        end if
        if ((keep = 1) and (firstOuter = lastOuter)) then
            set h to h & " palindromic gapful number > 100 ending with " & firstOuter & ":"
        else if (firstOuter = lastOuter) then
            set h to h & " palindromic gapful numbers > 100 ending with " & firstOuter & ":"
        else
            set h to h & " palindromic gapful numbers > 100 ending with digits from " & firstOuter & (" to " & lastOuter & ":")
        end if
        if (i > 1) then set end of output to ""
        set end of output to h
        repeat with outer from firstOuter to lastOuter
            set end of output to theWorks's (collect(outer, countLimit, keep)) as text
        end repeat
    end repeat
    set AppleScript's text item delimiters to linefeed
    set output to output as text
    set AppleScript's text item delimiters to astid
    
    return output
end doTask

doTask()
Output:
First 20 palindromic gapful numbers > 100 ending with digits from 1 to 9:
121  1001  1111  1221  1331  1441  1551  1661  1771  1881  1991  10901  11011  12221  13431  14641  15851  17171  18381  19591
242  2002  2112  2222  2332  2442  2552  2662  2772  2882  2992  20702  21912  22022  23232  24442  25652  26862  28182  29392
363  3003  3333  3663  3993  31713  33033  36663  300003  303303  306603  309903  312213  315513  318813  321123  324423  327723  330033  333333
484  4004  4224  4444  4664  4884  40304  42724  44044  46464  48884  400004  401104  402204  403304  404404  405504  406604  407704  408804
5005  5115  5225  5335  5445  5555  5665  5775  5885  5995  50105  51315  52525  53735  54945  55055  56265  57475  58685  59895
6006  6336  6666  6996  61116  64746  66066  69696  600006  603306  606606  609906  612216  615516  618816  621126  624426  627726  630036  633336
7007  7777  77077  700007  707707  710017  717717  720027  727727  730037  737737  740047  747747  750057  757757  760067  767767  770077  777777  780087
8008  8448  8888  80608  86768  88088  800008  802208  804408  806608  808808  821128  823328  825528  827728  829928  840048  842248  844448  846648
9009  9999  94149  99099  900009  909909  918819  927729  936639  945549  954459  963369  972279  981189  990099  999999  9459549  9508059  9557559  9606069

Last 15 of first 100 palindromic gapful numbers > 100 ending with digits from 1 to 9:
165561  166661  167761  168861  169961  170071  171171  172271  173371  174471  175571  176671  177771  178871  179971
265562  266662  267762  268862  269962  270072  271172  272272  273372  274472  275572  276672  277772  278872  279972
30366303  30399303  30422403  30455403  30488403  30511503  30544503  30577503  30600603  30633603  30666603  30699603  30722703  30755703  30788703
4473744  4485844  4497944  4607064  4619164  4620264  4632364  4644464  4656564  4668664  4681864  4693964  4803084  4815184  4827284
565565  566665  567765  568865  569965  570075  571175  572275  573375  574475  575575  576675  577775  578875  579975
60399306  60422406  60455406  60488406  60511506  60544506  60577506  60600606  60633606  60666606  60699606  60722706  60755706  60788706  60811806
72299227  72322327  72399327  72422427  72499427  72522527  72599527  72622627  72699627  72722727  72799727  72822827  72899827  72922927  72999927
80611608  80622608  80633608  80644608  80655608  80666608  80677608  80688608  80699608  80800808  80811808  80822808  80833808  80844808  80855808
95311359  95400459  95499459  95588559  95677659  95766759  95855859  95944959  96033069  96122169  96211269  96300369  96399369  96488469  96577569

Last 10 of first 1000 palindromic gapful numbers > 100 ending with digits from 1 to 9:
17799771  17800871  17811871  17822871  17833871  17844871  17855871  17866871  17877871  17888871
27799772  27800872  27811872  27822872  27833872  27844872  27855872  27866872  27877872  27888872
3084004803  3084334803  3084664803  3084994803  3085225803  3085555803  3085885803  3086116803  3086446803  3086776803
482282284  482414284  482535284  482656284  482777284  482898284  482909284  483020384  483141384  483262384
57800875  57811875  57822875  57833875  57844875  57855875  57866875  57877875  57888875  57899875
6084004806  6084334806  6084664806  6084994806  6085225806  6085555806  6085885806  6086116806  6086446806  6086776806
7452992547  7453223547  7453993547  7454224547  7454994547  7455225547  7455995547  7456226547  7456996547  7457227547
8085995808  8086006808  8086116808  8086226808  8086336808  8086446808  8086556808  8086666808  8086776808  8086886808
9675005769  9675995769  9676886769  9677777769  9678668769  9679559769  9680440869  9681331869  9682222869  9683113869

Last 5 of first 10000 palindromic gapful numbers > 100 ending with digits from 1 to 9:
1787557871  1787667871  1787777871  1787887871  1787997871
2787557872  2787667872  2787777872  2787887872  2787997872
308760067803  308763367803  308766667803  308769967803  308772277803
48327872384  48329192384  48330303384  48331513384  48332723384
5787557875  5787667875  5787777875  5787887875  5787997875
608763367806  608766667806  608769967806  608772277806  608775577806
746958859647  746961169647  746968869647  746971179647  746978879647
808691196808  808692296808  808693396808  808694496808  808695596808
968697796869  968706607869  968715517869  968724427869  968733337869

100000th palindromic gapful numbers > 100 ending with digits from 1 to 9:
178788887871
278788887872
30878611687803
4833326233384
578789987875
60878611687806
74826144162847
80869688696808
96878077087869

1000000th palindromic gapful numbers > 100 ending with digits from 1 to 9:
17878799787871
27878799787872
3087876666787803
483333272333384
57878799787875
6087876996787806
7487226666227847
8086969559696808
9687870990787869

10000000th palindromic gapful numbers > 100 ending with digits from 1 to 9:
1787878888787871
2787878888787872
308787855558787803
48333332623333384
5787878998787875
608787855558787806
748867523325768847
808696968869696808
968787783387787869

100000000th palindromic gapful number > 100 ending with 9:
96878786855868787869

1.0E+9th palindromic gapful number > 100 ending with 9:
9687878775995778787869

1.0E+10th palindromic gapful number > 100 ending with 9:
968787878661166878787869

1.0E+11th palindromic gapful number > 100 ending with 9:
96878787877355377878787869

1.0E+12th palindromic gapful number > 100 ending with 9:
9687878787863773687878787869

1.0E+13th palindromic gapful number > 100 ending with 9:
968787878787711117787878787869

1.0E+14th palindromic gapful number > 100 ending with 9:
96878787878786133168787878787869

1.0E+15th palindromic gapful numbers > 100 ending with digits from 2 to 4:
27878787878787888878787878787872
3087878787878783113878787878787803
483333333333333262333333333333384

C

Translation of: C++
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>

typedef uint64_t integer;

integer reverse(integer n) {
    integer rev = 0;
    while (n > 0) {
        rev = rev * 10 + (n % 10);
        n /= 10;
    }
    return rev;
}

typedef struct palgen_tag {
    integer power;
    integer next;
    int digit;
    bool even;
} palgen_t;

void init_palgen(palgen_t* palgen, int digit) {
    palgen->power = 10;
    palgen->next = digit * palgen->power - 1;
    palgen->digit = digit;
    palgen->even = false;
}

integer next_palindrome(palgen_t* p) {
    ++p->next;
    if (p->next == p->power * (p->digit + 1)) {
        if (p->even)
            p->power *= 10;
        p->next = p->digit * p->power;
        p->even = !p->even;
    }
    return p->next * (p->even ? 10 * p->power : p->power)
        + reverse(p->even ? p->next : p->next/10);
}

bool gapful(integer n) {
    integer m = n;
    while (m >= 10)
        m /= 10;
    return n % (n % 10 + 10 * m) == 0;
}

void print(int len, integer array[][len]) {
    for (int digit = 1; digit < 10; ++digit) {
        printf("%d: ", digit);
        for (int i = 0; i < len; ++i)
            printf(" %llu", array[digit - 1][i]);
        printf("\n");
    }
}

int main() {
    const int n1 = 20, n2 = 15, n3 = 10;
    const int m1 = 100, m2 = 1000;

    integer pg1[9][n1];
    integer pg2[9][n2];
    integer pg3[9][n3];

    for (int digit = 1; digit < 10; ++digit) {
        palgen_t pgen;
        init_palgen(&pgen, digit);
        for (int i = 0; i < m2; ) {
            integer n = next_palindrome(&pgen);
            if (!gapful(n))
                continue;
            if (i < n1)
                pg1[digit - 1][i] = n;
            else if (i < m1 && i >= m1 - n2)
                pg2[digit - 1][i - (m1 - n2)] = n;
            else if (i >= m2 - n3)
                pg3[digit - 1][i - (m2 - n3)] = n;
            ++i;
        }
    }

    printf("First %d palindromic gapful numbers ending in:\n", n1);
    print(n1, pg1);

    printf("\nLast %d of first %d palindromic gapful numbers ending in:\n", n2, m1);
    print(n2, pg2);

    printf("\nLast %d of first %d palindromic gapful numbers ending in:\n", n3, m2);
    print(n3, pg3);

    return 0;
}
Output:
First 20 palindromic gapful numbers ending in:
1:  121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591
2:  242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392
3:  363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333
4:  484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804
5:  5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895
6:  6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336
7:  7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087
8:  8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648
9:  9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069

Last 15 of first 100 palindromic gapful numbers ending in:
1:  165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971
2:  265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972
3:  30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
4:  4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284
5:  565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975
6:  60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
7:  72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
8:  80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
9:  95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

Last 10 of first 1000 palindromic gapful numbers ending in:
1:  17799771 17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871
2:  27799772 27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872
3:  3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
4:  482282284 482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384
5:  57800875 57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875
6:  6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
7:  7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
8:  8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
9:  9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

C++

The idea of generating palindromes first then testing for gapfulness was borrowed from other solutions.

#include <iostream>
#include <cstdint>

typedef uint64_t integer;

integer reverse(integer n) {
    integer rev = 0;
    while (n > 0) {
        rev = rev * 10 + (n % 10);
        n /= 10;
    }
    return rev;
}

// generates base 10 palindromes greater than 100 starting
// with the specified digit
class palindrome_generator {
public:
    palindrome_generator(int digit) : power_(10), next_(digit * power_ - 1),
        digit_(digit), even_(false) {}
    integer next_palindrome() {
        ++next_;
        if (next_ == power_ * (digit_ + 1)) {
            if (even_)
                power_ *= 10;
            next_ = digit_ * power_;
            even_ = !even_;
        }
        return next_ * (even_ ? 10 * power_ : power_)
            + reverse(even_ ? next_ : next_/10);
    }
private:
    integer power_;
    integer next_;
    int digit_;
    bool even_;
};

bool gapful(integer n) {
    integer m = n;
    while (m >= 10)
        m /= 10;
    return n % (n % 10 + 10 * m) == 0;
}

template<size_t len>
void print(integer (&array)[9][len]) {
    for (int digit = 1; digit < 10; ++digit) {
        std::cout << digit << ":";
        for (int i = 0; i < len; ++i)
            std::cout << ' ' << array[digit - 1][i];
        std::cout << '\n';
    }
}

int main() {
    const int n1 = 20, n2 = 15, n3 = 10;
    const int m1 = 100, m2 = 1000;

    integer pg1[9][n1];
    integer pg2[9][n2];
    integer pg3[9][n3];

    for (int digit = 1; digit < 10; ++digit) {
        palindrome_generator pgen(digit);
        for (int i = 0; i < m2; ) {
            integer n = pgen.next_palindrome();
            if (!gapful(n))
                continue;
            if (i < n1)
                pg1[digit - 1][i] = n;
            else if (i < m1 && i >= m1 - n2)
                pg2[digit - 1][i - (m1 - n2)] = n;
            else if (i >= m2 - n3)
                pg3[digit - 1][i - (m2 - n3)] = n;
            ++i;
        }
    }

    std::cout << "First " << n1 << " palindromic gapful numbers ending in:\n";
    print(pg1);

    std::cout << "\nLast " << n2 << " of first " << m1 << " palindromic gapful numbers ending in:\n";
    print(pg2);

    std::cout << "\nLast " << n3 << " of first " << m2 << " palindromic gapful numbers ending in:\n";
    print(pg3);

    return 0;
}
Output:
First 20 palindromic gapful numbers ending in:
1: 121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591
2: 242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392
3: 363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333
4: 484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804
5: 5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895
6: 6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336
7: 7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087
8: 8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648
9: 9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069

Last 15 of first 100 palindromic gapful numbers ending in:
1: 165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971
2: 265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
4: 4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284
5: 565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

Last 10 of first 1000 palindromic gapful numbers ending in:
1: 17799771 17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871
2: 27799772 27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
4: 482282284 482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384
5: 57800875 57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

Crystal

Brute force and slow

def palindromesgapful(digit, pow)
  r1 = (10_u64**pow + 1) * digit
  r2 = 10_u64**pow * (digit + 1)
  nn = digit * 11
  (r1...r2).select { |i| n = i.to_s; n == n.reverse && i.divisible_by?(nn) }
end

def digitscount(digit, count)
  pow  = 2
  nums = [] of UInt64
  while nums.size < count
    nums += palindromesgapful(digit, pow)
    pow += 1
  end
  nums[0...count]
end

count = 20
puts "First 20 palindromic gapful numbers ending with:"
(1..9).each { |digit| print "#{digit} : #{digitscount(digit, count)}\n" }

count = 100
puts "\nLast 15 of first 100 palindromic gapful numbers ending in:"
(1..9).each { |digit| print "#{digit} : #{digitscount(digit, count).last(15)}\n" }

count = 1000
puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
(1..9).each { |digit| print "#{digit} : #{digitscount(digit, count).last(10)}\n" }

Orders of Magnitude Faster: Direct Generation of Numbers

Crystal is a statically typed and a compiled language.
The code as implemented has been tested to produce optimum performance.

System: I7-6700HQ, 3.5GHz, Linux Kernel 5.6.17, Crystal 0.35
Run as: $ crystal run --release palindromicgapfuls.cr 

Optimized version using number<->string conversion: 21.5 secs

def palindromicgapfuls(digit, count)
  gapfuls = [] of UInt64            # array of palindromic gapfuls
  dd = 11_u64 * digit               # digit gapful divisor: 11, 22,...88, 99
  (2..).select do |power|
    base    = 10_u64**(power >> 1)  # value of middle digit position: 10..
    base11  = base * 11             # value of middle two digits positions: 110..
    this_lo = base * digit          # starting half for this digit: 10.. to  90..
    next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
    this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
      left_half = front_half.to_s; right_half = left_half.reverse 
      if power.odd?
        palindrome = (left_half + right_half).to_u64
        10.times do
          gapfuls << palindrome if palindrome.divisible_by?(dd)
          return gapfuls if gapfuls.size == count
          palindrome += base11
        end
      else
        palindrome = (left_half.rchop + right_half).to_u64
        10.times do 
          gapfuls << palindrome if palindrome.divisible_by?(dd)
          return gapfuls if gapfuls.size == count
          palindrome += base
        end  
      end
    end
  end
end

start = Time.monotonic

count, keep = 20, 20
puts "First 20 palindromic gapful numbers ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 100, 15
puts "\nLast 15 of first 100 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 1_000, 10
puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 100_000, 1
puts "\n100,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 1_000_000, 1
puts "\n1,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 10_000_000, 1
puts "\n10,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

puts (Time.monotonic - start).total_seconds

Compact version: 22.0 secs

def palindromicgapfuls(digit, count)
  gapfuls = [] of UInt64            # array of palindromic gapfuls
  dd = 11_u64 * digit               # digit gapful divisor: 11, 22,...88, 99
  (2..).select do |power|
    base    = 10_u64**(power >> 1)  # value of middle digit position: 10..
    base11  = base * 11             # value of middle two digits positions: 110..
    this_lo = base * digit          # starting half for this digit: 10.. to  90..
    next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
    this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
      palindrome, left_half = 0_u64, front_half.to_s
      basep, right_half     = base11, left_half.reverse
      (basep = base; left_half = left_half.rchop) if power.even?
      palindrome = (left_half + right_half).to_u64
      10.times do
        gapfuls << palindrome if palindrome.divisible_by?(dd)
        return gapfuls if gapfuls.size == count
        palindrome += basep
      end
    end
  end
end

start = Time.monotonic

count, keep = 20, 20
puts "First 20 palindromic gapful numbers ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }
  
count, keep = 100, 15
puts "\nLast 15 of first 100 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }
     
count, keep = 1_000, 10
puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 100_000, 1
puts "\n100,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 1_000_000, 1
puts "\n1,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 10_000_000, 1
puts "\n10,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

puts (Time.monotonic - start).total_seconds

Object Oriented implementation: same speed - 21.8 seconds
Here using a Struct (allocated on stack) is faster than using a Class (allocated on heap)

struct PalindromicGapfuls
  include Enumerable(UInt64)

  @dd : Int32

  def initialize(@digit : Int32)
    @dd = 11 * @digit                 # digit gapful divisor: 11, 22,...88, 99
  end

  def each
    (2..).select do |power|
      base    = 10_u64**(power >> 1)  # value of middle digit position: 10..
      base11  = base * 11             # value of middle two digits positions: 110..
      this_lo = base * @digit         # starting half for this digit: 10.. to  90..
      next_lo = base * (@digit + 1)   # starting half for next digit: 20.. to 100..
      this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
        left_half = front_half.to_s; right_half = left_half.reverse
        if power.odd?
          palindrome = (left_half + right_half).to_u64
          10.times do
            yield palindrome if palindrome.divisible_by?(@dd)
            palindrome += base11
          end
        else
          palindrome = (left_half.rchop + right_half).to_u64
          10.times do 
            yield palindrome if palindrome.divisible_by?(@dd)
            palindrome += base
          end  
        end
      end
    end
  end
end

start = Time.monotonic

count, keep = 20, 20
puts "First 20 palindromic gapful numbers ending with:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }
  
count, keep = 100, 15
puts "\nLast 15 of first 100 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }
     
count, keep = 1_000, 10
puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

count, keep = 100_000, 1
puts "\n100,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

count, keep = 1_000_000, 1
puts "\n1,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

count, keep = 10_000_000, 1
puts "\n10,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

puts (Time.monotonic - start).total_seconds

Original version optimized for minimal memory use: 24.6 secs

def palindromicgapfuls(digit, count, keep)
  palcnt = 0                        # count of gapful palindromes
  to_skip = count - keep            # count of unwanted values to skip
  gapfuls = [] of UInt64            # array of palindromic gapfuls
  dd = 11_u64 * digit               # digit gapful divisor: 11, 22,...88, 99
  (2..).select do |power|
    base    = 10_u64**(power >> 1)  # value of middle digit position: 10..
    base11  = base * 11             # value of middle two digits positions: 110..
    this_lo = base * digit          # starting half for this digit: 10.. to  90..
    next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
    this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
      left_half = front_half.to_s; right_half = left_half.reverse 
      if power.odd?
        palindrome = (left_half + right_half).to_u64
        10.times do
          gapfuls << palindrome if palindrome.divisible_by?(dd) && (palcnt += 1) > to_skip
          palindrome += base11
        end
      else
        palindrome = (left_half.rchop + right_half).to_u64
        10.times do
          gapfuls << palindrome if palindrome.divisible_by?(dd) && (palcnt += 1) > to_skip
          palindrome += base
        end  
      end
      return gapfuls[0...keep] unless gapfuls.size < keep
    end
  end
end

start = Time.monotonic

count, keep = 20, 20
puts "First 20 palindromic gapful numbers ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 100, 15
puts "\nLast 15 of first 100 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 1_000, 10
puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 100_000, 1
puts "\n100,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 1_000_000, 1
puts "\n1,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 10_000_000, 1
puts "\n10,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

puts (Time.monotonic - start).total_seconds

Compact version optimized for minimal memory use: 24.5 secs

def palindromicgapfuls(digit, count, keep)
  palcnt = 0                        # count of gapful palindromes
  to_skip = count - keep            # count of unwanted values to skip
  gapfuls = [] of UInt64            # array of palindromic gapfuls
  dd, base = 11_u64 * digit, 1_u64  # digit gapful divisor: 11, 22,...88, 99
  (2..).select do |power|
    base   *= 10 if power.even?     # value of middle digit position: 10..
    base11  = base * 11             # value of middle two digits positions: 110..
    this_lo = base * digit          # starting half for this digit: 10.. to  90..
    next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
    this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
      palindrome, left_half = 0_u64, front_half.to_s
      basep, right_half     = base11, left_half.reverse
      (basep = base; left_half = left_half.rchop) if power.even?
      palindrome = (left_half + right_half).to_u64
      10.times do
        gapfuls << palindrome if palindrome.divisible_by?(dd) && (palcnt += 1) > to_skip
        palindrome += basep
      end
      return gapfuls[0...keep] unless palcnt < count
    end
  end
end

start = Time.monotonic

count, keep = 20, 20
puts "First 20 palindromic gapful numbers ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }
 
count, keep = 100, 15
puts "\nLast 15 of first 100 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }
 
count, keep = 1_000, 10
puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }
 
count, keep = 100_000, 1
puts "\n100,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }
 
count, keep = 1_000_000, 1
puts "\n1,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }
 
count, keep = 10_000_000, 1
puts "\n10,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

puts (Time.monotonic - start).total_seconds

OOP version optimized for minimal memory use - 25.4 secs
It creates an output method that skips the unwanted values and only keeps/stores the desired ones.

struct PalindromicGapfuls
  include Enumerable(UInt64)

  @dd : Int32

  def initialize(@digit : Int32)
    @dd = 11 * @digit                 # digit gapful divisor: 11, 22,...88, 99
  end

  def each
    (2..).select do |power|
      base    = 10_u64**(power >> 1)  # value of middle digit position: 10..
      base11  = base * 11             # value of middle two digits positions: 110..
      this_lo = base * @digit         # starting half for this digit: 10.. to  90..
      next_lo = base * (@digit + 1)   # starting half for next digit: 20.. to 100..
      this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
        left_half = front_half.to_s; right_half = left_half.reverse 
        if power.odd?
          palindrome = (left_half + right_half).to_u64
          10.times do
            yield palindrome if palindrome.divisible_by?(@dd)
            palindrome += base11
          end
        else
          palindrome = (left_half.rchop + right_half).to_u64
          10.times do 
            yield palindrome if palindrome.divisible_by?(@dd)
            palindrome += base
          end  
        end
      end
    end
  end

  # Optimized output method: only keep desired values.
  def keep_from(count, keep)
    to_skip = (count - keep)
    kept = [] of UInt64
    each_with_index do |value, i|
      i < to_skip ? next : kept << value
      return kept if kept.size == keep
    end
  end
end

start = Time.monotonic

count, keep = 20, 20
puts "First 20 palindromic gapful numbers ending with:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 100, 15
puts "\nLast 15 of first 100 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 1_000, 10
puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 100_000, 1
puts "\n100,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 1_000_000, 1
puts "\n1,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 10_000_000, 1
puts "\n10,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

puts (Time.monotonic - start).total_seconds

Compact minimized memory version that numerically create palindromes: 9.2 secs

def palindromicgapfuls(digit, count, keep)
  palcnt = 0                        # count of gapful palindromes
  to_skip = count - keep            # count of unwanted values to skip
  gapfuls = [] of UInt64            # array of palindromic gapfuls
  dd, base = 11_u64 * digit, 1_u64  # digit gapful divisor: 11, 22,...88, 99
  (2..).select do |power|
    base   *= 10 if power.even?     # value of middle digit position: 10..
    base11  = base * 11             # value of middle two digits positions: 110..
    this_lo = base * digit          # starting half for this digit: 10.. to  90..
    next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
    this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
      basep = power.odd? ? base11 : base 
      palindrome = make_palindrome(front_half, power)
      10.times do
        gapfuls << palindrome if palindrome.divisible_by?(dd) && (palcnt += 1) > to_skip
        palindrome += basep
      end
      return gapfuls[0...keep] unless palcnt < count
    end
  end
end

def make_palindrome(front_half, power) 
  result = front_half
  result //= 10 if power.even?
  while front_half > 0
    result = result * 10 + front_half.remainder(10)
    front_half //= 10
  end
  result
end

start = Time.monotonic

count, keep = 20, 20
puts "First 20 palindromic gapful numbers ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }
 
count, keep = 100, 15
puts "\nLast 15 of first 100 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }
 
count, keep = 1_000, 10
puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }
 
count, keep = 100_000, 1
puts "\n100,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }
 
count, keep = 1_000_000, 1
puts "\n1,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }
 
count, keep = 10_000_000, 1
puts "\n10,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

puts (Time.monotonic - start).total_seconds

OOP version optimized for minimal memory use, palindromes created numerically - 9.59 secs

struct PalindromicGapfuls
    include Enumerable(UInt64)
   
    @dd : Int32
   
    def initialize(@digit : Int32)
      @dd = 11 * @digit                 # digit gapful divisor: 11, 22,...88, 99
    end
   
    def each
      (2..).select do |power|
        base    = 10_u64**(power >> 1)  # value of middle digit position: 10..
        base11  = base * 11             # value of middle two digits positions: 110..
        this_lo = base * @digit         # starting half for this digit: 10.. to  90..
        next_lo = base * (@digit + 1)   # starting half for next digit: 20.. to 100..
        this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
          basep = power.odd? ? base11 : base 
          palindrome = make_palindrome(front_half, power)
          10.times do
            yield palindrome if palindrome.divisible_by?(@dd)
            palindrome += basep
          end
        end
      end
    end

    # Optimized output method: only keep desired values.
    def keep_from(count, keep)
      to_skip = (count - keep)
      kept = [] of UInt64
      each_with_index do |value, i|
        i < to_skip ? next : kept << value
        return kept if kept.size == keep
      end
    end

    def make_palindrome(front_half, power)
      result = front_half
      result //= 10 if power.even?
      while front_half > 0
        result = result * 10 + front_half.remainder(10)
        front_half //= 10
      end
      result
    end
  end

  start = Time.monotonic
  
  count, keep = 20, 20
  puts "First 20 palindromic gapful numbers ending with:"
  1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }
  
  count, keep = 100, 15
  puts "\nLast 15 of first 100 palindromic gapful numbers ending in:"
  1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }
  
  count, keep = 1_000, 10
  puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
  1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }
  
  count, keep = 100_000, 1
  puts "\n100,000th palindromic gapful number ending with:"
  1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }
  
  count, keep = 1_000_000, 1
  puts "\n1,000,000th palindromic gapful number ending with:"
  1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }
  
  count, keep = 10_000_000, 1
  puts "\n10,000,000th palindromic gapful number ending with:"
  1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }
  
  puts (Time.monotonic - start).total_seconds
Output:
First 20 palindromic gapful numbers 100 ending with:
1 : [121, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 10901, 11011, 12221, 13431, 14641, 15851, 17171, 18381, 19591]
2 : [242, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 20702, 21912, 22022, 23232, 24442, 25652, 26862, 28182, 29392]
3 : [363, 3003, 3333, 3663, 3993, 31713, 33033, 36663, 300003, 303303, 306603, 309903, 312213, 315513, 318813, 321123, 324423, 327723, 330033, 333333]
4 : [484, 4004, 4224, 4444, 4664, 4884, 40304, 42724, 44044, 46464, 48884, 400004, 401104, 402204, 403304, 404404, 405504, 406604, 407704, 408804]
5 : [5005, 5115, 5225, 5335, 5445, 5555, 5665, 5775, 5885, 5995, 50105, 51315, 52525, 53735, 54945, 55055, 56265, 57475, 58685, 59895]
6 : [6006, 6336, 6666, 6996, 61116, 64746, 66066, 69696, 600006, 603306, 606606, 609906, 612216, 615516, 618816, 621126, 624426, 627726, 630036, 633336]
7 : [7007, 7777, 77077, 700007, 707707, 710017, 717717, 720027, 727727, 730037, 737737, 740047, 747747, 750057, 757757, 760067, 767767, 770077, 777777, 780087]
8 : [8008, 8448, 8888, 80608, 86768, 88088, 800008, 802208, 804408, 806608, 808808, 821128, 823328, 825528, 827728, 829928, 840048, 842248, 844448, 846648]
9 : [9009, 9999, 94149, 99099, 900009, 909909, 918819, 927729, 936639, 945549, 954459, 963369, 972279, 981189, 990099, 999999, 9459549, 9508059, 9557559, 9606069]

