Jacobsthal numbers
You are encouraged to solve this task according to the task description, using any language you may know.
Jacobsthal numbers are an integer sequence related to Fibonacci numbers. Similar to Fibonacci, where each term is the sum of the previous two terms, each term is the sum of the previous, plus twice the one before that. Traditionally the sequence starts with the given terms 0, 1.
J0 = 0
J1 = 1
Jn = Jn-1 + 2 × Jn-2
Terms may be calculated directly using one of several possible formulas:
Jn = ( 2n - (-1)n ) / 3
Jacobsthal-Lucas numbers are very similar. They have the same recurrence relationship, the only difference is an initial starting value J0 = 2 rather than J0 = 0.
Terms may be calculated directly using one of several possible formulas:
JLn = 2n + (-1)n
Jacobsthal oblong numbers is the sequence obtained from multiplying each Jacobsthal number Jn by its direct successor Jn+1.
Jacobsthal primes are Jacobsthal numbers that are prime.
- Task
- Find and display the first 30 Jacobsthal numbers
- Find and display the first 30 Jacobsthal-Lucas numbers
- Find and display the first 20 Jacobsthal oblong numbers
- Find and display at least the first 10 Jacobsthal primes
- See also
- Wikipedia: Jacobsthal number
- Numbers Aplenty - Jacobsthal number
- OEIS:A001045 - Jacobsthal sequence (or Jacobsthal numbers)
- OEIS:A014551 - Jacobsthal-Lucas numbers.
- OEIS:A084175 - Jacobsthal oblong numbers
- OEIS:A049883 - Primes in the Jacobsthal sequence
- Related task: Fibonacci sequence
- Related task: Leonardo numbers
11l
F isPrime(n)
L(i) 2 .. Int(n ^ 0.5)
I n % i == 0
R 0B
R 1B
F odd(n)
R n [&] 1 != 0
F jacobsthal(n)
R floori((pow(2.0, n) + odd(n)) / 3)
F jacobsthal_lucas(n)
R Int(pow(2, n) + pow(-1, n))
F jacobsthal_oblong(n)
R Int64(jacobsthal(n)) * jacobsthal(n + 1)
print(‘First 30 Jacobsthal numbers:’)
L(j) 0..29
print(jacobsthal(j), end' ‘ ’)
print("\n\nFirst 30 Jacobsthal-Lucas numbers: ")
L(j) 0..29
print(jacobsthal_lucas(j), end' "\t")
print("\n\nFirst 20 Jacobsthal oblong numbers: ")
L(j) 0..19
print(jacobsthal_oblong(j), end' ‘ ’)
print("\n\nFirst 10 Jacobsthal primes: ")
L(j) 3..32
I isPrime(jacobsthal(j))
print(jacobsthal(j))
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 10 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883
Ada
-- Rosetta Code Task written in Ada
-- Task name: "Jacobsthal numbers"
-- Task URL: https://rosettacode.org/wiki/Jacobsthal_numbers
-- I increased the the number of generated Jacobsthal Numbers and
-- Jacobsthal-Lucas Numbers to 35 from the task specified 30.
-- four command line parameters are required: 35 (J_N), 35 (J_L), 20 (J_Oblong), 10 (J_Prime_Limit)
-- September 2024, R. B. E.
pragma Ada_2022;
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
with Ada.Numerics.Big_Numbers.Big_Integers; use Ada.Numerics.Big_Numbers.Big_Integers;
with Ada.Command_Line; use Ada.Command_Line;
procedure Jacobsthal_Numbers is
function Is_Prime (N : in Natural) return Boolean is
Temp : Natural := 5;
begin
if N < 2 then
return False;
end if;
if N mod 2 = 0 then
return N = 2;
end if;
if N mod 3 = 0 then
return N = 3;
end if;
while Temp * Temp <= N loop
if N mod Temp = 0 then
return False;
end if;
Temp := Temp + 2;
if N mod Temp = 0 then
return False;
end if;
Temp := Temp + 4;
end loop;
return True;
end Is_Prime;
J_N_Limit : constant Positive := Positive'Value (Argument (1)); -- should be 35 (could be more)
J_L_Limit : constant Positive := Positive'Value (Argument (2)); -- should be 35 (could be more)
J_O_Limit : constant Positive := Positive'Value (Argument (3)); -- should be 20 (could be more)
J_Prime_Limit : constant Positive := Positive'Value (Argument (4)); -- should be exactly 10
type Array_Containing_Big_Naturals is array (natural range <>) of Big_Natural;
J_N : Array_Containing_Big_Naturals (0..J_N_Limit);
J_L : Array_Containing_Big_Naturals (0..J_L_Limit);
J_Oblong : Array_Containing_Big_Naturals (0..J_O_Limit);
Big_0 : Big_Natural := To_Big_Integer (0);
Big_1 : Big_Natural := To_Big_Integer (1);
Big_2 : Big_Natural := To_Big_Integer (2);
J_Prime_Count : Natural;
begin
if Argument_Count /= 4 then
Put_Line ("Usage: ./jacobsthal_numbers 35 35 20 10");
return;
end if;
-- This section is for the Jacobsthal Numbers (generating, preserving, displaying)
J_N (0) := Big_0;
J_N (1) := Big_1;
for I in 2..J_N_Limit loop
J_N (I) := J_N (I-1) + (Big_2 * J_N (I-2));
end loop;
New_Line;
Put ("The first ");
Put (J_N_Limit, 0);
Put_Line (" Jacobsthal numbers:");
for I in 0..J_N_Limit loop
Put (To_String (J_N (I)));
end loop;
New_Line;
-- This section is for the Jacobsthal-Lucas Numbers (generating, preserving, displaying)
J_L (0) := Big_2;
J_L (1) := Big_1;
for I in 2..J_L_Limit loop
J_L (I) := J_L (I-1) + (Big_2 * J_L (I-2));
end loop;
New_Line;
Put ("The first ");
Put (J_L_Limit, 0);
Put_Line (" Jacobsthal_Lucas numbers:");
for I in 0..J_L_Limit loop
Put (To_String (J_L (I)));
end loop;
New_Line;
-- This section is for the Jacobsthal-Oblong Numbers (generating, preserving, displaying)
for I in 0..J_O_Limit loop
J_Oblong (I) := J_N (I) * J_N (I+1);
end loop;
New_Line;
Put ("The first ");
Put (J_O_Limit, 0);
Put_Line (" Jacobsthal-Oblong numbers:");
for I in 0..J_O_Limit loop
Put (To_String (J_Oblong (I)));
end loop;
New_Line;
-- This section is for the display of Jacobsthal prime numbers
New_Line;
Put ("The first ");
Put (J_Prime_Limit, 0);
Put_Line (" Jacobsthal prime numbers are:");
J_Prime_Count := 0;
-- danger here: Not all items in the J_N array can successfully be converted from Big_Integer to Integer...
for I in 3..J_N'Last loop
if Is_Prime (To_Integer ((J_N (I)))) then
J_Prime_Count := J_Prime_Count + 1;
Put (To_String (J_N (I)));
New_Line;
end if;
exit when J_Prime_Count >= J_Prime_Limit;
end loop;
New_Line;
end Jacobsthal_Numbers;
- Output:
The first 35 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 357913941 715827883 1431655765 2863311531 5726623061 11453246123 The first 35 Jacobsthal_Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 1073741825 2147483647 4294967297 8589934591 17179869185 34359738367 The first 20 Jacobsthal-Oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 244335800775 The first 10 Jacobsthal prime numbers are: 3 5 11 43 683 2731 43691 174763 2796203 715827883
ALGOL 68
BEGIN # find some Jacobsthal and related Numbers #
INT max jacobsthal = 29; # highest Jacobsthal number we will find #
INT max oblong = 20; # highest Jacobsthal oblong number we will find #
INT max j prime = 20; # number of Jacobsthal prinmes we will find #
PR precision 200 PR # set the precision of LONG LONG INT #
PR read "primes.incl.a68" PR # include prime utilities #
[ 0 : max jacobsthal ]LONG INT j; # will hold Jacobsthal numbers #
[ 0 : max jacobsthal ]LONG INT jl; # will hold Jacobsthal-Lucas numbers #
[ 1 : max oblong ]LONG INT jo; # will hold Jacobsthal oblong numbers #
# calculate the Jacobsthal Numbers and related numbers #
# Jacobsthal : J0 = 0, J1 = 1, Jn = Jn-1 + 2 × Jn-2 #
# Jacobsthal-Lucas: JL0 = 2, JL1 = 1, JLn = JLn-1 + 2 × JLn-2 #
# Jacobsthal oblong: JOn = Jn x Jn-1 #
j[ 0 ] := 0; j[ 1 ] := 1; jl[ 0 ] := 2; jl[ 1 ] := 1; jo[ 1 ] := 0;
FOR n FROM 2 TO UPB j DO
j[ n ] := j[ n - 1 ] + ( 2 * j[ n - 2 ] );
jl[ n ] := jl[ n - 1 ] + ( 2 * jl[ n - 2 ] )
OD;
FOR n TO UPB jo DO
jo[ n ] := j[ n ] * j[ n - 1 ]
OD;
# prints an array of numbers with the specified legend #
PROC show numbers = ( STRING legend, []LONG INT numbers )VOID:
BEGIN
INT n count := 0;
print( ( "First ", whole( ( UPB numbers - LWB numbers ) + 1, 0 ), " ", legend, newline ) );
FOR n FROM LWB numbers TO UPB numbers DO
print( ( " ", whole( numbers[ n ], -11 ) ) );
IF ( n count +:= 1 ) MOD 5 = 0 THEN print( ( newline ) ) FI
OD
END # show numbers # ;
# show the various numbers numbers #
show numbers( "Jacobsthal Numbers:", j );
show numbers( "Jacobsthal-Lucas Numbers:", jl );
show numbers( "Jacobsthal oblong Numbers:", jo );
# find some prime Jacobsthal numbers #
LONG LONG INT jn1 := j[ 1 ], jn2 := j[ 0 ];
INT p count := 0;
print( ( "First ", whole( max j prime, 0 ), " Jacobstal primes:", newline ) );
print( ( " n Jn", newline ) );
FOR n FROM 2 WHILE p count < max j prime DO
LONG LONG INT jn = jn1 + ( 2 * jn2 );
jn2 := jn1;
jn1 := jn;
IF is probably prime( jn ) THEN
# have a probably prime Jacobsthal number #
p count +:= 1;
print( ( whole( n, -4 ), ": ", whole( jn, 0 ), newline ) )
FI
OD
END
- Output:
First 30 Jacobsthal Numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas Numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong Numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 20 Jacobstal primes: n Jn 3: 3 4: 5 5: 11 7: 43 11: 683 13: 2731 17: 43691 19: 174763 23: 2796203 31: 715827883 43: 2932031007403 61: 768614336404564651 79: 201487636602438195784363 101: 845100400152152934331135470251 127: 56713727820156410577229101238628035243 167: 62357403192785191176690552862561408838653121833643 191: 1046183622564446793972631570534611069350392574077339085483 199: 267823007376498379256993682056860433753700498963798805883563 313: 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731 347: 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443
AppleScript
Procedural
on jacobsthalNumbers(variant, n)
-- variant: text containing "Lucas", "oblong", or "prime" — or none of these.
-- n: length of output sequence required.
