# Numbers divisible by their individual digits, but not by the product of their digits.

Numbers divisible by their individual digits, but not by the product of their digits. is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Find and show positive decimal integers divisible by their individual digits,   but not divisible by the product of their digits,
where   n   <   1,000

## 11l

Translation of: Python
```F p(n)
‘True if n is divisible by each of its digits,
but not divisible by the product of those digits.
’
V digits = String(n).map(c -> Int(c))
R !(0 C digits) & (0 != (n % product(digits))) & all(digits.map(d -> 0 == @n % d))

F chunksOf(n)
‘A series of lists of length n, subdividing the
contents of xs. Where the length of xs is not evenly
divible, the final list will be shorter than n.
’
F go(xs)
R ((0 .< xs.len).step(@=n).map(i -> @xs[i .< @=n + i]))
R go

V xs = (1..999).filter(n -> p(n)).map(String)
V w = xs.last.len
print(xs.len" matching numbers:\n")
print(chunksOf(10)(xs).map(row -> row.map(cell -> cell.rjust(:w, ‘ ’)).join(‘ ’)).join("\n"))```
Output:
```45 matching numbers:

22  33  44  48  55  66  77  88  99 122
124 126 155 162 168 184 222 244 248 264
288 324 333 336 366 396 412 424 444 448
488 515 555 636 648 666 728 777 784 824
848 864 888 936 999
```

## 8086 Assembly

```	cpu	8086
org	100h
section	.text
mov	si,1		; Current number
number:	mov	bp,1		; BP holds product
mov	di,si		; DI holds number
digit:	mov	ax,di		; Get digit
xor	dx,dx
mov	cx,10
div	cx
mov	di,ax		; Store remaining digits in DI
test	dx,dx		; Is the digit zero?
jz	next		; Then this number is not valid
mov	cx,dx		; Is the number divisible by the digit?
xor	dx,dx
mov	ax,si
div	cx
test	dx,dx
jnz	next		; If not, this number is not valid
mov	ax,bp		; Otherwise, multiply digit into product
mul	cx
mov	bp,ax
test	di,di		; More digits?
jnz	digit		; If so, do next digit
mov	ax,si		; Is the number divisible by the product?
xor	dx,dx
div	bp
test	dx,dx
jz	next		; If so, this number is not valid
mov	ax,si		; Otherwise, print the number
call	prnum
next:	inc	si		; Next number
cmp 	si,1000		; Are we there yet?
jne	number		; If not, do the next number
ret 			; But if so, stop
;;;	Print number in AX
prnum:	mov	bx,dbuf		; Start of buffer
mov	cx,10		; Divisor
.dgt:	xor	dx,dx		; Divide by 10
div	cx
add	dl,'0'		; Make ASCII digit
dec	bx
mov	[bx],dl		; Store digit
test	ax,ax		; Any more digits remaining?
jnz	.dgt		; If so, next digits
mov	dx,bx		; Print string using MS-DOS
mov	ah,9
int	21h
ret
section	.data
db	'*****'
dbuf:	db	13,10,'\$'
```
Output:
```22
33
44
48
55
66
77
88
99
122
124
126
155
162
168
184
222
244
248
264
288
324
333
336
366
396
412
424
444
448
488
515
555
636
648
666
728
777
784
824
848
864
888
936
999```

## Action!

```BYTE FUNC Check(INT x)
BYTE d
INT tmp,prod

prod=1 tmp=x
WHILE tmp#0
DO
d=tmp MOD 10
IF x MOD d#0 THEN
RETURN (0)
FI
tmp==/10
prod==*d
OD
IF x MOD prod=0 THEN
RETURN (0)
FI
RETURN (1)

PROC Main()
INT i

FOR i=1 TO 999
DO
IF Check(i) THEN
PrintI(i) Put(32)
FI
OD
RETURN```
Output:
```22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336
366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
```

```with Ada.Text_Io;

procedure Numbers_Divisible is

function Is_Divisible (N : Natural) return Boolean is

function To_Decimal (C : Character) return Natural
is ( Character'Pos (C) - Character'Pos ('0'));

Image : constant String := N'Image;
Digit : Natural;
Prod  : Natural := 1;
begin
for A in Image'First + 1 .. Image'Last loop
Digit := To_Decimal (Image (A));
if Digit = 0 then
return False;
end if;
if N mod Digit /= 0 then
return False;
end if;
Prod := Prod * Digit;
end loop;
return N mod Prod /= 0;
end Is_Divisible;

Count : Natural := 0;
begin
for N in 1 .. 999 loop
if Is_Divisible (N) then
Count := Count + 1;
if Count mod 15 = 0 then
end if;
end if;
end loop;
end Numbers_Divisible;
```
Output:
```   22   33   44   48   55   66   77   88   99  122  124  126  155  162  168
184  222  244  248  264  288  324  333  336  366  396  412  424  444  448
488  515  555  636  648  666  728  777  784  824  848  864  888  936  999```

## ALGOL 68

```BEGIN # find numbers divisible by their digits but not the product of their digits #
INT max number    = 999;
INT number count := 0;
FOR n TO max number DO
INT digit product        := 1;
INT v                    := n;
BOOL divisible by digits := n /= 0;
WHILE v > 0 AND divisible by digits DO
INT digit = v MOD 10;
divisible by digits := IF digit = 0
THEN FALSE
ELSE n MOD digit = 0
FI;
digit product *:= digit;
v OVERAB 10
OD;
IF divisible by digits THEN
IF n MOD digit product /= 0 THEN
# have a number divisible by its digits but not the product of the digits #
print( ( " ", whole( n, -3 ) ) );
IF ( number count +:= 1 ) MOD 15 = 0 THEN print( ( newline ) ) FI
FI
FI
OD
END```
Output:
```  22  33  44  48  55  66  77  88  99 122 124 126 155 162 168
184 222 244 248 264 288 324 333 336 366 396 412 424 444 448
488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
```

## ALGOL-M

