Numbers divisible by their individual digits, but not by the product of their digits.
- Task
Find and show positive decimal integers divisible by their individual digits, but not divisible by the product of their digits,
where n < 1,000
11l
F p(n)
‘True if n is divisible by each of its digits,
but not divisible by the product of those digits.
’
V digits = String(n).map(c -> Int(c))
R !(0 C digits) & (0 != (n % product(digits))) & all(digits.map(d -> 0 == @n % d))
F chunksOf(n)
‘A series of lists of length n, subdividing the
contents of xs. Where the length of xs is not evenly
divible, the final list will be shorter than n.
’
F go(xs)
R ((0 .< xs.len).step(@=n).map(i -> @xs[i .< @=n + i]))
R go
V xs = (1..999).filter(n -> p(n)).map(String)
V w = xs.last.len
print(xs.len" matching numbers:\n")
print(chunksOf(10)(xs).map(row -> row.map(cell -> cell.rjust(:w, ‘ ’)).join(‘ ’)).join("\n"))
- Output:
45 matching numbers: 22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
8086 Assembly
cpu 8086
org 100h
section .text
mov si,1 ; Current number
number: mov bp,1 ; BP holds product
mov di,si ; DI holds number
digit: mov ax,di ; Get digit
xor dx,dx
mov cx,10
div cx
mov di,ax ; Store remaining digits in DI
test dx,dx ; Is the digit zero?
jz next ; Then this number is not valid
mov cx,dx ; Is the number divisible by the digit?
xor dx,dx
mov ax,si
div cx
test dx,dx
jnz next ; If not, this number is not valid
mov ax,bp ; Otherwise, multiply digit into product
mul cx
mov bp,ax
test di,di ; More digits?
jnz digit ; If so, do next digit
mov ax,si ; Is the number divisible by the product?
xor dx,dx
div bp
test dx,dx
jz next ; If so, this number is not valid
mov ax,si ; Otherwise, print the number
call prnum
next: inc si ; Next number
cmp si,1000 ; Are we there yet?
jne number ; If not, do the next number
ret ; But if so, stop
;;; Print number in AX
prnum: mov bx,dbuf ; Start of buffer
mov cx,10 ; Divisor
.dgt: xor dx,dx ; Divide by 10
div cx
add dl,'0' ; Make ASCII digit
dec bx
mov [bx],dl ; Store digit
test ax,ax ; Any more digits remaining?
jnz .dgt ; If so, next digits
mov dx,bx ; Print string using MS-DOS
mov ah,9
int 21h
ret
section .data
db '*****'
dbuf: db 13,10,'$'
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Action!
BYTE FUNC Check(INT x)
BYTE d
INT tmp,prod
prod=1 tmp=x
WHILE tmp#0
DO
d=tmp MOD 10
IF x MOD d#0 THEN
RETURN (0)
FI
tmp==/10
prod==*d
OD
IF x MOD prod=0 THEN
RETURN (0)
FI
RETURN (1)
PROC Main()
INT i
FOR i=1 TO 999
DO
IF Check(i) THEN
PrintI(i) Put(32)
FI
OD
RETURN
- Output:
Screenshot from Atari 8-bit computer
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Ada
with Ada.Text_Io;
with Ada.Integer_Text_Io;
procedure Numbers_Divisible is
function Is_Divisible (N : Natural) return Boolean is
function To_Decimal (C : Character) return Natural
is ( Character'Pos (C) - Character'Pos ('0'));
Image : constant String := N'Image;
Digit : Natural;
Prod : Natural := 1;
begin
for A in Image'First + 1 .. Image'Last loop
Digit := To_Decimal (Image (A));
if Digit = 0 then
return False;
end if;
if N mod Digit /= 0 then
return False;
end if;
Prod := Prod * Digit;
end loop;
return N mod Prod /= 0;
end Is_Divisible;
Count : Natural := 0;
begin
for N in 1 .. 999 loop
if Is_Divisible (N) then
Count := Count + 1;
Ada.Integer_Text_Io.Put (N, Width => 5);
if Count mod 15 = 0 then
Ada.Text_Io.New_Line;
end if;
end if;
end loop;
end Numbers_Divisible;
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
ALGOL 68
BEGIN # find numbers divisible by their digits but not the product of their digits #
INT max number = 999;
INT number count := 0;
FOR n TO max number DO
INT digit product := 1;
INT v := n;
BOOL divisible by digits := n /= 0;
WHILE v > 0 AND divisible by digits DO
INT digit = v MOD 10;
divisible by digits := IF digit = 0
THEN FALSE
ELSE n MOD digit = 0
FI;
digit product *:= digit;
v OVERAB 10
OD;
IF divisible by digits THEN
IF n MOD digit product /= 0 THEN
# have a number divisible by its digits but not the product of the digits #
print( ( " ", whole( n, -3 ) ) );
IF ( number count +:= 1 ) MOD 15 = 0 THEN print( ( newline ) ) FI
FI
FI
OD
END
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
ALGOL-M
begin
integer function mod(a, b);
integer a, b;
mod := a-a/b*b;
integer function divisible(n);
integer n;
begin
integer r, p, c, d;
p := 1;
c := n;
r := 0;
while c <> 0 do
begin
d := mod(c, 10);
if d = 0 then go to stop;
if mod(n, d) <> 0 then go to stop;
p := p * d;
c := c / 10;
end;
if mod(n, p) <> 0 then r := 1;
stop:
divisible := r;
end;
integer c, n;
c := 0;
for n := 1 step 1 until 1000 do
begin
if divisible(n) <> 0 then
begin
if (c-1)/10 <> c/10 then
write(n)
else
writeon(n);
c := c + 1;
end;
end;
write("");
end
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
ALGOL W
begin % find numbers divisible by their digits but not the product of their digits %
% returns true if n is divisible by its digits but not the product of its %
% digits, false otherwise %
logical procedure divisibleByDigitsButNotDigitProduct ( integer value n ) ;
begin
integer v, p;
logical matches;
v := n;
p := 1;
matches := v not = 0;
while matches and v > 0 do begin
integer d;
d := v rem 10;
v := v div 10;
if d = 0 then matches := false else matches := n rem d = 0;
p := p * d
end while_matches_and_v_gt_0 ;
if matches then begin
if p = 0 then matches := false else matches := n rem p not = 0
end if_matche ;
matches
end divisibleByDigitsButNotDigitProduct ;
integer count;
% show the members of the seuence up to 1000 %
write( "Numbers below 1000 that are divisible by their digits but not the product of their digits:" );
write();
count := 0;
for i := 0 until 999 do begin
if divisibleByDigitsButNotDigitProduct( i ) then begin
writeon( i_w := 3, s_w := 0, " ", i );
count := count + 1;
if count rem 15 = 0 then write()
end if_divisibleByDigitsButNotDigitProduct__i
end for_i
end.