-- The two Jacobsthal numbers preceding the current 'j'. Initially the first two in the sequence.
set {anteprev, prev} to {0, 1}
-- Default plug-in script. Its handler simply appends the current 'j' to the output.
script o
property output : {anteprev, prev}
on append(dummy, j)
set end of output to j
end append
end script
-- If a variant sequence is specified, change the first value or substitute
-- a script whose handler decides the values to append to the output.
ignoring case
if (variant contains "Lucas") then
set anteprev to 2
set o's output's first item to anteprev
else if (variant contains "oblong") then
script
property output : {0}
on append(prev, j)
set end of output to prev * j
end append
end script
set o to result
else if (variant contains "prime") then
script
property output : {}
on append(dummy, j)
if (isPrime(j)) then set end of output to j
end append
end script
set o to result
end if
end ignoring
-- Work through the Jacobsthal process until the required output length is obtained.
repeat until ((count o's output) = n)
set j to anteprev + anteprev + prev
tell o to append(prev, j)
set anteprev to prev
set prev to j
end repeat
return o's output
end jacobsthalNumbers
on isPrime(n)
if (n < 3) then return (n is 2)
if (n mod 2 is 0) then return false
repeat with i from 3 to (n ^ 0.5) div 1 by 2
if (n mod i is 0) then return false
end repeat
return true
end isPrime
-- Task and presentation of results!:
on intToText(n)
set txt to ""
repeat until (n < 100000000)
set txt to text 2 thru 9 of (100000000 + (n mod 100000000) div 1 as text) & txt
set n to n div 100000000
end repeat
return (n as integer as text) & txt
end intToText
on chopList(theList, sublistLen)
script o
property lst : theList
property output : {}
end script
set listLen to (count o's lst)
repeat with i from 1 to listLen by sublistLen
set j to i + sublistLen - 1
if (j > listLen) then set j to listLen
set end of o's output to items i thru j of o's lst
end repeat
return o's output
end chopList
on matrixToText(matrix, w)
script o
property matrix : missing value
property row : missing value
end script
set o's matrix to matrix
set padding to " "
repeat with r from 1 to (count o's matrix)
set o's row to o's matrix's item r
repeat with i from 1 to (count o's row)
set o's row's item i to text -w thru end of (padding & o's row's item i)
end repeat
set o's matrix's item r to join(o's row, "")
end repeat
return join(o's matrix, linefeed)
end matrixToText
on join(lst, delim)
set astid to AppleScript's text item delimiters
set AppleScript's text item delimiters to delim
set txt to lst as text
set AppleScript's text item delimiters to astid
return txt
end join
on task()
set output to {"First 30 Jacobsthal Numbers:", "First 30 Jacobsthal-Lucas Numbers:", ¬
"First 20 Jacobsthal oblong Numbers:", "First 11 Jacobsthal Primes:"}
set results to {jacobsthalNumbers("", 30), jacobsthalNumbers("Lucas", 30), ¬
jacobsthalNumbers("oblong", 20), jacobsthalNumbers("prime", 11)}
repeat with i from 1 to 4
set thisSequence to item i of results
repeat with j in thisSequence
set j's contents to intToText(j)
end repeat
if (i < 4) then
set theLines to chopList(thisSequence, 10)
else
set theLines to chopList(thisSequence, 6)
end if
set item i of output to item i of output & linefeed & matrixToText(theLines, (count end of thisSequence) + 1)
end repeat
return join(output, linefeed & linefeed)
end task
task()
- Output:
"First 30 Jacobsthal Numbers:
0 1 1 3 5 11 21 43 85 171
341 683 1365 2731 5461 10923 21845 43691 87381 174763
349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971
First 30 Jacobsthal-Lucas Numbers:
2 1 5 7 17 31 65 127 257 511
1025 2047 4097 8191 16385 32767 65537 131071 262145 524287
1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911
First 20 Jacobsthal oblong Numbers:
0 1 3 15 55 231 903 3655 14535 58311
232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575
First 11 Jacobsthal Primes:
3 5 11 43 683 2731
43691 174763 2796203 715827883 2932031007403"
Functional
-------------------- JACOBSTHAL NUMBERS ------------------
-- e.g. take(10, jacobsthal())
-- jacobsthal :: [Int]
on jacobsthal()
-- The terms of OEIS:A001045 as a non-finite sequence.
jacobsthalish(0, 1)
end jacobsthal
-- jacobsthal :: (Int, Int) -> [Int]
on jacobsthalish(x, y)
-- An infinite sequence of the terms of the
-- Jacobsthal-type series which begins with x and y.
script go
on |λ|(ab)
set {a, b} to ab
{a, {b, (2 * a) + b}}
end |λ|
end script
unfoldr(go, {x, y})
end jacobsthalish
-------------------------- TESTS -------------------------
on run
unlines(map(fShow, {¬
{"terms of the Jacobsthal sequence", ¬
30, jacobsthal()}, ¬
{"Jacobsthal-Lucas numbers", ¬
30, jacobsthalish(2, 1)}, ¬
{"Jacobsthal oblong numbers", ¬
20, zipWith(my mul, jacobsthal(), drop(1, jacobsthal()))}, ¬
{"primes in the Jacobsthal sequence", ¬
10, filter(isPrime, jacobsthal())}}))
end run
------------------------ FORMATTING ----------------------
on fShow(test)
set {k, n, xs} to test
str(n) & " first " & k & ":" & linefeed & ¬
table(5, map(my str, take(n, xs))) & linefeed
end fShow
-- justifyRight :: Int -> Char -> String -> String
on justifyRight(n, cFiller)
script go
on |λ|(s)
if n > length of s then
text -n thru -1 of ((replicate(n, cFiller) as text) & s)
else
s
end if
end |λ|
end script
end justifyRight
-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary
-- assembly of a target length
-- replicate :: Int -> String -> String
on replicate(n, s)
-- Egyptian multiplication - progressively doubling a list,
-- appending stages of doubling to an accumulator where needed
-- for binary assembly of a target length
script p
on |λ|({n})
n ≤ 1
end |λ|
end script
script f
on |λ|({n, dbl, out})
if (n mod 2) > 0 then
set d to out & dbl
else
set d to out
end if
{n div 2, dbl & dbl, d}
end |λ|
end script
set xs to |until|(p, f, {n, s, ""})
item 2 of xs & item 3 of xs
end replicate
-- table :: Int -> [String] -> String
on table(n, xs)
-- A list of strings formatted as
-- right-justified rows of n columns.
set w to length of last item of xs
unlines(map(my unwords, ¬
chunksOf(n, map(justifyRight(w, space), xs))))
end table
-- unlines :: [String] -> String
on unlines(xs)
-- A single string formed by the intercalation
-- of a list of strings with the newline character.
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set s to xs as text
set my text item delimiters to dlm
s
end unlines
-- until :: (a -> Bool) -> (a -> a) -> a -> a
on |until|(p, f, x)
set v to x
set mp to mReturn(p)
set mf to mReturn(f)
repeat until mp's |λ|(v)
set v to mf's |λ|(v)
end repeat
v
end |until|
-- unwords :: [String] -> String
on unwords(xs)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, space}
set s to xs as text
set my text item delimiters to dlm
return s
end unwords
------------------------- GENERIC ------------------------
-- Just :: a -> Maybe a
on Just(x)
-- Constructor for an inhabited Maybe (option type) value.
-- Wrapper containing the result of a computation.
{type:"Maybe", Nothing:false, Just:x}
end Just
-- Nothing :: Maybe a
on Nothing()
-- Constructor for an empty Maybe (option type) value.
-- Empty wrapper returned where a computation is not possible.
{type:"Maybe", Nothing:true}
end Nothing
-- abs :: Num -> Num
on abs(x)
-- Absolute value.
if 0 > x then
-x
else
x
end if
end abs
-- any :: (a -> Bool) -> [a] -> Bool
on any(p, xs)
-- Applied to a predicate and a list,
-- |any| returns true if at least one element of the
-- list satisfies the predicate.
tell mReturn(p)
set lng to length of xs
repeat with i from 1 to lng
if |λ|(item i of xs) then return true
end repeat
false
end tell
end any
-- chunksOf :: Int -> [a] -> [[a]]
on chunksOf(k, xs)
script
on go(ys)
set ab to splitAt(k, ys)
set a to item 1 of ab
if {} ≠ a then
{a} & go(item 2 of ab)
else
a
end if
end go
end script
result's go(xs)
end chunksOf
-- drop :: Int -> [a] -> [a]
-- drop :: Int -> String -> String
on drop(n, xs)
take(n, xs) -- consumed
xs
end drop
-- enumFromThenTo :: Int -> Int -> Int -> [Int]
on enumFromThenTo(x1, x2, y)
set xs to {}
set gap to x2 - x1
set d to max(1, abs(gap)) * (signum(gap))
repeat with i from x1 to y by d
set end of xs to i
end repeat
return xs
end enumFromThenTo
-- filter :: (a -> Bool) -> Gen [a] -> Gen [a]
on filter(p, gen)
-- Non-finite stream of values which are
-- drawn from gen, and satisfy p
script
property mp : mReturn(p)'s |λ|
on |λ|()
set v to gen's |λ|()
repeat until mp(v)
set v to gen's |λ|()
end repeat
return v
end |λ|
end script
end filter
-- isPrime :: Int -> Bool
on isPrime(n)
-- True if n is prime
if {2, 3} contains n then return true
if 2 > n or 0 = (n mod 2) then return false
if 9 > n then return true
if 0 = (n mod 3) then return false
script p
on |λ|(x)
0 = n mod x or 0 = n mod (2 + x)
end |λ|
end script
not any(p, enumFromThenTo(5, 11, 1 + (n ^ 0.5)))
end isPrime
-- length :: [a] -> Int
on |length|(xs)
set c to class of xs
if list is c or string is c then
length of xs
else
(2 ^ 29 - 1) -- (maxInt - simple proxy for non-finite)
end if
end |length|
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
-- The list obtained by applying f
-- to each element of xs.
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- max :: Ord a => a -> a -> a
on max(x, y)
if x > y then
x
else
y
end if
end max
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
-- 2nd class handler function lifted into 1st class script wrapper.
if script is class of f then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- mul (*) :: Num a => a -> a -> a
on mul(a, b)
a * b
end mul
-- signum :: Num -> Num
on signum(x)
if x < 0 then
-1
else if x = 0 then
0
else
1
end if
end signum
-- splitAt :: Int -> [a] -> ([a], [a])
on splitAt(n, xs)
if n > 0 and n < length of xs then
if class of xs is text then
{items 1 thru n of xs as text, ¬
items (n + 1) thru -1 of xs as text}
else
{items 1 thru n of xs, items (n + 1) thru -1 of xs}
end if
else
if n < 1 then
{{}, xs}
else
{xs, {}}
end if
end if
end splitAt
-- str :: a -> String
on str(x)
x as string
end str
-- take :: Int -> [a] -> [a]
-- take :: Int -> String -> String
on take(n, xs)
set ys to {}
repeat with i from 1 to n
set v to |λ|() of xs
if missing value is v then
return ys
else
set end of ys to v
end if
end repeat
return ys
end take
-- uncons :: [a] -> Maybe (a, [a])
on uncons(xs)
set lng to |length|(xs)
if 0 = lng then
Nothing()
else
if (2 ^ 29 - 1) as integer > lng then
if class of xs is string then
set cs to text items of xs
Just({item 1 of cs, rest of cs})
else
Just({item 1 of xs, rest of xs})
end if
else
set nxt to take(1, xs)
if {} is nxt then
Nothing()
else
Just({item 1 of nxt, xs})
end if
end if
end if
end uncons
-- unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
on unfoldr(f, v)
-- A lazy (generator) list unfolded from a seed value
-- by repeated application of f to a value until no
-- residue remains. Dual to fold/reduce.
