Numbers with equal rises and falls

From Rosetta Code
Task
Numbers with equal rises and falls
You are encouraged to solve this task according to the task description, using any language you may know.

When a number is written in base 10,   adjacent digits may "rise" or "fall" as the number is read   (usually from left to right).


Definition

Given the decimal digits of the number are written as a series   d:

  •   A   rise   is an index   i   such that   d(i)  <  d(i+1)
  •   A   fall    is an index   i   such that   d(i)  >  d(i+1)


Examples
  •   The number   726,169   has   3   rises and   2   falls,   so it isn't in the sequence.
  •   The number     83,548   has   2   rises and   2   falls,   so it   is   in the sequence.


Task
  •   Print the first   200   numbers in the sequence
  •   Show that the   10 millionth   (10,000,000th)   number in the sequence is   41,909,002


See also
  •   OEIS Sequence  A296712   describes numbers whose digit sequence in base 10 have equal "rises" and "falls".


Related tasks



11l

Translation of: Python
F riseEqFall(=num)
   ‘Check whether a number belongs to sequence A296712.’
   V height = 0
   V d1 = num % 10
   num I/= 10
   L num != 0
      V d2 = num % 10
      height += (d1 < d2) - (d1 > d2)
      d1 = d2
      num I/= 10
   R height == 0

V num = 0
F nextNum()
   L
      :num++
      I riseEqFall(:num)
         L.break
   R :num

print(‘The first 200 numbers are:’)
L 200
   print(nextNum(), end' ‘ ’)
print()

L 0 .< 10'000'000 - 200 - 1
   nextNum()
print(‘The 10,000,000th number is: ’nextNum())
Output:
The first 200 numbers are:
1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404 
The 10,000,000th number is: 41909002

8080 Assembly

puts:	equ	9	; CP/M calls
putch:	equ	2
	org	100h
	;;;	Print first 200 numbers
	lxi	d,first
	mvi	c,puts
	call	5
	mvi	b,200	; 200 numbers
f200:	push	b
	call	next	; Get next number
	call	pnum	; Print the number
	pop	b	; Restore counter
	dcr	b	; Are we there yet?
	jnz	f200	; If not, next number
	;;;	Find 10,000,000th number
	lxi	d,tenmil
	mvi	c,puts
	call	5
f1e7:	call	next	; Keep generating numbers until ten million reached
	jnz	f1e7	; Then print the number
	;;;	Print the current number
pnum:	lxi	d,num
pscan:	dcx	d	; Scan for zero
	ldax	d
	ana	a
	jnz	pscan
	mvi	c,puts	; Once found, print string
	jmp	5
	;;;	Increment number until rises and falls are equal
next:	lxi	h,num
incdgt:	mov	a,m	; Get digit
	ana	a	; If 0, then initialize
	jz	grow
	inr	a	; Otherwise, increment
	mov	m,a	; Store back
	cpi	'9'+1	; Rollover?
	jnz	idone	; If not, we're done
	mvi	m,'0'	; If so, set digit to 0
	dcx	h	; And increment previous digit
	jmp	incdgt 
grow:	mvi	m,'1'
idone:	lxi	h,num	; Find rises and falls
	mvi	b,0	; B = rises - falls
	mov	c,m	; C = right digit in comparison
pair:	dcx	h
	mov	a,m	; A = left digit in comparison
	ana	a	; When zero, done
	jz	check
	cmp	c	; Compare left digit to right digit
	jc	fall	; A<C = fall
	jnz	rise	; A>C = rise
nxdgt:	mov	c,a	; C is now left digit
	jmp	pair	; Check next pair
fall:	dcr	b	; Fall: decrement B
	jmp	nxdgt
rise:	inr	b	; Rise: increment B
	jmp	nxdgt
check:	mov	a,b	; If B=0 then rises and falls are equal
	ana	a
	jnz	next	; Otherwise, increment number and try again
	lxi	h,ctr	; But if so, decrement the counter to 10 million
	mov	a,m	; First byte
	sui	1
	mov	m,a
	inx	h	; Second byte
	mov	a,m
	sbb	b	; B=0 here
	mov	m,a
	inx	h	; Third byte
	mov	a,m
	sbb	b
	mov	m,a
	dcx	h	; OR them together to see if the number is zero
	ora	m
	dcx	h
	ora	m
	ret
	;;;	Strings
first:	db	'The first 200 numbers are:',13,10,'$'
tenmil:	db	13,10,10,'The 10,000,000th number is: $'
	;;;	Current number (stored as ASCII)
	db	0,0,0,0,0,0,0,0
num:	db	'0 $'
	;;;	24-bit counter to keep track of ten million
ctr:	db	80h,96h,98h	; 1e7 = 989680h
Output:
The first 200 numbers are:
1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404 

The 10,000,000th number is: 41909002 

8086 Assembly

puts:	equ	9		; MS-DOS print string
	cpu	8086
	bits	16
	org	100h
section	.text
	mov	bp,98h		; BP:DI = 989680h = ten million
	mov	di,9680h
	;;;	Print first 200 numbers
	mov	dx,first	; Print message
	mov	ah,puts
	int	21h
n200:	call	next		; Get next number
	call	pnum		; Print the number
	cmp	di,95B8h	; Have we had 200 yet?
	ja	n200		; If not, print next number
	;;;	Print the 10 millionth number
	mov	dx,tenmil	; Print message
	mov	ah,puts
	int	21h
n1e7:	call	next		; Get next number
	jnz	n1e7		; Until we have the 10 millionth
	;;;	Print the current number
pnum:	std			; Read backwards
	xchg	si,di		; Keep DI safe
	mov	di,num
	mov	cx,9
	xor	al,al		; Find the first zero
	repnz	scasb
	inc	di		; Go to first digit
	inc	di
	xchg	si,di		; Put DI back
	mov	dx,si		; Call DOS to print the number
	mov	ah,puts
	int	21h
	ret
	;;;	Increment number until rises and falls are equal
next:	std			; Read number backwards
.inc:	mov	bx,num
.iloop:	mov	al,[bx]		; Get digit
	test	al,al		; If uninitialized, write a 1
	jz	.grow
	inc	ax		; Otherwise, increment
	mov	[bx],al		; Write it back
	cmp	al,'9'+1	; Rollover?
	jnz	.idone		; If not, the increment is done
	mov	[bx],byte '0'	; But if so, this digit should be 0,
	dec	bx		; and the next digit incremented.
	jmp	.iloop
.grow:	mov	[bx],byte '1'	; The number gains an extra digit
.idone:	xor	bl,bl		; BL = rise and fall counter
	mov	si,num
	lodsb			; Read first digit to compare to
.pair:	xchg	ah,al		; Previous digit to compare
	lodsb			; Read next digit
	test	al,al		; Done yet?
	jz	.done
	cmp	al,ah		; If not, compare the digits
	ja	.fall		; If they are different,	
	jb	.rise		; there is a fall or a rise
	jmp	.pair		; Otherwise, try next pair
.fall:	dec	bl		; Fall: decrement BL
	jmp	.pair
.rise:	inc	bl		; Rise: increment BL
	jmp	.pair
.done:	test	bl,bl		; At the end, check if BL is zero
	jnz	.inc		; If not, try next number
	sub	di,1		; Decrement the million counter in BP:DI
	sbb	bp,0
	mov	ax,di		; Test if BP:DI is zero
	or	ax,bp 
	ret
section	.data
	;;;	Strings
first:	db	'The first 200 numbers are:',13,10,'$'
tenmil:	db	13,10,10,'The 10,000,000th number is: $'
	;;;	Current number, stored as ASCII
	db	0,0,0,0,0,0,0,0
num:	db	'0 $'
Output:
The first 200 numbers are:
1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10,000,000th number is: 41909002 

Ada

with Ada.Text_Io;
with Ada.Integer_Text_Io;

procedure Equal_Rise_Fall is
   use Ada.Text_Io;

   function Has_Equal_Rise_Fall (Value : Natural) return Boolean is
      Rises : Natural := 0;
      Falls : Natural := 0;
      Image : constant String := Natural'Image (Value);
      Last  : Character := Image (Image'First + 1);
   begin
      for Pos in Image'First + 2 .. Image'Last loop
         if Image (Pos) > Last then
            Rises := Rises + 1;
         elsif Image (Pos) < Last then
            Falls := Falls + 1;
         end if;
         Last := Image (Pos);
      end loop;
      return Rises = Falls;
   end Has_Equal_Rise_Fall;