- Output:
Numbers below 1000 that are divisible by their digits but not the product of their digits: 22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
APL
(⊢(/⍨)((⍎¨∘⍕)((∧/0=|)∧0≠(×/⊣)|⊢)⊢)¨)⍳999
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Arturo
valid?: function [n][
digs: digits n
facts: factors n
and? [not? in? product digs facts]
[every? digs 'd -> in? d facts]
]
print select 1..999 => valid?
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
AutoHotkey
main:
while n < 1000
{
n := A_Index
prod = 1
for i, v in StrSplit(n)
{
if (v = 0) || (n/v <> floor(n/v))
continue, main
prod *= v
}
if (n/prod = floor(n/prod))
continue
result .= n "`t"
}
MsgBox % result
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
AWK
# syntax: GAWK -f NUMBERS_DIVISIBLE_BY_THEIR_INDIVIDUAL_DIGITS_BUT_NOT_BY_THE_PRODUCT_OF_THEIR_DIGITS.AWK
# converted from C
BEGIN {
start = 1
stop = 999
for (i=start; i<=stop; i++) {
if (divisible(i)) {
printf("%4d%1s",i,++count%10?"":"\n")
}
}
printf("\nNumbers divisible by their individual digits but not by the product of their digits %d-%d: %d\n",start,stop,count)
exit(0)
}
function divisible(n, c,d,p) {
p = 1
for (c=n; c; c=int(c/10)) {
d = c % 10
if (!d || n % d) { return(0) }
p *= d
}
return(n % p)
}
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999 Numbers divisible by their individual digits but not by the product of their digits 1-999: 45
BASIC
10 DEFINT A-Z
20 FOR I=1 TO 999
30 N=I: P=1
40 D=N MOD 10
50 IF D=0 THEN 110
60 P=P*D
70 IF I MOD D THEN 110
80 N=N\10
90 IF N THEN 40
100 IF I MOD P <> 0 THEN PRINT I,
110 NEXT I
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
BCPL
get "libhdr"
let divisible(n) = valof
$( let p = 1
let c = n
until c = 0 do
$( let d = c rem 10
if d=0 resultis false
unless n rem d=0 resultis false
p := p * d
c := c / 10
$)
resultis n rem p ~= 0
$)
let start() be
$( let c = 0
for n = 1 to 1000 do
if divisible(n) do
$( writef("%I5",n)
c := c + 1
if c rem 10=0 then wrch('*N')
$)
wrch('*N')
$)
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
BQN
1⊏˘ (0<×´⊸|)´˘⊸/ (∧˝0=⍷⊸|)´˘⊸/ (¬0∊⊑)˘⊸/ •Repr¨⊸-⟜'0'⊸(≍˘) ↕
- Output:
⟨ 22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999 ⟩
C
#include <stdio.h>
int divisible(int n) {
int p = 1;
int c, d;
for (c=n; c; c /= 10) {
d = c % 10;
if (!d || n % d) return 0;
p *= d;
}
return n % p;
}
int main() {
int n, c=0;
for (n=1; n<1000; n++) {
if (divisible(n)) {
printf("%5d", n);
if (!(++c % 10)) printf("\n");
}
}
printf("\n");
return 0;
}
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
CLU
divisible = proc (n: int) returns (bool)
prod: int := 1
dgts: int := n
while dgts > 0 do
dgt: int := dgts // 10
if dgt=0 cor n//dgt~=0 then
return(false)
end
prod := prod * dgt
dgts := dgts / 10
end
return(n//prod~=0)
end divisible
start_up = proc ()
po: stream := stream$primary_output()
col: int := 0
for n: int in int$from_to(1,1000) do
if divisible(n) then
stream$putright(po, int$unparse(n), 5)
col := col + 1
if col//10=0 then stream$putc(po,'\n') end
end
end
end start_up
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
COBOL
IDENTIFICATION DIVISION.
