Odd and square numbers

From Rosetta Code
Odd and square numbers is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task


Find odd and square numbers (>99) under 1.000

11l

Translation of: Python
V limit = 1000

L(i) (1 .< Int(ceil(sqrt(limit)))).step(2)
   V num = i * i
   I num < limit & num > 99
      print(num, end' ‘ ’)
Output:
121 169 225 289 361 441 529 625 729 841 961 

8080 Assembly

        org     100h
        lxi     h,81    ; Holds current square
        lxi     d,19    ; Holds distance to next square
        mvi     b,12    ; Loop counter
        jmp     next
loop:   call    prhl
next:   dad     d       ; Generate next square (will be even)
        inx     d       ; Increase distance by 2
        inx     d
        dad     d       ; Generate next square (will be odd)
        inx     d       ; Increase distance by 2
        inx     d
        dcr     b
        jnz     loop
        ret
        
        ; Print HL as decimal 
prhl:   push    h       ; Save all registers
        push    d
        push    b
        lxi     b,pnum  ; Store pointer to num string on stack
        push    b
        lxi     b,-10   ; Divisor
prdgt:  lxi     d,-1
prdgtl: inx     d       ; Divide by 10 through trial subtraction
        dad     b
        jc      prdgtl
        mvi     a,'0'+10
        add     l       ; L = remainder - 10
        pop     h       ; Get pointer from stack
        dcx     h       ; Store digit
        mov     m,a
        push    h       ; Put pointer back on stack
        xchg            ; Put quotient in HL
        mov     a,h     ; Check if zero
        ora     l
        jnz     prdgt   ; If not, next digit
        pop     d       ; Get pointer and put in DE
        mvi     c,9     ; CP/M print string
        call    5
        pop     b       ; Restore registers
        pop     d
        pop     h
        ret
        db      '*****' ; Placeholder for number
pnum:   db      13,10,'$'
Output:
121
169
225
289
361
441
529
625
729
841
961

ALGOL 68

BEGIN # print odd suares between 100 and 1000 #
    # if 2m + 1 and 2m - 1 are consecutive odd numbers, the difference between their squares is 8m #
    INT to next    := 8;
    INT odd square := 1;
    WHILE odd square < 1000 DO
        IF odd square > 99 THEN
            print( ( " ", whole( odd square, 0 ) ) )
        FI;
        odd square +:= to next;
        to next    +:= 8
    OD
END
Output:
 121 169 225 289 361 441 529 625 729 841 961

ALGOL W

Translation of: PL/M

which is based on the Algol 68 sample.

begin % print odd squares between 100 and 1000 %
    integer oddSquare, nextGap;
    oddSquare := 1;
    nextGap   := 8;
    while oddSquare < 100 do begin
        oddSquare := oddSquare + nextGap;
        nextGap   := nextGap + 8
    end while_oddSuare_lt_100 ;
    while oddSquare < 1000 do begin
        writeon( i_w := s_w := 1, oddSquare );
        oddSquare := oddSquare + nextGap;
        nextGap   := nextGap + 8
    end while_oddSquare_lt_1000
end.
Output:
121 169 225 289 361 441 529 625 729 841 961

Arturo

100..1000 | select => odd?
          | select 'x -> zero? (sqrt x) % 1
          | print
Output:
121 169 225 289 361 441 529 625 729 841 961

AWK

# syntax: GAWK -f ODD_AND_SQUARE_NUMBERS.AWK
BEGIN {
    start = 100
    stop = 999
    i = n = 1
    while (n <= stop) {
      if (n >= start) {
        printf("%5d%1s",n,++count%10?"":"\n")
      }
      n += 8 * i++
    }
    printf("\nOdd and square numbers %d-%d: %d\n",start,stop,count)
    exit(0)
}
Output:
  121   169   225   289   361   441   529   625   729   841
  961
Odd and square numbers 100-999: 11