   Value : Natural := 1;
   Count : Natural := 0;
begin
   loop
      if Has_Equal_Rise_Fall (Value) then
         Count := Count + 1;
         if Count <= 200 then
            Ada.Integer_Text_Io.Put (Value, Width => 5);
            if Count mod 20 = 0 then
               New_Line;
            end if;
         end if;
         if Count = 10_000_000 then
            New_Line;
            Put_Line ("The 10_000_000th: " & Natural'Image (Value));
            exit;
         end if;
      end if;
      Value := Value + 1;
   end loop;
end Equal_Rise_Fall;
Output:
    1    2    3    4    5    6    7    8    9   11   22   33   44   55   66   77   88   99  101  102
  103  104  105  106  107  108  109  111  120  121  130  131  132  140  141  142  143  150  151  152
  153  154  160  161  162  163  164  165  170  171  172  173  174  175  176  180  181  182  183  184
  185  186  187  190  191  192  193  194  195  196  197  198  201  202  203  204  205  206  207  208
  209  212  213  214  215  216  217  218  219  222  230  231  232  240  241  242  243  250  251  252
  253  254  260  261  262  263  264  265  270  271  272  273  274  275  276  280  281  282  283  284
  285  286  287  290  291  292  293  294  295  296  297  298  301  302  303  304  305  306  307  308
  309  312  313  314  315  316  317  318  319  323  324  325  326  327  328  329  333  340  341  342
  343  350  351  352  353  354  360  361  362  363  364  365  370  371  372  373  374  375  376  380
  381  382  383  384  385  386  387  390  391  392  393  394  395  396  397  398  401  402  403  404

The 10_000_000th:  41909002

ALGOL 68

Translation of: Wren

... with a single counter for rises and falls.

BEGIN
    # returns TRUE if the number of digits in n followed by a higher digit (rises)  #
    #              equals the number of digits followed by a lower digit (falls)    #
    #        FALSE otherwise                                                        #
    PROC rises equals falls = ( INT n )BOOL:
         BEGIN
            INT rf   := 0;
            INT prev := n MOD 10;
            INT v    := n OVER 10;
            WHILE v > 0 DO
                INT d = v MOD 10;
                IF d < prev THEN
                    rf +:= 1    # rise                                              #
                ELIF d > prev THEN 
                    rf -:= 1    # fall                                              #
                FI;
                prev := d;
                v OVERAB 10
            OD;
            rf = 0
        END; # rises equals falls #
    # task tests                                                                    # 
    print( ( "The first 200 numbers in the sequence are:", newline ) );
    INT count    := 0;
    INT max count = 10 000 000;
    FOR n WHILE count < max count DO
        IF rises equals falls( n ) THEN
            count +:= 1;
            IF count <= 200 THEN
                print( ( whole( n, -4 ) ) );
                IF count MOD 20 = 0 THEN print( ( newline ) ) FI
            ELIF count = max count THEN
                print( ( newline, "The 10 millionth number in the sequence is ", whole( n, -8 ), ".", newline ) )
            FI
        FI
    OD
END
Output:
The first 200 numbers in the sequence are:
   1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10 millionth number in the sequence is 41909002.

APL

Works with: Dyalog APL
risefall{
    ⍝ Determine if a number is in the sequence
    inSeq0=(+/2(<->)/10(¯1))

    ⍝ First 200 numbers
    'The first 200 numbers are:'
    ((/⍨)inSeq¨)404

    ⍝ 10,000,000th number
    ⍝ You can't just make a list that big and filter
    ⍝ it, because that will just get you a WS FULL.
    ⍝ Instead it's necessary to loop over them the old-
    ⍝ fashioned way
    'The 10,000,000th number is: '
    1e7{=0:⍵-1  (-inSeq ) +1}1
}
Output:
The first 200 numbers are:
1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102
      103 104 105 106 107 108 109 111 120 121 130 131
      132 140 141 142 143 150 151 152 153 154 160 161
      162 163 164 165 170 171 172 173 174 175 176 180
      181 182 183 184 185 186 187 190 191 192 193 194
      195 196 197 198 201 202 203 204 205 206 207 208
      209 212 213 214 215 216 217 218 219 222 230 231
      232 240 241 242 243 250 251 252 253 254 260 261
      262 263 264 265 270 271 272 273 274 275 276 280
      281 282 283 284 285 286 287 290 291 292 293 294
      295 296 297 298 301 302 303 304 305 306 307 308
      309 312 313 314 315 316 317 318 319 323 324 325
      326 327 328 329 333 340 341 342 343 350 351 352
      353 354 360 361 362 363 364 365 370 371 372 373
      374 375 376 380 381 382 383 384 385 386 387 390
      391 392 393 394 395 396 397 398 401 402 403 404
The 10,000,000th number is: 
41909002

AutoHotkey

limit1 := 200, limit2 := 10000000
count := 0, result1 := result1 := ""
loop{
    num := A_Index
    if !Rise_Fall(num)
        continue
    count++
    if (count <= limit1)
        result1 .= num . (Mod(count, 20) ? "`t" : "`n")
    if (count = limit2){
        result2 := num
        break
    }
    if !mod(count, 10000)
        ToolTip % count
}
ToolTip
MsgBox % "The first " limit1 " numbers in the sequence:`n" result1 "`nThe " limit2 " number in the sequence is: " result2
return

Rise_Fall(num){
    rise := fall := 0
    for i, n in StrSplit(num){
        if (i=1)
            prev := n
        else if (n > prev)
            rise++
        else if (n < prev)
            fall++
        if (rise > (StrLen(num)-1) /2) || (fall > (StrLen(num)-1) /2)
            return 0
        prev := n
    }
    if (fall = rise)
        return 1
}
Output:
The first 200 numbers in the sequence:
1	2	3	4	5	6	7	8	9	11	22	33	44	55	66	77	88	99	101	102
103	104	105	106	107	108	109	111	120	121	130	131	132	140	141	142	143	150	151	152
153	154	160	161	162	163	164	165	170	171	172	173	174	175	176	180	181	182	183	184
185	186	187	190	191	192	193	194	195	196	197	198	201	202	203	204	205	206	207	208
209	212	213	214	215	216	217	218	219	222	230	231	232	240	241	242	243	250	251	252
253	254	260	261	262	263	264	265	270	271	272	273	274	275	276	280	281	282	283	284
285	286	287	290	291	292	293	294	295	296	297	298	301	302	303	304	305	306	307	308
309	312	313	314	315	316	317	318	319	323	324	325	326	327	328	329	333	340	341	342
343	350	351	352	353	354	360	361	362	363	364	365	370	371	372	373	374	375	376	380
381	382	383	384	385	386	387	390	391	392	393	394	395	396	397	398	401	402	403	404

The 10000000 number in the sequence is: 41909002

AWK

# syntax: GAWK -f NUMBERS_WITH_EQUAL_RISES_AND_FALLS.AWK
# converted from Go
BEGIN {
    print("1-200:")
    while (1) {
      if (rises_equals_falls(++n)) {
        if (++count <= 200) {
          printf("%4d",n)
          if (count % 20 == 0) {
            printf("\n")
          }
        }
        if (count == 1E7) {
          printf("\n%d: %d",count,n)
          break
        }
      }
    }
    exit(0)
}
function rises_equals_falls(n,  d,falls,prev,rises) {
    if (n < 10) {
      return(1)
    }
    prev = -1
    while (n > 0) {
      d = n % 10
      if (prev >= 0) {
        if (d < prev) {
          rises++
        }
        else if (d > prev) {
          falls++
        }
      }
      prev = d
      n = int(n / 10)
    }
    return(rises == falls)
}
Output:
1-200:
   1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

10000000: 41909002

BASIC

BASIC256

Translation of: FreeBASIC
c = 0
i = 1
while c < 10000001
	if eqrf(i) then
		c += 1
		if c <= 200 then print i;" ";
		if c = 10000000 then print : print i
	end if
	i += 1
end while
end

function eqrf(n)
	sn$ = string(n)
	q = 0
	for i = 2 to length(sn$)
		if asc(mid(sn$,i,1)) > asc(mid(sn$,i-1,1)) then
			q += 1
		else
			if asc(mid(sn$,i,1)) < asc(mid(sn$,i-1,1)) then
				q -= 1
			end if
		end if
	next i
	if q = 0 then return true else return false
end function
Output:
Same as FreeBASIC entry.

