Odd and square numbers
- Task
Find odd and square numbers (>99) under 1.000
11l
V limit = 1000
L(i) (1 .< Int(ceil(sqrt(limit)))).step(2)
V num = i * i
I num < limit & num > 99
print(num, end' ‘ ’)
- Output:
121 169 225 289 361 441 529 625 729 841 961
8080 Assembly
org 100h
lxi h,81 ; Holds current square
lxi d,19 ; Holds distance to next square
mvi b,12 ; Loop counter
jmp next
loop: call prhl
next: dad d ; Generate next square (will be even)
inx d ; Increase distance by 2
inx d
dad d ; Generate next square (will be odd)
inx d ; Increase distance by 2
inx d
dcr b
jnz loop
ret
; Print HL as decimal
prhl: push h ; Save all registers
push d
push b
lxi b,pnum ; Store pointer to num string on stack
push b
lxi b,-10 ; Divisor
prdgt: lxi d,-1
prdgtl: inx d ; Divide by 10 through trial subtraction
dad b
jc prdgtl
mvi a,'0'+10
add l ; L = remainder - 10
pop h ; Get pointer from stack
dcx h ; Store digit
mov m,a
push h ; Put pointer back on stack
xchg ; Put quotient in HL
mov a,h ; Check if zero
ora l
jnz prdgt ; If not, next digit
pop d ; Get pointer and put in DE
mvi c,9 ; CP/M print string
call 5
pop b ; Restore registers
pop d
pop h
ret
db '*****' ; Placeholder for number
pnum: db 13,10,'$'
- Output:
121 169 225 289 361 441 529 625 729 841 961
ALGOL 68
BEGIN # print odd suares between 100 and 1000 #
# if 2m + 1 and 2m - 1 are consecutive odd numbers, the difference between their squares is 8m #
INT to next := 8;
INT odd square := 1;
WHILE odd square < 1000 DO
IF odd square > 99 THEN
print( ( " ", whole( odd square, 0 ) ) )
FI;
odd square +:= to next;
to next +:= 8
OD
END
- Output:
121 169 225 289 361 441 529 625 729 841 961
ALGOL W
which is based on the Algol 68 sample.
begin % print odd squares between 100 and 1000 %
integer oddSquare, nextGap;
oddSquare := 1;
nextGap := 8;
while oddSquare < 100 do begin
oddSquare := oddSquare + nextGap;
nextGap := nextGap + 8
end while_oddSuare_lt_100 ;
while oddSquare < 1000 do begin
writeon( i_w := s_w := 1, oddSquare );
oddSquare := oddSquare + nextGap;
nextGap := nextGap + 8
end while_oddSquare_lt_1000
end.
- Output:
121 169 225 289 361 441 529 625 729 841 961
Arturo
100..1000 | select => odd?
| select 'x -> zero? (sqrt x) % 1
| print
- Output:
121 169 225 289 361 441 529 625 729 841 961
AWK
# syntax: GAWK -f ODD_AND_SQUARE_NUMBERS.AWK
BEGIN {
start = 100
stop = 999
i = n = 1
while (n <= stop) {
if (n >= start) {
printf("%5d%1s",n,++count%10?"":"\n")
}
n += 8 * i++
}
printf("\nOdd and square numbers %d-%d: %d\n",start,stop,count)
exit(0)
}
- Output:
121 169 225 289 361 441 529 625 729 841 961 Odd and square numbers 100-999: 11
BASIC
10 DEFINT A-Z
20 N=10
30 S=N*N
40 IF S>=1000 THEN END
50 IF S AND 1 THEN PRINT S
60 N=N+1
70 GOTO 30
- Output:
121 169 225 289 361 441 529 625 729 841 961
BCPL
get "libhdr"
let start() be
$( let n = 10
$( let sq = n * n
if sq >= 1000 then finish
if sq rem 2 = 1 then writef("%N*N", sq)
n := n + 1
$) repeat
$)
- Output:
121 169 225 289 361 441 529 625 729 841 961
BQN
ט11+2×↕11
Generate odd numbers from 11 to 31 and square them.
An alternate version uses more code, but doesn't require any arithmetic to derive:
100 ↓⟜↕○⌈⌾((ט1+2×⊢)⁼) 1000
Here it's known that the final output should have the transformation ט1+2×⊢
applied to it to produce odd squares. The reverse of this transformation is applied to the two bounds 100 and 1000, then ↓⟜↕
produces a numeric range which is transformed back.
