Esthetic numbers

From Rosetta Code
Task
Esthetic numbers
You are encouraged to solve this task according to the task description, using any language you may know.

An esthetic number is a positive integer where every adjacent digit differs from its neighbour by 1.


E.G.
  • 12 is an esthetic number. One and two differ by 1.
  • 5654 is an esthetic number. Each digit is exactly 1 away from its neighbour.
  • 890 is not an esthetic number. Nine and zero differ by 9.


These examples are nominally in base 10 but the concept extends easily to numbers in other bases. Traditionally, single digit numbers are included in esthetic numbers; zero may or may not be. For our purposes, for this task, do not include zero (0) as an esthetic number. Do not include numbers with leading zeros.

Esthetic numbers are also sometimes referred to as stepping numbers.


Task
  • Write a routine (function, procedure, whatever) to find esthetic numbers in a given base.
  • Use that routine to find esthetic numbers in bases 2 through 16 and display, here on this page, the esthectic numbers from index (base × 4) through index (base × 6), inclusive. (E.G. for base 2: 8th through 12th, for base 6: 24th through 36th, etc.)
  • Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1000 and 9999.
  • Stretch: Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1.0e8 and 1.3e8.


Related task


See also



11l

Translation of: Nim
F isEsthetic(=n, b)
   I n == 0 {R 0B}
   V i = n % b
   n I/= b
   L n > 0
      V j = n % b
      I abs(i - j) != 1
         R 0B
      n I/= b
      i = j
   R 1B

F listEsths(Int64 n1, n2, m1, m2; perLine, all)
   [Int64] esths

   F dfs(Int64 n, m, i) -> Void
      I i C n .. m
         @esths.append(i)
      I i == 0 | i > m {R}
      V d = i % 10
      V i1 = i * 10 + d - 1
      V i2 = i1 + 2
      I d == 0
         @dfs(n, m, i2)
      E I d == 9
         @dfs(n, m, i1)
      E
         @dfs(n, m, i1)
         @dfs(n, m, i2)

   L(i) 10
      dfs(n2, m2, i)

   print(‘Base 10: ’esths.len‘ esthetic numbers between ’n1‘ and ’m1‘:’)
   I all
      L(esth) esths
         print(esth, end' I (L.index + 1) % perLine == 0 {"\n"} E ‘ ’)
      print()
   E
      L(i) 0 .< perLine
         print(esths[i], end' ‘ ’)
      print("\n............")
      L(i) esths.len - perLine .< esths.len
         print(esths[i], end' ‘ ’)
      print()
   print()

L(b) 2..16
   print(‘Base ’b‘: ’(4 * b)‘th to ’(6 * b)‘th esthetic numbers:’)
   V n = Int64(1)
   V c = Int64(0)
   L c < 6 * b
      I isEsthetic(n, b)
         c++
         I c >= 4 * b
            print(String(n, radix' b), end' ‘ ’)
      n++
   print("\n")

listEsths(1000, 1010, 9999, 9898, 16, 1B)
listEsths(100'000'000, 101'010'101, 130'000'000, 123'456'789, 9, 1B)
listEsths(100'000'000'000, 101'010'101'010, 130'000'000'000, 123'456'789'898, 7, 0B)
listEsths(100'000'000'000'000, 101'010'101'010'101, 130'000'000'000, 123'456'789'898'989, 5, 0B)
listEsths(100'000'000'000'000'000, 101'010'101'010'101'010, 130'000'000'000'000'000, 123'456'789'898'989'898, 4, 0B)
Output:
Base 2: 8th to 12th esthetic numbers:
10101010 101010101 1010101010 10101010101 101010101010 

Base 3: 12th to 18th esthetic numbers:
1210 1212 2101 2121 10101 10121 12101 

Base 4: 16th to 24th esthetic numbers:
323 1010 1012 1210 1212 1232 2101 2121 2123 

Base 5: 20th to 30th esthetic numbers:
323 343 432 434 1010 1012 1210 1212 1232 1234 2101 

Base 6: 24th to 36th esthetic numbers:
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234 

Base 7: 28th to 42th esthetic numbers:
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232 

Base 8: 32th to 48th esthetic numbers:
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212 

Base 9: 36th to 54th esthetic numbers:
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210 

Base 10: 40th to 60th esthetic numbers:
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012 

Base 11: 44th to 66th esthetic numbers:
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 A98 A9A 1010 

Base 12: 48th to 72th esthetic numbers:
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA BA9 BAB 

Base 13: 52th to 78th esthetic numbers:
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB CBA 

Base 14: 56th to 84th esthetic numbers:
565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC 

Base 15: 60th to 90th esthetic numbers:
567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD 

Base 16: 64th to 96th esthetic numbers:
654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD DED DEF EDC 

Base 10: 61 esthetic numbers between 1000 and 9999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898 

Base 10: 126 esthetic numbers between 100000000 and 130000000:
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789


Base 10: 911 esthetic numbers between 100000000000 and 130000000000:
101010101010 101010101012 101010101210 101010101212 101010101232 101010101234 101010121010 
............
123456787678 123456787876 123456787878 123456787898 123456789876 123456789878 123456789898 

Base 10: 6225 esthetic numbers between 100000000000000 and 130000000000:
101010101010101 101010101010121 101010101010123 101010101012101 101010101012121 
............
123456789898767 123456789898787 123456789898789 123456789898987 123456789898989 

Base 10: 44744 esthetic numbers between 100000000000000000 and 130000000000000000:
101010101010101010 101010101010101012 101010101010101210 101010101010101212 
............
123456789898987898 123456789898989876 123456789898989878 123456789898989898 

ALGOL 68

As with other solutions here, uses brute-force for the main task, generates the numbers for the stretch goal.

BEGIN # find some esthetic numbers: numbers whose successive digits differ by 1 #
    # returns TRUE if n is esthetic in the specified base, FALSE otherwise #
    PRIO ISESTHETIC = 1;
    OP   ISESTHETIC = ( INT n, base )BOOL:
         BEGIN
            INT  v             := ABS n;
            BOOL is esthetic   := TRUE;
            INT  prev digit    := v MOD base;
            v OVERAB base;
            WHILE v > 0 AND is esthetic
            DO
                INT next digit := v MOD base;
                is esthetic    := ABS ( next digit - prev digit ) = 1;
                prev digit     := next digit;
                v OVERAB base
            OD;
            is esthetic
         END # ISESTHETIC # ;
    # returns an array of the first n esthetic numbers in the specified base #
    PRIO ESTHETIC = 1;
    OP   ESTHETIC = ( INT n, base )[]INT:
         BEGIN
            [ 1 : n ]INT result;
            INT          e count := 0;
            FOR i WHILE  e count < n DO
                IF i ISESTHETIC base THEN result[ e count +:= 1 ] := i FI
            OD;
            result
         END # ESTHETIC # ;
    # returns a string erpresentation of n in the specified base, 2 <= base <= 16 must be TRUE #
    PRIO TOBASESTRING = 1;
    OP   TOBASESTRING = ( INT n, base )STRING:
         IF base < 2 OR base > 16
         THEN # invalid vbase #
             "?" + whole( n, 0 ) + ":" + whole( base, 0 ) + "?"
         ELSE
            INT    v      := ABS n;
            STRING digits  = "0123456789abcdef";
            STRING result := digits[ ( v MOD base ) + 1 ];
            WHILE ( v OVERAB base ) > 0 DO
                digits[ ( v MOD base ) + 1 ] +=: result
            OD;
            IF n < 0 THEN "-" +=: result FI;
            result
        FI # TOBASESTRING # ;
    # sets count to the number of esthetic numbers with length digits in base b less than max #
    # also displays the esthetic numbers #
    PROC show esthetic = ( INT number, base, length, max, REF INT count )VOID:
         IF length = 1
         THEN # number is esthetic #
             IF number <= max THEN
                 # number is in the required range #
                 print( ( " ", whole( number, 0 ) ) );
                 IF ( count +:= 1 ) MOD 9 = 0 THEN print( ( newline ) ) FI
             FI
         ELSE
             # find the esthetic numbers that start with number #
             INT digit  = number MOD base;
             INT prefix = number * base;
             IF digit > 0 THEN # can have a lower digit #
                 show esthetic( prefix + ( digit - 1 ), base, length - 1, max, count )
             FI;
             IF digit < base - 1 THEN # can have a higher digit #
                 show esthetic( prefix + ( digit + 1 ), base, length - 1, max, count )
             FI
         FI # show esthetic # ;
    # task #
    # esthetic numbers from base * 4 to base * 6 for bases 2 to 16 #
    FOR base FROM 2 TO 16 DO
        INT e from = base * 4;
        INT e to   = base * 6;
        print( ( "Esthetic numbers ", whole( e from, 0 ), " to ", whole( e to, 0 ), " in base ", whole( base, 0 ), newline ) );
        []INT e numbers = e to ESTHETIC base;
        print( ( "  " ) );
        FOR n FROM e from TO e to DO
            print( ( " ", e numbers[ n ] TOBASESTRING base ) )
        OD;
        print( ( newline ) )
    OD;
    # esthetic base 10 numbers between 1000 and 9999 #
    print( ( "Base 10 eshetic numbers between 1000 and 9999", newline ) );
    INT e count := 0;
    FOR i FROM 1000 TO 9999 DO
        IF i ISESTHETIC 10 THEN
            print( ( " ", whole( i, 0 ) ) );
            IF ( e count +:= 1 ) MOD 16 = 0 THEN print( ( newline ) ) FI
        FI
    OD;
    print( ( newline, newline ) );
    print( ( "Esthetic numbers between 100 000 000 and 130 000 000:", newline ) );
    e count := 0;
    show esthetic( 1, 10, 9, 130 000 000, e count );
    print( ( newline ) );
    print( ( "Found ", whole( e count, 0 ), " esthetic numbers", newline ) )
END
Output:
Esthetic numbers 8 to 12 in base 2
   10101010 101010101 1010101010 10101010101 101010101010
Esthetic numbers 12 to 18 in base 3
   1210 1212 2101 2121 10101 10121 12101
Esthetic numbers 16 to 24 in base 4
   323 1010 1012 1210 1212 1232 2101 2121 2123
Esthetic numbers 20 to 30 in base 5
   323 343 432 434 1010 1012 1210 1212 1232 1234 2101
Esthetic numbers 24 to 36 in base 6
   343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234
Esthetic numbers 28 to 42 in base 7
   345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232
Esthetic numbers 32 to 48 in base 8
   432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212
Esthetic numbers 36 to 54 in base 9
   434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210
Esthetic numbers 40 to 60 in base 10
   454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012
Esthetic numbers 44 to 66 in base 11
   456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 a98 a9a 1010
Esthetic numbers 48 to 72 in base 12
   543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba ba9 bab
Esthetic numbers 52 to 78 in base 13
   545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb cba
Esthetic numbers 56 to 84 in base 14
   565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc
Esthetic numbers 60 to 90 in base 15
   567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd
Esthetic numbers 64 to 96 in base 16
   654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd ded def edc
Base 10 eshetic numbers between 1000 and 9999
 1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232
 3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454
 5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676
 7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898

Esthetic numbers between 100 000 000 and 130 000 000:
 101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343
 101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323
 101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345
 101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101
 121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345
 121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343
 121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321
 121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121
 123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101
 123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343
 123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321
 123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545
 123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565
 123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789

Found 126 esthetic numbers

Arturo

esthetic?: function [n, b][
    if n=0 -> return false
    k: n % b
    l: n / b

    while [l>0][
        j: l % b
        if 1 <> abs k-j -> return false
        l: l / b
        k: j
    ]
    return true
]

HEX: "0000000000ABCDEF"

getHex: function [ds][
    map ds 'd [
        (d < 10)? -> to :string d
                  -> to :string HEX\[d]
    ]
]

findEsthetics: function [base][
    limDown: base * 4
    limUp: base * 6

    cnt: 0
    i: 1
    result: new []
    while [cnt < limUp][
        if esthetic? i base [
            cnt: cnt + 1
            if cnt >= limDown ->
                'result ++ join getHex digits.base: base i
        ]
        i: i + 1
    ]
    print ["Base" base "->" (to :string limDown)++"th" "to" (to :string limUp)++"th" "esthetic numbers:"]
    print result
    print ""
]

loop 2..16 'bs ->
    findEsthetics bs

print "Esthetic numbers between 1000 and 9999:"

loop split.every: 16 select 1000..9999 'num -> esthetic? num 10 'row [
    print map to [:string] row 'item -> pad item 4
]
Output:
Base 2 -> 8th to 12th esthetic numbers: 
10101010 101010101 1010101010 10101010101 101010101010 

Base 3 -> 12th to 18th esthetic numbers: 
1210 1212 2101 2121 10101 10121 12101 

Base 4 -> 16th to 24th esthetic numbers: 
323 1010 1012 1210 1212 1232 2101 2121 2123 

Base 5 -> 20th to 30th esthetic numbers: 
323 343 432 434 1010 1012 1210 1212 1232 1234 2101 

Base 6 -> 24th to 36th esthetic numbers: 
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234 

Base 7 -> 28th to 42th esthetic numbers: 
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232 

Base 8 -> 32th to 48th esthetic numbers: 
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212 

Base 9 -> 36th to 54th esthetic numbers: 
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210 

Base 10 -> 40th to 60th esthetic numbers: 
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012 

Base 11 -> 44th to 66th esthetic numbers: 
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 A98 A9A 1010 

Base 12 -> 48th to 72th esthetic numbers: 
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA BA9 BAB 

Base 13 -> 52th to 78th esthetic numbers: 
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB CBA 

Base 14 -> 56th to 84th esthetic numbers: 
565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC 

Base 15 -> 60th to 90th esthetic numbers: 
567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD 

Base 16 -> 64th to 96th esthetic numbers: 
654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD DED DEF EDC 

Esthetic numbers between 1000 and 9999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232 
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454 
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676 
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898

C

Translation of: Go
#include <stdio.h> 
#include <string.h>
#include <locale.h>

typedef int bool;
typedef unsigned long long ull;

#define TRUE 1
#define FALSE 0

char as_digit(int d) { 
    return (d >= 0 && d <= 9) ? d + '0' : d - 10 + 'a';  
}

void revstr(char *str) { 
    int i, len = strlen(str);
    char t; 
    for (i = 0; i < len/2; ++i) { 
        t = str[i]; 
        str[i] = str[len - i - 1]; 
        str[len - i - 1] = t; 
    } 
}  

char* to_base(char s[], ull n, int b) { 
    int i = 0; 
    while (n) { 
        s[i++] = as_digit(n % b); 
        n /= b; 
    } 
    s[i] = '\0'; 
    revstr(s);
    return s;  
} 

ull uabs(ull a, ull  b) {
    return a > b ? a - b : b - a;
}

bool is_esthetic(ull n, int b) {
    int i, j;
    if (!n) return FALSE;
    i = n % b;
    n /= b;
    while (n) {
        j = n % b;
        if (uabs(i, j) != 1) return FALSE;
        n /= b;
        i = j;
    }
    return TRUE;
}

ull esths[45000];
int le = 0;

void dfs(ull n, ull m, ull i) {
    ull d, i1, i2;
    if (i >= n && i <= m) esths[le++] = i;
    if (i == 0 || i > m) return; 
    d = i % 10;
    i1 = i * 10 + d - 1;
    i2 = i1 + 2;
    if (d == 0) {
        dfs(n, m, i2);
    } else if (d == 9) {
        dfs(n, m, i1);
    } else {
        dfs(n, m, i1);
        dfs(n, m, i2);
    }
}

void list_esths(ull n, ull n2, ull m, ull m2, int per_line, bool all) {
    int i;
    le = 0;
    for (i = 0; i < 10; ++i) {
        dfs(n2, m2, i);
    }
    printf("Base 10: %'d esthetic numbers between %'llu and %'llu:\n", le, n, m);
    if (all) {
        for (i = 0; i < le; ++i) {
            printf("%llu ", esths[i]);
            if (!(i+1)%per_line) printf("\n");
        }
    } else {
        for (i = 0; i < per_line; ++i) printf("%llu ", esths[i]);
        printf("\n............\n");
        for (i = le - per_line; i < le; ++i) printf("%llu ", esths[i]);
    }
    printf("\n\n");
}

int main() {
    ull n;
    int b, c;
    char ch[15] = {0};
    for (b = 2; b <= 16; ++b) {
        printf("Base %d: %dth to %dth esthetic numbers:\n", b, 4*b, 6*b);
        for (n = 1, c = 0; c < 6 * b; ++n) {
            if (is_esthetic(n, b)) {
                if (++c >= 4 * b) printf("%s ", to_base(ch, n, b));
            }
        }
        printf("\n\n");
    }
    char *oldLocale = setlocale(LC_NUMERIC, NULL);
    setlocale(LC_NUMERIC, ""); 

    // the following all use the obvious range limitations for the numbers in question
    list_esths(1000, 1010, 9999, 9898, 16, TRUE);
    list_esths(1e8, 101010101, 13*1e7, 123456789, 9, TRUE);
    list_esths(1e11, 101010101010, 13*1e10, 123456789898, 7, FALSE);
    list_esths(1e14, 101010101010101, 13*1e13, 123456789898989, 5, FALSE);
    list_esths(1e17, 101010101010101010, 13*1e16, 123456789898989898, 4, FALSE);
    setlocale(LC_NUMERIC, oldLocale);
    return 0;
}
Output:
Same as Go entry.

C++

Translation of: D
#include <functional>
#include <iostream>
#include <sstream>
#include <vector>

std::string to(int n, int b) {
    static auto BASE = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";

    std::stringstream ss;
    while (n > 0) {
        auto rem = n % b;
        n = n / b;
        ss << BASE[rem];
    }

    auto fwd = ss.str();
    return std::string(fwd.rbegin(), fwd.rend());
}

uint64_t uabs(uint64_t a, uint64_t b) {
    if (a < b) {
        return b - a;
    }
    return a - b;
}

bool isEsthetic(uint64_t n, uint64_t b) {
    if (n == 0) {
        return false;
    }
    auto i = n % b;
    n /= b;
    while (n > 0) {
        auto j = n % b;
        if (uabs(i, j) != 1) {
            return false;
        }
        n /= b;
        i = j;
    }
    return true;
}

void listEsths(uint64_t n, uint64_t n2, uint64_t m, uint64_t m2, int perLine, bool all) {
    std::vector<uint64_t> esths;
    const auto dfs = [&esths](uint64_t n, uint64_t m, uint64_t i) {
        auto dfs_impl = [&esths](uint64_t n, uint64_t m, uint64_t i, auto &dfs_ref) {
            if (i >= n && i <= m) {
                esths.push_back(i);
            }
            if (i == 0 || i > m) {
                return;
            }
            auto d = i % 10;
            auto i1 = i * 10 + d - 1;
            auto i2 = i1 + 2;
            if (d == 0) {
                dfs_ref(n, m, i2, dfs_ref);
            } else if (d == 9) {
                dfs_ref(n, m, i1, dfs_ref);
            } else {
                dfs_ref(n, m, i1, dfs_ref);
                dfs_ref(n, m, i2, dfs_ref);
            }
        };
        dfs_impl(n, m, i, dfs_impl);
    };

    for (int i = 0; i < 10; i++) {
        dfs(n2, m2, i);
    }
    auto le = esths.size();
    printf("Base 10: %d esthetic numbers between %llu and %llu:\n", le, n, m);
    if (all) {
        for (size_t c = 0; c < esths.size(); c++) {
            auto esth = esths[c];
            printf("%llu ", esth);
            if ((c + 1) % perLine == 0) {
                printf("\n");
            }
        }
        printf("\n");
    } else {
        for (int c = 0; c < perLine; c++) {
            auto esth = esths[c];
            printf("%llu ", esth);
        }
        printf("\n............\n");
        for (size_t i = le - perLine; i < le; i++) {
            auto esth = esths[i];
            printf("%llu ", esth);
        }
        printf("\n");
    }
    printf("\n");
}

int main() {
    for (int b = 2; b <= 16; b++) {
        printf("Base %d: %dth to %dth esthetic numbers:\n", b, 4 * b, 6 * b);
        for (int n = 1, c = 0; c < 6 * b; n++) {
            if (isEsthetic(n, b)) {
                c++;
                if (c >= 4 * b) {
                    std::cout << to(n, b) << ' ';
                }
            }
        }
        printf("\n");
    }
    printf("\n");

    // the following all use the obvious range limitations for the numbers in question
    listEsths(1000, 1010, 9999, 9898, 16, true);
    listEsths((uint64_t)1e8, 101'010'101, 13 * (uint64_t)1e7, 123'456'789, 9, true);
    listEsths((uint64_t)1e11, 101'010'101'010, 13 * (uint64_t)1e10, 123'456'789'898, 7, false);
    listEsths((uint64_t)1e14, 101'010'101'010'101, 13 * (uint64_t)1e13, 123'456'789'898'989, 5, false);
    listEsths((uint64_t)1e17, 101'010'101'010'101'010, 13 * (uint64_t)1e16, 123'456'789'898'989'898, 4, false);
    return 0;
}
Output:
Base 2: 8th to 12th esthetic numbers:
10101010 101010101 1010101010 10101010101 101010101010
Base 3: 12th to 18th esthetic numbers:
1210 1212 2101 2121 10101 10121 12101
Base 4: 16th to 24th esthetic numbers:
323 1010 1012 1210 1212 1232 2101 2121 2123
Base 5: 20th to 30th esthetic numbers:
323 343 432 434 1010 1012 1210 1212 1232 1234 2101
Base 6: 24th to 36th esthetic numbers:
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234
Base 7: 28th to 42th esthetic numbers:
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232
Base 8: 32th to 48th esthetic numbers:
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212
Base 9: 36th to 54th esthetic numbers:
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210
Base 10: 40th to 60th esthetic numbers:
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012
Base 11: 44th to 66th esthetic numbers:
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 A98 A9A 1010
Base 12: 48th to 72th esthetic numbers:
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA BA9 BAB
Base 13: 52th to 78th esthetic numbers:
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB CBA
Base 14: 56th to 84th esthetic numbers:
565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC
Base 15: 60th to 90th esthetic numbers:
567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD
Base 16: 64th to 96th esthetic numbers:
654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD DED DEF EDC

Base 10: 61 esthetic numbers between 1000 and 9999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898

Base 10: 126 esthetic numbers between 100000000 and 130000000:
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789


Base 10: 911 esthetic numbers between 100000000000 and 130000000000:
101010101010 101010101012 101010101210 101010101212 101010101232 101010101234 101010121010
............
123456787678 123456787876 123456787878 123456787898 123456789876 123456789878 123456789898

Base 10: 6225 esthetic numbers between 100000000000000 and 130000000000000:
101010101010101 101010101010121 101010101010123 101010101012101 101010101012121
............
123456789898767 123456789898787 123456789898789 123456789898987 123456789898989

Base 10: 44744 esthetic numbers between 100000000000000000 and 130000000000000000:
101010101010101010 101010101010101012 101010101010101210 101010101010101212
............
123456789898987898 123456789898989876 123456789898989878 123456789898989898

D

Translation of: Go
import std.conv;
import std.stdio;

ulong uabs(ulong a, ulong b) {
    if (a > b) {
        return a - b;
    }
    return b - a;
}

bool isEsthetic(ulong n, ulong b) {
    if (n == 0) {
        return false;
    }
    auto i = n % b;
    n /= b;
    while (n > 0) {
        auto j = n % b;
        if (uabs(i, j) != 1) {
            return false;
        }
        n /= b;
        i = j;
    }
    return true;
}

ulong[] esths;

void dfs(ulong n, ulong m, ulong i) {
    if (i >= n && i <= m) {        
        esths ~= i;
    }
    if (i == 0 || i > m) {
        return;
    }
    auto d = i % 10;
    auto i1 = i * 10 + d - 1;
    auto i2 = i1 + 2;
    if (d == 0) {
        dfs(n, m, i2);
    } else if (d == 9) {
        dfs(n, m, i1);
    } else {
        dfs(n, m, i1);
        dfs(n, m, i2);
    }
}

void listEsths(ulong n, ulong n2, ulong m, long m2, int perLine, bool all) {
    esths.length = 0;
    for (auto i = 0; i < 10; i++) {
        dfs(n2, m2, i);
    }
    auto le = esths.length;
    writefln("Base 10: %s esthetic numbers between %s and %s:", le, n, m);
    if (all) {
        foreach (c, esth; esths) {
            write(esth, ' ');
            if ((c + 1) % perLine == 0) {
                writeln;
            }
        }
        writeln;
    } else {
        for (auto i = 0; i < perLine; i++) {
            write(esths[i], ' ');
        }
        writeln("\n............");
        for (auto i = le - perLine; i < le; i++) {
            write(esths[i], ' ');
        }
        writeln;
    }
    writeln;
}

void main() {
    for (auto b = 2; b <= 16; b++) {
        writefln("Base %d: %dth to %dth esthetic numbers:", b, 4 * b, 6 * b);
        for (auto n = 1, c = 0; c < 6 * b; n++) {
            if (isEsthetic(n, b)) {
                c++;
                if (c >= 4 * b) {
                    write(to!string(n, b), ' ');
                }
            }
        }
        writeln;
    }
    writeln;

    // the following all use the obvious range limitations for the numbers in question
    listEsths(1000, 1010, 9999, 9898, 16, true);
    listEsths(cast(ulong) 1e8, 101_010_101, 13*cast(ulong) 1e7, 123_456_789, 9, true);
    listEsths(cast(ulong) 1e11, 101_010_101_010, 13*cast(ulong) 1e10, 123_456_789_898, 7, false);
    listEsths(cast(ulong) 1e14, 101_010_101_010_101, 13*cast(ulong) 1e13, 123_456_789_898_989, 5, false);
    listEsths(cast(ulong) 1e17, 101_010_101_010_101_010, 13*cast(ulong) 1e16, 123_456_789_898_989_898, 4, false);
}
Output:
Base 2: 8th to 12th esthetic numbers:
10101010 101010101 1010101010 10101010101 101010101010 
Base 3: 12th to 18th esthetic numbers:
1210 1212 2101 2121 10101 10121 12101 
Base 4: 16th to 24th esthetic numbers:
323 1010 1012 1210 1212 1232 2101 2121 2123 
Base 5: 20th to 30th esthetic numbers:
323 343 432 434 1010 1012 1210 1212 1232 1234 2101 
Base 6: 24th to 36th esthetic numbers:
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234 
Base 7: 28th to 42th esthetic numbers:
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232 
Base 8: 32th to 48th esthetic numbers:
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212 
Base 9: 36th to 54th esthetic numbers:
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210 
Base 10: 40th to 60th esthetic numbers:
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012 
Base 11: 44th to 66th esthetic numbers:
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 A98 A9A 1010 
Base 12: 48th to 72th esthetic numbers:
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA BA9 BAB 
Base 13: 52th to 78th esthetic numbers:
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB CBA 
Base 14: 56th to 84th esthetic numbers:
565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC 
Base 15: 60th to 90th esthetic numbers:
567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD 
Base 16: 64th to 96th esthetic numbers:
654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD DED DEF EDC 

Base 10: 61 esthetic numbers between 1000 and 9999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232 
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454 
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676 
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898 

Base 10: 126 esthetic numbers between 100000000 and 130000000:
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343 
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323 
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345 
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101 
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345 
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343 
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321 
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121 
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101 
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343 
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321 
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545 
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565 
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789 


Base 10: 911 esthetic numbers between 100000000000 and 130000000000:
101010101010 101010101012 101010101210 101010101212 101010101232 101010101234 101010121010 
............
123456787678 123456787876 123456787878 123456787898 123456789876 123456789878 123456789898 

Base 10: 6225 esthetic numbers between 100000000000000 and 130000000000000:
101010101010101 101010101010121 101010101010123 101010101012101 101010101012121 
............
123456789898767 123456789898787 123456789898789 123456789898987 123456789898989 

Base 10: 44744 esthetic numbers between 100000000000000000 and 130000000000000000:
101010101010101010 101010101010101012 101010101010101210 101010101010101212 
............
123456789898987898 123456789898989876 123456789898989878 123456789898989898 