FreeBASIC

function eqrf( n as uinteger ) as boolean
    dim as string sn = str(n)
    dim as integer q = 0
    for i as uinteger = 2 to len(sn)
        if asc(mid(sn,i,1)) > asc(mid(sn,i-1,1)) then 
            q += 1 
        elseif asc(mid(sn,i,1)) < asc(mid(sn,i-1,1)) then 
            q -= 1
        end if
    next i
    if q = 0 then return true else return false
end function

dim as uinteger c = 0, i = 1
while c < 10000001
    if eqrf(i) then
        c += 1
        if c <= 200 then print i;" ";
        if c = 10000000 then print : print i
    end if
    i += 1
wend
Output:
1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404 
41909002

Gambas

Public Sub Main()  

  Dim c As Integer = 0, i As Integer = 1 
  While c < 10000001 
    If eqrf(i) Then 
      c += 1 
      If c <= 200 Then Print " "; i;
      If c = 10000000 Then Print Chr(10); i 
    End If 
    i += 1 
  Wend 

End

Function eqrf(n As Integer) As Boolean 

  Dim sn As String = Str(n) 
  Dim q As Integer = 0, i As Integer

  For i = 2 To Len(sn) 
    If Asc(Mid(sn, i, 1)) > Asc(Mid(sn, i - 1, 1)) Then  
      q += 1  
    Else If Asc(Mid(sn, i, 1)) < Asc(Mid(sn, i - 1, 1)) Then  
      q -= 1 
    End If 
  Next 
  If q = 0 Then Return True Else Return False 

End Function
Output:
Same as FreeBASIC entry.

PureBasic

Translation of: FreeBASIC
Procedure.b eqrf(n.i)
  sn.s = Str(n) 
  q.i = 0
  
  For i.i = 2 To Len(sn) 
    If Asc(Mid(sn, i, 1)) > Asc(Mid(sn, i - 1, 1)):
      q + 1  
    Else 
      If Asc(Mid(sn, i, 1)) < Asc(Mid(sn, i - 1, 1)):
        q - 1 
      EndIf 
    EndIf
  Next
  If q = 0:
    ProcedureReturn #True 
  Else 
    ProcedureReturn #False 
  EndIf
  
EndProcedure

OpenConsole()
c.i = 0
i.i = 1 
While c < 10000001 
  If eqrf(i):
    c + 1 
    If c <= 200:
      Print(" " + Str(i))
    EndIf
    If c = 10000000:
      PrintN(#CRLF$ + Str(i))
    EndIf
  EndIf 
  i + 1 
Wend 

Input()
CloseConsole()
Output:
Same as FreeBASIC entry.

C

#include <stdio.h>

/* Check whether a number has an equal amount of rises
 * and falls
 */
int riseEqFall(int num) {
    int rdigit = num % 10;
    int netHeight = 0;
    while (num /= 10) {
        netHeight += ((num % 10) > rdigit) - ((num % 10) < rdigit);
        rdigit = num % 10;
    }
    return netHeight == 0;
}

/* Get the next member of the sequence, in order,
 * starting at 1
 */
int nextNum() {
    static int num = 0;
    do {num++;} while (!riseEqFall(num));
    return num;
}

int main(void) {
    int total, num;
    
    /* Generate first 200 numbers */
    printf("The first 200 numbers are: \n");
    for (total = 0; total < 200; total++)
        printf("%d ", nextNum());
    
    /* Generate 10,000,000th number */
    printf("\n\nThe 10,000,000th number is: ");
    for (; total < 10000000; total++) num = nextNum();
    printf("%d\n", num);
    
    return 0;
}
Output:
The first 200 numbers are: 
1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404 

The 10,000,000th number is: 41909002

C++

#include <iomanip>
#include <iostream>

bool equal_rises_and_falls(int n) {
    int total = 0;
    for (int previous_digit = -1; n > 0; n /= 10) {
        int digit = n % 10;
        if (previous_digit > digit)
            ++total;
        else if (previous_digit >= 0 && previous_digit < digit)
            --total;
        previous_digit = digit;
    }
    return total == 0;
}

int main() {
    const int limit1 = 200;
    const int limit2 = 10000000;
    int n = 0;
    std::cout << "The first " << limit1 << " numbers in the sequence are:\n";
    for (int count = 0; count < limit2; ) {
        if (equal_rises_and_falls(++n)) {
            ++count;
            if (count <= limit1)
                std::cout << std::setw(3) << n << (count % 20 == 0 ? '\n' : ' ');
        }
    }
    std::cout << "\nThe " << limit2 << "th number in the sequence is " << n << ".\n";
}
Output:
The first 200 numbers in the sequence are:
  1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10000000th number in the sequence is 41909002.

CLU

% Find how many rises and falls a number has
rises_falls = proc (n: int) returns (int,int)
    rises: int := 0
    falls: int := 0
    
    while n >= 10 do
        dl: int := n//10
        n := n / 10
        dh: int := n//10
        if dh < dl then rises := rises + 1
        elseif dl < dh then falls := falls + 1
        end 
    end 
    return (rises, falls)
end rises_falls

% Generate all numbers with equal rises and falls
equal_rises_falls = iter () yields (int)
    n: int := 1
    rises, falls: int 
    while true do
        rises, falls := rises_falls(n)
        if rises = falls then yield (n) end
        n := n + 1
    end
end equal_rises_falls

% Show the first 200 and the 10,000,000th
start_up = proc ()
    po: stream := stream$primary_output()
    count: int := 0
    
    for n: int in equal_rises_falls() do
        count := count + 1
        if count <= 200 then
            stream$putright(po, int$unparse(n), 5)
            if count//10 = 0 then stream$putc(po, '\n') end
        elseif count = 10000000 then
            stream$putl(po, "\nThe 10,000,000th number is: " 
                         || int$unparse(n))
            break
        end
    end
end start_up
Output:
    1    2    3    4    5    6    7    8    9   11
   22   33   44   55   66   77   88   99  101  102
  103  104  105  106  107  108  109  111  120  121
  130  131  132  140  141  142  143  150  151  152
  153  154  160  161  162  163  164  165  170  171
  172  173  174  175  176  180  181  182  183  184
  185  186  187  190  191  192  193  194  195  196
  197  198  201  202  203  204  205  206  207  208
  209  212  213  214  215  216  217  218  219  222
  230  231  232  240  241  242  243  250  251  252
  253  254  260  261  262  263  264  265  270  271
  272  273  274  275  276  280  281  282  283  284
  285  286  287  290  291  292  293  294  295  296
  297  298  301  302  303  304  305  306  307  308
  309  312  313  314  315  316  317  318  319  323
  324  325  326  327  328  329  333  340  341  342
  343  350  351  352  353  354  360  361  362  363
  364  365  370  371  372  373  374  375  376  380
  381  382  383  384  385  386  387  390  391  392
  393  394  395  396  397  398  401  402  403  404

The 10,000,000th number is: 41909002

Cowgol

include "cowgol.coh";

# return the change in height of a number
sub height(n: uint32): (h: int8) is
    h := 0;
    var dgt := (n % 10) as uint8;
    var prev: uint8;
    n := n / 10;
    
    while n > 0 loop    
        prev := dgt;
        dgt := (n % 10) as uint8;
        n := n / 10;
        if prev < dgt then
            h := h + 1;
        elseif prev > dgt then
            h := h - 1;
        end if;
    end loop;
end sub;

var number: uint32 := 0; 
var seen: uint32 := 0; 
var col: uint8 := 10;

print("The first 200 numbers are:");
print_nl();
while seen < 10000000 loop
    loop
        number := number + 1;
        if height(number) == 0 then break; end if;
    end loop;
    seen := seen + 1;
    if seen <= 200 then
        print_i32(number);
        col := col - 1;
        if col != 0 then
            print_char('\t');
        else
            print_char('\n');
            col := 10;
        end if;
    end if;
end loop;

print_nl();
print("The 10,000,000th number is: ");
print_i32(number);
print_nl();
Output:
The first 200 numbers are:
1       2       3       4       5       6       7       8       9       11
22      33      44      55      66      77      88      99      101     102
103     104     105     106     107     108     109     111     120     121
130     131     132     140     141     142     143     150     151     152
153     154     160     161     162     163     164     165     170     171
172     173     174     175     176     180     181     182     183     184
185     186     187     190     191     192     193     194     195     196
197     198     201     202     203     204     205     206     207     208
209     212     213     214     215     216     217     218     219     222
230     231     232     240     241     242     243     250     251     252
253     254     260     261     262     263     264     265     270     271
272     273     274     275     276     280     281     282     283     284
285     286     287     290     291     292     293     294     295     296
297     298     301     302     303     304     305     306     307     308
309     312     313     314     315     316     317     318     319     323
324     325     326     327     328     329     333     340     341     342
343     350     351     352     353     354     360     361     362     363
364     365     370     371     372     373     374     375     376     380
381     382     383     384     385     386     387     390     391     392
393     394     395     396     397     398     401     402     403     404