-- f returns either nothing (missing value)
-- or just (value, residue).
script
property valueResidue : {v, v}
property g : mReturn(f)
on |λ|()
set valueResidue to g's |λ|(item 2 of (valueResidue))
if missing value ≠ valueResidue then
item 1 of (valueResidue)
else
missing value
end if
end |λ|
end script
end unfoldr
-- zipWith :: (a -> b -> c) -> Gen [a] -> Gen [b] -> Gen [c]
on zipWith(f, ga, gb)
script
property ma : missing value
property mb : missing value
property mf : mReturn(f)
on |λ|()
if missing value is ma then
set ma to uncons(ga)
set mb to uncons(gb)
end if
if Nothing of ma or Nothing of mb then
missing value
else
set ta to Just of ma
set tb to Just of mb
set ma to uncons(item 2 of ta)
set mb to uncons(item 2 of tb)
|λ|(item 1 of ta, item 1 of tb) of mf
end if
end |λ|
end script
end zipWith
- Output:
30 first terms of the Jacobsthal sequence: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 30 first Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 20 first Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 9.54429895E+8 3.817763271E+9 1.5270965703E+10 6.1084037575E+10 10 first primes in the Jacobsthal sequence: 3 5 11 43 683 2731 43691 174763 2796203 7.15827883E+8
Arturo
J: function [n]-> ((2^n) - (neg 1)^n)/3
JL: function [n]-> (2^n) + (neg 1)^n
JO: function [n]-> (J n) * (J n+1)
printFirst: function [label, what, predicate, count][
print ["First" count label++":"]
result: new []
i: 0
while [count > size result][
num: do ~"|what| i"
if do predicate -> 'result ++ num
i: i + 1
]
(predicate=[true])? [
loop split.every: 5 result 'row [
print map to [:string] row 'item -> pad item 12
]
][
loop result 'row -> print row
]
print ""
]
printFirst "Jacobsthal numbers" 'J [true] 30
printFirst "Jacobsthal-Lucas numbers" 'JL [true] 30
printFirst "Jacobsthal oblong numbers" 'JO [true] 20
printFirst "Jacobsthal primes" 'J [prime? num] 20
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 20 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883 2932031007403 768614336404564651 201487636602438195784363 845100400152152934331135470251 56713727820156410577229101238628035243 62357403192785191176690552862561408838653121833643 1046183622564446793972631570534611069350392574077339085483 267823007376498379256993682056860433753700498963798805883563 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443
AutoHotkey
Jacobsthal(n){
return SubStr(" " Format("{:.0f}", (2**n - (-1)**n ) / 3), -8)
}
Jacobsthal_Lucas(n){
return SubStr(" " Format("{:.0f}", 2**n + (-1)**n), -8)
}
prime_numbers(n) {
if (n <= 3)
return [n]
ans := [], done := false
while !done {
if !Mod(n,2)
ans.push(2), n /= 2
else if !Mod(n,3)
ans.push(3), n /= 3
else if (n = 1)
return ans
else {
sr := sqrt(n), done := true, i := 6
while (i <= sr+6) {
if !Mod(n, i-1) { ; is n divisible by i-1?
ans.push(i-1), n /= i-1, done := false
break
}
if !Mod(n, i+1) { ; is n divisible by i+1?
ans.push(i+1), n /= i+1, done := false
break
}
i += 6
}}}
ans.push(n)
return ans
}
Examples:
result := "First 30 Jacobsthal numbers:`n"
loop 30
result .= Jacobsthal(A_Index-1) (mod(A_Index, 5) ? " ":"`n")
result .= "`nFirst 30 Jacobsthal-Lucas numbers:`n"
loop 30
result .= Jacobsthal_Lucas(A_Index-1) (mod(A_Index, 5) ? " ":"`n")
result .= "`nFirst 20 Jacobsthal oblong numbers:`n"
loop 20
result .= SubStr(" " Jacobsthal(A_Index-1) * Jacobsthal(A_Index), -8) (mod(A_Index, 5) ? " ":"`n")
result .= "`nFirst 10 Jacobsthal primes:`n"
c:=0
while c < 10
if (prime_numbers(x:=Jacobsthal(A_Index)).Count() = 1 && x > 1)
result .= x (mod(++c, 5) ? " ":"`n")
MsgBox, 262144, , % result
return
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 817763271 270965703 084037575 First 10 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883
C
#include <stdio.h>
#include <gmp.h>
void jacobsthal(mpz_t r, unsigned long n) {
mpz_t s;
mpz_init(s);
mpz_set_ui(r, 1);
mpz_mul_2exp(r, r, n);
mpz_set_ui(s, 1);
if (n % 2) mpz_neg(s, s);
mpz_sub(r, r, s);
mpz_div_ui(r, r, 3);
}
void jacobsthal_lucas(mpz_t r, unsigned long n) {
mpz_t a;
mpz_init(a);
mpz_set_ui(r, 1);
mpz_mul_2exp(r, r, n);
mpz_set_ui(a, 1);
if (n % 2) mpz_neg(a, a);
mpz_add(r, r, a);
}
int main() {
int i, count;
mpz_t jac[30], j;
printf("First 30 Jacobsthal numbers:\n");
for (i = 0; i < 30; ++i) {
mpz_init(jac[i]);
jacobsthal(jac[i], i);
gmp_printf("%9Zd ", jac[i]);
if (!((i+1)%5)) printf("\n");
}
printf("\nFirst 30 Jacobsthal-Lucas numbers:\n");
mpz_init(j);
for (i = 0; i < 30; ++i) {
jacobsthal_lucas(j, i);
gmp_printf("%9Zd ", j);
if (!((i+1)%5)) printf("\n");
}
printf("\nFirst 20 Jacobsthal oblong numbers:\n");
for (i = 0; i < 20; ++i) {
mpz_mul(j, jac[i], jac[i+1]);
gmp_printf("%11Zd ", j);
if (!((i+1)%5)) printf("\n");
}
printf("\nFirst 20 Jacobsthal primes:\n");
for (i = 0, count = 0; count < 20; ++i) {
jacobsthal(j, i);
if (mpz_probab_prime_p(j, 15) > 0) {
gmp_printf("%Zd\n", j);
++count;
}
}
return 0;
}
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 20 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883 2932031007403 768614336404564651 201487636602438195784363 845100400152152934331135470251 56713727820156410577229101238628035243 62357403192785191176690552862561408838653121833643 1046183622564446793972631570534611069350392574077339085483 267823007376498379256993682056860433753700498963798805883563 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443
C#
using System;
using System.Numerics;
using System.Threading;
public class JacobsthalNumbers
{
private static BigInteger currentJacobsthal = 0;
private static int latestIndex = 0;
private static readonly BigInteger Three = new BigInteger(3);
private const int Certainty = 20;
public static void Main(string[] args)
{
Console.WriteLine("The first 30 Jacobsthal Numbers:");
for (int i = 0; i < 6; i++)
{
for (int k = 0; k < 5; k++)
{
Console.Write($"{JacobsthalNumber(i * 5 + k), 15}");
}
Console.WriteLine();
}
Console.WriteLine();
Console.WriteLine("The first 30 Jacobsthal-Lucas Numbers:");
for (int i = 0; i < 6; i++)
{
for (int k = 0; k < 5; k++)
{
Console.Write($"{JacobsthalLucasNumber(i * 5 + k), 15}");
}
Console.WriteLine();
}
Console.WriteLine();
Console.WriteLine("The first 20 Jacobsthal oblong Numbers:");
for (int i = 0; i < 4; i++)
{
for (int k = 0; k < 5; k++)
{
Console.Write($"{JacobsthalOblongNumber(i * 5 + k), 15}");
}
Console.WriteLine();
}
Console.WriteLine();
Console.WriteLine("The first 10 Jacobsthal Primes:");
for (int i = 0; i < 10; i++)
{
Console.WriteLine(JacobsthalPrimeNumber());
}
}
private static BigInteger JacobsthalNumber(int index)
{
BigInteger value = new BigInteger(ParityValue(index));
return ((BigInteger.Parse("1") << index) - value) / Three;
}
private static long JacobsthalLucasNumber(int index)
{
return (1L << index) + ParityValue(index);
}
private static long JacobsthalOblongNumber(int index)
{
BigInteger nextJacobsthal = JacobsthalNumber(index + 1);
long result = (long)(currentJacobsthal * nextJacobsthal);
currentJacobsthal = nextJacobsthal;
return result;
}
private static long JacobsthalPrimeNumber()
{
BigInteger candidate = JacobsthalNumber(latestIndex++);
while (!candidate.IsProbablyPrime(Certainty))
{
candidate = JacobsthalNumber(latestIndex++);
}
return (long)candidate;
}
private static int ParityValue(int index)
{
return (index & 1) == 0 ? +1 : -1;
}
}
public static class BigIntegerExtensions
{
private static Random random = new Random();
public static bool IsProbablyPrime(this BigInteger source, int certainty)
{
if (source == 2 || source == 3)
return true;
if (source < 2 || source % 2 == 0)
return false;
BigInteger d = source - 1;
int s = 0;
while (d % 2 == 0)
{
d /= 2;
s += 1;
}
for (int i = 0; i < certainty; i++)
{
BigInteger a = RandomBigInteger(2, source - 2);
BigInteger x = BigInteger.ModPow(a, d, source);
if (x == 1 || x == source - 1)
continue;
for (int r = 1; r < s; r++)
{
x = BigInteger.ModPow(x, 2, source);
if (x == 1)
return false;
if (x == source - 1)
break;
}
if (x != source - 1)
return false;
}
return true;
}
private static BigInteger RandomBigInteger(BigInteger minValue, BigInteger maxValue)
{
if (minValue > maxValue)
throw new ArgumentException("minValue must be less than or equal to maxValue");
BigInteger range = maxValue - minValue + 1;
int length = range.ToByteArray().Length;
byte[] buffer = new byte[length];
BigInteger result;
do
{
random.NextBytes(buffer);
buffer[buffer.Length - 1] &= 0x7F; // Ensure non-negative
result = new BigInteger(buffer);
} while (result < minValue || result >= maxValue);
return result;
}
}
- Output:
The first 30 Jacobsthal Numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 The first 30 Jacobsthal-Lucas Numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 The first 20 Jacobsthal oblong Numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 The first 10 Jacobsthal Primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883
C++
#include <gmpxx.h>
#include <iomanip>
#include <iostream>
using big_int = mpz_class;
bool is_probably_prime(const big_int& n) {
return mpz_probab_prime_p(n.get_mpz_t(), 30) != 0;
}
big_int jacobsthal_number(unsigned int n) {
return ((big_int(1) << n) - (n % 2 == 0 ? 1 : -1)) / 3;
}