```begin
integer function mod(a, b);
integer a, b;
mod := a-a/b*b;

integer function divisible(n);
integer n;
begin
integer r, p, c, d;
p := 1;
c := n;
r := 0;
while c <> 0 do
begin
d := mod(c, 10);
if d = 0 then go to stop;
if mod(n, d) <> 0 then go to stop;
p := p * d;
c := c / 10;
end;
if mod(n, p) <> 0 then r := 1;
stop:
divisible := r;
end;

integer c, n;
c := 0;
for n := 1 step 1 until 1000 do
begin
if divisible(n) <> 0 then
begin
if (c-1)/10 <> c/10 then
write(n)
else
writeon(n);
c := c + 1;
end;
end;
write("");
end```
Output:
```    22    33    44    48    55    66    77    88    99   122
124   126   155   162   168   184   222   244   248   264
288   324   333   336   366   396   412   424   444   448
488   515   555   636   648   666   728   777   784   824
848   864   888   936   999```

## ALGOL W

```begin % find numbers divisible by their digits but not the product of their digits %
% returns true if n is divisible by its digits but not the product of its      %
%         digits, false otherwise                                              %
logical procedure divisibleByDigitsButNotDigitProduct ( integer value n ) ;
begin
integer v, p;
logical matches;
v       := n;
p       := 1;
matches := v not = 0;
while matches and v > 0 do begin
integer d;
d       := v rem 10;
v       := v div 10;
if d = 0 then matches := false else matches := n rem d = 0;
p       := p * d
end while_matches_and_v_gt_0 ;
if matches then begin
if p = 0 then matches := false else matches := n rem p not = 0
end if_matche ;
matches
end divisibleByDigitsButNotDigitProduct ;
integer count;
% show the members of the seuence up to 1000 %
write( "Numbers below 1000 that are divisible by their digits but not the product of their digits:" );
write();
count := 0;
for i := 0 until 999 do begin
if divisibleByDigitsButNotDigitProduct( i ) then begin
writeon( i_w := 3, s_w := 0, " ", i );
count := count + 1;
if count rem 15 = 0 then write()
end if_divisibleByDigitsButNotDigitProduct__i
end for_i
end.```
Output:
```Numbers below 1000 that are divisible by their digits but not the product of their digits:
22  33  44  48  55  66  77  88  99 122 124 126 155 162 168
184 222 244 248 264 288 324 333 336 366 396 412 424 444 448
488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
```

## APL

Works with: Dyalog APL
```(⊢(/⍨)((⍎¨∘⍕)((∧/0=|)∧0≠(×/⊣)|⊢)⊢)¨)⍳999
```
Output:
```22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555
636 648 666 728 777 784 824 848 864 888 936 999```

## Arturo

```valid?: function [n][
digs: digits n
facts: factors n
and? [not? in? product digs facts]
[every? digs 'd -> in? d facts]
]

print select 1..999 => valid?
```
Output:
`22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999`

## AutoHotkey

```main:
while n < 1000
{
n := A_Index
prod = 1
for i, v in StrSplit(n)
{
if (v = 0) || (n/v <> floor(n/v))
continue, main
prod *= v
}
if (n/prod = floor(n/prod))
continue
result .= n "`t"
}
MsgBox % result
```
Output:
```22	33	44	48	55	66	77	88	99	122	124	126
155	162	168	184	222	244	248	264	288	324	333	336
366	396	412	424	444	448	488	515	555	636	648	666
728	777	784	824	848	864	888	936	999	```

## AWK

```# syntax: GAWK -f NUMBERS_DIVISIBLE_BY_THEIR_INDIVIDUAL_DIGITS_BUT_NOT_BY_THE_PRODUCT_OF_THEIR_DIGITS.AWK
# converted from C
BEGIN {
start = 1
stop = 999
for (i=start; i<=stop; i++) {
if (divisible(i)) {
printf("%4d%1s",i,++count%10?"":"\n")
}
}
printf("\nNumbers divisible by their individual digits but not by the product of their digits %d-%d: %d\n",start,stop,count)
exit(0)
}
function divisible(n,  c,d,p) {
p = 1
for (c=n; c; c=int(c/10)) {
d = c % 10
if (!d || n % d) { return(0) }
p *= d
}
return(n % p)
}
```
Output:
```  22   33   44   48   55   66   77   88   99  122
124  126  155  162  168  184  222  244  248  264
288  324  333  336  366  396  412  424  444  448
488  515  555  636  648  666  728  777  784  824
848  864  888  936  999
Numbers divisible by their individual digits but not by the product of their digits 1-999: 45
```

## BASIC

```10 DEFINT A-Z
20 FOR I=1 TO 999
30 N=I: P=1
40 D=N MOD 10
50 IF D=0 THEN 110
60 P=P*D
70 IF I MOD D THEN 110
80 N=N\10
90 IF N THEN 40
100 IF I MOD P <> 0 THEN PRINT I,
110 NEXT I
```
Output:
``` 22            33            44            48            55
66            77            88            99            122
124           126           155           162           168
184           222           244           248           264
288           324           333           336           366
396           412           424           444           448
488           515           555           636           648
666           728           777           784           824
848           864           888           936           999```

## BCPL

```get "libhdr"

let divisible(n) = valof
\$(  let p = 1
let c = n
until c = 0 do
\$(  let d = c rem 10
if d=0 resultis false
unless n rem d=0 resultis false
p := p * d
c := c / 10
\$)
resultis n rem p ~= 0
\$)

let start() be
\$(  let c = 0
for n = 1 to 1000 do
if divisible(n) do
\$(  writef("%I5",n)
c := c + 1
if c rem 10=0 then wrch('*N')
\$)
wrch('*N')
\$)```
Output:
```   22   33   44   48   55   66   77   88   99  122
124  126  155  162  168  184  222  244  248  264
288  324  333  336  366  396  412  424  444  448
488  515  555  636  648  666  728  777  784  824
848  864  888  936  999```

## C

```#include <stdio.h>

int divisible(int n) {
int p = 1;
int c, d;

for (c=n; c; c /= 10) {
d = c % 10;
if (!d || n % d) return 0;
p *= d;
}

return n % p;
}

int main() {
int n, c=0;

for (n=1; n<1000; n++) {
if (divisible(n)) {
printf("%5d", n);
if (!(++c % 10)) printf("\n");
}
}
printf("\n");

return 0;
}
```
Output:
```   22   33   44   48   55   66   77   88   99  122
124  126  155  162  168  184  222  244  248  264
288  324  333  336  366  396  412  424  444  448
488  515  555  636  648  666  728  777  784  824
848  864  888  936  999```