The 10,000,000th number is: 41909002

Delphi

Works with: Delphi version 6.0


procedure GetDigits(N: integer; var IA: TIntegerDynArray);
{Get an array of the integers in a number}
var T: integer;
begin
SetLength(IA,0);
repeat
	begin
	T:=N mod 10;
	N:=N div 10;
	SetLength(IA,Length(IA)+1);
	IA[High(IA)]:=T;
	end
until N<1;
end;


function HasEqualRiseFall(N: integer): boolean;
{Count rises and falls in numbers left to Right}
var I: integer;
var IA: TIntegerDynArray;
var Rise,Fall: integer;
begin
Rise:=0; Fall:=0;
GetDigits(N,IA);
for I:=High(IA) downto 1 do
 if IA[I-1]>IA[I] then Inc(Rise)
 else if IA[I-1]<IA[I] then Inc(Fall);
Result:=Rise=Fall;
end;


procedure ShowEqualRiseFall(Memo: TMemo);
var I,Cnt: integer;
var S: string;
begin
Cnt:=0;
S:='';
for I:=1 to High(integer) do
 if HasEqualRiseFall(I) then
	begin
	Inc(Cnt);
	S:=S+Format('%4.0d', [I]);
	if (Cnt mod 20)=0 then S:=S+CRLF;
	if Cnt=200 then break;
	end;
Memo.Text:=S;
Memo.Lines.Add('Count = '+IntToStr(Cnt));

for I:=1 to High(integer) do
 if HasEqualRiseFall(I) then
	begin
	Inc(Cnt);
	if Cnt>=10000000 then
		begin
		Memo.Lines.Add('10-Million: '+IntToStr(I));
		break;
		end;
	end;
end;
Output:
   1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404
Count = 200
10-Million: 41907794
Elapsed Time: 28.140 Sec.


EasyLang

Translation of: AWK
fastfunc risefall n .
   if n < 10
      return 1
   .
   prev = -1
   while n > 0
      d = n mod 10
      if prev >= 0
         if d < prev
            rises += 1
         elif d > prev
            falls += 1
         .
      .
      prev = d
      n = n div 10
   .
   if rises = falls
      return 1
   .
   return 0
.
numfmt 0 4
n = 1
repeat
   if risefall n = 1
      cnt += 1
      if cnt <= 200
         write n
         if cnt mod 10 = 0
            print ""
         .
      .
   .
   until cnt = 1e7
   n += 1
.
print ""
print n

F#

// A296712. Nigel Galloway: October 9th., 2020
let fN g=let rec fN Ψ n g=match n,Ψ with (0,0)->true |(0,_)->false |_->let i=n%10 in fN (Ψ + (compare i g)) (n/10) i in fN 0 g (g%10)
let A296712=seq{1..2147483647}|>Seq.filter fN
A296712|>Seq.take 200|>Seq.iter(printf "%d "); printfn"\n"
[999999;9999999;99999999]|>List.iter(fun n->printfn "The %dth element is %d" (n+1) (Seq.item n A296712))
Output:
1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 1000000th element is 3284698
The 10000000th element is 41909002
The 100000000th element is 375551037

Factor

Works with: Factor version 0.99 2020-08-14
USING: grouping io kernel lists lists.lazy math math.extras
prettyprint tools.memory.private ;

: rises-and-falls-equal? ( n -- ? )
    0 swap 10 /mod swap
    [ 10 /mod rot over - sgn rotd + spin ] until-zero drop 0 = ;

: OEIS:A296712 ( -- list )
    1 lfrom [ rises-and-falls-equal? ] lfilter ;

! Task
"The first 200 numbers in OEIS:A296712 are:" print
200 OEIS:A296712 ltake list>array 20 group simple-table. nl

"The 10 millionth number in OEIS:A296712 is " write
9,999,999 OEIS:A296712 lnth commas print
Output:
The first 200 numbers in OEIS:A296712 are:
1   2   3   4   5   6   7   8   9   11  22  33  44  55  66  77  88  99  101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10 millionth number in OEIS:A296712 is 41,909,002

Forth

: in-seq? ( n -- is N in the sequence? )
  0 swap            \ height 
  10 /mod           \  digit and rest of number 
  begin dup while   \ as long as the number isn't zero... 
    10 /mod         \ get next digit and quotient
    -rot swap       \ retrieve previous digit 
    over - sgn      \ see if higher, lower or equal (-1, 0, 1) 
    >r rot r> +     \ add to height
    -rot swap       \ quotient on top of stack 
  repeat
  drop drop         \ drop number and last digit 
  0=                \ is height equal to zero? 
;

: next-val ( n -- n: retrieve first element of sequence higher than N )
  begin 1+ dup in-seq? until
;

: two-hundred
  begin over 200 < while 
    next-val dup . 
    swap 1+ swap
  repeat  
;

: ten-million
  begin over 10000000 < while 
    next-val
    swap 1+ swap
  repeat
;

0 0 \ top of stack: current index and number 
." The first 200 numbers are: " two-hundred cr cr 
." The 10,000,000th number is: " ten-million . cr
bye
Output:
The first 200 numbers are: 1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10,000,000th number is: 41909002 

Fortran

      PROGRAM A296712
          INTEGER IDX, NUM, I
*         Index and number start out at zero
          IDX = 0
          NUM = 0 
*         Find and write the first 200 numbers
          WRITE (*,'(A)') 'The first 200 numbers are: '
          DO 100 I = 1, 200
              CALL NEXT NUM(IDX, NUM)
              WRITE (*,'(I4)',ADVANCE='NO') NUM
              IF (MOD(I,20).EQ.0) WRITE (*,*)
  100     CONTINUE
*         Find the 10,000,000th number
          WRITE (*,*)
          WRITE (*,'(A)',ADVANCE='NO') 'The 10,000,000th number is: '
  200     CALL NEXT NUM(IDX, NUM)
          IF (IDX.NE.10000000) GOTO 200
          WRITE (*,'(I8)') NUM
          STOP
      END    

*     Given index and current number, retrieve the next number
*     in the sequence.
      SUBROUTINE NEXT NUM(IDX, NUM) 
          INTEGER IDX, NUM
          LOGICAL IN SEQ
  100     NUM = NUM + 1
          IF (.NOT. IN SEQ(NUM)) GOTO 100
          IDX = IDX + 1           
      END
    
*     See whether N is in the sequence
      LOGICAL FUNCTION IN SEQ(N)
          INTEGER N, DL, DR, VAL, HEIGHT
*         Get first digit and divide value by 10
          DL = MOD(N, 10)
          VAL = N / 10
          HEIGHT = 0
  100     IF (VAL.NE.0) THEN
*             Retrieve digits by modulo and division
              DR = DL
              DL = MOD(VAL, 10)
              VAL = VAL / 10
*             Record rise or fall
              IF (DL.LT.DR) HEIGHT = HEIGHT + 1
              IF (DL.GT.DR) HEIGHT = HEIGHT - 1
              GOTO 100
          END IF
*         N is in the sequence if the final height is 0
          IN SEQ = HEIGHT.EQ.0
          RETURN
      END
Output:
The first 200 numbers are:
   1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10,000,000th number is: 41909002

Go

Translation of: Wren
package main

import "fmt"

func risesEqualsFalls(n int) bool {
    if n < 10 {
        return true
    }
    rises := 0
    falls := 0
    prev := -1
    for n > 0 {
        d := n % 10
        if prev >= 0 {
            if d < prev {
                rises = rises + 1
            } else if d > prev {
                falls = falls + 1
            }
        }
        prev = d
        n /= 10   
    }
    return rises == falls
}

func main() {
    fmt.Println("The first 200 numbers in the sequence are:")
    count := 0
    n := 1
    for {
        if risesEqualsFalls(n) {
            count++
            if count <= 200 {
                fmt.Printf("%3d ", n)
                if count%20 == 0 {
                    fmt.Println()
                }
            }
            if count == 1e7 {
                fmt.Println("\nThe 10 millionth number in the sequence is ", n)
                break
            }
        }
        n++
    }
}
Output:
The first 200 numbers in the sequence are:
  1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102 
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404 