big_int jacobsthal_lucas_number(unsigned int n) {
return (big_int(1) << n) + (n % 2 == 0 ? 1 : -1);
}
big_int jacobsthal_oblong_number(unsigned int n) {
return jacobsthal_number(n) * jacobsthal_number(n + 1);
}
int main() {
std::cout << "First 30 Jacobsthal Numbers:\n";
for (unsigned int n = 0; n < 30; ++n) {
std::cout << std::setw(9) << jacobsthal_number(n)
<< ((n + 1) % 5 == 0 ? '\n' : ' ');
}
std::cout << "\nFirst 30 Jacobsthal-Lucas Numbers:\n";
for (unsigned int n = 0; n < 30; ++n) {
std::cout << std::setw(9) << jacobsthal_lucas_number(n)
<< ((n + 1) % 5 == 0 ? '\n' : ' ');
}
std::cout << "\nFirst 20 Jacobsthal oblong Numbers:\n";
for (unsigned int n = 0; n < 20; ++n) {
std::cout << std::setw(11) << jacobsthal_oblong_number(n)
<< ((n + 1) % 5 == 0 ? '\n' : ' ');
}
std::cout << "\nFirst 20 Jacobsthal primes:\n";
for (unsigned int n = 0, count = 0; count < 20; ++n) {
auto jn = jacobsthal_number(n);
if (is_probably_prime(jn)) {
++count;
std::cout << jn << '\n';
}
}
}
- Output:
First 30 Jacobsthal Numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas Numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong Numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 20 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883 2932031007403 768614336404564651 201487636602438195784363 845100400152152934331135470251 56713727820156410577229101238628035243 62357403192785191176690552862561408838653121833643 1046183622564446793972631570534611069350392574077339085483 267823007376498379256993682056860433753700498963798805883563 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443
Delphi
procedure GetJacobsthalNum(Lucas: boolean; Max: integer; var IA: TInt64DynArray);
{Get Jacobsthal number sequence. If Lucas is true do Lucal variation}
var I: integer;
begin
SetLength(IA,Max);
{Lucas starts sequence with 2 instead of 0}
if Lucas then IA[0]:=2 else IA[0]:=0;
IA[1]:=1;
{Calculate Nn = Nn-1 + 2 Nn-2}
for I:=2 to Max-1 do
IA[I]:=IA[I-1] + 2 * IA[I-2];
end;
procedure GetJacobsthalOblong(Max: integer; var IA: TInt64DynArray);
{Jacobsthal Oblong numbers is Nn = Jn x Jn=1 where J = Jacobsthal numbers}
var IA2: TInt64DynArray;
var I: integer;
begin
GetJacobsthalNum(False,Max+1,IA2);
SetLength(IA,Max);
for I:=0 to High(IA2)-1 do
begin
IA[I]:=IA2[I] * IA2[I+1];
end;
end;
procedure GetJacobsthalPrimes(Memo: TMemo);
var I: integer;
var Jacob,N1, N2: int64;
function GetNext: int64;
{Nn = Nn-1 + 2 x Nn-2}
begin
Result:=N1 + 2 * N2;
N2:=N1; N1:=Result;
end;
begin
N2:=0; N1:=1;
for I:=1 to 10 do
begin
repeat Jacob:=GetNext;
until IsPrime(Jacob);
Memo.Lines.Add(IntToStr(I)+' - '+IntToStr(Jacob));
end;
end;
procedure ShowJacobsthalNumbers(Memo: TMemo);
var I: integer;
var IA: TInt64DynArray;
var S: string;
begin
GetJacobsthalNum(False,30,IA);
Memo.Lines.Add('First 30 Jacobsthal Numbers');
S:='';
for I:=0 to High(IA) do
begin
S:=S+Format('%12.0n',[IA[I]+0.0]);
if (I mod 5)=4 then S:=S+CRLF;
end;
Memo.Lines.Add(S);
Memo.Lines.Add('');
GetJacobsthalNum(True,30,IA);
Memo.Lines.Add('First 30 Jacobsthal-Lucas Numbers');
S:='';
for I:=0 to High(IA) do
begin
S:=S+Format('%14.0n',[IA[I]+0.0]);
if (I mod 4)=3 then S:=S+CRLF;
end;
Memo.Lines.Add(S);
Memo.Lines.Add('');
GetJacobsthalOblong(20,IA);
Memo.Lines.Add('First 20 Jacobsthal-Oblong Numbers');
S:='';
for I:=0 to High(IA) do
begin
S:=S+Format('%18.0n',[IA[I]+0.0]);
if (I mod 3)=2 then S:=S+CRLF;
end;
Memo.Lines.Add(S);
Memo.Lines.Add('');
GetJacobsthalPrimes(Memo);
end;
- Output:
First 30 Jacobsthal Numbers 0 1 1 3 5 11 21 43 85 171 341 683 1,365 2,731 5,461 10,923 21,845 43,691 87,381 174,763 349,525 699,051 1,398,101 2,796,203 5,592,405 11,184,811 22,369,621 44,739,243 89,478,485 178,956,971 First 30 Jacobsthal-Lucas Numbers 2 1 5 7 17 31 65 127 257 511 1,025 2,047 4,097 8,191 16,385 32,767 65,537 131,071 262,145 524,287 1,048,577 2,097,151 4,194,305 8,388,607 16,777,217 33,554,431 67,108,865 134,217,727 268,435,457 536,870,911 First 20 Jacobsthal-Oblong Numbers 0 1 3 15 55 231 903 3,655 14,535 58,311 232,903 932,295 3,727,815 14,913,991 59,650,503 238,612,935 954,429,895 3,817,763,271 15,270,965,703 61,084,037,575 1 - 3 2 - 5 3 - 11 4 - 43 5 - 683 6 - 2731 7 - 43691 8 - 174763 9 - 2796203 10 - 715827883 Elapsed Time: 49.627 ms.
F#
// Jacobsthal numbers: Nigel Galloway January 10th., 2023
let J,JL=let fN g ()=Seq.unfold(fun(n,g)->Some(n,(g,g+2UL*n)))(g,1UL) in (fN 0UL,fN 2UL)
printf "First 30 Jacobsthal are "; J()|>Seq.take 30|>Seq.iter(printf "%d "); printfn ""
printf "First 30 Jacobsthal-Lucas are "; JL()|>Seq.take 30|>Seq.iter(printf "%d "); printfn ""
printf "First 20 Jacobsthal Oblong are "; J()|>Seq.pairwise|>Seq.take 20|>Seq.iter(fun(n,g)->printf "%d " (n*g)); printfn ""
let fN g= Open.Numeric.Primes.MillerRabin.IsPrime &g
printf "First 10 Jacobsthal Primes are "; J()|>Seq.filter fN|>Seq.take 10|>Seq.iter(printf "%d "); printfn ""
- Output:
First 30 Jacobsthal are 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas are 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal Oblong are 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 10 Jacobsthal Primes are 3 5 11 43 683 2731 43691 174763 2796203 715827883
Factor
USING: grouping io kernel lists lists.lazy math math.functions
math.primes prettyprint sequences ;
: 2^-1^ ( n -- 2^n -1^n ) dup 2^ -1 rot ^ ;
: jacobsthal ( m -- n ) 2^-1^ - 3 / ;
: jacobsthal-lucas ( m -- n ) 2^-1^ + ;
: as-list ( quot -- list ) 0 lfrom swap lmap-lazy ; inline
: jacobsthals ( -- list ) [ jacobsthal ] as-list ;
: lucas-jacobthals ( -- list ) [ jacobsthal-lucas ] as-list ;
: prime-jacobsthals ( -- list ) jacobsthals [ prime? ] lfilter ;
: show ( n list -- ) ltake list>array 5 group simple-table. nl ;
: oblong ( -- list )
jacobsthals dup cdr lzip [ product ] lmap-lazy ;
"First 30 Jacobsthal numbers:" print
30 jacobsthals show
"First 30 Jacobsthal-Lucas numbers:" print
30 lucas-jacobthals show
"First 20 Jacobsthal oblong numbers:" print
20 oblong show
"First 20 Jacobsthal primes:" print
20 prime-jacobsthals ltake [ . ] leach
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 20 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883 2932031007403 768614336404564651 201487636602438195784363 845100400152152934331135470251 56713727820156410577229101238628035243 62357403192785191176690552862561408838653121833643 1046183622564446793972631570534611069350392574077339085483 267823007376498379256993682056860433753700498963798805883563 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443
FreeBASIC
Function isPrime(n As Ulongint) As Boolean
If n < 2 Then Return False
If n Mod 2 = 0 Then Return false
For i As Uinteger = 3 To Int(Sqr(n))+1 Step 2
If n Mod i = 0 Then Return false
Next i
Return true
End Function
Dim Shared As Uinteger n(1)
Dim Shared As Uinteger i0 = 0, i1 = 1
Dim Shared As Integer j, c, P = 1, Q = -2
Print "First 30 Jacobsthal numbers:"
c = 0 : n(i0) = 0: n(i1) = 1
For j = 0 To 29
c += 1
Print Using " #########"; n(i0);
Print Iif (c Mod 5, "", !"\n");
n(i0) = P * n(i1) - Q * n(i0)
Swap i0, i1
Next j
Print !"\n\nFirst 30 Jacobsthal-Lucas numbers: "
c = 0 : n(i0) = 2: n(i1) = 1
For j = 0 To 29
c += 1
Print Using " #########"; n(i0);
Print Iif (c Mod 5, "", !"\n");
n(i0) = P * n(i1) - Q * n(i0)
Swap i0, i1
Next j
Print !"\n\nFirst 20 Jacobsthal oblong numbers: "
c = 0 : n(i0) = 0: n(i1) = 1
For j = 0 To 19
c += 1
Print Using " ###########"; n(i0)*n(i1);
Print Iif (c Mod 5, "", !"\n");
n(i0) = P * n(i1) - Q * n(i0)
Swap i0, i1
Next j
Print !"\n\nFirst 10 Jacobsthal primes: "
c = 0 : n(i0) = 0: n(i1) = 1
Do
If isPrime(n(i0)) Then c += 1 : Print n(i0)
n(i0) = P * n(i1) - Q * n(i0)
Swap i0, i1
Loop Until c = 10
Sleep
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 10 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883
Gambas
Public n As New Long[2]
Public Sub Main()
Dim i0 As Integer = 0, i1 As Integer = 1
Dim j As Integer, c As Integer, P As Integer = 1, Q As Integer = -2
Print "First 30 Jacobsthal numbers:"
c = 0
n[i0] = 0
n[i1] = 1
For j = 0 To 29
c += 1
Print Format$(n[i0], " #########");
If (c Mod 5) Then
Print "";
Else
Print Chr(10);
End If
n[i0] = P * n[i1] - Q * n[i0]
Swap i0, i1
Next
Print "\n\nFirst 30 Jacobsthal-Lucas numbers: "
c = 0
n[i0] = 2
n[i1] = 1
For j = 0 To 29
c += 1
Print Format$(n[i0], " #########");
If (c Mod 5) Then
Print "";
Else
Print Chr(10);
End If
n[i0] = P * n[i1] - Q * n[i0]
Swap i0, i1
Next
Print "\n\nFirst 20 Jacobsthal oblong numbers: "
c = 0
n[i0] = 0
n[i1] = 1
For j = 0 To 19
c += 1
Print Format$(n[i0] * n[i1], " ###########");
If (c Mod 5) Then
Print "";
Else
Print Chr(10);
End If
n[i0] = P * n[i1] - Q * n[i0]
Swap i0, i1
Next
Print "\n\nFirst 10 Jacobsthal primes: "
c = 0
n[i0] = 0
n[i1] = 1
Do
If isPrime(n[i0]) Then
c += 1
Print n[i0]
End If
n[i0] = P * n[i1] - Q * n[i0]
Swap i0, i1
Loop Until c = 10
End
Public Sub isPrime(ValorEval As Long) As Boolean
If ValorEval < 2 Then Return False
If ValorEval Mod 2 = 0 Then Return ValorEval = 2
If ValorEval Mod 3 = 0 Then Return ValorEval = 3
Dim d As Long = 5
While d * d <= ValorEval
If ValorEval Mod d = 0 Then Return False Else d += 2
Wend
Return True
End Function
- Output:
Same as FreeBASIC entry.