## CLU

```divisible = proc (n: int) returns (bool)
prod: int := 1
dgts: int := n
while dgts > 0 do
dgt: int := dgts // 10
if dgt=0 cor n//dgt~=0 then
return(false)
end
prod := prod * dgt
dgts := dgts / 10
end
return(n//prod~=0)
end divisible

start_up = proc ()
po: stream := stream\$primary_output()
col: int := 0
for n: int in int\$from_to(1,1000) do
if divisible(n) then
stream\$putright(po, int\$unparse(n), 5)
col := col + 1
if col//10=0 then stream\$putc(po,'\n') end
end
end
end start_up```
Output:
```   22   33   44   48   55   66   77   88   99  122
124  126  155  162  168  184  222  244  248  264
288  324  333  336  366  396  412  424  444  448
488  515  555  636  648  666  728  777  784  824
848  864  888  936  999```

## COBOL

```        IDENTIFICATION DIVISION.
PROGRAM-ID. DIV-BY-DGTS-BUT-NOT-PROD.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 CALCULATION.
02 N             PIC 9(4).
02 DGT-PROD      PIC 9(3).
02 NSTART        PIC 9.
02 D             PIC 9.
02 N-INDEXING    REDEFINES N.
03 DIGIT      PIC 9 OCCURS 4 TIMES.
02 NDIV          PIC 9(4).
02 OK            PIC 9.
01 OUTPUT-FORMAT.
02 DISP-N        PIC Z(4).

PROCEDURE DIVISION.
BEGIN.
PERFORM CHECK VARYING N FROM 1 BY 1
UNTIL N IS EQUAL TO 1000.
STOP RUN.

CHECK SECTION.
BEGIN.
SET NSTART TO 1.
INSPECT N TALLYING NSTART FOR LEADING '0'.

SET DGT-PROD TO 1.
PERFORM MUL-DIGIT VARYING D FROM NSTART BY 1
UNTIL D IS GREATER THAN 4.
IF DGT-PROD = 0 GO TO NOPE.
SET OK TO 1.
PERFORM CHECK-DIGIT VARYING D FROM NSTART BY 1
UNTIL D IS GREATER THAN 4.
IF OK = 0 GO TO NOPE.
DIVIDE N BY DGT-PROD GIVING NDIV.
MULTIPLY DGT-PROD BY NDIV.
IF NDIV IS EQUAL TO N GO TO NOPE.
MOVE N TO DISP-N.
DISPLAY DISP-N.
MUL-DIGIT.
IF D IS GREATER THAN 4 GO TO NOPE.
MULTIPLY DIGIT(D) BY DGT-PROD.
CHECK-DIGIT.
IF D IS GREATER THAN 4 GO TO NOPE.
DIVIDE N BY DIGIT(D) GIVING NDIV.
MULTIPLY DIGIT(D) BY NDIV.
IF NDIV IS NOT EQUAL TO N SET OK TO 0.
NOPE. EXIT.
```
Output:
```  22
33
44
48
55
66
77
88
99
122
124
126
155
162
168
184
222
244
248
264
288
324
333
336
366
396
412
424
444
448
488
515
555
636
648
666
728
777
784
824
848
864
888
936
999```

## Cowgol

```include "cowgol.coh";

sub divisible(n: uint16): (r: uint8) is
var product: uint16 := 1;
var c := n;
r := 1;

while c != 0 loop
var digit := c % 10;
if digit == 0 or n % digit != 0 then
r := 0;
return;
end if;
product := product * digit;
c := c / 10;
end loop;

if n % product == 0 then
r := 0;
end if;
end sub;

var n: uint16 := 1;
var c: uint8 := 1;
while n < 1000 loop
if divisible(n) != 0 then
print_i16(n);
c := c + 1;
if c % 10 == 1 then
print_nl();
else
print_char('\t');
end if;
end if;
n := n + 1;
end loop;
print_nl();```
Output:
```22      33      44      48      55      66      77      88      99      122
124     126     155     162     168     184     222     244     248     264
288     324     333     336     366     396     412     424     444     448
488     515     555     636     648     666     728     777     784     824
848     864     888     936     999```

## Draco

```proc nonrec divisible(word n) bool:
word dprod, c, dgt;
bool div;

c := n;
div := true;
dprod := 1;
while div and c /= 0 do
dgt := c % 10;
c := c / 10;
if dgt = 0 or n % dgt /= 0
then div := false
else dprod := dprod * dgt
fi
od;

div and n % dprod /= 0
corp

proc nonrec main() void:
word n, c;
c := 0;

for n from 1 upto 999 do
if divisible(n) then
write(n:5);
c := c+1;
if c % 10 = 0 then writeln() fi
fi
od
corp```
Output:
```   22   33   44   48   55   66   77   88   99  122
124  126  155  162  168  184  222  244  248  264
288  324  333  336  366  396  412  424  444  448
488  515  555  636  648  666  728  777  784  824
848  864  888  936  999```

## Delphi

Works with: Delphi version 6.0

```function IsDivisible(N: integer): boolean;
{Returns true if N is divisible by each of its digits}
{And not divisible by the product of all the digits}
var I: integer;
var S: string;
var B: byte;
var P: integer;
begin
Result:=False;
{Test if digits divide into N}
S:=IntToStr(N);
for I:=1 to Length(S) do
begin
B:=Byte(S[I])-\$30;
if B=0 then exit;
if (N mod B)<>0 then exit;
end;
{Test if product of digits doesn't divide into N}
P:=1;
for I:=1 to Length(S) do
begin
B:=Byte(S[I])-\$30;
P:=P * B;
end;
Result:=(N mod P)<>0;
end;

procedure ShowDivisibleDigits(Memo: TMemo);
{Show numbers that are even divisible by each of its digits}
{But not divisible by the product of all its digits}
var I,Cnt: integer;
var S: string;
begin
Cnt:=0;
S:='';
for I:=1 to 999 do
if IsDivisible(I) then
begin
Inc(Cnt);
S:=S+Format('%4D',[I]);
If (Cnt mod 10)=0 then S:=S+#\$0D#\$0A;
end;
end;
```
Output:
```Count=45
22  33  44  48  55  66  77  88  99 122
124 126 155 162 168 184 222 244 248 264
288 324 333 336 366 396 412 424 444 448
488 515 555 636 648 666 728 777 784 824
848 864 888 936 999
```

## EasyLang

Translation of: C
```func divisible n .
p = 1
c = n
while c > 0
d = c mod 10
if d = 0 or n mod d <> 0
return 0
.
p *= d
c = c div 10
.
return if n mod p > 0
.
for n = 1 to 999
if divisible n = 1
write n & " "
.
.```
Output:
```22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
```