The 10 millionth number in the sequence is  41909002

Haskell

import Data.Char

pairs :: [a] -> [(a,a)]
pairs (a:b:as) = (a,b):pairs (b:as)
pairs _        = [] 

riseEqFall :: Int -> Bool
riseEqFall n = rel (>) digitPairs == rel (<) digitPairs
    where rel r = sum . map (fromEnum . uncurry r)
          digitPairs = pairs $ map digitToInt $ show n

a296712 :: [Int]
a296712 = [n | n <- [1..], riseEqFall n]

main :: IO ()
main = do
	putStrLn "The first 200 numbers are: "
	putStrLn $ unwords $ map show $ take 200 a296712
	putStrLn ""
	putStr "The 10,000,000th number is: "
	putStrLn $ show $ a296712 !! 9999999
Output:
The first 200 numbers are: 
1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10,000,000th number is: 41909002

J

NB. This would have been shorter but memory constraints forced me to test candidates
NB. in batches rather than all at once (iPads are amazing but not supercomputers...)

gennumberblocks =: 3 : 0
NB. y Block index.  Each block is at most 100000 numbers
NB. Return one or more boxed blocks of numbers, segregated by digit count
(<. 10 ^. n) </. n =. (y * 100000) + >: i.100000
)

testblock =: 3 : 0
NB. y A block of numbers all with the same digit count
NB. Return those that pass the test
y #~ ((+/"1) 2 </\"1 f) = (+/"1) 2 >/\"1 "."1"0 ": ,. y
)

pow =: 3 : 0
NB. Generate and test one or more blocks of numbers and add the results to the
NB. running list of answers
'nextblockindex answers' =. y
(>: nextblockindex) ; answers , ; testblock &. > gennumberblocks nextblockindex
)

go =: 3 : 0
result =: pow ^: ((1e7&>)@#@(1&{::)) ^:_ (0 ; '')
'The first 200 numbers are:' (1!:2) 2
(10 20 $ 200 {. 1 {:: result) (1!:2) 2
'The 10,000,000th number is: ' , ": 9999999 { 1 {:: result
)
Output:
go ''

The first 200 numbers are:
  1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404
The 10,000,000th number is: 41909002 

Java

public class EqualRisesFalls {
    public static void main(String[] args) {
        final int limit1 = 200;
        final int limit2 = 10000000;
        System.out.printf("The first %d numbers in the sequence are:\n", limit1);
        int n = 0;
        for (int count = 0; count < limit2; ) {
            if (equalRisesAndFalls(++n)) {
                ++count;
                if (count <= limit1)
                    System.out.printf("%3d%c", n, count % 20 == 0 ? '\n' : ' ');
            }
        }
        System.out.printf("\nThe %dth number in the sequence is %d.\n", limit2, n);
    }

    private static boolean equalRisesAndFalls(int n) {
        int total = 0;
        for (int previousDigit = -1; n > 0; n /= 10) {
            int digit = n % 10;
            if (previousDigit > digit)
                ++total;
            else if (previousDigit >= 0 && previousDigit < digit)
                --total;
            previousDigit = digit;
        }
        return total == 0;
    }
}
Output:
The first 200 numbers in the sequence are:
  1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10000000th number in the sequence is 41909002.

jq

Works with: jq

Works with gojq, the Go implementation of jq (*)

(*) gojq requires a very large amount of memory for computing the 10 millionth number in the sequence.

def risesEqualsFalls:
  . as $n
  | if . < 10 then true
    else {rises: 0, falls: 0, prev: -1, n: $n}
    | until (.n <= 0;
        (.n % 10 ) as $d
        | if .prev >= 0
          then if $d < .prev then .rises += 1
               elif $d > .prev then .falls += 1
               else .
	       end
	  else .
	  end
        | .prev = $d
        | .n = ((.n/10)|floor) )
    | .rises == .falls
    end ;

def A296712: range(1; infinite) | select(risesEqualsFalls);

# Override jq's incorrect definition of nth/2
# Emit the $n-th value of the stream, counting from 0; or emit nothing
def nth($n; s):
 if $n < 0 then error("nth/2 doesn't support negative indices")
 else label $out
 | foreach s as $x (-1; .+1; select(. >= $n) | $x, break $out)
 end;

# The tasks
"First 200:",
 [limit(200; A296712)],

 "\nThe 10 millionth number in the sequence is \(
    nth(1e7 - 1; A296712))"
Output:
First 200:
[1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101,102,103,104,105,106,107,108,109,111,120,121,130,131,132,140,141,142,143,150,151,152,153,154,160,161,162,163,164,165,170,171,172,173,174,175,176,180,181,182,183,184,185,186,187,190,191,192,193,194,195,196,197,198,201,202,203,204,205,206,207,208,209,212,213,214,215,216,217,218,219,222,230,231,232,240,241,242,243,250,251,252,253,254,260,261,262,263,264,265,270,271,272,273,274,275,276,280,281,282,283,284,285,286,287,290,291,292,293,294,295,296,297,298,301,302,303,304,305,306,307,308,309,312,313,314,315,316,317,318,319,323,324,325,326,327,328,329,333,340,341,342,343,350,351,352,353,354,360,361,362,363,364,365,370,371,372,373,374,375,376,380,381,382,383,384,385,386,387,390,391,392,393,394,395,396,397,398,401,402,403,404]

The 10 millionth number in the sequence is 41909002


Julia

using Lazy

function rises_and_falls(n)
    if n < 10
        return 0, 0
    end
    lastr, rises, falls = n % 10, 0, 0
    while n != 0
        n, r = divrem(n, 10)
        if r > lastr
            falls += 1
        elseif r < lastr
            rises += 1
        end
        lastr = r
    end
    return rises, falls
end

isA296712(x) = ((a, b) = rises_and_falls(x); return a == b)

function genA296712(N, M)
    A296712 = filter(isA296712, Lazy.range(1));
    j = 0
    for i in take(200, A296712)
        j += 1
        print(lpad(i, 4), j % 20 == 0 ? "\n" : "")
    end
    for i in take(M, A296712)
        j = i
    end
    println("\nThe $M-th number in sequence A296712 is $j.")
end

genA296712(200, 10_000_000)
Output:
   1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10000000-th number in sequence A296712 is 41909002.

MAD

            NORMAL MODE IS INTEGER
            VECTOR VALUES FMT = $I8,1H:,I9*$
            
            INTERNAL FUNCTION(NUM)
            ENTRY TO RISFAL.
            N=NUM
            DEPTH = 0
            DIGA = N-(N/10)*10
            N = N/10
LOOP        WHENEVER N.E.0, FUNCTION RETURN DEPTH.E.0
            DIGB = DIGA
            DIGA = N-(N/10)*10
            N = N/10
            WHENEVER DIGA.L.DIGB, DEPTH=DEPTH-1
            WHENEVER DIGA.G.DIGB, DEPTH=DEPTH+1
            TRANSFER TO LOOP
            END OF FUNCTION
            
            I=0
            J=0
LOOP        J=J+1
            WHENEVER .NOT.RISFAL.(J), TRANSFER TO LOOP
            I=I+1
            WHENEVER I.LE.200, PRINT FORMAT FMT, I, J
            WHENEVER I.L.10000000, TRANSFER TO LOOP
            PRINT FORMAT FMT, I, J
            