PROGRAM-ID. DIV-BY-DGTS-BUT-NOT-PROD.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CALCULATION.
02 N PIC 9(4).
02 DGT-PROD PIC 9(3).
02 NSTART PIC 9.
02 D PIC 9.
02 N-INDEXING REDEFINES N.
03 DIGIT PIC 9 OCCURS 4 TIMES.
02 NDIV PIC 9(4).
02 OK PIC 9.
01 OUTPUT-FORMAT.
02 DISP-N PIC Z(4).
PROCEDURE DIVISION.
BEGIN.
PERFORM CHECK VARYING N FROM 1 BY 1
UNTIL N IS EQUAL TO 1000.
STOP RUN.
CHECK SECTION.
BEGIN.
SET NSTART TO 1.
INSPECT N TALLYING NSTART FOR LEADING '0'.
SET DGT-PROD TO 1.
PERFORM MUL-DIGIT VARYING D FROM NSTART BY 1
UNTIL D IS GREATER THAN 4.
IF DGT-PROD = 0 GO TO NOPE.
SET OK TO 1.
PERFORM CHECK-DIGIT VARYING D FROM NSTART BY 1
UNTIL D IS GREATER THAN 4.
IF OK = 0 GO TO NOPE.
DIVIDE N BY DGT-PROD GIVING NDIV.
MULTIPLY DGT-PROD BY NDIV.
IF NDIV IS EQUAL TO N GO TO NOPE.
MOVE N TO DISP-N.
DISPLAY DISP-N.
MUL-DIGIT.
IF D IS GREATER THAN 4 GO TO NOPE.
MULTIPLY DIGIT(D) BY DGT-PROD.
CHECK-DIGIT.
IF D IS GREATER THAN 4 GO TO NOPE.
DIVIDE N BY DIGIT(D) GIVING NDIV.
MULTIPLY DIGIT(D) BY NDIV.
IF NDIV IS NOT EQUAL TO N SET OK TO 0.
NOPE. EXIT.
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Cowgol
include "cowgol.coh";
sub divisible(n: uint16): (r: uint8) is
var product: uint16 := 1;
var c := n;
r := 1;
while c != 0 loop
var digit := c % 10;
if digit == 0 or n % digit != 0 then
r := 0;
return;
end if;
product := product * digit;
c := c / 10;
end loop;
if n % product == 0 then
r := 0;
end if;
end sub;
var n: uint16 := 1;
var c: uint8 := 1;
while n < 1000 loop
if divisible(n) != 0 then
print_i16(n);
c := c + 1;
if c % 10 == 1 then
print_nl();
else
print_char('\t');
end if;
end if;
n := n + 1;
end loop;
print_nl();
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Draco
proc nonrec divisible(word n) bool:
word dprod, c, dgt;
bool div;
c := n;
div := true;
dprod := 1;
while div and c /= 0 do
dgt := c % 10;
c := c / 10;
if dgt = 0 or n % dgt /= 0
then div := false
else dprod := dprod * dgt
fi
od;
div and n % dprod /= 0
corp
proc nonrec main() void:
word n, c;
c := 0;
for n from 1 upto 999 do
if divisible(n) then
write(n:5);
c := c+1;
if c % 10 = 0 then writeln() fi
fi
od
corp
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Delphi
function IsDivisible(N: integer): boolean;
{Returns true if N is divisible by each of its digits}
{And not divisible by the product of all the digits}
var I: integer;
var S: string;
var B: byte;
var P: integer;
begin
Result:=False;
{Test if digits divide into N}
S:=IntToStr(N);
for I:=1 to Length(S) do
begin
B:=Byte(S[I])-$30;
if B=0 then exit;
if (N mod B)<>0 then exit;
end;
{Test if product of digits doesn't divide into N}
P:=1;
for I:=1 to Length(S) do
begin
B:=Byte(S[I])-$30;
P:=P * B;
end;
Result:=(N mod P)<>0;
end;
procedure ShowDivisibleDigits(Memo: TMemo);
{Show numbers that are even divisible by each of its digits}
{But not divisible by the product of all its digits}
var I,Cnt: integer;
var S: string;
begin
Cnt:=0;
S:='';
for I:=1 to 999 do
if IsDivisible(I) then
begin
Inc(Cnt);
S:=S+Format('%4D',[I]);
If (Cnt mod 10)=0 then S:=S+#$0D#$0A;
end;
Memo.Lines.Add('Count='+IntToStr(Cnt));
Memo.Lines.Add(S);
end;
- Output:
Count=45 22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
EasyLang
func divisible n .
p = 1
c = n
while c > 0
d = c mod 10
if d = 0 or n mod d <> 0
return 0
.
p *= d
c = c div 10
.
return if n mod p > 0
.
for n = 1 to 999
if divisible n = 1
write n & " "
.
.
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
F#
// Nigel Galloway. April 9th., 2021
let rec fN i g e l=match g%10,g/10 with (0,_)->false |(n,_) when i%n>0->false |(n,0)->i%(l*n)>0 |(n,g)->fN i g (e+n) (l*n)
seq{1..999}|>Seq.filter(fun n->fN n n 0 1)|>Seq.iter(printf "%d "); printfn ""
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Factor
USING: combinators.short-circuit grouping kernel math
math.functions math.ranges math.text.utils prettyprint sequences ;
: needle? ( n -- ? )
dup 1 digit-groups dup product
{
[ 2nip zero? not ]
[ nip divisor? not ]
[ drop [ divisor? ] with all? ]
} 3&& ;
1000 [1..b] [ needle? ] filter 9 group simple-table.