## F#

```// Nigel Galloway. April 9th., 2021
let rec fN i g e l=match g%10,g/10 with (0,_)->false |(n,_) when i%n>0->false |(n,0)->i%(l*n)>0 |(n,g)->fN i g (e+n) (l*n)
seq{1..999}|>Seq.filter(fun n->fN n n 0 1)|>Seq.iter(printf "%d "); printfn ""
```
Output:
```22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
```

## Factor

Works with: Factor version 0.99 2021-02-05
```USING: combinators.short-circuit grouping kernel math
math.functions math.ranges math.text.utils prettyprint sequences ;

: needle? ( n -- ? )
dup 1 digit-groups dup product
{
[ 2nip zero? not ]
[ nip divisor? not ]
[ drop [ divisor? ] with all? ]
} 3&& ;

1000 [1..b] [ needle? ] filter 9 group simple-table.
```
Output:
```22  33  44  48  55  66  77  88  99
122 124 126 155 162 168 184 222 244
248 264 288 324 333 336 366 396 412
424 444 448 488 515 555 636 648 666
728 777 784 824 848 864 888 936 999
```

## FOCAL

```01.10 F I=1,999;D 2
01.20 Q

02.10 S N=I
02.15 S P=1
02.20 S Z=FITR(N/10)
02.25 S D=N-Z*10
02.30 S N=Z
02.35 S P=P*D
02.40 I (-D)2.45,2.65
02.45 S Z=I/D
02.60 I (FITR(Z)-Z)2.65,2.7
02.65 R
02.70 I (-N)2.2
02.75 S Z=I/P
02.80 I (FITR(Z)-Z)2.85,2.65
02.85 T %4,I,!```
Output:
```=   22
=   33
=   44
=   48
=   55
=   66
=   77
=   88
=   99
=  122
=  124
=  126
=  155
=  162
=  168
=  184
=  222
=  244
=  248
=  264
=  288
=  324
=  333
=  336
=  366
=  396
=  412
=  424
=  444
=  448
=  488
=  515
=  555
=  636
=  648
=  666
=  728
=  777
=  784
=  824
=  848
=  864
=  888
=  936
=  999```

## Forth

Works with: Gforth
```: divisible? { n -- ? }
1 { p }
n
begin
dup 0 >
while
10 /mod swap
dup 0= if
2drop false exit
then
dup n swap mod 0<> if
2drop false exit
then
p * to p
repeat
drop n p mod 0<> ;

: main
0 { count }
1000 1 do
i divisible? if
i 4 .r
count 1+ to count
count 10 mod 0= if cr else space then
then
loop cr ;

main
bye
```
Output:
```  22   33   44   48   55   66   77   88   99  122
124  126  155  162  168  184  222  244  248  264
288  324  333  336  366  396  412  424  444  448
488  515  555  636  648  666  728  777  784  824
848  864  888  936  999
```

## FreeBASIC

This function does a bit more than the task asks for, just to make things interesting.

```function divdignp( n as const integer ) as ubyte
'returns 1 if the number is divisible by its digits
'        2 if it is NOT divisible by the product of its digits
'        3 if both are true
'        0 if neither are true
dim as integer m = n, p = 1, r = 1, d
while m>0
d = m mod 10
m \= 10
p *= d
if d<>0 andalso n mod d <> 0 then r = 0
wend
if p<>0 andalso n mod p <> 0 then r += 2
return r
end function

for i as uinteger = 1 to 999
if divdignp(i) = 3 then print i;" ";
next i : print```
Output:
```22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
```

## Go

Translation of: Wren
Library: Go-rcu
```package main

import (
"fmt"
"rcu"
)

func main() {
var res []int
for n := 1; n < 1000; n++ {
digits := rcu.Digits(n, 10)
var all = true
for _, d := range digits {
if d == 0 || n%d != 0 {
all = false
break
}
}
if all {
prod := 1
for _, d := range digits {
prod *= d
}
if prod > 0 && n%prod != 0 {
res = append(res, n)
}
}
}
fmt.Println("Numbers < 1000 divisible by their digits, but not by the product thereof:")
for i, n := range res {
fmt.Printf("%4d", n)
if (i+1)%9 == 0 {
fmt.Println()
}
}
fmt.Printf("\n%d such numbers found\n", len(res))
}
```
Output:
```Numbers < 1000 divisible by their digits, but not by the product thereof:
22  33  44  48  55  66  77  88  99
122 124 126 155 162 168 184 222 244
248 264 288 324 333 336 366 396 412
424 444 448 488 515 555 636 648 666
728 777 784 824 848 864 888 936 999

45 such numbers found
```

```import Data.List.Split (chunksOf)
import Text.Printf

divisible :: Int -> Bool
divisible = divdgt <*> dgt
where
dgt = map (read . pure) . show
divdgt x d =
notElem 0 d
&& 0 /= x `mod` product d
&& all ((0 ==) . mod x) d

numbers :: [Int]
numbers = filter divisible [1 ..]

main :: IO ()
main = putStr \$ unlines \$ map (concatMap \$ printf "%5d") split
where
n = takeWhile (< 1000) numbers
split = chunksOf 10 n
```
Output:
```   22   33   44   48   55   66   77   88   99  122
124  126  155  162  168  184  222  244  248  264
288  324  333  336  366  396  412  424  444  448
488  515  555  636  648  666  728  777  784  824
848  864  888  936  999
```

and another approach might be to obtain (unordered) digit lists numerically, rather than by string conversion.