Go
package main
import (
"fmt"
"math/big"
)
func jacobsthal(n uint) *big.Int {
t := big.NewInt(1)
t.Lsh(t, n)
s := big.NewInt(1)
if n%2 != 0 {
s.Neg(s)
}
t.Sub(t, s)
return t.Div(t, big.NewInt(3))
}
func jacobsthalLucas(n uint) *big.Int {
t := big.NewInt(1)
t.Lsh(t, n)
a := big.NewInt(1)
if n%2 != 0 {
a.Neg(a)
}
return t.Add(t, a)
}
func main() {
jac := make([]*big.Int, 30)
fmt.Println("First 30 Jacobsthal numbers:")
for i := uint(0); i < 30; i++ {
jac[i] = jacobsthal(i)
fmt.Printf("%9d ", jac[i])
if (i+1)%5 == 0 {
fmt.Println()
}
}
fmt.Println("\nFirst 30 Jacobsthal-Lucas numbers:")
for i := uint(0); i < 30; i++ {
fmt.Printf("%9d ", jacobsthalLucas(i))
if (i+1)%5 == 0 {
fmt.Println()
}
}
fmt.Println("\nFirst 20 Jacobsthal oblong numbers:")
for i := uint(0); i < 20; i++ {
t := big.NewInt(0)
fmt.Printf("%11d ", t.Mul(jac[i], jac[i+1]))
if (i+1)%5 == 0 {
fmt.Println()
}
}
fmt.Println("\nFirst 20 Jacobsthal primes:")
for n, count := uint(0), 0; count < 20; n++ {
j := jacobsthal(n)
if j.ProbablyPrime(10) {
fmt.Println(j)
count++
}
}
}
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 20 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883 2932031007403 768614336404564651 201487636602438195784363 845100400152152934331135470251 56713727820156410577229101238628035243 62357403192785191176690552862561408838653121833643 1046183622564446793972631570534611069350392574077339085483 267823007376498379256993682056860433753700498963798805883563 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443
Haskell
jacobsthal :: [Integer]
jacobsthal = 0 : 1 : zipWith (\x y -> 2 * x + y) jacobsthal (tail jacobsthal)
jacobsthalLucas :: [Integer]
jacobsthalLucas = 2 : 1 : zipWith (\x y -> 2 * x + y) jacobsthalLucas (tail jacobsthalLucas)
jacobsthalOblong :: [Integer]
jacobsthalOblong = zipWith (*) jacobsthal (tail jacobsthal)
isPrime :: Integer -> Bool
isPrime n = n > 1 && not (or [n `mod` i == 0 | i <- [2 .. floor (sqrt (fromInteger n))]])
main :: IO ()
main = do
putStrLn "First 30 Jacobsthal numbers:"
print $ take 30 jacobsthal
putStrLn ""
putStrLn "First 30 Jacobsthal-Lucas numbers:"
print $ take 30 jacobsthalLucas
putStrLn ""
putStrLn "First 20 Jacobsthal oblong numbers:"
print $ take 20 jacobsthalOblong
putStrLn ""
putStrLn "First 10 Jacobsthal primes:"
print $ take 10 $ filter isPrime jacobsthal
- Output:
First 30 Jacobsthal numbers: [0,1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,21845,43691,87381,174763,349525,699051,1398101,2796203,5592405,11184811,22369621,44739243,89478485,178956971] First 30 Jacobsthal-Lucas numbers: [2,1,5,7,17,31,65,127,257,511,1025,2047,4097,8191,16385,32767,65537,131071,262145,524287,1048577,2097151,4194305,8388607,16777217,33554431,67108865,134217727,268435457,536870911] First 20 Jacobsthal oblong numbers: [0,1,3,15,55,231,903,3655,14535,58311,232903,932295,3727815,14913991,59650503,238612935,954429895,3817763271,15270965703,61084037575] First 10 Jacobsthal primes: [3,5,11,43,683,2731,43691,174763,2796203,715827883]
or, defined in terms of unfoldr:
import Data.List (intercalate, transpose, uncons, unfoldr)
import Data.List.Split (chunksOf)
import Data.Numbers.Primes (isPrime)
import Text.Printf (printf)
-------------------- JACOBSTHAL NUMBERS ------------------
jacobsthal :: [Integer]
jacobsthal = jacobsthalish (0, 1)
jacobsthalish :: (Integer, Integer) -> [Integer]
jacobsthalish = unfoldr go
where
go (a, b) = Just (a, (b, 2 * a + b))
--------------------------- TEST -------------------------
main :: IO ()
main =
mapM_
(putStrLn . format)
[ ( "terms of the Jacobsthal sequence",
30,
jacobsthal
),
( "Jacobsthal-Lucas numbers",
30,
jacobsthalish (2, 1)
),
( "Jacobsthal oblong numbers",
20,
zipWith (*) jacobsthal (tail jacobsthal)
),
( "Jacobsthal primes",
10,
filter isPrime jacobsthal
)
]
format :: (String, Int, [Integer]) -> String
format (k, n, xs) =
show n <> (' ' : k) <> ":\n"
<> table
" "
(chunksOf 5 $ show <$> take n xs)
table :: String -> [[String]] -> String
table gap rows =
let ws = maximum . fmap length <$> transpose rows
pw = printf . flip intercalate ["%", "s"] . show
in unlines $ intercalate gap . zipWith pw ws <$> rows
- Output:
30 terms of the Jacobsthal sequence: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 10 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883
J
Implementation:
ja=: 3 %~ 2x&^ - _1x&^ NB. Jacobsthal
jl=: 2x&^ + _1x&^ NB.Jacobsthal-Lucas
Task examples:
ja i.3 10
0 1 1 3 5 11 21 43 85 171
341 683 1365 2731 5461 10923 21845 43691 87381 174763
349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971
jl i.3 10
2 1 5 7 17 31 65 127 257 511
1025 2047 4097 8191 16385 32767 65537 131071 262145 524287
1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911
2 10$2 */\ ja i.21 NB. Jacobsthal oblong
0 1 3 15 55 231 903 3655 14535 58311
232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575
ja I.1 p:ja i.32 NB. first ten Jacobsthal primes
3 5 11 43 683 2731 43691 174763 2796203 715827883
Java
import java.math.BigInteger;
public final class JacobsthalNumbers {
public static void main(String[] aArgs) {
System.out.println("The first 30 Jacobsthal Numbers:");
for ( int i = 0; i < 6; i++ ) {
for ( int k = 0; k < 5; k++ ) {
System.out.print(String.format("%15s", jacobsthalNumber(i * 5 + k)));
}
System.out.println();
}
System.out.println();
System.out.println("The first 30 Jacobsthal-Lucas Numbers:");
for ( int i = 0; i < 6; i++ ) {
for ( int k = 0; k < 5; k++ ) {
System.out.print(String.format("%15s", jacobsthalLucasNumber(i * 5 + k)));
}
System.out.println();
}
System.out.println();
System.out.println("The first 20 Jacobsthal oblong Numbers:");
for ( int i = 0; i < 4; i++ ) {
for ( int k = 0; k < 5; k++ ) {
System.out.print(String.format("%15s", jacobsthalOblongNumber(i * 5 + k)));
}
System.out.println();
}
System.out.println();
System.out.println("The first 10 Jacobsthal Primes:");
for ( int i = 0; i < 10; i++ ) {
System.out.println(jacobsthalPrimeNumber(i));
}
}
private static BigInteger jacobsthalNumber(int aIndex) {
BigInteger value = BigInteger.valueOf(parityValue(aIndex));
return BigInteger.ONE.shiftLeft(aIndex).subtract(value).divide(THREE);
}
private static long jacobsthalLucasNumber(int aIndex) {
return ( 1 << aIndex ) + parityValue(aIndex);
}
private static long jacobsthalOblongNumber(int aIndex) {
long nextJacobsthal = jacobsthalNumber(aIndex + 1).longValueExact();
long result = currentJacobsthal * nextJacobsthal;
currentJacobsthal = nextJacobsthal;
return result;
}
private static long jacobsthalPrimeNumber(int aIndex) {
BigInteger candidate = jacobsthalNumber(latestIndex++);
while ( ! candidate.isProbablePrime(CERTAINTY) ) {
candidate = jacobsthalNumber(latestIndex++);
}
return candidate.longValueExact();
}
private static int parityValue(int aIndex) {
return ( aIndex & 1 ) == 0 ? +1 : -1;
}
private static long currentJacobsthal = 0;
private static int latestIndex = 0;
private static final BigInteger THREE = BigInteger.valueOf(3);
private static final int CERTAINTY = 20;
}
- Output:
The first 30 Jacobsthal Numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 The first 30 Jacobsthal-Lucas Numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 The first 20 Jacobsthal oblong Numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 The first 10 Jacobsthal Primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883
jq
Works with gojq, the Go implementation of jq
See Erdős-primes#jq for a suitable definition of `is_prime` as used here. As a practical matter, this function limits the exploration of Jacobsthal primes.
Preliminaries
# Split the input array into a stream of arrays
def chunks(n):
def c: .[0:n], (if length > n then .[n:]|c else empty end);
c;
def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;