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
FOCAL
01.10 F I=1,999;D 2
01.20 Q
02.10 S N=I
02.15 S P=1
02.20 S Z=FITR(N/10)
02.25 S D=N-Z*10
02.30 S N=Z
02.35 S P=P*D
02.40 I (-D)2.45,2.65
02.45 S Z=I/D
02.60 I (FITR(Z)-Z)2.65,2.7
02.65 R
02.70 I (-N)2.2
02.75 S Z=I/P
02.80 I (FITR(Z)-Z)2.85,2.65
02.85 T %4,I,!
- Output:
= 22 = 33 = 44 = 48 = 55 = 66 = 77 = 88 = 99 = 122 = 124 = 126 = 155 = 162 = 168 = 184 = 222 = 244 = 248 = 264 = 288 = 324 = 333 = 336 = 366 = 396 = 412 = 424 = 444 = 448 = 488 = 515 = 555 = 636 = 648 = 666 = 728 = 777 = 784 = 824 = 848 = 864 = 888 = 936 = 999
Forth
: divisible? { n -- ? }
1 { p }
n
begin
dup 0 >
while
10 /mod swap
dup 0= if
2drop false exit
then
dup n swap mod 0<> if
2drop false exit
then
p * to p
repeat
drop n p mod 0<> ;
: main
0 { count }
1000 1 do
i divisible? if
i 4 .r
count 1+ to count
count 10 mod 0= if cr else space then
then
loop cr ;
main
bye
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
FreeBASIC
This function does a bit more than the task asks for, just to make things interesting.
function divdignp( n as const integer ) as ubyte
'returns 1 if the number is divisible by its digits
' 2 if it is NOT divisible by the product of its digits
' 3 if both are true
' 0 if neither are true
dim as integer m = n, p = 1, r = 1, d
while m>0
d = m mod 10
m \= 10
p *= d
if d<>0 andalso n mod d <> 0 then r = 0
wend
if p<>0 andalso n mod p <> 0 then r += 2
return r
end function
for i as uinteger = 1 to 999
if divdignp(i) = 3 then print i;" ";
next i : print
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
FutureBasic
local fn Divisible( n as int ) as BOOL
int d, p = 1, c = n
while ( c > 0 )
d = c % 10
if d == 0 || n % d != 0 then return NO
p *= d : c /= 10
wend
end fn = n % p > 0
int i, count = 1
for i = 1 to 999
if ( fn Divisible(i) )
if ( count % 5 == 0 ) then printf @"%4d", i else printf @"%4d \b", i
count++
end if
next
HandleEvents
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Go
package main
import (
"fmt"
"rcu"
)
func main() {
var res []int
for n := 1; n < 1000; n++ {
digits := rcu.Digits(n, 10)
var all = true
for _, d := range digits {
if d == 0 || n%d != 0 {
all = false
break
}
}
if all {
prod := 1
for _, d := range digits {
prod *= d
}
if prod > 0 && n%prod != 0 {
res = append(res, n)
}
}
}
fmt.Println("Numbers < 1000 divisible by their digits, but not by the product thereof:")
for i, n := range res {
fmt.Printf("%4d", n)
if (i+1)%9 == 0 {
fmt.Println()
}
}
fmt.Printf("\n%d such numbers found\n", len(res))
}
- Output:
Numbers < 1000 divisible by their digits, but not by the product thereof: 22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999 45 such numbers found
Haskell
import Data.List.Split (chunksOf)
import Text.Printf
divisible :: Int -> Bool
divisible = divdgt <*> dgt
where
dgt = map (read . pure) . show
divdgt x d =
notElem 0 d
&& 0 /= x `mod` product d
&& all ((0 ==) . mod x) d
numbers :: [Int]
numbers = filter divisible [1 ..]
main :: IO ()
main = putStr $ unlines $ map (concatMap $ printf "%5d") split
where
n = takeWhile (< 1000) numbers
split = chunksOf 10 n
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
and another approach might be to obtain (unordered) digit lists numerically, rather than by string conversion.
import Data.Bool (bool)
import Data.List (unfoldr)
import Data.List.Split (chunksOf)
import Data.Tuple (swap)
-- DIVISIBLE BY ALL DIGITS, BUT NOT BY PRODUCT OF ALL DIGITS
p :: Int -> Bool
p n =
( ( (&&)
. all
( (&&) . (0 /=)
<*> (0 ==) . rem n
)
)
<*> (0 /=) . rem n . product
)
$ digits n
digits :: Int -> [Int]
digits =
unfoldr $
(bool Nothing . Just . swap . flip quotRem 10) <*> (0 <)
--------------------------- TEST -------------------------
main :: IO ()
main =
let xs = [1 .. 1000] >>= (\n -> [show n | p n])
w = length $ last xs
in (putStrLn . unlines) $
unwords
<$> chunksOf
10
(fmap (justifyRight w ' ') xs)
justifyRight :: Int -> Char -> String -> String
justifyRight n c = (drop . length) <*> (replicate n c <>)
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
J
([ #~ ((10 #.inv]) ((0~:*/@[|]) * */@(0=|)) ])"0) >:i.999
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
([ #~ ... ) >:i.999
filters the numbers based on the predicate (shown as '...' here).