Delphi

Works with: Delphi version 6.0
type TIntArray = array of integer;

function GetRadixString(L: Integer; Radix: Byte): string;
{Converts integer a string of any radix}
const HexChars: array[0..15] Of char =
    ('0', '1', '2', '3', '4', '5', '6', '7',
     '8', '9', 'A', 'B', 'C', 'D', 'E', 'F');
var I: integer;
var S: string;
var Sign: string[1];
begin
Result:='';
If (L < 0) then
	begin
	Sign:='-';
	L:=Abs(L);
	end
else Sign:='';
S:='';
repeat
	begin
	I:=L mod Radix;
	S:=HexChars[I] + S;
	L:=L div Radix;
	end
until L = 0;
Result:=Sign + S;
end;



procedure StrToInts(S: string; var IA: TIntArray);
{Convert numerical string of any radix and convert to numbers}
var I: integer;
begin
for I:=1 to Length(S) do
	begin
	SetLength(IA,Length(IA)+1);
	if S[I]<#$40 then IA[High(IA)]:=Byte(S[I])-$30
	else IA[High(IA)]:=(Byte(S[I])-$41)+10;
	end;
end;



function IsEsthetic(N: integer; Radix: byte): boolean;
{Check number to see if neighboring digits are no more than one differents.}
var I: integer;
var S: string;
var IA: TIntArray;
begin
Result:=False;
S:=GetRadixString(N,Radix);
StrToInts(S,IA);
for I:=0 to Length(IA)-2 do
 if Abs(IA[I+1]-IA[I])<>1 then exit;
Result:=True;
end;



function GetEstheticRange(Memo: TMemo; Range1,Range2,Count1,Count2,Base: integer): integer;
{Find an Esthetic number in the domain of Range and Counts specified}
var I,Cnt: integer;
var S: string;
begin
Cnt:=0; Result:=0;
S:='';
for I:=Range1 to Range2 do
 if IsEsthetic(I,Base) then
	begin
	Inc(Cnt);
	if (Cnt>=Count1) and (Cnt<=Count2) then
		begin
		Inc(Result);
		S:=S+' '+GetRadixString(I,Base);
		if (Result mod 10)=0 then S:=S+#$0D#$0A;
		end;
	if Cnt>=Count2 then break;
	end;
Memo.Lines.Add(S);
end;


procedure FindEstheticNumbers(Memo: TMemo);
{Find Esthetic numbers for Rosetta Code problem}
var Base,First,Last,Cnt: integer;
begin
for Base:=2 to 16 do
	begin
	First:=Base*4; Last:=Base*6;
	Memo.Lines.Add(Format('Base %2d: %2dth to %2dth esthetic numbers:',[Base,First,Last]));
	Cnt:=GetEstheticRange(Memo,0,High(Integer),First,Last,Base);
	Memo.Lines.Add('Count: '+IntToStr(Cnt));
	Memo.Lines.Add('');
	end;

Memo.Lines.Add('Base 10: esthetic numbers between 1000,9999');
Cnt:=GetEstheticRange(Memo,1000,9999,0,High(Integer),10);
Memo.Lines.Add('Count: '+IntToStr(Cnt));
Memo.Lines.Add('');

Memo.Lines.Add('Base 10: esthetic numbers between 100000000,130000000');
Cnt:=GetEstheticRange(Memo,100000000,130000000,0,High(Integer),10);
Memo.Lines.Add('Count: '+IntToStr(Cnt));
Memo.Lines.Add('');
end;
Output:
Base  2:  8th to 12th esthetic numbers:
 1010101 10101010 101010101 1010101010 10101010101
Count: 5

Base  3: 12th to 18th esthetic numbers:
 1012 1210 1212 2101 2121 10101 10121
Count: 7

Base  4: 16th to 24th esthetic numbers:
 321 323 1010 1012 1210 1212 1232 2101 2121
Count: 9

Base  5: 20th to 30th esthetic numbers:
 321 323 343 432 434 1010 1012 1210 1212 1232
 1234
Count: 11

Base  6: 24th to 36th esthetic numbers:
 323 343 345 432 434 454 543 545 1010 1012
 1210 1212 1232
Count: 13

Base  7: 28th to 42th esthetic numbers:
 343 345 432 434 454 456 543 545 565 654
 656 1010 1012 1210 1212
Count: 15

Base  8: 32th to 48th esthetic numbers:
 345 432 434 454 456 543 545 565 567 654
 656 676 765 767 1010 1012 1210
Count: 17

Base  9: 36th to 54th esthetic numbers:
 432 434 454 456 543 545 565 567 654 656
 676 678 765 767 787 876 878 1010 1012
Count: 19

Base 10: 40th to 60th esthetic numbers:
 434 454 456 543 545 565 567 654 656 676
 678 765 767 787 789 876 878 898 987 989
 1010
Count: 21

Base 11: 44th to 66th esthetic numbers:
 454 456 543 545 565 567 654 656 676 678
 765 767 787 789 876 878 898 89A 987 989
 9A9 A98 A9A
Count: 23

Base 12: 48th to 72th esthetic numbers:
 456 543 545 565 567 654 656 676 678 765
 767 787 789 876 878 898 89A 987 989 9A9
 9AB A98 A9A ABA BA9
Count: 25

Base 13: 52th to 78th esthetic numbers:
 543 545 565 567 654 656 676 678 765 767
 787 789 876 878 898 89A 987 989 9A9 9AB
 A98 A9A ABA ABC BA9 BAB BCB
Count: 27

Base 14: 56th to 84th esthetic numbers:
 545 565 567 654 656 676 678 765 767 787
 789 876 878 898 89A 987 989 9A9 9AB A98
 A9A ABA ABC BA9 BAB BCB BCD CBA CBC
Count: 29

Base 15: 60th to 90th esthetic numbers:
 565 567 654 656 676 678 765 767 787 789
 876 878 898 89A 987 989 9A9 9AB A98 A9A
 ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE
 DCB
Count: 31

Base 16: 64th to 96th esthetic numbers:
 567 654 656 676 678 765 767 787 789 876
 878 898 89A 987 989 9A9 9AB A98 A9A ABA
 ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB
 DCD DED DEF
Count: 33

Base 10: esthetic numbers between 1000,9999
 1010 1012 1210 1212 1232 1234 2101 2121 2123 2321
 2323 2343 2345 3210 3212 3232 3234 3432 3434 3454
 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432
 5434 5454 5456 5654 5656 5676 5678 6543 6545 6565
 6567 6765 6767 6787 6789 7654 7656 7676 7678 7876
 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878
 9898
Count: 61

Base 10: esthetic numbers between 100000000,130000000
 101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343 101012345
 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323 101212343 101212345
 101232101 101232121 101232123 101232321 101232323 101232343 101232345 101234321 101234323 101234343
 101234345 101234543 101234545 101234565 101234567 121010101 121010121 121010123 121012101 121012121
 121012123 121012321 121012323 121012343 121012345 121210101 121210121 121210123 121212101 121212121
 121212123 121212321 121212323 121212343 121212345 121232101 121232121 121232123 121232321 121232323
 121232343 121232345 121234321 121234323 121234343 121234345 121234543 121234545 121234565 121234567
 123210101 123210121 123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345
 123232101 123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343
 123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321 123432323
 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545 123434565 123434567
 123454321 123454323 123454343 123454345 123454543 123454545 123454565 123454567 123456543 123456545
 123456565 123456567 123456765 123456767 123456787 123456789
Count: 126


EasyLang

Translation of: Lua
func$ to n b .
   digs$ = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
   if n = 0
      return 0
   .
   s$ = ""
   while n > 0
      idx = n mod b + 1
      n = n div b
      s$ = substr digs$ idx 1 & s$
   .
   return s$
.
func uabs a b .
   if a > b
      return a - b
   .
   return b - a
.
func isEsthetic n b .
   if n = 0
      return 0
   .
   i = n mod b
   n = n div b
   while n > 0
      j = n mod b
      if uabs i j <> 1
         return 0
      .
      n = n div b
      i = j
   .
   return 1
.
for b = 2 to 16
   print "Base " & b & ": " & 4 * b & "th to " & 6 * b & "th esthetic numbers:"
   n = 1
   c = 0
   while c < 6 * b
      if isEsthetic n b = 1
         c += 1
         if c >= 4 * b
            write to n b & " "
         .
      .
      n += 1
   .
   print ""
   print ""
.
print "Base 10 esthetic numbers between 1000 and 9999:"
for i = 1000 to 9999
   if isEsthetic i 10 = 1
      write i & " "
   .
.

F#

The functions

// Generate Esthetic Numbers. Nigel Galloway: March 21st., 2020
let rec fN Σ n g = match g with h::t -> match List.head h with
                                         0 -> fN ((1::h)::Σ) n t
                                        |g when g=n-1 -> fN ((g-1::h)::Σ) n t
                                        |g -> fN ((g-1::h)::(g+1::h)::Σ) n t
                               |_    -> Σ

let Esthetic n = let Esthetic, g = fN [] n, [1..n-1] |> List.map(fun n->[n])
                 Seq.unfold(fun n->Some(n,Esthetic(List.rev n)))(g) |> Seq.concat

let EtoS n = let g = "0123456789abcdef".ToCharArray()
             n |> List.map(fun n->g.[n]) |> List.rev |> Array.ofList |> System.String

The Tasks

Esthetic numbers in bases 2 through 16
[2..16]|>List.iter(fun n->printfn "\nBase %d" n; Esthetic n|>Seq.skip(4*n-1)|>Seq.take((6-4)*n+1)|>Seq.iter(EtoS >> printfn "%s"))
Output:
Base 2
10101010
101010101
1010101010
10101010101
101010101010

Base 3
1210
1212
2101
2121
10101
10121
12101

Base 4
323
1010
1012
1210
1212
1232
2101
2121
2123

Base 5
323
343
432
434
1010
1012
1210
1212
1232
1234
2101

Base 6
343
345
432
434
454
543
545
1010
1012
1210
1212
1232
1234

Base 7
345
432
434
454
456
543
545
565
654
656
1010
1012
1210
1212
1232

Base 8
432
434
454
456
543
545
565
567
654
656
676
765
767
1010
1012
1210
1212

Base 9
434
454
456
543
545
565
567
654
656
676
678
765
767
787
876
878
1010
1012
1210

Base 10
454
456
543
545
565
567
654
656
676
678
765
767
787
789
876
878
898
987
989
1010
1012

Base 11
456
543
545
565
567
654
656
676
678
765
767
787
789
876
878
898
89a
987
989
9a9
a98
a9a
1010

Base 12
543
545
565
567
654
656
676
678
765
767
787
789
876
878
898
89a
987
989
9a9
9ab
a98
a9a
aba
ba9
bab

Base 13
545
565
567
654
656
676
678
765
767
787
789
876
878
898
89a
987
989
9a9
9ab
a98
a9a
aba
abc
ba9
bab
bcb
cba

Base 14
565
567
654
656
676
678
765
767
787
789
876
878
898
89a
987
989
9a9
9ab
a98
a9a
aba
abc
ba9
bab
bcb
bcd
cba
cbc
cdc

Base 15
567
654
656
676
678
765
767
787
789
876
878
898
89a
987
989
9a9
9ab
a98
a9a
aba
abc
ba9
bab
bcb
bcd
cba
cbc
cdc
cde
dcb
dcd

Base 16
654
656
676
678
765
767
787
789
876
878
898
89a
987
989
9a9
9ab
a98
a9a
aba
abc
ba9
bab
bcb
bcd
cba
cbc
cdc
cde
dcb
dcd
ded
def
edc
Base 10 esthetic numbers with a magnitude between 1000 and 9999
Esthetic 10|>Seq.map(EtoS>>int)|>Seq.skipWhile(fun n->n<1000)|>Seq.takeWhile(fun n->n<9999)|>Seq.iter(printfn "%d");;
Output:
1010
1012
1210
1212
1232
1234
2101
2121
2123
2321
2323
2343
2345
3210
3212
3232
3234
3432
3434
3454
3456
4321
4323
4343
4345
4543
4545
4565
4567
5432
5434
5454
5456
5654
5656
5676
5678
6543
6545
6565
6567
6765
6767
6787
6789
7654
7656
7676
7678
7876
7878
7898
8765
8767
8787
8789
8987
8989
9876
9878
9898
Base 10 esthetic numbers with a magnitude between 1.0e8 and 1.3e8
Esthetic 10|>Seq.map(EtoS>>int)|>Seq.skipWhile(fun n->n<100000000)|>Seq.takeWhile(fun n->n< 130000000)|>Seq.iter(printfn "%d")
Output:
101010101
101010121
101010123
101012101
101012121
101012123
101012321
101012323
101012343
101012345
101210101
101210121
101210123
101212101
101212121
101212123
101212321
101212323
101212343
101212345
101232101
101232121
101232123
101232321
101232323
101232343
101232345
101234321
101234323
101234343
101234345
101234543
101234545
101234565
101234567
121010101
121010121
121010123
121012101
121012121
121012123
121012321
121012323
121012343
121012345
121210101
121210121
121210123
121212101
121212121
121212123
121212321
121212323
121212343
121212345
121232101
121232121
121232123
121232321
121232323
121232343
121232345
121234321
121234323
121234343
121234345
121234543
121234545
121234565
121234567
123210101
123210121
123210123
123212101
123212121
123212123
123212321
123212323
123212343
123212345
123232101
123232121
123232123
123232321
123232323
123232343
123232345
123234321
123234323
123234343
123234345
123234543
123234545
123234565
123234567
123432101
123432121
123432123
123432321
123432323
123432343
123432345
123434321
123434323
123434343
123434345
123434543
123434545
123434565
123434567
123454321
123454323
123454343
123454345
123454543
123454545
123454565
123454567
123456543
123456545
123456565
123456567
123456765
123456767
123456787
123456789
Base 10 esthetic numbers with a magnitude between 1.0e11 and 1.3e11
Esthetic 10|>Seq.map(EtoS>>int64)|>Seq.skipWhile(fun n->n<100000000000L)|>Seq.takeWhile(fun n->n<130000000000L)|>Seq.iter(printfn "%d")
Output:
101010101010
101010101012
101010101210
101010101212
101010101232
101010101234
101010121010
101010121012
101010121210
101010121212
101010121232
101010121234
101010123210
101010123212
101010123232
101010123234
101010123432
101010123434
101010123454
101010123456
101012101010
101012101012
101012101210
101012101212
101012101232
101012101234
101012121010
101012121012
101012121210
101012121212
101012121232
101012121234
101012123210
101012123212
101012123232
101012123234
101012123432
101012123434
101012123454
101012123456
101012321010
101012321012
101012321210
101012321212
101012321232
101012321234
101012323210
101012323212
101012323232
101012323234
101012323432
101012323434
101012323454
101012323456
101012343210
101012343212
101012343232
101012343234
101012343432
101012343434
101012343454
101012343456
101012345432
101012345434
101012345454
101012345456
101012345654
101012345656
101012345676
101012345678
101210101010
101210101012
101210101210
101210101212
101210101232
101210101234
101210121010
101210121012
101210121210
101210121212
101210121232
101210121234
101210123210
101210123212
101210123232
101210123234
101210123432
101210123434
101210123454
101210123456
101212101010
101212101012
101212101210
101212101212
101212101232
101212101234
101212121010
101212121012
101212121210
101212121212
101212121232
101212121234
101212123210
101212123212
101212123232
101212123234
101212123432
101212123434
101212123454
101212123456
101212321010
101212321012
101212321210
101212321212
101212321232
101212321234
101212323210
101212323212
101212323232
101212323234
101212323432
101212323434
101212323454
101212323456
101212343210
101212343212
101212343232
101212343234
101212343432
101212343434
101212343454
101212343456
101212345432
101212345434
101212345454
101212345456
101212345654
101212345656
101212345676
101212345678
101232101010
101232101012
101232101210
101232101212
101232101232
101232101234
101232121010
101232121012
101232121210
101232121212
101232121232
101232121234
101232123210
101232123212
101232123232
101232123234
101232123432
101232123434
101232123454
101232123456
101232321010
101232321012
101232321210
101232321212
101232321232
101232321234
101232323210
101232323212
101232323232
101232323234
101232323432
101232323434
101232323454
101232323456
101232343210
101232343212
101232343232
101232343234
101232343432
101232343434
101232343454
101232343456
101232345432
101232345434
101232345454
101232345456
101232345654
101232345656
101232345676
101232345678
101234321010
101234321012
101234321210
101234321212
101234321232
101234321234
101234323210
101234323212
101234323232
101234323234
101234323432
101234323434
101234323454
101234323456
101234343210
101234343212
101234343232
101234343234
101234343432
101234343434
101234343454
101234343456
101234345432
101234345434
101234345454
101234345456
101234345654
101234345656
101234345676
101234345678
101234543210
101234543212
101234543232
101234543234
101234543432
101234543434
101234543454
101234543456
101234545432
101234545434
101234545454
101234545456
101234545654
101234545656
101234545676
101234545678
101234565432
101234565434
101234565454
101234565456
101234565654
101234565656
101234565676
101234565678
101234567654
101234567656
101234567676
101234567678
101234567876
101234567878
101234567898
121010101010
121010101012
121010101210
121010101212
121010101232
121010101234
121010121010
121010121012
121010121210
121010121212
121010121232
121010121234
121010123210
121010123212
121010123232
121010123234
121010123432
121010123434
121010123454
121010123456
121012101010
121012101012
121012101210
121012101212
121012101232
121012101234
121012121010
121012121012
121012121210
121012121212
121012121232
121012121234
121012123210
121012123212
121012123232
121012123234
121012123432
121012123434
121012123454
121012123456
121012321010
121012321012
121012321210
121012321212
121012321232
121012321234
121012323210
121012323212
121012323232
121012323234
121012323432
121012323434
121012323454
121012323456
121012343210
121012343212
121012343232
121012343234
121012343432
121012343434
121012343454
121012343456
121012345432
121012345434
121012345454
121012345456
121012345654
121012345656
121012345676
121012345678
121210101010
121210101012
121210101210
121210101212
121210101232
121210101234
121210121010
121210121012
121210121210
121210121212
121210121232
121210121234
121210123210
121210123212
121210123232
121210123234
121210123432
121210123434
121210123454
121210123456
121212101010
121212101012
121212101210
121212101212
121212101232
121212101234
121212121010
121212121012
121212121210
121212121212
121212121232
121212121234
121212123210
121212123212
121212123232
121212123234
121212123432
121212123434
121212123454
121212123456
121212321010
121212321012
121212321210
121212321212
121212321232
121212321234
121212323210
121212323212
121212323232
121212323234
121212323432
121212323434
121212323454
121212323456
121212343210
121212343212
121212343232
121212343234
121212343432
121212343434
121212343454
121212343456
121212345432
121212345434
121212345454
121212345456
121212345654
121212345656
121212345676
121212345678
121232101010
121232101012
121232101210
121232101212
121232101232
121232101234
121232121010
121232121012
121232121210
121232121212
121232121232
121232121234
121232123210
121232123212
121232123232
121232123234
121232123432
121232123434
121232123454
121232123456
121232321010
121232321012
121232321210
121232321212
121232321232
121232321234
121232323210
121232323212
121232323232
121232323234
121232323432
121232323434
121232323454
121232323456
121232343210
121232343212
121232343232
121232343234
121232343432
121232343434
121232343454
121232343456
121232345432
121232345434
121232345454
121232345456
121232345654
121232345656
121232345676
121232345678
121234321010
121234321012
121234321210
121234321212
121234321232
121234321234
121234323210
121234323212
121234323232
121234323234
121234323432
121234323434
121234323454
121234323456
121234343210
121234343212
121234343232
121234343234
121234343432
121234343434
121234343454
121234343456
121234345432
121234345434
121234345454
121234345456
121234345654
121234345656
121234345676
121234345678
121234543210
121234543212
121234543232
121234543234
121234543432
121234543434
121234543454
121234543456
121234545432
121234545434
121234545454
121234545456
121234545654
121234545656
121234545676
121234545678
121234565432
121234565434
121234565454
121234565456
121234565654
121234565656
121234565676
121234565678
121234567654
121234567656
121234567676
121234567678
121234567876
121234567878
121234567898
123210101010
123210101012
123210101210
123210101212
123210101232
123210101234
123210121010
123210121012
123210121210
123210121212
123210121232
123210121234
123210123210
123210123212
123210123232
123210123234
123210123432
123210123434
123210123454
123210123456
123212101010
123212101012
123212101210
123212101212
123212101232
123212101234
123212121010
123212121012
123212121210
123212121212
123212121232
123212121234
123212123210
123212123212
123212123232
123212123234
123212123432
123212123434
123212123454
123212123456
123212321010
123212321012
123212321210
123212321212
123212321232
123212321234
123212323210
123212323212
123212323232
123212323234
123212323432
123212323434
123212323454
123212323456
123212343210
123212343212
123212343232
123212343234
123212343432
123212343434
123212343454
123212343456
123212345432
123212345434
123212345454
123212345456
123212345654
123212345656
123212345676
123212345678
123232101010
123232101012
123232101210
123232101212
123232101232
123232101234
123232121010
123232121012
123232121210
123232121212
123232121232
123232121234
123232123210
123232123212
123232123232
123232123234
123232123432
123232123434
123232123454
123232123456
123232321010
123232321012
123232321210
123232321212
123232321232
123232321234
123232323210
123232323212
123232323232
123232323234
123232323432
123232323434
123232323454
123232323456
123232343210
123232343212
123232343232
123232343234
123232343432
123232343434
123232343454
123232343456
123232345432
123232345434
123232345454
123232345456
123232345654
123232345656
123232345676
123232345678
123234321010
123234321012
123234321210
123234321212
123234321232
123234321234
123234323210
123234323212
123234323232
123234323234
123234323432
123234323434
123234323454
123234323456
123234343210
123234343212
123234343232
123234343234
123234343432
123234343434
123234343454
123234343456
123234345432
123234345434
123234345454
123234345456
123234345654
123234345656
123234345676
123234345678
123234543210
123234543212
123234543232
123234543234
123234543432
123234543434
123234543454
123234543456
123234545432
123234545434
123234545454
123234545456
123234545654
123234545656
123234545676
123234545678
123234565432
123234565434
123234565454
123234565456
123234565654
123234565656
123234565676
123234565678
123234567654
123234567656
123234567676
123234567678
123234567876
123234567878
123234567898
123432101010
123432101012
123432101210
123432101212
123432101232
123432101234
123432121010
123432121012
123432121210
123432121212
123432121232
123432121234
123432123210
123432123212
123432123232
123432123234
123432123432
123432123434
123432123454
123432123456
123432321010
123432321012
123432321210
123432321212
123432321232
123432321234
123432323210
123432323212
123432323232
123432323234
123432323432
123432323434
123432323454
123432323456
123432343210
123432343212
123432343232
123432343234
123432343432
123432343434
123432343454
123432343456
123432345432
123432345434
123432345454
123432345456
123432345654
123432345656
123432345676
123432345678
123434321010
123434321012
123434321210
123434321212
123434321232
123434321234
123434323210
123434323212
123434323232
123434323234
123434323432
123434323434
123434323454
123434323456
123434343210
123434343212
123434343232
123434343234
123434343432
123434343434
123434343454
123434343456
123434345432
123434345434
123434345454
123434345456
123434345654
123434345656
123434345676
123434345678
123434543210
123434543212
123434543232
123434543234
123434543432
123434543434
123434543454
123434543456
123434545432
123434545434
123434545454
123434545456
123434545654
123434545656
123434545676
123434545678
123434565432
123434565434
123434565454
123434565456
123434565654
123434565656
123434565676
123434565678
123434567654
123434567656
123434567676
123434567678
123434567876
123434567878
123434567898
123454321010
123454321012
123454321210
123454321212
123454321232
123454321234
123454323210
123454323212
123454323232
123454323234
123454323432
123454323434
123454323454
123454323456
123454343210
123454343212
123454343232
123454343234
123454343432
123454343434
123454343454
123454343456
123454345432
123454345434
123454345454
123454345456
123454345654
123454345656
123454345676
123454345678
123454543210
123454543212
123454543232
123454543234
123454543432
123454543434
123454543454
123454543456
123454545432
123454545434
123454545454
123454545456
123454545654
123454545656
123454545676
123454545678
123454565432
123454565434
123454565454
123454565456
123454565654
123454565656
123454565676
123454565678
123454567654
123454567656
123454567676
123454567678
123454567876
123454567878
123454567898
123456543210
123456543212
123456543232
123456543234
123456543432
123456543434
123456543454
123456543456
123456545432
123456545434
123456545454
123456545456
123456545654
123456545656
123456545676
123456545678
123456565432
123456565434
123456565454
123456565456
123456565654
123456565656
123456565676
123456565678
123456567654
123456567656
123456567676
123456567678
123456567876
123456567878
123456567898
123456765432
123456765434
123456765454
123456765456
123456765654
123456765656
123456765676
123456765678
123456767654
123456767656
123456767676
123456767678
123456767876
123456767878
123456767898
123456787654
123456787656
123456787676
123456787678
123456787876
123456787878
123456787898
123456789876
123456789878
123456789898
Real: 00:00:00.322, CPU: 00:00:00.093, GC gen0: 3, gen1: 2, gen2: 1

Factor

The bfs word is an adaptation of the algorithm from the Geeks for Geeks reference. It has been changed to work with any base. In summary, this algorithm constructs esthetic numbers directly using a breadth first search. For example, we know the only two esthetic numbers that can be constructed from 23 are 232 and 234, or in other words, the last digit of 23 ± 1 appended to 23. This forms a tree for each digit in a given base where each node is an esthetic number and can have at most two children. This method is very fast and has been used to find the count of esthetic numbers in base 10 between zero and one quadrillion.