```import Data.Bool (bool)
import Data.List (unfoldr)
import Data.List.Split (chunksOf)
import Data.Tuple (swap)

-- DIVISIBLE BY ALL DIGITS, BUT NOT BY PRODUCT OF ALL DIGITS

p :: Int -> Bool
p n =
( ( (&&)
. all
( (&&) . (0 /=)
<*> (0 ==) . rem n
)
)
<*> (0 /=) . rem n . product
)
\$ digits n

digits :: Int -> [Int]
digits =
unfoldr \$
(bool Nothing . Just . swap . flip quotRem 10) <*> (0 <)

--------------------------- TEST -------------------------
main :: IO ()
main =
let xs = [1 .. 1000] >>= (\n -> [show n | p n])
w = length \$ last xs
in (putStrLn . unlines) \$
unwords
<\$> chunksOf
10
(fmap (justifyRight w ' ') xs)

justifyRight :: Int -> Char -> String -> String
justifyRight n c = (drop . length) <*> (replicate n c <>)
```
Output:
``` 22  33  44  48  55  66  77  88  99 122
124 126 155 162 168 184 222 244 248 264
288 324 333 336 366 396 412 424 444 448
488 515 555 636 648 666 728 777 784 824
848 864 888 936 999```

## J

```   ([ #~ ((10 #.inv]) ((0~:*/@[|]) * */@(0=|)) ])"0) >:i.999
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
```

`([ #~ ... ) >:i.999` filters the numbers based on the predicate (shown as '...' here).

`((10 #.inv]) ... ])"0` extracts a predicate value for each number, with the number's digits as the left argument and the number itself as the right argument.

`((0~:*/@[|]) * */@(0=|))` is true if the product of the digits does not evenly divide the number (`(0~:*/@[|])`) AND all of the digits individually evenly divide the number (`*/@(0=|)`).

## jq

Works with: jq

Works with gojq, the Go implementation of jq

```def digits:
tostring | explode | map( [.] | implode | tonumber);

def prod:
reduce .[] as \$i (1; .*\$i);

def is_divisible_by_digits_but_not_product:
. as \$n
| tostring
| select( null == index("0"))
| digits
| all( unique[]; \$n % . == 0)
and (\$n % prod != 0);```

```"Numbers < 1000 divisible by their digits, but not by the product thereof:",
(range(1; 1000)
| select(is_divisible_by_digits_but_not_product))```
Output:
```Numbers < 1000 divisible by their digits, but not by the product thereof:
22
33
44
48
55
66
77
88
99
122
124
126
155
162
168
184
222
244
248
264
288
324
333
336
366
396
412
424
444
448
488
515
555
636
648
666
728
777
784
824
848
864
888
936
999
```

## Julia

```isonlydigdivisible(n) = (d = digits(n); !(0 in d) && all(x -> n % x == 0, d) && n % prod(d) != 0)

foreach(p -> print(rpad(p[2], 5), p[1] % 15 == 0 ? "\n" : ""), enumerate(filter(isonlydigdivisible, 1:1000)))
```
Output:
```22   33   44   48   55   66   77   88   99   122  124  126  155  162  168
184  222  244  248  264  288  324  333  336  366  396  412  424  444  448
488  515  555  636  648  666  728  777  784  824  848  864  888  936  999
```

## Ksh

```#!/bin/ksh

# Numbers divisible by their digits, but not by the product of their digits

#	# Variables:
#
integer MAXN=1000

#	# Functions:
#
#	# Function _isdivisible(n) - return 1 if:
#	#  - is divisible by individual digits, and
#	#  - not divisible by product of digits
#
function _isdivisible {
typeset _n ; integer _n=\$1
typeset _i _digit _product ; integer _i _digit _product=1

for ((_i=0; _i<\${#_n}; _i++)); do
_digit=\${_n:_i:1}
(( ! _digit )) || (( _n % _digit )) && return 0
(( _product*=_digit ))
done
return \$(( _n % _product ))
}

######
# main #
######

for ((i=10; i<MAXN; i++)); do
(( ! i % 10 )) || _isdivisible \${i} || printf "%d " \${i}
done
```
Output:
```
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999 ```

```            NORMAL MODE IS INTEGER
PRINT COMMENT \$ \$

INTERNAL FUNCTION(N)
ENTRY TO DVDGT.
P=1
C=N
DGT         WHENEVER C.NE.0
Z = C/10
D = C-Z*10
WHENEVER D.E.0 .OR. N/D*D.NE.N, FUNCTION RETURN 0B
P = P*D
C = Z
TRANSFER TO DGT
END OF CONDITIONAL
FUNCTION RETURN N/P*P.NE.N
END OF FUNCTION

THROUGH TEST, FOR I=1, 1, I.E.1000
TEST        WHENEVER DVDGT.(I), PRINT FORMAT FMT, I

VECTOR VALUES FMT = \$I4*\$
END OF PROGRAM```
Output:
```  22
33
44
48
55
66
77
88
99
122
124
126
155
162
168
184
222
244
248
264
288
324
333
336
366
396
412
424
444
448
488
515
555
636
648
666
728
777
784
824
848
864
888
936
999```

## Mathematica/Wolfram Language

```ClearAll[SaveDivisible,DivisibleDigits]
SaveDivisible[n_,0] := False
SaveDivisible[n_,m_] := Divisible[n,m]
DivisibleDigits[n_Integer] := AllTrue[IntegerDigits[n],SaveDivisible[n,#]&]
Select[Range[999],DivisibleDigits[#]\[And]!SaveDivisible[#,Times@@IntegerDigits[#]]&]
Length[%]
```
Output:
```{22, 33, 44, 48, 55, 66, 77, 88, 99, 122, 124, 126, 155, 162, 168, 184, 222, 244, 248, 264, 288, 324, 333, 336, 366, 396, 412, 424, 444, 448, 488, 515, 555, 636, 648, 666, 728, 777, 784, 824, 848, 864, 888, 936, 999}
45```