BASIC

10 DEFINT A-Z
20 N=10
30 S=N*N
40 IF S>=1000 THEN END
50 IF S AND 1 THEN PRINT S
60 N=N+1
70 GOTO 30
Output:
 121
 169
 225
 289
 361
 441
 529
 625
 729
 841
 961

BCPL

get "libhdr"

let start() be 
$(  let n = 10
    $(  let sq = n * n
        if sq >= 1000 then finish
        if sq rem 2 = 1 then writef("%N*N", sq)
        n := n + 1
    $) repeat
$)
Output:
121
169
225
289
361
441
529
625
729
841
961

BQN

ט11+2×↕11

Generate odd numbers from 11 to 31 and square them.

An alternate version uses more code, but doesn't require any arithmetic to derive:

100 ((ט1+2×⊢)) 1000

Here it's known that the final output should have the transformation ט1+2×⊢ applied to it to produce odd squares. The reverse of this transformation is applied to the two bounds 100 and 1000, then ↓⟜↕ produces a numeric range which is transformed back.

C

Translation of: Wren
#include <stdio.h>
#include <math.h>

int main() {
    int i, p, low, high, pow = 1, osc;
    int oddSq[120];
    for (p = 0; p < 5; ++p) {
        low = (int)ceil(sqrt((double)pow));
        if (!(low%2)) ++low;
        pow *= 10;
        high = (int)sqrt((double)pow);
        for (i = low, osc = 0; i <= high; i += 2) {
            oddSq[osc++] = i * i;
        }
        printf("%d odd square from %d to %d:\n", osc, pow/10, pow);
        for (i = 0; i < osc; ++i) {
            printf("%d ", oddSq[i]);
            if (!((i+1)%10)) printf("\n");
        }
        printf("\n\n");
    }
    return 0;
}
Output:
Same as Wren example.

CLU

start_up = proc ()
    po: stream := stream$primary_output()
    n: int := 10
    while true do
        sq: int := n**2
        if sq>=1000 then break end
        if sq//2 = 1 then stream$putl(po, int$unparse(sq)) end
        n := n+1
    end
end start_up
Output:
121
169
225
289
361
441
529
625
729
841
961

COBOL

       IDENTIFICATION DIVISION.
       PROGRAM-ID. ODD-AND-SQUARE.
       
       DATA DIVISION.
       WORKING-STORAGE SECTION.
       01 VARIABLES.
          03 N              PIC 999.
          03 SQR            PIC 9999 VALUE 0.
          03 FILLER         REDEFINES SQR.
             05 FILLER      PIC 999.
             05 FILLER      PIC 9.
                88 ODD      VALUE 1, 3, 5, 7, 9.
          03 FMT            PIC ZZ9.
          
       PROCEDURE DIVISION.
       BEGIN.
           PERFORM CHECK VARYING N FROM 10 BY 1
                UNTIL SQR IS NOT LESS THAN 1000.
           STOP RUN.
       
       CHECK.
           MULTIPLY N BY N GIVING SQR.
           IF ODD, MOVE SQR TO FMT, DISPLAY FMT.
Output:
121
169
225
289
361
441
529
625
729
841
961

Cowgol

include "cowgol.coh";

var n: uint16 := 10;
loop
    var sq := n * n;
    if sq >= 1000 then break; end if;
    if sq % 2 == 1 then
        print_i16(sq);
        print_nl();
    end if;
    n := n+1;
end loop;
Output:
121
169
225
289
361
441
529
625
729
841
961

Delphi

Works with: Delphi version 6.0


procedure ShowOddSquareNumbers(Memo: TMemo);
var I,N: integer;
var Cnt: integer;
var S: string;
begin
Cnt:=0;
for I:=10 to trunc(sqrt(1000)) do
	begin
	N:=I * I;
	if ((N and 1)=1) then
		begin
		Inc(Cnt);
		S:=S+Format('%8D',[N]);
		If (Cnt mod 5)=0 then S:=S+CRLF;
		end;
	end;
Memo.Lines.Add(S);
Memo.Lines.Add('Count='+IntToStr(Cnt));
end;
Output:
     121     169     225     289     361
     441     529     625     729     841
     961
Count=11
Elapsed Time: 1.975 ms.