C
#include <stdio.h>
#include <math.h>
int main() {
int i, p, low, high, pow = 1, osc;
int oddSq[120];
for (p = 0; p < 5; ++p) {
low = (int)ceil(sqrt((double)pow));
if (!(low%2)) ++low;
pow *= 10;
high = (int)sqrt((double)pow);
for (i = low, osc = 0; i <= high; i += 2) {
oddSq[osc++] = i * i;
}
printf("%d odd square from %d to %d:\n", osc, pow/10, pow);
for (i = 0; i < osc; ++i) {
printf("%d ", oddSq[i]);
if (!((i+1)%10)) printf("\n");
}
printf("\n\n");
}
return 0;
}
- Output:
Same as Wren example.
CLU
start_up = proc ()
po: stream := stream$primary_output()
n: int := 10
while true do
sq: int := n**2
if sq>=1000 then break end
if sq//2 = 1 then stream$putl(po, int$unparse(sq)) end
n := n+1
end
end start_up
- Output:
121 169 225 289 361 441 529 625 729 841 961
COBOL
IDENTIFICATION DIVISION.
PROGRAM-ID. ODD-AND-SQUARE.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 VARIABLES.
03 N PIC 999.
03 SQR PIC 9999 VALUE 0.
03 FILLER REDEFINES SQR.
05 FILLER PIC 999.
05 FILLER PIC 9.
88 ODD VALUE 1, 3, 5, 7, 9.
03 FMT PIC ZZ9.
PROCEDURE DIVISION.
BEGIN.
PERFORM CHECK VARYING N FROM 10 BY 1
UNTIL SQR IS NOT LESS THAN 1000.
STOP RUN.
CHECK.
MULTIPLY N BY N GIVING SQR.
IF ODD, MOVE SQR TO FMT, DISPLAY FMT.
- Output:
121 169 225 289 361 441 529 625 729 841 961
Cowgol
include "cowgol.coh";
var n: uint16 := 10;
loop
var sq := n * n;
if sq >= 1000 then break; end if;
if sq % 2 == 1 then
print_i16(sq);
print_nl();
end if;
n := n+1;
end loop;
- Output:
121 169 225 289 361 441 529 625 729 841 961
Delphi
procedure ShowOddSquareNumbers(Memo: TMemo);
var I,N: integer;
var Cnt: integer;
var S: string;
begin
Cnt:=0;
for I:=10 to trunc(sqrt(1000)) do
begin
N:=I * I;
if ((N and 1)=1) then
begin
Inc(Cnt);
S:=S+Format('%8D',[N]);
If (Cnt mod 5)=0 then S:=S+CRLF;
end;
end;
Memo.Lines.Add(S);
Memo.Lines.Add('Count='+IntToStr(Cnt));
end;
- Output:
121 169 225 289 361 441 529 625 729 841 961 Count=11 Elapsed Time: 1.975 ms.
Draco
proc nonrec main() void:
word i, sq;
i := 11;
while sq := i * i; sq < 1000 do
writeln(sq);
i := i + 2
od
corp
- Output:
121 169 225 289 361 441 529 625 729 841 961
EasyLang
for i = 101 step 2 to 999
h = sqrt i
if h mod 1 = 0
write i & " "
.
.
- Output:
121 169 225 289 361 441 529 625 729 841 961
Euler
Same algorithm as the Algol and other samples.
Note formatted output is not Euler's strong point...