((10 #.inv]) ... ])"0
extracts a predicate value for each number, with the number's digits as the left argument and the number itself as the right argument.
((0~:*/@[|]) * */@(0=|))
is true if the product of the digits does not evenly divide the number ((0~:*/@[|])
) AND all of the digits individually evenly divide the number (*/@(0=|)
).
jq
Works with gojq, the Go implementation of jq
def digits:
tostring | explode | map( [.] | implode | tonumber);
def prod:
reduce .[] as $i (1; .*$i);
def is_divisible_by_digits_but_not_product:
. as $n
| tostring
| select( null == index("0"))
| digits
| all( unique[]; $n % . == 0)
and ($n % prod != 0);
The Task
"Numbers < 1000 divisible by their digits, but not by the product thereof:",
(range(1; 1000)
| select(is_divisible_by_digits_but_not_product))
- Output:
Numbers < 1000 divisible by their digits, but not by the product thereof: 22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Julia
isonlydigdivisible(n) = (d = digits(n); !(0 in d) && all(x -> n % x == 0, d) && n % prod(d) != 0)
foreach(p -> print(rpad(p[2], 5), p[1] % 15 == 0 ? "\n" : ""), enumerate(filter(isonlydigdivisible, 1:1000)))
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Ksh
#!/bin/ksh
# Numbers divisible by their digits, but not by the product of their digits
# # Variables:
#
integer MAXN=1000
# # Functions:
#
# # Function _isdivisible(n) - return 1 if:
# # - is divisible by individual digits, and
# # - not divisible by product of digits
#
function _isdivisible {
typeset _n ; integer _n=$1
typeset _i _digit _product ; integer _i _digit _product=1
for ((_i=0; _i<${#_n}; _i++)); do
_digit=${_n:_i:1}
(( ! _digit )) || (( _n % _digit )) && return 0
(( _product*=_digit ))
done
return $(( _n % _product ))
}
######
# main #
######
for ((i=10; i<MAXN; i++)); do
(( ! i % 10 )) || _isdivisible ${i} || printf "%d " ${i}
done
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
MAD
NORMAL MODE IS INTEGER
PRINT COMMENT $ $
INTERNAL FUNCTION(N)
ENTRY TO DVDGT.
P=1
C=N
DGT WHENEVER C.NE.0
Z = C/10
D = C-Z*10
WHENEVER D.E.0 .OR. N/D*D.NE.N, FUNCTION RETURN 0B
P = P*D
C = Z
TRANSFER TO DGT
END OF CONDITIONAL
FUNCTION RETURN N/P*P.NE.N
END OF FUNCTION
THROUGH TEST, FOR I=1, 1, I.E.1000
TEST WHENEVER DVDGT.(I), PRINT FORMAT FMT, I
VECTOR VALUES FMT = $I4*$
END OF PROGRAM
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Mathematica /Wolfram Language
ClearAll[SaveDivisible,DivisibleDigits]
SaveDivisible[n_,0] := False
SaveDivisible[n_,m_] := Divisible[n,m]
DivisibleDigits[n_Integer] := AllTrue[IntegerDigits[n],SaveDivisible[n,#]&]
Select[Range[999],DivisibleDigits[#]\[And]!SaveDivisible[#,Times@@IntegerDigits[#]]&]
Length[%]
- Output:
{22, 33, 44, 48, 55, 66, 77, 88, 99, 122, 124, 126, 155, 162, 168, 184, 222, 244, 248, 264, 288, 324, 333, 336, 366, 396, 412, 424, 444, 448, 488, 515, 555, 636, 648, 666, 728, 777, 784, 824, 848, 864, 888, 936, 999} 45
Miranda
main :: [sys_message]
main = [Stdout (table 12 5 numbers)]
table :: num->num->[num]->[char]
table cols cw = lay . map concat . split . map fmt
where split [] = []
split ls = take cols ls : split (drop cols ls)
fmt n = reverse (take cw ((reverse (shownum n)) ++ repeat ' '))
numbers :: [num]
numbers = [n | n<-[1..1000]; divisible n]
divisible :: num->bool
divisible n = False, if digprod = 0 \/ n mod digprod = 0
= and [n mod d = 0 | d <- digits n], otherwise
where digprod = product (digits n)
digits :: num->[num]
digits = map (mod 10) . takewhile (>0) . iterate (div 10)
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Nim
import strutils
iterator digits(n: Positive): int =
var n = n.int
while n != 0:
yield n mod 10
n = n div 10
var result: seq[int]
for n in 1..1000:
block check:
var m = 1
for d in n.digits:
if d == 0 or n mod d != 0: break check
m *= d
if n mod m != 0: result.add n
echo "Found ", result.len, " matching numbers."