## Miranda

```main :: [sys_message]
main = [Stdout (table 12 5 numbers)]

table :: num->num->[num]->[char]
table cols cw = lay . map concat . split . map fmt
where split [] = []
split ls = take cols ls : split (drop cols ls)
fmt   n  = reverse (take cw ((reverse (shownum n)) ++ repeat ' '))

numbers :: [num]
numbers = [n | n<-[1..1000]; divisible n]

divisible :: num->bool
divisible n = False, if digprod = 0 \/ n mod digprod = 0
= and [n mod d = 0 | d <- digits n], otherwise
where digprod = product (digits n)

digits :: num->[num]
digits = map (mod 10) . takewhile (>0) . iterate (div 10)```
Output:
```   22   33   44   48   55   66   77   88   99  122  124  126
155  162  168  184  222  244  248  264  288  324  333  336
366  396  412  424  444  448  488  515  555  636  648  666
728  777  784  824  848  864  888  936  999```

## Nim

```import strutils

iterator digits(n: Positive): int =
var n = n.int
while n != 0:
yield n mod 10
n = n div 10

var result: seq[int]
for n in 1..1000:
block check:
var m = 1
for d in n.digits:
if d == 0 or n mod d != 0: break check
m *= d
if n mod m != 0: result.add n

echo "Found ", result.len, " matching numbers."
for i, n in result:
stdout.write (\$n).align(3), if (i + 1) mod 9 == 0: '\n' else: ' '
```
Output:
```Found 45 matching numbers.
22  33  44  48  55  66  77  88  99
122 124 126 155 162 168 184 222 244
248 264 288 324 333 336 366 396 412
424 444 448 488 515 555 636 648 666
728 777 784 824 848 864 888 936 999```

## OCaml

```let test b x =
let rec loop m n =
if n < b
then x mod n = 0 && x mod (m * n) > 0
else let d = n mod b in d > 0 && x mod d = 0 && loop (m * d) (n / b)
in loop 1 x

let () =
Seq.ints 1 |> Seq.take 999 |> Seq.filter (test 10)
|> Seq.iter (Printf.printf " %u") |> print_newline
```
Output:
` 22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999`

## Pascal

### Free Pascal

```program DivByDgtsNotByProdOfDgts;

function ProdDigits(n:cardinal):cardinal;
// returns product of Digits if n is divisible by digits
var
p,q,r,dgt : cardinal;
begin
q := n;
p := 1;
repeat
r := q DIV 10;
dgt := q-10*r;
if (dgt= 0)OR(n mod dgt <> 0) then
EXIT(0);
p := p*dgt;
q := r;
until q = 0;
Exit(p)
end;

const
LimitLow  =    1;
LimitHigh = 1000;
var
i,mul,cnt : Cardinal;
BEGIN
cnt := 0;
writeln('Limits ',LimitLow,'..',LimitHigh);
For i := LimitLow to LimitHigh do
begin
mul := ProdDigits(i);
if (mul <> 0)  AND (i MOD MUL<>0) then
Begin
write(i:4);
inc(cnt);
if cnt AND 15= 0 then
writeln;
end;
end;
if cnt AND 15 <> 0 then
writeln;
writeln(' count : ',cnt);
END.
```
Output:
```Limits 1..1000
22  33  44  48  55  66  77  88  99 122 124 126 155 162 168 184
222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515
555 636 648 666 728 777 784 824 848 864 888 936 999
count : 45```

## Perl

```#!/usr/bin/perl

use strict;
use warnings;

my @numbers = grep
{
my \$n = \$_;
! /0/ and \$_ % eval s/\B/*/gr and 0 == grep \$n % \$_, split //
} 1 .. 999;

print @numbers . " numbers found\n\n@numbers\n" =~ s/.{25}\K /\n/gr;
```
Output:
```45 numbers found

22 33 44 48 55 66 77 88 99
122 124 126 155 162 168 184
222 244 248 264 288 324 333
336 366 396 412 424 444 448
488 515 555 636 648 666 728
777 784 824 848 864 888 936
999
```

## Phix

```function didbntp(integer n)
integer w = n, p = 1
while w do
integer d = remainder(w,10)
if d=0 or remainder(n,d) then return false end if
p *= d
w = floor(w/10)
end while
return remainder(n,p)!=0
end function
sequence res = apply(filter(tagset(1000),didbntp),sprint)
printf(1,"found %d didbntp thingies less than one thousand: %s\n",{length(res),join(shorten(res,"",5),",")})
```
Output:
```found 45 didbntp thingies less than one thousand: 22,33,44,48,55,...,848,864,888,936,999
```

## PL/M

```100H:

/* CHECK NUMBER */
DIVISIBLE: PROCEDURE (N) BYTE;
DECLARE D BYTE;
PROD = 1;
I = N;
DO WHILE N > 0;
D = N MOD 10;
N = N / 10;
IF D = 0 THEN RETURN 0;
IF I MOD D <> 0 THEN RETURN 0;
PROD = PROD * D;
END;
RETURN I MOD PROD <> 0;
END DIVISIBLE;

/* CP/M BDOS CALL - PL/M DOESN'T ACTUALLY COME WITH OUTPUT ROUTINES */
BDOS: PROCEDURE (FN, ARG);
GO TO 5;
END BDOS;

/* PRINT DECIMAL NUMBER */
PRINT\$NUMBER: PROCEDURE (N);
DECLARE S (8) BYTE INITIAL ('.....',13,10,'\$');
DECLARE (N, P) ADDRESS, C BASED P BYTE;
P = .S(5);
DIGIT:
P = P - 1;
C = N MOD 10 + '0';
N = N / 10;
IF N > 0 THEN GO TO DIGIT;
CALL BDOS(9, P);
END PRINT\$NUMBER;

/* TEST THE NUMBERS 1..1000 */
DO N=1 TO 999;
IF DIVISIBLE(N) THEN
CALL PRINT\$NUMBER(N);
END;

CALL BDOS(0,0);
EOF```
Output:
```22
33
44
48
55
66
77
88
99
122
124
126
155
162
168
184
222
244
248
264
288
324
333
336
366
396
412
424
444
448
488
515
555
636
648
666
728
777
784
824
848
864
888
936
999```