            END OF PROGRAM
Output:
       1:        1
       2:        2
       3:        3
       4:        4
       5:        5
       6:        6
       7:        7
       8:        8
       9:        9
      10:       11
      11:       22
      12:       33
      13:       44
      14:       55
      15:       66
      16:       77
      17:       88
      18:       99
      19:      101
      20:      102
      21:      103
      22:      104
      23:      105
      24:      106
      25:      107
      26:      108
      27:      109
      28:      111
      29:      120
      30:      121
      31:      130
      32:      131
      33:      132
      34:      140
      35:      141
      36:      142
      37:      143
      38:      150
      39:      151
      40:      152
      41:      153
      42:      154
      43:      160
      44:      161
      45:      162
      46:      163
      47:      164
      48:      165
      49:      170
      50:      171
      51:      172
      52:      173
      53:      174
      54:      175
      55:      176
      56:      180
      57:      181
      58:      182
      59:      183
      60:      184
      61:      185
      62:      186
      63:      187
      64:      190
      65:      191
      66:      192
      67:      193
      68:      194
      69:      195
      70:      196
      71:      197
      72:      198
      73:      201
      74:      202
      75:      203
      76:      204
      77:      205
      78:      206
      79:      207
      80:      208
      81:      209
      82:      212
      83:      213
      84:      214
      85:      215
      86:      216
      87:      217
      88:      218
      89:      219
      90:      222
      91:      230
      92:      231
      93:      232
      94:      240
      95:      241
      96:      242
      97:      243
      98:      250
      99:      251
     100:      252
     101:      253
     102:      254
     103:      260
     104:      261
     105:      262
     106:      263
     107:      264
     108:      265
     109:      270
     110:      271
     111:      272
     112:      273
     113:      274
     114:      275
     115:      276
     116:      280
     117:      281
     118:      282
     119:      283
     120:      284
     121:      285
     122:      286
     123:      287
     124:      290
     125:      291
     126:      292
     127:      293
     128:      294
     129:      295
     130:      296
     131:      297
     132:      298
     133:      301
     134:      302
     135:      303
     136:      304
     137:      305
     138:      306
     139:      307
     140:      308
     141:      309
     142:      312
     143:      313
     144:      314
     145:      315
     146:      316
     147:      317
     148:      318
     149:      319
     150:      323
     151:      324
     152:      325
     153:      326
     154:      327
     155:      328
     156:      329
     157:      333
     158:      340
     159:      341
     160:      342
     161:      343
     162:      350
     163:      351
     164:      352
     165:      353
     166:      354
     167:      360
     168:      361
     169:      362
     170:      363
     171:      364
     172:      365
     173:      370
     174:      371
     175:      372
     176:      373
     177:      374
     178:      375
     179:      376
     180:      380
     181:      381
     182:      382
     183:      383
     184:      384
     185:      385
     186:      386
     187:      387
     188:      390
     189:      391
     190:      392
     191:      393
     192:      394
     193:      395
     194:      396
     195:      397
     196:      398
     197:      401
     198:      402
     199:      403
     200:      404
10000000: 41909002

Mathematica /Wolfram Language

ClearAll[EqualRisesAndFallsQ]
EqualRisesAndFallsQ[n_Integer] := Total[Sign[Differences[IntegerDigits[n]]]] == 0
Take[Select[Range[1000], EqualRisesAndFallsQ], 200]
valid = 0;
Dynamic[{i, valid}]
Do[
 If[EqualRisesAndFallsQ[i],
  valid += 1;
  If[valid == 10^7, Print[i]; Break[]]
  ]
 ,
 {i, 50 10^6}
 ]
Output:
{1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101,102,103,104,105,106,107,108,109,111,120,121,130,131,132,140,141,142,143,150,151,152,153,154,160,161,162,163,164,165,170,171,172,173,174,175,176,180,181,182,183,184,185,186,187,190,191,192,193,194,195,196,197,198,201,202,203,204,205,206,207,208,209,212,213,214,215,216,217,218,219,222,230,231,232,240,241,242,243,250,251,252,253,254,260,261,262,263,264,265,270,271,272,273,274,275,276,280,281,282,283,284,285,286,287,290,291,292,293,294,295,296,297,298,301,302,303,304,305,306,307,308,309,312,313,314,315,316,317,318,319,323,324,325,326,327,328,329,333,340,341,342,343,350,351,352,353,354,360,361,362,363,364,365,370,371,372,373,374,375,376,380,381,382,383,384,385,386,387,390,391,392,393,394,395,396,397,398,401,402,403,404}
41909002

Nim

import strutils

func insequence(n: Positive): bool =
  ## Return true if "n" is in the sequence.
  if n < 10: return true
  var diff = 0
  var prev = n mod 10
  var n = n div 10
  while n != 0:
    let digit = n mod 10
    if digit < prev: inc diff
    elif digit > prev: dec diff
    prev = digit
    n = n div 10
  result = diff == 0

iterator a297712(): (int, int) =
  ## Yield the positions and the numbers of the sequence.
  var n = 1
  var pos = 0
  while true:
    if n.insequence:
      inc pos
      yield (pos, n)
    inc n

echo "First 200 numbers in the sequence:"
for (pos, n) in a297712():
  if pos <= 200:
    stdout.write ($n).align(3), if pos mod 20 == 0: '\n' else: ' '
  elif pos == 10_000_000:
    echo "\nTen millionth number in the sequence: ", n
    break
Output:
First 200 numbers in the sequence:
  1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

Ten millionth number in the sequence: 41909002

Perl

#!/usr/bin/perl

use strict;
use warnings;

sub rf
  {
  local $_ = shift;
  my $sum = 0;
  $sum += $1 <=> $2 while /(.)(?=(.))/g;
  $sum
  }

my $count = 0;
my $n = 0;
my @numbers;
while( $count < 200 )
  {
  rf(++$n) or $count++, push @numbers, $n;
  }
print "first 200: @numbers\n" =~ s/.{1,70}\K\s/\n/gr;

$count = 0;
$n = 0;
while( $count < 10e6 )
  {
  rf(++$n) or $count++;
  }
print "\n10,000,000th number: $n\n";
Output:
first 200: 1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103
104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150
151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176
180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198
201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219
222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263
264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287
290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333
340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371
372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393
394 395 396 397 398 401 402 403 404

10,000,000th number: 41909002


Phix

with javascript_semantics
atom t1 = time()+1
integer count = 0, n = 0
printf(1,"The first 200 numbers are:\n")
while true do
    n += 1
    integer rmf = 0,
            l = remainder(n,10),
            r = floor(n/10)
    while r do
        integer p = remainder(r,10)
        rmf += compare(l,p)
        l = p
        r = floor(r/10)
    end while
    if rmf=0 then
        count += 1
        if count<=200 then
            printf(1,"%3d ",n)
            if remainder(count,20)=0 then
                printf(1,"\n")
            end if
        end if
        if count == 1e7 then
            if platform()!=JS then progress("") end if
            printf(1,"\nThe %,dth number is %,d\n",{count,n})
            exit
        end if
        if time()>t1 and platform()!=JS then
            progress("%,d:%,d\r",{count,n})
            t1 = time()+1
        end if
    end if
end while
Output:
The first 200 numbers are:
  1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10,000,000th number is 41,909,002

Python

import itertools

def riseEqFall(num):
    """Check whether a number belongs to sequence A296712."""
    height = 0
    d1 = num % 10
    num //= 10
    while num:
        d2 = num % 10
        height += (d1<d2) - (d1>d2)
        d1 = d2
        num //= 10
    return height == 0
    
def sequence(start, fn):
    """Generate a sequence defined by a function"""
    num=start-1
    while True:
        num += 1
        while not fn(num): num += 1
        yield num

a296712 = sequence(1, riseEqFall)

# Generate the first 200 numbers
print("The first 200 numbers are:")
print(*itertools.islice(a296712, 200))

# Generate the 10,000,000th number
print("The 10,000,000th number is:")
print(*itertools.islice(a296712, 10000000-200-1, 10000000-200))
# It is necessary to subtract 200 from the index, because 200 numbers
# have already been consumed.
Output:
The first 200 numbers are:
1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404
The 10,000,000th number is:
41909002

Quackery

  [ [] swap
    [ 10 /mod
      rot join swap
      dup 0 = until ]
    drop ]                    is digits ( n --> [ )

  [ stack ] is rises
  [ stack ] is falls

  [ 0 rises put
    0 falls put
    digits
    behead swap witheach
      [ tuck 2dup < iff
          [ 1 rises tally
            2drop ] done
        > if
          [ 1 falls tally ] ]
    drop
    rises take
    falls take = ]            is equal ( n --> b )

  [] 0
  [ 1+ dup equal if
      [ tuck join swap ]
    over size 200 = until ]
  drop
  echo
  cr cr
  0 0
  [ 1+ dup equal if
      [ dip 1+ ]
    over 10000000 = until ]
  nip
  echo
Output:
[ 1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404 ]