Last 15 of first 100 palindromic gapful numbers ending in:
1 : [165561, 166661, 167761, 168861, 169961, 170071, 171171, 172271, 173371, 174471, 175571, 176671, 177771, 178871, 179971]
2 : [265562, 266662, 267762, 268862, 269962, 270072, 271172, 272272, 273372, 274472, 275572, 276672, 277772, 278872, 279972]
3 : [30366303, 30399303, 30422403, 30455403, 30488403, 30511503, 30544503, 30577503, 30600603, 30633603, 30666603, 30699603, 30722703, 30755703, 30788703]
4 : [4473744, 4485844, 4497944, 4607064, 4619164, 4620264, 4632364, 4644464, 4656564, 4668664, 4681864, 4693964, 4803084, 4815184, 4827284]
5 : [565565, 566665, 567765, 568865, 569965, 570075, 571175, 572275, 573375, 574475, 575575, 576675, 577775, 578875, 579975]
6 : [60399306, 60422406, 60455406, 60488406, 60511506, 60544506, 60577506, 60600606, 60633606, 60666606, 60699606, 60722706, 60755706, 60788706, 60811806]
7 : [72299227, 72322327, 72399327, 72422427, 72499427, 72522527, 72599527, 72622627, 72699627, 72722727, 72799727, 72822827, 72899827, 72922927, 72999927]
8 : [80611608, 80622608, 80633608, 80644608, 80655608, 80666608, 80677608, 80688608, 80699608, 80800808, 80811808, 80822808, 80833808, 80844808, 80855808]
9 : [95311359, 95400459, 95499459, 95588559, 95677659, 95766759, 95855859, 95944959, 96033069, 96122169, 96211269, 96300369, 96399369, 96488469, 96577569]

Last 10 of first 1000 palindromic gapful numbers ending in:
1 : [17799771, 17800871, 17811871, 17822871, 17833871, 17844871, 17855871, 17866871, 17877871, 17888871]
2 : [27799772, 27800872, 27811872, 27822872, 27833872, 27844872, 27855872, 27866872, 27877872, 27888872]
3 : [3084004803, 3084334803, 3084664803, 3084994803, 3085225803, 3085555803, 3085885803, 3086116803, 3086446803, 3086776803]
4 : [482282284, 482414284, 482535284, 482656284, 482777284, 482898284, 482909284, 483020384, 483141384, 483262384]
5 : [57800875, 57811875, 57822875, 57833875, 57844875, 57855875, 57866875, 57877875, 57888875, 57899875]
6 : [6084004806, 6084334806, 6084664806, 6084994806, 6085225806, 6085555806, 6085885806, 6086116806, 6086446806, 6086776806]
7 : [7452992547, 7453223547, 7453993547, 7454224547, 7454994547, 7455225547, 7455995547, 7456226547, 7456996547, 7457227547]
8 : [8085995808, 8086006808, 8086116808, 8086226808, 8086336808, 8086446808, 8086556808, 8086666808, 8086776808, 8086886808]
9 : [9675005769, 9675995769, 9676886769, 9677777769, 9678668769, 9679559769, 9680440869, 9681331869, 9682222869, 9683113869]

100,000th palindromic gapful number ending with:
1 : [178788887871]
2 : [278788887872]
3 : [30878611687803]
4 : [4833326233384]
5 : [578789987875]
6 : [60878611687806]
7 : [74826144162847]
8 : [80869688696808]
9 : [96878077087869]

1,000,000th palindromic gapful number ending with:
1 : [17878799787871]
2 : [27878799787872]
3 : [3087876666787803]
4 : [483333272333384]
5 : [57878799787875]
6 : [6087876996787806]
7 : [7487226666227847]
8 : [8086969559696808]
9 : [9687870990787869]

10,000,000th palindromic gapful number ending with:
1 : [1787878888787871]
2 : [2787878888787872]
3 : [308787855558787803]
4 : [48333332623333384]
5 : [5787878998787875]
6 : [608787855558787806]
7 : [748867523325768847]
8 : [808696968869696808]
9 : [968787783387787869]

Translation of F#

Translation of: Ruby of F#


Recursive version; max memory consumption hits ~22%; comment out necessary outputs to run.
May produce: "GC Warning: Repeated allocation of very large block (appr. size xxxxxx):" messages in output.
For Crystal >= 0.34, the operations &+, &*, and &** turnoff default compiler overflow checks.

System: I7-6700HQ, 3.5GHz, 16GB, Linux Kernel 5.9.10, Crystal 0.35.1
Run as: $ crystal run --release fsharp2crystal.cr
Best Time: 29.455717914 secs
class PalNo
  @digit : UInt64
  @dd : UInt64
  
  def initialize(digit : Int32)
    @digit, @l, @dd = digit.to_u64, 3, 11u64 * digit
  end

  def fN(n : Int32)
    return [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] of UInt64 if n == 1
    return [0, 11, 22, 33, 44, 55, 66, 77, 88, 99] of UInt64 if n == 2
    a = [] of UInt64
    ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9] of UInt64).product(fN(n - 2)) do |g0, g1|
      a << g0.to_u64 &* 10u64 &** (n - 1) &+ g0.to_u64 &+ 10u64 &* g1.to_u64
    end
    return a
  end

  def show(count, keep)
    to_skip, palcnt, pals = count - keep, 0, [] of UInt64
    while palcnt < count
      fN(@l - 2).each do |g|
        pal = @digit * 10u64 &** (@l - 1) + @digit + 10u64 &* g
        pals << pal if pal % @dd == 0 && (palcnt += 1) > to_skip
        break if palcnt - to_skip == keep
      end
      @l += 1
    end
    print pals; puts
  end
end

start = Time.monotonic 

(1..9).each { |digit| PalNo.new(digit).show(20, 20) }; puts "####"
(1..9).each { |digit| PalNo.new(digit).show(100, 15) }; puts "####"
(1..9).each { |digit| PalNo.new(digit).show(1000, 10) }; puts "####"
(1..9).each { |digit| PalNo.new(digit).show(100_000, 1) }; puts "####"
(1..9).each { |digit| PalNo.new(digit).show(1_000_000, 1) }; puts "####"
(1..9).each { |digit| PalNo.new(digit).show(10_000_000, 1) }; puts "####"

puts (Time.monotonic - start).total_seconds
Output:
[121, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 10901, 11011, 12221, 13431, 14641, 15851, 17171, 18381, 19591]
[242, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 20702, 21912, 22022, 23232, 24442, 25652, 26862, 28182, 29392]
[363, 3003, 3333, 3663, 3993, 31713, 33033, 36663, 300003, 303303, 306603, 309903, 312213, 315513, 318813, 321123, 324423, 327723, 330033, 333333]
[484, 4004, 4224, 4444, 4664, 4884, 40304, 42724, 44044, 46464, 48884, 400004, 401104, 402204, 403304, 404404, 405504, 406604, 407704, 408804]
[5005, 5115, 5225, 5335, 5445, 5555, 5665, 5775, 5885, 5995, 50105, 51315, 52525, 53735, 54945, 55055, 56265, 57475, 58685, 59895]
[6006, 6336, 6666, 6996, 61116, 64746, 66066, 69696, 600006, 603306, 606606, 609906, 612216, 615516, 618816, 621126, 624426, 627726, 630036, 633336]
[7007, 7777, 77077, 700007, 707707, 710017, 717717, 720027, 727727, 730037, 737737, 740047, 747747, 750057, 757757, 760067, 767767, 770077, 777777, 780087]
[8008, 8448, 8888, 80608, 86768, 88088, 800008, 802208, 804408, 806608, 808808, 821128, 823328, 825528, 827728, 829928, 840048, 842248, 844448, 846648]
[9009, 9999, 94149, 99099, 900009, 909909, 918819, 927729, 936639, 945549, 954459, 963369, 972279, 981189, 990099, 999999, 9459549, 9508059, 9557559, 9606069]
####
[165561, 166661, 167761, 168861, 169961, 170071, 171171, 172271, 173371, 174471, 175571, 176671, 177771, 178871, 179971]
[265562, 266662, 267762, 268862, 269962, 270072, 271172, 272272, 273372, 274472, 275572, 276672, 277772, 278872, 279972]
[30366303, 30399303, 30422403, 30455403, 30488403, 30511503, 30544503, 30577503, 30600603, 30633603, 30666603, 30699603, 30722703, 30755703, 30788703]
[4473744, 4485844, 4497944, 4607064, 4619164, 4620264, 4632364, 4644464, 4656564, 4668664, 4681864, 4693964, 4803084, 4815184, 4827284]
[565565, 566665, 567765, 568865, 569965, 570075, 571175, 572275, 573375, 574475, 575575, 576675, 577775, 578875, 579975]
[60399306, 60422406, 60455406, 60488406, 60511506, 60544506, 60577506, 60600606, 60633606, 60666606, 60699606, 60722706, 60755706, 60788706, 60811806]
[72299227, 72322327, 72399327, 72422427, 72499427, 72522527, 72599527, 72622627, 72699627, 72722727, 72799727, 72822827, 72899827, 72922927, 72999927]
[80611608, 80622608, 80633608, 80644608, 80655608, 80666608, 80677608, 80688608, 80699608, 80800808, 80811808, 80822808, 80833808, 80844808, 80855808]
[95311359, 95400459, 95499459, 95588559, 95677659, 95766759, 95855859, 95944959, 96033069, 96122169, 96211269, 96300369, 96399369, 96488469, 96577569]
####
[17799771, 17800871, 17811871, 17822871, 17833871, 17844871, 17855871, 17866871, 17877871, 17888871]
[27799772, 27800872, 27811872, 27822872, 27833872, 27844872, 27855872, 27866872, 27877872, 27888872]
[3084004803, 3084334803, 3084664803, 3084994803, 3085225803, 3085555803, 3085885803, 3086116803, 3086446803, 3086776803]
[482282284, 482414284, 482535284, 482656284, 482777284, 482898284, 482909284, 483020384, 483141384, 483262384]
[57800875, 57811875, 57822875, 57833875, 57844875, 57855875, 57866875, 57877875, 57888875, 57899875]
[6084004806, 6084334806, 6084664806, 6084994806, 6085225806, 6085555806, 6085885806, 6086116806, 6086446806, 6086776806]
[7452992547, 7453223547, 7453993547, 7454224547, 7454994547, 7455225547, 7455995547, 7456226547, 7456996547, 7457227547]
[8085995808, 8086006808, 8086116808, 8086226808, 8086336808, 8086446808, 8086556808, 8086666808, 8086776808, 8086886808]
[9675005769, 9675995769, 9676886769, 9677777769, 9678668769, 9679559769, 9680440869, 9681331869, 9682222869, 9683113869]
####
[178788887871]
[278788887872]
[30878611687803]
[4833326233384]
[578789987875]
[60878611687806]
[74826144162847]
[80869688696808]
[96878077087869]
####
[17878799787871]
[27878799787872]
[3087876666787803]
[483333272333384]
[57878799787875]
[6087876996787806]
[7487226666227847]
[8086969559696808]
[9687870990787869]
####
[1787878888787871]
[2787878888787872]
[308787855558787803]
[48333332623333384]
[5787878998787875]
[608787855558787806]
[748867523325768847]
[808696968869696808]
[968787783387787869]
####

Delphi

Works with: Delphi version 6.0

This is among the faster versions of the problem. It solves the standard and optional tasks in 0.7 seconds.

{-------------Library Routines ----------------------------------------------------------------}
procedure GetDigits(N: integer; var IA: TIntegerDynArray);
{Get an array of the integers in a number}
{Numbers returned from least to most significant}
var T,I,DC: integer;
begin
DC:=Trunc(Log10(N))+1;
SetLength(IA,DC);
for I:=0 to DC-1 do
    begin
    T:=N mod 10;
    N:=N div 10;
    IA[I]:=T;
    end;
end;

function GetNKPalindrome(N,K: int64): int64;
{Get Nth Palindrome with K-number of digits}
{N = Left half, Right = Reversed(left) a  }
var Temp,H1,H2,I: int64;
begin
{Get left digit count - depends on K being odd/even}
if (K and 1)<>0 then Temp:=K div 2 else Temp:=K div 2 - 1;
{Get power of 10 digits}
H1:=trunc(Power(10, Temp));
{Add in N}
H1:=H1 + N - 1;
H2:=H1;
{ If K is odd, truncate the last digit}
if (k and 1)<>0 then H2:=H2 div 10;
{Reverse H2 and add to H1}
while H2>0 do
	begin
	H1:=H1 * 10 + (H2 mod 10);
	H2:=H2 div 10;
	end;
Result:=H1;
end;



function GetPalDigits(N: int64; var Offset: int64): integer;
{Get number of digits and offset for Nth Palindrome}
{Used to feed GetNKPalindrome to find Nth Palindrome}
var R1,R2,Step: int64;
begin
R1:=0;
{Step through number of digits}
for Result:=1 to 36 do
	begin
	{Calculate new Range step: 9,9,90,90,90,900,900...}
	if (Result and 1)<>0 then Step:=9 * Trunc(Power(10,Result div 2));
	{Calculate R2}
	R2:=(R1 + Step)-1;
	{See if N falls between R1 and R2}
	if (N>=R1) and (N<=R2) then
		begin
		{Calculate offset and exit}
		Offset:=(N - R1)+1;
		exit;
		end;
	R1:=R2+1;
	end;
end;


function GetNthPalindrome(N: integer): int64;
{Get the Nth Palindrome number}
var D,Off: int64;
begin
D:=GetPalDigits(N,Off);
Result:=GetNKPalindrome(Off,D);
end;



procedure GetPalindromeList(Count: integer; var Pals: TInt64DynArray);
{Get a list of the first "Count"-number of palinedromes (Fast)}
var D,I,Inx,Max: integer;
begin
{Set array length}
SetLength(Pals,Count);
Inx:=0;
{Handle palindromes up to 18 digits}
for D:=1 to 18 do
	begin
	{Get maximum count for palindrom of D digits}
	if (D and 1)=1 then Max:=Trunc(Power(10,(D + 1) div 2))
	else Max:=Trunc(Power(10,D div 2));
	{Step through all the numbers half the size of the number of digits}
	for I:=1 to Max-Max div 10 do
		begin
		{Store palindrome}
		Pals[Inx]:=GetNKPalindrome(I,D);
		Inc(Inx);
		{Exit when array is full}
		if Inx>=Count then break;
		end;
	end;
end;


{------------------------------------------------------------------------------------------------}


function IsGapful(N: int64): boolean;
{Return true if number is "GapFul"}
{GapFul = combined first/last}
{ digits divide evenly into N}
var Digits: TIntegerDynArray;
var I: int64;
begin
Result:=False;
{Must be 3 digit number}
if N<100 then exit;
{Put digits in array}
GetDigits(N,Digits);
{Form number from first and last digit}
I:=Digits[0] + 10 * Digits[High(Digits)];
{Does it divide evenly into N}
Result:=(N mod I)=0;
end;


function HasEndDigit(N: int64; Digit: integer): boolean;
{Return true if last digit match specified "Digit"}
var LD: integer;
begin
LD:=N mod 10;
Result:=LD=Digit;
end;


function GetGapfulPalinEndSet(Max, EndDigit: integer): string;
{Get first Max number of Gapful Palindromes with specified EndDigit}
var I,Cnt,P: integer;
begin
Result:='Ending in: '+IntToStr(EndDigit)+CRLF;
Cnt:=0;
{Get palindromes and test them}
for I:=0 to high(Integer) do
	begin
	{Get next palinedrome}
	P:=GetNthPalindrome(I);
	{Is Gapful and has specified EndDigit}
	if IsGapFul(P) and HasEndDigit(P,EndDigit) then
		begin
		Inc(Cnt);
		{Display it}
		Result:=Result+Format('%8d',[P]);
		if (Cnt mod 5)=0 then Result:=Result+CRLF;
		{Break when finished}
		if Cnt>=Max then break;
		end;
	end;
end;



function LastGapfulPalinEndSet(Count,Last,EndDigit: integer): string;
{Get Gapful Palindromes with specified EndDigit}
{Get "Last" number of items out of a total "Count" }
var I,Inx: integer;
var P: int64;
var IA: TInt64DynArray;
begin
SetLength(IA,Count);
Result:='Ending in: '+IntToStr(EndDigit)+CRLF;
{Get count number of items}
Inx:=0;
for I:=0 to Count-1  do
	begin
	{Keep getting palindromes until}
	{they Gapful and have specified last digit}
	repeat
		begin
		P:=GetNthPalindrome(Inx);
		Inc(Inx);
		end
	until IsGapFul(P) and HasEndDigit(P,EndDigit);
	{Save item}
	IA[I]:=P;
	end;
{Get last items}
for I:=Count-Last to Count-1 do
	begin
	Result:=Result+Format('%12d',[IA[I]]);
	if (I mod 5)=4 then Result:=Result+CRLF;
	end;
end;



procedure ShowPalindromicGapfuls(Memo: TMemo);
var S: string;
begin
Memo.Lines.Add('First 20 palindromic gapful numbers');

Memo.Lines.Add(GetGapFulPalinEndSet(20,1));
Memo.Lines.Add(GetGapFulPalinEndSet(20,2));
Memo.Lines.Add(GetGapFulPalinEndSet(20,3));
Memo.Lines.Add(GetGapFulPalinEndSet(20,4));
Memo.Lines.Add(GetGapFulPalinEndSet(20,5));
Memo.Lines.Add(GetGapFulPalinEndSet(20,6));
Memo.Lines.Add(GetGapFulPalinEndSet(20,7));
Memo.Lines.Add(GetGapFulPalinEndSet(20,8));
Memo.Lines.Add(GetGapFulPalinEndSet(20,9));

Memo.Lines.Add('86th to 100th');
Memo.Lines.Add(LastGapFulPalinEndSet(100,15,1));
Memo.Lines.Add(LastGapFulPalinEndSet(100,15,2));
Memo.Lines.Add(LastGapFulPalinEndSet(100,15,3));
Memo.Lines.Add(LastGapFulPalinEndSet(100,15,4));
Memo.Lines.Add(LastGapFulPalinEndSet(100,15,5));
Memo.Lines.Add(LastGapFulPalinEndSet(100,15,6));
Memo.Lines.Add(LastGapFulPalinEndSet(100,15,7));
Memo.Lines.Add(LastGapFulPalinEndSet(100,15,8));
Memo.Lines.Add(LastGapFulPalinEndSet(100,15,9));

Memo.Lines.Add('991st to 1000th:');
Memo.Lines.Add(LastGapFulPalinEndSet(1000,10,1));
Memo.Lines.Add(LastGapFulPalinEndSet(1000,10,2));
Memo.Lines.Add(LastGapFulPalinEndSet(1000,10,3));
Memo.Lines.Add(LastGapFulPalinEndSet(1000,10,4));
Memo.Lines.Add(LastGapFulPalinEndSet(1000,10,5));
Memo.Lines.Add(LastGapFulPalinEndSet(1000,10,6));
Memo.Lines.Add(LastGapFulPalinEndSet(1000,10,7));
Memo.Lines.Add(LastGapFulPalinEndSet(1000,10,8));
Memo.Lines.Add(LastGapFulPalinEndSet(1000,10,9));
end;
Output:
First 20 palindromic gapful numbers
Ending in: 1
     121    1001    1111    1221    1331
    1441    1551    1661    1771    1881
    1991   10901   11011   12221   13431
   14641   15851   17171   18381   19591

Ending in: 2
     242    2002    2112    2222    2332
    2442    2552    2662    2772    2882
    2992   20702   21912   22022   23232
   24442   25652   26862   28182   29392

Ending in: 3
     363    3003    3333    3663    3993
   31713   33033   36663  300003  303303
  306603  309903  312213  315513  318813
  321123  324423  327723  330033  333333

Ending in: 4
     484    4004    4224    4444    4664
    4884   40304   42724   44044   46464
   48884  400004  401104  402204  403304
  404404  405504  406604  407704  408804

Ending in: 5
    5005    5115    5225    5335    5445
    5555    5665    5775    5885    5995
   50105   51315   52525   53735   54945
   55055   56265   57475   58685   59895

Ending in: 6
    6006    6336    6666    6996   61116
   64746   66066   69696  600006  603306
  606606  609906  612216  615516  618816
  621126  624426  627726  630036  633336

Ending in: 7
    7007    7777   77077  700007  707707
  710017  717717  720027  727727  730037
  737737  740047  747747  750057  757757
  760067  767767  770077  777777  780087

Ending in: 8
    8008    8448    8888   80608   86768
   88088  800008  802208  804408  806608
  808808  821128  823328  825528  827728
  829928  840048  842248  844448  846648

Ending in: 9
    9009    9999   94149   99099  900009
  909909  918819  927729  936639  945549
  954459  963369  972279  981189  990099
  999999 9459549 9508059 9557559 9606069

86th to 100th
Ending in: 1
      165561      166661      167761      168861      169961
      170071      171171      172271      173371      174471
      175571      176671      177771      178871      179971

Ending in: 2
      265562      266662      267762      268862      269962
      270072      271172      272272      273372      274472
      275572      276672      277772      278872      279972

Ending in: 3
    30366303    30399303    30422403    30455403    30488403
    30511503    30544503    30577503    30600603    30633603
    30666603    30699603    30722703    30755703    30788703

Ending in: 4
     4473744     4485844     4497944     4607064     4619164
     4620264     4632364     4644464     4656564     4668664
     4681864     4693964     4803084     4815184     4827284

Ending in: 5
      565565      566665      567765      568865      569965
      570075      571175      572275      573375      574475
      575575      576675      577775      578875      579975

Ending in: 6
    60399306    60422406    60455406    60488406    60511506
    60544506    60577506    60600606    60633606    60666606
    60699606    60722706    60755706    60788706    60811806

Ending in: 7
    72299227    72322327    72399327    72422427    72499427
    72522527    72599527    72622627    72699627    72722727
    72799727    72822827    72899827    72922927    72999927

Ending in: 8
    80611608    80622608    80633608    80644608    80655608
    80666608    80677608    80688608    80699608    80800808
    80811808    80822808    80833808    80844808    80855808

Ending in: 9
    95311359    95400459    95499459    95588559    95677659
    95766759    95855859    95944959    96033069    96122169
    96211269    96300369    96399369    96488469    96577569

991st to 1000th:
Ending in: 1
    17799771    17800871    17811871    17822871    17833871
    17844871    17855871    17866871    17877871    17888871

Ending in: 2
    27799772    27800872    27811872    27822872    27833872
    27844872    27855872    27866872    27877872    27888872

Ending in: 3
  3084004803  3084334803  3084664803  3084994803  3085225803
  3085555803  3085885803  3086116803  3086446803  3086776803

Ending in: 4
   482282284   482414284   482535284   482656284   482777284
   482898284   482909284   483020384   483141384   483262384

Ending in: 5
    57800875    57811875    57822875    57833875    57844875
    57855875    57866875    57877875    57888875    57899875

Ending in: 6
  6084004806  6084334806  6084664806  6084994806  6085225806
  6085555806  6085885806  6086116806  6086446806  6086776806

Ending in: 7
  7452992547  7453223547  7453993547  7454224547  7454994547
  7455225547  7455995547  7456226547  7456996547  7457227547

Ending in: 8
  8085995808  8086006808  8086116808  8086226808  8086336808
  8086446808  8086556808  8086666808  8086776808  8086886808

Ending in: 9
  9675005769  9675995769  9676886769  9677777769  9678668769
  9679559769  9680440869  9681331869  9682222869  9683113869

Elapsed Time: 763.788 ms.

F#

// Palindromic Gapful Numbers . Nigel Galloway: December 3rd., 2020
let rec fN g l=seq{match l with 3->yield! seq{for n in 0L..9L->g*100L+g+n*10L}
                               |4->yield! seq{for n in 0L..9L->g*1000L+g+n*110L}
                               |_->yield! seq{for n in 0L..9L do for i in fN n (l-2)->i*10L+g+g*(pown 10L (l-1))}}

let rcGf n=let rec rcGf g=seq{yield! fN n g|>Seq.filter(fun g->g%(10L*n+n)=0L); yield! rcGf(g+1)} in rcGf 3

[1L..9L]|>Seq.iter(fun n->rcGf n|>Seq.take 20|>Seq.iter(printf "%d ");printfn "");printfn "#####"
[1L..9L]|>Seq.iter(fun n->rcGf n|>Seq.skip 85|>Seq.take 15|>Seq.iter(printf "%d ");printfn "");printfn "#####"
[1L..9L]|>Seq.iter(fun n->rcGf n|>Seq.skip 990|>Seq.take 10|>Seq.iter(printf "%d ");printfn "");printfn "#####"
Output:
121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591
242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392
363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333
484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804
5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895
6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336
7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087
8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648
9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069
#####
165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971
265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972
30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284 
565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975
60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569
#####
17799771 17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871
27799772 27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872
3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
482282284 482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384
57800875 57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875
6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869
#####

Factor

USING: formatting fry io kernel lists lists.lazy locals math
math.functions math.ranges math.text.utils prettyprint sequences ;
IN: rosetta-code.palindromic-gapful-numbers

! Palindromic numbers are relatively rare compared to gapful
! numbers, so our strategy for finding palindromic gapful
! numbers is to filter gapful numbers from palindromic numbers.

! Palindromic numbers can be generated directly rather than
! filtered or identified from the natural numbers. This is a
! significant speedup since palindromic numbers are relatively
! rare in the natural numbers.