# If $j is 0, then an error condition is raised;
# otherwise, assuming infinite-precision integer arithmetic,
# if the input and $j are integers, then the result will be a pair of integers.
def divmod($j):
. as $i
| ($i % $j) as $mod
| [($i - $mod) / $j, $mod] ;
# To take advantage of gojq's arbitrary-precision integer arithmetic:
def power($b): . as $in | reduce range(0;$b) as $i (1; . * $in);
The Tasks
def jacobsthal:
. as $n
| ( (2|power($n)) - (if ($n%2 == 0) then 1 else -1 end)) | divmod(3)[0];
def jacobsthalLucas:
. as $n
| (2|power($n)) + (if ($n%2 == 0) then 1 else -1 end);
def tasks:
def pp($width): chunks(5) | map(lpad($width)) | join("");
[range(0;30) | jacobsthal] as $js
| "First 30 Jacobsthal numbers:",
( $js | pp(12)),
"\nFirst 30 Jacobsthal-Lucas numbers:",
( [range(0;30) | jacobsthalLucas] | pp(12)),
"\nFirst 20 Jacobsthal oblong numbers:",
( [range(0;20) | $js[.] * $js[1+.]] | pp(14)),
"\nFirst 11 Jacobsthal primes:",
limit(11; range(0; infinite) | jacobsthal | select(is_prime))
;
tasks
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 11 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883 2932031007403
Julia
using Lazy
using Primes
J(n) = (2^n - (-1)^n) ÷ 3
L(n) = 2^n + (-1)^n
Jacobsthal = @>> Lazy.range(0) map(J)
JLucas = @>> Lazy.range(0) map(L)
Joblong = @>> Lazy.range(big"0") map(n -> J(n) * J(n + 1))
Jprimes = @>> Lazy.range(big"0") map(J) filter(isprime)
function printrows(title, vec, columnsize = 15, columns = 5, rjust=true)
println(title)
for (i, n) in enumerate(vec)
print((rjust ? lpad : rpad)(n, columnsize), i % columns == 0 ? "\n" : "")
end
println()
end
printrows("Thirty Jacobsthal numbers:", collect(take(30, Jacobsthal)))
printrows("Thirty Jacobsthal-Lucas numbers:", collect(take(30, JLucas)))
printrows("Twenty oblong Jacobsthal numbers:", collect(take(20, Joblong)))
printrows("Fifteen Jacabsthal prime numbers:", collect(take(15, Jprimes)), 40, 1, false)
- Output:
Thirty Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 Thirty Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 Twenty oblong Jacobsthal numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 Fifteen Jacabsthal prime numbers: 3 5 11 43 683 2731 43691 174763 2796203 715827883 2932031007403 768614336404564651 201487636602438195784363 845100400152152934331135470251 56713727820156410577229101238628035243
Mathematica /Wolfram Language
ClearAll[Jacobsthal, JacobsthalLucas, JacobsthalOblong]
Jacobsthal[n_]:=(2^n-(-1)^n)/3
JacobsthalLucas[n_]:=2^n+(-1)^n
JacobsthalOblong[n_]:=Jacobsthal[n]Jacobsthal[n+1]
Jacobsthal[Range[0, 29]]
JacobsthalLucas[Range[0, 29]]
JacobsthalOblong[Range[0, 19]]
n=0;
i=0;
Reap[While[n<20,
If[
PrimeQ[Jacobsthal[i]]
,
Sow[{i,Jacobsthal[i]}];
n++;
];
i++;
]][[2,1]]//Grid
- Output:
{0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971} {2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191, 16385, 32767, 65537, 131071, 262145, 524287, 1048577, 2097151, 4194305, 8388607, 16777217, 33554431, 67108865, 134217727, 268435457, 536870911} {0, 1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575} 3 3 4 5 5 11 7 43 11 683 13 2731 17 43691 19 174763 23 2796203 31 715827883 43 2932031007403 61 768614336404564651 79 201487636602438195784363 101 845100400152152934331135470251 127 56713727820156410577229101238628035243 167 62357403192785191176690552862561408838653121833643 191 1046183622564446793972631570534611069350392574077339085483 199 267823007376498379256993682056860433753700498963798805883563 313 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731 347 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443
Maxima
jacobstahl(n):=(2^n-(-1)^n)/3$
jacobstahl_lucas(n):=2^n+(-1)^n$
jacobstahl_oblong(n):=jacobstahl(n)*jacobstahl(n+1)$
/* Function that returns a list of the first len jacobstahl primes */
jacobstahl_primes_count(len):=block(
[i:0,count:0,result:[]],
while count<len do (if primep(jacobstahl(i)) then (result:endcons(jacobstahl(i),result),count:count+1),i:i+1),
result)$
/* Test cases */
makelist(jacobstahl(i),i,0,29);
makelist(jacobstahl_lucas(i),i,0,29);
makelist(jacobstahl_oblong(i),i,0,19);
jacobstahl_primes_count(10);
- Output:
[0,1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,21845,43691,87381,174763,349525,699051,1398101,2796203,5592405,11184811,22369621,44739243,89478485,178956971] [2,1,5,7,17,31,65,127,257,511,1025,2047,4097,8191,16385,32767,65537,131071,262145,524287,1048577,2097151,4194305,8388607,16777217,33554431,67108865,134217727,268435457,536870911] [0,1,3,15,55,231,903,3655,14535,58311,232903,932295,3727815,14913991,59650503,238612935,954429895,3817763271,15270965703,61084037575] [3,5,11,43,683,2731,43691,174763,2796203,715827883]
Nim
import std/strutils
func isPrime(n: Natural): bool =
## Return true if "n" is prime.
if n < 2: return false
if n mod 2 == 0: return n == 2
if n mod 3 == 0: return n == 3
var step = 2
var d = 5
while d * d <= n:
if n mod d == 0: return false
inc d, step
step = 6 - step
result = true
iterator jacobsthalSequence(first, second: int): int =
## Yield the successive Jacobsthal numbers or
## Jacobsthal-Lucas numbers.
var prev = first
var curr = second
yield prev
yield curr
while true:
swap prev, curr
curr += curr + prev
yield curr
iterator jacobsthalOblong(): int =
## Yield the successive Jacobsthal oblong numbers.
var prev = -1
for n in jacobsthalSequence(0, 1):
if prev >= 0:
yield prev * n
prev = n
iterator jacobsthalPrimes(): int =
## Yield the successive Jacobsthal prime numbers.
for n in jacobsthalSequence(0, 1):
if n.isPrime:
yield n
echo "First 30 Jacobsthal numbers:"
var count = 0
for n in jacobsthalSequence(0, 1):
inc count
stdout.write align($n, 11)
if count mod 6 == 0: echo()
if count == 30: break
echo "\nFirst 30 Jacobsthal-Lucas numbers:"
count = 0
for n in jacobsthalSequence(2, 1):
inc count
stdout.write align($n, 11)
if count mod 6 == 0: echo()
if count == 30: break
echo "\nFirst 20 Jacobsthal oblong numbers:"
count = 0
for n in jacobsthalOblong():
inc count
stdout.write align($n, 13)
if count mod 5 == 0: echo()
if count == 20: break
echo "\nFirst 10 Jacobsthal prime numbers:"
count = 0
for n in jacobsthalPrimes():
inc count
stdout.write align($n, 11)
if count mod 5 == 0: echo()
if count == 10: break
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 10 Jacobsthal prime numbers: 3 5 11 43 683 2731 43691 174763 2796203 715827883
OCaml
let is_prime n =
let rec test x =
x * x > n || n mod x <> 0 && n mod (x + 2) <> 0 && test (x + 6)
in
if n < 5
then n land 2 <> 0
else n land 1 <> 0 && n mod 3 <> 0 && test 5
let seq_jacobsthal =
let rec next b a () = Seq.Cons (a, next (a + a + b) b) in
next 1
let seq_jacobsthal_oblong =
let rec next b a () = Seq.Cons (a * b, next (a + a + b) b) in
next 1 0
let () =
let show (n, seq, s) =
Seq.take n seq
|> Seq.fold_left (Printf.sprintf "%s %u") (Printf.sprintf "First %u %s numbers:\n" n s)
|> print_endline
in
List.iter show [
30, seq_jacobsthal 0, "Jacobsthal";
30, seq_jacobsthal 2, "Jacobsthal-Lucas";
20, seq_jacobsthal_oblong, "Jacobsthal oblong";
10, Seq.filter is_prime (seq_jacobsthal 0), "Jacobsthal prime"]
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 10 Jacobsthal prime numbers: 3 5 11 43 683 2731 43691 174763 2796203 715827883
PARI/GP
\\ Define the Jacobsthal function
Jacobsthal(n) = (2^n - (-1)^n) / 3;
\\ Define the JacobsthalLucas function
JacobsthalLucas(n) = 2^n + (-1)^n;
\\ Define the JacobsthalOblong function
JacobsthalOblong(n) = Jacobsthal(n) * Jacobsthal(n + 1);
{
\\ Generate and print Jacobsthal numbers for 0 through 29
print(vector(30, n, Jacobsthal(n-1)));
\\ Generate and print JacobsthalLucas numbers for 0 through 29
print(vector(30, n, JacobsthalLucas(n-1)));
\\ Generate and print JacobsthalOblong numbers for 0 through 19
print(vector(20, n, JacobsthalOblong(n-1)));
\\ Find the first 20 prime numbers in the Jacobsthal sequence
myprimes = [];
i = 0;
while(#myprimes < 40,
if(isprime(Jacobsthal(i)), myprimes = concat(myprimes, [i, Jacobsthal(i)]));
i++;
);
for (i = 1, #myprimes\2, print(myprimes[2*i-1] " " myprimes[2*i]); );
}
- Output:
[0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971] [2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191, 16385, 32767, 65537, 131071, 262145, 524287, 1048577, 2097151, 4194305, 8388607, 16777217, 33554431, 67108865, 134217727, 268435457, 536870911] [0, 1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575] 3 3 4 5 5 11 7 43 11 683 13 2731 17 43691 19 174763 23 2796203 31 715827883 43 2932031007403 61 768614336404564651 79 201487636602438195784363 101 845100400152152934331135470251 127 56713727820156410577229101238628035243 167 62357403192785191176690552862561408838653121833643 191 1046183622564446793972631570534611069350392574077339085483 199 267823007376498379256993682056860433753700498963798805883563 313 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731 347 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443
Perl
use strict;
use warnings;
use feature <say state>;
use bigint;
use List::Util 'max';
use ntheory 'is_prime';
sub table { my $t = 5 * (my $c = 1 + length max @_); ( sprintf( ('%'.$c.'d')x@_, @_) ) =~ s/.{1,$t}\K/\n/gr }
sub jacobsthal { my($n) = @_; state @J = (0, 1); do { push @J, $J[-1] + 2 * $J[-2]} until @J > $n; $J[$n] }
sub jacobsthal_lucas { my($n) = @_; state @JL = (2, 1); do { push @JL, $JL[-1] + 2 * $JL[-2]} until @JL > $n; $JL[$n] }
my(@j,@jp,$c,$n);
push @j, jacobsthal $_ for 0..29;
do { is_prime($n = ( 2**++$c - -1**$c ) / 3) and push @jp, $n } until @jp == 20;
say "First 30 Jacobsthal numbers:\n", table @j;
say "First 30 Jacobsthal-Lucas numbers:\n", table map { jacobsthal_lucas $_-1 } 1..30;
say "First 20 Jacobsthal oblong numbers:\n", table map { $j[$_-1] * $j[$_] } 1..20;
say "First 20 Jacobsthal primes:\n", join "\n", @jp;
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 20 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883 2932031007403 768614336404564651 201487636602438195784363 845100400152152934331135470251 56713727820156410577229101238628035243 62357403192785191176690552862561408838653121833643 1046183622564446793972631570534611069350392574077339085483 267823007376498379256993682056860433753700498963798805883563 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443
Phix
You can run this online here.
with javascript_semantics function jacobsthal(integer n) return floor((power(2,n)+odd(n))/3) end function function jacobsthal_lucas(integer n) return power(2,n)+power(-1,n) end function function jacobsthal_oblong(integer n) return jacobsthal(n)*jacobsthal(n+1) end function function jba(string fmt, sequence s, integer b=5) return {join_by(apply(true,sprintf,{{fmt},s}),1,b," ")} end function printf(1,"First 30 Jacobsthal numbers:\n%s\n", jba("%9d",apply(tagset(29,0),jacobsthal))) printf(1,"First 30 Jacobsthal-Lucas numbers:\n%s\n", jba("%9d",apply(tagset(29,0),jacobsthal_lucas))) printf(1,"First 20 Jacobsthal oblong numbers:\n%s\n",jba("%11d",apply(tagset(19,0),jacobsthal_oblong))) --printf(1,"First 10 Jacobsthal primes:\n%s\n", jba("%d",filter(apply(tagset(31,0),jacobsthal),is_prime),1)) --hmm(""), fine, but to go further roll out gmp: include mpfr.e mpz z = mpz_init() integer n = 1, found = 0 printf(1,"First 20 jacobsthal primes:\n") while found<20 do mpz_ui_pow_ui(z,2,n) mpz_add_ui(z,z,odd(n)) {} = mpz_fdiv_q_ui(z,z,3) if mpz_prime(z) then found += 1 printf(1,"%s\n",{mpz_get_str(z)}) end if n += 1 end while
Likewise should you want the three basic functions to go further they'll have to look much more like the C submission above.