Works with: Factor version 0.99 2020-01-23
USING: combinators deques dlists formatting grouping io kernel
locals make math math.order math.parser math.ranges
math.text.english prettyprint sequences sorting strings ;

:: bfs ( from to num base -- )
    DL{ } clone :> q
    base 1 - :> ld
    num q push-front
    [ q deque-empty? ]
    [
        q pop-back :> step-num
        step-num from to between? [ step-num , ] when
        step-num zero? step-num to > or
        [
            step-num base mod :> last-digit
            step-num base * last-digit 1 - + :> a
            step-num base * last-digit 1 + + :> b

            last-digit
            {
                { 0 [ b q push-front ] }
                { ld [ a q push-front ] }
                [ drop a q push-front b q push-front ]
            } case

        ] unless

    ] until ;

:: esthetics ( from to base -- seq )
    [ base <iota> [| num | from to num base bfs ] each ]
    { } make natural-sort ;

: .seq ( seq width -- )
    group [ [ dup string? [ write ] [ pprint ] if bl ] each nl ]
    each nl ;

:: show ( base -- )
    base [ 4 * ] [ 6 * ] bi :> ( from to )
    from to [ dup ordinal-suffix ] bi@ base
    "%d%s through %d%s esthetic numbers in base %d\n" printf
    from to 1 + 0 5000   ! enough for base 16
    base esthetics subseq [ base >base ] map 17 .seq ;

2 16 [a,b] [ show ] each

"Base 10 numbers between 1,000 and 9,999:" print
1,000 9,999 10 esthetics 16 .seq

"Base 10 numbers between 100,000,000 and 130,000,000:" print
100,000,000 130,000,000 10 esthetics 9 .seq

"Count of base 10 esthetic numbers between zero and one quadrillion:"
print 0 1e15 10 esthetics length .
Output:
8th through 12th esthetic numbers in base 2
10101010 101010101 1010101010 10101010101 101010101010 

12th through 18th esthetic numbers in base 3
1210 1212 2101 2121 10101 10121 12101 

16th through 24th esthetic numbers in base 4
323 1010 1012 1210 1212 1232 2101 2121 2123 

20th through 30th esthetic numbers in base 5
323 343 432 434 1010 1012 1210 1212 1232 1234 2101 

24th through 36th esthetic numbers in base 6
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234 

28th through 42nd esthetic numbers in base 7
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232 

32nd through 48th esthetic numbers in base 8
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212 

36th through 54th esthetic numbers in base 9
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 
1012 1210 

40th through 60th esthetic numbers in base 10
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 
987 989 1010 1012 

44th through 66th esthetic numbers in base 11
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 
987 989 9a9 a98 a9a 1010 

48th through 72nd esthetic numbers in base 12
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 
989 9a9 9ab a98 a9a aba ba9 bab 

52nd through 78th esthetic numbers in base 13
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 
9a9 9ab a98 a9a aba abc ba9 bab bcb cba 

56th through 84th esthetic numbers in base 14
565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 
9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc 

60th through 90th esthetic numbers in base 15
567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab 
a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd 

64th through 96th esthetic numbers in base 16
654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 
a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd ded def edc 

Base 10 numbers between 1,000 and 9,999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232 
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454 
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676 
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898 

Base 10 numbers between 100,000,000 and 130,000,000:
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343 
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323 
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345 
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101 
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345 
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343 
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321 
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121 
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101 
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343 
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321 
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545 
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565 
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789 

Count of base 10 esthetic numbers between zero and one quadrillion:
161914

Forth

Works with: Gforth
\ Returns the next esthetic number in the given base after n, where n is an
\ esthetic number in that base or one less than a power of base.
: next_esthetic_number { n base -- n }
  n 1+ base < if n 1+ exit then
  n base / dup base mod
  dup n base mod 1+ = if dup 1+ base < if 2drop n 2 + exit then then
  drop base recurse
  dup base mod
  dup 0= if 1+ else 1- then
  swap base * + ;

: print_esthetic_numbers { min max per_line -- }
  ." Esthetic numbers in base 10 between " min 1 .r ."  and " max 1 .r ." :" cr
  0
  min 1- 10 next_esthetic_number
  begin
    dup max <=
  while
    dup 4 .r
    swap 1+ dup per_line mod 0= if cr else space then swap
    10 next_esthetic_number
  repeat
  drop
  cr ." count: " . cr ;

: main
  17 2 do
    i 4 * i 6 * { min max }
    ." Esthetic numbers in base " i 1 .r ."  from index " min 1 .r ."  through index " max 1 .r ." :" cr
    0
    max 1+ 1 do
      j next_esthetic_number
      i min >= if dup ['] . j base-execute then
    loop
    drop
    cr cr
  loop
  1000 9999 16 print_esthetic_numbers cr
  100000000 130000000 8 print_esthetic_numbers ;

main
bye
Output:
Esthetic numbers in base 2 from index 8 through index 12:
10101010 101010101 1010101010 10101010101 101010101010 

Esthetic numbers in base 3 from index 12 through index 18:
1210 1212 2101 2121 10101 10121 12101 

Esthetic numbers in base 4 from index 16 through index 24:
323 1010 1012 1210 1212 1232 2101 2121 2123 

Esthetic numbers in base 5 from index 20 through index 30:
323 343 432 434 1010 1012 1210 1212 1232 1234 2101 

Esthetic numbers in base 6 from index 24 through index 36:
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234 

Esthetic numbers in base 7 from index 28 through index 42:
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232 

Esthetic numbers in base 8 from index 32 through index 48:
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212 

Esthetic numbers in base 9 from index 36 through index 54:
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210 

Esthetic numbers in base 10 from index 40 through index 60:
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012 

Esthetic numbers in base 11 from index 44 through index 66:
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 A98 A9A 1010 

Esthetic numbers in base 12 from index 48 through index 72:
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA BA9 BAB 

Esthetic numbers in base 13 from index 52 through index 78:
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB CBA 

Esthetic numbers in base 14 from index 56 through index 84:
565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC 

Esthetic numbers in base 15 from index 60 through index 90:
567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD 

Esthetic numbers in base 16 from index 64 through index 96:
654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD DED DEF EDC 

Esthetic numbers in base 10 between 1000 and 9999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898 
count: 61 

Esthetic numbers in base 10 between 100000000 and 130000000:
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323
101012343 101012345 101210101 101210121 101210123 101212101 101212121 101212123
101212321 101212323 101212343 101212345 101232101 101232121 101232123 101232321
101232323 101232343 101232345 101234321 101234323 101234343 101234345 101234543
101234545 101234565 101234567 121010101 121010121 121010123 121012101 121012121
121012123 121012321 121012323 121012343 121012345 121210101 121210121 121210123
121212101 121212121 121212123 121212321 121212323 121212343 121212345 121232101
121232121 121232123 121232321 121232323 121232343 121232345 121234321 121234323
121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345
123232101 123232121 123232123 123232321 123232323 123232343 123232345 123234321
123234323 123234343 123234345 123234543 123234545 123234565 123234567 123432101
123432121 123432123 123432321 123432323 123432343 123432345 123434321 123434323
123434343 123434345 123434543 123434545 123434565 123434567 123454321 123454323
123454343 123454345 123454543 123454545 123454565 123454567 123456543 123456545
123456565 123456567 123456765 123456767 123456787 123456789 
count: 126 

FreeBASIC

dim shared as string*16 digits = "0123456789ABCDEF"

function get_digit( n as uinteger ) as string
    return mid(digits, n+1, 1)
end function

function find_digit( s as string ) as integer
    for i as uinteger = 1 to len(digits)
        if s = mid(digits, i, 1) then return i
    next i
    return -999
end function

sub make_base( byval n as uinteger, bse as uinteger, byref ret as string )
    if n = 0 then ret = "0" else ret = ""
    dim as uinteger m
    while n > 0
        m = n mod bse
        ret = mid(digits, m+1, 1) + ret
        n = (n - m)/bse
    wend
end sub

function is_esthetic( number as string ) as boolean
    if number = "0" then return false
    if len(number) = 1 then return true
    dim as integer curr = find_digit( left(number,1) ), last, i
    for i = 2 to len(number)
        last = curr
        curr = find_digit( mid(number, i, 1) )
        if abs( last - curr ) <> 1 then return false
    next i
    return true
end function

dim as uinteger b, c
dim as ulongint i
dim as string number
for b = 2 to 16
    print "BASE ";b
    i = 0 : c = 0
    while c <= 6*b
        i += 1
        make_base i, b, number
        if is_esthetic( number ) then
            c += 1
            if c >= 4*b then print number;" ";
        end if
    wend
    print 
next b
print "BASE TEN"
for i = 1000 to 9999
    make_base i, 10, number
    if is_esthetic(number) then print number;" ";
next i
print
print "STRETCH GOAL"
for i = 100000000 to 130000000
    make_base i, 10, number
    if is_esthetic(number) then print number;" ";
next i
Output:
BASE 2
10101010 101010101 1010101010 10101010101 101010101010 1010101010101 
BASE 3
1210 1212 2101 2121 10101 10121 12101 12121 
BASE 4
323 1010 1012 1210 1212 1232 2101 2121 2123 2321 
BASE 5
323 343 432 434 1010 1012 1210 1212 1232 1234 2101 2121 
BASE 6
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234 2101 
BASE 7
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232 1234 
BASE 8
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212 1232 
BASE 9
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210 1212 
BASE 10
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012 1210 
BASE 11
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 A98 A9A 1010 1012 
BASE 12
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA BA9 BAB 1010 
BASE 13
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB CBA CBC 
BASE 14
565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC DCB 
BASE 15
567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD DED 
BASE 16
654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD DED DEF EDC EDE 
BASE TEN
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232 3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454 5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676 7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898 
STRETCH GOAL
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343 101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323 101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345 101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101 121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345 121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343 121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321 121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121 123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101 123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343 123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321 123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545 123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565 123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789 

Go

A simple brute force approach suffices for the first and second parts of the task.

For the last two parts (stretched up to 1.0e17/1.3e17), a 'depth first search' approach is used with the obvious range limitations imposed for extra speed.

package main

import (
    "fmt"
    "strconv"
)

func uabs(a, b uint64) uint64 {
    if a > b {
        return a - b
    }
    return b - a
}

func isEsthetic(n, b uint64) bool {
    if n == 0 {
        return false
    }
    i := n % b
    n /= b
    for n > 0 {
        j := n % b
        if uabs(i, j) != 1 {
            return false
        }
        n /= b
        i = j
    }
    return true
}

var esths []uint64

func dfs(n, m, i uint64) {
    if i >= n && i <= m {
        esths = append(esths, i)
    }
    if i == 0 || i > m {
        return
    }
    d := i % 10
    i1 := i*10 + d - 1
    i2 := i1 + 2
    if d == 0 {
        dfs(n, m, i2)
    } else if d == 9 {
        dfs(n, m, i1)
    } else {
        dfs(n, m, i1)
        dfs(n, m, i2)
    }
}

func listEsths(n, n2, m, m2 uint64, perLine int, all bool) {
    esths = esths[:0]
    for i := uint64(0); i < 10; i++ {
        dfs(n2, m2, i)
    }
    le := len(esths)
    fmt.Printf("Base 10: %s esthetic numbers between %s and %s:\n",
        commatize(uint64(le)), commatize(n), commatize(m))
    if all {
        for c, esth := range esths {
            fmt.Printf("%d ", esth)
            if (c+1)%perLine == 0 {
                fmt.Println()
            }
        }
    } else {
        for i := 0; i < perLine; i++ {
            fmt.Printf("%d ", esths[i])
        }
        fmt.Println("\n............\n")
        for i := le - perLine; i < le; i++ {
            fmt.Printf("%d ", esths[i])
        }
    }
    fmt.Println("\n")
}

func commatize(n uint64) string {
    s := fmt.Sprintf("%d", n)
    le := len(s)
    for i := le - 3; i >= 1; i -= 3 {
        s = s[0:i] + "," + s[i:]
    }
    return s
}

func main() {
    for b := uint64(2); b <= 16; b++ {
        fmt.Printf("Base %d: %dth to %dth esthetic numbers:\n", b, 4*b, 6*b)
        for n, c := uint64(1), uint64(0); c < 6*b; n++ {
            if isEsthetic(n, b) {
                c++
                if c >= 4*b {
                    fmt.Printf("%s ", strconv.FormatUint(n, int(b)))
                }
            }
        }
        fmt.Println("\n")
    }

    // the following all use the obvious range limitations for the numbers in question
    listEsths(1000, 1010, 9999, 9898, 16, true)
    listEsths(1e8, 101_010_101, 13*1e7, 123_456_789, 9, true)
    listEsths(1e11, 101_010_101_010, 13*1e10, 123_456_789_898, 7, false)
    listEsths(1e14, 101_010_101_010_101, 13*1e13, 123_456_789_898_989, 5, false)
    listEsths(1e17, 101_010_101_010_101_010, 13*1e16, 123_456_789_898_989_898, 4, false)
}
Output:
Base 2: 8th to 12th esthetic numbers:
10101010 101010101 1010101010 10101010101 101010101010 

Base 3: 12th to 18th esthetic numbers:
1210 1212 2101 2121 10101 10121 12101 

Base 4: 16th to 24th esthetic numbers:
323 1010 1012 1210 1212 1232 2101 2121 2123 

Base 5: 20th to 30th esthetic numbers:
323 343 432 434 1010 1012 1210 1212 1232 1234 2101 

Base 6: 24th to 36th esthetic numbers:
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234 

Base 7: 28th to 42th esthetic numbers:
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232 

Base 8: 32th to 48th esthetic numbers:
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212 

Base 9: 36th to 54th esthetic numbers:
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210 

Base 10: 40th to 60th esthetic numbers:
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012 

Base 11: 44th to 66th esthetic numbers:
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 a98 a9a 1010 

Base 12: 48th to 72th esthetic numbers:
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba ba9 bab 

Base 13: 52th to 78th esthetic numbers:
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb cba 

Base 14: 56th to 84th esthetic numbers:
565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc 

Base 15: 60th to 90th esthetic numbers:
567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd 

Base 16: 64th to 96th esthetic numbers:
654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd ded def edc 

Base 10: 61 esthetic numbers between 1,000 and 9,999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232 
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454 
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676 
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898 

Base 10: 126 esthetic numbers between 100,000,000 and 130,000,000:
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343 
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323 
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345 
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101 
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345 
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343 
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321 
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121 
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101 
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343 
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321 
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545 
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565 
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789 


Base 10: 911 esthetic numbers between 100,000,000,000 and 130,000,000,000:
101010101010 101010101012 101010101210 101010101212 101010101232 101010101234 101010121010 
............

123456787678 123456787876 123456787878 123456787898 123456789876 123456789878 123456789898 

Base 10: 6,225 esthetic numbers between 100,000,000,000,000 and 130,000,000,000,000:
101010101010101 101010101010121 101010101010123 101010101012101 101010101012121 
............

123456789898767 123456789898787 123456789898789 123456789898987 123456789898989 

Base 10: 44,744 esthetic numbers between 100,000,000,000,000,000 and 130,000,000,000,000,000:
101010101010101010 101010101010101012 101010101010101210 101010101010101212 
............

123456789898987898 123456789898989876 123456789898989878 123456789898989898 

Haskell

import Data.List (unfoldr, genericIndex)
import Control.Monad (replicateM, foldM, mzero)

-- a predicate for esthetic numbers
isEsthetic b = all ((== 1) . abs) . differences . toBase b
  where
    differences lst = zipWith (-) lst (tail lst)

-- Monadic solution, inefficient for small bases.
esthetics_m b =
  do differences <- (\n -> replicateM n [-1, 1]) <$> [0..]
     firstDigit <- [1..b-1]
     differences >>= fromBase b <$> scanl (+) firstDigit

-- Much more efficient iterative solution (translation from Python).
-- Uses simple list as an ersatz queue.
esthetics b = tail $ fst <$> iterate step (undefined, q)
  where
    q = [(d, d) | d <- [1..b-1]]
    step (_, queue) =
      let (num, lsd) = head queue
          new_lsds = [d | d <- [lsd-1, lsd+1], d < b, d >= 0]
      in (num, tail queue ++ [(num*b + d, d) | d <- new_lsds])

-- representation of numbers as digits
fromBase b = foldM f 0
  where f r d | d < 0 || d >= b = mzero
              | otherwise = pure (r*b + d)

toBase b = reverse . unfoldr f
  where
    f 0 = Nothing
    f n = let (q, r) = divMod n b in Just (r, q)

showInBase b = foldMap (pure . digit) . toBase b
  where digit = genericIndex (['0'..'9'] <> ['a'..'z'])

Tasks implementation

λ> isEsthetic 10 1234567654321
True

λ> isEsthetic 10 1234560654321
False

λ> isEsthetic 2 <$> fromBase 2 [1,0,1,0,1,0]
True

λ> isEsthetic 2 <$> fromBase 2 [1,0,1,0,1,1]
False

λ> take 50 $ esthetics 10
[1,2,3,4,5,6,7,8,9,10,12,21,23,32,34,43,45,54,56,65,67,76,78,87,89,98,101,121,123,210,212,232,234,321,323,343,345,432,434,
454,456,543,545,565,567,654,656,676,678,765]

λ> take 50 $ showInBase 3 <$> esthetics 3
["1","2","10","12","21","101","121","210","212","1010","1012","1210","1212","2101","2121","10101","10121","12101","12121",
"21010","21012","21210","21212","101010","101012","101210","101212","121010","121012","121210","121212","210101","210121",
"212101","212121","1010101","1010121","1012101","1012121","1210101","1210121","1212101","1212121","2101010","2101012",
"2101210","2101212","2121010","2121012","2121210"]

λ> :{
*Main| examples b = do {
*Main|   putStrLn $ "Task for base " <> show b;
*Main|   putStrLn $ unwords $ showInBase b <$> (drop (b*4-1) . take (b*6) $ esthetics b)}
*Main| :}

λ> mapM_ examples [2..16]
Task for base 2
10101010 101010101 1010101010 10101010101 101010101010
Task for base 3
1210 1212 2101 2121 10101 10121 12101
Task for base 4
323 1010 1012 1210 1212 1232 2101 2121 2123
Task for base 5
323 343 432 434 1010 1012 1210 1212 1232 1234 2101
Task for base 6
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234
Task for base 7
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232
Task for base 8
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212
Task for base 9
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210
Task for base 10
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012
Task for base 11
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 a98 a9a 1010
Task for base 12
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba ba9 bab
Task for base 13
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb cba
Task for base 14
565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc
Task for base 15
567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd
Task for base 16
654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd ded def edc

λ> let takeWithin a b = dropWhile (< a) . takeWhile (<= b)

λ> takeWithin 1000 9999 $ esthetics 10
[1010,1012,1210,1212,1232,1234,2101,2121,2123,2321,2323,2343,2345,3210,3212,3232,3234,3432,3434,3454,3456,4321,4323,4343,
4345,4543,4545,4565,4567,5432,5434,5454,5456,5654,5656,5676,5678,6543,6545,6565,6567,6765,6767,6787,6789,7654,7656,7676,
7678,7876,7878,7898,8765,8767,8787,8789,8987,8989,9876,9878,9898]

λ> takeWithin 100000000 130000000 $ esthetics 10
[101010101,101010121,101010123,101012101,101012121,101012123,101012321,101012323,101012343,101012345,101210101,101210121,
101210123,101212101,101212121,101212123,101212321,101212323,101212343,101212345,101232101,101232121,101232123,101232321,
101232323,101232343,101232345,101234321,101234323,101234343,101234345,101234543,101234545,101234565,101234567,121010101,
121010121,121010123,121012101,121012121,121012123,121012321,121012323,121012343,121012345,121210101,121210121,121210123,
121212101,121212121,121212123,121212321,121212323,121212343,121212345,121232101,121232121,121232123,121232321,121232323,
121232343,121232345,121234321,121234323,121234343,121234345,121234543,121234545,121234565,121234567,123210101,123210121,
123210123,123212101,123212121,123212123,123212321,123212323,123212343,123212345,123232101,123232121,123232123,123232321,
123232323,123232343,123232345,123234321,123234323,123234343,123234345,123234543,123234545,123234565,123234567,123432101,
123432121,123432123,123432321,123432323,123432343,123432345,123434321,123434323,123434343,123434345,123434543,123434545,
123434565,123434567,123454321,123454323,123454343,123454345,123454543,123454545,123454565,123454567,123456543,123456545,
123456565,123456567,123456765,123456767,123456787,123456789]

λ> length it
126

λ> length $ takeWithin 100000000000000000 130000000000000000 $ esthetics 10
44744

J

Implementation (brute force):

isesthetic=:  10&$: :(1 */ .=2 |@-/\ #.inv)"0

gen=: {{r=.$k=.1 while.y>#r do. r=.r,k#~u k
  k=.1+({:k)+i.2*#k end.y{.r}}

Task examples:

tobase=: (a.{~;48 97(+ i.)each 10 26) {~ #.inv
taskB=: {{;:inv y tobase&.> (<:4*y)}. y&isesthetic gen 6*y}}

   taskB 2
10101010 101010101 1010101010 10101010101 101010101010
   taskB 3
1210 1212 2101 2121 10101 10121 12101
   taskB 4
323 1010 1012 1210 1212 1232 2101 2121 2123
   taskB 5
323 343 432 434 1010 1012 1210 1212 1232 1234 2101
   taskB 6
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234
   taskB 7
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232
   taskB 8
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212
   taskB 9
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210
   taskB 10
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012
   taskB 11
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 a98 a9a 1010
   taskB 12
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba ba9 bab
   taskB 13
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb cba
   taskB 14
565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc
   taskB 15
567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd
   taskB 16
654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd ded def edc

   (#~ isesthetic) 1000+i.1000
1010 1012 1210 1212 1232 1234

Stretch goal (the slow way):

   $e=: x: (#~ isesthetic) 1e8+i.1+3e7
126
   q:126
2 3 3 7

(Result e not displayed here -- it's the same as next^:8]1 below.)

It's much more efficient to generate sequences of digits from a base digit, rather than generating sequential integers and discarding those which are not suitable.

For example, we can generate a directed graph, from one digit to the one or two viable adjacent digits, and then build up a result based on all viable values of the rightmost digit of the current list of partially built candidates:

graph=: </./|:0 1,10 10#:(#~ isesthetic)10+i.90
next=: [:; (0 10#.],.graph {::~10|])each

   next^:3]1
1010 1012 1210 1212 1232 1234
   $next^:8]1  
126
   14 9$next^:8]1
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789

(We organize the 126 values of the stretch goal into 14 rows of 9 columns (126=14*9) using the expression 14 9 $ ...)

Java

Translation of: Kotlin
import java.util.ArrayList;
import java.util.stream.IntStream;
import java.util.stream.LongStream;

public class EstheticNumbers {
    interface RecTriConsumer<A, B, C> {
        void accept(RecTriConsumer<A, B, C> f, A a, B b, C c);
    }

    private static boolean isEsthetic(long n, long b) {
        if (n == 0) {
            return false;
        }
        var i = n % b;
        var n2 = n / b;
        while (n2 > 0) {
            var j = n2 % b;
            if (Math.abs(i - j) != 1) {
                return false;
            }
            n2 /= b;
            i = j;
        }
        return true;
    }

    private static void listEsths(long n, long n2, long m, long m2, int perLine, boolean all) {
        var esths = new ArrayList<Long>();
        var dfs = new RecTriConsumer<Long, Long, Long>() {
            public void accept(Long n, Long m, Long i) {
                accept(this, n, m, i);
            }

            @Override
            public void accept(RecTriConsumer<Long, Long, Long> f, Long n, Long m, Long i) {
                if (n <= i && i <= m) {
                    esths.add(i);
                }
                if (i == 0 || i > m) {
                    return;
                }
                var d = i % 10;
                var i1 = i * 10 + d - 1;
                var i2 = i1 + 2;
                if (d == 0) {
                    f.accept(f, n, m, i2);
                } else if (d == 9) {
                    f.accept(f, n, m, i1);
                } else {
                    f.accept(f, n, m, i1);
                    f.accept(f, n, m, i2);
                }
            }
        };

        LongStream.range(0, 10).forEach(i -> dfs.accept(n2, m2, i));

        var le = esths.size();
        System.out.printf("Base 10: %d esthetic numbers between %d and %d:%n", le, n, m);
        if (all) {
            for (int i = 0; i < esths.size(); i++) {
                System.out.printf("%d ", esths.get(i));
                if ((i + 1) % perLine == 0) {
                    System.out.println();
                }
            }
        } else {
            for (int i = 0; i < perLine; i++) {
                System.out.printf("%d ", esths.get(i));
            }
            System.out.println();
            System.out.println("............");
            for (int i = le - perLine; i < le; i++) {
                System.out.printf("%d ", esths.get(i));
            }
        }
        System.out.println();
        System.out.println();
    }

    public static void main(String[] args) {
        IntStream.rangeClosed(2, 16).forEach(b -> {
            System.out.printf("Base %d: %dth to %dth esthetic numbers:%n", b, 4 * b, 6 * b);
            var n = 1L;
            var c = 0L;
            while (c < 6 * b) {
                if (isEsthetic(n, b)) {
                    c++;
                    if (c >= 4 * b) {
                        System.out.printf("%s ", Long.toString(n, b));
                    }
                }
                n++;
            }
            System.out.println();
        });
        System.out.println();

        // the following all use the obvious range limitations for the numbers in question
        listEsths(1000, 1010, 9999, 9898, 16, true);
        listEsths((long) 1e8, 101_010_101, 13 * (long) 1e7, 123_456_789, 9, true);
        listEsths((long) 1e11, 101_010_101_010L, 13 * (long) 1e10, 123_456_789_898L, 7, false);
        listEsths((long) 1e14, 101_010_101_010_101L, 13 * (long) 1e13, 123_456_789_898_989L, 5, false);
        listEsths((long) 1e17, 101_010_101_010_101_010L, 13 * (long) 1e16, 123_456_789_898_989_898L, 4, false);
    }
}
Output:
Base 2: 8th to 12th esthetic numbers:
10101010 101010101 1010101010 10101010101 101010101010 
Base 3: 12th to 18th esthetic numbers:
1210 1212 2101 2121 10101 10121 12101 
Base 4: 16th to 24th esthetic numbers:
323 1010 1012 1210 1212 1232 2101 2121 2123 
Base 5: 20th to 30th esthetic numbers:
323 343 432 434 1010 1012 1210 1212 1232 1234 2101 
Base 6: 24th to 36th esthetic numbers:
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234 
Base 7: 28th to 42th esthetic numbers:
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232 
Base 8: 32th to 48th esthetic numbers:
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212 
Base 9: 36th to 54th esthetic numbers:
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210 
Base 10: 40th to 60th esthetic numbers:
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012 
Base 11: 44th to 66th esthetic numbers:
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 a98 a9a 1010 
Base 12: 48th to 72th esthetic numbers:
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba ba9 bab 
Base 13: 52th to 78th esthetic numbers:
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb cba 
Base 14: 56th to 84th esthetic numbers:
565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc 
Base 15: 60th to 90th esthetic numbers:
567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd 
Base 16: 64th to 96th esthetic numbers:
654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd ded def edc 

Base 10: 61 esthetic numbers between 1000 and 9999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232 
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454 
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676 
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898 

Base 10: 126 esthetic numbers between 100000000 and 130000000:
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343 
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323 
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345 
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101 
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345 
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343 
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321 
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121 
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101 
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343 
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321 
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545 
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565 
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789 


Base 10: 911 esthetic numbers between 100000000000 and 130000000000:
101010101010 101010101012 101010101210 101010101212 101010101232 101010101234 101010121010 
............
123456787678 123456787876 123456787878 123456787898 123456789876 123456789878 123456789898 

Base 10: 6225 esthetic numbers between 100000000000000 and 130000000000000:
101010101010101 101010101010121 101010101010123 101010101012101 101010101012121 
............
123456789898767 123456789898787 123456789898789 123456789898987 123456789898989 

Base 10: 44744 esthetic numbers between 100000000000000000 and 130000000000000000:
101010101010101010 101010101010101012 101010101010101210 101010101010101212 
............
123456789898987898 123456789898989876 123456789898989878 123456789898989898 

JavaScript

JavaScript :: Procedural

function isEsthetic(inp, base = 10) {
  let arr = inp.toString(base).split('');
  if (arr.length == 1) return false;
  for (let i = 0; i < arr.length; i++)
    arr[i] = parseInt(arr[i], base);
  for (i = 0; i < arr.length-1; i++)
    if (Math.abs(arr[i]-arr[i+1]) !== 1) return false;
  return true;
}

function collectEsthetics(base, range) {
  let out = [], x;
  if (range) {
    for (x = range[0]; x < range[1]; x++)
      if (isEsthetic(x)) out.push(x);
    return out;
  } else {
    x = 1;
    while (out.length < base*6) {
      s = x.toString(base);
      if (isEsthetic(s, base)) out.push(s.toUpperCase());
      x++;
    }
    return out.slice(base*4);
  }
}

// main
let d = new Date();
for (let x = 2; x <= 36; x++) { // we put b17 .. b36 on top, because we can
  console.log(`${x}:`);
  console.log( collectEsthetics(x),
    (new Date() - d) / 1000 + ' s');
}
console.log( collectEsthetics(10, [1000, 9999]),
  (new Date() - d) / 1000 + ' s' );

console.log( collectEsthetics(10, [1e8, 1.3e8]),
  (new Date() - d) / 1000 + ' s' );
Output:
2:

> Array(4) [ "1010101010", "10101010101", "101010101010", "1010101010101" ] 0.009 s 3: > Array(6) [ "2121", "10101", "10121", "12101", "12121", "21010" ] 0.01 s 4: > Array(8) [ "1212", "1232", "2101", "2121", "2123", "2321", "2323", "3210" ] 0.011 s 5: > Array(10) [ "1012", "1210", "1212", "1232", "1234", "2101", "2121", "2123", "2321", "2323" ] 0.013 6: > Array(12) [ "545", "1010", "1012", "1210", "1212", "1232", "1234", "2101", "2121", "2123", … ] 0.015 s 7: > Array(14) [ "565", "654", "656", "1010", "1012", "1210", "1212", "1232", "1234", "2101", … ] 0.017 s 8: > Array(16) [ "654", "656", "676", "765", "767", "1010", "1012", "1210", "1212", "1232", … ] 0.018 s 9: > Array(18) [ "676", "678", "765", "767", "787", "876", "878", "1010", "1012", "1210", … ] 0.02 s 10: > Array(20) [ "765", "767", "787", "789", "876", "878", "898", "987", "989", "1010", … ] 0.021 s 11: > Array(22) [ "787", "789", "876", "878", "898", "89A", "987", "989", "9A9", "A98", … ] 0.023 s 12: > Array(24) [ "876", "878", "898", "89A", "987", "989", "9A9", "9AB", "A98", "A9A", … ] 0.026 s 13: > Array(26) [ "898", "89A", "987", "989", "9A9", "9AB", "A98", "A9A", "ABA", "ABC", … ] 0.028 s 14: > Array(28) [ "987", "989", "9A9", "9AB", "A98", "A9A", "ABA", "ABC", "BA9", "BAB", … ] 0.031 s 15: > Array(30) [ "9A9", "9AB", "A98", "A9A", "ABA", "ABC", "BA9", "BAB", "BCB", "BCD", … ] 0.035 s 16: > Array(32) [ "A98", "A9A", "ABA", "ABC", "BA9", "BAB", "BCB", "BCD", "CBA", "CBC", … ] 0.04 s 17: > Array(34) [ "ABA", "ABC", "BA9", "BAB", "BCB", "BCD", "CBA", "CBC", "CDC", "CDE", … ] 0.044 s 18: > Array(36) [ "BA9", "BAB", "BCB", "BCD", "CBA", "CBC", "CDC", "CDE", "DCB", "DCD", … ] 0.05 s 19: > Array(38) [ "BCB", "BCD", "CBA", "CBC", "CDC", "CDE", "DCB", "DCD", "DED", "DEF", … ] 0.056 s 20: > Array(40) [ "CBA", "CBC", "CDC", "CDE", "DCB", "DCD", "DED", "DEF", "EDC", "EDE", … ] 0.063 s 21: > Array(42) [ "CDC", "CDE", "DCB", "DCD", "DED", "DEF", "EDC", "EDE", "EFE", "EFG", … ] 0.072 s 22: > Array(44) [ "DCB", "DCD", "DED", "DEF", "EDC", "EDE", "EFE", "EFG", "FED", "FEF", … ] 0.081 s 23: > Array(46) [ "DED", "DEF", "EDC", "EDE", "EFE", "EFG", "FED", "FEF", "FGF", "FGH", … ] 0.092 s 24: > Array(48) [ "EDC", "EDE", "EFE", "EFG", "FED", "FEF", "FGF", "FGH", "GFE", "GFG", … ] 0.103 s 25: > Array(50) [ "EFE", "EFG", "FED", "FEF", "FGF", "FGH", "GFE", "GFG", "GHG", "GHI", … ] 0.116 s 26: > Array(52) [ "FED", "FEF", "FGF", "FGH", "GFE", "GFG", "GHG", "GHI", "HGF", "HGH", … ] 0.132 s 27: > Array(54) [ "FGF", "FGH", "GFE", "GFG", "GHG", "GHI", "HGF", "HGH", "HIH", "HIJ", … ] 0.147 s 28: > Array(56) [ "GFE", "GFG", "GHG", "GHI", "HGF", "HGH", "HIH", "HIJ", "IHG", "IHI", … ] 0.169 s 29: > Array(58) [ "GHG", "GHI", "HGF", "HGH", "HIH", "HIJ", "IHG", "IHI", "IJI", "IJK", … ] 0.191 s 30: > Array(60) [ "HGF", "HGH", "HIH", "HIJ", "IHG", "IHI", "IJI", "IJK", "JIH", "JIJ", … ] 0.224 s 31: > Array(62) [ "HIH", "HIJ", "IHG", "IHI", "IJI", "IJK", "JIH", "JIJ", "JKJ", "JKL", … ] 0.257 s 32: > Array(64) [ "IHG", "IHI", "IJI", "IJK", "JIH", "JIJ", "JKJ", "JKL", "KJI", "KJK", … ] 0.291 s 33: > Array(66) [ "IJI", "IJK", "JIH", "JIJ", "JKJ", "JKL", "KJI", "KJK", "KLK", "KLM", … ] 0.327 s 34: > Array(68) [ "JIH", "JIJ", "JKJ", "JKL", "KJI", "KJK", "KLK", "KLM", "LKJ", "LKL", … ] 0.373 s 35: > Array(70) [ "JKJ", "JKL", "KJI", "KJK", "KLK", "KLM", "LKJ", "LKL", "LML", "LMN", … ] 0.409 s 36: > Array(72) [ "KJI", "KJK", "KLK", "KLM", "LKJ", "LKL", "LML", "LMN", "MLK", "MLM", … ] 0.465 s > Array(61) [ 1010, 1012, 1210, 1212, 1232, 1234, 2101, 2121, 2123, 2321, … ] 0.47 s > Array(126) [ 101010101, 101010121, 101010123, 101012101, 101012121, 101012123, 101012321, 101012323, 101012343, 101012345, … ]

14.204 s


JavaScript :: Functional

Constrained generation – more efficient than a filter over a larger space.