Draco

proc nonrec main() void:
    word i, sq;
    i := 11;
    while sq := i * i; sq < 1000 do
        writeln(sq);
        i := i + 2
    od
corp
Output:
121
169
225
289
361
441
529
625
729
841
961

EasyLang

for i = 101 step 2 to 999
   h = sqrt i
   if h mod 1 = 0
      write i & " "
   .
.
Output:
121 169 225 289 361 441 529 625 729 841 961 

Euler

Same algorithm as the Algol and other samples.
Note formatted output is not Euler's strong point...

begin
    new toNext; new oddSquare; label again;

    toNext    <- 0;
    oddSquare <- 1;
again:
    if oddSquare < 1000 then begin
        if oddSquare > 99 then out oddSquare else 0;
        oddSquare <- oddSquare + toNext;
        toNext    <- toNext + 8;
        goto again
    end else 0

end $
Output:
    NUMBER                 121
    NUMBER                 169
    NUMBER                 225
    NUMBER                 289
    NUMBER                 361
    NUMBER                 441
    NUMBER                 529
    NUMBER                 625
    NUMBER                 729
    NUMBER                 841
    NUMBER                 961

F#

// Odd and square numbers. Nigel Galloway: November 23rd., 2021
Seq.initInfinite((*)2>>(+)11)|>Seq.map(fun n->n*n)|>Seq.takeWhile((>)1000)|>Seq.iter(printfn "%d")
Output:
121
169
225
289
361
441
529
625
729
841
961

Factor

Works with: Factor version 0.99 2021-06-02
USING: io math math.functions math.ranges prettyprint sequences ;

11 1000 sqrt 2 <range> [ bl ] [ sq pprint ] interleave nl
Output:
121 169 225 289 361 441 529 625 729 841 961

Fe

(= oddAndSquareNumbers
   (fn (minNumber maxNumber)
       (let toNext     8)
       (let oddSquare  1)
       (let lastResult (cons 0 nil))       ; result list with a dummy leading 0
       (let result     lastResult)
       (while (< oddSquare maxNumber)
           (if (< minNumber oddSquare)
               (do (setcdr lastResult (cons oddSquare nil))
                   (= lastResult (cdr lastResult))
               )
           )
           (= oddSquare (+ oddSquare toNext))
           (= toNext (+ toNext 8))
       )
       (cdr result)                ; return result without the dummy leading 0
   )
)
(print (oddAndSquareNumbers 100 1000))
Output:
(121 169 225 289 361 441 529 625 729 841 961)

Fermat

Func Oddsq(j)=(2*j-1)^2.;
i:=1;
n:=1;
while n<1000 do
    if n>100 then !!n fi;
    i:+;
    n:=Oddsq(i);
od;

FOCAL

01.10 S N=10
01.20 S S=N*N
01.30 I (1000-S)1.8
01.40 I (FITR(S/2)*2-S)1.5,1.6
01.50 T %3,S,!
01.60 S N=N+1
01.70 G 1.2
01.80 Q
Output:
= 121
= 169
= 225
= 289
= 361
= 441
= 529
= 625
= 729
= 841
= 961

FreeBASIC

Squares without squaring.

dim as integer i=1, n=1
while n<1000
    if n>100 then print n
    n+=8*i
    i+=1
wend