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 20 jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883 2932031007403 768614336404564651 201487636602438195784363 845100400152152934331135470251 56713727820156410577229101238628035243 62357403192785191176690552862561408838653121833643 1046183622564446793972631570534611069350392574077339085483 267823007376498379256993682056860433753700498963798805883563 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443
Python
#!/usr/bin/python
from math import floor, pow
def isPrime(n):
for i in range(2, int(n**0.5) + 1):
if n % i == 0:
return False
return True
def odd(n):
return n and 1 != 0
def jacobsthal(n):
return floor((pow(2,n)+odd(n))/3)
def jacobsthal_lucas(n):
return int(pow(2,n)+pow(-1,n))
def jacobsthal_oblong(n):
return jacobsthal(n)*jacobsthal(n+1)
if __name__ == '__main__':
print("First 30 Jacobsthal numbers:")
for j in range(0, 30):
print(jacobsthal(j), end=" ")
print("\n\nFirst 30 Jacobsthal-Lucas numbers: ")
for j in range(0, 30):
print(jacobsthal_lucas(j), end = '\t')
print("\n\nFirst 20 Jacobsthal oblong numbers: ")
for j in range(0, 20):
print(jacobsthal_oblong(j), end=" ")
print("\n\nFirst 10 Jacobsthal primes: ")
for j in range(3, 33):
if isPrime(jacobsthal(j)):
print(jacobsthal(j))
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 10 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883
Or, defining an infinite series in terms of a general unfoldr anamorphism:
'''Jacobsthal numbers'''
from itertools import islice
from operator import mul
# jacobsthal :: [Integer]
def jacobsthal():
'''Infinite sequence of terms of OEIS A001045
'''
return jacobsthalish(0, 1)
# jacobsthalish :: (Int, Int) -> [Int]
def jacobsthalish(*xy):
'''Infinite sequence of jacobsthal-type series
beginning with a, b
'''
def go(ab):
a, b = ab
return a, (b, 2 * a + b)
return unfoldr(go)(xy)
# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''First 15 terms each n-step Fibonacci(n) series
where n is drawn from [2..8]
'''
print('\n\n'.join([
fShow(*x) for x in [
(
'terms of the Jacobsthal sequence',
30, jacobsthal()),
(
'Jacobsthal-Lucas numbers',
30, jacobsthalish(2, 1)
),
(
'Jacobsthal oblong numbers',
20, map(
mul, jacobsthal(),
drop(1)(jacobsthal())
)
),
(
'primes in the Jacobsthal sequence',
10, filter(isPrime, jacobsthal())
)
]
]))
# fShow :: (String, Int, [Integer]) -> String
def fShow(k, n, xs):
'''N tabulated terms of XS, prefixed by the label K
'''
return f'{n} {k}:\n' + spacedTable(
list(chunksOf(5)(
[str(t) for t in take(n)(xs)]
))
)
# ----------------------- GENERIC ------------------------
# drop :: Int -> [a] -> [a]
# drop :: Int -> String -> String
def drop(n):
'''The sublist of xs beginning at
(zero-based) index n.
'''
def go(xs):
if isinstance(xs, (list, tuple, str)):
return xs[n:]
else:
take(n)(xs)
return xs
return go
# isPrime :: Int -> Bool
def isPrime(n):
'''True if n is prime.'''
if n in (2, 3):
return True
if 2 > n or 0 == n % 2:
return False
if 9 > n:
return True
if 0 == n % 3:
return False
def p(x):
return 0 == n % x or 0 == n % (2 + x)
return not any(map(p, range(5, 1 + int(n ** 0.5), 6)))
# take :: Int -> [a] -> [a]
# take :: Int -> String -> String
def take(n):
'''The prefix of xs of length n,
or xs itself if n > length xs.
'''
def go(xs):
return (
xs[0:n]
if isinstance(xs, (list, tuple))
else list(islice(xs, n))
)
return go
# unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
def unfoldr(f):
'''Generic anamorphism.
A lazy (generator) list unfolded from a seed value by
repeated application of f until no residue remains.
Dual to fold/reduce.
f returns either None, or just (value, residue).
For a strict output value, wrap in list().
'''
def go(x):
valueResidue = f(x)
while None is not valueResidue:
yield valueResidue[0]
valueResidue = f(valueResidue[1])
return go
# ---------------------- FORMATTING ----------------------
# chunksOf :: Int -> [a] -> [[a]]
def chunksOf(n):
'''A series of lists of length n, subdividing the
contents of xs. Where the length of xs is not evenly
divisible, the final list will be shorter than n.
'''
def go(xs):
return (
xs[i:n + i] for i in range(0, len(xs), n)
) if 0 < n else None
return go
# spacedTable :: [[String]] -> String
def spacedTable(rows):
'''Tabulated stringification of rows'''
columnWidths = [
max([len(x) for x in col])
for col in zip(*rows)
]
return '\n'.join([
' '.join(
map(
lambda x, w: x.rjust(w, ' '),
row, columnWidths
)
)
for row in rows
])
# MAIN ---
if __name__ == '__main__':
main()
- Output:
30 terms of the Jacobsthal sequence: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 10 primes in the Jacobsthal sequence: 3 5 11 43 683 2731 43691 174763 2796203 715827883
Quackery
isprime
is defined at Primality by trial division#Quackery.
[ 2 over ** -1 rot ** - 3 / ] is j ( n --> n )
[ 2 over ** -1 rot ** + ] is jl ( n --> n )
[ dup 1+ j swap j * ] is jo ( n --> n )
say "First 30 Jacobsthal numbers:"
cr
30 times [ i^ j echo sp ]
cr cr
say "First 30 Jacobsthal-Lucas numbers:"
cr
30 times [ i^ jl echo sp ]
cr cr
say "First 20 Jacobsthal oblong numbers:"
cr
20 times [ i^ jo echo sp ]
cr cr
say "First 10 Jacobsthal primes:"
cr
[] 0
[ dup j dup isprime iff
[ swap dip join ]
else drop
1+
over size 10 = until ]
drop
witheach [ echo sp ]
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 10 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883
Raku
my $jacobsthal = cache lazy 0, 1, * × 2 + * … *;
my $jacobsthal-lucas = lazy 2, 1, * × 2 + * … *;
say "First 30 Jacobsthal numbers:";
say $jacobsthal[^30].batch(5)».fmt("%9d").join: "\n";
say "\nFirst 30 Jacobsthal-Lucas numbers:";
say $jacobsthal-lucas[^30].batch(5)».fmt("%9d").join: "\n";
say "\nFirst 20 Jacobsthal oblong numbers:";
say (^∞).map( { $jacobsthal[$_] × $jacobsthal[$_+1] } )[^20].batch(5)».fmt("%11d").join: "\n";
say "\nFirst 20 Jacobsthal primes:";
say $jacobsthal.grep( &is-prime )[^20].join: "\n";
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 20 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883 2932031007403 768614336404564651 201487636602438195784363 845100400152152934331135470251 56713727820156410577229101238628035243 62357403192785191176690552862561408838653121833643 1046183622564446793972631570534611069350392574077339085483 267823007376498379256993682056860433753700498963798805883563 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443
Red
Red ["Jacobsthal numbers"]
jacobsthal: function [n] [to-integer (2 ** n - (-1 ** n) / 3)]
lucas: function [n] [2 ** n + (-1 ** n)]
oblong: function [n] [
first split mold multiply to-float jacobsthal n to-float jacobsthal n + 1 #"." ; work around integer overflow
]
prime?: function [
"Returns true if the input is a prime number"
n [number!] "An integer to check for primality"
][
if 2 = n [return true]
if any [1 = n even? n] [return false]
limit: sqrt n
candidate: 3
while [candidate < limit][
if n % candidate = 0 [return false]
candidate: candidate + 2
]
true
]
show: function [n fn][
cols: length? mold fn n
repeat i n [
prin [pad fn subtract i 1 cols]
if i % 5 = 0 [prin newline]
]
prin newline
]
print "First 30 Jacobsthal numbers:"
show 30 :jacobsthal
print "First 30 Jacobsthal-Lucas numbers:"
show 30 :lucas
print "First 20 Jacobsthal oblong numbers:"
show 20 :oblong
print "First 10 Jacobsthal primes:"
primes: n: 0
while [primes < 10][
if prime? jacobsthal n [
print jacobsthal n
primes: primes + 1
]
n: n + 1
]
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 10 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883
RPL
Straightforward approach
The Jacobstahl pieces of code are macros more than programs.
≪ 2 OVER ^ -1 ROT ^ - 3 / ≫ 'JCBN' STO ≪ 2 OVER ^ -1 ROT ^ + ≫ 'JCBL' STO ≪ DUP JCBN SWAP 1 + JCBN * ≫ 'JCBO' STO
The primality test is the only one that deserves such a name:
≪ IF DUP 5 ≤ THEN { 2 3 5 } SWAP POS ELSE IF DUP 2 MOD NOT THEN 2 ELSE DUP √ CEIL → lim ≪ 3 WHILE DUP2 MOD OVER lim ≤ AND REPEAT 2 + END ≫ END MOD END SIGN ≫ 'PRIM?' STO
Using binary integers
The task is an opportunity to showcase the use of binary integers in RPL, but it's actually slower and fatter, as many RPL instructions are designed for floating point numbers only.
≪ → n ≪ # 1h 1 n START SL NEXT IF n R→B # 1h AND B→R THEN 1 + ELSE 1 - END 3 / B→R ≫ ≫ 'JCBN' STO
Testing program
≪ → func count
≪ { } 0
DO DUP func
IF EVAL THEN ROT SWAP + SWAP ELSE DROP END
1 +
UNTIL OVER SIZE count ≥ END
DROP
≫ ≫
'ASSRT' STO
≪ JCBN 1 ≫ 30 ASSRT ≪ JCBL 1 ≫ 30 ASSRT ≪ JCBO 1 ≫ 20 ASSRT ≪ DUP JCBN PRIM? ≫ 10 ASSRT
- Output:
4: { 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 } 3: { 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 } 2: { 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 } 1: { 3 5 11 43 683 2731 43691 174763 2796203 715827883 }
Ruby
Since version 3.0, Ruby supports "end-less" method definitions.
require 'prime'
def jacobsthal(n) = (2**n + n[0])/3
def jacobsthal_lucas(n) = 2**n + (-1)**n
def jacobsthal_oblong(n) = jacobsthal(n) * jacobsthal(n+1)
puts "First 30 Jacobsthal numbers:"
puts (0..29).map{|n| jacobsthal(n) }.join(" ")
puts "\nFirst 30 Jacobsthal-Lucas numbers: "
puts (0..29).map{|n| jacobsthal_lucas(n) }.join(" ")
puts "\nFirst 20 Jacobsthal-Oblong numbers: "
puts (0..19).map{|n| jacobsthal_oblong(n) }.join(" ")
puts "\nFirst 10 prime Jacobsthal numbers: "
res = (0..).lazy.filter_map do |i|
j = jacobsthal(i)
j if j.prime?