Translation of: Haskell
(() => {
    "use strict";

    // -------- ESTHETIC NUMBERS IN A GIVEN BASE ---------

    // estheticNumbersInBase :: Int -> [Int]
    const estheticNumbersInBase = b =>
        // An infinite sequence of numbers which
        // are esthetic in the given base.

        tail(fmapGen(x => x[0])(
            iterate(([, queue]) => {
                const [num, lsd] = queue[0];
                const
                    newDigits = [lsd - 1, lsd + 1]
                    .flatMap(
                        d => (d < b && d >= 0) ? (
                            [d]
                        ) : []
                    );

                return Tuple(num)(
                    queue.slice(1).concat(
                        newDigits.flatMap(d => [
                            Tuple((num * b) + d)(d)
                        ])
                    )
                );
            })(
                Tuple()(
                    enumFromTo(1)(b - 1).flatMap(
                        d => [Tuple(d)(d)]
                    )
                )
            )
        ));

    // ---------------------- TESTS ----------------------
    const main = () => {

        const samples = b => {
            const
                i = b * 4,
                j = b * 6;

            return unlines([
                `Esthetics [${i}..${j}] for base ${b}:`,
                ...chunksOf(10)(
                    compose(drop(i - 1), take(j))(
                        estheticNumbersInBase(b)
                    ).map(n => n.toString(b))
                )
                .map(unwords)
            ]);
        };

        const takeInRange = ([a, b]) =>
            compose(
                dropWhile(x => x < a),
                takeWhileGen(x => x <= b)
            );

        return [
            enumFromTo(2)(16)
            .map(samples)
            .join("\n\n"),
            [
                Tuple(1000)(9999),
                Tuple(100000000)(130000000)
            ]
            .map(
                ([lo, hi]) => unlines([
                    `Base 10 Esthetics in range [${lo}..${hi}]:`,
                    unlines(
                        chunksOf(6)(
                            takeInRange([lo, hi])(
                                estheticNumbersInBase(10)
                            )
                        )
                        .map(unwords)
                    )
                ])
            ).join("\n\n")
        ].join("\n\n");
    };

    // --------------------- GENERIC ---------------------

    // Tuple (,) :: a -> b -> (a, b)
    const Tuple = a =>
        b => ({
            type: "Tuple",
            "0": a,
            "1": b,
            length: 2,
            *[Symbol.iterator]() {
                for (const k in this) {
                    if (!isNaN(k)) {
                        yield this[k];
                    }
                }
            }
        });


    // chunksOf :: Int -> [a] -> [[a]]
    const chunksOf = n => {
        // xs split into sublists of length n.
        // The last sublist will be short if n
        // does not evenly divide the length of xs .
        const go = xs => {
            const chunk = xs.slice(0, n);

            return 0 < chunk.length ? (
                [chunk].concat(
                    go(xs.slice(n))
                )
            ) : [];
        };

        return go;
    };


    // compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
    const compose = (...fs) =>
        // A function defined by the right-to-left
        // composition of all the functions in fs.
        fs.reduce(
            (f, g) => x => f(g(x)),
            x => x
        );


    // drop :: Int -> [a] -> [a]
    // drop :: Int -> Generator [a] -> Generator [a]
    // drop :: Int -> String -> String
    const drop = n =>
        xs => Infinity > length(xs) ? (
            xs.slice(n)
        ) : (take(n)(xs), xs);


    // dropWhile :: (a -> Bool) -> [a] -> [a]
    // dropWhile :: (Char -> Bool) -> String -> String
    const dropWhile = p =>
        // The suffix remaining after takeWhile p xs.
        xs => {
            const n = xs.length;

            return xs.slice(
                0 < n ? until(
                    i => n === i || !p(xs[i])
                )(i => 1 + i)(0) : 0
            );
        };


    // enumFromTo :: Int -> Int -> [Int]
    const enumFromTo = m =>
        n => Array.from({
            length: 1 + n - m
        }, (_, i) => m + i);


    // fmapGen <$> :: (a -> b) -> Gen [a] -> Gen [b]
    const fmapGen = f =>
        // The map of f over a stream of generator values.
        function* (gen) {
            let v = gen.next();

            while (!v.done) {
                yield f(v.value);
                v = gen.next();
            }
        };


    // iterate :: (a -> a) -> a -> Gen [a]
    const iterate = f =>
        // An infinite list of repeated
        // applications of f to x.
        function* (x) {
            let v = x;

            while (true) {
                yield v;
                v = f(v);
            }
        };


    // length :: [a] -> Int
    const length = xs =>
        // Returns Infinity over objects without finite
        // length. This enables zip and zipWith to choose
        // the shorter argument when one is non-finite,
        // like cycle, repeat etc
        "GeneratorFunction" !== xs.constructor
        .constructor.name ? (
            xs.length
        ) : Infinity;


    // tail :: [a] -> [a]
    const tail = xs =>
        // A new list consisting of all
        // items of xs except the first.
        "GeneratorFunction" !== xs.constructor
        .constructor.name ? (
            (ys => 0 < ys.length ? ys.slice(1) : [])(
                xs
            )
        ) : (take(1)(xs), xs);


    // take :: Int -> [a] -> [a]
    // take :: Int -> String -> String
    const take = n =>
        // The first n elements of a list,
        // string of characters, or stream.
        xs => "GeneratorFunction" !== xs
        .constructor.constructor.name ? (
            xs.slice(0, n)
        ) : Array.from({
            length: n
        }, () => {
            const x = xs.next();

            return x.done ? [] : [x.value];
        }).flat();


    // takeWhileGen :: (a -> Bool) -> Gen [a] -> [a]
    const takeWhileGen = p => xs => {
        const ys = [];
        let
            nxt = xs.next(),
            v = nxt.value;

        while (!nxt.done && p(v)) {
            ys.push(v);
            nxt = xs.next();
            v = nxt.value;
        }

        return ys;
    };


    // unlines :: [String] -> String
    const unlines = xs =>
        // A single string formed by the intercalation
        // of a list of strings with the newline character.
        xs.join("\n");


    // until :: (a -> Bool) -> (a -> a) -> a -> a
    const until = p =>
        // The value resulting from repeated applications
        // of f to the seed value x, terminating when
        // that result returns true for the predicate p.
        f => x => {
            let v = x;

            while (!p(v)) {
                v = f(v);
            }

            return v;
        };


    // unwords :: [String] -> String
    const unwords = xs =>
        // A space-separated string derived
        // from a list of words.
        xs.join(" ");

    // MAIN ---
    return main();
})();
Output:
Esthetics [8..12] for base 2:
10101010 101010101 1010101010 10101010101 101010101010

Esthetics [12..18] for base 3:
1210 1212 2101 2121 10101 10121 12101

Esthetics [16..24] for base 4:
323 1010 1012 1210 1212 1232 2101 2121 2123

Esthetics [20..30] for base 5:
323 343 432 434 1010 1012 1210 1212 1232 1234
2101

Esthetics [24..36] for base 6:
343 345 432 434 454 543 545 1010 1012 1210
1212 1232 1234

Esthetics [28..42] for base 7:
345 432 434 454 456 543 545 565 654 656
1010 1012 1210 1212 1232

Esthetics [32..48] for base 8:
432 434 454 456 543 545 565 567 654 656
676 765 767 1010 1012 1210 1212

Esthetics [36..54] for base 9:
434 454 456 543 545 565 567 654 656 676
678 765 767 787 876 878 1010 1012 1210

Esthetics [40..60] for base 10:
454 456 543 545 565 567 654 656 676 678
765 767 787 789 876 878 898 987 989 1010
1012

Esthetics [44..66] for base 11:
456 543 545 565 567 654 656 676 678 765
767 787 789 876 878 898 89a 987 989 9a9
a98 a9a 1010

Esthetics [48..72] for base 12:
543 545 565 567 654 656 676 678 765 767
787 789 876 878 898 89a 987 989 9a9 9ab
a98 a9a aba ba9 bab

Esthetics [52..78] for base 13:
545 565 567 654 656 676 678 765 767 787
789 876 878 898 89a 987 989 9a9 9ab a98
a9a aba abc ba9 bab bcb cba

Esthetics [56..84] for base 14:
565 567 654 656 676 678 765 767 787 789
876 878 898 89a 987 989 9a9 9ab a98 a9a
aba abc ba9 bab bcb bcd cba cbc cdc

Esthetics [60..90] for base 15:
567 654 656 676 678 765 767 787 789 876
878 898 89a 987 989 9a9 9ab a98 a9a aba
abc ba9 bab bcb bcd cba cbc cdc cde dcb
dcd

Esthetics [64..96] for base 16:
654 656 676 678 765 767 787 789 876 878
898 89a 987 989 9a9 9ab a98 a9a aba abc
ba9 bab bcb bcd cba cbc cdc cde dcb dcd
ded def edc

Base 10 Esthetics in range [1000..9999]:
1010 1012 1210 1212 1232 1234
2101 2121 2123 2321 2323 2343
2345 3210 3212 3232 3234 3432
3434 3454 3456 4321 4323 4343
4345 4543 4545 4565 4567 5432
5434 5454 5456 5654 5656 5676
5678 6543 6545 6565 6567 6765
6767 6787 6789 7654 7656 7676
7678 7876 7878 7898 8765 8767
8787 8789 8987 8989 9876 9878
9898

Base 10 Esthetics in range [100000000..130000000]:
101010101 101010121 101010123 101012101 101012121 101012123
101012321 101012323 101012343 101012345 101210101 101210121
101210123 101212101 101212121 101212123 101212321 101212323
101212343 101212345 101232101 101232121 101232123 101232321
101232323 101232343 101232345 101234321 101234323 101234343
101234345 101234543 101234545 101234565 101234567 121010101
121010121 121010123 121012101 121012121 121012123 121012321
121012323 121012343 121012345 121210101 121210121 121210123
121212101 121212121 121212123 121212321 121212323 121212343
121212345 121232101 121232121 121232123 121232321 121232323
121232343 121232345 121234321 121234323 121234343 121234345
121234543 121234545 121234565 121234567 123210101 123210121
123210123 123212101 123212121 123212123 123212321 123212323
123212343 123212345 123232101 123232121 123232123 123232321
123232323 123232343 123232345 123234321 123234323 123234343
123234345 123234543 123234545 123234565 123234567 123432101
123432121 123432123 123432321 123432323 123432343 123432345
123434321 123434323 123434343 123434345 123434543 123434545
123434565 123434567 123454321 123454323 123454343 123454345
123454543 123454545 123454565 123454567 123456543 123456545
123456565 123456567 123456765 123456767 123456787 123456789

jq

Adapted from Wren

Works with: jq

Also works with gojq, the Go implementation of jq.

### Preliminaries
# _nwise/1 is included here for the sake of gojq:
def _nwise($n):
  def n: if length <= $n then . else .[0:$n] , (.[$n:] | n) end;
  n;

def tobase($b):
  def digit: "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"[.:.+1];
  def mod: . % $b;
  def div: ((. - mod) / $b);
  def digits: recurse( select(. > 0) | div) | mod ;
  # For jq it would be wise to protect against `infinite` as input, but using `isinfinite` confuses gojq
  select( (tostring|test("^[0-9]+$")) and 2 <= $b and $b <= 36)
  | if . == 0 then "0"
    else [digits | digit] | reverse[1:] | add
    end;

### Esthetic Numbers
def isEsthetic($b):
  if . == 0 then false
  else {i: (. % $b), n: ((./$b)|floor) }
  | until (.n <= 0;
      (.n % $b) as $j
      | if (.i - $j)|length != 1  # abs
        then .n = -1 #flag
        else .n |= ((./$b)|floor)
        | .i = $j
        end)
  | .n != -1
  end;  

# depth-first search
# input: {esths}
def dfs($n; $m; $i):
  if ($i >= $n and $i <= $m) then .esths += [$i] else . end
  | if ($i == 0 or $i > $m) then .
    else ($i % 10) as $d
    | ($i*10 + $d - 1) as $i1
    | ($i1 + 2) as $i2
    | if $d == 0
      then dfs($n; $m; $i2)
      elif $d == 9
      then dfs($n; $m; $i1)
      else dfs($n; $m; $i1) | dfs($n; $m; $i2)
      end
    end;

### The tasks
def listEsths(n; n2; m; m2; $perLine; $all):
  ( {esths: []}
    | reduce range(0;10) as $i (.; dfs(n2; m2; $i) )
    | "Base 10: \(.esths|length) esthetic numbers between \(n) and \(m)",
      if $all
      then .esths | _nwise($perLine) | join(" ")
      else
        (.esths[:$perLine] | join(" ")),
        "............",
        (.esths[-$perLine:] | join(" "))
      end ),
    "";

def task($maxBase):
  range (2; 1+$maxBase) as $b
  | "Base \($b): \(4*$b)th to \(6*$b)th esthetic numbers:",
    ( [{ n: 1, c: 0 }
       | while (.c <= 6*$b;
           .emit = null
           | if (.n|isEsthetic($b))
             then .c += 1
             | if .c >= 4*$b
               then .emit = "\(.n | tobase($b))"
               else .
               end
             else .
             end
        | .n += 1 )
      | select(.emit).emit]
    | _nwise(10) | join(" ") ),
  "" ;

task(16),

# the following all use the obvious range limitations for the numbers in question
listEsths(1000;            1010;    9999;            9898; 16; true),
listEsths(1e8;        101010101;  13*1e7;       123456789;  9; true),
listEsths(1e11;    101010101010; 13*1e10;    123456789898;  7; false),
listEsths(1e14; 101010101010101; 13*1e13; 123456789898989;  5; false)
Output:

(scrollable)

Base 2: 8th to 12th esthetic numbers:
10101010 101010101 1010101010 10101010101 101010101010

Base 3: 12th to 18th esthetic numbers:
1210 1212 2101 2121 10101 10121 12101

Base 4: 16th to 24th esthetic numbers:
323 1010 1012 1210 1212 1232 2101 2121 2123

Base 5: 20th to 30th esthetic numbers:
323 343 432 434 1010 1012 1210 1212 1232 1234
2101

Base 6: 24th to 36th esthetic numbers:
343 345 432 434 454 543 545 1010 1012 1210
1212 1232 1234

Base 7: 28th to 42th esthetic numbers:
345 432 434 454 456 543 545 565 654 656
1010 1012 1210 1212 1232

Base 8: 32th to 48th esthetic numbers:
432 434 454 456 543 545 565 567 654 656
676 765 767 1010 1012 1210 1212

Base 9: 36th to 54th esthetic numbers:
434 454 456 543 545 565 567 654 656 676
678 765 767 787 876 878 1010 1012 1210

Base 10: 40th to 60th esthetic numbers:
454 456 543 545 565 567 654 656 676 678
765 767 787 789 876 878 898 987 989 1010
1012

Base 11: 44th to 66th esthetic numbers:
456 543 545 565 567 654 656 676 678 765
767 787 789 876 878 898 89A 987 989 9A9
A98 A9A 1010

Base 12: 48th to 72th esthetic numbers:
543 545 565 567 654 656 676 678 765 767
787 789 876 878 898 89A 987 989 9A9 9AB
A98 A9A ABA BA9 BAB

Base 13: 52th to 78th esthetic numbers:
545 565 567 654 656 676 678 765 767 787
789 876 878 898 89A 987 989 9A9 9AB A98
A9A ABA ABC BA9 BAB BCB CBA

Base 14: 56th to 84th esthetic numbers:
565 567 654 656 676 678 765 767 787 789
876 878 898 89A 987 989 9A9 9AB A98 A9A
ABA ABC BA9 BAB BCB BCD CBA CBC CDC

Base 15: 60th to 90th esthetic numbers:
567 654 656 676 678 765 767 787 789 876
878 898 89A 987 989 9A9 9AB A98 A9A ABA
ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB
DCD

Base 16: 64th to 96th esthetic numbers:
654 656 676 678 765 767 787 789 876 878
898 89A 987 989 9A9 9AB A98 A9A ABA ABC
BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD
DED DEF EDC

Base 10: 61 esthetic numbers between 1000 and 9999
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898

Base 10: 126 esthetic numbers between 100000000 and 130000000
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789

Base 10: 911 esthetic numbers between 100000000000 and 130000000000
101010101010 101010101012 101010101210 101010101212 101010101232 101010101234 101010121010
............
123456787678 123456787876 123456787878 123456787898 123456789876 123456789878 123456789898

Base 10: 6225 esthetic numbers between 100000000000000 and 130000000000000
101010101010101 101010101010121 101010101010123 101010101012101 101010101012121
............
123456789898767 123456789898787 123456789898789 123456789898987 123456789898989

Julia

Illustrates both brute force and iterative methods of generating numbers in the sequence.

using Formatting
import Base.iterate, Base.IteratorSize, Base.IteratorEltype

"""
    struct Esthetic
    
Used for iteration of esthetic numbers
"""
struct Esthetic{T}
    lowerlimit::T where T <: Integer
    base::T
    upperlimit::T
    Esthetic{T}(n, bas, m=typemax(T)) where T = new{T}(nextesthetic(n, bas), bas, m)
end

Base.IteratorSize(n::Esthetic) = Base.IsInfinite()
Base.IteratorEltype(n::Esthetic) = Integer
function Base.iterate(es::Esthetic, state=typeof(es.lowerlimit)[])
    state = isempty(state) ? digits(es.lowerlimit, base=es.base) : increment!(state, es.base, 1)
    n = toInt(state, es.base)
    return n <= es.upperlimit ? (n, state) : nothing
end

isesthetic(n, b) = (d = digits(n, base=b); all(i -> abs(d[i] - d[i + 1]) == 1, 1:length(d)-1))
toInt(dig, bas) = foldr((i, j) -> i + bas * j, dig)
nextesthetic(n, b) = for i in n:typemax(typeof(n)) if isesthetic(i, b) return i end; end

""" Fill the digits below pos in vector with the least esthetic number fitting there """
function filldecreasing!(vec, pos)
    if pos > 1
        n = vec[pos]
        for i in pos-1:-1:1
            n = (n == 0) ? 1 : n - 1
            vec[i] = n
        end
    end
    return vec
end

""" Get the next esthetic number's digits from the previous number's digits """
function increment!(vec, bas, startpos = 1)
    len = length(vec)
    if len == 1
        if vec[1] < bas - 1
            vec[1] += 1
        else
            vec[1] = 0
            push!(vec, 1)
        end
    else
        pos = findfirst(i -> vec[i] < vec[i + 1], startpos:len-1)
        if pos == nothing
            if vec[end] >= bas - 1
                push!(vec, 1)
                filldecreasing!(vec, len + 1)
            else
                vec[end] += 1
                filldecreasing!(vec, len)
            end
        else
            for i in pos:len
                if i == len
                    if vec[i] < bas - 1
                        vec[i] += 1
                        filldecreasing!(vec, i)
                    else
                        push!(vec, 1)
                        filldecreasing!(vec, len + 1)
                    end
                elseif vec[i] < vec[i + 1] && vec[i] < bas - 2
                    vec[i] += 2
                    filldecreasing!(vec, i)
                    break
                end
            end
        end
    end
    return vec
end

for b in 2:16
    println("For base $b, the esthetic numbers indexed from $(4b) to $(6b) are:")
    printed = 0
    for (i, n) in enumerate(Iterators.take(Esthetic{Int}(1, b), 6b))
        if i >= 4b
            printed += 1
            print(string(n, base=b), printed % 21 == 20 ? "\n" : " ")
        end
    end
    println("\n")
end

for (bottom, top, cols, T) in [[1000, 9999, 16, Int], [100_000_000, 130_000_000, 8, Int], 
        [101_010_000_000, 130_000_000_000, 6, Int], [101_010_101_010_000_000, 130_000_000_000_000_000, 4, Int], 
        [101_010_101_010_101_000_000, 130_000_000_000_000_000_000, 4, Int128]]
    esth, count = Esthetic{T}(bottom, 10, top), 0
    println("\nBase 10 esthetic numbers between $(format(bottom, commas=true)) and $(format(top, commas=true)):")
    for n in esth
        count += 1
        if count == 64
            println(" ...")
        elseif count < 64
            print(format(n, commas=true), count % cols == 0 ? "\n" : " ")
        end
    end
    println("\nTotal esthetic numbers in interval: $count")
end
Output:
For base 2, the esthetic numbers indexed from 8 to 12 are:
10101010 101010101 1010101010 10101010101 101010101010

For base 3, the esthetic numbers indexed from 12 to 18 are:
1210 1212 2101 2121 10101 10121 12101

For base 4, the esthetic numbers indexed from 16 to 24 are:
323 1010 1012 1210 1212 1232 2101 2121 2123

For base 5, the esthetic numbers indexed from 20 to 30 are:
323 343 432 434 1010 1012 1210 1212 1232 1234 2101

For base 6, the esthetic numbers indexed from 24 to 36 are:
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234

For base 7, the esthetic numbers indexed from 28 to 42 are:
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232

For base 8, the esthetic numbers indexed from 32 to 48 are:
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212

For base 9, the esthetic numbers indexed from 36 to 54 are:
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210

For base 10, the esthetic numbers indexed from 40 to 60 are:
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010
1012

For base 11, the esthetic numbers indexed from 44 to 66 are:
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9
a98 a9a 1010

For base 12, the esthetic numbers indexed from 48 to 72 are:
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab
a98 a9a aba ba9 bab

For base 13, the esthetic numbers indexed from 52 to 78 are:
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98
a9a aba abc ba9 bab bcb cba

For base 14, the esthetic numbers indexed from 56 to 84 are:
565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a
aba abc ba9 bab bcb bcd cba cbc cdc

For base 15, the esthetic numbers indexed from 60 to 90 are:
567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba
abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd

For base 16, the esthetic numbers indexed from 64 to 96 are:
654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc
ba9 bab bcb bcd cba cbc cdc cde dcb dcd ded def edc


Base 10 esthetic numbers between 1,000 and 9,999:
1,010 1,012 1,210 1,212 1,232 1,234 2,101 2,121 2,123 2,321 2,323 2,343 2,345 3,210 3,212 3,232
3,234 3,432 3,434 3,454 3,456 4,321 4,323 4,343 4,345 4,543 4,545 4,565 4,567 5,432 5,434 5,454
5,456 5,654 5,656 5,676 5,678 6,543 6,545 6,565 6,567 6,765 6,767 6,787 6,789 7,654 7,656 7,676
7,678 7,876 7,878 7,898 8,765 8,767 8,787 8,789 8,987 8,989 9,876 9,878 9,898
Total esthetic numbers in interval: 61

Base 10 esthetic numbers between 100,000,000 and 130,000,000:
101,010,101 101,010,121 101,010,123 101,012,101 101,012,121 101,012,123 101,012,321 101,012,323
101,012,343 101,012,345 101,210,101 101,210,121 101,210,123 101,212,101 101,212,121 101,212,123
101,212,321 101,212,323 101,212,343 101,212,345 101,232,101 101,232,121 101,232,123 101,232,321
101,232,323 101,232,343 101,232,345 101,234,321 101,234,323 101,234,343 101,234,345 101,234,543
101,234,545 101,234,565 101,234,567 121,010,101 121,010,121 121,010,123 121,012,101 121,012,121
121,012,123 121,012,321 121,012,323 121,012,343 121,012,345 121,210,101 121,210,121 121,210,123
121,212,101 121,212,121 121,212,123 121,212,321 121,212,323 121,212,343 121,212,345 121,232,101
121,232,121 121,232,123 121,232,321 121,232,323 121,232,343 121,232,345 121,234,321  ...

Total esthetic numbers in interval: 126

Base 10 esthetic numbers between 101,010,000,000 and 130,000,000,000:
101,010,101,010 101,010,101,012 101,010,101,210 101,010,101,212 101,010,101,232 101,010,101,234
101,010,121,010 101,010,121,012 101,010,121,210 101,010,121,212 101,010,121,232 101,010,121,234
101,010,123,210 101,010,123,212 101,010,123,232 101,010,123,234 101,010,123,432 101,010,123,434
101,010,123,454 101,010,123,456 101,012,101,010 101,012,101,012 101,012,101,210 101,012,101,212
101,012,101,232 101,012,101,234 101,012,121,010 101,012,121,012 101,012,121,210 101,012,121,212
101,012,121,232 101,012,121,234 101,012,123,210 101,012,123,212 101,012,123,232 101,012,123,234
101,012,123,432 101,012,123,434 101,012,123,454 101,012,123,456 101,012,321,010 101,012,321,012
101,012,321,210 101,012,321,212 101,012,321,232 101,012,321,234 101,012,323,210 101,012,323,212
101,012,323,232 101,012,323,234 101,012,323,432 101,012,323,434 101,012,323,454 101,012,323,456
101,012,343,210 101,012,343,212 101,012,343,232 101,012,343,234 101,012,343,432 101,012,343,434
101,012,343,454 101,012,343,456 101,012,345,432  ...

Total esthetic numbers in interval: 911

Base 10 esthetic numbers between 101,010,101,010,000,000 and 130,000,000,000,000,000:
101,010,101,010,101,010 101,010,101,010,101,012 101,010,101,010,101,210 101,010,101,010,101,212
101,010,101,010,101,232 101,010,101,010,101,234 101,010,101,010,121,010 101,010,101,010,121,012
101,010,101,010,121,210 101,010,101,010,121,212 101,010,101,010,121,232 101,010,101,010,121,234
101,010,101,010,123,210 101,010,101,010,123,212 101,010,101,010,123,232 101,010,101,010,123,234
101,010,101,010,123,432 101,010,101,010,123,434 101,010,101,010,123,454 101,010,101,010,123,456
101,010,101,012,101,010 101,010,101,012,101,012 101,010,101,012,101,210 101,010,101,012,101,212
101,010,101,012,101,232 101,010,101,012,101,234 101,010,101,012,121,010 101,010,101,012,121,012
101,010,101,012,121,210 101,010,101,012,121,212 101,010,101,012,121,232 101,010,101,012,121,234
101,010,101,012,123,210 101,010,101,012,123,212 101,010,101,012,123,232 101,010,101,012,123,234
101,010,101,012,123,432 101,010,101,012,123,434 101,010,101,012,123,454 101,010,101,012,123,456
101,010,101,012,321,010 101,010,101,012,321,012 101,010,101,012,321,210 101,010,101,012,321,212
101,010,101,012,321,232 101,010,101,012,321,234 101,010,101,012,323,210 101,010,101,012,323,212
101,010,101,012,323,232 101,010,101,012,323,234 101,010,101,012,323,432 101,010,101,012,323,434
101,010,101,012,323,454 101,010,101,012,323,456 101,010,101,012,343,210 101,010,101,012,343,212
101,010,101,012,343,232 101,010,101,012,343,234 101,010,101,012,343,432 101,010,101,012,343,434
101,010,101,012,343,454 101,010,101,012,343,456 101,010,101,012,345,432  ...