! Here I have used a generation method similar to
! https://www.geeksforgeeks.org/generate-palindromic-numbers-less-n/

! Create a palindrome from its base natural number.
! e.g.  321 t -> 32123
!       321 f -> 321123
: create-palindrome ( n odd? -- m )
    dupd [ 10 /i ] when swap [ over 0 > ]
    [ 10 * [ 10 /mod ] [ + ] bi* ] while nip ;

! Create an infinite lazy list of palindromic numbers starting
! at 100.
: palindromes ( -- l )
    1 lfrom [
        10 swap ^ dup 10 * [a,b)
        [ [ t create-palindrome ] map ]
        [ [ f create-palindrome ] map ] bi
        [ sequence>list ] bi@ lappend
    ] lmap-lazy lconcat ;

! Is an integer gapful?
: gapful? ( n -- ? )
    dup 1 digit-groups [ first ] [ last 10 * + ] bi divisor? ;

! Create an infinite lazy list of gapful palindromes.
: gapful-palindromes ( -- l ) palindromes [ gapful? ] lfilter ;

:: show-palindromic-gapfuls ( last of -- )
    gapful-palindromes :> nums
    last of
    "~~==[ Last  %d  of  %d  palindromic gapful numbers starting at 100 ]==~~\n"
    printf 9 [1,b] [| d |
        of nums [ 10 mod d = ] lfilter ltake list>array
        last tail* d pprint ": " write [ pprint bl ] each nl
    ] each nl ;

20 20    ! part 1
15 100   ! part 2
10 1000  ! part 3  (Optional)
[ show-palindromic-gapfuls ] 2tri@
Output:
~~==[ Last  20  of  20  palindromic gapful numbers starting at 100 ]==~~
1: 121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591 
2: 242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392 
3: 363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333 
4: 484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804 
5: 5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895 
6: 6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336 
7: 7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087 
8: 8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648 
9: 9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069 

~~==[ Last  15  of  100  palindromic gapful numbers starting at 100 ]==~~
1: 165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971 
2: 265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972 
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703 
4: 4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284 
5: 565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975 
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806 
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927 
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808 
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569 

~~==[ Last  10  of  1000  palindromic gapful numbers starting at 100 ]==~~
1: 17799771 17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871 
2: 27799772 27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872 
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803 
4: 482282284 482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384 
5: 57800875 57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875 
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806 
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547 
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808 
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869 

FreeBASIC

Time-consuming brute-force solution with only a few speedups...

function is_gapful( n as uinteger ) as boolean
    if n<100 then return false
    dim as string ns = str(n)
    dim as uinteger gap = 10*val(mid(ns,1,1)) + val(mid(ns,len(ns),1))
    if n mod gap = 0 then return true else return false
end function

function is_palindrome( n as uinteger ) as boolean
    dim as string ns = str(n)
    for i as uinteger = 1 to len(ns)\2
        if mid(ns,i,1) <> mid(ns,len(ns)+1-i,1) then return false
    next i
    return true
end function

function padto( n as uinteger, s as integer ) as string
    dim as string outstr=""
    dim as integer k = len(str(n))
    for i as integer = 1 to s-k
        outstr = " " + outstr
    next i
    return outstr + str(n)
end function

sub print_range( yays() as uinteger, first as uinteger, last as uinteger)
    dim as string outstr
    for i as uinteger = first to last
        outstr = padto(i,4)+"  :  "
        for d as uinteger = 1 to 9
            outstr += padto(yays(d,i), 11)
        next d
        print outstr
    next i
end sub
 
#define is_yay(n) (is_gapful(n) and is_palindrome(n))
#define log10(n) log(n)*0.43429448190325182765112891891660508229

dim as uinteger yays(1 to 9, 1 to 1000), nyays(1 to 9), num = 99, fd
do
    num += 1 : fd = val(left(str(num),1))
    if fd = 0 then continue do   'no paligap will have 0 as leading digit
    if nyays(fd) = 1000 then 
        num = (fd+1)*10^int(log10(num))
    end if
    if is_yay(num) then
        nyays(fd) += 1
        yays(fd, nyays(fd)) = num
    end if
    for y as uinteger = 1 to 9
        if nyays(y) < 1000 then  continue do
    next y
    exit do
loop

'excessive output requirements for such a simple task
print_range(yays(), 1, 20)
print_range(yays(), 86, 100)
print_range(yays(), 991, 1000)
Output:
   1  :          121        242        363        484       5005       6006       7007       8008       9009
   2  :         1001       2002       3003       4004       5115       6336       7777       8448       9999
   3  :         1111       2112       3333       4224       5225       6666      77077       8888      94149
   4  :         1221       2222       3663       4444       5335       6996     700007      80608      99099
   5  :         1331       2332       3993       4664       5445      61116     707707      86768     900009
   6  :         1441       2442      31713       4884       5555      64746     710017      88088     909909
   7  :         1551       2552      33033      40304       5665      66066     717717     800008     918819
   8  :         1661       2662      36663      42724       5775      69696     720027     802208     927729
   9  :         1771       2772     300003      44044       5885     600006     727727     804408     936639
  10  :         1881       2882     303303      46464       5995     603306     730037     806608     945549
  11  :         1991       2992     306603      48884      50105     606606     737737     808808     954459
  12  :        10901      20702     309903     400004      51315     609906     740047     821128     963369
  13  :        11011      21912     312213     401104      52525     612216     747747     823328     972279
  14  :        12221      22022     315513     402204      53735     615516     750057     825528     981189
  15  :        13431      23232     318813     403304      54945     618816     757757     827728     990099
  16  :        14641      24442     321123     404404      55055     621126     760067     829928     999999
  17  :        15851      25652     324423     405504      56265     624426     767767     840048    9459549
  18  :        17171      26862     327723     406604      57475     627726     770077     842248    9508059
  19  :        18381      28182     330033     407704      58685     630036     777777     844448    9557559
  20  :        19591      29392     333333     408804      59895     633336     780087     846648    9606069
  86  :       165561     265562   30366303    4473744     565565   60399306   72299227   80611608   95311359
  87  :       166661     266662   30399303    4485844     566665   60422406   72322327   80622608   95400459
  88  :       167761     267762   30422403    4497944     567765   60455406   72399327   80633608   95499459
  89  :       168861     268862   30455403    4607064     568865   60488406   72422427   80644608   95588559
  90  :       169961     269962   30488403    4619164     569965   60511506   72499427   80655608   95677659
  91  :       170071     270072   30511503    4620264     570075   60544506   72522527   80666608   95766759
  92  :       171171     271172   30544503    4632364     571175   60577506   72599527   80677608   95855859
  93  :       172271     272272   30577503    4644464     572275   60600606   72622627   80688608   95944959
  94  :       173371     273372   30600603    4656564     573375   60633606   72699627   80699608   96033069
  95  :       174471     274472   30633603    4668664     574475   60666606   72722727   80800808   96122169
  96  :       175571     275572   30666603    4681864     575575   60699606   72799727   80811808   96211269
  97  :       176671     276672   30699603    4693964     576675   60722706   72822827   80822808   96300369
  98  :       177771     277772   30722703    4803084     577775   60755706   72899827   80833808   96399369
  99  :       178871     278872   30755703    4815184     578875   60788706   72922927   80844808   96488469
 100  :       179971     279972   30788703    4827284     579975   60811806   72999927   80855808   96577569
 991  :     17799771   27799772 3084004803  482282284   57800875 6084004806 7452992547 8085995808 9675005769
 992  :     17800871   27800872 3084334803  482414284   57811875 6084334806 7453223547 8086006808 9675995769
 993  :     17811871   27811872 3084664803  482535284   57822875 6084664806 7453993547 8086116808 9676886769
 994  :     17822871   27822872 3084994803  482656284   57833875 6084994806 7454224547 8086226808 9677777769
 995  :     17833871   27833872 3085225803  482777284   57844875 6085225806 7454994547 8086336808 9678668769
 996  :     17844871   27844872 3085555803  482898284   57855875 6085555806 7455225547 8086446808 9679559769
 997  :     17855871   27855872 3085885803  482909284   57866875 6085885806 7455995547 8086556808 9680440869
 998  :     17866871   27866872 3086116803  483020384   57877875 6086116806 7456226547 8086666808 9681331869
 999  :     17877871   27877872 3086446803  483141384   57888875 6086446806 7456996547 8086776808 9682222869
1000  :     17888871   27888872 3086776803  483262384   57899875 6086776806 7457227547 8086886808 9683113869

Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website.

In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.

Go

This uses the same strategy as the Factor entry i.e. to generate all palindromic numbers in order and then test whether they're gapful or not.

To keep the Pascal entry company, I've extended the search to the first 10 million such numbers for each of the nine sets.

package main

import "fmt"

func reverse(s uint64) uint64 {
    e := uint64(0)
    for s > 0 {
        e = e*10 + (s % 10)
        s /= 10
    }
    return e
}

func commatize(n uint) string {
    s := fmt.Sprintf("%d", n)
    le := len(s)
    for i := le - 3; i >= 1; i -= 3 {
        s = s[0:i] + "," + s[i:]
    }
    return s
}

func ord(n uint) string {
    var suffix string
    if n > 10 && ((n-11)%100 == 0 || (n-12)%100 == 0 || (n-13)%100 == 0) {
        suffix = "th"
    } else {
        switch n % 10 {
        case 1:
            suffix = "st"
        case 2:
            suffix = "nd"
        case 3:
            suffix = "rd"
        default:
            suffix = "th"
        }
    }
    return fmt.Sprintf("%s%s", commatize(n), suffix)
}

func main() {
    const max = 10_000_000
    data := [][3]uint{{1, 20, 7}, {86, 100, 8}, {991, 1000, 10}, {9995, 10000, 12}, {1e5, 1e5, 14},
        {1e6, 1e6, 16}, {1e7, 1e7, 18}}
    results := make(map[uint][]uint64)
    for _, d := range data {
        for i := d[0]; i <= d[1]; i++ {
            results[i] = make([]uint64, 9)
        }
    }
    var p uint64
outer:
    for d := uint64(1); d < 10; d++ {
        count := uint(0)
        pow := uint64(1)
        fl := d * 11
        for nd := 3; nd < 20; nd++ {
            slim := (d + 1) * pow
            for s := d * pow; s < slim; s++ {
                e := reverse(s)
                mlim := uint64(1)
                if nd%2 == 1 {
                    mlim = 10
                }
                for m := uint64(0); m < mlim; m++ {
                    if nd%2 == 0 {
                        p = s*pow*10 + e
                    } else {
                        p = s*pow*100 + m*pow*10 + e
                    }
                    if p%fl == 0 {
                        count++
                        if _, ok := results[count]; ok {
                            results[count][d-1] = p
                        }
                        if count == max {
                            continue outer
                        }
                    }
                }
            }
            if nd%2 == 1 {
                pow *= 10
            }
        }
    }

    for _, d := range data {
        if d[0] != d[1] {
            fmt.Printf("%s to %s palindromic gapful numbers (> 100) ending with:\n", ord(d[0]), ord(d[1]))
        } else {
            fmt.Printf("%s palindromic gapful number (> 100) ending with:\n", ord(d[0]))
        }
        for i := 1; i <= 9; i++ {
            fmt.Printf("%d: ", i)
            for j := d[0]; j <= d[1]; j++ {
                fmt.Printf("%*d ", d[2], results[j][i-1])
            }
            fmt.Println()
        }
        fmt.Println()
    }
}
Output:
1st to 20th palindromic gapful numbers (> 100) ending with:
1:     121    1001    1111    1221    1331    1441    1551    1661    1771    1881    1991   10901   11011   12221   13431   14641   15851   17171   18381   19591 
2:     242    2002    2112    2222    2332    2442    2552    2662    2772    2882    2992   20702   21912   22022   23232   24442   25652   26862   28182   29392 
3:     363    3003    3333    3663    3993   31713   33033   36663  300003  303303  306603  309903  312213  315513  318813  321123  324423  327723  330033  333333 
4:     484    4004    4224    4444    4664    4884   40304   42724   44044   46464   48884  400004  401104  402204  403304  404404  405504  406604  407704  408804 
5:    5005    5115    5225    5335    5445    5555    5665    5775    5885    5995   50105   51315   52525   53735   54945   55055   56265   57475   58685   59895 
6:    6006    6336    6666    6996   61116   64746   66066   69696  600006  603306  606606  609906  612216  615516  618816  621126  624426  627726  630036  633336 
7:    7007    7777   77077  700007  707707  710017  717717  720027  727727  730037  737737  740047  747747  750057  757757  760067  767767  770077  777777  780087 
8:    8008    8448    8888   80608   86768   88088  800008  802208  804408  806608  808808  821128  823328  825528  827728  829928  840048  842248  844448  846648 
9:    9009    9999   94149   99099  900009  909909  918819  927729  936639  945549  954459  963369  972279  981189  990099  999999 9459549 9508059 9557559 9606069 

86th to 100th palindromic gapful numbers (> 100) ending with:
1:   165561   166661   167761   168861   169961   170071   171171   172271   173371   174471   175571   176671   177771   178871   179971 
2:   265562   266662   267762   268862   269962   270072   271172   272272   273372   274472   275572   276672   277772   278872   279972 
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703 
4:  4473744  4485844  4497944  4607064  4619164  4620264  4632364  4644464  4656564  4668664  4681864  4693964  4803084  4815184  4827284 
5:   565565   566665   567765   568865   569965   570075   571175   572275   573375   574475   575575   576675   577775   578875   579975 
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806 
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927 
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808 
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569 

991st to 1,000th palindromic gapful numbers (> 100) ending with:
1:   17799771   17800871   17811871   17822871   17833871   17844871   17855871   17866871   17877871   17888871 
2:   27799772   27800872   27811872   27822872   27833872   27844872   27855872   27866872   27877872   27888872 
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803 
4:  482282284  482414284  482535284  482656284  482777284  482898284  482909284  483020384  483141384  483262384 
5:   57800875   57811875   57822875   57833875   57844875   57855875   57866875   57877875   57888875   57899875 
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806 
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547 
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808 
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869 

9,995th to 10,000th palindromic gapful numbers (> 100) ending with:
1:   1787447871   1787557871   1787667871   1787777871   1787887871   1787997871 
2:   2787447872   2787557872   2787667872   2787777872   2787887872   2787997872 
3: 308757757803 308760067803 308763367803 308766667803 308769967803 308772277803 
4:  48326662384  48327872384  48329192384  48330303384  48331513384  48332723384 
5:   5787447875   5787557875   5787667875   5787777875   5787887875   5787997875 
6: 608760067806 608763367806 608766667806 608769967806 608772277806 608775577806 
7: 746951159647 746958859647 746961169647 746968869647 746971179647 746978879647 
8: 808690096808 808691196808 808692296808 808693396808 808694496808 808695596808 
9: 968688886869 968697796869 968706607869 968715517869 968724427869 968733337869 

100,000th palindromic gapful number (> 100) ending with:
1:   178788887871 
2:   278788887872 
3: 30878611687803 
4:  4833326233384 
5:   578789987875 
6: 60878611687806 
7: 74826144162847 
8: 80869688696808 
9: 96878077087869 

1,000,000th palindromic gapful number (> 100) ending with:
1:   17878799787871 
2:   27878799787872 
3: 3087876666787803 
4:  483333272333384 
5:   57878799787875 
6: 6087876996787806 
7: 7487226666227847 
8: 8086969559696808 
9: 9687870990787869 

10,000,000th palindromic gapful number (> 100) ending with:
1:   1787878888787871 
2:   2787878888787872 
3: 308787855558787803 
4:  48333332623333384 
5:   5787878998787875 
6: 608787855558787806 
7: 748867523325768847 
8: 808696968869696808 
9: 968787783387787869 

Haskell

Brute Force

import Control.Monad (guard)

palindromic :: Int -> Bool
palindromic n = d == reverse d
 where
  d = show n

gapful :: Int -> Bool
gapful n = n `rem` firstLastDigit == 0
 where
  firstLastDigit = read [head asDigits, last asDigits]
  asDigits = show n

result :: Int -> [Int]
result d = do 
  x <- [(d+100),(d+110)..]
  guard $ palindromic x && gapful x
  pure x
 
showSets :: (Int -> String) -> IO ()
showSets r = go 1 
 where
  go n = if n <= 9 then do
    putStrLn (show n ++ ": " ++ r n)
    go (succ n)
    else pure ()

main :: IO ()
main = do 
  putStrLn "\nFirst 20 palindromic gapful numbers ending in:"
  showSets (show . take 20 . result)
  putStrLn "\nLast 15 of first 100 palindromic gapful numbers ending in:"
  showSets (show . drop 85 . take 100 . result)
  putStrLn "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
  showSets (show . drop 990 . take 1000 . result)
  putStrLn "\ndone."

Optimized

Here the approach is to generate a series of palindromes.

import Data.List     (sort, unfoldr)
import Control.Monad (guard)

gapful :: Int -> Bool
gapful n = n `rem` firstLastDigit n == 0
 where
  firstLastDigit = (\xs -> head xs * 10 + last xs) . reverse
    . unfoldr (\n -> guard (n /= 0) >> pure (n `mod` 10, n `div` 10))
  
toPalinDrome :: Int -> [Int]
toPalinDrome n = filter ((&&) . (> 100) <*> gapful) [go n n, go n (n `div` 10)]
  where
    go p 0 = p
    go p n'' = go (p * 10 + (n'' `mod` 10)) (n'' `div` 10)
 
gapfulPalindromes :: [Int]
gapfulPalindromes = (sort . (=<<) toPalinDrome) [1 .. 99999]
 
endsWith :: Int -> [Int]
endsWith n = filter ((n ==) . (`mod` 10)) gapfulPalindromes
 
showSets :: (String, [Int] -> [Int]) -> String
showSets (k, r) =
  k ++
  " palindromic gapful numbers ending in:\n" ++
  unlines ((<*>) ((++) . show) ((": " ++) . show . r . endsWith) <$> [1 .. 9])
 
main :: IO ()
main =
  mapM_
    (putStrLn . showSets)
    [ ("First 20", take 20)
    , ("Last 15 of first 100", drop 85 . take 100)
    , ("Last 10 of first 1000", drop 990 . take 1000)
    ]
Output:
First 20 palindromic gapful numbers ending in:
1: [121,1001,1111,1221,1331,1441,1551,1661,1771,1881,1991,10901,11011,12221,13431,14641,15851,17171,18381,19591]
2: [242,2002,2112,2222,2332,2442,2552,2662,2772,2882,2992,20702,21912,22022,23232,24442,25652,26862,28182,29392]
3: [363,3003,3333,3663,3993,31713,33033,36663,300003,303303,306603,309903,312213,315513,318813,321123,324423,327723,330033,333333]
4: [484,4004,4224,4444,4664,4884,40304,42724,44044,46464,48884,400004,401104,402204,403304,404404,405504,406604,407704,408804]
5: [5005,5115,5225,5335,5445,5555,5665,5775,5885,5995,50105,51315,52525,53735,54945,55055,56265,57475,58685,59895]
6: [6006,6336,6666,6996,61116,64746,66066,69696,600006,603306,606606,609906,612216,615516,618816,621126,624426,627726,630036,633336]
7: [7007,7777,77077,700007,707707,710017,717717,720027,727727,730037,737737,740047,747747,750057,757757,760067,767767,770077,777777,780087]
8: [8008,8448,8888,80608,86768,88088,800008,802208,804408,806608,808808,821128,823328,825528,827728,829928,840048,842248,844448,846648]
9: [9009,9999,94149,99099,900009,909909,918819,927729,936639,945549,954459,963369,972279,981189,990099,999999,9459549,9508059,9557559,9606069]

Last 15 of first 100 palindromic gapful numbers ending in:
1: [165561,166661,167761,168861,169961,170071,171171,172271,173371,174471,175571,176671,177771,178871,179971]
2: [265562,266662,267762,268862,269962,270072,271172,272272,273372,274472,275572,276672,277772,278872,279972]
3: [30366303,30399303,30422403,30455403,30488403,30511503,30544503,30577503,30600603,30633603,30666603,30699603,30722703,30755703,30788703]
4: [4473744,4485844,4497944,4607064,4619164,4620264,4632364,4644464,4656564,4668664,4681864,4693964,4803084,4815184,4827284]
5: [565565,566665,567765,568865,569965,570075,571175,572275,573375,574475,575575,576675,577775,578875,579975]
6: [60399306,60422406,60455406,60488406,60511506,60544506,60577506,60600606,60633606,60666606,60699606,60722706,60755706,60788706,60811806]
7: [72299227,72322327,72399327,72422427,72499427,72522527,72599527,72622627,72699627,72722727,72799727,72822827,72899827,72922927,72999927]
8: [80611608,80622608,80633608,80644608,80655608,80666608,80677608,80688608,80699608,80800808,80811808,80822808,80833808,80844808,80855808]
9: [95311359,95400459,95499459,95588559,95677659,95766759,95855859,95944959,96033069,96122169,96211269,96300369,96399369,96488469,96577569]

Last 10 of first 1000 palindromic gapful numbers ending in:
1: [17799771,17800871,17811871,17822871,17833871,17844871,17855871,17866871,17877871,17888871]
2: [27799772,27800872,27811872,27822872,27833872,27844872,27855872,27866872,27877872,27888872]
3: [3084004803,3084334803,3084664803,3084994803,3085225803,3085555803,3085885803,3086116803,3086446803,3086776803]
4: [482282284,482414284,482535284,482656284,482777284,482898284,482909284,483020384,483141384,483262384]
5: [57800875,57811875,57822875,57833875,57844875,57855875,57866875,57877875,57888875,57899875]
6: [6084004806,6084334806,6084664806,6084994806,6085225806,6085555806,6085885806,6086116806,6086446806,6086776806]
7: [7452992547,7453223547,7453993547,7454224547,7454994547,7455225547,7455995547,7456226547,7456996547,7457227547]
8: [8085995808,8086006808,8086116808,8086226808,8086336808,8086446808,8086556808,8086666808,8086776808,8086886808]
9: [9675005769,9675995769,9676886769,9677777769,9678668769,9679559769,9680440869,9681331869,9682222869,9683113869]

done.

J

Part 1:

   task1 =: {. (((= 10&#:) # ]) palindromic_multiples_of_eleven)
   palindromic_multiples_of_eleven =: [: (#~ (99&< *. palindrome&>)) (11*i.100001)&*
   palindrome =: (-: |.)@:":

   20 task1&> >:i.9
 121 1001  1111   1221   1331   1441   1551   1661   1771   1881   1991  10901  11011  12221  13431  14641   15851   17171   18381   19591
 242 2002  2112   2222   2332   2442   2552   2662   2772   2882   2992  20702  21912  22022  23232  24442   25652   26862   28182   29392
 363 3003  3333   3663   3993  31713  33033  36663 300003 303303 306603 309903 312213 315513 318813 321123  324423  327723  330033  333333
 484 4004  4224   4444   4664   4884  40304  42724  44044  46464  48884 400004 401104 402204 403304 404404  405504  406604  407704  408804
5005 5115  5225   5335   5445   5555   5665   5775   5885   5995  50105  51315  52525  53735  54945  55055   56265   57475   58685   59895
6006 6336  6666   6996  61116  64746  66066  69696 600006 603306 606606 609906 612216 615516 618816 621126  624426  627726  630036  633336
7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067  767767  770077  777777  780087
8008 8448  8888  80608  86768  88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928  840048  842248  844448  846648
9009 9999 94149  99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069

Part 2:

palindromify=: [: , ((,~ |.@}.) ; (,~ |.))&>
gapful=: (0 = (|~ ({.,{:)&.(10&#.inv)))&>
task2_cartesian_products=: [: , [: { ((i. 10) ; (>: i. 9)) #~ ,&1
task2_palindromes=: [: 10&#.&> [: palindromify task2_cartesian_products
task2_gapfuls=: [: /:~ [: ; [: (#~ gapful)@task2_palindromes&.> >:@i.
   palindromify { ;: 'abc XY'   NB. demonstration
+---+----+---+----+---+----+---+----+---+----+---+----+
|XaX|XaaX|YaY|YaaY|XbX|XbbX|YbY|YbbY|XcX|XccX|YcY|YccY|
+---+----+---+----+---+----+---+----+---+----+---+----+


   NB. task2 solution

   A=: task2_gapfuls 4  NB. A is an ordered vector of the 3 to 10 digit gapful palindromes
   B=: (</.~ 10&#:) A   NB. B are A grouped by last (first) digit

   (# , {:)&> B  NB. tally and tail of each group
12120 1999999991
12120 2999999992
 4044 3999999993
 6061 4899999984
12120 5999999995
 4044 6999999996
 1785 7999449997
 3031 8889999888
 1352 9999999999

   (_15 {. 100&{.)&> B  NB. the last 15 of the first hundred
  165561   166661   167761   168861   169961   170071   171171   172271   173371   174471   175571   176671   177771   178871   179971
  265562   266662   267762   268862   269962   270072   271172   272272   273372   274472   275572   276672   277772   278872   279972
30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
 4473744  4485844  4497944  4607064  4619164  4620264  4632364  4644464  4656564  4668664  4681864  4693964  4803084  4815184  4827284
  565565   566665   567765   568865   569965   570075   571175   572275   573375   574475   575575   576675   577775   578875   579975
60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

   (_10 {. 1000&{.)&> B  NB. the last 10 of the first 1000
  17799771   17800871   17811871   17822871   17833871   17844871   17855871   17866871   17877871   17888871
  27799772   27800872   27811872   27822872   27833872   27844872   27855872   27866872   27877872   27888872
3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
 482282284  482414284  482535284  482656284  482777284  482898284  482909284  483020384  483141384  483262384
  57800875   57811875   57822875   57833875   57844875   57855875   57866875   57877875   57888875   57899875
6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869


   NB. timing
   NB. B matches the rearranged expression
   timespacex'assert B -: (</.~ 10&#:) task2_gapfuls 4'  NB. approximate timing for the substantial part of the effort
0.551638 7.2343e7

   NB. full memory, Thinkpad W540

   JVERSION
Engine: j901/j64avx2/windows
Release-c: commercial/2020-01-11T13:29:14
Library: 9.01.20
Platform: Win 64
Installer: J901 install
InstallPath: c:/program files/j901
Contact: www.jsoftware.com

Java

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class PalindromicGapfulNumbers {

    public static void main(String[] args) {
        System.out.println("First 20 palindromic gapful numbers ending in:");
        displayMap(getPalindromicGapfulEnding(20, 20));

        System.out.printf("%nLast 15 of first 100 palindromic gapful numbers ending in:%n");
        displayMap(getPalindromicGapfulEnding(15, 100));

        System.out.printf("%nLast 10 of first 1000 palindromic gapful numbers ending in:%n");
        displayMap(getPalindromicGapfulEnding(10, 1000));
    }
    
    private static void displayMap(Map<Integer,List<Long>> map) {
        for ( int key = 1 ; key <= 9 ; key++ ) {
            System.out.println(key + " : " + map.get(key));
        }
    }
    
    public static Map<Integer,List<Long>> getPalindromicGapfulEnding(int countReturned, int firstHowMany) {
        Map<Integer,List<Long>> map = new HashMap<>();
        Map<Integer,Integer> mapCount = new HashMap<>();
        for ( int i = 1 ; i <= 9 ; i++ ) {
            map.put(i, new ArrayList<>());
            mapCount.put(i, 0);
        }
        boolean notPopulated = true;
        for ( long n = 101 ; notPopulated ; n = nextPalindrome(n) ) {
            if ( isGapful(n) ) {
                int index = (int) (n % 10);
                if ( mapCount.get(index) < firstHowMany ) {
                    map.get(index).add(n);
                    mapCount.put(index, mapCount.get(index) + 1);
                    if ( map.get(index).size() > countReturned ) {
                        map.get(index).remove(0);
                    }
                }
                boolean finished = true;
                for ( int i = 1 ; i <= 9 ; i++ ) {
                    if ( mapCount.get(i) < firstHowMany ) {
                        finished = false;
                        break;
                    }
                }
                if ( finished ) {
                    notPopulated = false;
                }
            }
        }
        return map;
    }
    
    public static boolean isGapful(long n) {
        String s = Long.toString(n);
        return n % Long.parseLong("" + s.charAt(0) + s.charAt(s.length()-1)) == 0;
    }
    
    public static int length(long n) {
        int length = 0;
        while ( n > 0 ) {
            length += 1;
            n /= 10;
        }
        return length;
    }
    
    public static long nextPalindrome(long n) {
        int length = length(n);
        if ( length % 2 == 0 ) {
            length /= 2;
            while ( length > 0 ) {
                n /= 10;
                length--;
            }
            n += 1;
            if ( powerTen(n) ) {
                return Long.parseLong(n + reverse(n/10));
            }
            return Long.parseLong(n + reverse(n));
        }
        length = (length - 1) / 2;
        while ( length > 0 ) {
            n /= 10;
            length--;
        }
        n += 1;
        if ( powerTen(n) ) {
            return Long.parseLong(n + reverse(n/100));
        }
        return Long.parseLong(n + reverse(n/10));
    }
    
    private static boolean powerTen(long n) {
        while ( n > 9 && n % 10 == 0 ) {
            n /= 10;
        }
        return n == 1;
    }
        
    private static String reverse(long n) {
        return (new StringBuilder(n + "")).reverse().toString();
    }