## Plain English

```To run:
Start up.
Loop.
If a counter is past 999, break.
If the counter is digit-divisible but non-digit-product-divisible, write the counter then " " on the console without advancing.
Repeat.
Wait for the escape key.
Shut down.

To decide if a number is digit-divisible but non-digit-product-divisible:
If the number is 0, say no.
Put the number into a shrinking number.
Put 1 into a digit product number.
Loop.
If the shrinking number is 0, break.
Divide the shrinking number by 10 giving a quotient and a remainder.
Multiply the digit product by the remainder.
If the number is not evenly divisible by the remainder, say no.
Put the quotient into the shrinking number.
Repeat.
If the number is evenly divisible by the digit product, say no.
Say yes.```
Output:
```22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
```

## Python

```'''Numbers matching a function of their digits'''

from functools import reduce
from operator import mul

# p :: Int -> Bool
def p(n):
'''True if n is divisible by each of its digits,
but not divisible by the product of those digits.
'''
digits = [int(c) for c in str(n)]
return not 0 in digits and (
0 != (n % reduce(mul, digits, 1))
) and all(0 == n % d for d in digits)

# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''Numbers below 1000 which satisfy p
'''
xs = [
str(n) for n in range(1, 1000)
if p(n)
]
w = len(xs[-1])
print(f'{len(xs)} matching numbers:\n')
print('\n'.join(
' '.join(cell.rjust(w, ' ') for cell in row)
for row in chunksOf(10)(xs)
))

# ----------------------- GENERIC ------------------------

# chunksOf :: Int -> [a] -> [[a]]
def chunksOf(n):
'''A series of lists of length n, subdividing the
contents of xs. Where the length of xs is not evenly
divible, the final list will be shorter than n.
'''
def go(xs):
return (
xs[i:n + i] for i in range(0, len(xs), n)
) if 0 < n else None
return go

# MAIN ---
if __name__ == '__main__':
main()
```
Output:
```45 matching numbers:

22  33  44  48  55  66  77  88  99 122
124 126 155 162 168 184 222 244 248 264
288 324 333 336 366 396 412 424 444 448
488 515 555 636 648 666 728 777 784 824
848 864 888 936 999```

## Quackery

```  [ dup 0 = iff
[ 2drop false ] done
mod 0 = ]                      is divisible     ( n n --> b )

[ [] swap
[ 10 /mod
rot join swap
dup 0 = until ]
drop ]                         is digits        (   n --> [ )

[ 1 swap witheach * ]            is product       (   [ --> n )

[ dup digits
dup product
dip over divisible
iff [ 2drop false ] done
true unrot
witheach
[ dip dup divisible not if
[ dip not conclude ] ]
drop ]                         is meetscriteria ( n n --> b )

1000 times [ i^ meetscriteria if [ i^ echo sp ] ]```
Output:
`22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999`

## Raku

```say "{+\$_} matching numbers:\n{.batch(10)».fmt('%3d').join: "\n"}" given
(^1000).grep: -> \$n { \$n.contains(0) ?? False !! all |(\$n.comb).map(\$n %% *), \$n % [*] \$n.comb };
```
Output:
```45 matching numbers:
22  33  44  48  55  66  77  88  99 122
124 126 155 162 168 184 222 244 248 264
288 324 333 336 366 396 412 424 444 448
488 515 555 636 648 666 728 777 784 824
848 864 888 936 999```

## REXX

```/*REXX pgm finds integers divisible by its individual digits, but not by product of digs*/
parse arg hi cols .                              /*obtain optional argument from the CL.*/
if   hi=='' |   hi==","  then   hi= 1000         /*Not specified?  Then use the default.*/
if cols=='' | cols==","  then cols=   10         /* "      "         "   "   "     "    */
w= 10                                            /*width of a number in any column.     */
title= ' base ten integers  < '   commas(hi)   " that are divisible" ,
'by its digits, but not by the product of its digits'
if cols>0 then say ' index │'center(title,   1 + cols*(w+1)     )
if cols>0 then say '───────┼'center(""   ,   1 + cols*(w+1), '─')
finds= 0;                 idx= 1                 /*initialize # of found numbers & index*/
\$=                                               /*a list of integers found  (so far).  */
do j=1  for hi-1;    L= length(j);    != 1  /*search for integers within the range.*/
if pos(0, j)>0  then iterate                /*Does J have a zero?  Yes, then skip. */      /* ◄■■■■■■■■ a filter. */
do k=1  for L;    x= substr(j, k, 1) /*extract a single decimal digit from J*/
if j//x\==0   then iterate j         /*J ÷ by this digit?  No, then skip it.*/      /* ◄■■■■■■■■ a filter. */
!= ! * x                             /*compute the running product of digits*/
end   /*k*/
if j//!==0           then iterate           /*J ÷ by its digit product?  Yes, skip.*/      /* ◄■■■■■■■■ a filter. */
finds= finds + 1                            /*bump the number of  found  integers. */
if cols<0            then iterate           /*Build the list  (to be shown later)? */
\$= \$ right( commas(j), w)                   /*add the number found to the  \$  list.*/
if finds//cols\==0   then iterate           /*have we populated a line of output?  */
say center(idx, 7)'│'  substr(\$, 2);   \$=   /*display what we have so far  (cols). */
idx= idx + cols                             /*bump the  index  count for the output*/
end   /*j*/

if \$\==''  then say center(idx, 7)"│"  substr(\$, 2)  /*possible display residual output.*/
if cols>0 then say '───────┴'center(""                         ,  1 + cols*(w+1), '─')
say
say 'Found '       commas(finds)       title
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?;  do jc=length(?)-3  to 1  by -3; ?=insert(',', ?, jc); end;  return ?
```
output   when using the default inputs:
``` index │      base ten integers  <  1,000  that are divisible by its digits, but not by the product of its digits
───────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────
1   │         22         33         44         48         55         66         77         88         99        122
11   │        124        126        155        162        168        184        222        244        248        264
21   │        288        324        333        336        366        396        412        424        444        448
31   │        488        515        555        636        648        666        728        777        784        824
41   │        848        864        888        936        999
───────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────

Found  45  base ten integers  <  1,000  that are divisible by its digits, but not by the product of its digits
```