Total esthetic numbers in interval: 44744

Base 10 esthetic numbers between 101,010,101,010,101,000,000 and 130,000,000,000,000,000,000:
101,010,101,010,101,010,101 101,010,101,010,101,010,121 101,010,101,010,101,010,123 101,010,101,010,101,012,101
101,010,101,010,101,012,121 101,010,101,010,101,012,123 101,010,101,010,101,012,321 101,010,101,010,101,012,323
101,010,101,010,101,012,343 101,010,101,010,101,012,345 101,010,101,010,101,210,101 101,010,101,010,101,210,121
101,010,101,010,101,210,123 101,010,101,010,101,212,101 101,010,101,010,101,212,121 101,010,101,010,101,212,123
101,010,101,010,101,212,321 101,010,101,010,101,212,323 101,010,101,010,101,212,343 101,010,101,010,101,212,345
101,010,101,010,101,232,101 101,010,101,010,101,232,121 101,010,101,010,101,232,123 101,010,101,010,101,232,321
101,010,101,010,101,232,323 101,010,101,010,101,232,343 101,010,101,010,101,232,345 101,010,101,010,101,234,321
101,010,101,010,101,234,323 101,010,101,010,101,234,343 101,010,101,010,101,234,345 101,010,101,010,101,234,543
101,010,101,010,101,234,545 101,010,101,010,101,234,565 101,010,101,010,101,234,567 101,010,101,010,121,010,101
101,010,101,010,121,010,121 101,010,101,010,121,010,123 101,010,101,010,121,012,101 101,010,101,010,121,012,121
101,010,101,010,121,012,123 101,010,101,010,121,012,321 101,010,101,010,121,012,323 101,010,101,010,121,012,343
101,010,101,010,121,012,345 101,010,101,010,121,210,101 101,010,101,010,121,210,121 101,010,101,010,121,210,123
101,010,101,010,121,212,101 101,010,101,010,121,212,121 101,010,101,010,121,212,123 101,010,101,010,121,212,321
101,010,101,010,121,212,323 101,010,101,010,121,212,343 101,010,101,010,121,212,345 101,010,101,010,121,232,101
101,010,101,010,121,232,121 101,010,101,010,121,232,123 101,010,101,010,121,232,321 101,010,101,010,121,232,323
101,010,101,010,121,232,343 101,010,101,010,121,232,345 101,010,101,010,121,234,321  ...

Total esthetic numbers in interval: 312019

Kotlin

Translation of: D
import kotlin.math.abs

fun isEsthetic(n: Long, b: Long): Boolean {
    if (n == 0L) {
        return false
    }
    var i = n % b
    var n2 = n / b
    while (n2 > 0) {
        val j = n2 % b
        if (abs(i - j) != 1L) {
            return false
        }
        n2 /= b
        i = j
    }
    return true
}

fun listEsths(n: Long, n2: Long, m: Long, m2: Long, perLine: Int, all: Boolean) {
    val esths = mutableListOf<Long>()
    fun dfs(n: Long, m: Long, i: Long) {
        if (i in n..m) {
            esths.add(i)
        }
        if (i == 0L || i > m) {
            return
        }
        val d = i % 10
        val i1 = i * 10 + d - 1
        val i2 = i1 + 2
        when (d) {
            0L -> {
                dfs(n, m, i2)
            }
            9L -> {
                dfs(n, m, i1)
            }
            else -> {
                dfs(n, m, i1)
                dfs(n, m, i2)
            }
        }
    }

    for (i in 0L until 10L) {
        dfs(n2, m2, i)
    }

    val le = esths.size
    println("Base 10: $le esthetic numbers between $n and $m:")
    if (all) {
        for (c_esth in esths.withIndex()) {
            print("${c_esth.value} ")
            if ((c_esth.index + 1) % perLine == 0) {
                println()
            }
        }
        println()
    } else {
        for (i in 0 until perLine) {
            print("${esths[i]} ")
        }
        println()
        println("............")
        for (i in le - perLine until le) {
            print("${esths[i]} ")
        }
        println()
    }
    println()
}

fun main() {
    for (b in 2..16) {
        println("Base $b: ${4 * b}th to ${6 * b}th esthetic numbers:")
        var n = 1L
        var c = 0L
        while (c < 6 * b) {
            if (isEsthetic(n, b.toLong())) {
                c++
                if (c >= 4 * b) {
                    print("${n.toString(b)} ")
                }
            }
            n++
        }
        println()
    }
    println()

    // the following all use the obvious range limitations for the numbers in question
    listEsths(1000, 1010, 9999, 9898, 16, true);
    listEsths(1e8.toLong(), 101_010_101, 13 * 1e7.toLong(), 123_456_789, 9, true);
    listEsths(1e11.toLong(), 101_010_101_010, 13 * 1e10.toLong(), 123_456_789_898, 7, false);
    listEsths(1e14.toLong(), 101_010_101_010_101, 13 * 1e13.toLong(), 123_456_789_898_989, 5, false);
    listEsths(1e17.toLong(), 101_010_101_010_101_010, 13 * 1e16.toLong(), 123_456_789_898_989_898, 4, false);
}
Output:
Base 2: 8th to 12th esthetic numbers:
10101010 101010101 1010101010 10101010101 101010101010 
Base 3: 12th to 18th esthetic numbers:
1210 1212 2101 2121 10101 10121 12101 
Base 4: 16th to 24th esthetic numbers:
323 1010 1012 1210 1212 1232 2101 2121 2123 
Base 5: 20th to 30th esthetic numbers:
323 343 432 434 1010 1012 1210 1212 1232 1234 2101 
Base 6: 24th to 36th esthetic numbers:
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234 
Base 7: 28th to 42th esthetic numbers:
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232 
Base 8: 32th to 48th esthetic numbers:
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212 
Base 9: 36th to 54th esthetic numbers:
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210 
Base 10: 40th to 60th esthetic numbers:
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012 
Base 11: 44th to 66th esthetic numbers:
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 a98 a9a 1010 
Base 12: 48th to 72th esthetic numbers:
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba ba9 bab 
Base 13: 52th to 78th esthetic numbers:
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb cba 
Base 14: 56th to 84th esthetic numbers:
565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc 
Base 15: 60th to 90th esthetic numbers:
567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd 
Base 16: 64th to 96th esthetic numbers:
654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd ded def edc 

Base 10: 61 esthetic numbers between 1000 and 9999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232 
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454 
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676 
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898 

Base 10: 126 esthetic numbers between 100000000 and 130000000:
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343 
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323 
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345 
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101 
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345 
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343 
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321 
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121 
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101 
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343 
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321 
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545 
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565 
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789 


Base 10: 911 esthetic numbers between 100000000000 and 130000000000:
101010101010 101010101012 101010101210 101010101212 101010101232 101010101234 101010121010 
............
123456787678 123456787876 123456787878 123456787898 123456789876 123456789878 123456789898 

Base 10: 6225 esthetic numbers between 100000000000000 and 130000000000000:
101010101010101 101010101010121 101010101010123 101010101012101 101010101012121 
............
123456789898767 123456789898787 123456789898789 123456789898987 123456789898989 

Base 10: 44744 esthetic numbers between 100000000000000000 and 130000000000000000:
101010101010101010 101010101010101012 101010101010101210 101010101010101212 
............
123456789898987898 123456789898989876 123456789898989878 123456789898989898 

Lua

Translation of: C++
function to(n, b)
    local BASE = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"

    if n == 0 then
        return "0"
    end

    local ss = ""
    while n > 0 do
        local idx = (n % b) + 1
        n = math.floor(n / b)
        ss = ss .. BASE:sub(idx, idx)
    end
    return string.reverse(ss)
end

function isEsthetic(n, b)
    function uabs(a, b)
        if a < b then
            return b - a
        end
        return a - b
    end

    if n == 0 then
        return false
    end
    local i = n % b
    n = math.floor(n / b)
    while n > 0 do
        local j = n % b
        if uabs(i, j) ~= 1 then
            return false
        end
        n = math.floor(n / b)
        i = j
    end
    return true
end

function listEsths(n, n2, m, m2, perLine, all)
    local esths = {}
    function dfs(n, m, i)
        if i >= n and i <= m then
            table.insert(esths, i)
        end
        if i == 0 or i > m then
            return
        end
        local d = i % 10
        local i1 = 10 * i + d - 1
        local i2 = i1 + 2
        if d == 0 then
            dfs(n, m, i2)
        elseif d == 9 then
            dfs(n, m, i1)
        else
            dfs(n, m, i1)
            dfs(n, m, i2)
        end
    end

    for i=0,9 do
        dfs(n2, m2, i)
    end
    local le = #esths
    print(string.format("Base 10: %s esthetic numbers between %s and %s:", le, math.floor(n), math.floor(m)))
    if all then
        for c,esth in pairs(esths) do
            io.write(esth.." ")
            if c % perLine == 0 then
                print()
            end
        end
        print()
    else
        for i=1,perLine do
            io.write(esths[i] .. " ")
        end
        print("\n............")
        for i = le - perLine + 1, le do
            io.write(esths[i] .. " ")
        end
        print()
    end
    print()
end

for b=2,16 do
    print(string.format("Base %d: %dth to %dth esthetic numbers:", b, 4 * b, 6 * b))
    local n = 1
    local c = 0
    while c < 6 * b do
        if isEsthetic(n, b) then
            c = c + 1
            if c >= 4 * b then
                io.write(to(n, b).." ")
            end
        end
        n = n + 1
    end
    print()
end
print()

-- the following all use the obvious range limitations for the numbers in question
listEsths(1000, 1010, 9999, 9898, 16, true)
listEsths(1e8, 101010101, 13 * 1e7, 123456789, 9, true)
listEsths(1e11, 101010101010, 13 * 1e10, 123456789898, 7, false)
listEsths(1e14, 101010101010101, 13 * 1e13, 123456789898989, 5, false)
listEsths(1e17, 101010101010101010, 13 * 1e16, 123456789898989898, 4, false)
Output:
Base 2: 8th to 12th esthetic numbers:
10101010 101010101 1010101010 10101010101 101010101010
Base 3: 12th to 18th esthetic numbers:
1210 1212 2101 2121 10101 10121 12101
Base 4: 16th to 24th esthetic numbers:
323 1010 1012 1210 1212 1232 2101 2121 2123
Base 5: 20th to 30th esthetic numbers:
323 343 432 434 1010 1012 1210 1212 1232 1234 2101
Base 6: 24th to 36th esthetic numbers:
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234
Base 7: 28th to 42th esthetic numbers:
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232
Base 8: 32th to 48th esthetic numbers:
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212
Base 9: 36th to 54th esthetic numbers:
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210
Base 10: 40th to 60th esthetic numbers:
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012
Base 11: 44th to 66th esthetic numbers:
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 A98 A9A 1010
Base 12: 48th to 72th esthetic numbers:
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA BA9 BAB
Base 13: 52th to 78th esthetic numbers:
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB CBA
Base 14: 56th to 84th esthetic numbers:
565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC
Base 15: 60th to 90th esthetic numbers:
567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD
Base 16: 64th to 96th esthetic numbers:
654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD DED DEF EDC

Base 10: 61 esthetic numbers between 1000 and 9999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898

Base 10: 126 esthetic numbers between 100000000 and 130000000:
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789


Base 10: 911 esthetic numbers between 100000000000 and 130000000000:
101010101010 101010101012 101010101210 101010101212 101010101232 101010101234 101010121010
............
123456787678 123456787876 123456787878 123456787898 123456789876 123456789878 123456789898

Base 10: 6225 esthetic numbers between 100000000000000 and 130000000000000:
101010101010101 101010101010121 101010101010123 101010101012101 101010101012121
............
123456789898767 123456789898787 123456789898789 123456789898987 123456789898989

Base 10: 44744 esthetic numbers between 100000000000000000 and 130000000000000000:
101010101010101010 101010101010101012 101010101010101210 101010101010101212
............
123456789898987898 123456789898989876 123456789898989878 123456789898989898

Mathematica /Wolfram Language

ClearAll[EstheticNumbersRangeHelper, EstheticNumbersRange]
EstheticNumbersRangeHelper[power_, mima : {mi_, max_}, b_ : 10] := Module[{steps, cands},
  steps = Tuples[{-1, 1}, power - 1];
  steps = Accumulate[Prepend[#, 0]] & /@ steps;
  cands = Table[Select[# + ConstantArray[s, power] & /@ steps, AllTrue[Between[{0, b - 1}]]], {s, 1, b - 1}];
  cands //= Catenate;
  cands //= Map[FromDigits[#, b] &];
  cands = Select[cands, Between[mima]];
  BaseForm[#, b] & /@ cands
 ]
EstheticNumbersRange[{min_, max_}, b_ : 10] := Module[{mi, ma},
  {mi, ma} = Log[b, {min, max}];
  mi //= Ceiling;
  ma //= Ceiling;
  ma = Max[ma, 1];
  mi = Max[mi, 1];
  Catenate[EstheticNumbersRangeHelper[#, {min, max}, b] & /@ Range[mi, ma]]
 ]
Table[{b, EstheticNumbersRange[{1, If[b == 2, 100000, If[b == 3, 100000, b^4]]}, b][[4 b ;; 6 b]]}, {b, 2, 16}] // Grid
EstheticNumbersRange[{1000, 9999}]
EstheticNumbersRange[{10^8, 1.3 10^8}]
Output:
2	{10101010,101010101,1010101010,10101010101,101010101010}
3	{1210,1212,2101,2121,10101,10121,12101}
4	{323,1010,1012,1210,1212,1232,2101,2121,2123}
5	{323,343,432,434,1010,1012,1210,1212,1232,1234,2101}
6	{343,345,432,434,454,543,545,1010,1012,1210,1212,1232,1234}
7	{345,432,434,454,456,543,545,565,654,656,1010,1012,1210,1212,1232}
8	{432,434,454,456,543,545,565,567,654,656,676,765,767,1010,1012,1210,1212}
9	{434,454,456,543,545,565,567,654,656,676,678,765,767,787,876,878,1010,1012,1210}
10	{454,456,543,545,565,567,654,656,676,678,765,767,787,789,876,878,898,987,989,1010,1012}
11	{456,543,545,565,567,654,656,676,678,765,767,787,789,876,878,898,89a,987,989,9a9,a98,a9a,1010}
12	{543,545,565,567,654,656,676,678,765,767,787,789,876,878,898,89a,987,989,9a9,9ab,a98,a9a,aba,ba9,bab}
13	{545,565,567,654,656,676,678,765,767,787,789,876,878,898,89a,987,989,9a9,9ab,a98,a9a,aba,abc,ba9,bab,bcb,cba}
14	{565,567,654,656,676,678,765,767,787,789,876,878,898,89a,987,989,9a9,9ab,a98,a9a,aba,abc,ba9,bab,bcb,bcd,cba,cbc,cdc}
15	{567,654,656,676,678,765,767,787,789,876,878,898,89a,987,989,9a9,9ab,a98,a9a,aba,abc,ba9,bab,bcb,bcd,cba,cbc,cdc,cde,dcb,dcd}
16	{654,656,676,678,765,767,787,789,876,878,898,89a,987,989,9a9,9ab,a98,a9a,aba,abc,ba9,bab,bcb,bcd,cba,cbc,cdc,cde,dcb,dcd,ded,def,edc}

{1010,1012,1210,1212,1232,1234,2101,2121,2123,2321,2323,2343,2345,3210,3212,3232,3234,3432,3434,3454,3456,4321,4323,4343,4345,4543,4545,4565,4567,5432,5434,5454,5456,5654,5656,5676,5678,6543,6545,6565,6567,6765,6767,6787,6789,7654,7656,7676,7678,7876,7878,7898,8765,8767,8787,8789,8987,8989,9876,9878,9898}

{101010101,101010121,101010123,101012101,101012121,101012123,101012321,101012323,101012343,101012345,101210101,101210121,101210123,101212101,101212121,101212123,101212321,101212323,101212343,101212345,101232101,101232121,101232123,101232321,101232323,101232343,101232345,101234321,101234323,101234343,101234345,101234543,101234545,101234565,101234567,121010101,121010121,121010123,121012101,121012121,121012123,121012321,121012323,121012343,121012345,121210101,121210121,121210123,121212101,121212121,121212123,121212321,121212323,121212343,121212345,121232101,121232121,121232123,121232321,121232323,121232343,121232345,121234321,121234323,121234343,121234345,121234543,121234545,121234565,121234567,123210101,123210121,123210123,123212101,123212121,123212123,123212321,123212323,123212343,123212345,123232101,123232121,123232123,123232321,123232323,123232343,123232345,123234321,123234323,123234343,123234345,123234543,123234545,123234565,123234567,123432101,123432121,123432123,123432321,123432323,123432343,123432345,123434321,123434323,123434343,123434345,123434543,123434545,123434565,123434567,123454321,123454323,123454343,123454345,123454543,123454545,123454565,123454567,123456543,123456545,123456565,123456567,123456765,123456767,123456787,123456789}

Nim

Translation of: Kotlin
import strformat

func isEsthetic(n, b: int64): bool =
  if n == 0: return false
  var i = n mod b
  var n = n div b
  while n > 0:
    let j = n mod b
    if abs(i - j) != 1:
      return false
    n = n div b
    i = j
  result = true


proc listEsths(n1, n2, m1, m2: int64; perLine: int; all: bool) =
  var esths: seq[int64]

  func dfs(n, m, i: int64) =
    if i in n..m: esths.add i
    if i == 0 or i > m: return
    let d = i mod 10
    let i1 = i * 10 + d - 1
    let i2 = i1 + 2
    case d
    of 0:
      dfs(n, m, i2)
    of 9:
      dfs(n, m, i1)
    else:
      dfs(n, m, i1)
      dfs(n, m, i2)

  for i in 0..9:
    dfs(n2, m2, i)

  echo &"Base 10: {esths.len} esthetic numbers between {n1} and {m1}:"
  if all:
    for i, esth in esths:
      stdout.write esth
      stdout.write if (i + 1) mod perLine == 0: '\n' else: ' '
    echo()
  else:
    for i in 0..<perLine:
      stdout.write esths[i], ' '
    echo "\n............"
    for i in esths.len - perLine .. esths.high:
      stdout.write esths[i], ' '
    echo()
  echo()


proc toBase(n, b: int64): string =
  const Digits = ['0', '1', '2', '3', '4', '5', '6', '7',
                  '8', '9', 'a', 'b', 'c', 'd', 'e', 'f']

  if n == 0: return "0"
  var n = n
  while n > 0:
    result.add Digits[n mod b]
    n = n div b
  for i in 0..<(result.len div 2):
    swap result[i], result[result.high - i]


for b in 2..16:
  echo &"Base {b}: {4 * b}th to {6 * b}th esthetic numbers:"
  var n = 1i64
  var c = 0i64
  while c < 6 * b:
    if n.isEsthetic(b):
      inc c
      if c >= 4 * b: stdout.write n.toBase(b), ' '
    inc n
  echo '\n'

# The following all use the obvious range limitations for the numbers in question.
listEsths(1000, 1010, 9999, 9898, 16, true)
listEsths(100_000_000, 101_010_101, 130_000_000, 123_456_789, 9, true)
listEsths(100_000_000_000, 101_010_101_010, 130_000_000_000, 123_456_789_898, 7, false)
listEsths(100_000_000_000_000, 101_010_101_010_101, 130_000_000_000, 123_456_789_898_989, 5, false)
listEsths(100_000_000_000_000_000, 101_010_101_010_101_010, 130_000_000_000_000_000, 123_456_789_898_989_898, 4, false)
Output:
Base 2: 8th to 12th esthetic numbers:
10101010 101010101 1010101010 10101010101 101010101010 

Base 3: 12th to 18th esthetic numbers:
1210 1212 2101 2121 10101 10121 12101 

Base 4: 16th to 24th esthetic numbers:
323 1010 1012 1210 1212 1232 2101 2121 2123 

Base 5: 20th to 30th esthetic numbers:
323 343 432 434 1010 1012 1210 1212 1232 1234 2101 

Base 6: 24th to 36th esthetic numbers:
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234 

Base 7: 28th to 42th esthetic numbers:
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232 

Base 8: 32th to 48th esthetic numbers:
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212 

Base 9: 36th to 54th esthetic numbers:
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210 

Base 10: 40th to 60th esthetic numbers:
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012 

Base 11: 44th to 66th esthetic numbers:
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 a98 a9a 1010 

Base 12: 48th to 72th esthetic numbers:
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba ba9 bab 

Base 13: 52th to 78th esthetic numbers:
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb cba 

Base 14: 56th to 84th esthetic numbers:
565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc 

Base 15: 60th to 90th esthetic numbers:
567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd 

Base 16: 64th to 96th esthetic numbers:
654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd ded def edc 

Base 10: 61 esthetic numbers between 1000 and 9999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898 

Base 10: 126 esthetic numbers between 100000000 and 130000000:
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789


Base 10: 911 esthetic numbers between 100000000000 and 130000000000:
101010101010 101010101012 101010101210 101010101212 101010101232 101010101234 101010121010 
............
123456787678 123456787876 123456787878 123456787898 123456789876 123456789878 123456789898 

Base 10: 6225 esthetic numbers between 100000000000000 and 130000000000:
101010101010101 101010101010121 101010101010123 101010101012101 101010101012121 
............
123456789898767 123456789898787 123456789898789 123456789898987 123456789898989 

Base 10: 44744 esthetic numbers between 100000000000000000 and 130000000000000000:
101010101010101010 101010101010101012 101010101010101210 101010101010101212 
............
123456789898987898 123456789898989876 123456789898989878 123456789898989898 

Pascal

Simple brute force, but fast and simple counting for complete first digit ranges.

program Esthetic;
{$IFDEF FPC}
  {$MODE DELPHI}  {$OPTIMIZATION ON,ALL} {$codealign proc=16}
{$ELSE}
  {$APPTYPE CONSOLE}
{$ENDIF}
uses
  sysutils,//IntToStr
  strutils;//Numb2USA aka commatize
const
  ConvBase :array[0..15] of char= '0123456789ABCDEF';
  maxBase = 16;
type
  tErg = string[63];
  tCnt = array[0..maxBase-1] of UInt64;
  tDgtcnt = array[0..64] of tCnt;

//global
var
  Dgtcnt :tDgtcnt;

procedure CalcDgtCnt(base:NativeInt;var Dgtcnt :tDgtcnt);
var
  pCnt0,
  pCnt1 : ^tCnt;
  i,j,SumCarry: NativeUInt;
begin
  fillchar(Dgtcnt,SizeOf(Dgtcnt),#0);
  pCnt0 := @Dgtcnt[0];
  //building count for every first digit of digitcount:
  //example :count numbers starting "1" of lenght 13
  For i := 0 to Base-1 do
    pCnt0^[i] := 1;
  For j := 1 to High(Dgtcnt) do
  Begin
    pCnt1 := @Dgtcnt[j];
    //0 -> followed only by solutions of 1
    pCnt1^[0] := pCnt0^[1];
    //base-1 -> followed only by solutions of Base-2
    pCnt1^[base-1] := pCnt0^[base-2];
    //followed by solutions for i-1 and i+1
    For i := 1 to base-2 do
      pCnt1^[i]:= pCnt0^[i-1]+pCnt0^[i+1];
    //next row aka digitcnt
    pCnt0:= pCnt1;
  end;

  //converting to sum up each digit
  //example :count numbers starting "1" of lenght 13
  //-> count of all est. numbers from 1 to "1" with max lenght 13

  //delete leading "0"
  For j := 0 to High(Dgtcnt) do //High(Dgtcnt)
    Dgtcnt[j,0] := 0;

  SumCarry := Uint64(0);
  For j := 0 to High(Dgtcnt) do
  Begin
    pCnt0 := @Dgtcnt[j];
    For i := 0 to base-1 do
    begin
      SumCarry +=pCnt0^[i];
      pCnt0^[i] :=SumCarry;
    end;
  end;
end;

function ConvToBaseStr(n,base:NativeUint):tErg;
var
  idx,dgt,rst : Uint64;
Begin
  IF n = 0 then
  Begin
    result := ConvBase[0];
    EXIT;
  end;
  idx := High(result);
  repeat
    rst := n div base;
    dgt := n-rst*base;
    result[idx] := ConvBase[dgt];
    dec(idx);
    n := rst;
  until n=0;
  rst := High(result)-idx;
  move(result[idx+1],result[1],rst);
  setlength(result,rst);
end;

function isEsthetic(n,base:Uint64):boolean;
var
  lastdgt,
  dgt,
  rst : Uint64;
Begin
  result := true;
  IF n >= Base then
  Begin
    rst := n div base;
    Lastdgt := n-rst*base;
    n := rst;
    repeat
      rst := n div base;
      dgt := n-rst*base;
      IF sqr(lastDgt-dgt)<> 1 then
      Begin
        result := false;
        EXIT;
      end;
      lastDgt := dgt;
      n := rst;
    until n = 0;
  end;
end;

procedure Task1;
var
  i,base,cnt : NativeInt;
Begin
  cnt := 0;
  For base := 2 to 16 do
  Begin
    CalcDgtCnt(base,Dgtcnt);
    writeln(4*base,'th through ',6*base,'th esthetic numbers in base ',base);
    cnt := 0;
    i := 0;
    repeat
      inc(i);
      if isEsthetic(i,base) then
        inc(cnt);
    until cnt >= 4*base;

    repeat
      if isEsthetic(i,base) then
      Begin
        write(ConvToBaseStr(i,base),' ');
        inc(cnt);
      end;
      inc(i);
    until cnt > 6*base;
    writeln;
  end;
  writeln;
end;

procedure Task2;
var
  i : NativeInt;
begin
  write(' There are ',Dgtcnt[4][0]-Dgtcnt[3][0],' esthetic numbers');
  writeln(' between 1000 and 9999 ');
  For i := 1000 to 9999 do
  Begin
    if isEsthetic(i,10) then
      write(i:5);
  end;
  writeln;writeln;
end;

procedure Task3(Pot10: NativeInt);
//calculating esthetic numbers starting with "1" and Pot10+1 digits
var
  i : NativeInt;
begin
  write(' There are ',Numb2USA(IntToStr(Dgtcnt[Pot10][1]-Dgtcnt[Pot10][0])):26,' esthetic numbers');
  writeln(' between 1e',Pot10,' and 1.3e',Pot10);
  if Pot10 = 8 then
  Begin
    For i := 100*1000*1000 to 110*1000*1000-1 do
    Begin
      if isEsthetic(i,10) then
        write(i:10);
    end;
    writeln;
    //Jump over "11"
    For i := 120*1000*1000 to 130*1000*1000-1 do
    Begin
      if isEsthetic(i,10) then
        write(i:10);
    end;
    writeln;writeln;
  end;
end;

var
  i:NativeInt;
BEGIN
  Task1;
  //now only base 10 is used
  CalcDgtCnt(10,Dgtcnt);
  Task2;
  For i := 2 to 20 do
    Task3(3*i+2);
  writeln;
  write(' There are ',Numb2USA(IntToStr(Dgtcnt[64][0])),' esthetic numbers');
  writeln(' with max 65 digits ');
  writeln;
  writeln(' The count of numbers with 64 digits like https://oeis.org/A090994');
  writeln(Numb2USA(IntToStr(Dgtcnt[64][0]-Dgtcnt[63][0])):28);
end.
Output:
8th through 12th esthetic numbers in base 2
10101010 101010101 1010101010 10101010101 101010101010
12th through 18th esthetic numbers in base 3
1210 1212 2101 2121 10101 10121 12101
16th through 24th esthetic numbers in base 4
323 1010 1012 1210 1212 1232 2101 2121 2123
20th through 30th esthetic numbers in base 5
323 343 432 434 1010 1012 1210 1212 1232 1234 2101
24th through 36th esthetic numbers in base 6
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234
28th through 42th esthetic numbers in base 7
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232
32th through 48th esthetic numbers in base 8
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212
36th through 54th esthetic numbers in base 9
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012
1210
40th through 60th esthetic numbers in base 10
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989
1010 1012
44th through 66th esthetic numbers in base 11
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989
9A9 A98 A9A 1010
48th through 72th esthetic numbers in base 12
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9
9AB A98 A9A ABA BA9 BAB
52th through 78th esthetic numbers in base 13
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB
A98 A9A ABA ABC BA9 BAB BCB CBA
56th through 84th esthetic numbers in base 14
565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98
A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC
60th through 90th esthetic numbers in base 15
567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A
ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD
64th through 96th esthetic numbers in base 16
654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA
ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD DED DEF EDC

 There are 61 esthetic numbers between 1000 and 9999
 1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212
 3232 3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432
 5434 5454 5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789
 7654 7656 7676 7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878
 9898