}
Output:
First 20 palindromic gapful numbers ending in:
1 : [121, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 10901, 11011, 12221, 13431, 14641, 15851, 17171, 18381, 19591]
2 : [242, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 20702, 21912, 22022, 23232, 24442, 25652, 26862, 28182, 29392]
3 : [363, 3003, 3333, 3663, 3993, 31713, 33033, 36663, 300003, 303303, 306603, 309903, 312213, 315513, 318813, 321123, 324423, 327723, 330033, 333333]
4 : [484, 4004, 4224, 4444, 4664, 4884, 40304, 42724, 44044, 46464, 48884, 400004, 401104, 402204, 403304, 404404, 405504, 406604, 407704, 408804]
5 : [5005, 5115, 5225, 5335, 5445, 5555, 5665, 5775, 5885, 5995, 50105, 51315, 52525, 53735, 54945, 55055, 56265, 57475, 58685, 59895]
6 : [6006, 6336, 6666, 6996, 61116, 64746, 66066, 69696, 600006, 603306, 606606, 609906, 612216, 615516, 618816, 621126, 624426, 627726, 630036, 633336]
7 : [7007, 7777, 77077, 700007, 707707, 710017, 717717, 720027, 727727, 730037, 737737, 740047, 747747, 750057, 757757, 760067, 767767, 770077, 777777, 780087]
8 : [8008, 8448, 8888, 80608, 86768, 88088, 800008, 802208, 804408, 806608, 808808, 821128, 823328, 825528, 827728, 829928, 840048, 842248, 844448, 846648]
9 : [9009, 9999, 94149, 99099, 900009, 909909, 918819, 927729, 936639, 945549, 954459, 963369, 972279, 981189, 990099, 999999, 9459549, 9508059, 9557559, 9606069]

Last 15 of first 100 palindromic gapful numbers ending in:
1 : [165561, 166661, 167761, 168861, 169961, 170071, 171171, 172271, 173371, 174471, 175571, 176671, 177771, 178871, 179971]
2 : [265562, 266662, 267762, 268862, 269962, 270072, 271172, 272272, 273372, 274472, 275572, 276672, 277772, 278872, 279972]
3 : [30366303, 30399303, 30422403, 30455403, 30488403, 30511503, 30544503, 30577503, 30600603, 30633603, 30666603, 30699603, 30722703, 30755703, 30788703]
4 : [4473744, 4485844, 4497944, 4607064, 4619164, 4620264, 4632364, 4644464, 4656564, 4668664, 4681864, 4693964, 4803084, 4815184, 4827284]
5 : [565565, 566665, 567765, 568865, 569965, 570075, 571175, 572275, 573375, 574475, 575575, 576675, 577775, 578875, 579975]
6 : [60399306, 60422406, 60455406, 60488406, 60511506, 60544506, 60577506, 60600606, 60633606, 60666606, 60699606, 60722706, 60755706, 60788706, 60811806]
7 : [72299227, 72322327, 72399327, 72422427, 72499427, 72522527, 72599527, 72622627, 72699627, 72722727, 72799727, 72822827, 72899827, 72922927, 72999927]
8 : [80611608, 80622608, 80633608, 80644608, 80655608, 80666608, 80677608, 80688608, 80699608, 80800808, 80811808, 80822808, 80833808, 80844808, 80855808]
9 : [95311359, 95400459, 95499459, 95588559, 95677659, 95766759, 95855859, 95944959, 96033069, 96122169, 96211269, 96300369, 96399369, 96488469, 96577569]

Last 10 of first 1000 palindromic gapful numbers ending in:
1 : [17799771, 17800871, 17811871, 17822871, 17833871, 17844871, 17855871, 17866871, 17877871, 17888871]
2 : [27799772, 27800872, 27811872, 27822872, 27833872, 27844872, 27855872, 27866872, 27877872, 27888872]
3 : [3084004803, 3084334803, 3084664803, 3084994803, 3085225803, 3085555803, 3085885803, 3086116803, 3086446803, 3086776803]
4 : [482282284, 482414284, 482535284, 482656284, 482777284, 482898284, 482909284, 483020384, 483141384, 483262384]
5 : [57800875, 57811875, 57822875, 57833875, 57844875, 57855875, 57866875, 57877875, 57888875, 57899875]
6 : [6084004806, 6084334806, 6084664806, 6084994806, 6085225806, 6085555806, 6085885806, 6086116806, 6086446806, 6086776806]
7 : [7452992547, 7453223547, 7453993547, 7454224547, 7454994547, 7455225547, 7455995547, 7456226547, 7456996547, 7457227547]
8 : [8085995808, 8086006808, 8086116808, 8086226808, 8086336808, 8086446808, 8086556808, 8086666808, 8086776808, 8086886808]
9 : [9675005769, 9675995769, 9676886769, 9677777769, 9678668769, 9679559769, 9680440869, 9681331869, 9682222869, 9683113869]

jq

Adapted from Crystal ("Direct Generation of Numbers")

Works with jq, the C implementation of jq

Works with gojq, the Go implementation of jq

The task as defined here (see "def task:") highlights the relative strengths and weakness of the C and Go implementations of jq.

In general, jq supports the efficient processing of streams, and the program presented below is accordingly based on a function that generates a stream of the numbers of interest.

The C implementation of jq is careful about memory management and has no problem completing the task. However this implementation relies on IEEE 754 arithmetic and thus the accuracy of results for integers with more than 15 digits cannot be relied on, and indeed the last line in the transcript is erroneous, as indicated by the annotation.

The Go implementation of jq, by contrast, though offering support for unbounded-precision integer arithmetic, is not so careful about memory management, and the program exhausts memory fairly quickly, as also indicated in the annotated transcript below.

### Generic functions
def power($a;$b): reduce range(0;$b) as $i (1; . * $a);

# Emit the reverse of the string $s
def reverse($s):
  $s | tostring | split("") | reverse | join("");

def skip($n; stream):
  foreach stream as $s (-1;
      if . == $n then . else .+1 end;
      select(. == $n) | $s);

### Palindromic gapful numbers

# Output: a stream of non-trivial palindromic gapful numbers ending in the specified digit
def palindromicgapfuls($digit):
  {emit: null,
   dd: (11 * $digit),                             # digit gapful divisor: 11, 22,...88, 99
   power: 1}
  | foreach range(0; infinite) as $_ (.;
      .power += 1
      | (power(10; .power / 2 | floor)) as $base  # value of middle digit position: 10..
      | ($base * 11) as $base11                   # value of middle two digits positions: 110..
      | ($base * $digit) as $this_lo              # starting half for this digit: 10.. to  90..
      | ($base * ($digit + 1)) as $next_lo        # starting half for next digit: 20.. to 100..
    
      | foreach range($this_lo; $next_lo; 10) as $front_half (.;  # d_00; d_10; d_20; ...
          ($front_half|tostring) as $left_half
          | reverse($left_half) as $right_half
          | if .power%2 == 1
            then .palindrome = (($left_half + $right_half) | tonumber)
            | foreach range(0;10) as $i (.; 
                .emit = if .palindrome % .dd == 0
                        then .palindrome
                        else null
                        end
                | .palindrome += $base11 )
            else .palindrome = ((($left_half[:-1]) + $right_half) | tonumber)
            | foreach range(0;10) as $i (.; 
                .emit = if .palindrome % .dd == 0
                        then .palindrome
                        else null
                        end
                | .palindrome += $base )
            end ) )
  | select(.emit).emit ;

def palindromicgapfuls($count; $keep):
  range(1; 10) as $digit
  | "\($digit) : \([limit($keep; skip($count - $keep; palindromicgapfuls($digit)))])" ;

def task:
  "First 20 non-trivial palindromic gapful numbers ending with:",
   palindromicgapfuls(20; 20),

  "\nLast 15 of first 100 non-trivial palindromic gapful numbers ending in:",
   palindromicgapfuls(100; 15),

  "\nLast 10 of first 1000 non-trivial palindromic gapful numbers ending in:",
   palindromicgapfuls(1000; 10),

  "\n100,000th non-trivial palindromic gapful number ending with:",
   palindromicgapfuls(100000; 1),

  "\n1,000,000th non-trivial palindromic gapful number ending with:",
   palindromicgapfuls(1000000; 1);

task
Output:

The output has been annotated, as explained above.

First 20 non-trivial palindromic gapful numbers ending with:
1 : [121,1001,1111,1221,1331,1441,1551,1661,1771,1881,1991,10901,11011,12221,13431,14641,15851,17171,18381,19591]
2 : [242,2002,2112,2222,2332,2442,2552,2662,2772,2882,2992,20702,21912,22022,23232,24442,25652,26862,28182,29392]
3 : [363,3003,3333,3663,3993,31713,33033,36663,300003,303303,306603,309903,312213,315513,318813,321123,324423,327723,330033,333333]
4 : [484,4004,4224,4444,4664,4884,40304,42724,44044,46464,48884,400004,401104,402204,403304,404404,405504,406604,407704,408804]
5 : [5005,5115,5225,5335,5445,5555,5665,5775,5885,5995,50105,51315,52525,53735,54945,55055,56265,57475,58685,59895]
6 : [6006,6336,6666,6996,61116,64746,66066,69696,600006,603306,606606,609906,612216,615516,618816,621126,624426,627726,630036,633336]
7 : [7007,7777,77077,700007,707707,710017,717717,720027,727727,730037,737737,740047,747747,750057,757757,760067,767767,770077,777777,780087]
8 : [8008,8448,8888,80608,86768,88088,800008,802208,804408,806608,808808,821128,823328,825528,827728,829928,840048,842248,844448,846648]
9 : [9009,9999,94149,99099,900009,909909,918819,927729,936639,945549,954459,963369,972279,981189,990099,999999,9459549,9508059,9557559,9606069]

Last 15 of first 100 non-trivial palindromic gapful numbers ending in:
1 : [165561,166661,167761,168861,169961,170071,171171,172271,173371,174471,175571,176671,177771,178871,179971]
2 : [265562,266662,267762,268862,269962,270072,271172,272272,273372,274472,275572,276672,277772,278872,279972]
3 : [30366303,30399303,30422403,30455403,30488403,30511503,30544503,30577503,30600603,30633603,30666603,30699603,30722703,30755703,30788703]
4 : [4473744,4485844,4497944,4607064,4619164,4620264,4632364,4644464,4656564,4668664,4681864,4693964,4803084,4815184,4827284]
5 : [565565,566665,567765,568865,569965,570075,571175,572275,573375,574475,575575,576675,577775,578875,579975]
6 : [60399306,60422406,60455406,60488406,60511506,60544506,60577506,60600606,60633606,60666606,60699606,60722706,60755706,60788706,60811806]
7 : [72299227,72322327,72399327,72422427,72499427,72522527,72599527,72622627,72699627,72722727,72799727,72822827,72899827,72922927,72999927]
8 : [80611608,80622608,80633608,80644608,80655608,80666608,80677608,80688608,80699608,80800808,80811808,80822808,80833808,80844808,80855808]
9 : [95311359,95400459,95499459,95588559,95677659,95766759,95855859,95944959,96033069,96122169,96211269,96300369,96399369,96488469,96577569]

Last 10 of first 1000 non-trivial palindromic gapful numbers ending in:
1 : [17799771,17800871,17811871,17822871,17833871,17844871,17855871,17866871,17877871,17888871]
2 : [27799772,27800872,27811872,27822872,27833872,27844872,27855872,27866872,27877872,27888872]
3 : [3084004803,3084334803,3084664803,3084994803,3085225803,3085555803,3085885803,3086116803,3086446803,3086776803]
4 : [482282284,482414284,482535284,482656284,482777284,482898284,482909284,483020384,483141384,483262384]
5 : [57800875,57811875,57822875,57833875,57844875,57855875,57866875,57877875,57888875,57899875]
6 : [6084004806,6084334806,6084664806,6084994806,6085225806,6085555806,6085885806,6086116806,6086446806,6086776806]
7 : [7452992547,7453223547,7453993547,7454224547,7454994547,7455225547,7455995547,7456226547,7456996547,7457227547]
8 : [8085995808,8086006808,8086116808,8086226808,8086336808,8086446808,8086556808,8086666808,8086776808,8086886808]
9 : [9675005769,9675995769,9676886769,9677777769,9678668769,9679559769,9680440869,9681331869,9682222869,9683113869]

100,000th non-trivial palindromic gapful number ending with:
1 : [178788887871]
2 : [278788887872]
3 : [30878611687803]
4 : [4833326233384]
5 : [578789987875]
6 : [60878611687806]
7 : [74826144162847]
8 : [80869688696808]
9 : [96878077087869]

1,000,000th palindromic gapful number ending with:
1 : [17878799787871]
2 : [27878799787872]
3 : [3087876666787803]
4 : [483333272333384]
5 : [57878799787875]
6 : [6087876996787806]
#### gojq program terminated ####
7 : [7487226666227847]
8 : [8086969559696808]
9 : [97487364246378480]  #### wrong

Julia

import Base.iterate, Base.IteratorSize, Base.IteratorEltype

struct Palindrome x1::UInt8; x2::UInt8; outer::UInt8; end
Base.IteratorSize(p::Palindrome) = Base.IsInfinite()
Base.IteratorEltype(g::Palindrome) = Vector{Int8}

function Base.iterate(p::Palindrome, state=(UInt8[p.x1]))
    arr, len = [p.outer; state; p.outer], length(state)
    if all(c -> c == p.x2, state)
        return arr, fill(p.x1, len + 1)
    end
    for i in (len+1)÷2:-1:1
        if state[i] < p.x2
            state[len - i + 1] = state[i] = state[i] + one(UInt8)
            return arr, state
        else
            state[len - i + 1] = state[i] = p.x1
        end
    end
    state[1] += one(UInt8)
    push!(state, state[1])
    return arr, state
end

asint(s) = foldl((i, j) -> 10i + j, s)
isgapful(a) = mod(asint(a), a[1] * 11) == 0
GapfulPalindrome(i) = Iterators.filter(isgapful, Iterators.take(Palindrome(0, 9, i), 100000000000))

function testpal()
    for (lastones, outof) in [(20, 20), (15, 100), (10, 1000), (10, 10000), (10, 100000), (10, 1000000), (10, 10000000)]
        @time begin
            println("\nLast digit | Last $lastones of $outof palindromic gapful numbers from 100\n",
                "-----------|----------------------------------------------------------------------------------------------------------------")
            output = fill("", 9)
            Threads.@threads for i in 1:9
                gplist = sort!(asint.(collect(Iterators.take(GapfulPalindrome(i), outof))))
                output[i] = "     $i        " * string(gplist[end-lastones+1:end]) * "\n"
            end
            foreach(print, output)
        end
    end
end

testpal()
Output:
Last digit | Last 20 of 20 palindromic gapful numbers from 100
-----------|------------------------------------------------------------------------------------------------------------------------
     1        [121, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 10901, 11011, 12221, 13431, 14641, 15851, 17171, 18381, 19591]
     2        [242, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 20702, 21912, 22022, 23232, 24442, 25652, 26862, 28182, 29392]
     3        [363, 3003, 3333, 3663, 3993, 31713, 33033, 36663, 300003, 303303, 306603, 309903, 312213, 315513, 318813, 321123, 324423, 327723, 330033, 333333]
     4        [484, 4004, 4224, 4444, 4664, 4884, 40304, 42724, 44044, 46464, 48884, 400004, 401104, 402204, 403304, 404404, 405504, 406604, 407704, 408804]
     5        [5005, 5115, 5225, 5335, 5445, 5555, 5665, 5775, 5885, 5995, 50105, 51315, 52525, 53735, 54945, 55055, 56265, 57475, 58685, 59895]
     6        [6006, 6336, 6666, 6996, 61116, 64746, 66066, 69696, 600006, 603306, 606606, 609906, 612216, 615516, 618816, 621126, 624426, 627726, 630036, 633336]
     7        [7007, 7777, 77077, 700007, 707707, 710017, 717717, 720027, 727727, 730037, 737737, 740047, 747747, 750057, 757757, 760067, 767767, 770077, 777777, 780087]
     8        [8008, 8448, 8888, 80608, 86768, 88088, 800008, 802208, 804408, 806608, 808808, 821128, 823328, 825528, 827728, 829928, 840048, 842248, 844448, 846648]
     9        [9009, 9999, 94149, 99099, 900009, 909909, 918819, 927729, 936639, 945549, 954459, 963369, 972279, 981189, 990099, 999999, 9459549, 9508059, 9557559, 9606069]
  0.623229 seconds (1.68 M allocations: 85.926 MiB, 2.02% gc time)

Last digit | Last 15 of 100 palindromic gapful numbers from 100
-----------|------------------------------------------------------------------------------------------------------------------------
     1        [165561, 166661, 167761, 168861, 169961, 170071, 171171, 172271, 173371, 174471, 175571, 176671, 177771, 178871, 179971]
     2        [265562, 266662, 267762, 268862, 269962, 270072, 271172, 272272, 273372, 274472, 275572, 276672, 277772, 278872, 279972]
     3        [30366303, 30399303, 30422403, 30455403, 30488403, 30511503, 30544503, 30577503, 30600603, 30633603, 30666603, 30699603, 30722703, 30755703, 30788703]
     4        [4473744, 4485844, 4497944, 4607064, 4619164, 4620264, 4632364, 4644464, 4656564, 4668664, 4681864, 4693964, 4803084, 4815184, 4827284]
     5        [565565, 566665, 567765, 568865, 569965, 570075, 571175, 572275, 573375, 574475, 575575, 576675, 577775, 578875, 579975]
     6        [60399306, 60422406, 60455406, 60488406, 60511506, 60544506, 60577506, 60600606, 60633606, 60666606, 60699606, 60722706, 60755706, 60788706, 60811806]
     7        [72299227, 72322327, 72399327, 72422427, 72499427, 72522527, 72599527, 72622627, 72699627, 72722727, 72799727, 72822827, 72899827, 72922927, 72999927]
     8        [80611608, 80622608, 80633608, 80644608, 80655608, 80666608, 80677608, 80688608, 80699608, 80800808, 80811808, 80822808, 80833808, 80844808, 80855808]
     9        [95311359, 95400459, 95499459, 95588559, 95677659, 95766759, 95855859, 95944959, 96033069, 96122169, 96211269, 96300369, 96399369, 96488469, 96577569]
  0.011659 seconds (125.64 k allocations: 4.389 MiB)

Last digit | Last 10 of 1000 palindromic gapful numbers from 100
-----------|------------------------------------------------------------------------------------------------------------------------
     1        [17799771, 17800871, 17811871, 17822871, 17833871, 17844871, 17855871, 17866871, 17877871, 17888871]
     2        [27799772, 27800872, 27811872, 27822872, 27833872, 27844872, 27855872, 27866872, 27877872, 27888872]
     3        [3084004803, 3084334803, 3084664803, 3084994803, 3085225803, 3085555803, 3085885803, 3086116803, 3086446803, 3086776803]
     4        [482282284, 482414284, 482535284, 482656284, 482777284, 482898284, 482909284, 483020384, 483141384, 483262384]
     5        [57800875, 57811875, 57822875, 57833875, 57844875, 57855875, 57866875, 57877875, 57888875, 57899875]
     6        [6084004806, 6084334806, 6084664806, 6084994806, 6085225806, 6085555806, 6085885806, 6086116806, 6086446806, 6086776806]
     7        [7452992547, 7453223547, 7453993547, 7454224547, 7454994547, 7455225547, 7455995547, 7456226547, 7456996547, 7457227547]
     8        [8085995808, 8086006808, 8086116808, 8086226808, 8086336808, 8086446808, 8086556808, 8086666808, 8086776808, 8086886808]
     9        [9675005769, 9675995769, 9676886769, 9677777769, 9678668769, 9679559769, 9680440869, 9681331869, 9682222869, 9683113869]
  0.121723 seconds (1.31 M allocations: 45.342 MiB, 23.28% gc time)

Last digit | Last 10 of 10000 palindromic gapful numbers from 100
-----------|------------------------------------------------------------------------------------------------------------------------
     1        [1787007871, 1787117871, 1787227871, 1787337871, 1787447871, 1787557871, 1787667871, 1787777871, 1787887871, 1787997871]
     2        [2787007872, 2787117872, 2787227872, 2787337872, 2787447872, 2787557872, 2787667872, 2787777872, 2787887872, 2787997872]
     3        [308745547803, 308748847803, 308751157803, 308754457803, 308757757803, 308760067803, 308763367803, 308766667803, 308769967803, 308772277803]
     4        [48322922384, 48323032384, 48324242384, 48325452384, 48326662384, 48327872384, 48329192384, 48330303384, 48331513384, 48332723384]
     5        [5787007875, 5787117875, 5787227875, 5787337875, 5787447875, 5787557875, 5787667875, 5787777875, 5787887875, 5787997875]
     6        [608748847806, 608751157806, 608754457806, 608757757806, 608760067806, 608763367806, 608766667806, 608769967806, 608772277806, 608775577806]
     7        [746931139647, 746938839647, 746941149647, 746948849647, 746951159647, 746958859647, 746961169647, 746968869647, 746971179647, 746978879647]
     8        [808686686808, 808687786808, 808688886808, 808689986808, 808690096808, 808691196808, 808692296808, 808693396808, 808694496808, 808695596808]
     9        [968652256869, 968661166869, 968670076869, 968679976869, 968688886869, 968697796869, 968706607869, 968715517869, 968724427869, 968733337869]
  1.194631 seconds (13.03 M allocations: 452.216 MiB, 19.09% gc time)

Last digit | Last 10 of 100000 palindromic gapful numbers from 100
-----------|------------------------------------------------------------------------------------------------------------------------
     1        [178779977871, 178780087871, 178781187871, 178782287871, 178783387871, 178784487871, 178785587871, 178786687871, 178787787871, 178788887871]
     2        [278779977872, 278780087872, 278781187872, 278782287872, 278783387872, 278784487872, 278785587872, 278786687872, 278787787872, 278788887872]
     3        [30878344387803, 30878377387803, 30878400487803, 30878433487803, 30878466487803, 30878499487803, 30878522587803, 30878555587803, 30878588587803, 30878611687803]
     4        [4833228223384, 4833241423384, 4833253523384, 4833265623384, 4833277723384, 4833289823384, 4833290923384, 4833302033384, 4833314133384, 4833326233384]
     5        [578780087875, 578781187875, 578782287875, 578783387875, 578784487875, 578785587875, 578786687875, 578787787875, 578788887875, 578789987875]
     6        [60878344387806, 60878377387806, 60878400487806, 60878433487806, 60878466487806, 60878499487806, 60878522587806, 60878555587806, 60878588587806, 60878611687806]
     7        [74825233252847, 74825333352847, 74825433452847, 74825533552847, 74825633652847, 74825733752847, 74825833852847, 74825933952847, 74826044062847, 74826144162847]
     8        [80869599596808, 80869600696808, 80869611696808, 80869622696808, 80869633696808, 80869644696808, 80869655696808, 80869666696808, 80869677696808, 80869688696808]
     9        [96877266277869, 96877355377869, 96877444477869, 96877533577869, 96877622677869, 96877711777869, 96877800877869, 96877899877869, 96877988977869, 96878077087869]
 10.614688 seconds (129.23 M allocations: 4.349 GiB, 14.81% gc time)

Last digit | Last 10 of 1000000 palindromic gapful numbers from 100
-----------|------------------------------------------------------------------------------------------------------------------------
     1        [17878700787871, 17878711787871, 17878722787871, 17878733787871, 17878744787871, 17878755787871, 17878766787871, 17878777787871, 17878788787871, 17878799787871]
     2        [27878700787872, 27878711787872, 27878722787872, 27878733787872, 27878744787872, 27878755787872, 27878766787872, 27878777787872, 27878788787872, 27878799787872]
     3        [3087873993787803, 3087874224787803, 3087874554787803, 3087874884787803, 3087875115787803, 3087875445787803, 3087875775787803, 3087876006787803, 3087876336787803, 3087876666787803]
     4        [483332292233384, 483332303233384, 483332424233384, 483332545233384, 483332666233384, 483332787233384, 483332919233384, 483333030333384, 483333151333384, 483333272333384]
     5        [57878700787875, 57878711787875, 57878722787875, 57878733787875, 57878744787875, 57878755787875, 57878766787875, 57878777787875, 57878788787875, 57878799787875]
     6        [6087874224787806, 6087874554787806, 6087874884787806, 6087875115787806, 6087875445787806, 6087875775787806, 6087876006787806, 6087876336787806, 6087876666787806, 6087876996787806]
     7        [7487217557127847, 7487218558127847, 7487219559127847, 7487220660227847, 7487221661227847, 7487222662227847, 7487223663227847, 7487224664227847, 7487225665227847, 7487226666227847]
     8        [8086968668696808, 8086968778696808, 8086968888696808, 8086968998696808, 8086969009696808, 8086969119696808, 8086969229696808, 8086969339696808, 8086969449696808, 8086969559696808]
     9        [9687862882687869, 9687863773687869, 9687864664687869, 9687865555687869, 9687866446687869, 9687867337687869, 9687868228687869, 9687869119687869, 9687870000787869, 9687870990787869]
114.847779 seconds (1.28 G allocations: 43.170 GiB, 19.29% gc time)

Last digit | Last 10 of 10000000 palindromic gapful numbers from 100
-----------|------------------------------------------------------------------------------------------------------------------------
     1        [1787877997787871, 1787878008787871, 1787878118787871, 1787878228787871, 1787878338787871, 1787878448787871, 1787878558787871, 1787878668787871, 1787878778787871, 1787878888787871]
     2        [2787877997787872, 2787878008787872, 2787878118787872, 2787878228787872, 2787878338787872, 2787878448787872, 2787878558787872, 2787878668787872, 2787878778787872, 2787878888787872]
     3        [308787828828787803, 308787831138787803, 308787834438787803, 308787837738787803, 308787840048787803, 308787843348787803, 308787846648787803, 308787849948787803, 308787852258787803, 308787855558787803]
     4        [48333322822333384, 48333324142333384, 48333325352333384, 48333326562333384, 48333327772333384, 48333328982333384, 48333329092333384, 48333330203333384, 48333331413333384, 48333332623333384]
     5        [5787878008787875, 5787878118787875, 5787878228787875, 5787878338787875, 5787878448787875, 5787878558787875, 5787878668787875, 5787878778787875, 5787878888787875, 5787878998787875]
     6        [608787828828787806, 608787831138787806, 608787834438787806, 608787837738787806, 608787840048787806, 608787843348787806, 608787846648787806, 608787849948787806, 608787852258787806, 608787855558787806]
     7        [748867469964768847, 748867472274768847, 748867479974768847, 748867482284768847, 748867489984768847, 748867492294768847, 748867499994768847, 748867503305768847, 748867513315768847, 748867523325768847]
     8        [808696959959696808, 808696960069696808, 808696961169696808, 808696962269696808, 808696963369696808, 808696964469696808, 808696965569696808, 808696966669696808, 808696967769696808, 808696968869696808]
     9        [968787702207787869, 968787711117787869, 968787720027787869, 968787729927787869, 968787738837787869, 968787747747787869, 968787756657787869, 968787765567787869, 968787774477787869, 968787783387787869]
1770.411549 seconds (13.02 G allocations: 443.799 GiB, 40.12% gc time)