## Ring

```load "stdlib.ring"

decimals(0)
see "working..." + nl
see "Numbers divisible by their individual digits, but not by the product of their digits are:" + nl

row = 0
limit = 1000

for n = 1 to limit
flag = 1
pro = 1
strn = string(n)
for m = 1 to len(strn)
temp = strn[m]
if temp != 0
pro = pro * number(temp)
ok
if n%temp = 0
flag = 1
else
flag = 0
exit
ok
next
bool = ((n%pro) != 0)
if flag = 1 and bool
row = row + 1
see "" + n + " "
if row%10 = 0
see nl
ok
ok
next

see nl + "Found " + row + " numbers" + nl
see "done..." + nl```
Output:
```working...
Numbers divisible by their individual digits, but not by the product of their digits are:
22 33 44 48 55 66 77 88 99 122
124 126 155 162 168 184 222 244 248 264
288 324 333 336 366 396 412 424 444 448
488 515 555 636 648 666 728 777 784 824
848 864 888 936 999
Found 45 numbers
done...

```

## RPL

Works with: HP version 48
```≪ DUP →STR → n
≪ CASE
DUP 9 ≤ n "0" POS OR THEN DROP 0 END
≪ n j DUP SUB STR→ ≫ 'j' 1 n SIZE 1 SEQ     @ make list of digits
DUP2 MOD ∑LIST THEN DROP2 0 END
ΠLIST MOD SIGN
END
≫ 'GOOD?' STO
```
```≪ 1 999 FOR j IF j GOOD? THEN j + END NEXT ≫ EVAL
```
Output:
```1: { 22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999 }
```

## Rust

```fn to_digits( n : i32 ) -> Vec<i32> {
let mut i : i32 = n ;
let mut digits : Vec<i32> = Vec::new( ) ;
while i != 0 {
digits.push( i % 10 ) ;
i /= 10 ;
}
digits
}

fn my_condition( num : i32 ) -> bool {
let digits : Vec<i32> = to_digits( num ) ;
if ! digits.iter( ).any( | x | *x == 0 ) {
let prod : i32 = digits.iter( ).product( ) ;
return digits.iter( ).all( | x | num % x == 0 ) &&
num % prod != 0 ;
}
else {
false
}
}

fn main() {
let mut count : i32 = 0 ;
for n in 10 .. 1000 {
if my_condition( n ) {
print!("{:5}" , n) ;
count += 1 ;
if count % 10 == 0 {
println!( ) ;
}
}
}
println!();
}
```
Output:
```   22   33   44   48   55   66   77   88   99  122
124  126  155  162  168  184  222  244  248  264
288  324  333  336  366  396  412  424  444  448
488  515  555  636  648  666  728  777  784  824
848  864  888  936  999
```

## Ruby

```res =(1..1000).select do |n|
digits = n.digits
next if digits.include? 0
digits.uniq.all?{|d| n%d == 0} &! (n % digits.inject(:*) == 0)
end

p res
```
Output:
```[22, 33, 44, 48, 55, 66, 77, 88, 99, 122, 124, 126, 155, 162, 168, 184, 222, 244, 248, 264, 288, 324, 333, 336, 366, 396, 412, 424, 444, 448, 488, 515, 555, 636, 648, 666, 728, 777, 784, 824, 848, 864, 888, 936, 999]
```

## Sidef

```^1000 -> grep {|n|
n.digits.all {|d| d `divides` n } && !(n.digits.prod `divides` n)
}.say
```
Output:
```[22, 33, 44, 48, 55, 66, 77, 88, 99, 122, 124, 126, 155, 162, 168, 184, 222, 244, 248, 264, 288, 324, 333, 336, 366, 396, 412, 424, 444, 448, 488, 515, 555, 636, 648, 666, 728, 777, 784, 824, 848, 864, 888, 936, 999]
```

## Snobol

```        define('divis(n)i,d,p')             :(divis_end)
divis   p = 1
i = n
digit   d = remdr(i,10)
p = ne(d,0) eq(remdr(n,d),0) p * d  :f(freturn)
i = gt(i,9) i / 10                  :s(digit)
ne(remdr(n,p))                      :s(return)f(freturn)
divis_end

n = 1
loop    output = divis(n) n
n = lt(n,1000) n + 1                :s(loop)
end
```
Output:
```22
33
44
48
55
66
77
88
99
122
124
126
155
162
168
184
222
244
248
264
288
324
333
336
366
396
412
424
444
448
488
515
555
636
648
666
728
777
784
824
848
864
888
936
999```

## Wren

Library: Wren-math
Library: Wren-fmt
```import "./math" for Int, Nums
import "./fmt" for Fmt

var res = []
for (n in 1..999) {
var digits = Int.digits(n)
if (digits.all { |d| n % d == 0 }) {
var prod = Nums.prod(digits)
if (prod > 0 && n % prod != 0) res.add(n)
}
}
System.print("Numbers < 1000 divisible by their digits, but not by the product thereof:")
Fmt.tprint("\$4d", res, 9)
System.print("\n%(res.count) such numbers found")
```
Output:
```Numbers < 1000 divisible by their digits, but not by the product thereof:
22   33   44   48   55   66   77   88   99
122  124  126  155  162  168  184  222  244
248  264  288  324  333  336  366  396  412
424  444  448  488  515  555  636  648  666
728  777  784  824  848  864  888  936  999

45 such numbers found
```

## XPL0

```func Check(N);
\Return 'true' if N is divisible by its digits and not by the product of its digits
int  N, M, Digit, Product;
[Product:= 1;
M:= N;
repeat  M:= M/10;
Digit:= rem(0);
if Digit = 0 then return false;
if rem(N/Digit) then return false;
Product:= Product * Digit;
until   M=0;
return rem(N/Product) # 0;
];

int Count, N;
[Count:= 0;
for N:= 1 to 1000-1 do
if Check(N) then
[IntOut(0, N);
Count:= Count+1;
if rem(Count/10) = 0 then CrLf(0) else ChOut(0, 9\tab\);
];
CrLf(0);
IntOut(0, Count);
Text(0, " such integers found below 1000.
");
]```
Output:
```22      33      44      48      55      66      77      88      99      122
124     126     155     162     168     184     222     244     248     264
288     324     333     336     366     396     412     424     444     448
488     515     555     636     648     666     728     777     784     824
848     864     888     936     999
45 such integers found below 1000.
```