begin new toNext; new oddSquare; label again; toNext <- 0; oddSquare <- 1; again: if oddSquare < 1000 then begin if oddSquare > 99 then out oddSquare else 0; oddSquare <- oddSquare + toNext; toNext <- toNext + 8; goto again end else 0 end $
- Output:
NUMBER 121 NUMBER 169 NUMBER 225 NUMBER 289 NUMBER 361 NUMBER 441 NUMBER 529 NUMBER 625 NUMBER 729 NUMBER 841 NUMBER 961
F#
// Odd and square numbers. Nigel Galloway: November 23rd., 2021
Seq.initInfinite((*)2>>(+)11)|>Seq.map(fun n->n*n)|>Seq.takeWhile((>)1000)|>Seq.iter(printfn "%d")
- Output:
121 169 225 289 361 441 529 625 729 841 961
Factor
USING: io math math.functions math.ranges prettyprint sequences ;
11 1000 sqrt 2 <range> [ bl ] [ sq pprint ] interleave nl
- Output:
121 169 225 289 361 441 529 625 729 841 961
Fe
(= oddAndSquareNumbers
(fn (minNumber maxNumber)
(let toNext 8)
(let oddSquare 1)
(let lastResult (cons 0 nil)) ; result list with a dummy leading 0
(let result lastResult)
(while (< oddSquare maxNumber)
(if (< minNumber oddSquare)
(do (setcdr lastResult (cons oddSquare nil))
(= lastResult (cdr lastResult))
)
)
(= oddSquare (+ oddSquare toNext))
(= toNext (+ toNext 8))
)
(cdr result) ; return result without the dummy leading 0
)
)
(print (oddAndSquareNumbers 100 1000))
- Output:
(121 169 225 289 361 441 529 625 729 841 961)
Fermat
Func Oddsq(j)=(2*j-1)^2.;
i:=1;
n:=1;
while n<1000 do
if n>100 then !!n fi;
i:+;
n:=Oddsq(i);
od;
FOCAL
01.10 S N=10
01.20 S S=N*N
01.30 I (1000-S)1.8
01.40 I (FITR(S/2)*2-S)1.5,1.6
01.50 T %3,S,!
01.60 S N=N+1
01.70 G 1.2
01.80 Q
- Output:
= 121 = 169 = 225 = 289 = 361 = 441 = 529 = 625 = 729 = 841 = 961
FreeBASIC
Squares without squaring.
dim as integer i=1, n=1
while n<1000
if n>100 then print n
n+=8*i
i+=1
wend
Go
package main
import (
"fmt"
"math"
)
func main() {
pow := 1
for p := 0; p < 5; p++ {
low := int(math.Ceil(math.Sqrt(float64(pow))))
if low%2 == 0 {
low++
}
pow *= 10
high := int(math.Sqrt(float64(pow)))
var oddSq []int
for i := low; i <= high; i += 2 {
oddSq = append(oddSq, i*i)
}
fmt.Println(len(oddSq), "odd squares from", pow/10, "to", pow, "\b:")
for i := 0; i < len(oddSq); i++ {
fmt.Printf("%d ", oddSq[i])
if (i+1)%10 == 0 {
fmt.Println()
}
}
fmt.Println("\n")
}
}
- Output:
Same as Wren example
Haskell
main :: IO ()
main = print $ takeWhile (<1000) $ filter odd $ map (^2) $ [10..]
- Output:
[121,169,225,289,361,441,529,625,729,841,961]
J
Example implementation:
(#~ (1=2|])*(=<.)@%:*>&99) i.1000
121 169 225 289 361 441 529 625 729 841 961
Note that we could have instead used cascading filters (which would be roughly analogous to short circuit operators) for example:
(#~ 1=2|]) (#~ (=<.)@%:) 99}. i.1000
121 169 225 289 361 441 529 625 729 841 961
Or, we could instead have opted to not use filters at all, because the values are their own indices in the initial selection we were working with:
I.((1=2|])*(=<.)@%:*>&99) i.1000
121 169 225 289 361 441 529 625 729 841 961
jq
Works with gojq, the Go implementation of jq
Basic Task
# Output: a stream up to but less than $upper
def oddSquares($upper):
label $out
| 1, foreach range(1;infinite) as $i (1;
. + 8 * $i;
if . >= $upper then break $out else . end);
oddSquares(1000) | select(. > 100)
- Output:
As for #Julia.
Extended Example
# input: an array
# output: a stream of arrays of size size except possibly for the last array
def group(size):
recurse( .[size:]; length>0) | .[0:size];
foreach range(0; 5) as $p ({pow:1};
.low = (.pow|sqrt|ceil)
| if .low % 2 == 0 then .low += 1 else . end
| .pow *= 10 ;
[range(.low; 1 + (.pow|sqrt|floor); 2) | . * . ] as $oddSq
| "\($oddSq|length) odd squares from \(.pow/10) to \(.pow):",
( $oddSq | group(10) | join(" ")), "" )
- Output:
As for #Wren.