Go

Translation of: Wren
package main

import (
    "fmt"
    "math"
)

func main() {
    pow := 1
    for p := 0; p < 5; p++ {
        low := int(math.Ceil(math.Sqrt(float64(pow))))
        if low%2 == 0 {
            low++
        }
        pow *= 10
        high := int(math.Sqrt(float64(pow)))
        var oddSq []int
        for i := low; i <= high; i += 2 {
            oddSq = append(oddSq, i*i)
        }
        fmt.Println(len(oddSq), "odd squares from", pow/10, "to", pow, "\b:")
        for i := 0; i < len(oddSq); i++ {
            fmt.Printf("%d ", oddSq[i])
            if (i+1)%10 == 0 {
                fmt.Println()
            }
        }
        fmt.Println("\n")
    }
}
Output:
Same as Wren example

Haskell

main :: IO ()
main = print $ takeWhile (<1000) $ filter odd $ map (^2) $ [10..]
Output:
[121,169,225,289,361,441,529,625,729,841,961]

J

Example implementation:

   (#~ (1=2|])*(=<.)@%:*>&99) i.1000
121 169 225 289 361 441 529 625 729 841 961

Note that we could have instead used cascading filters (which would be roughly analogous to short circuit operators) for example:

   (#~ 1=2|]) (#~ (=<.)@%:) 99}. i.1000
121 169 225 289 361 441 529 625 729 841 961

Or, we could instead have opted to not use filters at all, because the values are their own indices in the initial selection we were working with:

   I.((1=2|])*(=<.)@%:*>&99) i.1000
121 169 225 289 361 441 529 625 729 841 961

jq

Works with: jq

Works with gojq, the Go implementation of jq

Basic Task

# Output: a stream up to but less than $upper
def oddSquares($upper):
  label $out
  | 1, foreach range(1;infinite) as $i (1;
     . + 8 * $i;
     if . >= $upper then break $out else . end);

oddSquares(1000) | select(. > 100)
Output:

As for #Julia.

Extended Example

Translation of: Wren
# input: an array
# output: a stream of arrays of size size except possibly for the last array
def group(size):
  recurse( .[size:]; length>0) | .[0:size];

foreach range(0; 5) as $p ({pow:1};
    .low = (.pow|sqrt|ceil)
    | if .low % 2 == 0 then .low += 1 else . end
    | .pow *= 10 ;

    [range(.low; 1 + (.pow|sqrt|floor); 2) | . * . ] as $oddSq
    | "\($oddSq|length) odd squares from \(.pow/10) to \(.pow):",
      ( $oddSq | group(10) | join(" ")), "" )
Output:

As for #Wren.

Julia

oddsquares(lim) = [i^2 for i  Int.(range(().(lim)...)) if isodd(i)]
oddsquares((100, 999))
Output:
11-element Vector{Int64}:
 121
 169
 225
 289
 361
 441
 529
 625
 729
 841
 961

Lua

for i = 1, math.sqrt( 1000 ), 2 do
    local i2 = i * i
    if i2 > 99 then
        io.write( " ", i2 )
    end
end
Output:
 121 169 225 289 361 441 529 625 729 841 961

MACRO-11

        .TITLE  ODDSQR
        .MCALL  .TTYOUT,.EXIT
ODDSQR::MOV     #^D81,R3
        MOV     #^D19,R4
        BR      $2
$1:     MOV     R3,R0
        JSR     PC,PR0
$2:     ADD     R4,R3
        ADD     #2,R4
        ADD     R4,R3
        ADD     #2,R4
        CMP     R3,#^D1000
        BLT     $1
        .EXIT

        ; PRINT NUMBER IN R0 AS DECIMAL
PR0:    MOV     #4$,R1
1$:     MOV     #-1,R2
2$:     INC     R2
        SUB     #12,R0
        BCC     2$
        ADD     #72,R0
        MOVB    R0,-(R1)
        MOV     R2,R0
        BNE     1$
3$:     MOVB    (R1)+,R0
        .TTYOUT
        BNE     3$
        RTS     PC
        .ASCII  /...../
4$:     .BYTE   15,12,0
        .END    ODDSQR
Output:
121
169
225
289
361
441
529
625
729
841
961