 There are                        126 esthetic numbers between 1e8 and 1.3e8
 101010101 101010121 101010123 101012101 101012121 101012123 101012321
 101012323 101012343 101012345 101210101 101210121 101210123 101212101
 101212121 101212123 101212321 101212323 101212343 101212345 101232101
 101232121 101232123 101232321 101232323 101232343 101232345 101234321
 101234323 101234343 101234345 101234543 101234545 101234565 101234567
 121010101 121010121 121010123 121012101 121012121 121012123 121012321
 121012323 121012343 121012345 121210101 121210121 121210123 121212101
 121212121 121212123 121212321 121212323 121212343 121212345 121232101
 121232121 121232123 121232321 121232323 121232343 121232345 121234321
 121234323 121234343 121234345 121234543 121234545 121234565 121234567
 123210101 123210121 123210123 123212101 123212121 123212123 123212321
 123212323 123212343 123212345 123232101 123232121 123232123 123232321
 123232323 123232343 123232345 123234321 123234323 123234343 123234345
 123234543 123234545 123234565 123234567 123432101 123432121 123432123
 123432321 123432323 123432343 123432345 123434321 123434323 123434343
 123434345 123434543 123434545 123434565 123434567 123454321 123454323
 123454343 123454345 123454543 123454545 123454565 123454567 123456543
 123456545 123456565 123456567 123456765 123456767 123456787 123456789
 There are                        911 esthetic numbers between 1e11 and 1.3e11
 There are                      6,225 esthetic numbers between 1e14 and 1.3e14
 There are                     44,744 esthetic numbers between 1e17 and 1.3e17
 There are                    312,019 esthetic numbers between 1e20 and 1.3e20
 There are                  2,223,504 esthetic numbers between 1e23 and 1.3e23
 There are                 15,621,426 esthetic numbers between 1e26 and 1.3e26
 There are                110,820,165 esthetic numbers between 1e29 and 1.3e29
 There are                781,074,572 esthetic numbers between 1e32 and 1.3e32
 There are              5,529,362,694 esthetic numbers between 1e35 and 1.3e35
 There are             39,027,676,220 esthetic numbers between 1e38 and 1.3e38
 There are            276,017,648,570 esthetic numbers between 1e41 and 1.3e41
 There are          1,949,472,483,601 esthetic numbers between 1e44 and 1.3e44
 There are         13,781,324,308,298 esthetic numbers between 1e47 and 1.3e47
 There are         97,364,252,272,077 esthetic numbers between 1e50 and 1.3e50
 There are        688,156,000,065,766 esthetic numbers between 1e53 and 1.3e53
 There are      4,862,434,535,536,899 esthetic numbers between 1e56 and 1.3e56
 There are     34,363,852,859,396,807 esthetic numbers between 1e59 and 1.3e59
 There are    242,826,004,764,166,201 esthetic numbers between 1e62 and 1.3e62

 There are 12,010,980,988,448,085,902 esthetic numbers with max 65 digits

 The count of numbers with 64 digits like https://oeis.org/A090994
   5,751,957,590,040,265,961

Perl

Library: ntheory
Translation of: Sidef
use 5.020;
use warnings;
use experimental qw(signatures);

use ntheory qw(fromdigits todigitstring);

sub generate_esthetic ($root, $upto, $callback, $base = 10) {

    my $v = fromdigits($root, $base);

    return if ($v > $upto);
    $callback->($v);

    my $t = $root->[-1];

    __SUB__->([@$root, $t + 1], $upto, $callback, $base) if ($t + 1 < $base);
    __SUB__->([@$root, $t - 1], $upto, $callback, $base) if ($t - 1 >= 0);
}

sub between_esthetic ($from, $upto, $base = 10) {
    my @list;
    foreach my $k (1 .. $base - 1) {
        generate_esthetic([$k], $upto,
            sub($n) { push(@list, $n) if ($n >= $from) }, $base);
    }
    sort { $a <=> $b } @list;
}

sub first_n_esthetic ($n, $base = 10) {
    for (my $m = $n * $n ; 1 ; $m *= $base) {
        my @list = between_esthetic(1, $m, $base);
        return @list[0 .. $n - 1] if @list >= $n;
    }
}

foreach my $base (2 .. 16) {
    say "\n$base-esthetic numbers at indices ${\(4*$base)}..${\(6*$base)}:";
    my @list = first_n_esthetic(6 * $base, $base);
    say join(' ', map { todigitstring($_, $base) } @list[4*$base-1 .. $#list]);
}

say "\nBase 10 esthetic numbers between 1,000 and 9,999:";
for (my @list = between_esthetic(1e3, 1e4) ; @list ;) {
    say join(' ', splice(@list, 0, 20));
}

say "\nBase 10 esthetic numbers between 100,000,000 and 130,000,000:";
for (my @list = between_esthetic(1e8, 1.3e8) ; @list ;) {
    say join(' ', splice(@list, 0, 9));
}
Output:
2-esthetic numbers at indices 8..12:
10101010 101010101 1010101010 10101010101 101010101010

3-esthetic numbers at indices 12..18:
1210 1212 2101 2121 10101 10121 12101

4-esthetic numbers at indices 16..24:
323 1010 1012 1210 1212 1232 2101 2121 2123

5-esthetic numbers at indices 20..30:
323 343 432 434 1010 1012 1210 1212 1232 1234 2101

6-esthetic numbers at indices 24..36:
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234

7-esthetic numbers at indices 28..42:
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232

8-esthetic numbers at indices 32..48:
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212

9-esthetic numbers at indices 36..54:
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210

10-esthetic numbers at indices 40..60:
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012

11-esthetic numbers at indices 44..66:
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 a98 a9a 1010

12-esthetic numbers at indices 48..72:
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba ba9 bab

13-esthetic numbers at indices 52..78:
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb cba

14-esthetic numbers at indices 56..84:
565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc

15-esthetic numbers at indices 60..90:
567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd

16-esthetic numbers at indices 64..96:
654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd ded def edc

Base 10 esthetic numbers between 1,000 and 9,999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232 3234 3432 3434 3454
3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454 5456 5654 5656 5676 5678 6543 6545 6565
6567 6765 6767 6787 6789 7654 7656 7676 7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878
9898

Base 10 esthetic numbers between 100,000,000 and 130,000,000:
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789

Phix

Simple string based approach, very fast, manages stretch goal and much further in the blink of an eye.

constant aleph = "0123456789ABCDEF"
 
function efill(string s, integer ch, i)
    -- min-fill, like 10101 or 54321 or 32101
    s[i] = ch
    for j=i+1 to length(s) do
        ch = iff(ch>='1'?iff(ch='A'?'9':ch-1):'1')
        s[j] = ch
    end for
    return s
end function
 
function esthetic(string s, integer base = 10)
    -- generate the next esthetic number after s
    -- (nb unpredictable results if s is not esthetic, or "")
    for i=length(s) to 1 by -1 do
        integer ch = s[i], cp = iff(i>1?s[i-1]:'0')
        if ch<cp and cp<aleph[base] then
            return efill(s,aleph[find(ch,aleph)+2],i)
        elsif i=1 and ch<aleph[base] then
            return efill(s,iff(ch='9'?'A':ch+1),i)
        end if
    end for
    return efill("1"&s,'1',1)
end function
 
string s
sequence res
for base=2 to 16 do
    integer hi = base*6,
            lo = base*4
    {s,res} = {"",{}}
    for i=1 to hi do
        s = esthetic(s, base)
        if i>=lo then
            res = append(res,s)
        end if
    end for
    res = join(shorten(res,"numbers",4))
    printf(1,"Base %d esthetic numbers[%d..%d]: %s\n",{base,lo,hi,res})
end for
 
{s,res} = {efill("1000",'1',1),{}}
while length(s)=4 do
    res = append(res,s)
    s = esthetic(s)
end while
res = {join(shorten(res,"numbers",5))}
printf(1,"\nBase 10 esthetic numbers between 1,000 and 9,999: %s\n\n",res)
 
function comma(string s)
    for i=length(s)-2 to 2 by -3 do
        s[i..i-1] = ","
    end for
    return s
end function
 
for k=7 to 19 by 3 do
    string f = "10"&repeat('0',k),
           t = "13"&repeat('0',k)
    {s,res} = {efill(f,'1',1),{}}
    while s<t do
        res = append(res,s)
        s = esthetic(s)
    end while
    res = join(shorten(res,"numbers",1))
    printf(1,"Base 10 esthetic numbers between %s and %s: %s\n",
             {comma(f),comma(t),res})
end for
Output:
Base 2 esthetic numbers[8..12]: 10101010 101010101 1010101010 10101010101 101010101010
Base 3 esthetic numbers[12..18]: 1210 1212 2101 2121 10101 10121 12101
Base 4 esthetic numbers[16..24]: 323 1010 1012 1210 1212 1232 2101 2121 2123
Base 5 esthetic numbers[20..30]: 323 343 432 434 ... 1212 1232 1234 2101  (11 numbers)
Base 6 esthetic numbers[24..36]: 343 345 432 434 ... 1210 1212 1232 1234  (13 numbers)
Base 7 esthetic numbers[28..42]: 345 432 434 454 ... 1012 1210 1212 1232  (15 numbers)
Base 8 esthetic numbers[32..48]: 432 434 454 456 ... 1010 1012 1210 1212  (17 numbers)
Base 9 esthetic numbers[36..54]: 434 454 456 543 ... 878 1010 1012 1210  (19 numbers)
Base 10 esthetic numbers[40..60]: 454 456 543 545 ... 987 989 1010 1012  (21 numbers)
Base 11 esthetic numbers[44..66]: 456 543 545 565 ... 9A9 A98 A9A 1010  (23 numbers)
Base 12 esthetic numbers[48..72]: 543 545 565 567 ... A9A ABA BA9 BAB  (25 numbers)
Base 13 esthetic numbers[52..78]: 545 565 567 654 ... BA9 BAB BCB CBA  (27 numbers)
Base 14 esthetic numbers[56..84]: 565 567 654 656 ... BCD CBA CBC CDC  (29 numbers)
Base 15 esthetic numbers[60..90]: 567 654 656 676 ... CDC CDE DCB DCD  (31 numbers)
Base 16 esthetic numbers[64..96]: 654 656 676 678 ... DCD DED DEF EDC  (33 numbers)

Base 10 esthetic numbers between 1,000 and 9,999: 1010 1012 1210 1212 1232 ... 8987 8989 9876 9878 9898  (61 numbers)

Base 10 esthetic numbers between 100,000,000 and 130,000,000: 101010101 ... 123456789  (126 numbers)
Base 10 esthetic numbers between 100,000,000,000 and 130,000,000,000: 101010101010 ... 123456789898  (911 numbers)
Base 10 esthetic numbers between 100,000,000,000,000 and 130,000,000,000,000: 101010101010101 ... 123456789898989  (6,225 numbers)
Base 10 esthetic numbers between 100,000,000,000,000,000 and 130,000,000,000,000,000: 101010101010101010 ... 123456789898989898  (44,744 numbers)
Base 10 esthetic numbers between 100,000,000,000,000,000,000 and 130,000,000,000,000,000,000: 101010101010101010101 ... 123456789898989898989  (312,019 numbers)

counting

Of course (for instance) the number of 62-digit esthetic numbers beginning with 5 is just the sum of the number of 61-digit esthetic numbers beginning with 4 plus the number of 61-digit esthetic numbers beginning with 6. Those in turn can be calculated from 60-digit numbers beginning 3+5 and 5+7, and at most 10 sums per digit. In other words we can count the total number of 62-digit esthetic numbers with at most 574 additions from a table of at most 610 entries, in practice obviously just do all 610.

function count_esthetic(integer len, start=0)
    -- a start digit of 0 means sum all 1..9
    sequence dc = repeat(repeat(1,10),len) -- nb 0..9 logically
    for i=2 to len do
        for d=0 to 9 do
            dc[i][d+1] = iff(d=0?0:dc[i-1][d]) + iff(d=9?0:dc[i-1][d+2])
        end for
    end for
    if start=0 then return sum(dc[len][1..9]) end if -- (see note)
    return dc[len][start+1]
end function

sequence t = tagset(iff(machine_bits()=64?63:57),9,3),
         r = columnize({apply(true,count_esthetic,{t,1}),t})
papply(true,printf,{1,{"There are %,26d %2d-digit esthetic numbers beginning with 1\n"},r})
if machine_bits()=64 then
 printf(1,"There are %,26d 64-digit esthetic numbers\n",{count_esthetic(64)})
 printf(1,"There are %,26d esthetic numbers with max 65 digits\n",{sum(apply(tagset(64),count_esthetic))})
end if

(It turns out that [1..9] is the same as [2..10] anyway, by symmetry, but technically the latter would be the more correct expression for digits 1..9)

Output:

Matches Pascal output. Obviously on 32-bit/js you don't get the last four lines, if you did they'd be slightly wrong due to the 53-bit accuracy limit.

There are                       126  9-digit esthetic numbers beginning with 1
There are                       911 12-digit esthetic numbers beginning with 1
There are                     6,225 15-digit esthetic numbers beginning with 1
There are                    44,744 18-digit esthetic numbers beginning with 1
There are                   312,019 21-digit esthetic numbers beginning with 1
There are                 2,223,504 24-digit esthetic numbers beginning with 1
There are                15,621,426 27-digit esthetic numbers beginning with 1
There are               110,820,165 30-digit esthetic numbers beginning with 1
There are               781,074,572 33-digit esthetic numbers beginning with 1
There are             5,529,362,694 36-digit esthetic numbers beginning with 1
There are            39,027,676,220 39-digit esthetic numbers beginning with 1
There are           276,017,648,570 42-digit esthetic numbers beginning with 1
There are         1,949,472,483,601 45-digit esthetic numbers beginning with 1
There are        13,781,324,308,298 48-digit esthetic numbers beginning with 1
There are        97,364,252,272,077 51-digit esthetic numbers beginning with 1
There are       688,156,000,065,766 54-digit esthetic numbers beginning with 1
There are     4,862,434,535,536,899 57-digit esthetic numbers beginning with 1
There are    34,363,852,859,396,807 60-digit esthetic numbers beginning with 1
There are   242,826,004,764,166,201 63-digit esthetic numbers beginning with 1
There are  5,751,957,590,040,265,961 64-digit esthetic numbers
There are 12,010,980,988,448,085,902 esthetic numbers with max 65 digits

PicoLisp

(de esthetic (N Base)
   (let Lst
      (make
         (loop
            (yoke (% N Base))
            (T (=0 (setq N (/ N Base)))) ) )
      (and
         (fully
            =1
            (make
               (for (L Lst (cdr L) (cdr L))
                  (link (abs (- (car L) (cadr L)))) ) ) )
         (pack
            (mapcar
               '((C)
                  (and (> C 9) (inc 'C 39))
                  (char (+ C 48)) )
               Lst ) ) ) ) )
(de genCount (Num Base)
   (let (C 0  N 0)
      (tail
         (inc (* 2 Base))
         (make
            (while (>= Num C)
               (when (esthetic N Base) (link @) (inc 'C))
               (inc 'N) ) ) ) ) )
(de genRange (A B Base)
   (make
      (while (>= B A)
         (when (esthetic A Base) (link @))
         (inc 'A) ) ) )
(for (N 2 (>= 16 N) (inc N))
   (prin "Base " N ": ")
   (mapc '((L) (prin L " ")) (genCount (* 6 N) N))
   (prinl) )
(prinl)
(prinl "Base 10: 61 esthetic numbers between 1000 and 9999:")
(let L (genRange 1000 9999 10)
   (while (cut 16 'L)
      (mapc '((L) (prin L " ")) @)
      (prinl) ) )
(prinl)
(prinl "Base 10: 126 esthetic numbers between 100000000 and 130000000:")
(let L (genRange 100000000 130000000 10)
   (while (cut 9 'L)
      (mapc '((L) (prin L " ")) @)
      (prinl) ) )
Output:
Base 2: 10101010 101010101 1010101010 10101010101 101010101010
Base 3: 1210 1212 2101 2121 10101 10121 12101
Base 4: 323 1010 1012 1210 1212 1232 2101 2121 2123
Base 5: 323 343 432 434 1010 1012 1210 1212 1232 1234 2101
Base 6: 343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234
Base 7: 345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232
Base 8: 432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212
Base 9: 434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210
Base 10: 454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012
Base 11: 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 a98 a9a 1010
Base 12: 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba ba9 bab
Base 13: 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb cba
Base 14: 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc
Base 15: 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd
Base 16: 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd ded def edc

Base 10: 61 esthetic numbers between 1000 and 9999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898

Base 10: 126 esthetic numbers between 100000000 and 130000000:
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789

Prolog

Works with: SWI Prolog
main:-
    forall(between(2, 16, Base),
            (Min_index is Base * 4, Max_index is Base * 6,
            print_esthetic_numbers1(Base, Min_index, Max_index))),
    print_esthetic_numbers2(1000, 9999, 16),
    nl,
    print_esthetic_numbers2(100000000, 130000000, 8).

print_esthetic_numbers1(Base, Min_index, Max_index):-
    swritef(Format, '~%tr ', [Base]),
    writef('Esthetic numbers in base %t from index %t through index %t:\n',
            [Base, Min_index, Max_index]),
    print_esthetic_numbers1(Base, Format, Min_index, Max_index, 0, 1).

print_esthetic_numbers1(Base, Format, Min_index, Max_index, M, I):-
    I =< Max_index,
    !,
    next_esthetic_number(Base, M, N),
    (I >= Min_index -> format(Format, [N]) ; true),
    J is I + 1,
    print_esthetic_numbers1(Base, Format, Min_index, Max_index, N, J).
print_esthetic_numbers1(_, _, _, _, _, _):-
    write('\n\n').

print_esthetic_numbers2(Min, Max, Per_line):-
    writef('Esthetic numbers in base 10 between %t and %t:\n', [Min, Max]),
    M is Min - 1,
    print_esthetic_numbers2(Max, Per_line, M, 0).

print_esthetic_numbers2(Max, Per_line, M, Count):-
    next_esthetic_number(10, M, N),
    N =< Max,
    !,
    write(N),
    Count1 is Count + 1,
    (0 is Count1 mod Per_line -> nl ; write(' ')),
    print_esthetic_numbers2(Max, Per_line, N, Count1).
print_esthetic_numbers2(_, _, _, Count):-
    writef('\nCount: %t\n', [Count]).

next_esthetic_number(Base, M, N):-
    N is M + 1,
    N < Base,
    !.
next_esthetic_number(Base, M, N):-
    A is M // Base,
    B is A mod Base,
    (B is M mod Base + 1, B + 1 < Base ->
        N is M + 2
        ;
        next_esthetic_number(Base, A, C),
        D is C mod Base,
        (D == 0 -> E = 1 ; E is D - 1),
        N is C * Base + E).
Output:
Esthetic numbers in base 2 from index 8 through index 12:
10101010 101010101 1010101010 10101010101 101010101010 

Esthetic numbers in base 3 from index 12 through index 18:
1210 1212 2101 2121 10101 10121 12101 

Esthetic numbers in base 4 from index 16 through index 24:
323 1010 1012 1210 1212 1232 2101 2121 2123 

Esthetic numbers in base 5 from index 20 through index 30:
323 343 432 434 1010 1012 1210 1212 1232 1234 2101 

Esthetic numbers in base 6 from index 24 through index 36:
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234 

Esthetic numbers in base 7 from index 28 through index 42:
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232 

Esthetic numbers in base 8 from index 32 through index 48:
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212 

Esthetic numbers in base 9 from index 36 through index 54:
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210 

Esthetic numbers in base 10 from index 40 through index 60:
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012 

Esthetic numbers in base 11 from index 44 through index 66:
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 a98 a9a 1010 

Esthetic numbers in base 12 from index 48 through index 72:
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba ba9 bab 

Esthetic numbers in base 13 from index 52 through index 78:
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb cba 

Esthetic numbers in base 14 from index 56 through index 84:
565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc 

Esthetic numbers in base 15 from index 60 through index 90:
567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd 

Esthetic numbers in base 16 from index 64 through index 96:
654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd ded def edc 

Esthetic numbers in base 10 between 1000 and 9999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898 
Count: 61

Esthetic numbers in base 10 between 100000000 and 130000000:
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323
101012343 101012345 101210101 101210121 101210123 101212101 101212121 101212123
101212321 101212323 101212343 101212345 101232101 101232121 101232123 101232321
101232323 101232343 101232345 101234321 101234323 101234343 101234345 101234543
101234545 101234565 101234567 121010101 121010121 121010123 121012101 121012121
121012123 121012321 121012323 121012343 121012345 121210101 121210121 121210123
121212101 121212121 121212123 121212321 121212323 121212343 121212345 121232101
121232121 121232123 121232321 121232323 121232343 121232345 121234321 121234323
121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345
123232101 123232121 123232123 123232321 123232323 123232343 123232345 123234321
123234323 123234343 123234345 123234543 123234545 123234565 123234567 123432101
123432121 123432123 123432321 123432323 123432343 123432345 123434321 123434323
123434343 123434345 123434543 123434545 123434565 123434567 123454321 123454323
123454343 123454345 123454543 123454545 123454565 123454567 123456543 123456545
123456565 123456567 123456765 123456767 123456787 123456789 
Count: 126

Python

Python :: Procedural

Works with: Python version 3.9.5
from collections import deque
from itertools import dropwhile, islice, takewhile
from textwrap import wrap
from typing import Iterable, Iterator


Digits = str  # Alias for the return type of to_digits()


def esthetic_nums(base: int) -> Iterator[int]:
    """Generate the esthetic number sequence for a given base

    >>> list(islice(esthetic_nums(base=10), 20))
    [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 21, 23, 32, 34, 43, 45, 54, 56, 65]
    """
    queue: deque[tuple[int, int]] = deque()
    queue.extendleft((d, d) for d in range(1, base))
    while True:
        num, lsd = queue.pop()
        yield num
        new_lsds = (d for d in (lsd - 1, lsd + 1) if 0 <= d < base)
        num *= base  # Shift num left one digit
        queue.extendleft((num + d, d) for d in new_lsds)


def to_digits(num: int, base: int) -> Digits:
    """Return a representation of an integer as digits in a given base

    >>> to_digits(0x3def84f0ce, base=16)
    '3def84f0ce'
    """
    digits: list[str] = []
    while num:
        num, d = divmod(num, base)
        digits.append("0123456789abcdef"[d])
    return "".join(reversed(digits)) if digits else "0"


def pprint_it(it: Iterable[str], indent: int = 4, width: int = 80) -> None:
    """Pretty print an iterable which returns strings

    >>> pprint_it(map(str, range(20)), indent=0, width=40)
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
    12, 13, 14, 15, 16, 17, 18, 19
    <BLANKLINE>
    """
    joined = ", ".join(it)
    lines = wrap(joined, width=width - indent)
    for line in lines:
        print(f"{indent*' '}{line}")
    print()


def task_2() -> None:
    nums: Iterator[int]
    for base in range(2, 16 + 1):
        start, stop = 4 * base, 6 * base
        nums = esthetic_nums(base)
        nums = islice(nums, start - 1, stop)  # start and stop are 1-based indices
        print(
            f"Base-{base} esthetic numbers from "
            f"index {start} through index {stop} inclusive:\n"
        )
        pprint_it(to_digits(num, base) for num in nums)


def task_3(lower: int, upper: int, base: int = 10) -> None:
    nums: Iterator[int] = esthetic_nums(base)
    nums = dropwhile(lambda num: num < lower, nums)
    nums = takewhile(lambda num: num <= upper, nums)
    print(
        f"Base-{base} esthetic numbers with "
        f"magnitude between {lower:,} and {upper:,}:\n"
    )
    pprint_it(to_digits(num, base) for num in nums)


if __name__ == "__main__":
    print("======\nTask 2\n======\n")
    task_2()

    print("======\nTask 3\n======\n")
    task_3(1_000, 9_999)

    print("======\nTask 4\n======\n")
    task_3(100_000_000, 130_000_000)
Output:
======
Task 2
======

Base-2 esthetic numbers from index 8 through index 12 inclusive:

    10101010, 101010101, 1010101010, 10101010101, 101010101010

Base-3 esthetic numbers from index 12 through index 18 inclusive:

    1210, 1212, 2101, 2121, 10101, 10121, 12101

Base-4 esthetic numbers from index 16 through index 24 inclusive:

    323, 1010, 1012, 1210, 1212, 1232, 2101, 2121, 2123

Base-5 esthetic numbers from index 20 through index 30 inclusive:

    323, 343, 432, 434, 1010, 1012, 1210, 1212, 1232, 1234, 2101

Base-6 esthetic numbers from index 24 through index 36 inclusive:

    343, 345, 432, 434, 454, 543, 545, 1010, 1012, 1210, 1212, 1232, 1234

Base-7 esthetic numbers from index 28 through index 42 inclusive:

    345, 432, 434, 454, 456, 543, 545, 565, 654, 656, 1010, 1012, 1210, 1212,
    1232

Base-8 esthetic numbers from index 32 through index 48 inclusive:

    432, 434, 454, 456, 543, 545, 565, 567, 654, 656, 676, 765, 767, 1010, 1012,
    1210, 1212

Base-9 esthetic numbers from index 36 through index 54 inclusive:

    434, 454, 456, 543, 545, 565, 567, 654, 656, 676, 678, 765, 767, 787, 876,
    878, 1010, 1012, 1210

Base-10 esthetic numbers from index 40 through index 60 inclusive:

    454, 456, 543, 545, 565, 567, 654, 656, 676, 678, 765, 767, 787, 789, 876,
    878, 898, 987, 989, 1010, 1012

Base-11 esthetic numbers from index 44 through index 66 inclusive:

    456, 543, 545, 565, 567, 654, 656, 676, 678, 765, 767, 787, 789, 876, 878,
    898, 89a, 987, 989, 9a9, a98, a9a, 1010

Base-12 esthetic numbers from index 48 through index 72 inclusive:

    543, 545, 565, 567, 654, 656, 676, 678, 765, 767, 787, 789, 876, 878, 898,
    89a, 987, 989, 9a9, 9ab, a98, a9a, aba, ba9, bab

Base-13 esthetic numbers from index 52 through index 78 inclusive:

    545, 565, 567, 654, 656, 676, 678, 765, 767, 787, 789, 876, 878, 898, 89a,
    987, 989, 9a9, 9ab, a98, a9a, aba, abc, ba9, bab, bcb, cba

Base-14 esthetic numbers from index 56 through index 84 inclusive:

    565, 567, 654, 656, 676, 678, 765, 767, 787, 789, 876, 878, 898, 89a, 987,
    989, 9a9, 9ab, a98, a9a, aba, abc, ba9, bab, bcb, bcd, cba, cbc, cdc

Base-15 esthetic numbers from index 60 through index 90 inclusive:

    567, 654, 656, 676, 678, 765, 767, 787, 789, 876, 878, 898, 89a, 987, 989,
    9a9, 9ab, a98, a9a, aba, abc, ba9, bab, bcb, bcd, cba, cbc, cdc, cde, dcb,
    dcd

Base-16 esthetic numbers from index 64 through index 96 inclusive:

    654, 656, 676, 678, 765, 767, 787, 789, 876, 878, 898, 89a, 987, 989, 9a9,
    9ab, a98, a9a, aba, abc, ba9, bab, bcb, bcd, cba, cbc, cdc, cde, dcb, dcd,
    ded, def, edc

======
Task 3
======

Base-10 esthetic numbers with magnitude between 1,000 and 9,999:

    1010, 1012, 1210, 1212, 1232, 1234, 2101, 2121, 2123, 2321, 2323, 2343,
    2345, 3210, 3212, 3232, 3234, 3432, 3434, 3454, 3456, 4321, 4323, 4343,
    4345, 4543, 4545, 4565, 4567, 5432, 5434, 5454, 5456, 5654, 5656, 5676,
    5678, 6543, 6545, 6565, 6567, 6765, 6767, 6787, 6789, 7654, 7656, 7676,
    7678, 7876, 7878, 7898, 8765, 8767, 8787, 8789, 8987, 8989, 9876, 9878, 9898

======
Task 4
======

Base-10 esthetic numbers with magnitude between 100,000,000 and 130,000,000:

    101010101, 101010121, 101010123, 101012101, 101012121, 101012123, 101012321,
    101012323, 101012343, 101012345, 101210101, 101210121, 101210123, 101212101,
    101212121, 101212123, 101212321, 101212323, 101212343, 101212345, 101232101,
    101232121, 101232123, 101232321, 101232323, 101232343, 101232345, 101234321,
    101234323, 101234343, 101234345, 101234543, 101234545, 101234565, 101234567,
    121010101, 121010121, 121010123, 121012101, 121012121, 121012123, 121012321,
    121012323, 121012343, 121012345, 121210101, 121210121, 121210123, 121212101,
    121212121, 121212123, 121212321, 121212323, 121212343, 121212345, 121232101,
    121232121, 121232123, 121232321, 121232323, 121232343, 121232345, 121234321,
    121234323, 121234343, 121234345, 121234543, 121234545, 121234565, 121234567,
    123210101, 123210121, 123210123, 123212101, 123212121, 123212123, 123212321,
    123212323, 123212343, 123212345, 123232101, 123232121, 123232123, 123232321,
    123232323, 123232343, 123232345, 123234321, 123234323, 123234343, 123234345,
    123234543, 123234545, 123234565, 123234567, 123432101, 123432121, 123432123,
    123432321, 123432323, 123432343, 123432345, 123434321, 123434323, 123434343,
    123434345, 123434543, 123434545, 123434565, 123434567, 123454321, 123454323,
    123454343, 123454345, 123454543, 123454545, 123454565, 123454567, 123456543,
    123456545, 123456565, 123456567, 123456765, 123456767, 123456787, 123456789