Mathematica /Wolfram Language

ClearAll[GapfulQ, GetFirstPalindromicGapfulNumbers]
GapfulQ[n_Integer] := Divisible[n, FromDigits[IntegerDigits[n][[{1, -1}]]]]
GetFirstPalindromicGapfulNumbers[startend_, n_Integer] := 
 Module[{out = {}, i, new, digs, id},
  digs = 1;
  While[Length[out] < n,
   Do[
    id = IntegerDigits[i, 10, Ceiling[digs/2]];
    If[OddQ[digs],
     new = Join[{startend}, id, Rest@Reverse[id], {startend}]
     ,
     new = Join[{startend}, id, Reverse[id], {startend}]
     ];
    new //= FromDigits;
    If[GapfulQ[new],
     AppendTo[out, new]
     ];
    i++;
    ,
    {i, 0, 10^Ceiling[digs/2] - 1}
    ];
   digs += 1;
   ];
  Take[out, n]
  ]
Print["First 20 palindromic gapful numbers >100 ending with each digit from 1 to 9:"]
Print[GetFirstPalindromicGapfulNumbers[#, 20]] & /@ Range[9];
Print["86th to 100th:"]
Print[GetFirstPalindromicGapfulNumbers[#, 100][[86 ;; 100]]] & /@ Range[9];
Print["991st to 1000th:"]
Print[GetFirstPalindromicGapfulNumbers[#, 1000][[991 ;; 1000]]] & /@ Range[9];
Output:
First 20 palindromic gapful numbers >100 ending with each digit from 1 to 9:
{121,1001,1111,1221,1331,1441,1551,1661,1771,1881,1991,10901,11011,12221,13431,14641,15851,17171,18381,19591}
{242,2002,2112,2222,2332,2442,2552,2662,2772,2882,2992,20702,21912,22022,23232,24442,25652,26862,28182,29392}
{363,3003,3333,3663,3993,31713,33033,36663,300003,303303,306603,309903,312213,315513,318813,321123,324423,327723,330033,333333}
{484,4004,4224,4444,4664,4884,40304,42724,44044,46464,48884,400004,401104,402204,403304,404404,405504,406604,407704,408804}
{5005,5115,5225,5335,5445,5555,5665,5775,5885,5995,50105,51315,52525,53735,54945,55055,56265,57475,58685,59895}
{6006,6336,6666,6996,61116,64746,66066,69696,600006,603306,606606,609906,612216,615516,618816,621126,624426,627726,630036,633336}
{7007,7777,77077,700007,707707,710017,717717,720027,727727,730037,737737,740047,747747,750057,757757,760067,767767,770077,777777,780087}
{8008,8448,8888,80608,86768,88088,800008,802208,804408,806608,808808,821128,823328,825528,827728,829928,840048,842248,844448,846648}
{9009,9999,94149,99099,900009,909909,918819,927729,936639,945549,954459,963369,972279,981189,990099,999999,9459549,9508059,9557559,9606069}
86th to 100th:
{165561,166661,167761,168861,169961,170071,171171,172271,173371,174471,175571,176671,177771,178871,179971}
{265562,266662,267762,268862,269962,270072,271172,272272,273372,274472,275572,276672,277772,278872,279972}
{30366303,30399303,30422403,30455403,30488403,30511503,30544503,30577503,30600603,30633603,30666603,30699603,30722703,30755703,30788703}
{4473744,4485844,4497944,4607064,4619164,4620264,4632364,4644464,4656564,4668664,4681864,4693964,4803084,4815184,4827284}
{565565,566665,567765,568865,569965,570075,571175,572275,573375,574475,575575,576675,577775,578875,579975}
{60399306,60422406,60455406,60488406,60511506,60544506,60577506,60600606,60633606,60666606,60699606,60722706,60755706,60788706,60811806}
{72299227,72322327,72399327,72422427,72499427,72522527,72599527,72622627,72699627,72722727,72799727,72822827,72899827,72922927,72999927}
{80611608,80622608,80633608,80644608,80655608,80666608,80677608,80688608,80699608,80800808,80811808,80822808,80833808,80844808,80855808}
{95311359,95400459,95499459,95588559,95677659,95766759,95855859,95944959,96033069,96122169,96211269,96300369,96399369,96488469,96577569}
991st to 1000th:
{17799771,17800871,17811871,17822871,17833871,17844871,17855871,17866871,17877871,17888871}
{27799772,27800872,27811872,27822872,27833872,27844872,27855872,27866872,27877872,27888872}
{3084004803,3084334803,3084664803,3084994803,3085225803,3085555803,3085885803,3086116803,3086446803,3086776803}
{482282284,482414284,482535284,482656284,482777284,482898284,482909284,483020384,483141384,483262384}
{57800875,57811875,57822875,57833875,57844875,57855875,57866875,57877875,57888875,57899875}
{6084004806,6084334806,6084664806,6084994806,6085225806,6085555806,6085885806,6086116806,6086446806,6086776806}
{7452992547,7453223547,7453993547,7454224547,7454994547,7455225547,7455995547,7456226547,7456996547,7457227547}
{8085995808,8086006808,8086116808,8086226808,8086336808,8086446808,8086556808,8086666808,8086776808,8086886808}
{9675005769,9675995769,9676886769,9677777769,9678668769,9679559769,9680440869,9681331869,9682222869,9683113869}

Nim

Translation of: Crystal
Forms palindromes using number<->string conversions.
import strutils  # for number input
import times                 # for timing code execution
import unicode               # for reversed
 
proc palindromicgapfuls(digit, count, keep: int): seq[uint64] =
  var palcnt = 0                        # count of gapful palindromes
  let to_skip = count - keep            # count of unwanted values to skip
  var gapfuls = newSeq[uint64]()        # array of palindromic gapfuls
  let nn = digit * 11                   # digit gapful divisor: 11, 22,...88, 99
  var (power, base, basep) = (1, 1, 0)
  while true:
    if (power.inc; power and 1) == 0: base = base * 10
    var base11  = base * 11             # value of middle two digits positions: 110..
    var this_lo = base * digit          # starting half for this digit: 10.. to  90..
    var next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
    while this_lo < next_lo - 1:
      var (palindrome, palindrome_base, left_half) = (0'u64, 0'u64, this_lo.intToStr)
      let right_half = left_half.reversed
      if (power and 1) == 1: basep = base11; palindrome_base = (left_half & right_half).parseUInt
      else: basep = base; left_half.removeSuffix("0"); palindrome_base = (left_half & right_half).parseUInt
      for i in 0..9:
        palindrome = palindrome_base + (basep * i).uint
        if (palindrome mod nn.uint) == 0:
          if palcnt < to_skip: (palcnt += 1; continue)
          gapfuls.add(palindrome)
          if gapfuls.len == keep: return gapfuls
      this_lo += 10

let start = epochTime() 

var (count, keep) = (20, 20)
echo("First 20 palindromic gapful numbers ending with:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (100, 15)
echo("\nLast 15 of first 100 palindromic gapful numbers ending in:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (1_000, 10)
echo("\nLast 10 of first 1000 palindromic gapful numbers ending in:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (100_000, 1)
echo("\n100,000th palindromic gapful number ending with:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (1_000_000, 1)
echo("\n1,000,000th palindromic gapful number ending with:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (10_000_000, 1)
echo("\n10,000,000th palindromic gapful number ending with:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

echo (epochTime() - start)
System: I7-6700HQ, 3.5GHz, Linux Kernel 5.9.10, GCC 10.2.0, Nim 1.4.0
Compil: $ nim c --cc:gcc --d:danger palindromicgapfuls.nim
Run as: $ ./palindromicgapfuls
Time: 25.42800664901733 secs
Faster version performing number<->string conversions for palindromes.
import strutils  # for number input
import times                 # for timing code execution
import unicode               # for reversed
 
proc palindromicgapfuls(digit, count, keep: int): seq[uint64] =
  var palcnt = 0                      # count of gapful palindromes
  let to_skip = count - keep          # count of unwanted values to skip
  let nn = digit * 11                 # digit gapful divisor: 11, 22,...88, 99
  var (power, base, digit) = (1, 1u64, digit.uint64)
  while true:
    if (power.inc; power and 1) == 0: base *= 10
    let base11  = base * 11           # value of middle two digits positions: 110..
    let this_lo = base * digit        # starting half for this digit: 10.. to  90..
    let next_lo = base * (digit + 1)  # starting half for next digit: 20.. to 100..
    for front_half in countup(this_lo, next_lo - 2, 10):
      var
        basep = base11 
        left_half = $front_half
      let right_half = left_half.reversed
      if (power and 1) == 0: basep = base; left_half.setLen left_half.len - 1
      var palindrome = (left_half.add right_half; left_half).parseUInt.uint64
      for _ in 0..9:
        if palindrome mod nn.uint == 0: (palcnt.inc; if palcnt > to_skip: result.add palindrome)
        palindrome += basep
      if result.len >= keep: result.setLen(keep); return

let start = epochTime() 

var (count, keep) = (20, 20)
echo("First 20 palindromic gapful numbers ending with:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (100, 15)
echo("\nLast 15 of first 100 palindromic gapful numbers ending in:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (1_000, 10)
echo("\nLast 10 of first 1000 palindromic gapful numbers ending in:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (100_000, 1)
echo("\n100,000th palindromic gapful number ending with:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (1_000_000, 1)
echo("\n1,000,000th palindromic gapful number ending with:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (10_000_000, 1)
echo("\n10,000,000th palindromic gapful number ending with:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

echo (epochTime() - start)
System: I7-6700HQ, 3.5GHz, Linux Kernel 5.9.10, GCC 10.2.0, Nim 1.4.0
Compil: $ nim c -d:danger -d:lto --passC:-march=native palindromicgapfuls.nim
Run as: $ ./palindromicgapfuls
Time: 18.29568219184875 secs
Fastest: make palindromes directly numerically.
import times

proc make_palindrome(front_half: uint64, power: int): uint64 =
  var res, front_half = front_half
  if (power and 1) == 0: res = res div 10
  while front_half > 0:
    res = res * 10 + front_half mod 10
    front_half = front_half div 10
  res

proc palindromicgapfuls(digit, count, keep: int): seq[uint64] =
  var (palcnt, digit) = (0, digit.uint64) # count of gapful palindromes
  let to_skip = count - keep            # count of unwanted values to skip
  var gapfuls = newSeq[uint64]()        # array of palindromic gapfuls
  let dd = digit * 11                   # digit gapful divisor: 11, 22,...88, 99
  var (power, base) = (1, 1u64)
  while true:
    if (power.inc; power and 1) == 0: base = base * 10
    var base11  = base * 11             # value of middle two digits positions: 110..
    var this_lo = base * digit          # starting half for this digit: 10.. to  90..
    var next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
    for front_half in countup(this_lo, next_lo - 2, 10):
      let basep = if (power and 1) == 1: base11 else: base
      var palindrome = make_palindrome(front_half, power)
      for _ in 0..9:
        if palindrome mod dd == 0: (palcnt.inc; if palcnt > to_skip: gapfuls.add(palindrome))
        palindrome += basep
      if gapfuls.len >= keep: return gapfuls[0..keep-1]

let start = epochTime() 

var (count, keep) = (20, 20)
echo("First 20 palindromic gapful numbers ending with:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (100, 15)
echo("\nLast 15 of first 100 palindromic gapful numbers ending in:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (1_000, 10)
echo("\nLast 10 of first 1000 palindromic gapful numbers ending in:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (100_000, 1)
echo("\n100,000th palindromic gapful number ending with:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (1_000_000, 1)
echo("\n1,000,000th palindromic gapful number ending with:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

(count, keep) = (10_000_000, 1)
echo("\n10,000,000th palindromic gapful number ending with:")
for digit in 1..9: echo(digit, " : ", palindromicgapfuls(digit, count, keep) )

echo (epochTime() - start)
System: I7-6700HQ, 3.5GHz, Linux Kernel 5.9.14, GCC 10.2.0, Nim 1.4.2
Compil: $ nim c --cc:gcc --d:danger palindromicgapfuls.nim
Run as: $ ./palindromicgapfuls
Time: 8.304139614105225 secs
Output:
First 20 palindromic gapful numbers ending with:
1 : @[121, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 10901, 11011, 12221, 13431, 14641, 15851, 17171, 18381, 19591]
2 : @[242, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 20702, 21912, 22022, 23232, 24442, 25652, 26862, 28182, 29392]
3 : @[363, 3003, 3333, 3663, 3993, 31713, 33033, 36663, 300003, 303303, 306603, 309903, 312213, 315513, 318813, 321123, 324423, 327723, 330033, 333333]
4 : @[484, 4004, 4224, 4444, 4664, 4884, 40304, 42724, 44044, 46464, 48884, 400004, 401104, 402204, 403304, 404404, 405504, 406604, 407704, 408804]
5 : @[5005, 5115, 5225, 5335, 5445, 5555, 5665, 5775, 5885, 5995, 50105, 51315, 52525, 53735, 54945, 55055, 56265, 57475, 58685, 59895]
6 : @[6006, 6336, 6666, 6996, 61116, 64746, 66066, 69696, 600006, 603306, 606606, 609906, 612216, 615516, 618816, 621126, 624426, 627726, 630036, 633336]
7 : @[7007, 7777, 77077, 700007, 707707, 710017, 717717, 720027, 727727, 730037, 737737, 740047, 747747, 750057, 757757, 760067, 767767, 770077, 777777, 780087]
8 : @[8008, 8448, 8888, 80608, 86768, 88088, 800008, 802208, 804408, 806608, 808808, 821128, 823328, 825528, 827728, 829928, 840048, 842248, 844448, 846648]
9 : @[9009, 9999, 94149, 99099, 900009, 909909, 918819, 927729, 936639, 945549, 954459, 963369, 972279, 981189, 990099, 999999, 9459549, 9508059, 9557559, 9606069]

Last 15 of first 100 palindromic gapful numbers ending in:
1 : @[165561, 166661, 167761, 168861, 169961, 170071, 171171, 172271, 173371, 174471, 175571, 176671, 177771, 178871, 179971]
2 : @[265562, 266662, 267762, 268862, 269962, 270072, 271172, 272272, 273372, 274472, 275572, 276672, 277772, 278872, 279972]
3 : @[30366303, 30399303, 30422403, 30455403, 30488403, 30511503, 30544503, 30577503, 30600603, 30633603, 30666603, 30699603, 30722703, 30755703, 30788703]
4 : @[4473744, 4485844, 4497944, 4607064, 4619164, 4620264, 4632364, 4644464, 4656564, 4668664, 4681864, 4693964, 4803084, 4815184, 4827284]
5 : @[565565, 566665, 567765, 568865, 569965, 570075, 571175, 572275, 573375, 574475, 575575, 576675, 577775, 578875, 579975]
6 : @[60399306, 60422406, 60455406, 60488406, 60511506, 60544506, 60577506, 60600606, 60633606, 60666606, 60699606, 60722706, 60755706, 60788706, 60811806]
7 : @[72299227, 72322327, 72399327, 72422427, 72499427, 72522527, 72599527, 72622627, 72699627, 72722727, 72799727, 72822827, 72899827, 72922927, 72999927]
8 : @[80611608, 80622608, 80633608, 80644608, 80655608, 80666608, 80677608, 80688608, 80699608, 80800808, 80811808, 80822808, 80833808, 80844808, 80855808]
9 : @[95311359, 95400459, 95499459, 95588559, 95677659, 95766759, 95855859, 95944959, 96033069, 96122169, 96211269, 96300369, 96399369, 96488469, 96577569]

Last 10 of first 1000 palindromic gapful numbers ending in:
1 : @[17799771, 17800871, 17811871, 17822871, 17833871, 17844871, 17855871, 17866871, 17877871, 17888871]
2 : @[27799772, 27800872, 27811872, 27822872, 27833872, 27844872, 27855872, 27866872, 27877872, 27888872]
3 : @[3084004803, 3084334803, 3084664803, 3084994803, 3085225803, 3085555803, 3085885803, 3086116803, 3086446803, 3086776803]
4 : @[482282284, 482414284, 482535284, 482656284, 482777284, 482898284, 482909284, 483020384, 483141384, 483262384]
5 : @[57800875, 57811875, 57822875, 57833875, 57844875, 57855875, 57866875, 57877875, 57888875, 57899875]
6 : @[6084004806, 6084334806, 6084664806, 6084994806, 6085225806, 6085555806, 6085885806, 6086116806, 6086446806, 6086776806]
7 : @[7452992547, 7453223547, 7453993547, 7454224547, 7454994547, 7455225547, 7455995547, 7456226547, 7456996547, 7457227547]
8 : @[8085995808, 8086006808, 8086116808, 8086226808, 8086336808, 8086446808, 8086556808, 8086666808, 8086776808, 8086886808]
9 : @[9675005769, 9675995769, 9676886769, 9677777769, 9678668769, 9679559769, 9680440869, 9681331869, 9682222869, 9683113869]

100,000th palindromic gapful number ending with:
1 : @[178788887871]
2 : @[278788887872]
3 : @[30878611687803]
4 : @[4833326233384]
5 : @[578789987875]
6 : @[60878611687806]
7 : @[74826144162847]
8 : @[80869688696808]
9 : @[96878077087869]

1,000,000th palindromic gapful number ending with:
1 : @[17878799787871]
2 : @[27878799787872]
3 : @[3087876666787803]
4 : @[483333272333384]
5 : @[57878799787875]
6 : @[6087876996787806]
7 : @[7487226666227847]
8 : @[8086969559696808]
9 : @[9687870990787869]

10,000,000th palindromic gapful number ending with:
1 : @[1787878888787871]
2 : @[2787878888787872]
3 : @[308787855558787803]
4 : @[48333332623333384]
5 : @[5787878998787875]
6 : @[608787855558787806]
7 : @[748867523325768847]
8 : @[808696968869696808]
9 : @[968787783387787869]

Pascal

Works with: Free Pascal

Creating palindromes by adding the right numbers one by one and the precalculated modulus of that numbers
So the numbers to check stays small in bitsize modsum ~16 Bit , n ~ 64 Bit.Dividing is therefore faster
Thinking about it, you don't need n = Uint64, only the value of the digit in that place is enough.
Of course this task has no relevance see digit 9 from 100,000 to 10,000,000

9 :   96878077087869
9 :  9687870990787869
9 : 968787783387787869
program PalinGap;
{$IFDEF FPC}
   {$MODE DELPHI}{$OPTIMIZATION ON,ALL}{$CODEALIGN proc=16}{$ALIGN 16}
{$ELSE}
  {$APPTYPE CONSOLE}
{$ENDIF}
//example 5 digits, digit d
//  d000d
// +00100 10 -times delta[0] aka middle digit
//->d010d d020d d030d d040d d050d d060d d070d d080d d090d and
//  d100d -> not palindromatic
//correct by -10x00100 and use the next delta for the next digitplaces
//  d000d
//+ 01010 -> delta[1]
//  d101d
// starting over again with delta[0] until delta[1] is used 10 times
type
  tLimits = record
              LoLmt,HiLmt:Uint64;
            end;
const
  base = 10;

var
  delta    : Array[0..9] of Uint64;
  deltaBase: Array[0..9] of Uint64;
  deltaMod : Array[0..9] of Uint32;
  deltaModBase : Array[0..9] of Uint32;

  IdxCnt : Array[0..9] of Uint32;
  ModSum : UInt64;
  dgtMod : UInt32;

procedure InitDelta(dgt:Byte;dgtCnt:Byte);
var
  n : Uint64;
  i,k,mid : NativeInt;
Begin
  mid := (dgtCnt-1) DIV 2;
  //create Add masks
  For i := 0 to mid do
  Begin
    IF ODD(dgtCnt) then
//first 1,101,10001,1000001,100000001,10000000001
    Begin
      n := 1;
      IF i> 0 then
      Begin
        For k := 1 to i do
          n := n*(Base*Base);
        inc(n);
      end
    end
    Else //even
//  first 11,1001,100001,10000001...
    Begin
      n := Base;
      For k := 1 to i do
        n := n*(Base*Base);
      inc(n);
    end;
//  second move to the right place
//  1000000,10100000,10001000,10000010,100000001
    dgtMod := (dgt*(Base+1));
    For k := mid-1 DOWNTO i do
      n := n*Base;

    delta[i] := n;
    deltaMod[i]:= n MOD dgtMod;
    deltaBase[i] := base*n;
    deltaModBase[i]:= (base*n) MOD dgtMod;
  end;
  //counter for digit position
  For k := 0 to 9 do
    IdxCnt[k] := Base;
end;

function NextPalin(n : Uint64;dgtcnt:NativeInt):Uint64;inline;
var
  k,b: NativeInt;
begin
  k := 0;
  repeat
    n := n+delta[k];
    inc(ModSum,deltaMod[k]);
    b := IdxCnt[k]-1;
    IdxCnt[k]:= b;
    IF b <> 0 then
      break
    else
    Begin
      n := n-deltaBase[k];
      dec(ModSum,deltaModBase[k]);
      IdxCnt[k]:= Base;
      inc(k);
      IF k = dgtCnt then
      Begin
        n := 0;
        BREAK;
      end;
    end;
  until false;
  NextPalin  := n;
end;

procedure OutPalinGap(lowLmt,HiLmt,dgt:NativeInt);
var
  n : Uint64;
  i,dgtcnt,mid :NativeInt;
begin
  i:=1;
  write(dgt,' :');
  For dgtcnt := 3 to 20 do
  Begin
    mid := (dgtcnt-1) shr 1;
    initDelta(dgt,dgtcnt);
    n := dgt*delta[mid];// '10...01' -> 'd0...0d'
    ModSum := n MOD dgtMod;

    while (n <>0) AND (i< LowLmt) do
    Begin
      IF (ModSum MOD dgtMod) = 0 then
      Begin
        inc(i);
        ModSum :=0;//reduce Modsum
      end;
      n := NextPalin(n,mid);
    end;

    while (n <>0) AND (i<= HiLmt) do
    Begin
      IF (ModSum MOD dgtMod) = 0 then
      Begin
        inc(i);
        write(n:dgtcnt+1);
        ModSum :=0;//reduce Modsum
      end;
      n := NextPalin(n,mid);
    end;
    IF (i > HiLmt) then
      BREAK;
  end;
  writeln;
end;

var
  dgt : NativeInt;
begin
  writeln('palindromic gapful numbers from 1 to 20');
  For dgt := 1 to 9 do
    OutPalinGap(1,20,dgt);
  writeln;
  writeln('palindromic gapful numbers from 86 to 100');
  For dgt := 1 to 9 do
    OutPalinGap(86,100,dgt);
  writeln;
  writeln('palindromic gapful numbers from 991 to 1000');
  For dgt := 1 to 9 do
    OutPalinGap(991,1000,dgt);
  writeln;
  writeln('palindromic gapful number    100,000');
  For dgt := 1 to 9 do
    OutPalinGap(100000,100000,dgt);
  writeln;
  writeln('palindromic gapful number  1,000,000');
  For dgt := 1 to 9 do
    OutPalinGap(1000000,1000000,dgt);
  writeln;
  writeln('palindromic gapful number  10,000,000');
  For dgt := 1 to 9 do
    OutPalinGap(10000000,10000000,dgt);
  writeln;
end.
Output:

palindromic gapful numbers from 1 to 20 1 : 121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591 2 : 242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392 3 : 363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333 4 : 484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804 5 : 5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895 6 : 6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336 7 : 7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087 8 : 8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648 9 : 9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069

palindromic gapful numbers from 86 to 100 1 : 165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971 2 : 265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972 3 : 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703 4 : 4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284 5 : 565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975 6 : 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806 7 : 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927 8 : 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808 9 : 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

palindromic gapful numbers from 991 to 1000 1 : 17799771 17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871 2 : 27799772 27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872 3 : 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803 4 : 482282284 482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384 5 : 57800875 57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875 6 : 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806 7 : 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547 8 : 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808 9 : 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

palindromic gapful number 100,000 1 : 178788887871 2 : 278788887872 3 : 30878611687803 4 : 4833326233384 5 : 578789987875 6 : 60878611687806 7 : 74826144162847 8 : 80869688696808 9 : 96878077087869

palindromic gapful number 1,000,000 1 : 17878799787871 2 : 27878799787872 3 : 3087876666787803 4 : 483333272333384 5 : 57878799787875 6 : 6087876996787806 7 : 7487226666227847 8 : 8086969559696808 9 : 9687870990787869

palindromic gapful number 10,000,000 1 : 1787878888787871 2 : 2787878888787872 3 : 308787855558787803 4 : 48333332623333384 5 : 5787878998787875 6 : 608787855558787806 7 : 748867523325768847 8 : 808696968869696808 9 : 968787783387787869

real 0m4,503s

Perl

Minor (and inefficient) tweak on the Gapful numbers task.

use strict;
use warnings;
use feature 'say';

use constant Inf  => 1e10;

sub is_p_gapful {
    my($d,$n) = @_;
    return '' unless 0 == $n % 11;
    my @digits = split //, $n;
    $d eq $digits[0] and (0 == $n % ($digits[0].$digits[-1])) and $n eq join '', reverse @digits;
}

for ([1, 20], [86, 15]) {
    my($offset, $count) = @$_;
    say "Palindromic gapful numbers starting at $offset:";
    for my $d ('1'..'9') {
        my $n = 0; my $out = "$d: ";
        $out .= do { $n+1 < $count+$offset ? (is_p_gapful($d,$_) and ++$n and $n >= $offset and "$_ ") : last } for 100 .. Inf;
        say $out
    }
    say ''
}
Output:
Palindromic gapful numbers starting at 1:
1: 121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591
2: 242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392
3: 363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333
4: 484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804
5: 5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895
6: 6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336
7: 7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087
8: 8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648
9: 9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069

Palindromic gapful numbers starting at 86:
1: 165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971
2: 265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
4: 4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284
5: 565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

Phix

Translation of: Go

Translation of Go, but trimmed back to bare minimum: you should not expect this to fare particularly well at the 10_000_000-level against the likes of Go/Pascal, though it should fare reasonably well against lesser beings... The version below beats 'em all, though, for now.

with javascript_semantics 
function reverse_n(atom s)
    atom e = 0
    while s>0 do
        e = e*10 + remainder(s,10)
        s = floor(s/10)
    end while
    return e
end function
 
constant mx = 1000,
         data = {{1, 20, "%7d "}, {86, 100, "%8d "}, {991, 1000, "%10d "}}

include builtins\ordinal.e

function digit(sequence results, integer d)
    integer count = 0, pow = 1, fl = d*11
    for nd=3 to 15 do -- (number of digits, usually quits early)
        -- (obvs. 64-bit phix is fine with 19 digits, but 32-bit ain't)
        bool odd = (remainder(nd,2)==1)
        for s=d*pow to (d+1)*pow-1 do   -- (eg 300 to 399)
            integer e = reverse_n(s)
            for m=0 to iff(odd?9:0) do  -- (1 or 10 iterations)
                atom p = e + iff(odd ? s*pow*100+m*pow*10
                                     : s*pow*10)
                if remainder(p,fl)==0 then  -- gapful!
                    count += 1
                    results[count][d] = p
                    if count==mx then return results end if
                end if
            end for
        end for
        if odd then pow *= 10 end if
    end for
    if count<mx then ?9/0 end if -- oh dear...
    return results
end function

procedure main()
    sequence results = repeat(repeat({},9),mx)
    for d=1 to 9 do -- (the start/end digit)
        results = digit(results,d)
    end for
 
    for i=1 to length(data) do
        {integer s, integer e, string fmt} = data[i]
        printf(1,"%,d%s to %,d%s palindromic gapful numbers (> 100) ending with:\n", {s,ord(s),e,ord(e)})
        for d=1 to 9 do
            printf(1,"%d: ",d)
            for j=s to e do
                printf(1,fmt,results[j][d])
            end for
            printf(1,"\n")
        end for
        printf(1,"\n")
    end for
end procedure
main()
Output:
1st to 20th palindromic gapful numbers (> 100) ending with:
1:     121    1001    1111    1221    1331    1441    1551    1661    1771    1881    1991   10901   11011   12221   13431   14641   15851   17171   18381   19591
2:     242    2002    2112    2222    2332    2442    2552    2662    2772    2882    2992   20702   21912   22022   23232   24442   25652   26862   28182   29392
3:     363    3003    3333    3663    3993   31713   33033   36663  300003  303303  306603  309903  312213  315513  318813  321123  324423  327723  330033  333333
4:     484    4004    4224    4444    4664    4884   40304   42724   44044   46464   48884  400004  401104  402204  403304  404404  405504  406604  407704  408804
5:    5005    5115    5225    5335    5445    5555    5665    5775    5885    5995   50105   51315   52525   53735   54945   55055   56265   57475   58685   59895
6:    6006    6336    6666    6996   61116   64746   66066   69696  600006  603306  606606  609906  612216  615516  618816  621126  624426  627726  630036  633336
7:    7007    7777   77077  700007  707707  710017  717717  720027  727727  730037  737737  740047  747747  750057  757757  760067  767767  770077  777777  780087
8:    8008    8448    8888   80608   86768   88088  800008  802208  804408  806608  808808  821128  823328  825528  827728  829928  840048  842248  844448  846648
9:    9009    9999   94149   99099  900009  909909  918819  927729  936639  945549  954459  963369  972279  981189  990099  999999 9459549 9508059 9557559 9606069

86th to 100th palindromic gapful numbers (> 100) ending with:
1:   165561   166661   167761   168861   169961   170071   171171   172271   173371   174471   175571   176671   177771   178871   179971
2:   265562   266662   267762   268862   269962   270072   271172   272272   273372   274472   275572   276672   277772   278872   279972
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
4:  4473744  4485844  4497944  4607064  4619164  4620264  4632364  4644464  4656564  4668664  4681864  4693964  4803084  4815184  4827284
5:   565565   566665   567765   568865   569965   570075   571175   572275   573375   574475   575575   576675   577775   578875   579975
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

991st to 1,000th palindromic gapful numbers (> 100) ending with:
1:   17799771   17800871   17811871   17822871   17833871   17844871   17855871   17866871   17877871   17888871
2:   27799772   27800872   27811872   27822872   27833872   27844872   27855872   27866872   27877872   27888872
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
4:  482282284  482414284  482535284  482656284  482777284  482898284  482909284  483020384  483141384  483262384
5:   57800875   57811875   57822875   57833875   57844875   57855875   57866875   57877875   57888875   57899875
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

Ludicrously fast to 10,000,000,000,000,000,000th

Library: Phix/online

You can run this online here.