Mathematica / Wolfram Language

Cases[Range[100, 1000], _?(IntegerQ[Sqrt@#] && OddQ[#] &)]
Output:

{121,169,225,289,361,441,529,625,729,841,961}

Maxima

block(
    [count:99,odd_square:[]],
    while count<1000 do (
        i:lambda([x],oddp(x) and integerp(sqrt(x)))(count),
        if i then odd_square:endcons(count,odd_square),
        count:count+1),
    odd_square);
Output:
[121,169,225,289,361,441,529,625,729,841,961]

Miranda

main        = [Stdout (show taskresults), 
               Stdout "\n"]
taskresults = dropwhile (< minimum) (takewhile (< maximum) oddsquares)
oddsquares  = map (^ 2) odds
odds        = [1, 3..]
minimum     = 101
maximum     = 1000
Output:
[121,169,225,289,361,441,529,625,729,841,961]

Modula-2

MODULE OddSquare;
FROM InOut IMPORT WriteCard, WriteLn;
VAR n, square: CARDINAL;
BEGIN
    n := 10;
    LOOP
        square := n * n;
        IF square > 1000 THEN EXIT END;
        IF square MOD 2 = 1 THEN
            WriteCard(square, 3);
            WriteLn
        END;
        n := n + 1
    END
END OddSquare.
Output:
121
169
225
289
361
441
529
625
729
841
961

Modula-3

Translation of: Modula-2
MODULE OddSquare EXPORTS Main;

IMPORT IO;

VAR N,Square:CARDINAL;

BEGIN
     N := 10;
     LOOP
          Square := N * N;
          IF Square > 1000 THEN EXIT END;
          IF Square MOD 2 = 1 THEN
               IO.PutInt(Square);
               IO.Put("\n");
          END;
          N := N + 1
     END
END OddSquare.
121
169
225
289
361
441
529
625
729
841
961

Nim

import std/math

for n in countup(11, sqrt(1000.0).int, 2):
  echo n * n
Output:
121
169
225
289
361
441
529
625
729
841
961

Nu

generate {|p| {out: $p.0 next: [($p.0 + $p.1) ($p.1 + 8)]} } [1, 8]
| skip until { $in > 99 }
| take while { $in < 1000 }
| str join ' '
Output:
121 169 225 289 361 441 529 625 729 841 961

Objeck

class OddSquare {
  function : Main(args : String[]) ~ Nil {
    i:=n:=1;
    while(n < 1000) {
        if(n > 100) { "{$n} "->Print(); };
        n +=8*i; i+=1;
      };
      ""->PrintLine();
  }
}
Output:
121 169 225 289 361 441 529 625 729 841 961

OCaml

let seq_odd_squares =
  let rec next n a () = Seq.Cons (n, next (n + a) (a + 8)) in
  next 1 8

let () =
  seq_odd_squares |> Seq.drop_while ((>) 100) |> Seq.take_while ((>) 1000)
  |> Seq.iter (Printf.printf " %u") |> print_newline
Output:
 121 169 225 289 361 441 529 625 729 841 961

Perl

Library: ntheory
#!/usr/bin/perl

use strict;
use warnings;
use ntheory qw( is_square );

print join( ' ', grep $_ & 1 && is_square($_), 100 .. 999 ), "\n";
Output:
121 169 225 289 361 441 529 625 729 841 961

Phix

with javascript_semantics
pp(sq_power(tagset(floor(sqrt(1000)),11,2),2))
Output:
{121,169,225,289,361,441,529,625,729,841,961}

PILOT

C :n=9
*loop
C :n=#n+1
C :sq=#n*#n
C :sr=(#sq/2)*2
T (sq<>sr):#sq
J (sq<1000):*loop
Output:
121
169
225
289
361
441
529
625
729
841
961

PL/I

See #Polyglot:PL/I and PL/M

PL/M

Based on the Algol 68 sample.