Julia
oddsquares(lim) = [i^2 for i ∈ Int.(range((√).(lim)...)) if isodd(i)]
oddsquares((100, 999))
- Output:
11-element Vector{Int64}: 121 169 225 289 361 441 529 625 729 841 961
Lua
for i = 1, math.sqrt( 1000 ), 2 do
local i2 = i * i
if i2 > 99 then
io.write( " ", i2 )
end
end
- Output:
121 169 225 289 361 441 529 625 729 841 961
MACRO-11
.TITLE ODDSQR
.MCALL .TTYOUT,.EXIT
ODDSQR::MOV #^D81,R3
MOV #^D19,R4
BR $2
$1: MOV R3,R0
JSR PC,PR0
$2: ADD R4,R3
ADD #2,R4
ADD R4,R3
ADD #2,R4
CMP R3,#^D1000
BLT $1
.EXIT
; PRINT NUMBER IN R0 AS DECIMAL
PR0: MOV #4$,R1
1$: MOV #-1,R2
2$: INC R2
SUB #12,R0
BCC 2$
ADD #72,R0
MOVB R0,-(R1)
MOV R2,R0
BNE 1$
3$: MOVB (R1)+,R0
.TTYOUT
BNE 3$
RTS PC
.ASCII /...../
4$: .BYTE 15,12,0
.END ODDSQR
- Output:
121 169 225 289 361 441 529 625 729 841 961
Mathematica / Wolfram Language
Cases[Range[100, 1000], _?(IntegerQ[Sqrt@#] && OddQ[#] &)]
- Output:
{121,169,225,289,361,441,529,625,729,841,961}
Maxima
block(
[count:99,odd_square:[]],
while count<1000 do (
i:lambda([x],oddp(x) and integerp(sqrt(x)))(count),
if i then odd_square:endcons(count,odd_square),
count:count+1),
odd_square);
- Output:
[121,169,225,289,361,441,529,625,729,841,961]
Miranda
main = [Stdout (show taskresults),
Stdout "\n"]
taskresults = dropwhile (< minimum) (takewhile (< maximum) oddsquares)
oddsquares = map (^ 2) odds
odds = [1, 3..]
minimum = 101
maximum = 1000
- Output:
[121,169,225,289,361,441,529,625,729,841,961]
Modula-2
MODULE OddSquare;
FROM InOut IMPORT WriteCard, WriteLn;
VAR n, square: CARDINAL;
BEGIN
n := 10;
LOOP
square := n * n;
IF square > 1000 THEN EXIT END;
IF square MOD 2 = 1 THEN
WriteCard(square, 3);
WriteLn
END;
n := n + 1
END
END OddSquare.
- Output:
121 169 225 289 361 441 529 625 729 841 961
Modula-3
MODULE OddSquare EXPORTS Main;
IMPORT IO;
VAR N,Square:CARDINAL;
BEGIN
N := 10;
LOOP
Square := N * N;
IF Square > 1000 THEN EXIT END;
IF Square MOD 2 = 1 THEN
IO.PutInt(Square);
IO.Put("\n");
END;
N := N + 1
END
END OddSquare.
121 169 225 289 361 441 529 625 729 841 961
Nim
import std/math
for n in countup(11, sqrt(1000.0).int, 2):
echo n * n
- Output:
121 169 225 289 361 441 529 625 729 841 961
Nu
generate {|p| {out: $p.0 next: [($p.0 + $p.1) ($p.1 + 8)]} } [1, 8]
| skip until { $in > 99 }
| take while { $in < 1000 }
| str join ' '
- Output:
121 169 225 289 361 441 529 625 729 841 961
Objeck
class OddSquare {
function : Main(args : String[]) ~ Nil {
i:=n:=1;
while(n < 1000) {
if(n > 100) { "{$n} "->Print(); };
n +=8*i; i+=1;
};
""->PrintLine();
}
}
- Output:
121 169 225 289 361 441 529 625 729 841 961
OCaml
let seq_odd_squares =
let rec next n a () = Seq.Cons (n, next (n + a) (a + 8)) in
next 1 8
let () =
seq_odd_squares |> Seq.drop_while ((>) 100) |> Seq.take_while ((>) 1000)
|> Seq.iter (Printf.printf " %u") |> print_newline
- Output:
121 169 225 289 361 441 529 625 729 841 961
Perl
#!/usr/bin/perl
use strict;
use warnings;
use ntheory qw( is_square );
print join( ' ', grep $_ & 1 && is_square($_), 100 .. 999 ), "\n";
- Output:
121 169 225 289 361 441 529 625 729 841 961
Phix
with javascript_semantics pp(sq_power(tagset(floor(sqrt(1000)),11,2),2))
- Output:
{121,169,225,289,361,441,529,625,729,841,961}
PILOT
C :n=9
*loop
C :n=#n+1
C :sq=#n*#n
C :sr=(#sq/2)*2
T (sq<>sr):#sq
J (sq<1000):*loop
- Output:
121 169 225 289 361 441 529 625 729 841 961
PL/I
PL/M
Based on the Algol 68 sample.