--
-- demo\rosetta\Palindromic_gapful_numbers.exw
-- ===========================================
--
--  Astonishingly this is all done with standard precision numbers, <2^53.
--  I will credit Self_numbers#AppleScript and comment by Nigel Galloway
--  on the talk page for ideas that inspired me.
--
--  A palindrome such as 9459549 can be constructed/broken down into
--                       9000009
--                        400040
--                         50500
--                          9000
--
-- Further, 9459549 rem 99 is the same as 
--  (the sum of rem 99 on all of those pieces) rem 99
--
-- Finding eg 400040 rem 99 can also be simplified, it is of course the
--   same as (400000 rem 99 + 40 rem 99) rem 99, and further 40 rem 99
--   is the same as (4 rem 99[already known])*10 rem 99 [smaller nos].
--
-- Also, when filling a "hole", such as the final 9, we find
--             v    
--          9450549 rem 99 = 9
--          9451549 rem 99 = 19,
--          9452549 rem 99 = 29, 
--          9453549 rem 99 = 39,
--          9454549 rem 99 = 49,
--          9455549 rem 99 = 59,
--          9456549 rem 99 = 69, 
--          9457549 rem 99 = 79,
--          9458549 rem 99 = 89, and
--          9459549 rem 99 = 0, 
--             ^
--  in this case only the '9' fits.
--
-- But actually we can predict what will fit from the partial sum of 
--  prior pieces rem 99, ie 9000009..50500, and the same can be said 
--  when filling the 505-sized hole - what will "fit" depends not on 
--  what the "outer" actually are, but what their sum rem 99 is, and 
--  likewise for larger and larger holes.
--  If we later find ourselves looking at the same size hole, with 
--  the same outer rem and the same rem 99 outmost requirement, we 
--  would know instantly how many things are going to fit. 
--  True, keeping full lists as the holes got bigger would probably 
--  consume memory almost as fast as an SR-71, but a single count, 
--  albeit one keyed on 4 conditions, we can cope. It turns out that
--  even by the 10^15th scan, we only hit 17,579 variations anyway.
--  As we stumble across larger and larger holes, what we learn can 
--  be used to skip more and more similar, such that finding the 
--  ten millionth item is almost as fast as the first millionth, as 
--  opposed to the times 10 that you'd normally expect.
--
-- Note that if I stumble across a hole that will fit more than I'm 
--  prepared to fully skip, I start going through things one-by-one, 
--  but that's ok because many smaller but still quite big holes 
--  will probably be skipped.
--
with javascript_semantics

sequence cache = columnize(repeat(columnize({tagset(9)}),9))
--   ie {{{1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}},
--       {{2}, {2}, {2}, {2}, {2}, {2}, {2}, {2}, {2}},
--       {{3}, {3}, {3}, {3}, {3}, {3}, {3}, {3}, {3}},
--       {{4}, {4}, {4}, {4}, {4}, {4}, {4}, {4}, {4}},
--       {{5}, {5}, {5}, {5}, {5}, {5}, {5}, {5}, {5}},
--       {{6}, {6}, {6}, {6}, {6}, {6}, {6}, {6}, {6}},
--       {{7}, {7}, {7}, {7}, {7}, {7}, {7}, {7}, {7}},
--       {{8}, {8}, {8}, {8}, {8}, {8}, {8}, {8}, {8}},
--       {{9}, {9}, {9}, {9}, {9}, {9}, {9}, {9}, {9}}}
-- aka 1 rem 11 .. 1 rem 99 are all 1,
--  .. 9 rem 11 .. 9 rem 99 are all 9.
-- each gets extended with 10 rem 11 .. 10 rem 99,
--                        100 rem 11 .. 100 rem 99,
--                    ...            .. 900 rem 99, etc.
-- (not really worth trying to take advantage of any cycles
--  that might appear in such a relatively small table, as
--  it will be at most (on 64-bit) 9 * 9 * 42.)
--
function rmdrn(integer digit, gap, pow, n)
--
-- digit is the outer 0..9 (obvs 0 always yields 0),
-- gap is zeroes between (-1,0,1,2,.. for eg 1,11,101,1001),
-- pow is trailing zeros (0,1,2,.. for eg 101,1010,10100),
-- n is 1..9 for 11..99
-- eg rmdrn(4,3,2,1) yields remainder(4000400,11), but
--       that === remainder(remainder(4000000,11)+
--                          remainder(    400,11),11), and
--  if k = remainder(4*10^(m-1),11) [already known] then
--         remainder(4*10^m,11) === remainder(k*10,11), so
--  we only need to keep a small table for each [digit][n].
--  Thus we avoid maths on 10^42-ish numbers/needing gmp.
--
    if digit=0 then return 0 end if
    integer nn = n*11, g
    sequence cdn = cache[digit][n]
    while length(cdn)<gap+pow+2 do
        cache[digit][n] = 0 -- (kill refcount)
        cdn &= remainder(cdn[$]*10,nn)
        cache[digit][n] = cdn
    end while
    g = iff(gap=-1 ? 0 : cdn[gap+pow+2])
    return remainder(g + cdn[pow+1],nn)
end function

integer skipd = new_dict()

function palindromicgapfuls(sequence pals, string lhs, atom palcount, to_skip, count, integer l, r, p, dd)
--
-- pals: results (passing it up grants it automatic pass-by-reference status, which may help speedwise)
-- lhs: eg "945" of a potential 9459549 result
-- palcount, to_skip, count: self explanatory (aka got/ignore/target)
-- l: length of inner to be filled in
-- r: remainder of outer, eg remainder(9400049,11), built from rmdrn()
-- p: left shift (should in fact always equal length(lhs), I think)
-- dd: outermost 1..9 (despite the name, it's a single digit)
--
    sequence key = {l,r,p,dd}
    integer node = getd_index(key,skipd)
    atom skip = iff(node==null?count:getd_by_index(node,skipd)), skipn
    if node!=null and (palcount+skip)<to_skip then
        palcount += skip
    else
        skip = 0
        for d=0 to 9 do
            integer r2 = remainder(r+rmdrn(d,l-2,p,dd),dd*11)
            if l<=2 then
                if r2=0 then
                    palcount += 1
                    if palcount<=to_skip then
                        skip += 1
                    else
                        pals = append(deep_copy(pals),lhs&repeat(d+'0',l)&reverse(lhs))
                    end if
                end if
            else
                {pals,palcount,skipn} = palindromicgapfuls(pals,lhs&(d+'0'),palcount,to_skip,count,l-2,r2,p+1,dd)
                skip += skipn
            end if
            if palcount==count then exit end if
        end for
        if palcount<to_skip then setd(key,skip,skipd) end if
    end if
    return {pals,palcount,skip}
end function

function collect(integer digit, atom count, keep)
    atom to_skip = count - keep,
            palcount =  0, l = 3
    sequence pals = {}
    string lhs = ""&(digit+'0') -- ie "1" or "2" .. or "9"
    while palcount < count do
        integer r = rmdrn(digit,l-2,0,digit)
        {pals,palcount} = palindromicgapfuls(pals,lhs,palcount,to_skip,count,l-2,r,1,digit)
        l += 1
    end while
    return pals
end function

constant tests = {{20,20,1,9},{100,15,1,9},{1000,10,1,9},{10_000,5,1,9},
                  {100_000,1,1,9},{1_000_000,1,1,9},{10_000_000,1,1,9},
                  {100_000_000,1,9,9},{1000_000_000,1,9,9},{10_000_000_000,1,9,9},
                  {100_000_000_000,1,9,9},{1000_000_000_000,1,9,9},
                  {10_000_000_000_000,1,9,9},{100_000_000_000_000,1,9,9},
                  {1_000_000_000_000_000,1,9,9},
--                {1_000_000_000_000_000,1,2,4}, -- (matches AppleScript)
                  {10_000_000_000_000_000_000,1,9,9}} -- 64 bit only
                 -- (any further and you'd need mpfr just to hold counts)

atom t0 = time(), count, keep, start, finish
for i=1 to length(tests)-(machine_bits()!=64) do
    {count, keep, start, finish} = tests[i]
    string r = iff(count==keep?sprintf("First %d",{count}):
                    iff(keep>1?sprintf("Last %d of first %,d",{keep,count})
                              :sprintf("%,dth",{count}))),
           s = iff(keep=1?"":"s")
    printf(1,"%s palindromic gapful number%s ending with:\n", {r,s})
    sequence tags = tagset(finish,start),
             res = apply(true,collect,{tags,count,keep})
    string fmt = sprintf("%%%ds",max(apply(join(res,{}),length)))
    for j=1 to length(res) do
        printf(1,"%d: %s\n",{tags[j],join(apply(true,sprintf,{{fmt},res[j]})," ")})
    end for
    puts(1,"\n")
end for
printf(1,"Completed in %s\n",elapsed(time()-t0))
Output:
First 20 palindromic gapful numbers ending with:
1:     121    1001    1111    1221    1331    1441    1551    1661    1771    1881    1991   10901   11011   12221   13431   14641   15851   17171   18381   19591
2:     242    2002    2112    2222    2332    2442    2552    2662    2772    2882    2992   20702   21912   22022   23232   24442   25652   26862   28182   29392
3:     363    3003    3333    3663    3993   31713   33033   36663  300003  303303  306603  309903  312213  315513  318813  321123  324423  327723  330033  333333
4:     484    4004    4224    4444    4664    4884   40304   42724   44044   46464   48884  400004  401104  402204  403304  404404  405504  406604  407704  408804
5:    5005    5115    5225    5335    5445    5555    5665    5775    5885    5995   50105   51315   52525   53735   54945   55055   56265   57475   58685   59895
6:    6006    6336    6666    6996   61116   64746   66066   69696  600006  603306  606606  609906  612216  615516  618816  621126  624426  627726  630036  633336
7:    7007    7777   77077  700007  707707  710017  717717  720027  727727  730037  737737  740047  747747  750057  757757  760067  767767  770077  777777  780087
8:    8008    8448    8888   80608   86768   88088  800008  802208  804408  806608  808808  821128  823328  825528  827728  829928  840048  842248  844448  846648
9:    9009    9999   94149   99099  900009  909909  918819  927729  936639  945549  954459  963369  972279  981189  990099  999999 9459549 9508059 9557559 9606069

Last 15 of first 100 palindromic gapful numbers ending with:
1:   165561   166661   167761   168861   169961   170071   171171   172271   173371   174471   175571   176671   177771   178871   179971
2:   265562   266662   267762   268862   269962   270072   271172   272272   273372   274472   275572   276672   277772   278872   279972
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
4:  4473744  4485844  4497944  4607064  4619164  4620264  4632364  4644464  4656564  4668664  4681864  4693964  4803084  4815184  4827284
5:   565565   566665   567765   568865   569965   570075   571175   572275   573375   574475   575575   576675   577775   578875   579975
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

Last 10 of first 1,000 palindromic gapful numbers ending with:
1:   17799771   17800871   17811871   17822871   17833871   17844871   17855871   17866871   17877871   17888871
2:   27799772   27800872   27811872   27822872   27833872   27844872   27855872   27866872   27877872   27888872
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
4:  482282284  482414284  482535284  482656284  482777284  482898284  482909284  483020384  483141384  483262384
5:   57800875   57811875   57822875   57833875   57844875   57855875   57866875   57877875   57888875   57899875
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

Last 5 of first 10,000 palindromic gapful numbers ending with:
1:   1787557871   1787667871   1787777871   1787887871   1787997871
2:   2787557872   2787667872   2787777872   2787887872   2787997872
3: 308760067803 308763367803 308766667803 308769967803 308772277803
4:  48327872384  48329192384  48330303384  48331513384  48332723384
5:   5787557875   5787667875   5787777875   5787887875   5787997875
6: 608763367806 608766667806 608769967806 608772277806 608775577806
7: 746958859647 746961169647 746968869647 746971179647 746978879647
8: 808691196808 808692296808 808693396808 808694496808 808695596808
9: 968697796869 968706607869 968715517869 968724427869 968733337869

100,000th palindromic gapful number ending with:
1:   178788887871
2:   278788887872
3: 30878611687803
4:  4833326233384
5:   578789987875
6: 60878611687806
7: 74826144162847
8: 80869688696808
9: 96878077087869

1,000,000th palindromic gapful number ending with:
1:   17878799787871
2:   27878799787872
3: 3087876666787803
4:  483333272333384
5:   57878799787875
6: 6087876996787806
7: 7487226666227847
8: 8086969559696808
9: 9687870990787869

10,000,000th palindromic gapful number ending with:
1:   1787878888787871
2:   2787878888787872
3: 308787855558787803
4:  48333332623333384
5:   5787878998787875
6: 608787855558787806
7: 748867523325768847
8: 808696968869696808
9: 968787783387787869

100,000,000th palindromic gapful number ending with:
9: 96878786855868787869

1,000,000,000th palindromic gapful number ending with:
9: 9687878775995778787869

10,000,000,000th palindromic gapful number ending with:
9: 968787878661166878787869

100,000,000,000th palindromic gapful number ending with:
9: 96878787877355377878787869

1,000,000,000,000th palindromic gapful number ending with:
9: 9687878787863773687878787869

10,000,000,000,000th palindromic gapful number ending with:
9: 968787878787711117787878787869

100,000,000,000,000th palindromic gapful number ending with:
9: 96878787878786133168787878787869

1,000,000,000,000,000th palindromic gapful number ending with:
9: 9687878787878768778678787878787869

Completed in 0.7s

On 64bit you'll also get (in 0.8s)

10,000,000,000,000,000,000th palindromic gapful number ending with:
9: 968787878787878787639936787878787878787869

I might agree that the last entry does not feel very convincing. Depending on how much spare time you have, leave this running and it'll look better, uncomment the reset of count, to something that'll actually finish, and you'll start to believe. :-)

--count = 100000
while count do
    count -= 1
    ?collect(9,count,1)
end while

Prolog

Works with: SWI Prolog
init_palindrome(Digit, p(10, Next, 0)):-
    Next is Digit * 10 - 1.

next_palindrome(Digit, p(Power, Next, Even), p(Power1, Next2, Even1), Palindrome):-
    Next1 is Next + 1,
    (Next1 is Power * (Digit + 1) ->
        (Even == 1 -> Power1 is Power * 10 ; Power1 = Power),
        Next2 is Digit * Power1,
        Even1 is 1 - Even
        ;
        Power1 = Power,
        Next2 = Next1,
        Even1 = Even
    ),
    (Even1 == 1 ->
        X is 10 * Power1, Y = Next2
        ;
        X = Power1, Y is Next2 // 10
    ),
    reverse_number(Y, Z),
    Palindrome is Next2 * X + Z.
     
reverse_number(N, R):-
    reverse_number(N, 0, R).

reverse_number(0, Result, Result):-
    !.
reverse_number(N, R, Result):-
    R1 is R * 10 + N mod 10,
    N1 is N // 10,
    reverse_number(N1, R1, Result).

is_gapful(N):-
    is_gapful(N, N).

is_gapful(N, M):-
    M < 10,
    !,
    0 is N mod (N mod 10 + 10 * (M mod 10)).
is_gapful(N, M):-
    M1 is M // 10,
    is_gapful(N, M1).

find_palindromic_gapful_numbers(N, List):-
    find_palindromic_gapful_numbers(N, 1, List).

find_palindromic_gapful_numbers(_, 10, []):-
    !.
find_palindromic_gapful_numbers(N, Digit, [Numbers|Rest]):-
    find_palindromic_gapful_numbers1(Digit, N, Numbers),
    Next_digit is Digit + 1,
    find_palindromic_gapful_numbers(N, Next_digit, Rest).

find_palindromic_gapful_numbers1(Digit, N, List):-
    init_palindrome(Digit, P),
    find_palindromic_gapful_numbers1(Digit, P, N, 0, List).

find_palindromic_gapful_numbers1(_, _, N, N, []):-
    !.
find_palindromic_gapful_numbers1(Digit, P, N, Count, List):-
    next_palindrome(Digit, P, P_next, Palindrome),
    (is_gapful(Palindrome) ->
        Count1 is Count + 1,
        List = [Palindrome|Rest]
        ;
        Count1 = Count,
        List = Rest
    ),
    find_palindromic_gapful_numbers1(Digit, P_next, N, Count1, Rest).

print_numbers(First, Last, Numbers):-
    (First == 1 ->
        writef("First %w palindromic gapful numbers ending in:\n", [Last])
        ;
        Count is Last - First + 1,
        writef("Last %w of first %w palindromic gapful numbers ending in:\n", [Count, Last])
    ),
    print_numbers(First, Last, 1, Numbers),
    nl.
    
print_numbers(_, _, 10, _):-
    !.
print_numbers(First, Last, Digit, [N|Numbers]):-
    writef("%w:", [Digit]),
    print_numbers1(First, Last, 1, N),
    Next_digit is Digit + 1,
    print_numbers(First, Last, Next_digit, Numbers).

print_numbers1(_, Last, I, _):-
    I > Last,
    nl,
    !.
print_numbers1(First, Last, I, [_|Numbers]):-
    I < First,
    !,
    J is I + 1,
    print_numbers1(First, Last, J, Numbers).
print_numbers1(First, Last, I, [N|Numbers]):-
    writef(" %w", [N]),
    J is I + 1,
    print_numbers1(First, Last, J, Numbers).

main:-
    find_palindromic_gapful_numbers(1000, Numbers),
    print_numbers(1, 20, Numbers),
    print_numbers(86, 100, Numbers),
    print_numbers(991, 1000, Numbers).
Output:
First 20 palindromic gapful numbers ending in:
1: 121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591
2: 242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392
3: 363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333
4: 484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804
5: 5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895
6: 6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336
7: 7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087
8: 8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648
9: 9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069

Last 15 of first 100 palindromic gapful numbers ending in:
1: 165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971
2: 265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
4: 4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284
5: 565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

Last 10 of first 1000 palindromic gapful numbers ending in:
1: 17799771 17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871
2: 27799772 27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
4: 482282284 482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384
5: 57800875 57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

Python

Generators

Uses the technique of:

  1. generating all odd number of digits palindromes, in order.
  2. generating all even number of digits palindromes, in order.
  3. merge sorting those (unbounded) generators.
  4. then filtering the palindromes for gapful palindromic numbers >= 100

With the number generator the binning was straight-forward.
Runtime is short.

Note: Although this uses the idea of generating palindromes from the Geeks4geeks reference mentioned in the Factor entry, none of their code was used.

from itertools import count
from pprint import pformat
import re
import heapq


def pal_part_gen(odd=True):
    for i in count(1):
        fwd = str(i)
        rev = fwd[::-1][1:] if odd else fwd[::-1]
        yield int(fwd + rev)

def pal_ordered_gen():
    yield from heapq.merge(pal_part_gen(odd=True), pal_part_gen(odd=False))

def is_gapful(x):
    return (x % (int(str(x)[0]) * 10 + (x % 10)) == 0)

if __name__ == '__main__':
    start = 100
    for mx, last in [(20, 20), (100, 15), (1_000, 10)]:
        print(f"\nLast {last} of the first {mx} binned-by-last digit " 
              f"gapful numbers >= {start}")
        bin = {i: [] for i in range(1, 10)}
        gen = (i for i in pal_ordered_gen() if i >= start and is_gapful(i))
        while any(len(val) < mx for val in bin.values()):
            g = next(gen)
            val = bin[g % 10]
            if len(val) < mx:
                val.append(g)
        b = {k:v[-last:] for k, v in bin.items()}
        txt = pformat(b, width=220)
        print('', re.sub(r"[{},\[\]]", '', txt))
Output:
Last 20 of the first 20 binned-by-last digit gapful numbers >= 100
 1: 121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591
 2: 242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392
 3: 363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333
 4: 484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804
 5: 5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895
 6: 6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336
 7: 7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087
 8: 8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648
 9: 9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069

Last 15 of the first 100 binned-by-last digit gapful numbers >= 100
 1: 165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971
 2: 265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972
 3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
 4: 4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284
 5: 565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975
 6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
 7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
 8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
 9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

Last 10 of the first 1000 binned-by-last digit gapful numbers >= 100
 1: 17799771 17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871
 2: 27799772 27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872
 3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
 4: 482282284 482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384
 5: 57800875 57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875
 6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
 7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
 8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
 9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

Functional

'''Palindromic gapful numbers'''

from itertools import chain, count, islice, tee
from functools import reduce


# palindromicGapfuls :: () -> [Int]
def palindromicGapfuls():
    '''A non-finite series of gapful palindromic numbers.
    '''
    def derived(digitsEven):
        '''A palindrome of an even or odd number of digits,
           obtained by appending either all or just the tail
           of the reversed digits of n.
        '''
        def go(x):
            s = str(x)
            r = s[::-1]
            return int((s + r) if digitsEven else (s + r[1:]))
        return go

    return filter(
        lambda n: 0 == n % (int(str(n)[0]) * 10 + (n % 10)),
        mergeInOrder(
            map(derived(False), count(10))
        )(map(derived(True), count(10)))
    )


# --------------------------TESTS--------------------------
# main :: IO ()
def main():
    '''Various samples of gapful palindromes grouped by final digit.'''

    tpl = tee(palindromicGapfuls(), 9)

    # sample :: (String, Int, Int) -> String
    def sample(label, dropped, taken):
        return fTable(label)(compose(cons(' '), str))(
            compose(unwords, map_(str))
        )(
            compose(
                take(taken),
                drop(dropped),
                lambda i: filter(
                    lambda x: i == x % 10,
                    tpl[i - 1]
                )
            )
        )(enumFromTo(1)(9))

    print(
        '\n\n'.join(map(lambda x: sample(*x), [
            ('First 20 samples of gapful palindromes ' +
             '(> 100) by last digit:', 0, 20),

            ('Last 15 of first 100 gapful palindromes ' +
             '(> 100) by last digit:', 65, 15),

            ('Last 10 of first 1000 gapful palindromes ' +
             '(> 100) by last digit:', 890, 10)
        ]))
    )

# ------------------------DISPLAY -------------------------


# fTable :: String -> (a -> String) ->
# (b -> String) -> (a -> b) -> [a] -> String
def fTable(s):
    '''Heading -> x display function -> fx display function ->
       f -> xs -> tabular string.
    '''
    def go(xShow, fxShow, f, xs):
        ys = [xShow(x) for x in xs]
        w = max(map(len, ys))
        return s + '\n' + '\n'.join(map(
            lambda x, y: y.rjust(w, ' ') + ': ' + fxShow(f(x)),
            xs, ys
        ))
    return lambda xShow: lambda fxShow: lambda f: lambda xs: go(
        xShow, fxShow, f, xs
    )


# ------------------------GENERIC--------------------------

# Just :: a -> Maybe a
def Just(x):
    '''Constructor for an inhabited Maybe (option type) value.
       Wrapper containing the result of a computation.
    '''
    return {'type': 'Maybe', 'Nothing': False, 'Just': x}


# Nothing :: Maybe a
def Nothing():
    '''Constructor for an empty Maybe (option type) value.
       Empty wrapper returned where a computation is not possible.
    '''
    return {'type': 'Maybe', 'Nothing': True}


# compose :: ((a -> a), ...) -> (a -> a)
def compose(*fs):
    '''Composition, from right to left,
       of a series of functions.
    '''
    def go(f, g):
        return lambda x: f(g(x))
    return reduce(go, fs, lambda x: x)


# cons :: a -> [a] -> [a]
def cons(x):
    '''A list string or iterator constructed
       from x as head, and xs as tail.
    '''
    return lambda xs: [x] + xs if (
        isinstance(xs, list)
    ) else x + xs if (
        isinstance(xs, str)
    ) else chain([x], xs)


# drop :: Int -> [a] -> [a]
def drop(n):
    '''The sublist of xs beginning at
       (zero-based) index n.
    '''
    def go(xs):
        take(n)(xs)
        return xs
    return go


# enumFromTo :: Int -> Int -> [Int]
def enumFromTo(m):
    '''Enumeration of integer values [m..n]'''
    def go(n):
        return list(range(m, 1 + n))
    return go