Works with: 8080 PL/M Compiler

... under CP/M (or an emulator)

100H: /* PRINT ODD SQUARES BETWEEN 100 AND 1000 */

   /* CP/M BDOS SYSTEM CALL */
   BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5;END;
   /* CONSOLE OUTPUT ROUTINES */
   PR$CHAR:   PROCEDURE( C ); DECLARE C BYTE;    CALL BDOS( 2, C ); END;
   PR$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S ); END;
   PR$NUMBER: PROCEDURE( N );
      DECLARE N ADDRESS;
      DECLARE V ADDRESS, N$STR( 6 ) BYTE, W BYTE;
      V = N;
      W = LAST( N$STR );
      N$STR( W ) = '$';
      N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      DO WHILE( ( V := V / 10 ) > 0 );
         N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      END;
      CALL PR$STRING( .N$STR( W ) );
   END PR$NUMBER;

   /* TASK */
   DECLARE ( NEXT$GAP, ODD$SQUARE ) ADDRESS;
   NEXT$GAP   = 8;
   ODD$SQUARE = 1;
   DO WHILE( ODD$SQUARE < 100 );
      ODD$SQUARE = ODD$SQUARE + NEXT$GAP;
      NEXT$GAP   = NEXT$GAP + 8;
   END;
   DO WHILE( ODD$SQUARE < 1000 );
      CALL PR$CHAR( ' ' );
      CALL PR$NUMBER( ODD$SQUARE );
      ODD$SQUARE = ODD$SQUARE + NEXT$GAP;
      NEXT$GAP   = NEXT$GAP + 8;
   END;

EOF
Output:
 121 169 225 289 361 441 529 625 729 841 961

See also #Polyglot:PL/I and PL/M

Polyglot:PL/I and PL/M

Works with: 8080 PL/M Compiler

... under CP/M (or an emulator)

Should work with many PL/I implementations.

The PL/I include file "pg.inc" can be found on the Polyglot:PL/I and PL/M page. Note the use of text in column 81 onwards to hide the PL/I specifics from the PL/M compiler.

/* PRINT ODD SQUARES BETWEEN 100 AND 1000 */
odd_squares_100H: procedure options                                             (main);

/* PL/I DEFINITIONS                                                             */
%include 'pg.inc';
/* PL/M DEFINITIONS: CP/M BDOS SYSTEM CALL AND CONSOLE I/O ROUTINES, ETC. */    /*
   DECLARE BINARY LITERALLY 'ADDRESS', CHARACTER LITERALLY 'BYTE';
   BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5;   END;
   PRCHAR:   PROCEDURE( C );   DECLARE C CHARACTER; CALL BDOS( 2, C ); END;
   PRNUMBER: PROCEDURE( N );
      DECLARE N ADDRESS;
      DECLARE V ADDRESS, N$STR( 6 ) BYTE, W BYTE;
      N$STR( W := LAST( N$STR ) ) = '$';
      N$STR( W := W - 1 ) = '0' + ( ( V := N ) MOD 10 );
      DO WHILE( ( V := V / 10 ) > 0 );
         N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      END; 
      CALL BDOS( 9, .N$STR( W ) );
   END PRNUMBER;
/* END LANGUAGE DEFINITIONS */

   /* TASK */
   DECLARE ( NEXTGAP, ODDSQUARE ) BINARY;
   NEXTGAP   = 8;
   ODDSQUARE = 1;
   DO WHILE( ODDSQUARE < 100 );
      ODDSQUARE = ODDSQUARE + NEXTGAP;
      NEXTGAP   = NEXTGAP   + 8;
   END;
   DO WHILE( ODDSQUARE < 1000 );
      CALL PRCHAR( ' ' );
      CALL PRNUMBER( ODDSQUARE );
      ODDSQUARE = ODDSQUARE + NEXTGAP;
      NEXTGAP   = NEXTGAP   + 8;
   END;