... under CP/M (or an emulator)
100H: /* PRINT ODD SQUARES BETWEEN 100 AND 1000 */
/* CP/M BDOS SYSTEM CALL */
BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5;END;
/* CONSOLE OUTPUT ROUTINES */
PR$CHAR: PROCEDURE( C ); DECLARE C BYTE; CALL BDOS( 2, C ); END;
PR$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S ); END;
PR$NUMBER: PROCEDURE( N );
DECLARE N ADDRESS;
DECLARE V ADDRESS, N$STR( 6 ) BYTE, W BYTE;
V = N;
W = LAST( N$STR );
N$STR( W ) = '$';
N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
DO WHILE( ( V := V / 10 ) > 0 );
N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
END;
CALL PR$STRING( .N$STR( W ) );
END PR$NUMBER;
/* TASK */
DECLARE ( NEXT$GAP, ODD$SQUARE ) ADDRESS;
NEXT$GAP = 8;
ODD$SQUARE = 1;
DO WHILE( ODD$SQUARE < 100 );
ODD$SQUARE = ODD$SQUARE + NEXT$GAP;
NEXT$GAP = NEXT$GAP + 8;
END;
DO WHILE( ODD$SQUARE < 1000 );
CALL PR$CHAR( ' ' );
CALL PR$NUMBER( ODD$SQUARE );
ODD$SQUARE = ODD$SQUARE + NEXT$GAP;
NEXT$GAP = NEXT$GAP + 8;
END;
EOF
- Output:
121 169 225 289 361 441 529 625 729 841 961
See also #Polyglot:PL/I and PL/M
Polyglot:PL/I and PL/M
... under CP/M (or an emulator)
Should work with many PL/I implementations.
The PL/I include file "pg.inc" can be found on the Polyglot:PL/I and PL/M page. Note the use of text in column 81 onwards to hide the PL/I specifics from the PL/M compiler.
/* PRINT ODD SQUARES BETWEEN 100 AND 1000 */
odd_squares_100H: procedure options (main);
/* PL/I DEFINITIONS */
%include 'pg.inc';
/* PL/M DEFINITIONS: CP/M BDOS SYSTEM CALL AND CONSOLE I/O ROUTINES, ETC. */ /*
DECLARE BINARY LITERALLY 'ADDRESS', CHARACTER LITERALLY 'BYTE';
BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5; END;
PRCHAR: PROCEDURE( C ); DECLARE C CHARACTER; CALL BDOS( 2, C ); END;
PRNUMBER: PROCEDURE( N );
DECLARE N ADDRESS;
DECLARE V ADDRESS, N$STR( 6 ) BYTE, W BYTE;
N$STR( W := LAST( N$STR ) ) = '$';
N$STR( W := W - 1 ) = '0' + ( ( V := N ) MOD 10 );
DO WHILE( ( V := V / 10 ) > 0 );
N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
END;
CALL BDOS( 9, .N$STR( W ) );
END PRNUMBER;
/* END LANGUAGE DEFINITIONS */
/* TASK */
DECLARE ( NEXTGAP, ODDSQUARE ) BINARY;
NEXTGAP = 8;
ODDSQUARE = 1;
DO WHILE( ODDSQUARE < 100 );
ODDSQUARE = ODDSQUARE + NEXTGAP;
NEXTGAP = NEXTGAP + 8;
END;
DO WHILE( ODDSQUARE < 1000 );
CALL PRCHAR( ' ' );
CALL PRNUMBER( ODDSQUARE );
ODDSQUARE = ODDSQUARE + NEXTGAP;
NEXTGAP = NEXTGAP + 8;
END;
EOF: end odd_squares_100H;
- Output:
121 169 225 289 361 441 529 625 729 841 961
Python
import math
szamok = []
limit = 1000
for i in range(1, math.isqrt(limit - 1) + 1, 2):
num = i*i
if (num > 99):
szamok.append(num)
print(szamok)
- Output:
[121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961]
- By using itertools
from itertools import accumulate, count, dropwhile, takewhile
print(*takewhile(lambda x: x<1000, dropwhile(lambda x: x<100, accumulate(count(8, 8), initial=1))))
- Output:
121 169 225 289 361 441 529 625 729 841 961
Quackery
[] 1 0
[ 8 + dup dip +
over 100 > until ]
[ dip
[ tuck join swap ]
8 + dup dip +
over 1000 > until ]
2drop
echo
- Output:
[ 121 169 225 289 361 441 529 625 729 841 961 ]
R
n_min <- 10
n_max <- floor(sqrt(1000))
cat(seq(from=n_min+1,to=n_max,by=2)**2)
Output
121 169 225 289 361 441 529 625 729 841 961
Raku
Vote for deletion: trivial. But if we gotta keep it, at least make it slightly interesting.