for i, n in result:
stdout.write ($n).align(3), if (i + 1) mod 9 == 0: '\n' else: ' '
- Output:
Found 45 matching numbers. 22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Nu
let $digits = {|q|
if $q.0.0 < 100 {
1..9 | each { [($q.0.0 * 10 + $in) ($q.0.1 ++ $in)] } | prepend $q
} else $q
| skip
| if ($in | is-not-empty) { {out: $in.0 next: $in} }
}
generate $digits [[0 []]]
| where ($it.1 | all { $it.0 mod $in == 0 }) and $it.0 mod ($it.1 | math product) > 0
| each { first }
| str join ' '
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
OCaml
let test b x =
let rec loop m n =
if n < b
then x mod n = 0 && x mod (m * n) > 0
else let d = n mod b in d > 0 && x mod d = 0 && loop (m * d) (n / b)
in loop 1 x
let () =
Seq.ints 1 |> Seq.take 999 |> Seq.filter (test 10)
|> Seq.iter (Printf.printf " %u") |> print_newline
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Pascal
Free Pascal
program DivByDgtsNotByProdOfDgts;
function ProdDigits(n:cardinal):cardinal;
// returns product of Digits if n is divisible by digits
var
p,q,r,dgt : cardinal;
begin
q := n;
p := 1;
repeat
r := q DIV 10;
dgt := q-10*r;
if (dgt= 0)OR(n mod dgt <> 0) then
EXIT(0);
p := p*dgt;
q := r;
until q = 0;
Exit(p)
end;
const
LimitLow = 1;
LimitHigh = 1000;
var
i,mul,cnt : Cardinal;
BEGIN
cnt := 0;
writeln('Limits ',LimitLow,'..',LimitHigh);
For i := LimitLow to LimitHigh do
begin
mul := ProdDigits(i);
if (mul <> 0) AND (i MOD MUL<>0) then
Begin
write(i:4);
inc(cnt);
if cnt AND 15= 0 then
writeln;
end;
end;
if cnt AND 15 <> 0 then
writeln;
writeln(' count : ',cnt);
END.
- Output:
Limits 1..1000 22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999 count : 45
Perl
#!/usr/bin/perl
use strict;
use warnings;
my @numbers = grep
{
my $n = $_;
! /0/ and $_ % eval s/\B/*/gr and 0 == grep $n % $_, split //
} 1 .. 999;
print @numbers . " numbers found\n\n@numbers\n" =~ s/.{25}\K /\n/gr;
- Output:
45 numbers found 22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Phix
function didbntp(integer n) integer w = n, p = 1 while w do integer d = remainder(w,10) if d=0 or remainder(n,d) then return false end if p *= d w = floor(w/10) end while return remainder(n,p)!=0 end function sequence res = apply(filter(tagset(1000),didbntp),sprint) printf(1,"found %d didbntp thingies less than one thousand: %s\n",{length(res),join(shorten(res,"",5),",")})
- Output:
found 45 didbntp thingies less than one thousand: 22,33,44,48,55,...,848,864,888,936,999
PL/M
100H:
/* CHECK NUMBER */
DIVISIBLE: PROCEDURE (N) BYTE;
DECLARE (N, I, PROD) ADDRESS;
DECLARE D BYTE;
PROD = 1;
I = N;
DO WHILE N > 0;
D = N MOD 10;
N = N / 10;
IF D = 0 THEN RETURN 0;
IF I MOD D <> 0 THEN RETURN 0;
PROD = PROD * D;
END;
RETURN I MOD PROD <> 0;
END DIVISIBLE;
/* CP/M BDOS CALL - PL/M DOESN'T ACTUALLY COME WITH OUTPUT ROUTINES */
BDOS: PROCEDURE (FN, ARG);
DECLARE FN BYTE, ARG ADDRESS;
GO TO 5;
END BDOS;
/* PRINT DECIMAL NUMBER */
PRINT$NUMBER: PROCEDURE (N);
DECLARE S (8) BYTE INITIAL ('.....',13,10,'$');
DECLARE (N, P) ADDRESS, C BASED P BYTE;
P = .S(5);
DIGIT:
P = P - 1;
C = N MOD 10 + '0';
N = N / 10;
IF N > 0 THEN GO TO DIGIT;
CALL BDOS(9, P);
END PRINT$NUMBER;
/* TEST THE NUMBERS 1..1000 */
DECLARE N ADDRESS;
DO N=1 TO 999;
IF DIVISIBLE(N) THEN
CALL PRINT$NUMBER(N);
END;
CALL BDOS(0,0);
EOF
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Plain English
To run:
Start up.
Loop.
If a counter is past 999, break.
If the counter is digit-divisible but non-digit-product-divisible, write the counter then " " on the console without advancing.
Repeat.
Wait for the escape key.
Shut down.
To decide if a number is digit-divisible but non-digit-product-divisible:
If the number is 0, say no.
Put the number into a shrinking number.
Put 1 into a digit product number.
Loop.
If the shrinking number is 0, break.
Divide the shrinking number by 10 giving a quotient and a remainder.
Multiply the digit product by the remainder.
If the number is not evenly divisible by the remainder, say no.
Put the quotient into the shrinking number.
Repeat.
If the number is evenly divisible by the digit product, say no.
Say yes.
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Python
'''Numbers matching a function of their digits'''
from functools import reduce
from operator import mul
# p :: Int -> Bool
def p(n):
'''True if n is divisible by each of its digits,
but not divisible by the product of those digits.