EOF: end odd_squares_100H;
Output:
 121 169 225 289 361 441 529 625 729 841 961

Python

import math
szamok = []
limit = 1000

for i in range(1, math.isqrt(limit - 1) + 1, 2):
    num = i*i
    if (num > 99):
        szamok.append(num)

print(szamok)
Output:
[121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961]
By using itertools
from itertools import accumulate, count, dropwhile, takewhile

print(*takewhile(lambda x: x<1000, dropwhile(lambda x: x<100, accumulate(count(8, 8), initial=1))))
Output:
121 169 225 289 361 441 529 625 729 841 961

Quackery

  [] 1 0
  [ 8 + dup dip +
    over 100 > until ]
  [ dip
      [ tuck join swap ]
    8 + dup dip +
    over 1000 > until ]
  2drop
  echo
Output:
[ 121 169 225 289 361 441 529 625 729 841 961 ]

R

n_min <- 10
n_max <- floor(sqrt(1000))
cat(seq(from=n_min+1,to=n_max,by=2)**2)

Output

121 169 225 289 361 441 529 625 729 841 961

Raku

Vote for deletion: trivial. But if we gotta keep it, at least make it slightly interesting.

for 1..5 {
    my $max = exp $_, 10;
    put "\n{+$_} odd squares from {$max / 10} to $max:\n{ .batch(10).join: "\n" }"
    given ({(2 × $++ + 1)²} … * > $max).grep: $max / 10 ≤ * ≤ $max
}
Output:
2 odd squares from 1 to 10:
1 9

3 odd squares from 10 to 100:
25 49 81

11 odd squares from 100 to 1000:
121 169 225 289 361 441 529 625 729 841
961

34 odd squares from 1000 to 10000:
1089 1225 1369 1521 1681 1849 2025 2209 2401 2601
2809 3025 3249 3481 3721 3969 4225 4489 4761 5041
5329 5625 5929 6241 6561 6889 7225 7569 7921 8281
8649 9025 9409 9801

108 odd squares from 10000 to 100000:
10201 10609 11025 11449 11881 12321 12769 13225 13689 14161
14641 15129 15625 16129 16641 17161 17689 18225 18769 19321
19881 20449 21025 21609 22201 22801 23409 24025 24649 25281
25921 26569 27225 27889 28561 29241 29929 30625 31329 32041
32761 33489 34225 34969 35721 36481 37249 38025 38809 39601
40401 41209 42025 42849 43681 44521 45369 46225 47089 47961
48841 49729 50625 51529 52441 53361 54289 55225 56169 57121
58081 59049 60025 61009 62001 63001 64009 65025 66049 67081
68121 69169 70225 71289 72361 73441 74529 75625 76729 77841
78961 80089 81225 82369 83521 84681 85849 87025 88209 89401
90601 91809 93025 94249 95481 96721 97969 99225

Red

Red[]

n: 11
limit: sqrt 1000
while [n < limit][
    print n * n
    n: n + 2
]
Output:
121
169
225
289
361
441
529
625
729
841
961

Ring

see "working..." + nl
limit = 1000
list = []

for i = 1 to ceil(sqrt(limit)) step 2
    num = pow(i,2)
    if (num < 1000 and num > 99)
	add(list,num)
    ok
next

showArray(list)

see nl + "done..." + nl

func showArray(array)
     txt = ""
     see "["
     for n = 1 to len(array)
         txt = txt + array[n] + ","
     next
     txt = left(txt,len(txt)-1)
     txt = txt + "]"
     see txt
Output:
working...
[121,169,225,289,361,441,529,625,729,841,961]
done...