for 1..5 {
my $max = exp $_, 10;
put "\n{+$_} odd squares from {$max / 10} to $max:\n{ .batch(10).join: "\n" }"
given ({(2 × $++ + 1)²} … * > $max).grep: $max / 10 ≤ * ≤ $max
}
- Output:
2 odd squares from 1 to 10: 1 9 3 odd squares from 10 to 100: 25 49 81 11 odd squares from 100 to 1000: 121 169 225 289 361 441 529 625 729 841 961 34 odd squares from 1000 to 10000: 1089 1225 1369 1521 1681 1849 2025 2209 2401 2601 2809 3025 3249 3481 3721 3969 4225 4489 4761 5041 5329 5625 5929 6241 6561 6889 7225 7569 7921 8281 8649 9025 9409 9801 108 odd squares from 10000 to 100000: 10201 10609 11025 11449 11881 12321 12769 13225 13689 14161 14641 15129 15625 16129 16641 17161 17689 18225 18769 19321 19881 20449 21025 21609 22201 22801 23409 24025 24649 25281 25921 26569 27225 27889 28561 29241 29929 30625 31329 32041 32761 33489 34225 34969 35721 36481 37249 38025 38809 39601 40401 41209 42025 42849 43681 44521 45369 46225 47089 47961 48841 49729 50625 51529 52441 53361 54289 55225 56169 57121 58081 59049 60025 61009 62001 63001 64009 65025 66049 67081 68121 69169 70225 71289 72361 73441 74529 75625 76729 77841 78961 80089 81225 82369 83521 84681 85849 87025 88209 89401 90601 91809 93025 94249 95481 96721 97969 99225
Red
Red[]
n: 11
limit: sqrt 1000
while [n < limit][
print n * n
n: n + 2
]
- Output:
121 169 225 289 361 441 529 625 729 841 961
Ring
see "working..." + nl
limit = 1000
list = []
for i = 1 to ceil(sqrt(limit)) step 2
num = pow(i,2)
if (num < 1000 and num > 99)
add(list,num)
ok
next
showArray(list)
see nl + "done..." + nl
func showArray(array)
txt = ""
see "["
for n = 1 to len(array)
txt = txt + array[n] + ","
next
txt = left(txt,len(txt)-1)
txt = txt + "]"
see txt
- Output:
working... [121,169,225,289,361,441,529,625,729,841,961] done...