# map :: (a -> b) -> [a] -> [b]
def map_(f):
    '''The list obtained by applying f
       to each element of xs.
    '''
    return lambda xs: [f(x) for x in xs]


# mergeInOrder :: Gen [Int] -> Gen [Int] -> Gen [Int]
def mergeInOrder(ga):
    '''An ordered, non-finite, stream of integers
       obtained by merging two other such streams.
    '''
    def go(ma, mb):
        a = ma
        b = mb
        while not a['Nothing'] and not b['Nothing']:
            (a1, a2) = a['Just']
            (b1, b2) = b['Just']
            if a1 < b1:
                yield a1
                a = uncons(a2)
            else:
                yield b1
                b = uncons(b2)

    return lambda gb: go(uncons(ga), uncons(gb))


# take :: Int -> [a] -> [a]
def take(n):
    '''The prefix of xs of length n,
       or xs itself if n > length xs.
    '''
    return lambda xs: list(islice(xs, n))


# uncons :: [a] -> Maybe (a, [a])
def uncons(xs):
    '''The deconstruction of a non-empty list
       (or generator stream) into two parts:
       a head value, and the remaining values.
    '''
    nxt = take(1)(xs)
    return Just((nxt[0], xs)) if nxt else Nothing()


# unwords :: [String] -> String
def unwords(xs):
    '''A space-separated string derived
       from a list of words.
    '''
    return ' '.join(xs)


# MAIN ---
if __name__ == '__main__':
    main()
Output:
First 20 samples of gapful palindromes (> 100) by last digit:
 1: 121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591
 2: 242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392
 3: 363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333
 4: 484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804
 5: 5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895
 6: 6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336
 7: 7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087
 8: 8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648
 9: 9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069

Last 15 of first 100 gapful palindromes (> 100) by last digit:
 1: 165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971
 2: 265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972
 3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
 4: 4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284
 5: 565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975
 6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
 7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
 8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
 9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

Last 10 of first 1000 gapful palindromes (> 100) by last digit:
 1: 17799771 17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871
 2: 27799772 27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872
 3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
 4: 482282284 482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384
 5: 57800875 57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875
 6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
 7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
 8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
 9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

Raku

(formerly Perl 6)

Works with: Rakudo version 2019.07.1
constant @digits = '0','1','2','3','4','5','6','7','8','9';

# Infinite lazy iterator to generate palindromic "gap" numbers
my @npal = flat [ @digits ], [ '00','11','22','33','44','55','66','77','88','99' ],
  {
    sink @^previous, @^penultimate;
    [ flat @digits.map: -> \digit { @penultimate.map: digit ~ * ~ digit  } ]
  } … *;

# Individual lazy palindromic gapful number iterators for each start/end digit
my @gappal = (1..9).map: -> \digit {
    my \divisor = digit + 10 * digit;
    @npal.map: -> \this { next unless (my \test = digit ~ this ~ digit) %% divisor; test }
}

# Display
( "(Required) First 20 gapful palindromes:",              ^20, 7
  ,"\n(Required) 86th through 100th:",                 85..99, 8
  ,"\n(Optional) 991st through 1,000th:",            990..999, 10
  ,"\n(Extra stretchy) 9,995th through 10,000th:", 9994..9999, 12
  ,"\n(Meh) 100,000th:",                                99999, 14
).hyper(:1batch).map: -> $caption, $range, $fmt {
    my $now = now;
    say $caption;
    put "$_: " ~ @gappal[$_-1][|$range].fmt("%{$fmt}s") for 1..9;
    say round( now - $now, .001 ), " seconds";
}
Output:
(Required) First 20 gapful palindromes:
1:     121    1001    1111    1221    1331    1441    1551    1661    1771    1881    1991   10901   11011   12221   13431   14641   15851   17171   18381   19591
2:     242    2002    2112    2222    2332    2442    2552    2662    2772    2882    2992   20702   21912   22022   23232   24442   25652   26862   28182   29392
3:     363    3003    3333    3663    3993   31713   33033   36663  300003  303303  306603  309903  312213  315513  318813  321123  324423  327723  330033  333333
4:     484    4004    4224    4444    4664    4884   40304   42724   44044   46464   48884  400004  401104  402204  403304  404404  405504  406604  407704  408804
5:    5005    5115    5225    5335    5445    5555    5665    5775    5885    5995   50105   51315   52525   53735   54945   55055   56265   57475   58685   59895
6:    6006    6336    6666    6996   61116   64746   66066   69696  600006  603306  606606  609906  612216  615516  618816  621126  624426  627726  630036  633336
7:    7007    7777   77077  700007  707707  710017  717717  720027  727727  730037  737737  740047  747747  750057  757757  760067  767767  770077  777777  780087
8:    8008    8448    8888   80608   86768   88088  800008  802208  804408  806608  808808  821128  823328  825528  827728  829928  840048  842248  844448  846648
9:    9009    9999   94149   99099  900009  909909  918819  927729  936639  945549  954459  963369  972279  981189  990099  999999 9459549 9508059 9557559 9606069
0.111 seconds

(Required) 86th through 100th:
1:   165561   166661   167761   168861   169961   170071   171171   172271   173371   174471   175571   176671   177771   178871   179971
2:   265562   266662   267762   268862   269962   270072   271172   272272   273372   274472   275572   276672   277772   278872   279972
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
4:  4473744  4485844  4497944  4607064  4619164  4620264  4632364  4644464  4656564  4668664  4681864  4693964  4803084  4815184  4827284
5:   565565   566665   567765   568865   569965   570075   571175   572275   573375   574475   575575   576675   577775   578875   579975
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569
0.046 seconds

(Optional) 991st through 1,000th:
1:   17799771   17800871   17811871   17822871   17833871   17844871   17855871   17866871   17877871   17888871
2:   27799772   27800872   27811872   27822872   27833872   27844872   27855872   27866872   27877872   27888872
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
4:  482282284  482414284  482535284  482656284  482777284  482898284  482909284  483020384  483141384  483262384
5:   57800875   57811875   57822875   57833875   57844875   57855875   57866875   57877875   57888875   57899875
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869
0.282 seconds

(Extra stretchy) 9,995th through 10,000th:
1:   1787447871   1787557871   1787667871   1787777871   1787887871   1787997871
2:   2787447872   2787557872   2787667872   2787777872   2787887872   2787997872
3: 308757757803 308760067803 308763367803 308766667803 308769967803 308772277803
4:  48326662384  48327872384  48329192384  48330303384  48331513384  48332723384
5:   5787447875   5787557875   5787667875   5787777875   5787887875   5787997875
6: 608760067806 608763367806 608766667806 608769967806 608772277806 608775577806
7: 746951159647 746958859647 746961169647 746968869647 746971179647 746978879647
8: 808690096808 808691196808 808692296808 808693396808 808694496808 808695596808
9: 968688886869 968697796869 968706607869 968715517869 968724427869 968733337869
3.114 seconds

(Meh) 100,000th:
1:   178788887871
2:   278788887872
3: 30878611687803
4:  4833326233384
5:   578789987875
6: 60878611687806
7: 74826144162847
8: 80869688696808
9: 96878077087869
32.603 seconds

REXX

/*REXX program computes and displays palindromic gapful numbers, it also can show those */
/*─────────────────────── palindromic gapful numbers listed by their last decimal digit.*/
numeric digits 20                                /*ensure enough decimal digits gapfuls.*/
parse arg palGaps                                /*obtain optional arguments from the CL*/
if palGaps=''  then palGaps= 20 100@@15 1000@@10 /*Not specified?  Then use the defaults*/

        do until palGaps='';      parse var palGaps  stuff palGaps;      call palGap stuff
        end   /*until*/
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
palGap: procedure; parse arg n '@' sp "@" z;    #= 0;    if sp==''  then sp= 100
        @ending= '  (ending in a specific digit) ';      if  z==''  then  z=   n
        @which= ' last ';                                if  z==n   then @which= " first "
        @palGap#Start= ' palindromic gapful numbers starting at: '
        say center(@which   z    ' of '     n   @palGap#Start   sp" "   @ending, 140, "═")
        #.= 0                                    /*array of result counts for each digit*/
        newSP= max(110, sp%11*11)                /*calculate the new starting point.    */
        tot= n * 9                               /*total # of results that are wanted.  */
        $.=;                           sum= 0    /*blank lists;  digit results (so far).*/
              do j=newSP  by 11  until sum==tot  /*loop 'til all digit counters filled. */
              if reverse(j)  \==j  then iterate  /*Not a palindrome?       Then skip it.*/
              parse var   j   a  2  ''  -1  b    /*obtain the first and last dec. digit.*/
              if #.b          ==n  then iterate  /*Digit quota filled?     Then skip it.*/
              if j // (a||b) \==0  then iterate  /*Not divisible by A||B?    "    "   " */
              sum= sum + 1;        #.b= #.b + 1  /*bump the sum counter & digit counter.*/
              $.b= $.b  j                        /*append   J   to the correct list.    */
              end   /*j*/
                                                 /* [↓]  just show the last  Z  numbers.*/
              do k=1  for 9;   say  k':'   strip( subword($.k, 1 + n - z) )
              end   /*k*/;     say
        return
output   when using the internal default inputs:

(Shown at   5/6   size.)

═════════════════════ first  20  of  20  palindromic gapful numbers starting at:  100    (ending in a specific digit) ══════════════════════
1: 121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591
2: 242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392
3: 363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333
4: 484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804
5: 5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895
6: 6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336
7: 7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087
8: 8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648
9: 9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069

═════════════════════ last  15  of  100  palindromic gapful numbers starting at:  100    (ending in a specific digit) ══════════════════════
1: 165561 166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971
2: 265562 266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972
3: 30366303 30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703
4: 4473744 4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284
5: 565565 566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975
6: 60399306 60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806
7: 72299227 72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927
8: 80611608 80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808
9: 95311359 95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569

═════════════════════ last  10  of  1000  palindromic gapful numbers starting at:  100    (ending in a specific digit) ═════════════════════
1: 17799771 17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871
2: 27799772 27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872
3: 3084004803 3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803
4: 482282284 482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384
5: 57800875 57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875
6: 6084004806 6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806
7: 7452992547 7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547
8: 8085995808 8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808
9: 9675005769 9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869

Ring

load "stdlib.ring"

see "First 20 palindromic gapful numbers > 100 ending with each digit from 1 to 9:" + nl

limit = 9606069

for n = 1 to 9
    sum = 0
    for x = 101 to limit
        flag = 0
        strx = string(x)
        xbegin = left(strx,1)
        xend = right(strx,1)
        xnew = number(xbegin+xend) 
        for y = 2 to ceil(x/2)+1
            if ispalindrome(strx)
               if y != xnew and x % y != 0
                  if x % xnew = 0 and number(xend) = n  
                     flag = 1
                  else 
                     flag = 0
                     exit 
                  ok
               ok
            ok
        next
        if flag = 1
           sum = sum + 1
           if sum < 21
              see "x = " + x + nl
           else
              exit
           ok
        ok
    next
    see nl
next

see "done..." + nl

Output:

First 20 palindromic gapful numbers > 100 ending with each digit from 1 to 9:
121  1001  1111  1221  1331  1441  1551  1661  1771  1881  1991  10901  11011  12221  13431  14641  15851  17171  18381  19591
242  2002  2112  2222  2332  2442  2552  2662  2772  2882  2992  20702  21912  22022  23232  24442  25652  26862  28182  29392
363  3003  3333  3663  3993  31713  33033  36663  300003  303303  306603  309903  312213  315513  318813  321123  324423  327723  330033  333333
484  4004  4224  4444  4664  4884  40304  42724  44044  46464  48884  400004  401104  402204  403304  404404  405504  406604  407704  408804
5005  5115  5225  5335  5445  5555  5665  5775  5885  5995  50105  51315  52525  53735  54945  55055  56265  57475  58685  59895
6006  6336  6666  6996  61116  64746  66066  69696  600006  603306  606606  609906  612216  615516  618816  621126  624426  627726  630036  633336
7007  7777  77077  700007  707707  710017  717717  720027  727727  730037  737737  740047  747747  750057  757757  760067  767767  770077  777777  780087
8008  8448  8888  80608  86768  88088  800008  802208  804408  806608  808808  821128  823328  825528  827728  829928  840048  842248  844448  846648
9009  9999  94149  99099  900009  909909  918819  927729  936639  945549  954459  963369  972279  981189  990099  999999  9459549  9508059  9557559  9606069

Ruby

Translation of: Crystal

Brute force and slow

def palindromesgapful(digit, pow)
  r1 = digit * (10**pow + 1)
  r2 = 10**pow * (digit + 1)
  nn = digit * 11
  (r1...r2).select { |i| n = i.to_s; n == n.reverse && i % nn == 0 }
end

def digitscount(digit, count)
  pow  = 2
  nums = []
  while nums.size < count
    nums += palindromesgapful(digit, pow)
    pow += 1
  end
  nums[0...count]
end

count = 20
puts "First 20 palindromic gapful numbers ending with:"
(1..9).each { |digit| print "#{digit} : #{digitscount(digit, count)}\n" }

count = 100
puts "\nLast 15 of first 100 palindromic gapful numbers ending in:"
(1..9).each { |digit| print "#{digit} : #{digitscount(digit, count).last(15)}\n" }

count = 1000
puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
(1..9).each { |digit| print "#{digit} : #{digitscount(digit, count).last(10)}\n" }

Orders of Magnitude Faster: Direct Generation of Numbers

Ruby is a dynamic language evaluated at runtime.
The code as implemented has been tested to produce optimum performance.

System: I7-6700HQ, 3.5 GHz, Linux Kernel 5.6.13
Run as: $ ruby palindromicgapfuls.rb

Optimized version, the ultimate fastest: Ruby 2.7.1 - 112.5 secs

def palindromicgapfuls(digit, count)
  gapfuls = []                      # array of palindromic gapfuls
  nn = digit * 11                   # digit gapful divisor: 11, 22,...88, 99
  power = 1                         # these two lines will work
  while power += 1                  # for all Ruby VMs|versions
  #(2..).each do |power|            # Ruby => 2.6; can replace above 2 lines
    base    = 10**(power >> 1)      # value of middle digit position: 10..
    base11  = base * 11             # value of middle two digits positions: 110..
    this_lo = base * digit          # starting half for this digit: 10.. to  90..
    next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
    this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
      left_half = front_half.to_s; right_half = left_half.reverse
      if power.odd?
        palindrome = (left_half + right_half).to_i
        10.times do
            gapfuls << palindrome if palindrome % nn == 0
            palindrome += base11
        end
      else
        palindrome = (left_half.chop + right_half).to_i
        10.times do
          gapfuls << palindrome if palindrome % nn == 0
          palindrome += base
        end  
      end
     return gapfuls[0...count] unless gapfuls.size < count
    end
  end
end

start = Time.now

count, keep = 20, 20
puts "First 20 palindromic gapful numbers ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 100, 15
puts "\nLast 15 of first 100 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }
     
count, keep = 1_000, 10
puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 100_000, 1
puts "\n100,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 1_000_000, 1
puts "\n1,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 10_000_000, 1
puts "\n10,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

puts (Time.now - start)

Compact version: Ruby-2.7.1 - 113.0 secs

def palindromicgapfuls(digit, count)
  gapfuls = []                      # array of palindromic gapfuls
  nn = digit * 11                   # digit gapful divisor: 11, 22,...88, 99
  power = 1                         # these two lines will work
  while power += 1                  # for all Ruby VMs|versions
  #(2..).each do |power|            # Ruby => 2.6; can replace above 2 lines
    base    = 10**(power >> 1)      # value of middle digit position: 10..
    base11  = base * 11             # value of middle two digits positions: 110..
    this_lo = base * digit          # starting half for this digit: 10.. to  90..
    next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
    this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
      left_half, basep = front_half.to_s, base11; right_half = left_half.reverse
      (basep = base; left_half = left_half.chop) if power.even?
      palindrome = (left_half + right_half).to_i
      10.times do
        gapfuls << palindrome if palindrome % nn == 0
        palindrome += basep
      end
      return gapfuls[0...count] unless gapfuls.size < count
    end
  end
end

start = Time.now

count, keep = 20, 20
puts "First 20 palindromic gapful numbers ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 100, 15
puts "\nLast 15 of first 100 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 1_000, 10
puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 100_000, 1
puts "\n100,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 1_000_000, 1
puts "\n1,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

count, keep = 10_000_000, 1
puts "\n10,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count).last(keep)}" }

puts (Time.now - start)

Object Oriented implementation: Ruby 2.7.1 - 113.0 secs

class PalindromicGapfuls
  include Enumerable

  def initialize(digit)
    @digit = digit
    @nn = @digit * 11                 # digit gapful divisor: 11, 22,...88, 99
  end

  def each
    power = 1                         # these two lines will work
    while power += 1                  # for all Ruby VMs|versions
    #(2..).each do |power|            # Ruby => 2.6; can replace above 2 lines
      base    = 10**(power >> 1)      # value of middle digit position: 10..
      base11  = base * 11             # value of middle two digits positions: 110..
      this_lo = base * @digit         # starting half for this digit: 10.. to  90..
      next_lo = base * (@digit + 1)   # starting half for next digit: 20.. to 100..
      this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
        left_half = front_half.to_s; right_half = left_half.reverse
        if power.odd?
          palindrome = (left_half + right_half).to_i
          10.times do
            yield palindrome if palindrome % @nn == 0
            palindrome += base11
          end
        else
          palindrome = (left_half.chop + right_half).to_i
          10.times do
            yield palindrome if palindrome % @nn == 0
            palindrome += base
          end  
        end
      end
    end
  end
end

start = Time.now

count, keep = 20, 20
puts "First 20 palindromic gapful numbers ending with:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

count, keep = 100, 15
puts "\nLast 15 of first 100 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }
     
count, keep = 1_000, 10
puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

count, keep = 100_000, 1
puts "\n100,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

count, keep = 1_000_000, 1
puts "\n1,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

count, keep = 10_000_000, 1
puts "\n10,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).first(count).last(keep)}" }

puts (Time.now - start)

Versions optimized for minimal memory use: Ruby 2.7.1 - 110.0 secs

def palindromicgapfuls(digit, count, keep)
  palcnt = 0                        # count of gapful palindromes
  to_skip = count - keep            # count of unwanted values to skip
  gapfuls = []                      # array of palindromic gapfuls
  nn = digit * 11                   # digit gapful divisor: 11, 22,...88, 99
  power = 1                         # these two lines will work
  while power += 1                  # for all Ruby VMs|versions
  #(2..).each do |power|            # Ruby => 2.6; can replace above 2 lines
    base    = 10**(power >> 1)      # value of middle digit position: 10..
    base11  = base * 11             # value of middle two digits positions: 110..
    this_lo = base * digit          # starting half for this digit: 10.. to  90..
    next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
    this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
      left_half = front_half.to_s; right_half = left_half.reverse
      if power.odd?
        palindrome = (left_half + right_half).to_i
        10.times do
          (gapfuls << palindrome if (palcnt += 1) > to_skip) if palindrome % nn == 0
          palindrome += base11
        end
      else
        palindrome = (left_half.chop + right_half).to_i
        10.times do
          (gapfuls << palindrome if (palcnt += 1) > to_skip) if palindrome % nn == 0
          palindrome += base
        end  
      end
      return gapfuls[0...keep] unless gapfuls.size < keep
    end
  end
end

start = Time.now

count, keep = 20, 20
puts "First 20 palindromic gapful numbers ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 100, 15
puts "\nLast 15 of first 100 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 1_000, 10
puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 100_000, 1
puts "\n100,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 1_000_000, 1
puts "\n1,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

count, keep = 10_000_000, 1
puts "\n10,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

puts (Time.now - start)

Compact version optimized for minimal memory use: Ruby 2.7.1 - 111.5 secs

def palindromicgapfuls(digit, count, keep)
  palcnt = 0                        # count of gapful palindromes
  to_skip = count - keep            # count of unwanted values to skip
  gapfuls = []                      # array of palindromic gapfuls
  nn = digit * 11                   # digit gapful divisor: 11, 22,...88, 99
  power = 1                         # these two lines will work
  while power += 1                  # for all Ruby VMs|versions
  #(2..).each do |power|            # Ruby => 2.6; can replace above 2 lines
    base    = 10 ** (power >> 1)    # value of middle digit position: 10..
    base11  = base * 11             # value of middle two digits positions: 110..
    this_lo = base * digit          # starting half for this digit: 10.. to  90..
    next_lo = base * (digit + 1)    # starting half for next digit: 20.. to 100..
    this_lo.step(to: next_lo - 1, by: 10) do |front_half|   # d_00; d_10; d_20; ...
      left_half, basep = front_half.to_s, base11; right_half = left_half.reverse
      (basep = base; left_half = left_half.chop) if power.even?
      palindrome = (left_half + right_half).to_i
      10.times do
        (gapfuls << palindrome if (palcnt += 1) > to_skip) if palindrome % nn == 0
        palindrome += basep
      end
      return gapfuls[0...keep] unless gapfuls.size < keep
    end
  end
end

start = Time.now

count, keep = 20, 20
puts "First 20 palindromic gapful numbers ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }
 
count, keep = 100, 15
puts "\nLast 15 of first 100 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }
 
count, keep = 1_000, 10
puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }
 
count, keep = 100_000, 1
puts "\n100,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }
 
count, keep = 1_000_000, 1
puts "\n1,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }
 
count, keep = 10_000_000, 1
puts "\n10,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{palindromicgapfuls(digit, count, keep)}" }

puts (Time.now - start)

OOP version optimized for minimal memory use: Ruby 2.7.1 - 116.0 secs
It creates an output method that skips the unwanted values and only keeps/stores the desired ones.

class PalindromicGapfuls
  include Enumerable

  def initialize(digit)
    @digit = digit
    @nn = @digit * 11                 # digit gapful divisor: 11, 22,...88, 99
  end

  def each
    power = 1                         # these two lines will work
    while power += 1                  # for all Ruby VMs|versions
    #(2..).each do |power|            # Ruby => 2.6; can replace above 2 lines
      base    = 10**(power >> 1)      # value of middle digit position: 10..
      base11  = base * 11             # value of middle two digits positions: 110..
      this_lo = base * @digit         # starting half for this digit: 10.. to  90..
      next_lo = base * (@digit + 1)   # starting half for next digit: 20.. to 100..
      this_lo.step(to: next_lo - 1, by: 10) do |front_half| # d_00; d_10; d_20; ...
        left_half = front_half.to_s; right_half = left_half.reverse
        if power.odd?
          palindrome = (left_half + right_half).to_i
          10.times do
            yield palindrome if palindrome % @nn == 0
            palindrome += base11
          end
        else
          palindrome = (left_half.chop + right_half).to_i
          10.times do
            yield palindrome if palindrome % @nn == 0
            palindrome += base
          end  
        end
      end
    end
  end

  # Optimized output method: only keep desired values.
  def keep_from(count, keep)
    to_skip = (count - keep)
    kept = []
    each_with_index do |value, i|
      i < to_skip ? next : kept << value
      return kept if kept.size == keep
    end
  end
end

start = Time.now

count, keep = 20, 20
puts "First 20 palindromic gapful numbers ending with:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 100, 15
puts "\nLast 15 of first 100 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 1_000, 10
puts "\nLast 10 of first 1000 palindromic gapful numbers ending in:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 100_000, 1
puts "\n100,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 1_000_000, 1
puts "\n1,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

count, keep = 10_000_000, 1
puts "\n10,000,000th palindromic gapful number ending with:"
1.upto(9) { |digit| puts "#{digit} : #{PalindromicGapfuls.new(digit).keep_from(count, keep)}" }

puts (Time.now - start)
Output:
First 20 palindromic gapful numbers 100 ending with:
1 : [121, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 10901, 11011, 12221, 13431, 14641, 15851, 17171, 18381, 19591]
2 : [242, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 20702, 21912, 22022, 23232, 24442, 25652, 26862, 28182, 29392]
3 : [363, 3003, 3333, 3663, 3993, 31713, 33033, 36663, 300003, 303303, 306603, 309903, 312213, 315513, 318813, 321123, 324423, 327723, 330033, 333333]
4 : [484, 4004, 4224, 4444, 4664, 4884, 40304, 42724, 44044, 46464, 48884, 400004, 401104, 402204, 403304, 404404, 405504, 406604, 407704, 408804]
5 : [5005, 5115, 5225, 5335, 5445, 5555, 5665, 5775, 5885, 5995, 50105, 51315, 52525, 53735, 54945, 55055, 56265, 57475, 58685, 59895]
6 : [6006, 6336, 6666, 6996, 61116, 64746, 66066, 69696, 600006, 603306, 606606, 609906, 612216, 615516, 618816, 621126, 624426, 627726, 630036, 633336]
7 : [7007, 7777, 77077, 700007, 707707, 710017, 717717, 720027, 727727, 730037, 737737, 740047, 747747, 750057, 757757, 760067, 767767, 770077, 777777, 780087]
8 : [8008, 8448, 8888, 80608, 86768, 88088, 800008, 802208, 804408, 806608, 808808, 821128, 823328, 825528, 827728, 829928, 840048, 842248, 844448, 846648]
9 : [9009, 9999, 94149, 99099, 900009, 909909, 918819, 927729, 936639, 945549, 954459, 963369, 972279, 981189, 990099, 999999, 9459549, 9508059, 9557559, 9606069]

Last 15 of first 100 palindromic gapful numbers ending in:
1 : [165561, 166661, 167761, 168861, 169961, 170071, 171171, 172271, 173371, 174471, 175571, 176671, 177771, 178871, 179971]
2 : [265562, 266662, 267762, 268862, 269962, 270072, 271172, 272272, 273372, 274472, 275572, 276672, 277772, 278872, 279972]
3 : [30366303, 30399303, 30422403, 30455403, 30488403, 30511503, 30544503, 30577503, 30600603, 30633603, 30666603, 30699603, 30722703, 30755703, 30788703]
4 : [4473744, 4485844, 4497944, 4607064, 4619164, 4620264, 4632364, 4644464, 4656564, 4668664, 4681864, 4693964, 4803084, 4815184, 4827284]
5 : [565565, 566665, 567765, 568865, 569965, 570075, 571175, 572275, 573375, 574475, 575575, 576675, 577775, 578875, 579975]
6 : [60399306, 60422406, 60455406, 60488406, 60511506, 60544506, 60577506, 60600606, 60633606, 60666606, 60699606, 60722706, 60755706, 60788706, 60811806]
7 : [72299227, 72322327, 72399327, 72422427, 72499427, 72522527, 72599527, 72622627, 72699627, 72722727, 72799727, 72822827, 72899827, 72922927, 72999927]
8 : [80611608, 80622608, 80633608, 80644608, 80655608, 80666608, 80677608, 80688608, 80699608, 80800808, 80811808, 80822808, 80833808, 80844808, 80855808]
9 : [95311359, 95400459, 95499459, 95588559, 95677659, 95766759, 95855859, 95944959, 96033069, 96122169, 96211269, 96300369, 96399369, 96488469, 96577569]