RPL

≪ { } 99 999 FOR j IF j √ FP NOT THEN j + END 2 STEP ≫ EVAL
Output:
1: { 121 169 225 289 361 441 529 625 729 841 961 }

Ruby

lo, hi = 100, 1000
(Integer.sqrt(lo)..Integer.sqrt(hi)).each{|n| puts n*n if n.odd?}
Output:
121
169
225
289
361
441
529
625
729
841
961

Sidef

var lo = 100
var hi = 1_000

say gather {
    for k in (lo.isqrt .. hi.isqrt) {
        take(k**2) if k.is_odd
    }
}
Output:
[121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961]

V (Vlang)

Translation of: Go
import math
 
fn main() {
    mut pow := 1
    for _ in 0..5 {
        mut low := int(math.ceil(math.sqrt(f64(pow))))
        if low%2 == 0 {
            low++
        }
        pow *= 10
        high := int(math.sqrt(f64(pow)))
        mut odd_sq := []int{}
        for i := low; i <= high; i += 2 {
            odd_sq << i*i
        }
        println("$odd_sq.len odd squares from ${pow/10} to $pow, \b:")
        for i in 0..odd_sq.len {
            print("${odd_sq[i]} ")
            if (i+1)%10 == 0 {
                println('')
            }
        }
        println("\n")
    }
}
Output:
Same as Wren example

Vala

Translation of: Wren
void main() {
    double pow = 1;
    for (int p = 0; p < 5; ++p) {
        int low = (int)Math.ceil(Math.sqrt(pow));
        if (low % 2 == 0) ++low;
        pow *= 10;
        int high = (int)Math.floor(Math.sqrt(pow));
        int[] odd_square = {};
        for (int i = low; i <= high; i += 2) odd_square += i * i;
        print(@"$(odd_square.length) odd squares from $(pow/10) to $pow:\n");
        for (int i = 0; i < odd_square.length; ++i) {
            print("%d ", odd_square[i]);
            if ((i + 1) % 10 == 0) print("\n");
        }
        print("\n\n");
    }
}
Output:
Same as Wren example.

Wren

Library: Wren-iterate
Library: Wren-seq
import "./iterate" for Stepped
import "./seq" for Lst

var pow = 1
for (p in 0..4) {
    var low = pow.sqrt.ceil
    if (low % 2 == 0) low = low + 1
    pow = pow * 10
    var high = pow.sqrt.floor
    var oddSq = Stepped.new(low..high, 2).map { |i| i * i }.toList
    System.print("%(oddSq.count) odd squares from %(pow/10) to %(pow):")
    for (chunk in Lst.chunks(oddSq, 10)) System.print(chunk.join(" "))
    System.print()
}
Output:
2 odd squares from 1 to 10:
1 9

3 odd squares from 10 to 100:
25 49 81

11 odd squares from 100 to 1000:
121 169 225 289 361 441 529 625 729 841
961

34 odd squares from 1000 to 10000:
1089 1225 1369 1521 1681 1849 2025 2209 2401 2601
2809 3025 3249 3481 3721 3969 4225 4489 4761 5041
5329 5625 5929 6241 6561 6889 7225 7569 7921 8281
8649 9025 9409 9801

108 odd squares from 10000 to 100000:
10201 10609 11025 11449 11881 12321 12769 13225 13689 14161
14641 15129 15625 16129 16641 17161 17689 18225 18769 19321
19881 20449 21025 21609 22201 22801 23409 24025 24649 25281
25921 26569 27225 27889 28561 29241 29929 30625 31329 32041
32761 33489 34225 34969 35721 36481 37249 38025 38809 39601
40401 41209 42025 42849 43681 44521 45369 46225 47089 47961
48841 49729 50625 51529 52441 53361 54289 55225 56169 57121
58081 59049 60025 61009 62001 63001 64009 65025 66049 67081
68121 69169 70225 71289 72361 73441 74529 75625 76729 77841
78961 80089 81225 82369 83521 84681 85849 87025 88209 89401
90601 91809 93025 94249 95481 96721 97969 99225

XPL0

int N2, N;
[for N2:= 101 to 999 do
    [N:= sqrt(N2);
    if N*N=N2 & (N&1)=1 then
        [IntOut(0, N2);  ChOut(0, ^ )];
    ];
]
Output:
121 169 225 289 361 441 529 625 729 841 961