41909002

Raku

Works with: Rakudo version 2020.09
use Lingua::EN::Numbers;
use Base::Any;

sub rf (int $base = 10, $batch = Any, &op = &infix:<==>) {
    my %batch = batch => $batch if $batch;
    flat (1 .. ∞).hyper(|%batch).map: {
        my int ($this, $last) = $_, $_ % $base;
        my int ($rise, $fall) = 0, 0;
        while $this {
            my int $rem = $this % $base;
            $this = $this div $base;
            if    $rem > $last { $fall = $fall + 1 }
            elsif $rem < $last { $rise = $rise + 1 }
            $last = $rem
        }
        next unless &op($rise, $fall);
        $_
    }
}

# The task
my $upto = 200;
put "Rise = Fall:\nFirst {$upto.&cardinal} (base 10):";
.put for rf[^$upto]».fmt("%3d").batch(20);

$upto = 10_000_000;
put "\nThe {$upto.&ordinal} (base 10): ", comma rf(10, 65536)[$upto - 1];

# Other bases and comparisons
put "\n\nGeneralized for other bases and other comparisons:";
$upto = ^5;
my $which = "{tc $upto.map({.exp(10).&ordinal}).join: ', '}, values in some other bases:";

put "\nRise = Fall: $which";
for <3 296691 4 296694 5 296697 6 296700 7 296703 8 296706 9 296709 10 296712
     11 296744 12 296747 13 296750 14 296753 15 296756 16 296759 20 296762 60 296765>
  -> $base, $oeis {
    put "Base {$base.fmt(<%2d>)} (https://oeis.org/A$oeis): ",
    $upto.map({rf(+$base, Any)[.exp(10) - 1].&to-base($base)}).join: ', '
}

put "\nRise > Fall: $which";
for <3 296692 4 296695 5 296698 6 296701 7 296704 8 296707 9 296710 10 296713
     11 296745 12 296748 13 296751 14 296754 15 296757 16 296760 20 296763 60 296766>
  -> $base, $oeis {
     put "Base {$base.fmt(<%2d>)} (https://oeis.org/A$oeis): ",
     $upto.map({rf(+$base, Any, &infix:«>»)[.exp(10) - 1].&to-base($base)}).join: ', '
 }

put "\nRise < Fall: $which";
for <3 296693 4 296696 5 296699 6 296702 7 296705 8 296708 9 296711 10 296714
     11 296746 12 296749 13 296752 14 296755 15 296758 16 296761 20 296764 60 296767>
  -> $base, $oeis {
     put "Base {$base.fmt(<%2d>)} (https://oeis.org/A$oeis): ",
     $upto.map({rf(+$base, Any, &infix:«<»)[.exp(10) - 1].&to-base($base)}).join: ', '
 }
Output:
Rise = Fall:
First two hundred (base 10):
  1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The ten millionth (base 10): 41,909,002


Generalized for other bases and other comparisons:

Rise = Fall: First, tenth, one hundredth, one thousandth, ten thousandth, values in some other bases:
Base  3 (https://oeis.org/A296691): 1, 201, 22112, 10101111, 1100022001
Base  4 (https://oeis.org/A296694): 1, 111, 3333, 221012, 13002120
Base  5 (https://oeis.org/A296697): 1, 102, 1441, 40011, 1431201
Base  6 (https://oeis.org/A296700): 1, 55, 512, 20424, 400402
Base  7 (https://oeis.org/A296703): 1, 44, 365, 12620, 155554
Base  8 (https://oeis.org/A296706): 1, 33, 316, 7466, 60404
Base  9 (https://oeis.org/A296709): 1, 22, 275, 5113, 40217
Base 10 (https://oeis.org/A296712): 1, 11, 252, 3396, 29201
Base 11 (https://oeis.org/A296744): 1, A, 216, 2240, 21718
Base 12 (https://oeis.org/A296747): 1, A, 201, 10AA, 19723
Base 13 (https://oeis.org/A296750): 1, A, 1B8, A0A, 172A7
Base 14 (https://oeis.org/A296753): 1, A, 1B5, 8B9, 14B81
Base 15 (https://oeis.org/A296756): 1, A, 1B2, 7D4, 11BBA
Base 16 (https://oeis.org/A296759): 1, A, 1A9, 716, 10424
Base 20 (https://oeis.org/A296762): 1, A, 196, 523, 8011
Base 60 (https://oeis.org/A296765): 1, A, ff, 1f2, 63Q

Rise > Fall: First, tenth, one hundredth, one thousandth, ten thousandth, values in some other bases:
Base  3 (https://oeis.org/A296692): 12, 1222, 122202, 12222001, 2001200001
Base  4 (https://oeis.org/A296695): 12, 233, 12113, 1003012, 13131333
Base  5 (https://oeis.org/A296698): 12, 122, 2302, 112013, 1342223
Base  6 (https://oeis.org/A296701): 12, 45, 1305, 20233, 333134
Base  7 (https://oeis.org/A296704): 12, 34, 1166, 11612, 140045
Base  8 (https://oeis.org/A296707): 12, 26, 1013, 4557, 106756
Base  9 (https://oeis.org/A296710): 12, 25, 348, 2808, 36781
Base 10 (https://oeis.org/A296713): 12, 24, 249, 2345, 23678
Base 11 (https://oeis.org/A296745): 12, 23, 223, 1836, 15806
Base 12 (https://oeis.org/A296748): 12, 1B, 166, 1623, 12534
Base 13 (https://oeis.org/A296751): 12, 1B, 145, 149B, A069
Base 14 (https://oeis.org/A296754): 12, 1B, 12B, 1393, 6BC9
Base 15 (https://oeis.org/A296757): 12, 1B, 11A, 12B7, 568E
Base 16 (https://oeis.org/A296760): 12, 1B, CD, 1206, 466A
Base 20 (https://oeis.org/A296763): 12, 1B, 7E, 6BF, 2857
Base 60 (https://oeis.org/A296766): 12, 1B, 2i, Lp, 66U

Rise < Fall: First, tenth, one hundredth, one thousandth, ten thousandth, values in some other bases:
Base  3 (https://oeis.org/A296693): 10, 221, 22220, 10021001, 1012110000
Base  4 (https://oeis.org/A296696): 10, 210, 3330, 231210, 13132000
Base  5 (https://oeis.org/A296699): 10, 43, 2420, 43033, 2030042
Base  6 (https://oeis.org/A296702): 10, 43, 1540, 25543, 403531
Base  7 (https://oeis.org/A296705): 10, 43, 1010, 10051, 206260
Base  8 (https://oeis.org/A296708): 10, 43, 660, 5732, 75051
Base  9 (https://oeis.org/A296711): 10, 43, 643, 5010, 60873
Base 10 (https://oeis.org/A296714): 10, 43, 621, 4120, 44100
Base 11 (https://oeis.org/A296746): 10, 43, 544, 3243, 31160
Base 12 (https://oeis.org/A296749): 10, 43, 520, 2A71, 18321
Base 13 (https://oeis.org/A296752): 10, 43, 422, 2164, B624
Base 14 (https://oeis.org/A296755): 10, 43, 310, 1CA3, A506
Base 15 (https://oeis.org/A296758): 10, 43, E8, 1A20, 9518
Base 16 (https://oeis.org/A296761): 10, 43, E8, 10D0, 860D
Base 20 (https://oeis.org/A296764): 10, 43, E8, G33, 5F43
Base 60 (https://oeis.org/A296767): 10, 43, E8, j9, ZUT

REXX

To do the heavy lifting,   this REXX program constructs a table of every two-digit sequence which indicates a
rise   (+1),     fall   (-1),     or   neither   (0).