'''
digits = [int(c) for c in str(n)]
return not 0 in digits and (
0 != (n % reduce(mul, digits, 1))
) and all(0 == n % d for d in digits)
# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''Numbers below 1000 which satisfy p
'''
xs = [
str(n) for n in range(1, 1000)
if p(n)
]
w = len(xs[-1])
print(f'{len(xs)} matching numbers:\n')
print('\n'.join(
' '.join(cell.rjust(w, ' ') for cell in row)
for row in chunksOf(10)(xs)
))
# ----------------------- GENERIC ------------------------
# chunksOf :: Int -> [a] -> [[a]]
def chunksOf(n):
'''A series of lists of length n, subdividing the
contents of xs. Where the length of xs is not evenly
divible, the final list will be shorter than n.
'''
def go(xs):
return (
xs[i:n + i] for i in range(0, len(xs), n)
) if 0 < n else None
return go
# MAIN ---
if __name__ == '__main__':
main()
- Output:
45 matching numbers: 22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Quackery
[ dup 0 = iff
[ 2drop false ] done
mod 0 = ] is divisible ( n n --> b )
[ [] swap
[ 10 /mod
rot join swap
dup 0 = until ]
drop ] is digits ( n --> [ )
[ 1 swap witheach * ] is product ( [ --> n )
[ dup digits
dup product
dip over divisible
iff [ 2drop false ] done
true unrot
witheach
[ dip dup divisible not if
[ dip not conclude ] ]
drop ] is meetscriteria ( n n --> b )
1000 times [ i^ meetscriteria if [ i^ echo sp ] ]
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Raku
say "{+$_} matching numbers:\n{.batch(10)».fmt('%3d').join: "\n"}" given
(^1000).grep: -> $n { $n.contains(0) ?? False !! all |($n.comb).map($n %% *), $n % [*] $n.comb };
- Output:
45 matching numbers: 22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
REXX
/*REXX pgm finds integers divisible by its individual digits, but not by product of digs*/
parse arg hi cols . /*obtain optional argument from the CL.*/
if hi=='' | hi=="," then hi= 1000 /*Not specified? Then use the default.*/
if cols=='' | cols=="," then cols= 10 /* " " " " " " */
w= 10 /*width of a number in any column. */
title= ' base ten integers < ' commas(hi) " that are divisible" ,
'by its digits, but not by the product of its digits'
if cols>0 then say ' index │'center(title, 1 + cols*(w+1) )
if cols>0 then say '───────┼'center("" , 1 + cols*(w+1), '─')
finds= 0; idx= 1 /*initialize # of found numbers & index*/
$= /*a list of integers found (so far). */
do j=1 for hi-1; L= length(j); != 1 /*search for integers within the range.*/
if pos(0, j)>0 then iterate /*Does J have a zero? Yes, then skip. */ /* ◄■■■■■■■■ a filter. */
do k=1 for L; x= substr(j, k, 1) /*extract a single decimal digit from J*/
if j//x\==0 then iterate j /*J ÷ by this digit? No, then skip it.*/ /* ◄■■■■■■■■ a filter. */
!= ! * x /*compute the running product of digits*/
end /*k*/
if j//!==0 then iterate /*J ÷ by its digit product? Yes, skip.*/ /* ◄■■■■■■■■ a filter. */
finds= finds + 1 /*bump the number of found integers. */
if cols<0 then iterate /*Build the list (to be shown later)? */
$= $ right( commas(j), w) /*add the number found to the $ list.*/
if finds//cols\==0 then iterate /*have we populated a line of output? */
say center(idx, 7)'│' substr($, 2); $= /*display what we have so far (cols). */
idx= idx + cols /*bump the index count for the output*/
end /*j*/
if $\=='' then say center(idx, 7)"│" substr($, 2) /*possible display residual output.*/
if cols>0 then say '───────┴'center("" , 1 + cols*(w+1), '─')
say
say 'Found ' commas(finds) title
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?; do jc=length(?)-3 to 1 by -3; ?=insert(',', ?, jc); end; return ?
- output when using the default inputs:
index │ base ten integers < 1,000 that are divisible by its digits, but not by the product of its digits ───────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────────── 1 │ 22 33 44 48 55 66 77 88 99 122 11 │ 124 126 155 162 168 184 222 244 248 264 21 │ 288 324 333 336 366 396 412 424 444 448 31 │ 488 515 555 636 648 666 728 777 784 824 41 │ 848 864 888 936 999 ───────┴─────────────────────────────────────────────────────────────────────────────────────────────────────────────── Found 45 base ten integers < 1,000 that are divisible by its digits, but not by the product of its digits
Ring
load "stdlib.ring"
decimals(0)
see "working..." + nl
see "Numbers divisible by their individual digits, but not by the product of their digits are:" + nl
row = 0
limit = 1000
for n = 1 to limit
flag = 1
pro = 1
strn = string(n)
for m = 1 to len(strn)
temp = strn[m]
if temp != 0
pro = pro * number(temp)
ok
if n%temp = 0
flag = 1
else
flag = 0
exit
ok
next
bool = ((n%pro) != 0)
if flag = 1 and bool
row = row + 1
see "" + n + " "
if row%10 = 0
see nl
ok
ok
next
see nl + "Found " + row + " numbers" + nl
see "done..." + nl
- Output:
working... Numbers divisible by their individual digits, but not by the product of their digits are: 22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999 Found 45 numbers done...