RPL
≪ { } 99 999 FOR j IF j √ FP NOT THEN j + END 2 STEP ≫ EVAL
- Output:
1: { 121 169 225 289 361 441 529 625 729 841 961 }
Ruby
lo, hi = 100, 1000
(Integer.sqrt(lo)..Integer.sqrt(hi)).each{|n| puts n*n if n.odd?}
- Output:
121 169 225 289 361 441 529 625 729 841 961
Sidef
var lo = 100
var hi = 1_000
say gather {
for k in (lo.isqrt .. hi.isqrt) {
take(k**2) if k.is_odd
}
}
- Output:
[121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961]
V (Vlang)
import math
fn main() {
mut pow := 1
for _ in 0..5 {
mut low := int(math.ceil(math.sqrt(f64(pow))))
if low%2 == 0 {
low++
}
pow *= 10
high := int(math.sqrt(f64(pow)))
mut odd_sq := []int{}
for i := low; i <= high; i += 2 {
odd_sq << i*i
}
println("$odd_sq.len odd squares from ${pow/10} to $pow, \b:")
for i in 0..odd_sq.len {
print("${odd_sq[i]} ")
if (i+1)%10 == 0 {
println('')
}
}
println("\n")
}
}
- Output:
Same as Wren example
Vala
void main() {
double pow = 1;
for (int p = 0; p < 5; ++p) {
int low = (int)Math.ceil(Math.sqrt(pow));
if (low % 2 == 0) ++low;
pow *= 10;
int high = (int)Math.floor(Math.sqrt(pow));
int[] odd_square = {};
for (int i = low; i <= high; i += 2) odd_square += i * i;
print(@"$(odd_square.length) odd squares from $(pow/10) to $pow:\n");
for (int i = 0; i < odd_square.length; ++i) {
print("%d ", odd_square[i]);
if ((i + 1) % 10 == 0) print("\n");
}
print("\n\n");
}
}
- Output:
Same as Wren example.
Wren
import "./iterate" for Stepped
import "./seq" for Lst
var pow = 1
for (p in 0..4) {
var low = pow.sqrt.ceil
if (low % 2 == 0) low = low + 1
pow = pow * 10
var high = pow.sqrt.floor
var oddSq = Stepped.new(low..high, 2).map { |i| i * i }.toList
System.print("%(oddSq.count) odd squares from %(pow/10) to %(pow):")
for (chunk in Lst.chunks(oddSq, 10)) System.print(chunk.join(" "))
System.print()
}
- Output:
2 odd squares from 1 to 10: 1 9 3 odd squares from 10 to 100: 25 49 81 11 odd squares from 100 to 1000: 121 169 225 289 361 441 529 625 729 841 961 34 odd squares from 1000 to 10000: 1089 1225 1369 1521 1681 1849 2025 2209 2401 2601 2809 3025 3249 3481 3721 3969 4225 4489 4761 5041 5329 5625 5929 6241 6561 6889 7225 7569 7921 8281 8649 9025 9409 9801 108 odd squares from 10000 to 100000: 10201 10609 11025 11449 11881 12321 12769 13225 13689 14161 14641 15129 15625 16129 16641 17161 17689 18225 18769 19321 19881 20449 21025 21609 22201 22801 23409 24025 24649 25281 25921 26569 27225 27889 28561 29241 29929 30625 31329 32041 32761 33489 34225 34969 35721 36481 37249 38025 38809 39601 40401 41209 42025 42849 43681 44521 45369 46225 47089 47961 48841 49729 50625 51529 52441 53361 54289 55225 56169 57121 58081 59049 60025 61009 62001 63001 64009 65025 66049 67081 68121 69169 70225 71289 72361 73441 74529 75625 76729 77841 78961 80089 81225 82369 83521 84681 85849 87025 88209 89401 90601 91809 93025 94249 95481 96721 97969 99225
XPL0
int N2, N;
[for N2:= 101 to 999 do
[N:= sqrt(N2);
if N*N=N2 & (N&1)=1 then
[IntOut(0, N2); ChOut(0, ^ )];
];
]
- Output:
121 169 225 289 361 441 529 625 729 841 961
- Draft Programming Tasks
- 11l
- 8080 Assembly
- ALGOL 68
- ALGOL W
- Arturo
- AWK
- BASIC
- BCPL
- BQN
- C
- CLU
- COBOL
- Cowgol
- Delphi
- SysUtils,StdCtrls
- Draco
- EasyLang
- Euler
- F Sharp
- Factor
- Fe
- Fermat
- FOCAL
- FreeBASIC
- Go
- Haskell
- J
- Jq
- Julia
- Lua
- MACRO-11
- Mathematica
- Wolfram Language
- Maxima
- Miranda
- Modula-2
- Modula-3
- Nim
- Nu
- Objeck
- OCaml
- Perl
- Ntheory
- Phix
- PILOT
- PL/I
- PL/M
- Polyglot:PL/I and PL/M
- Python
- Quackery
- R
- Raku
- Red
- Ring
- RPL
- Ruby
- Sidef
- V (Vlang)
- Vala
- Wren
- Wren-iterate
- Wren-seq
- XPL0