/*REXX pgm  finds and displays  N  numbers that have an equal number of rises and falls,*/
parse arg n .                                    /*obtain optional argument from the CL.*/
if n=='' | n==","  then n= 200                   /*Not specified?  Then use the default.*/
append= n>0                                      /*a flag that is used to append numbers*/
n= abs(n)                                        /*use the absolute value of  N.        */
call init                                        /*initialize the  rise/fall  database. */
          do j=1  until #==n                     /*test integers until we have N of them*/
          s= 0                                   /*initialize the sum of  rises/falls.  */
                        do k=1  for length(j)-1  /*obtain a set of two digs from number.*/
                        t= substr(j, k, 2)       /*obtain a set of two digs from number.*/
                        s= s + @.t               /*sum the rises and falls in the number*/
                        end   /*k*/
          if s\==0  then iterate                 /*Equal # of rises & falls? Then add it*/
          #= # + 1                               /*bump the count of numbers found.     */
          if append  then $= $ j                 /*append to the list of numbers found. */
          end   /*j*/

if append  then call show                        /*display a list of  N  numbers──►term.*/
           else say  'the '  commas(n)th(n)  " number is: "   commas(j)    /*show Nth #.*/
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas:  parse arg _;  do c=length(_)-3  to 1  by -3; _=insert(',', _, c); end;   return _
th:      parse arg th;  return word('th st nd rd',1+(th//10)*(th//100%10\==1)*(th//10<4))
/*──────────────────────────────────────────────────────────────────────────────────────*/
init: @.= 0;   do i=1  for 9;    _= i' ';     @._= 1;    _= '0'i;   @._= +1;   end  /*i*/
               do i=10  to 99;   parse var i  a 2 b;     if a>b  then              @.i= -1
                                                                 else if a<b  then @.i= +1
               end   /*i*/;      #= 0;        $=;        return
/*──────────────────────────────────────────────────────────────────────────────────────*/
show: say 'the first '   commas(#)   " numbers are:";   say;       w= length( word($, #) )
      _=;    do o=1  for n;     _= _ right( word($, o), w);    if o//20\==0  then iterate
             say substr(_, 2);  _=               /*display a line;  nullify a new line. */
             end   /*o*/                         /* [↑]  display  20  numbers to a line.*/

      if _\==''  then say substr(_, 2);   return /*handle any residual numbers in list. */
output   when using the default input:
the first  200  numbers are:

  1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404
output   when using the input of:     -10000000
the  10,000,000th  number is:  41,909,002

RPL

IF DUP 9 ≤ THEN SIGN 
   ELSE →STR → num 
   ≪ 0 num 1 1 SUB NUM 
      2 num SIZE FOR j 
         num j DUP SUB NUM SWAP OVER - SIGN ROT + SWAP NEXT 
      DROP NOT 
   ≫ END 
≫ 'RNF' STO        ( n -- boolean ) 

≪ → test n 
  ≪ { } 1 9 CF WHILE 9 FC? REPEAT 
        IF DUP test EVAL THEN SWAP OVER + SWAP IF OVER SIZE n ≥ THEN 9 SF END END 
        1 + 
     END DROP
≫ ≫ 'TBOOL' STO   ( 'FUNC' n -- { first_n_true_integers } )
'RNF' 200 TBOOL
Output:
1: { 1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404 }

Due to emulator’s watchdog timer, the ten millionth number is out of reach.

Ruby

class Integer
  def eq_rise_fall? = digits.each_cons(2).sum{|a,b| a <=> b} == 0
end

puts (1..).lazy.select(&:eq_rise_fall?).take(200).force.join(" ")

n = 10_000_000
res = (1..).lazy.select(&:eq_rise_fall?).take(n).drop(n-1).first
puts "The #{n}th number in the sequence is #{res}."
Output:
1 2 3 4 5 6 7 8 9 11 22 33 44 55 66 77 88 99 101 102 103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404
The 10000000th number in the sequence is 41909002.

Sidef

func isok(arr) {
    var diffs = arr.map_cons(2, {|a,b| a - b })
    diffs.count { .is_pos } == diffs.count { .is_neg }
}

var base = 10

with (200) {|n|
    say "First #{n} terms (base #{base}):"
    n.by { isok(.digits(base)) && .is_pos }.each_slice(20, {|*a|
        say a.map { '%3s' % _ }.join(' ')
    })
}

with (1e7) {|n|     # takes a very long time
    say "\nThe #{n.commify}-th term (base #{base}): #{
            n.th { isok(.digits(base)) && .is_pos }.commify}"
}
Output:
First 200 terms (base 10):
  1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10,000,000-th term (base 10): 41,909,002

Swift

import Foundation

func equalRisesAndFalls(_ n: Int) -> Bool {
    var total = 0
    var previousDigit = -1
    var m = n
    while m > 0 {
        let digit = m % 10
        m /= 10
        if previousDigit > digit {
            total += 1
        } else if previousDigit >= 0 && previousDigit < digit {
            total -= 1
        }
        previousDigit = digit
    }
    return total == 0
}

var count = 0
var n = 0
let limit1 = 200
let limit2 = 10000000
print("The first \(limit1) numbers in the sequence are:")
while count < limit2 {
    n += 1
    if equalRisesAndFalls(n) {
        count += 1
        if count <= limit1 {
            print(String(format: "%3d", n), terminator: count % 20 == 0 ? "\n" : " ")
        }
    }
}
print("\nThe \(limit2)th number in the sequence is \(n).")
Output:
The first 200 numbers in the sequence are:
  1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404

The 10000000th number in the sequence is 41909002.

Wren

Library: Wren-fmt
import "./fmt" for Fmt

var risesEqualsFalls = Fn.new { |n|
    if (n < 10) return true
    var rises = 0
    var falls = 0
    var prev = -1
    while (n > 0) {
        var d = n%10
        if (prev >= 0) {
            if (d < prev) {
                rises = rises + 1
            } else if (d > prev) {
                falls = falls + 1
            }
        }
        prev = d
        n = (n/10).floor
    }
    return rises == falls
}

System.print("The first 200 numbers in the sequence are:")
var count = 0
var n = 1
while (true) {
    if (risesEqualsFalls.call(n)) {
        count = count + 1
        if (count <= 200) {
            Fmt.write("$3d ", n)
            if (count % 20 == 0) System.print()
        }
        if (count == 1e7) {
            Fmt.print("\nThe 10 millionth number in the sequence is $,d.", n)
            break
        }
    }
    n = n + 1
}
Output:
The first 200 numbers in the sequence are:
  1   2   3   4   5   6   7   8   9  11  22  33  44  55  66  77  88  99 101 102 
103 104 105 106 107 108 109 111 120 121 130 131 132 140 141 142 143 150 151 152 
153 154 160 161 162 163 164 165 170 171 172 173 174 175 176 180 181 182 183 184 
185 186 187 190 191 192 193 194 195 196 197 198 201 202 203 204 205 206 207 208 
209 212 213 214 215 216 217 218 219 222 230 231 232 240 241 242 243 250 251 252 
253 254 260 261 262 263 264 265 270 271 272 273 274 275 276 280 281 282 283 284 
285 286 287 290 291 292 293 294 295 296 297 298 301 302 303 304 305 306 307 308 
309 312 313 314 315 316 317 318 319 323 324 325 326 327 328 329 333 340 341 342 
343 350 351 352 353 354 360 361 362 363 364 365 370 371 372 373 374 375 376 380 
381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 401 402 403 404 

The 10 millionth number in the sequence is 41,909,002.

XPL0

func RiseFall(N);       \Return 'true' if N has equal rises and falls
int  N, R, F, D, D0;
[R:= 0;  F:= 0;
N:= N/10;
D0:= rem(0);
while N do
    [N:= N/10;
    D:= rem(0);
    if D > D0 then R:= R+1;
    if D < D0 then F:= F+1;
    D0:= D;
    ];
return R = F;
];

int N, Cnt;
[N:= 1;
Cnt:= 0;
loop    [if RiseFall(N) then
            [Cnt:= Cnt+1;
            if Cnt <= 200 then
                [IntOut(0, N);
                if rem (Cnt/10) = 0 then CrLf(0)
                                    else ChOut(0, 9\tab\);
                ];
            if Cnt = 10_000_000 then
                [Text(0, "10 millionth number is ");
                IntOut(0, N);  CrLf(0);
                quit;
                ];
            ];
        N:= N+1;
        ];
]
Output:
1       2       3       4       5       6       7       8       9       11
22      33      44      55      66      77      88      99      101     102
103     104     105     106     107     108     109     111     120     121
130     131     132     140     141     142     143     150     151     152
153     154     160     161     162     163     164     165     170     171
172     173     174     175     176     180     181     182     183     184
185     186     187     190     191     192     193     194     195     196
197     198     201     202     203     204     205     206     207     208
209     212     213     214     215     216     217     218     219     222
230     231     232     240     241     242     243     250     251     252
253     254     260     261     262     263     264     265     270     271
272     273     274     275     276     280     281     282     283     284
285     286     287     290     291     292     293     294     295     296
297     298     301     302     303     304     305     306     307     308
309     312     313     314     315     316     317     318     319     323
324     325     326     327     328     329     333     340     341     342
343     350     351     352     353     354     360     361     362     363
364     365     370     371     372     373     374     375     376     380
381     382     383     384     385     386     387     390     391     392
393     394     395     396     397     398     401     402     403     404
10 millionth number is 41909002