RPL
≪ DUP →STR → n ≪ CASE DUP 9 ≤ n "0" POS OR THEN DROP 0 END ≪ n j DUP SUB STR→ ≫ 'j' 1 n SIZE 1 SEQ @ make list of digits DUP2 MOD ∑LIST THEN DROP2 0 END ΠLIST MOD SIGN END ≫ 'GOOD?' STO
≪ 1 999 FOR j IF j GOOD? THEN j + END NEXT ≫ EVAL
- Output:
1: { 22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999 }
Rust
fn to_digits( n : i32 ) -> Vec<i32> {
let mut i : i32 = n ;
let mut digits : Vec<i32> = Vec::new( ) ;
while i != 0 {
digits.push( i % 10 ) ;
i /= 10 ;
}
digits
}
fn my_condition( num : i32 ) -> bool {
let digits : Vec<i32> = to_digits( num ) ;
if ! digits.iter( ).any( | x | *x == 0 ) {
let prod : i32 = digits.iter( ).product( ) ;
return digits.iter( ).all( | x | num % x == 0 ) &&
num % prod != 0 ;
}
else {
false
}
}
fn main() {
let mut count : i32 = 0 ;
for n in 10 .. 1000 {
if my_condition( n ) {
print!("{:5}" , n) ;
count += 1 ;
if count % 10 == 0 {
println!( ) ;
}
}
}
println!();
}
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Ruby
res =(1..1000).select do |n|
digits = n.digits
next if digits.include? 0
digits.uniq.all?{|d| n%d == 0} &! (n % digits.inject(:*) == 0)
end
p res
- Output:
[22, 33, 44, 48, 55, 66, 77, 88, 99, 122, 124, 126, 155, 162, 168, 184, 222, 244, 248, 264, 288, 324, 333, 336, 366, 396, 412, 424, 444, 448, 488, 515, 555, 636, 648, 666, 728, 777, 784, 824, 848, 864, 888, 936, 999]
Sidef
^1000 -> grep {|n|
n.digits.all {|d| d `divides` n } && !(n.digits.prod `divides` n)
}.say
- Output:
[22, 33, 44, 48, 55, 66, 77, 88, 99, 122, 124, 126, 155, 162, 168, 184, 222, 244, 248, 264, 288, 324, 333, 336, 366, 396, 412, 424, 444, 448, 488, 515, 555, 636, 648, 666, 728, 777, 784, 824, 848, 864, 888, 936, 999]
Snobol
define('divis(n)i,d,p') :(divis_end)
divis p = 1
i = n
digit d = remdr(i,10)
p = ne(d,0) eq(remdr(n,d),0) p * d :f(freturn)
i = gt(i,9) i / 10 :s(digit)
ne(remdr(n,p)) :s(return)f(freturn)
divis_end
n = 1
loop output = divis(n) n
n = lt(n,1000) n + 1 :s(loop)
end
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999
Wren
import "./math" for Int, Nums
import "./fmt" for Fmt
var res = []
for (n in 1..999) {
var digits = Int.digits(n)
if (digits.all { |d| n % d == 0 }) {
var prod = Nums.prod(digits)
if (prod > 0 && n % prod != 0) res.add(n)
}
}
System.print("Numbers < 1000 divisible by their digits, but not by the product thereof:")
Fmt.tprint("$4d", res, 9)
System.print("\n%(res.count) such numbers found")
- Output:
Numbers < 1000 divisible by their digits, but not by the product thereof: 22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999 45 such numbers found
XPL0
func Check(N);
\Return 'true' if N is divisible by its digits and not by the product of its digits
int N, M, Digit, Product;
[Product:= 1;
M:= N;
repeat M:= M/10;
Digit:= rem(0);
if Digit = 0 then return false;
if rem(N/Digit) then return false;
Product:= Product * Digit;
until M=0;
return rem(N/Product) # 0;
];
int Count, N;
[Count:= 0;
for N:= 1 to 1000-1 do
if Check(N) then
[IntOut(0, N);
Count:= Count+1;
if rem(Count/10) = 0 then CrLf(0) else ChOut(0, 9\tab\);
];
CrLf(0);
IntOut(0, Count);
Text(0, " such integers found below 1000.
");
]
- Output:
22 33 44 48 55 66 77 88 99 122 124 126 155 162 168 184 222 244 248 264 288 324 333 336 366 396 412 424 444 448 488 515 555 636 648 666 728 777 784 824 848 864 888 936 999 45 such integers found below 1000.
- Draft Programming Tasks
- 11l
- 8086 Assembly
- Action!
- Ada
- ALGOL 68
- ALGOL-M
- ALGOL W
- APL
- Arturo
- AutoHotkey
- AWK
- BASIC
- BCPL
- BQN
- C
- CLU
- COBOL
- Cowgol
- Draco
- Delphi
- SysUtils,StdCtrls
- EasyLang
- F Sharp
- Factor
- FOCAL
- Forth
- FreeBASIC
- FutureBasic
- Go
- Go-rcu
- Haskell
- J
- Jq
- Julia
- Ksh
- MAD
- Mathematica
- Wolfram Language
- Miranda
- Nim
- Nu
- OCaml
- Pascal
- Free Pascal
- Perl
- Phix
- PL/M
- Plain English
- Python
- Quackery
- Raku
- REXX
- Ring
- RPL
- Rust
- Ruby
- Sidef
- Snobol
- Wren
- Wren-math
- Wren-fmt
- XPL0