Python :: Functional

Translation of: Haskell
'''Esthetic numbers'''

from functools import reduce
from itertools import (
    accumulate, chain, count, dropwhile,
    islice, product, takewhile
)
from operator import add
from string import digits, ascii_lowercase
from textwrap import wrap


# estheticNumbersInBase :: Int -> [Int]
def estheticNumbersInBase(b):
    '''Infinite stream of numbers which are
       esthetic in a given base.
    '''
    return concatMap(
        compose(
            lambda deltas: concatMap(
                lambda headDigit: concatMap(
                    compose(
                        fromBaseDigits(b),
                        scanl(add)(headDigit)
                    )
                )(deltas)
            )(range(1, b)),
            replicateList([-1, 1])
        )
    )(count(0))


# ------------------------ TESTS -------------------------
def main():
    '''Specified tests'''
    def samples(b):
        i, j = b * 4, b * 6
        return '\n'.join([
            f'Esthetics [{i}..{j}] for base {b}:',
            unlines(wrap(
                unwords([
                    showInBase(b)(n) for n in compose(
                        drop(i - 1), take(j)
                    )(
                        estheticNumbersInBase(b)
                    )
                ]), 60
            ))
        ])

    def takeInRange(a, b):
        return compose(
            dropWhile(lambda x: x < a),
            takeWhile(lambda x: x <= b)
        )

    print(
        '\n\n'.join([
            samples(b) for b in range(2, 1 + 16)
        ])
    )
    for (lo, hi) in [(1000, 9999), (100_000_000, 130_000_000)]:
        print(f'\nBase 10 Esthetics in range [{lo}..{hi}]:')
        print(
            unlines(wrap(
                unwords(
                    str(x) for x in takeInRange(lo, hi)(
                        estheticNumbersInBase(10)
                    )
                ), 60
            ))
        )


# ------------------- BASES AND DIGITS -------------------

# fromBaseDigits :: Int -> [Int] -> [Int]
def fromBaseDigits(b):
    '''An empty list if any digits are out of range for
       the base. Otherwise a list containing an integer.
    '''
    def go(digitList):
        maybeNum = reduce(
            lambda r, d: None if r is None or (
                0 > d or d >= b
            ) else r * b + d,
            digitList, 0
        )
        return [] if None is maybeNum else [maybeNum]
    return go


# toBaseDigits :: Int -> Int -> [Int]
def toBaseDigits(b):
    '''A list of the digits of n in base b.
    '''
    def f(x):
        return None if 0 == x else (
            divmod(x, b)[::-1]
        )
    return lambda n: list(reversed(unfoldr(f)(n)))


# showInBase :: Int -> Int -> String
def showInBase(b):
    '''String representation of n in base b.
    '''
    charSet = digits + ascii_lowercase
    return lambda n: ''.join([
        charSet[i] for i in toBaseDigits(b)(n)
    ])


# ----------------------- GENERIC ------------------------

# compose :: ((a -> a), ...) -> (a -> a)
def compose(*fs):
    '''Composition, from right to left,
       of a series of functions.
    '''
    def go(f, g):
        def fg(x):
            return f(g(x))
        return fg
    return reduce(go, fs, lambda x: x)


# concatMap :: (a -> [b]) -> [a] -> [b]
def concatMap(f):
    '''A concatenated list over which a function has been
       mapped.
       The list monad can be derived by using a function f
       which wraps its output in a list, (using an empty
       list to represent computational failure).
    '''
    def go(xs):
        return chain.from_iterable(map(f, xs))
    return go


# drop :: Int -> [a] -> [a]
# drop :: Int -> String -> String
def drop(n):
    '''The sublist of xs beginning at
       (zero-based) index n.
    '''
    def go(xs):
        if isinstance(xs, (list, tuple, str)):
            return xs[n:]
        else:
            take(n)(xs)
            return xs
    return go


# dropWhile :: (a -> Bool) -> [a] -> [a]
# dropWhile :: (Char -> Bool) -> String -> String
def dropWhile(p):
    '''The suffix remainining after takeWhile p xs.
    '''
    return lambda xs: list(
        dropwhile(p, xs)
    )


# replicateList :: [a] -> Int -> [[a]]
def replicateList(xs):
    '''All distinct lists of length n that
       consist of elements drawn from xs.
    '''
    def rep(n):
        def go(x):
            return [[]] if 1 > x else [
                ([a] + b) for (a, b) in product(
                    xs, go(x - 1)
                )
            ]
        return go(n)
    return rep


# scanl :: (b -> a -> b) -> b -> [a] -> [b]
def scanl(f):
    '''scanl is like reduce, but defines a succession of
       intermediate values, building from the left.
    '''
    def go(a):
        def g(xs):
            return accumulate(chain([a], xs), f)
        return g
    return go


# take :: Int -> [a] -> [a]
# take :: Int -> String -> String
def take(n):
    '''The prefix of xs of length n,
       or xs itself if n > length xs.
    '''
    def go(xs):
        return list(islice(xs, n))
    return go


# takeWhile :: (a -> Bool) -> [a] -> [a]
# takeWhile :: (Char -> Bool) -> String -> String
def takeWhile(p):
    '''The longest (possibly empty) prefix of xs
       in which all elements satisfy p.
    '''
    return lambda xs: list(
        takewhile(p, xs)
    )


# unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
def unfoldr(f):
    '''Dual to reduce or foldr.
       Where catamorphism reduces a list to a summary value,
       the anamorphic unfoldr builds a list from a seed value.
       As long as f returns (a, b) a is prepended to the list,
       and the residual b is used as the argument for the next
       application of f.
       When f returns None, the completed list is returned.
    '''
    def go(v):
        xr = v, v
        xs = []
        while True:
            xr = f(xr[1])
            if None is not xr:
                xs.append(xr[0])
            else:
                return xs
    return go


# unlines :: [String] -> String
def unlines(xs):
    '''A single string formed by the intercalation
       of a list of strings with the newline character.
    '''
    return '\n'.join(xs)


# unwords :: [String] -> String
def unwords(xs):
    '''A space-separated string derived
       from a list of words.
    '''
    return ' '.join(xs)


# MAIN ---
if __name__ == '__main__':
    main()
Output:
Esthetics [8..12] for base 2:
10101010 101010101 1010101010 10101010101 101010101010

Esthetics [12..18] for base 3:
1210 1212 2101 2121 10101 10121 12101

Esthetics [16..24] for base 4:
323 1010 1012 1210 1212 1232 2101 2121 2123

Esthetics [20..30] for base 5:
323 343 432 434 1010 1012 1210 1212 1232 1234 2101

Esthetics [24..36] for base 6:
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234

Esthetics [28..42] for base 7:
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212
1232

Esthetics [32..48] for base 8:
432 434 454 456 543 545 565 567 654 656 676 765 767 1010
1012 1210 1212

Esthetics [36..54] for base 9:
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876
878 1010 1012 1210

Esthetics [40..60] for base 10:
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876
878 898 987 989 1010 1012

Esthetics [44..66] for base 11:
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878
898 89a 987 989 9a9 a98 a9a 1010

Esthetics [48..72] for base 12:
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898
89a 987 989 9a9 9ab a98 a9a aba ba9 bab

Esthetics [52..78] for base 13:
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a
987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb cba

Esthetics [56..84] for base 14:
565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987
989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc

Esthetics [60..90] for base 15:
567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989
9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb
dcd

Esthetics [64..96] for base 16:
654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9
9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd
ded def edc

Base 10 Esthetics in range [1000..9999]:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343
2345 3210 3212 3232 3234 3432 3434 3454 3456 4321 4323 4343
4345 4543 4545 4565 4567 5432 5434 5454 5456 5654 5656 5676
5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878
9898

Base 10 Esthetics in range [100000000..130000000]:
101010101 101010121 101010123 101012101 101012121 101012123
101012321 101012323 101012343 101012345 101210101 101210121
101210123 101212101 101212121 101212123 101212321 101212323
101212343 101212345 101232101 101232121 101232123 101232321
101232323 101232343 101232345 101234321 101234323 101234343
101234345 101234543 101234545 101234565 101234567 121010101
121010121 121010123 121012101 121012121 121012123 121012321
121012323 121012343 121012345 121210101 121210121 121210123
121212101 121212121 121212123 121212321 121212323 121212343
121212345 121232101 121232121 121232123 121232321 121232323
121232343 121232345 121234321 121234323 121234343 121234345
121234543 121234545 121234565 121234567 123210101 123210121
123210123 123212101 123212121 123212123 123212321 123212323
123212343 123212345 123232101 123232121 123232123 123232321
123232323 123232343 123232345 123234321 123234323 123234343
123234345 123234543 123234545 123234565 123234567 123432101
123432121 123432123 123432321 123432323 123432343 123432345
123434321 123434323 123434343 123434345 123434543 123434545
123434565 123434567 123454321 123454323 123454343 123454345
123454543 123454545 123454565 123454567 123456543 123456545
123456565 123456567 123456765 123456767 123456787 123456789

Quackery

  [ [] swap
    [ base share /mod
      rot join swap
      dup 0 = until ]
    drop ]                        is digits    ( n --> [ )

  [ dup 0 = iff
      [ drop false ]
      done
    digits
    true swap
    behead swap
    witheach
       [ tuck - abs 1 != if
           [ dip not conclude ] ]
    drop ]                        is esthetic ( n --> b )

  15 times
    [ i^ 2 +
      say "Base " dup echo cr
      base put
      [] 0
      [ 1+
        dup esthetic if
          [ tuck join swap ]
        over size
        base share 6 * = until ]
      drop
      base share 4 * 1 - split nip
      echo cr cr
      base release ]
 
  say "Decimal between 1000 and 9999: "
  cr
  0 temp put
  9000 times
    [ i^ 1000 + dup
      esthetic iff
        [ echo
          1 temp tally
          temp share
          10 mod iff
          sp else cr ]
      else drop ]
  temp release
Output:
Base 2
[ 10101010 101010101 1010101010 10101010101 101010101010 ]

Base 3
[ 1210 1212 2101 2121 10101 10121 12101 ]

Base 4
[ 323 1010 1012 1210 1212 1232 2101 2121 2123 ]

Base 5
[ 323 343 432 434 1010 1012 1210 1212 1232 1234 2101 ]

Base 6
[ 343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234 ]

Base 7
[ 345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232 ]

Base 8
[ 432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212 ]

Base 9
[ 434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210 ]

Base 10
[ 454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012 ]

Base 11
[ 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 A98 A9A 1010 ]

Base 12
[ 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA BA9 BAB ]

Base 13
[ 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB CBA ]

Base 14
[ 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC ]

Base 15
[ 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD ]

Base 16
[ 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD DED DEF EDC ]

Decimal between 1000 and 9999: 
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321
2323 2343 2345 3210 3212 3232 3234 3432 3434 3454
3456 4321 4323 4343 4345 4543 4545 4565 4567 5432
5434 5454 5456 5654 5656 5676 5678 6543 6545 6565
6567 6765 6767 6787 6789 7654 7656 7676 7678 7876
7878 7898 8765 8767 8787 8789 8987 8989 9876 9878
9898 

Raku

Works with: Rakudo version 2020.02
use Lingua::EN::Numbers;

sub esthetic($base = 10) {
    my @s = ^$base .map: -> \s {
        ((s - 1).base($base) if s > 0), ((s + 1).base($base) if s < $base - 1)
    }

    flat [ (1 .. $base - 1)».base($base) ],
    { [ flat .map: { $_ xx * Z~ flat @s[.comb.tail.parse-base($base)] } ] } … *
}

for 2 .. 16 -> $b {
    put "\n{(4 × $b).&ordinal-digit} through {(6 × $b).&ordinal-digit} esthetic numbers in base $b";
    put esthetic($b)[(4 × $b - 1) .. (6 × $b - 1)]».fmt('%3s').batch(16).join: "\n"
}

my @e10 = esthetic;
put "\nBase 10 esthetic numbers between 1,000 and 9,999:";
put @e10.&between(1000, 9999).batch(20).join: "\n";

put "\nBase 10 esthetic numbers between {1e8.Int.&comma} and {1.3e8.Int.&comma}:";
put @e10.&between(1e8.Int, 1.3e8.Int).batch(9).join: "\n";

sub between (@array, Int $lo, Int $hi) {
    my $top = @array.first: * > $hi, :k;
    @array[^$top].grep: * > $lo
}
Output:
8th through 12th esthetic numbers in base 2
10101010 101010101 1010101010 10101010101 101010101010

12th through 18th esthetic numbers in base 3
1210 1212 2101 2121 10101 10121 12101

16th through 24th esthetic numbers in base 4
323 1010 1012 1210 1212 1232 2101 2121 2123

20th through 30th esthetic numbers in base 5
323 343 432 434 1010 1012 1210 1212 1232 1234 2101

24th through 36th esthetic numbers in base 6
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234

28th through 42nd esthetic numbers in base 7
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232

32nd through 48th esthetic numbers in base 8
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210
1212

36th through 54th esthetic numbers in base 9
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878
1010 1012 1210

40th through 60th esthetic numbers in base 10
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878
898 987 989 1010 1012

44th through 66th esthetic numbers in base 11
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898
89A 987 989 9A9 A98 A9A 1010

48th through 72nd esthetic numbers in base 12
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A
987 989 9A9 9AB A98 A9A ABA BA9 BAB

52nd through 78th esthetic numbers in base 13
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987
989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB CBA

56th through 84th esthetic numbers in base 14
565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989
9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC

60th through 90th esthetic numbers in base 15
567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9
9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD

64th through 96th esthetic numbers in base 16
654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB
A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD DED DEF
EDC

Base 10 esthetic numbers between 1,000 and 9,999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232 3234 3432 3434 3454
3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454 5456 5654 5656 5676 5678 6543 6545 6565
6567 6765 6767 6787 6789 7654 7656 7676 7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878
9898

Base 10 esthetic numbers between 100,000,000 and 130,000,000:
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789

REXX

/*REXX pgm lists a bunch of esthetic numbers in bases 2 ──► 16, & base 10 in two ranges.*/
parse arg baseL baseH range                      /*obtain optional arguments from the CL*/
if baseL=='' | baseL==","  then baseL= 2         /*Not specified?  Then use the default.*/
if baseH=='' | baseH==","  then baseH=16         /* "      "         "   "   "     "    */
if range=='' | range==","  then range=1000..9999 /* "      "         "   "   "     "    */

     do radix=baseL  to baseH;  #= 0;  if radix<2  then iterate    /*process the bases. */
     start= radix * 4;                  stop = radix * 6
     $=;               do i=1  until #==stop;  y= base(i, radix)   /*convert I to base Y*/
                       if \esthetic(y, radix)  then iterate        /*not esthetic?  Skip*/
                       #= # + 1;   if #<start  then iterate        /*is  #  below range?*/
                       $= $ y                                      /*append # to $ list.*/
                       end   /*i*/
     say
     say center(' base '  radix",  the" th(start)   '──►'   th(stop) ,
                "esthetic numbers ",  max(80, length($) - 1),  '─')
     say strip($)
     end   /*radix*/
say;                                                                            g= 25
parse var  range   start  '..'  stop
say center(' base 10 esthetic numbers between' start "and" stop '(inclusive) ', g*5-1,"─")
                                                                 #= 0;        $=
     do k=start  to  stop;  if \esthetic(k, 10)  then iterate;   #= # + 1;    $= $ k
     if #//g==0  then do;   say strip($);  $=;   end
     end   /*k*/
say strip($);               say;                 say #   ' esthetic numbers listed.'
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
PorA:  _= pos(z, @u);   p= substr(@u, _-1, 1);   a= substr(@u, _+1, 1);     return
th: parse arg th; return th || word('th st nd rd', 1+(th//10)*(th//100%10\==1)*(th//10<4))
vv: parse arg v,_;   vr= x2d(v) + _;   if vr==-1  then vr= r;               return d2x(vr)
/*──────────────────────────────────────────────────────────────────────────────────────*/
base: procedure expose @u;  arg x 1 #,toB,inB,,y /*Y  is assigned a  "null"  value.     */
      if tob==''  then tob= 10                   /*maybe assign a default for TObase.   */
      if inb==''  then inb= 10                   /*  "      "   "    "     "  INbase.   */
      @l= '0123456789abcdef';  @u= @l;  upper @u /*two versions of hexadecimal digits.  */
      if inB\==10  then do;   #= 0               /*only convert if  not  base 10.       */
                           do j=1  for length(x) /*convert  X:   base inB  ──► base 10. */
                           #= # * inB + pos(substr(x, j, 1), @u) -1  /*build new number.*/
                           end    /*j*/          /* [↑]  this also verifies digits.     */
                        end
      if toB==10   then return #                 /*if TOB is ten,  then simply return #.*/
         do  while  # >= toB                     /*convert #:    base 10  ──►  base toB.*/
         y= substr(@l, (# // toB) + 1, 1)y       /*construct the output number.         */
         #= # % toB                              /*      ··· and whittle  #  down also. */
         end    /*while*/                        /* [↑]  algorithm may leave a residual.*/
      return substr(@l, # + 1, 1)y               /*prepend the residual, if any.        */
/*──────────────────────────────────────────────────────────────────────────────────────*/
esthetic: procedure expose @u; arg x,r;       L= length(x);       if L==1  then return 1
          if x<2  then return 0
                 do d=0  to r-1;  _= d2x(d);        if pos(_ || _, x)\==0  then return 0
                 end   /*d*/                     /* [↑]  check for a duplicated digits. */
            do j=1  for L;  @.j= substr(x, j, 1) /*assign (base) digits to stemmed array*/
            end   /*j*/
          if L==2  then do;  z= @.1;   call PorA;      if @.2==p | @.2==a  then nop
                                                                           else return 0
                        end
            do e=2  to L-1;  z= @.e;   pe= e - 1;      ae= e + 1
            if (z==vv(@.pe,-1)|z==vv(@.pe,1))&(z==vv(@.ae,-1)|z==vv(@.ae,1))  then iterate
            return 0
            end   /*e*/;         return 1
output   when using the default inputs:
───────────────── base  2,  the 8th ──► 12th esthetic numbers ──────────────────
10101010 101010101 1010101010 10101010101 101010101010

───────────────── base  3,  the 12th ──► 18th esthetic numbers ─────────────────
1210 1212 2101 2121 10101 10121 12101

───────────────── base  4,  the 16th ──► 24th esthetic numbers ─────────────────
323 1010 1012 1210 1212 1232 2101 2121 2123

───────────────── base  5,  the 20th ──► 30th esthetic numbers ─────────────────
323 343 432 434 1010 1012 1210 1212 1232 1234 2101

───────────────── base  6,  the 24th ──► 36th esthetic numbers ─────────────────
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234

───────────────── base  7,  the 28th ──► 42nd esthetic numbers ─────────────────
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232

───────────────── base  8,  the 32nd ──► 48th esthetic numbers ─────────────────
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212

───────────────── base  9,  the 36th ──► 54th esthetic numbers ─────────────────
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210

─────────────────── base  10,  the 40th ──► 60th esthetic numbers ───────────────────
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012

────────────────────── base  11,  the 44th ──► 66th esthetic numbers ───────────────────────
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 a98 a9a 1010

────────────────────────── base  12,  the 48th ──► 72nd esthetic numbers ──────────────────────────
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba ba9 bab

────────────────────────────── base  13,  the 52nd ──► 78th esthetic numbers ──────────────────────────────
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb cba

────────────────────────────────── base  14,  the 56th ──► 84th esthetic numbers ──────────────────────────────────
565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc

────────────────────────────────────── base  15,  the 60th ──► 90th esthetic numbers ──────────────────────────────────────
567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd

────────────────────────────────────────── base  16,  the 64th ──► 96th esthetic numbers ──────────────────────────────────────────
654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd ded def edc

──────────────────────────────── base 10 esthetic numbers between 1000 and 9999 (inclusive) ────────────────────────────────
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232 3234 3432 3434 3454 3456 4321 4323 4343 4345
4543 4545 4565 4567 5432 5434 5454 5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676 7678 7876
7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898

61  esthetic numbers listed.

Ring

basePlus = []
decList = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
baseList = ["0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"]

for base = 2 to 16
    see "Base " + base + ": " + (base*4) + "th to " + (base*6) + "th esthetic numbers:" + nl
    res = 0
    binList = []
for n = 1 to 10000
    str = decimaltobase(n,base)
    limit1 = base*4
    limit2 = base*6
    ln = len(str)
    flag = 0
    for m = 1 to ln-1
        nr1 = str[m]
        ind1 = find(baseList,nr1)
        num1 = decList[ind1]
        nr2 = str[m+1]
        ind2 = find(baseList,nr2)
        num2 = decList[ind2]
        num = num1-num2
        if num = 1 or num = -1
           flag = flag + 1
        ok
     next
     if flag = ln - 1
        res = res + 1
        if res > (limit1 - 1) and res < (limit2 + 1)
           see " " + str
        ok
        if base = 10 and number(str) > 1000 and number(str) < 9999
           add(basePlus,str)
        ok
     ok
next
see nl + nl
next

see "Base 10: " + len(basePlus) +" esthetic numbers between 1000 and 9999:"

for row = 1 to len(basePlus)
    if (row-1) % 16 = 0
       see nl
    else
       see " " + basePlus[row]
    ok
next

func decimaltobase(nr,base)
     binList = [] 
     binary = 0
     remainder = 1
     while(nr != 0)
          remainder = nr % base
          ind = find(decList,remainder)
          rem = baseList[ind]
          add(binList,rem)
          nr = floor(nr/base) 
     end
     binlist = reverse(binList)
     binList = list2str(binList)
     binList = substr(binList,nl,"")  
     return binList
Output:
Base 2: 8th to 12th esthetic numbers:
 10101010 101010101 1010101010 10101010101 101010101010

Base 3: 12th to 18th esthetic numbers:
 1210 1212 2101 2121 10101 10121 12101

Base 4: 16th to 24th esthetic numbers:
 323 1010 1012 1210 1212 1232 2101 2121 2123

Base 5: 20th to 30th esthetic numbers:
 323 343 432 434 1010 1012 1210 1212 1232 1234 2101

Base 6: 24th to 36th esthetic numbers:
 343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234

Base 7: 28th to 42th esthetic numbers:
 345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232

Base 8: 32th to 48th esthetic numbers:
 432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212

Base 9: 36th to 54th esthetic numbers:
 434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210

Base 10: 40th to 60th esthetic numbers:
 454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012

Base 11: 44th to 66th esthetic numbers:
 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 A98 A9A 1010

Base 12: 48th to 72th esthetic numbers:
 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA BA9 BAB

Base 13: 52th to 78th esthetic numbers:
 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB CBA

Base 14: 56th to 84th esthetic numbers:
 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC

Base 15: 60th to 90th esthetic numbers:
 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD

Base 16: 64th to 96th esthetic numbers:
 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD DED DEF EDC

Base 10: 61 esthetic numbers between 1000 and 9999:
 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232
 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454
 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676
 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898

RPL

No brute force here, but a step-by-step generation, starting from a seed made up of the list of the digits of the base.

Task is accomplished in 999 seconds - precisely - on a basic HP-28S (4-bit CPU, 32 Mb RAM), but just in a few seconds on an iOS-based emulator.

≪ "0123456789ABCDEF" 1 3 PICK SUB 
   → deb fin base digits 
   ≪ { }
      2 base FOR j 
         digits j DUP SUB + NEXT 
      1
      DO 
         DUP2 GET 
         digits OVER DUP SIZE DUP SUB POS 
         → idx nbr pos 
         ≪ IF pos 1 ≠ THEN nbr digits pos 1 - DUP SUB + + END 
            IF pos base ≠ THEN nbr digits pos 1 + DUP SUB + + END 
            idx
         ≫ 
         1 +
     UNTIL DUP fin ≥ END
     DROP deb fin SUB
≫ ≫ 'ESTIC' STO

≪ 
  2 16 FOR b 
    b 4 * b 6 * b ESTIC NEXT
  59 119 10 ESTIC
≫  'TASK' STO
Output:
16: { "10101010" "101010101" "1010101010" "10101010101" "101010101010" }
15: { "1210" "1212" "2101" "2121" "10101" "10121" "12101" }
14: { "323" "1010" "1012" "1210" "1212" "1232" "2101" "2121" "2123" }
13: { "323" "343" "432" "434" "1010" "1012" "1210" "1212" "1232" "1234" "2101" }
12: { "343" "345" "432" "434" "454" "543" "545" "1010" "1012" "1210" "1212" "1232" "1234" }
11: { "345" "432" "434" "454" "456" "543" "545" "565" "654" "656" "1010" "1012" "1210" "1212" "1232" }
10: { "432" "434" "454" "456" "543" "545" "565" "567" "654" "656" "676" "765" "767" "1010" "1012" "1210" "1212" }
9: { "434" "454" "456" "543" "545" "565" "567" "654" "656" "676" "678" "765" "767" "787" "876" "878" "1010" "1012" "1210" }
8: { "454" "456" "543" "545" "565" "567" "654" "656" "676" "678" "765" "767" "787" "789" "876" "878" "898" "987" "989" "1010" "1012" } 
7: { "456" "543" "545" "565" "567" "654" "656" "676" "678" "765" "767" "787" "789" "876" "878" "898" "89A" "987" "989" "9A9" "A98" "A9A" "1010" }
6: { "543" "545" "565" "567" "654" "656" "676" "678" "765" "767" "787" "789" "876" "878" "898" "89A" "987" "989" "9A9" "9AB" "A98" "A9A" "ABA" "BA9" "BAB" }
5: { "545" "565" "567" "654" "656" "676" "678" "765" "767" "787" "789" "876" "878" "898" "89A" "987" "989" "9A9" "9AB" "A98" "A9A" "ABA" "ABC" "BA9" "BAB" "BCB" "CBA" } 
4: { "565" "567" "654" "656" "676" "678" "765" "767" "787" "789" "876" "878" "898" "89A" "987" "989" "9A9" "9AB" "A98" "A9A" "ABA" "ABC" "BA9" "BAB" "BCB" "BCD" "CBA" "CBC" "CDC" }
3: { "567" "654" "656" "676" "678" "765" "767" "787" "789" "876" "878" "898" "89A" "987" "989" "9A9" "9AB" "A98" "A9A" "ABA" "ABC" "BA9" "BAB" "BCB" "BCD" "CBA" "CBC" "CDC" "CDE" "DCB" "DCD" } 
2: { "654" "656" "676" "678" "765" "767" "787" "789" "876" "878" "898" "89A" "987" "989" "9A9" "9AB" "A98" "A9A" "ABA" "ABC" "BA9" "BAB" "BCB" "BCD" "CBA" "CBC" "CDC" "CDE" "DCB" "DCD" "DED" "DEF" "EDC" }
1: { "1010" "1012" "1210" "1212" "1232" "1234" "2101" "2121" "2123" "2321" "2323" "2343" "2345" "3210" "3212" "3232" "3234" "3432" "3434" "3454" "3456" "4321" "4323" "4343" "4345" "4543" "4545" "4565" "4567" "5432" "5434" "5454" "5456" "5654" "5656" "5676" "5678" "6543" "6545" "6565" "6567" "6765" "6767" "6787" "6789" "7654" "7656" "7676" "7678" "7876" "7878" "7898" "8765" "8767" "8787" "8789" "8987" "8989" "9876" "9878" "9898" } 