Last 10 of first 1000 palindromic gapful numbers ending in:
1 : [17799771, 17800871, 17811871, 17822871, 17833871, 17844871, 17855871, 17866871, 17877871, 17888871]
2 : [27799772, 27800872, 27811872, 27822872, 27833872, 27844872, 27855872, 27866872, 27877872, 27888872]
3 : [3084004803, 3084334803, 3084664803, 3084994803, 3085225803, 3085555803, 3085885803, 3086116803, 3086446803, 3086776803]
4 : [482282284, 482414284, 482535284, 482656284, 482777284, 482898284, 482909284, 483020384, 483141384, 483262384]
5 : [57800875, 57811875, 57822875, 57833875, 57844875, 57855875, 57866875, 57877875, 57888875, 57899875]
6 : [6084004806, 6084334806, 6084664806, 6084994806, 6085225806, 6085555806, 6085885806, 6086116806, 6086446806, 6086776806]
7 : [7452992547, 7453223547, 7453993547, 7454224547, 7454994547, 7455225547, 7455995547, 7456226547, 7456996547, 7457227547]
8 : [8085995808, 8086006808, 8086116808, 8086226808, 8086336808, 8086446808, 8086556808, 8086666808, 8086776808, 8086886808]
9 : [9675005769, 9675995769, 9676886769, 9677777769, 9678668769, 9679559769, 9680440869, 9681331869, 9682222869, 9683113869]

100,000th palindromic gapful number ending with:
1 : [178788887871]
2 : [278788887872]
3 : [30878611687803]
4 : [4833326233384]
5 : [578789987875]
6 : [60878611687806]
7 : [74826144162847]
8 : [80869688696808]
9 : [96878077087869]

1,000,000th palindromic gapful number ending with:
1 : [17878799787871]
2 : [27878799787872]
3 : [3087876666787803]
4 : [483333272333384]
5 : [57878799787875]
6 : [6087876996787806]
7 : [7487226666227847]
8 : [8086969559696808]
9 : [9687870990787869]

10,000,000th palindromic gapful number ending with:
1 : [1787878888787871]
2 : [2787878888787872]
3 : [308787855558787803]
4 : [48333332623333384]
5 : [5787878998787875]
6 : [608787855558787806]
7 : [748867523325768847]
8 : [808696968869696808]
9 : [968787783387787869]

Translation of F#

Translation of: F#

0.186s on Intel(R) Core(TM) i5-1035G1 CPU @ 1.00GHz

class PalNo
  def initialize(set)
    @set, @l=set, 3
  end
  def fN(n)
    return [0,1,2,3,4,5,6,7,8,9] if n==1
    return [0,11,22,33,44,55,66,77,88,99] if n==2
    a=[]; [0,1,2,3,4,5,6,7,8,9].product(fN(n-2)).each{|g| a.push(g[0]*10**(n-1)+g[0]+10*g[1])}; return a
  end
  def each
    while true do fN(@l-2).each{|g| a=@set*10**(@l-1)+@set+10*g; yield a if a%(11*@set)==0}; @l+=1 end
  end
end

for n in 1..9 do palNo=PalNo.new(n); g=1; palNo.each{|n| print "#{n} "; g+=1; break unless g<21}; puts "" end; puts "####"
for n in 1..9 do palNo=PalNo.new(n); g=1; palNo.each{|n| print "#{n} " if g>85; g+=1; break unless g<101}; puts "" end; puts "####"
for n in 1..9 do palNo=PalNo.new(n); g=1; palNo.each{|n| print "#{n} " if g>990; g+=1; break unless g<1001}; puts "" end; puts "####"
Output:
121 1001 1111 1221 1331 1441 1551 1661 1771 1881 1991 10901 11011 12221 13431 14641 15851 17171 18381 19591
242 2002 2112 2222 2332 2442 2552 2662 2772 2882 2992 20702 21912 22022 23232 24442 25652 26862 28182 29392
363 3003 3333 3663 3993 31713 33033 36663 300003 303303 306603 309903 312213 315513 318813 321123 324423 327723 330033 333333
484 4004 4224 4444 4664 4884 40304 42724 44044 46464 48884 400004 401104 402204 403304 404404 405504 406604 407704 408804
5005 5115 5225 5335 5445 5555 5665 5775 5885 5995 50105 51315 52525 53735 54945 55055 56265 57475 58685 59895
6006 6336 6666 6996 61116 64746 66066 69696 600006 603306 606606 609906 612216 615516 618816 621126 624426 627726 630036 633336
7007 7777 77077 700007 707707 710017 717717 720027 727727 730037 737737 740047 747747 750057 757757 760067 767767 770077 777777 780087
8008 8448 8888 80608 86768 88088 800008 802208 804408 806608 808808 821128 823328 825528 827728 829928 840048 842248 844448 846648
9009 9999 94149 99099 900009 909909 918819 927729 936639 945549 954459 963369 972279 981189 990099 999999 9459549 9508059 9557559 9606069
####
166661 167761 168861 169961 170071 171171 172271 173371 174471 175571 176671 177771 178871 179971 180081
266662 267762 268862 269962 270072 271172 272272 273372 274472 275572 276672 277772 278872 279972 280082
30399303 30422403 30455403 30488403 30511503 30544503 30577503 30600603 30633603 30666603 30699603 30722703 30755703 30788703 30811803
4485844 4497944 4607064 4619164 4620264 4632364 4644464 4656564 4668664 4681864 4693964 4803084 4815184 4827284 4839384
566665 567765 568865 569965 570075 571175 572275 573375 574475 575575 576675 577775 578875 579975 580085
60422406 60455406 60488406 60511506 60544506 60577506 60600606 60633606 60666606 60699606 60722706 60755706 60788706 60811806 60844806
72322327 72399327 72422427 72499427 72522527 72599527 72622627 72699627 72722727 72799727 72822827 72899827 72922927 72999927 73033037
80622608 80633608 80644608 80655608 80666608 80677608 80688608 80699608 80800808 80811808 80822808 80833808 80844808 80855808 80866808
95400459 95499459 95588559 95677659 95766759 95855859 95944959 96033069 96122169 96211269 96300369 96399369 96488469 96577569 96666669
####
17800871 17811871 17822871 17833871 17844871 17855871 17866871 17877871 17888871 17899871
27800872 27811872 27822872 27833872 27844872 27855872 27866872 27877872 27888872 27899872
3084334803 3084664803 3084994803 3085225803 3085555803 3085885803 3086116803 3086446803 3086776803 3087007803
482414284 482535284 482656284 482777284 482898284 482909284 483020384 483141384 483262384 483383384
57811875 57822875 57833875 57844875 57855875 57866875 57877875 57888875 57899875 57900975
6084334806 6084664806 6084994806 6085225806 6085555806 6085885806 6086116806 6086446806 6086776806 6087007806
7453223547 7453993547 7454224547 7454994547 7455225547 7455995547 7456226547 7456996547 7457227547 7457997547
8086006808 8086116808 8086226808 8086336808 8086446808 8086556808 8086666808 8086776808 8086886808 8086996808
9675995769 9676886769 9677777769 9678668769 9679559769 9680440869 9681331869 9682222869 9683113869 9684004869
####
Translation of: Ruby of F#


More user friendly|simpler implementation; max memory consumption hits ~50%.

System: I7-6700HQ, 3.5 GHz, 16GB, Linux Kernel 5.9.10, Ruby 2.7.2
Run as: $ ruby fsharp2ruby.rb
Best Time: 437.566515299 secs
class PalNo
  def initialize(digit)
    @digit, @l, @dd = digit, 3, 11*digit
  end
  def fN(n)
    return [0,1,2,3,4,5,6,7,8,9] if n==1
    return [0,11,22,33,44,55,66,77,88,99] if n==2
    a=[]; [0,1,2,3,4,5,6,7,8,9].product(fN(n-2)).each{ |g0,g1| a << g0*10**(n-1)+g0+10*g1 }; return a
  end
  def show(count, keep)
    to_skip, palcnt, pals = count - keep, 0, []
    while palcnt < count
      fN(@l-2).each{ |g| pal=@digit*10**(@l-1)+@digit+10*g;
      pals << pal if pal%(@dd)==0 && (palcnt += 1) > to_skip; break if palcnt - to_skip == keep }; @l+=1
    end
    print pals; puts
  end
end

start = Time.now

(1..9).each { |digit| PalNo.new(digit).show(20, 20) }; puts "####"
(1..9).each { |digit| PalNo.new(digit).show(100, 15) }; puts "####"
(1..9).each { |digit| PalNo.new(digit).show(1000, 10) }; puts "####"
(1..9).each { |digit| PalNo.new(digit).show(100_000, 1) }; puts "####"
(1..9).each { |digit| PalNo.new(digit).show(1_000_000, 1) }; puts "####"
(1..9).each { |digit| PalNo.new(digit).show(10_000_000, 1) }; puts "####"

puts (Time.now - start)
Output:
[121, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 10901, 11011, 12221, 13431, 14641, 15851, 17171, 18381, 19591]
[242, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 20702, 21912, 22022, 23232, 24442, 25652, 26862, 28182, 29392]
[363, 3003, 3333, 3663, 3993, 31713, 33033, 36663, 300003, 303303, 306603, 309903, 312213, 315513, 318813, 321123, 324423, 327723, 330033, 333333]
[484, 4004, 4224, 4444, 4664, 4884, 40304, 42724, 44044, 46464, 48884, 400004, 401104, 402204, 403304, 404404, 405504, 406604, 407704, 408804]
[5005, 5115, 5225, 5335, 5445, 5555, 5665, 5775, 5885, 5995, 50105, 51315, 52525, 53735, 54945, 55055, 56265, 57475, 58685, 59895]
[6006, 6336, 6666, 6996, 61116, 64746, 66066, 69696, 600006, 603306, 606606, 609906, 612216, 615516, 618816, 621126, 624426, 627726, 630036, 633336]
[7007, 7777, 77077, 700007, 707707, 710017, 717717, 720027, 727727, 730037, 737737, 740047, 747747, 750057, 757757, 760067, 767767, 770077, 777777, 780087]
[8008, 8448, 8888, 80608, 86768, 88088, 800008, 802208, 804408, 806608, 808808, 821128, 823328, 825528, 827728, 829928, 840048, 842248, 844448, 846648]
[9009, 9999, 94149, 99099, 900009, 909909, 918819, 927729, 936639, 945549, 954459, 963369, 972279, 981189, 990099, 999999, 9459549, 9508059, 9557559, 9606069]
####
[165561, 166661, 167761, 168861, 169961, 170071, 171171, 172271, 173371, 174471, 175571, 176671, 177771, 178871, 179971]
[265562, 266662, 267762, 268862, 269962, 270072, 271172, 272272, 273372, 274472, 275572, 276672, 277772, 278872, 279972]
[30366303, 30399303, 30422403, 30455403, 30488403, 30511503, 30544503, 30577503, 30600603, 30633603, 30666603, 30699603, 30722703, 30755703, 30788703]
[4473744, 4485844, 4497944, 4607064, 4619164, 4620264, 4632364, 4644464, 4656564, 4668664, 4681864, 4693964, 4803084, 4815184, 4827284]
[565565, 566665, 567765, 568865, 569965, 570075, 571175, 572275, 573375, 574475, 575575, 576675, 577775, 578875, 579975]
[60399306, 60422406, 60455406, 60488406, 60511506, 60544506, 60577506, 60600606, 60633606, 60666606, 60699606, 60722706, 60755706, 60788706, 60811806]
[72299227, 72322327, 72399327, 72422427, 72499427, 72522527, 72599527, 72622627, 72699627, 72722727, 72799727, 72822827, 72899827, 72922927, 72999927]
[80611608, 80622608, 80633608, 80644608, 80655608, 80666608, 80677608, 80688608, 80699608, 80800808, 80811808, 80822808, 80833808, 80844808, 80855808]
[95311359, 95400459, 95499459, 95588559, 95677659, 95766759, 95855859, 95944959, 96033069, 96122169, 96211269, 96300369, 96399369, 96488469, 96577569]
####
[17799771, 17800871, 17811871, 17822871, 17833871, 17844871, 17855871, 17866871, 17877871, 17888871]
[27799772, 27800872, 27811872, 27822872, 27833872, 27844872, 27855872, 27866872, 27877872, 27888872]
[3084004803, 3084334803, 3084664803, 3084994803, 3085225803, 3085555803, 3085885803, 3086116803, 3086446803, 3086776803]
[482282284, 482414284, 482535284, 482656284, 482777284, 482898284, 482909284, 483020384, 483141384, 483262384]
[57800875, 57811875, 57822875, 57833875, 57844875, 57855875, 57866875, 57877875, 57888875, 57899875]
[6084004806, 6084334806, 6084664806, 6084994806, 6085225806, 6085555806, 6085885806, 6086116806, 6086446806, 6086776806]
[7452992547, 7453223547, 7453993547, 7454224547, 7454994547, 7455225547, 7455995547, 7456226547, 7456996547, 7457227547]
[8085995808, 8086006808, 8086116808, 8086226808, 8086336808, 8086446808, 8086556808, 8086666808, 8086776808, 8086886808]
[9675005769, 9675995769, 9676886769, 9677777769, 9678668769, 9679559769, 9680440869, 9681331869, 9682222869, 9683113869]
####
[178788887871]
[278788887872]
[30878611687803]
[4833326233384]
[578789987875]
[60878611687806]
[74826144162847]
[80869688696808]
[96878077087869]
####
[17878799787871]
[27878799787872]
[3087876666787803]
[483333272333384]
[57878799787875]
[6087876996787806]
[7487226666227847]
[8086969559696808]
[9687870990787869]
####
[1787878888787871]
[2787878888787872]
[308787855558787803]
[48333332623333384]
[5787878998787875]
[608787855558787806]
[748867523325768847]
[808696968869696808]
[968787783387787869]
####
437.566515299

Rust

Translation of: Crystal
This version uses number->string then string->number conversions to create palindromes.
fn palindromicgapfuls(digit: u64, count: u64, keep: usize) -> Vec<u64> {
  let mut palcnt = 0u64;               // count of gapful palindromes
  let to_skip = count - keep as u64;   // count of unwanted values to skip
  let mut gapfuls: Vec<u64> = vec![];  // array of palindromic gapfuls
  let nn = digit * 11;                 // digit gapful divisor: 11, 22,...88, 99
  let (mut power, mut base) = (1, 1u64);
  loop { power += 1;
    if power & 1 == 0 { base *= 10 };  // value of middle digit position: 10..
    let base11  = base * 11;           // value of middle two digits positions: 110..
    let this_lo = base * digit;        // starting half for this digit: 10.. to  90..
    let next_lo = base * (digit + 1);  // starting half for next digit: 20.. to 100..
    for front_half in (this_lo..next_lo-1).step_by(10) { // d_00; d_10; d_20; ...
      let (mut left_half, mut basep) = (front_half.to_string(), 0);
      let right_half = left_half.chars().rev().collect::<String>();
      if power & 1 == 1 { basep = base11; left_half.push_str(&right_half) }
      else              { basep = base;   left_half.pop(); left_half.push_str(&right_half) };
      let mut palindrome = left_half.parse::<u64>().unwrap();
      for _ in 0..10 {
        if palindrome % nn == 0 { palcnt += 1; if palcnt > to_skip { gapfuls.push(palindrome) } };
        palindrome += basep;
      } 
      if gapfuls.len() >= keep { return gapfuls[0..keep].to_vec() };
    }
  }
}

fn main() {
  let t = std::time::Instant::now();  
  
  let (count, keep) = (20, 20);
  println!("First 20 palindromic gapful numbers ending with:");
  for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
  
  let (count, keep) = (100, 15);
  println!("\nLast 15 of first 100 palindromic gapful numbers ending in:");
  for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
  
  let (count, keep) = (1_000, 10);
  println!("\nLast 10 of first 1000 palindromic gapful numbers ending in:");
  for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
  
  let (count, keep) = (100_000, 1);
  println!("\n100,000th palindromic gapful number ending with:");
  for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
  
  let (count, keep) = (1_000_000, 1);
  println!("\n1,000,000th palindromic gapful number ending with:");
  for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
  
  let (count, keep) = (10_000_000, 1);
  println!("\n10,000,000th palindromic gapful number ending with:");
  for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
  
  println!("{:?}", t.elapsed())
}
System: I7-6700HQ, 3.5 GHz, Linux Kernel 5.9.10, Rust 1.48
Compil: $ rustc -C opt-level=3 -C target-cpu=native -C codegen-units=1 -C lto palindromicgapfuls.rs 
Run as: ./palindromicgapfuls
Time: 19.973894976s


This version creates palindromes numerically instead of using number<->string conversions.
About 2.5x faster.
fn palindromicgapfuls(digit: u64, count: u64, keep: usize) -> Vec<u64> {
  let mut palcnt = 0u64;               // count of gapful palindromes
  let to_skip = count - keep as u64;   // count of unwanted values to skip
  let mut gapfuls: Vec<u64> = vec![];  // array of palindromic gapfuls
  let nn = digit * 11;                 // digit gapful divisor: 11, 22,...88, 99
  let (mut power, mut base) = (1, 1u64);
  loop { power += 1;
    if power & 1 == 0 { base *= 10 }   // value of middle digit position: 10..
    let base11 = base * 11;            // value of middle two digits positions: 110..
    let this_lo = base * digit;        // starting half for this digit: 10.. to  90..
    let next_lo = base * (digit + 1);  // starting half for next digit: 20.. to 100..
    for front_half in (this_lo..next_lo).step_by(10) { // d_00; d_10; d_20; ...
      let basep = if power & 1 == 1 { base11 } else { base };
      let mut palindrome = make_palindrome(front_half, power);
      for _ in 0..10 {
        if palindrome % nn == 0 { palcnt += 1; if palcnt > to_skip { gapfuls.push(palindrome) } };
        palindrome += basep;
      }
      if gapfuls.len() >= keep { return gapfuls[0..keep].to_vec() };
} } }   

fn make_palindrome(mut front_half: u64, power: u64) -> u64 {
  let mut result = front_half;
  if power & 1 == 0 { result /= 10; }
  while front_half > 0 {
    result *= 10;
    result += front_half % 10;
    front_half /= 10;
  }
  result
}

fn main() {
  let t = std::time::Instant::now();  
  
  let (count, keep) = (20, 20);
  println!("First 20 palindromic gapful numbers ending with:");
  for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
  
  let (count, keep) = (100, 15);
  println!("\nLast 15 of first 100 palindromic gapful numbers ending in:");
  for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
  
  let (count, keep) = (1_000, 10);
  println!("\nLast 10 of first 1000 palindromic gapful numbers ending in:");
  for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
  
  let (count, keep) = (100_000, 1);
  println!("\n100,000th palindromic gapful number ending with:");
  for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
  
  let (count, keep) = (1_000_000, 1);
  println!("\n1,000,000th palindromic gapful number ending with:");
  for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
  
  let (count, keep) = (10_000_000, 1);
  println!("\n10,000,000th palindromic gapful number ending with:");
  for digit in 1..10 { println!("{} : {:?}", digit, palindromicgapfuls(digit, count, keep)); }  
  
  println!("{:?}", t.elapsed())
}
System: I7-6700HQ, 3.5 GHz, Linux Kernel 5.9.10, Rust 1.48
Compil: $ rustc -C opt-level=3 -C target-cpu=native -C codegen-units=1 -C lto palindromicgapfuls.rs 
Run as: ./palindromicgapfuls
Time: 8.768842134s
Output:
First 20 palindromic gapful numbers 100 ending with:
1 : [121, 1001, 1111, 1221, 1331, 1441, 1551, 1661, 1771, 1881, 1991, 10901, 11011, 12221, 13431, 14641, 15851, 17171, 18381, 19591]
2 : [242, 2002, 2112, 2222, 2332, 2442, 2552, 2662, 2772, 2882, 2992, 20702, 21912, 22022, 23232, 24442, 25652, 26862, 28182, 29392]
3 : [363, 3003, 3333, 3663, 3993, 31713, 33033, 36663, 300003, 303303, 306603, 309903, 312213, 315513, 318813, 321123, 324423, 327723, 330033, 333333]
4 : [484, 4004, 4224, 4444, 4664, 4884, 40304, 42724, 44044, 46464, 48884, 400004, 401104, 402204, 403304, 404404, 405504, 406604, 407704, 408804]
5 : [5005, 5115, 5225, 5335, 5445, 5555, 5665, 5775, 5885, 5995, 50105, 51315, 52525, 53735, 54945, 55055, 56265, 57475, 58685, 59895]
6 : [6006, 6336, 6666, 6996, 61116, 64746, 66066, 69696, 600006, 603306, 606606, 609906, 612216, 615516, 618816, 621126, 624426, 627726, 630036, 633336]
7 : [7007, 7777, 77077, 700007, 707707, 710017, 717717, 720027, 727727, 730037, 737737, 740047, 747747, 750057, 757757, 760067, 767767, 770077, 777777, 780087]
8 : [8008, 8448, 8888, 80608, 86768, 88088, 800008, 802208, 804408, 806608, 808808, 821128, 823328, 825528, 827728, 829928, 840048, 842248, 844448, 846648]
9 : [9009, 9999, 94149, 99099, 900009, 909909, 918819, 927729, 936639, 945549, 954459, 963369, 972279, 981189, 990099, 999999, 9459549, 9508059, 9557559, 9606069]

Last 15 of first 100 palindromic gapful numbers ending in:
1 : [165561, 166661, 167761, 168861, 169961, 170071, 171171, 172271, 173371, 174471, 175571, 176671, 177771, 178871, 179971]
2 : [265562, 266662, 267762, 268862, 269962, 270072, 271172, 272272, 273372, 274472, 275572, 276672, 277772, 278872, 279972]
3 : [30366303, 30399303, 30422403, 30455403, 30488403, 30511503, 30544503, 30577503, 30600603, 30633603, 30666603, 30699603, 30722703, 30755703, 30788703]
4 : [4473744, 4485844, 4497944, 4607064, 4619164, 4620264, 4632364, 4644464, 4656564, 4668664, 4681864, 4693964, 4803084, 4815184, 4827284]
5 : [565565, 566665, 567765, 568865, 569965, 570075, 571175, 572275, 573375, 574475, 575575, 576675, 577775, 578875, 579975]
6 : [60399306, 60422406, 60455406, 60488406, 60511506, 60544506, 60577506, 60600606, 60633606, 60666606, 60699606, 60722706, 60755706, 60788706, 60811806]
7 : [72299227, 72322327, 72399327, 72422427, 72499427, 72522527, 72599527, 72622627, 72699627, 72722727, 72799727, 72822827, 72899827, 72922927, 72999927]
8 : [80611608, 80622608, 80633608, 80644608, 80655608, 80666608, 80677608, 80688608, 80699608, 80800808, 80811808, 80822808, 80833808, 80844808, 80855808]
9 : [95311359, 95400459, 95499459, 95588559, 95677659, 95766759, 95855859, 95944959, 96033069, 96122169, 96211269, 96300369, 96399369, 96488469, 96577569]

Last 10 of first 1000 palindromic gapful numbers ending in:
1 : [17799771, 17800871, 17811871, 17822871, 17833871, 17844871, 17855871, 17866871, 17877871, 17888871]
2 : [27799772, 27800872, 27811872, 27822872, 27833872, 27844872, 27855872, 27866872, 27877872, 27888872]
3 : [3084004803, 3084334803, 3084664803, 3084994803, 3085225803, 3085555803, 3085885803, 3086116803, 3086446803, 3086776803]
4 : [482282284, 482414284, 482535284, 482656284, 482777284, 482898284, 482909284, 483020384, 483141384, 483262384]
5 : [57800875, 57811875, 57822875, 57833875, 57844875, 57855875, 57866875, 57877875, 57888875, 57899875]
6 : [6084004806, 6084334806, 6084664806, 6084994806, 6085225806, 6085555806, 6085885806, 6086116806, 6086446806, 6086776806]
7 : [7452992547, 7453223547, 7453993547, 7454224547, 7454994547, 7455225547, 7455995547, 7456226547, 7456996547, 7457227547]
8 : [8085995808, 8086006808, 8086116808, 8086226808, 8086336808, 8086446808, 8086556808, 8086666808, 8086776808, 8086886808]
9 : [9675005769, 9675995769, 9676886769, 9677777769, 9678668769, 9679559769, 9680440869, 9681331869, 9682222869, 9683113869]

100,000th palindromic gapful number ending with:
1 : [178788887871]
2 : [278788887872]
3 : [30878611687803]
4 : [4833326233384]
5 : [578789987875]
6 : [60878611687806]
7 : [74826144162847]
8 : [80869688696808]
9 : [96878077087869]

1,000,000th palindromic gapful number ending with:
1 : [17878799787871]
2 : [27878799787872]
3 : [3087876666787803]
4 : [483333272333384]
5 : [57878799787875]
6 : [6087876996787806]
7 : [7487226666227847]
8 : [8086969559696808]
9 : [9687870990787869]

10,000,000th palindromic gapful number ending with:
1 : [1787878888787871]
2 : [2787878888787872]
3 : [308787855558787803]
4 : [48333332623333384]
5 : [5787878998787875]
6 : [608787855558787806]
7 : [748867523325768847]
8 : [808696968869696808]
9 : [968787783387787869]

Sidef

Inspired from the C++ and Raku entries.

class PalindromeGenerator (digit, base=10) {

    has power = base
    has after = (digit*power - 1)
    has even  = false

    method next {

        if (++after == power*(digit+1)) {
            power *= base if even
            after = digit*power
            even.not!
        }

        even ? (after*power*base + reverse(after, base))
             : (after*power + reverse(after/base, base))
    }
}

var task = [
    "(Required) First 20 gapful palindromes:",       { .first(20) }, 7,
    ,"\n(Required) 86th through 100th:",             { .first(1e2).last(15) }, 8,
    ,"\n(Optional) 991st through 1,000th:",          { .first(1e3).last(10) }, 10,
    ,"\n(Extra stretchy) 9,995th through 10,000th:", { .first(1e4).last(6) }, 12,
]

task.each_slice(3, {|title, f, w|
    say title
    for d in (1..9) {
        var k    = 11*d
        var iter = PalindromeGenerator(d)
        var arr  = f(^Inf->lazy.map { iter.next }.grep {|n| k `divides` n })
        say ("#{d}: ", arr.map{ "%*s" % (w, _) }.join(' '))
    }
})
Output:
(Required) First 20 gapful palindromes:
1:     121    1001    1111    1221    1331    1441    1551    1661    1771    1881    1991   10901   11011   12221   13431   14641   15851   17171   18381   19591
2:     242    2002    2112    2222    2332    2442    2552    2662    2772    2882    2992   20702   21912   22022   23232   24442   25652   26862   28182   29392
3:     363    3003    3333    3663    3993   31713   33033   36663  300003  303303  306603  309903  312213  315513  318813  321123  324423  327723  330033  333333
4:     484    4004    4224    4444    4664    4884   40304   42724   44044   46464   48884  400004  401104  402204  403304  404404  405504  406604  407704  408804
5:    5005    5115    5225    5335    5445    5555    5665    5775    5885    5995   50105   51315   52525   53735   54945   55055   56265   57475   58685   59895
6:    6006    6336    6666    6996   61116   64746   66066   69696  600006  603306  606606  609906  612216  615516  618816  621126  624426  627726  630036  633336
7:    7007    7777   77077  700007  707707  710017  717717  720027  727727  730037  737737  740047  747747  750057  757757  760067  767767  770077  777777  780087
8:    8008    8448    8888   80608   86768   88088  800008  802208  804408  806608  808808  821128  823328  825528  827728  829928  840048  842248  844448  846648
9:    9009    9999   94149   99099  900009  909909  918819  927729  936639  945549  954459  963369  972279  981189  990099  999999 9459549 9508059 9557559 9606069

(Required) 86th through 100th:
1:   165561   166661   167761   168861   169961   170071   171171   172271   173371   174471   175571   176671   177771   178871   179971
2:   265562   266662   267762