Ruby

Translation of: Kotlin
def isEsthetic(n, b)
    if n == 0 then
        return false
    end

    i = n % b
    n2 = (n / b).floor
    while n2 > 0
        j = n2 % b
        if (i - j).abs != 1 then
            return false
        end
        n2 = n2 / b
        i = j
    end
    return true
end

def listEsths(n, n2, m, m2, perLine, all)
    esths = Array.new
    dfs = lambda {|n, m, i|
        if n <= i and i <= m then
            esths << i
        end
        if i == 0 or i > m then
            return
        end
        d = i % 10
        i1 = i * 10 + d - 1
        i2 = i1 + 2
        if d == 0 then
            dfs[n, m, i2]
        elsif d == 9 then
            dfs[n, m, i1]
        else
            dfs[n, m, i1]
            dfs[n, m, i2]
        end
    }

    for i in 0..9
        dfs[n2, m2, i]
    end

    le = esths.length
    print "Base 10: %d esthetic numbers between %d and %d:\n" % [le, n, m]
    if all then
        esths.each_with_index { |esth, idx|
            print "%d " % [esth]
            if (idx + 1) % perLine == 0 then
                print "\n"
            end
        }
        print "\n"
    else
        for i in 0 .. perLine - 1
            print "%d " % [esths[i]]
        end
        print "\n............\n"
        for i in le - perLine .. le - 1
            print "%d " % [esths[i]]
        end
        print "\n"
    end
    print "\n"
end

def main
    for b in 2..16
        print "Base %d: %dth to %dth esthetic numbers:\n" % [b, 4 * b, 6 * b]
        n = 1
        c = 0
        while c < 6 * b
            if isEsthetic(n, b) then
                c = c + 1
                if c >= 4 * b then
                    print "%s " % [n.to_s(b)]
                end
            end
            n = n + 1
        end
        print "\n"
    end
    print "\n"

    listEsths(1000, 1010, 9999, 9898, 16, true)
    listEsths(1e8, 101010101, 13 * 1e7, 123456789, 9, true)
    listEsths(1e11, 101010101010, 13 * 1e10, 123456789898, 7, false)
    listEsths(1e14, 101010101010101, 13 * 1e13, 123456789898989, 5, false)
    listEsths(1e17, 101010101010101010, 13 * 1e16, 123456789898989898, 4, false)
end

main()
Output:
Base 2: 8th to 12th esthetic numbers:
10101010 101010101 1010101010 10101010101 101010101010
Base 3: 12th to 18th esthetic numbers:
1210 1212 2101 2121 10101 10121 12101
Base 4: 16th to 24th esthetic numbers:
323 1010 1012 1210 1212 1232 2101 2121 2123
Base 5: 20th to 30th esthetic numbers:
323 343 432 434 1010 1012 1210 1212 1232 1234 2101
Base 6: 24th to 36th esthetic numbers:
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234
Base 7: 28th to 42th esthetic numbers:
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232
Base 8: 32th to 48th esthetic numbers:
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212
Base 9: 36th to 54th esthetic numbers:
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210
Base 10: 40th to 60th esthetic numbers:
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012
Base 11: 44th to 66th esthetic numbers:
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 a98 a9a 1010
Base 12: 48th to 72th esthetic numbers:
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba ba9 bab
Base 13: 52th to 78th esthetic numbers:
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb cba
Base 14: 56th to 84th esthetic numbers:
565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc
Base 15: 60th to 90th esthetic numbers:
567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd
Base 16: 64th to 96th esthetic numbers:
654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd ded def edc

Base 10: 61 esthetic numbers between 1000 and 9999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898

Base 10: 126 esthetic numbers between 100000000 and 130000000:
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789


Base 10: 911 esthetic numbers between 100000000000 and 130000000000:
101010101010 101010101012 101010101210 101010101212 101010101232 101010101234 101010121010
............
123456787678 123456787876 123456787878 123456787898 123456789876 123456789878 123456789898

Base 10: 6225 esthetic numbers between 100000000000000 and 130000000000000:
101010101010101 101010101010121 101010101010123 101010101012101 101010101012121
............
123456789898767 123456789898787 123456789898789 123456789898987 123456789898989

Base 10: 44744 esthetic numbers between 100000000000000000 and 130000000000000000:
101010101010101010 101010101010101012 101010101010101210 101010101010101212
............
123456789898987898 123456789898989876 123456789898989878 123456789898989898

Rust

// [dependencies]
// radix_fmt = "1.0"

// Returns the next esthetic number in the given base after n, where n is an
// esthetic number in that base or one less than a power of base.
fn next_esthetic_number(base: u64, n: u64) -> u64 {
    if n + 1 < base {
        return n + 1;
    }
    let mut a = n / base;
    let mut b = a % base;
    if n % base + 1 == b && b + 1 < base {
        return n + 2;
    }
    a = next_esthetic_number(base, a);
    b = a % base;
    a * base + if b == 0 { 1 } else { b - 1 }
}

fn print_esthetic_numbers(min: u64, max: u64, numbers_per_line: usize) {
    let mut numbers = Vec::new();
    let mut n = next_esthetic_number(10, min - 1);
    while n <= max {
        numbers.push(n);
        n = next_esthetic_number(10, n);
    }
    let count = numbers.len();
    println!(
        "Esthetic numbers in base 10 between {} and {} ({}):",
        min, max, count
    );
    if count > 200 {
        for i in 0..numbers_per_line {
            if i != 0 {
                print!(" ");
            }
            print!("{}", numbers[i]);
        }
        println!("\n............\n");
        for i in 0..numbers_per_line {
            if i != 0 {
                print!(" ");
            }
            print!("{}", numbers[count - numbers_per_line + i]);
        }
        println!();
    } else {
        for i in 0..count {
            print!("{}", numbers[i]);
            if (i + 1) % numbers_per_line == 0 {
                println!();
            } else {
                print!(" ");
            }
        }
        if count % numbers_per_line != 0 {
            println!();
        }
    }
}

fn main() {
    for base in 2..=16 {
        let min = base * 4;
        let max = base * 6;
        println!(
            "Esthetic numbers in base {} from index {} through index {}:",
            base, min, max
        );
        let mut n = 0;
        for index in 1..=max {
            n = next_esthetic_number(base, n);
            if index >= min {
                print!("{} ", radix_fmt::radix(n, base as u8));
            }
        }
        println!("\n");
    }

    let mut min = 1000;
    let mut max = 9999;
    print_esthetic_numbers(min, max, 16);
    println!();

    min = 100000000;
    max = 130000000;
    print_esthetic_numbers(min, max, 8);
    println!();

    for i in 0..3 {
        min *= 1000;
        max *= 1000;
        let numbers_per_line = match i {
            0 => 7,
            1 => 5,
            _ => 4,
        };
        print_esthetic_numbers(min, max, numbers_per_line);
        println!();
    }
}
Output:
Esthetic numbers in base 2 from index 8 through index 12:
10101010 101010101 1010101010 10101010101 101010101010 

Esthetic numbers in base 3 from index 12 through index 18:
1210 1212 2101 2121 10101 10121 12101 

Esthetic numbers in base 4 from index 16 through index 24:
323 1010 1012 1210 1212 1232 2101 2121 2123 

Esthetic numbers in base 5 from index 20 through index 30:
323 343 432 434 1010 1012 1210 1212 1232 1234 2101 

Esthetic numbers in base 6 from index 24 through index 36:
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234 

Esthetic numbers in base 7 from index 28 through index 42:
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232 

Esthetic numbers in base 8 from index 32 through index 48:
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212 

Esthetic numbers in base 9 from index 36 through index 54:
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210 

Esthetic numbers in base 10 from index 40 through index 60:
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012 

Esthetic numbers in base 11 from index 44 through index 66:
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 a98 a9a 1010 

Esthetic numbers in base 12 from index 48 through index 72:
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba ba9 bab 

Esthetic numbers in base 13 from index 52 through index 78:
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb cba 

Esthetic numbers in base 14 from index 56 through index 84:
565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc 

Esthetic numbers in base 15 from index 60 through index 90:
567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd 

Esthetic numbers in base 16 from index 64 through index 96:
654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd ded def edc 

Esthetic numbers in base 10 between 1000 and 9999 (61):
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898 

Esthetic numbers in base 10 between 100000000 and 130000000 (126):
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323
101012343 101012345 101210101 101210121 101210123 101212101 101212121 101212123
101212321 101212323 101212343 101212345 101232101 101232121 101232123 101232321
101232323 101232343 101232345 101234321 101234323 101234343 101234345 101234543
101234545 101234565 101234567 121010101 121010121 121010123 121012101 121012121
121012123 121012321 121012323 121012343 121012345 121210101 121210121 121210123
121212101 121212121 121212123 121212321 121212323 121212343 121212345 121232101
121232121 121232123 121232321 121232323 121232343 121232345 121234321 121234323
121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345
123232101 123232121 123232123 123232321 123232323 123232343 123232345 123234321
123234323 123234343 123234345 123234543 123234545 123234565 123234567 123432101
123432121 123432123 123432321 123432323 123432343 123432345 123434321 123434323
123434343 123434345 123434543 123434545 123434565 123434567 123454321 123454323
123454343 123454345 123454543 123454545 123454565 123454567 123456543 123456545
123456565 123456567 123456765 123456767 123456787 123456789 

Esthetic numbers in base 10 between 100000000000 and 130000000000 (911):
101010101010 101010101012 101010101210 101010101212 101010101232 101010101234 101010121010
............

123456787678 123456787876 123456787878 123456787898 123456789876 123456789878 123456789898

Esthetic numbers in base 10 between 100000000000000 and 130000000000000 (6225):
101010101010101 101010101010121 101010101010123 101010101012101 101010101012121
............

123456789898767 123456789898787 123456789898789 123456789898987 123456789898989

Esthetic numbers in base 10 between 100000000000000000 and 130000000000000000 (44744):
101010101010101010 101010101010101012 101010101010101210 101010101010101212
............

123456789898987898 123456789898989876 123456789898989878 123456789898989898

Sidef

func generate_esthetic(root, upto, callback, b=10) {

    var v = root.digits2num(b)

    return nil if (v > upto)
    callback(v)

    var t = root.head

    __FUNC__([t+1, root...], upto, callback, b) if (t+1  < b)
    __FUNC__([t-1, root...], upto, callback, b) if (t-1 >= 0)
}

func between_esthetic(from, upto, b=10) {
    gather {
        for k in (1..^b) {
            generate_esthetic([k], upto, { take(_) if (_ >= from) }, b)
        }
    }.sort
}

func first_n_esthetic(n, b=10) {
    for (var m = n**2; true ; m *= b) {
        var list = between_esthetic(1, m, b)
        return list.first(n) if (list.len >= n)
    }
}

for b in (2..16) {
    say "\n#{b}-esthetic numbers with indices #{4*b}..#{6*b}: "
    say first_n_esthetic(6*b, b).last(6*b - 4*b + 1).map{.base(b)}.join(' ')
}

say "\nBase 10 esthetic numbers between 1,000 and 9,999:"
between_esthetic(1e3, 1e4).slices(20).each { .join(' ').say }

say "\nBase 10 esthetic numbers between 100,000,000 and 130,000,000:"
between_esthetic(1e8, 13e7).slices(9).each { .join(' ').say }
Output:
2-esthetic numbers with indices 8..12: 
10101010 101010101 1010101010 10101010101 101010101010

3-esthetic numbers with indices 12..18: 
1210 1212 2101 2121 10101 10121 12101

4-esthetic numbers with indices 16..24: 
323 1010 1012 1210 1212 1232 2101 2121 2123

5-esthetic numbers with indices 20..30: 
323 343 432 434 1010 1012 1210 1212 1232 1234 2101

6-esthetic numbers with indices 24..36: 
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234

7-esthetic numbers with indices 28..42: 
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232

8-esthetic numbers with indices 32..48: 
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212

9-esthetic numbers with indices 36..54: 
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210

10-esthetic numbers with indices 40..60: 
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012

11-esthetic numbers with indices 44..66: 
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 a98 a9a 1010

12-esthetic numbers with indices 48..72: 
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba ba9 bab

13-esthetic numbers with indices 52..78: 
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb cba

14-esthetic numbers with indices 56..84: 
565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc

15-esthetic numbers with indices 60..90: 
567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd

16-esthetic numbers with indices 64..96: 
654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd ded def edc

Base 10 esthetic numbers between 1,000 and 9,999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232 3234 3432 3434 3454
3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454 5456 5654 5656 5676 5678 6543 6545 6565
6567 6765 6767 6787 6789 7654 7656 7676 7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878
9898

Base 10 esthetic numbers between 100,000,000 and 130,000,000:
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789

Swift

extension Sequence {
  func take(_ n: Int) -> [Element] {
    var res = [Element]()

    for el in self {
      guard res.count != n else {
        return res
      }

      res.append(el)
    }

    return res
  }
}

extension String {
  func isEsthetic(base: Int = 10) -> Bool {
    zip(dropFirst(0), dropFirst())
      .lazy
      .allSatisfy({ abs(Int(String($0.0), radix: base)! - Int(String($0.1), radix: base)!) == 1 })
  }
}

func getEsthetics(from: Int, to: Int, base: Int = 10) -> [String] {
  guard base >= 2, to >= from else {
    return []
  }

  var start = ""
  var end = ""

  repeat {
    if start.count & 1 == 1 {
      start += "0"
    } else {
      start += "1"
    }
  } while Int(start, radix: base)! < from

  let digiMax = String(base - 1, radix: base)
  let lessThanDigiMax = String(base - 2, radix: base)
  var count = 0

  repeat {
    if count != base - 1 {
      end += String(count + 1, radix: base)
      count += 1
    } else {
      if String(end.last!) == digiMax {
        end += lessThanDigiMax
      } else {
        end += digiMax
      }
    }
  } while Int(end, radix: base)! < to

  if Int(start, radix: base)! >= Int(end, radix: base)! {
    return []
  }

  var esthetics = [Int]()

  func shimmer(_ n: Int, _ m: Int, _ i: Int) {
    if (n...m).contains(i) {
      esthetics.append(i)
    } else if i == 0 || i > m {
      return
    }

    let d = i % base
    let i1 = i &* base &+ d &- 1
    let i2 = i1 &+ 2

    if (i1 < i || i2 < i) {
      // overflow
      return
    }

    switch d {
    case 0: shimmer(n, m, i2)
    case base-1: shimmer(n, m, i1)
    case _:
      shimmer(n, m, i1)
      shimmer(n, m, i2)
    }
  }

  for digit in 0..<base {
    shimmer(Int(start, radix: base)!, Int(end, radix: base)!, digit)
  }

  return esthetics.filter({ $0 <= to }).map({ String($0, radix: base) })
}

for base in 2...16 {
  let esthetics = (0...)
    .lazy
    .map({ String($0, radix: base) })
    .filter({ $0.isEsthetic(base: base) })
    .dropFirst(base * 4)
    .take((base * 6) - (base * 4) + 1)

  print("Base \(base) esthetics from \(base * 4) to \(base * 6)")
  print(esthetics)
  print()
}

let base10Esthetics = (1000...9999).filter({ String($0).isEsthetic() })

print("\(base10Esthetics.count) esthetics between 1000 and 9999:")
print(base10Esthetics)
print()

func printSlice(of array: [String]) {
  print(array.take(5))
  print("...")
  print(Array(array.lazy.reversed().take(5).reversed()))
  print("\(array.count) total\n")
}

print("Esthetics between \(Int(1e8)) and \(13 * Int(1e7)):")
printSlice(of: getEsthetics(from: Int(1e8), to: 13 * Int(1e7)))

print("Esthetics between \(Int(1e11)) and \(13 * Int(1e10))")
printSlice(of: getEsthetics(from: Int(1e11), to: 13 * Int(1e10)))

print("Esthetics between \(Int(1e14)) and \(13 * Int(1e13)):")
printSlice(of: getEsthetics(from: Int(1e14), to: 13 * Int(1e13)))

print("Esthetics between \(Int(1e17)) and \(13 * Int(1e16)):")
printSlice(of: getEsthetics(from: Int(1e17), to: 13 * Int(1e16)))
Output:
Base 2 esthetics from 8 to 12
["10101010", "101010101", "1010101010", "10101010101", "101010101010"]

Base 3 esthetics from 12 to 18
["1210", "1212", "2101", "2121", "10101", "10121", "12101"]

Base 4 esthetics from 16 to 24
["323", "1010", "1012", "1210", "1212", "1232", "2101", "2121", "2123"]

Base 5 esthetics from 20 to 30
["323", "343", "432", "434", "1010", "1012", "1210", "1212", "1232", "1234", "2101"]

Base 6 esthetics from 24 to 36
["343", "345", "432", "434", "454", "543", "545", "1010", "1012", "1210", "1212", "1232", "1234"]

Base 7 esthetics from 28 to 42
["345", "432", "434", "454", "456", "543", "545", "565", "654", "656", "1010", "1012", "1210", "1212", "1232"]

Base 8 esthetics from 32 to 48
["432", "434", "454", "456", "543", "545", "565", "567", "654", "656", "676", "765", "767", "1010", "1012", "1210", "1212"]

Base 9 esthetics from 36 to 54
["434", "454", "456", "543", "545", "565", "567", "654", "656", "676", "678", "765", "767", "787", "876", "878", "1010", "1012", "1210"]

Base 10 esthetics from 40 to 60
["454", "456", "543", "545", "565", "567", "654", "656", "676", "678", "765", "767", "787", "789", "876", "878", "898", "987", "989", "1010", "1012"]

Base 11 esthetics from 44 to 66
["456", "543", "545", "565", "567", "654", "656", "676", "678", "765", "767", "787", "789", "876", "878", "898", "89a", "987", "989", "9a9", "a98", "a9a", "1010"]

Base 12 esthetics from 48 to 72
["543", "545", "565", "567", "654", "656", "676", "678", "765", "767", "787", "789", "876", "878", "898", "89a", "987", "989", "9a9", "9ab", "a98", "a9a", "aba", "ba9", "bab"]

Base 13 esthetics from 52 to 78
["545", "565", "567", "654", "656", "676", "678", "765", "767", "787", "789", "876", "878", "898", "89a", "987", "989", "9a9", "9ab", "a98", "a9a", "aba", "abc", "ba9", "bab", "bcb", "cba"]

Base 14 esthetics from 56 to 84
["565", "567", "654", "656", "676", "678", "765", "767", "787", "789", "876", "878", "898", "89a", "987", "989", "9a9", "9ab", "a98", "a9a", "aba", "abc", "ba9", "bab", "bcb", "bcd", "cba", "cbc", "cdc"]

Base 15 esthetics from 60 to 90
["567", "654", "656", "676", "678", "765", "767", "787", "789", "876", "878", "898", "89a", "987", "989", "9a9", "9ab", "a98", "a9a", "aba", "abc", "ba9", "bab", "bcb", "bcd", "cba", "cbc", "cdc", "cde", "dcb", "dcd"]

Base 16 esthetics from 64 to 96
["654", "656", "676", "678", "765", "767", "787", "789", "876", "878", "898", "89a", "987", "989", "9a9", "9ab", "a98", "a9a", "aba", "abc", "ba9", "bab", "bcb", "bcd", "cba", "cbc", "cdc", "cde", "dcb", "dcd", "ded", "def", "edc"]

61 esthetics between 1000 and 9999:
[1010, 1012, 1210, 1212, 1232, 1234, 2101, 2121, 2123, 2321, 2323, 2343, 2345, 3210, 3212, 3232, 3234, 3432, 3434, 3454, 3456, 4321, 4323, 4343, 4345, 4543, 4545, 4565, 4567, 5432, 5434, 5454, 5456, 5654, 5656, 5676, 5678, 6543, 6545, 6565, 6567, 6765, 6767, 6787, 6789, 7654, 7656, 7676, 7678, 7876, 7878, 7898, 8765, 8767, 8787, 8789, 8987, 8989, 9876, 9878, 9898]

Esthetics between 100000000 and 130000000:
["101010101", "101010121", "101010123", "101012101", "101012121"]
...
["123456567", "123456765", "123456767", "123456787", "123456789"]
126 total

Esthetics between 100000000000 and 130000000000
["101010101010", "101010101012", "101010101210", "101010101212", "101010101232"]
...
["123456787878", "123456787898", "123456789876", "123456789878", "123456789898"]
911 total

Esthetics between 100000000000000 and 130000000000000:
["101010101010101", "101010101010121", "101010101010123", "101010101012101", "101010101012121"]
...
["123456789898767", "123456789898787", "123456789898789", "123456789898987", "123456789898989"]
6225 total

Esthetics between 100000000000000000 and 130000000000000000:
["101010101010101010", "101010101010101012", "101010101010101210", "101010101010101212", "101010101010101232"]
...
["123456789898987878", "123456789898987898", "123456789898989876", "123456789898989878", "123456789898989898"]
44744 total

Wren

Translation of: Go
Library: Wren-fmt
import "./fmt" for Conv, Fmt

var isEsthetic = Fn.new { |n, b|
    if (n == 0) return false
    var i = n % b
    n = (n/b).floor
    while (n > 0) {
        var j = n % b
        if ((i - j).abs != 1) return false
        n = (n/b).floor
        i = j
    }
    return true
}

var esths = []

var dfs  // recursive function
dfs = Fn.new { |n, m, i|
    if (i >= n && i <= m) esths.add(i)
    if (i == 0 || i > m) return
    var d = i % 10
    var i1 = i*10 + d - 1
    var i2 = i1 + 2
    if (d == 0) {
        dfs.call(n, m, i2)
    } else if (d == 9) {
        dfs.call(n, m, i1)
    } else {
        dfs.call(n, m, i1)
        dfs.call(n, m, i2)
    }
}

var listEsths = Fn.new { |n, n2, m, m2, perLine, all|
    esths.clear()
    for (i in 0..9) dfs.call(n2, m2, i)
    var le = esths.count
    Fmt.print("Base 10: $,d esthetic numbers between $,d and $,d", le, n, m)
    if (all) {
        var c = 0
        for (esth in esths) {
            System.write("%(esth) ")
            if ((c+1)%perLine == 0) System.print()
            c = c + 1
        }
    } else {
        for (i in 0...perLine) System.write("%(Conv.dec(esths[i])) ")
        System.print("\n............\n")
        for (i in le-perLine...le) System.write("%(Conv.dec(esths[i])) ")
    }
    System.print("\n")
}

for (b in 2..16) {
    System.print("Base %(b): %(4*b)th to %(6*b)th esthetic numbers:")
    var n = 1
    var c = 0
    while (c < 6*b) {
        if (isEsthetic.call(n, b)) {
            c = c + 1
            if (c >= 4*b) System.write("%(Conv.itoa(n, b)) ")
        }
        n = n + 1
    }
    System.print("\n")
}

// the following all use the obvious range limitations for the numbers in question
listEsths.call(1000, 1010, 9999, 9898, 16, true)
listEsths.call(1e8, 101010101, 13*1e7, 123456789, 9, true)
listEsths.call(1e11, 101010101010, 13*1e10, 123456789898, 7, false)
listEsths.call(1e14, 101010101010101, 13*1e13, 123456789898989, 5, false)
Output:
Base 2: 8th to 12th esthetic numbers:
10101010 101010101 1010101010 10101010101 101010101010 

Base 3: 12th to 18th esthetic numbers:
1210 1212 2101 2121 10101 10121 12101 

Base 4: 16th to 24th esthetic numbers:
323 1010 1012 1210 1212 1232 2101 2121 2123 

Base 5: 20th to 30th esthetic numbers:
323 343 432 434 1010 1012 1210 1212 1232 1234 2101 

Base 6: 24th to 36th esthetic numbers:
343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234 

Base 7: 28th to 42th esthetic numbers:
345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232 

Base 8: 32th to 48th esthetic numbers:
432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212 

Base 9: 36th to 54th esthetic numbers:
434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210 

Base 10: 40th to 60th esthetic numbers:
454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012 

Base 11: 44th to 66th esthetic numbers:
456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 a98 a9a 1010 

Base 12: 48th to 72th esthetic numbers:
543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba ba9 bab 

Base 13: 52th to 78th esthetic numbers:
545 565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb cba 

Base 14: 56th to 84th esthetic numbers:
565 567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc 

Base 15: 60th to 90th esthetic numbers:
567 654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd 

Base 16: 64th to 96th esthetic numbers:
654 656 676 678 765 767 787 789 876 878 898 89a 987 989 9a9 9ab a98 a9a aba abc ba9 bab bcb bcd cba cbc cdc cde dcb dcd ded def edc 

Base 10: 61 esthetic numbers between 1,000 and 9,999
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232 
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454 
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676 
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898 

Base 10: 126 esthetic numbers between 100,000,000 and 130,000,000
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343 
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323 
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345 
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101 
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345 
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343 
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321 
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121 
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101 
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343 
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321 
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545 
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565 
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789 


Base 10: 911 esthetic numbers between 100,000,000,000 and 130,000,000,000
101010101010 101010101012 101010101210 101010101212 101010101232 101010101234 101010121010 
............

123456787678 123456787876 123456787878 123456787898 123456789876 123456789878 123456789898 

Base 10: 6,225 esthetic numbers between 100,000,000,000,000 and 130,000,000,000,000
101010101010101 101010101010121 101010101010123 101010101012101 101010101012121 
............

123456789898767 123456789898787 123456789898789 123456789898987 123456789898989 

XPL0

proc NumOut(N);         \Display N in the current Base
int  N, R;
[N:= N/Base;
R:= rem(0);
if N # 0 then NumOut(N);
if Base <= 10 then
    ChOut(0, R+^0)
else
    ChOut(0, if R < 10 then R+^0 else R-10+^A);
];

func Esthetic(N);       \Return 'true' if adjacent digits differ by 1
int  N, D, D0;
[N:= N/Base;
D0:= rem(0);
while N # 0 do
    [N:= N/Base;
    D:= rem(0);
    if D = D0 then return false;
    if abs(D-D0) > 1 then return false;
    D0:= D;
    ];
return true;
];

int  Count, N;
[for Base:= 2 to 16 do
    [Text(0, "Base ");  IntOut(0, Base);  Text(0, ": ");
    Count:= 0;  N:= 1;
    loop    [if Esthetic(N) then
                [Count:= Count+1;
                if Count >= Base*4 then
                    [NumOut(N);  ChOut(0, ^ )];
                if Count >= Base*6 then quit;
                ];
            N:= N+1;
            ];
        CrLf(0);
        ];
Base:= 10;
Text(0, "Base 10 numbers between 1000 and 9999:^m^j");
Count:= 0;
for N:= 1000 to 9999 do
    [if Esthetic(N) then
        [Count:= Count+1;
        NumOut(N);  ChOut(0, ^ );
        if rem(Count/16) = 0 then CrLf(0);
        ];
    ];
CrLf(0);
Text(0, "Base 10 numbers between 1.0e8 and 1.3e8:^m^j");
Count:= 0;
for N:= 100_000_000 to 130_000_000 do
    [if Esthetic(N) then
        [Count:= Count+1;
        NumOut(N);  ChOut(0, ^ );
        if rem(Count/9) = 0 then CrLf(0);
        ];
    ];
]
Output:
Base 2: 10101010 101010101 1010101010 10101010101 101010101010 
Base 3: 1210 1212 2101 2121 10101 10121 12101 
Base 4: 323 1010 1012 1210 1212 1232 2101 2121 2123 
Base 5: 323 343 432 434 1010 1012 1210 1212 1232 1234 2101 
Base 6: 343 345 432 434 454 543 545 1010 1012 1210 1212 1232 1234 
Base 7: 345 432 434 454 456 543 545 565 654 656 1010 1012 1210 1212 1232 
Base 8: 432 434 454 456 543 545 565 567 654 656 676 765 767 1010 1012 1210 1212 
Base 9: 434 454 456 543 545 565 567 654 656 676 678 765 767 787 876 878 1010 1012 1210 
Base 10: 454 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 987 989 1010 1012 
Base 11: 456 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 A98 A9A 1010 
Base 12: 543 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA BA9 BAB 
Base 13: 545 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB CBA 
Base 14: 565 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC 
Base 15: 567 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD 
Base 16: 654 656 676 678 765 767 787 789 876 878 898 89A 987 989 9A9 9AB A98 A9A ABA ABC BA9 BAB BCB BCD CBA CBC CDC CDE DCB DCD DED DEF EDC 
Base 10 numbers between 1000 and 9999:
1010 1012 1210 1212 1232 1234 2101 2121 2123 2321 2323 2343 2345 3210 3212 3232 
3234 3432 3434 3454 3456 4321 4323 4343 4345 4543 4545 4565 4567 5432 5434 5454 
5456 5654 5656 5676 5678 6543 6545 6565 6567 6765 6767 6787 6789 7654 7656 7676 
7678 7876 7878 7898 8765 8767 8787 8789 8987 8989 9876 9878 9898 
Base 10 numbers between 1.0e8 and 1.3e8:
101010101 101010121 101010123 101012101 101012121 101012123 101012321 101012323 101012343 
101012345 101210101 101210121 101210123 101212101 101212121 101212123 101212321 101212323 
101212343 101212345 101232101 101232121 101232123 101232321 101232323 101232343 101232345 
101234321 101234323 101234343 101234345 101234543 101234545 101234565 101234567 121010101 
121010121 121010123 121012101 121012121 121012123 121012321 121012323 121012343 121012345 
121210101 121210121 121210123 121212101 121212121 121212123 121212321 121212323 121212343 
121212345 121232101 121232121 121232123 121232321 121232323 121232343 121232345 121234321 
121234323 121234343 121234345 121234543 121234545 121234565 121234567 123210101 123210121 
123210123 123212101 123212121 123212123 123212321 123212323 123212343 123212345 123232101 
123232121 123232123 123232321 123232323 123232343 123232345 123234321 123234323 123234343 
123234345 123234543 123234545 123234565 123234567 123432101 123432121 123432123 123432321 
123432323 123432343 123432345 123434321 123434323 123434343 123434345 123434543 123434545 
123434565 123434567 123454321 123454323 123454343 123454345 123454543 123454545 123454565 
123454567 123456543 123456545 123456565 123456567 123456765 123456767 123456787 123456789