end
puts res.take(10).force.join(" ")
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal-Oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 10 prime Jacobsthal numbers: 3 5 11 43 683 2731 43691 174763 2796203 715827883
Rust
// [dependencies]
// rug = "0.3"
use rug::integer::IsPrime;
use rug::Integer;
fn jacobsthal_numbers() -> impl std::iter::Iterator<Item = Integer> {
(0..).map(|x| ((Integer::from(1) << x) - if x % 2 == 0 { 1 } else { -1 }) / 3)
}
fn jacobsthal_lucas_numbers() -> impl std::iter::Iterator<Item = Integer> {
(0..).map(|x| (Integer::from(1) << x) + if x % 2 == 0 { 1 } else { -1 })
}
fn jacobsthal_oblong_numbers() -> impl std::iter::Iterator<Item = Integer> {
let mut jn = jacobsthal_numbers();
let mut n0 = jn.next().unwrap();
std::iter::from_fn(move || {
let n1 = jn.next().unwrap();
let result = Integer::from(&n0 * &n1);
n0 = n1;
Some(result)
})
}
fn jacobsthal_primes() -> impl std::iter::Iterator<Item = Integer> {
jacobsthal_numbers().filter(|x| x.is_probably_prime(30) != IsPrime::No)
}
fn main() {
println!("First 30 Jacobsthal Numbers:");
for (i, n) in jacobsthal_numbers().take(30).enumerate() {
print!("{:9}{}", n, if (i + 1) % 5 == 0 { "\n" } else { " " });
}
println!("\nFirst 30 Jacobsthal-Lucas Numbers:");
for (i, n) in jacobsthal_lucas_numbers().take(30).enumerate() {
print!("{:9}{}", n, if (i + 1) % 5 == 0 { "\n" } else { " " });
}
println!("\nFirst 20 Jacobsthal oblong Numbers:");
for (i, n) in jacobsthal_oblong_numbers().take(20).enumerate() {
print!("{:11}{}", n, if (i + 1) % 5 == 0 { "\n" } else { " " });
}
println!("\nFirst 20 Jacobsthal primes:");
for n in jacobsthal_primes().take(20) {
println!("{}", n);
}
}
- Output:
First 30 Jacobsthal Numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas Numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong Numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 20 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883 2932031007403 768614336404564651 201487636602438195784363 845100400152152934331135470251 56713727820156410577229101238628035243 62357403192785191176690552862561408838653121833643 1046183622564446793972631570534611069350392574077339085483 267823007376498379256993682056860433753700498963798805883563 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443
SETL
program jacobsthal_numbers;
print("First 30 Jacobsthal numbers:");
printseq([j n : n in [0..29]]);
print;
print("First 30 Jacobsthal-Lucas numbers:");
printseq([jl n : n in [0..29]]);
print;
print("First 20 Jacobsthal oblong numbers:");
printseq([jo n : n in [0..19]]);
print;
print("First 10 Jacobsthal primes:");
printseq([j n : n in [0..31] | prime j n]);
proc printseq(seq);
loop for n in seq do
nprint(lpad(str n, 14));
if (i +:= 1) mod 5 = 0 then print; end if;
end loop;
end proc;
op j(n);
return (2**n - (-1)**n) div 3;
end op;
op jl(n);
return 2**n + (-1)**n;
end op;
op jo(n);
return j n * j (n+1);
end op;
op prime(n);
if n<=4 then return n in {2,3}; end if;
return not exists d in [2..floor sqrt n] | n mod d = 0;
end op;
end program;
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 10 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883
Sidef
func jacobsthal(n) {
lucasU(1, -2, n)
}
func lucas_jacobsthal(n) {
lucasV(1, -2, n)
}
say "First 30 Jacobsthal numbers:"
say 30.of(jacobsthal)
say "\nFirst 30 Jacobsthal-Lucas numbers:"
say 30.of(lucas_jacobsthal)
say "\nFirst 20 Jacobsthal oblong numbers:"
say 21.of(jacobsthal).cons(2, {|a,b| a * b })
say "\nFirst 20 Jacobsthal primes:";
say (1..Inf -> lazy.map(jacobsthal).grep{.is_prime}.first(20))
- Output:
First 30 Jacobsthal numbers: [0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971] First 30 Jacobsthal-Lucas numbers: [2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191, 16385, 32767, 65537, 131071, 262145, 524287, 1048577, 2097151, 4194305, 8388607, 16777217, 33554431, 67108865, 134217727, 268435457, 536870911] First 20 Jacobsthal oblong numbers: [0, 1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575] First 20 Jacobsthal primes: [3, 5, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243, 62357403192785191176690552862561408838653121833643, 1046183622564446793972631570534611069350392574077339085483, 267823007376498379256993682056860433753700498963798805883563, 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731, 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443]
uBasic/4tH
Dim @n(2)
x = 0
y = 1
p = 1
q = -2
Print "First 30 Jacobsthal numbers:"
c = 0 : @n(x) = 0: @n(y) = 1
For j = 0 To 29
c = c + 1
Print Using " ____________#"; @n(x);
If (c % 5) = 0 Then Print
@n(x) = P * @n(y) - Q * @n(x)
Push x : x = y : y = Pop()
Next
Print : Print "First 30 Jacobsthal-Lucas numbers: "
c = 0 : @n(x) = 2: @n(y) = 1
For j = 0 To 29
c = c + 1
Print Using " ____________#"; @n(x);
If (c % 5) = 0 Then Print
@n(x) = P * @n(y) - Q * @n(x)
Push x : x = y : y = Pop()
Next
Print : Print "First 20 Jacobsthal oblong numbers: "
c = 0 : @n(x) = 0: @n(y) = 1
For j = 0 To 19
c = c + 1
Print Using " ____________#"; @n(x)*@n(y);
If (c % 5) = 0 Then Print
@n(x) = P * @n(y) - Q * @n(x)
Push x : x = y : y = Pop()
Next
Print : Print "First 10 Jacobsthal primes: "
c = 0 : @n(x) = 0 : @n(y) = 1
Do
If FUNC(_isPrime(@n(x))) Then c = c + 1 : Print @n(x)
@n(x) = P * @n(y) - Q * @n(x)
Push x : x = y : y = Pop()
Until c = 10
Loop
End
_isPrime
Param (1)
Local (1)
If (a@ < 2) Then Return (0)
If (a@ % 2) = 0 Then Return (0)
For b@ = 3 To Func(_Sqrt(a@, 0))+1 Step 2
If (a@ % b@) = 0 Then Unloop : Return (0)
Next
Return (1)
_Sqrt
Param (2)
Local (2)
If a@ = 0 Return (0)
c@ = Max(Shl(Set(a@, a@*(10^(b@*2))), -10), 1024)
Do
d@ = (c@+a@/c@)/2
While (c@ > d@)
c@ = d@
Loop
Return (c@)
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 First 10 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883 0 OK, 0:1024
V (Vlang)
import math.big
fn jacobsthal(n u32) big.Integer {
mut t := big.one_int
t=t.lshift(n)
mut s := big.one_int
if n%2 != 0 {
s=s.neg()
}
t -= s
return t/big.integer_from_int(3)
}
fn jacobsthal_lucas(n u32) big.Integer {
mut t := big.one_int
t=t.lshift(n)
mut a := big.one_int
if n%2 != 0 {
a=a.neg()
}
return t+a
}
fn main() {
mut jac := []big.Integer{len: 30}
println("First 30 Jacobsthal numbers:")
for i := u32(0); i < 30; i++ {
jac[i] = jacobsthal(i)
print("${jac[i]:9} ")
if (i+1)%5 == 0 {
println('')
}
}
println("\nFirst 30 Jacobsthal-Lucas numbers:")
for i := u32(0); i < 30; i++ {
print("${jacobsthal_lucas(i):9} ")
if (i+1)%5 == 0 {
println('')
}
}
println("\nFirst 20 Jacobsthal oblong numbers:")
for i := u32(0); i < 20; i++ {
print("${jac[i]*jac[i+1]:11} ")
if (i+1)%5 == 0 {
println('')
}
}
/*println("\nFirst 20 Jacobsthal primes:")
for n, count := u32(0), 0; count < 20; n++ {
j := jacobsthal(n)
if j.probably_prime(10) {
println(j)
count++
}
}*/
}
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1,365 2,731 5,461 10,923 21,845 43,691 87,381 174,763 349,525 699,051 1,398,101 2,796,203 5,592,405 11,184,811 22,369,621 44,739,243 89,478,485 178,956,971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1,025 2,047 4,097 8,191 16,385 32,767 65,537 131,071 262,145 524,287 1,048,577 2,097,151 4,194,305 8,388,607 16,777,217 33,554,431 67,108,865 134,217,727 268,435,457 536,870,911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3,655 14,535 58,311 232,903 932,295 3,727,815 14,913,991 59,650,503 238,612,935 954,429,895 3,817,763,271 15,270,965,703 61,084,037,575
Wren
import "./big" for BigInt
import "./seq" for Lst
import "./fmt" for Fmt
var jacobsthal = Fn.new { |n| ((BigInt.one << n) - ((n%2 == 0) ? 1 : -1)) / 3 }
var jacobsthalLucas = Fn.new { |n| (BigInt.one << n) + ((n%2 == 0) ? 1 : -1) }
System.print("First 30 Jacobsthal numbers:")
var js = (0..29).map { |i| jacobsthal.call(i) }.toList
Fmt.tprint("$,12i", js, 5)
System.print("\nFirst 30 Jacobsthal-Lucas numbers:")
var jsl = (0..29).map { |i| jacobsthalLucas.call(i) }.toList
Fmt.tprint("$,12i", jsl, 5)
System.print("\nFirst 20 Jacobsthal oblong numbers:")
var oblongs = (0..19).map { |i| js[i] * js[i+1] }.toList
Fmt.tprint("$,14i", oblongs, 5)
var primes = js.where { |j| j.isProbablePrime(10) }.toList
var count = primes.count
var i = 31
while (count < 20) {
var j = jacobsthal.call(i)
if (j.isProbablePrime(10)) {
primes.add(j)
count = count + 1
}
i = i + 1
}
System.print("\nFirst 20 Jacobsthal primes:")
for (i in 0..19) Fmt.print("$i", primes[i])
- Output:
First 30 Jacobsthal numbers: 0 1 1 3 5 11 21 43 85 171 341 683 1,365 2,731 5,461 10,923 21,845 43,691 87,381 174,763 349,525 699,051 1,398,101 2,796,203 5,592,405 11,184,811 22,369,621 44,739,243 89,478,485 178,956,971 First 30 Jacobsthal-Lucas numbers: 2 1 5 7 17 31 65 127 257 511 1,025 2,047 4,097 8,191 16,385 32,767 65,537 131,071 262,145 524,287 1,048,577 2,097,151 4,194,305 8,388,607 16,777,217 33,554,431 67,108,865 134,217,727 268,435,457 536,870,911 First 20 Jacobsthal oblong numbers: 0 1 3 15 55 231 903 3,655 14,535 58,311 232,903 932,295 3,727,815 14,913,991 59,650,503 238,612,935 954,429,895 3,817,763,271 15,270,965,703 61,084,037,575 First 20 Jacobsthal primes: 3 5 11 43 683 2731 43691 174763 2796203 715827883 2932031007403 768614336404564651 201487636602438195784363 845100400152152934331135470251 56713727820156410577229101238628035243 62357403192785191176690552862561408838653121833643 1046183622564446793972631570534611069350392574077339085483 267823007376498379256993682056860433753700498963798805883563 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443
XPL0
func IsPrime(N); \Return 'true' if N is prime
int N, I;
[if N <= 2 then return N = 2;
if (N&1) = 0 then \even >2\ return false;
for I:= 3 to sqrt(N) do
[if rem(N/I) = 0 then return false;
I:= I+1;
];
return true;
];
proc Jaco(J2); \Display 30 Jacobsthal (or -Lucas) numbers
real J2, J1, J;
int N;
[RlOut(0, J2);
J1:= 1.0;
RlOut(0, J1);
for N:= 2 to 30-1 do
[J:= J1 + 2.0*J2;
RlOut(0, J);
if rem((N+1)/5) = 0 then CrLf(0);
J2:= J1; J1:= J;
];
CrLf(0);
];
real J, J1, J2, JO;
int N;
[Format(14, 0);
Jaco(0.0);
Jaco(2.0);
J2:= 1.0;
RlOut(0, 0.0);
J1:= 1.0;
RlOut(0, J1);
for N:= 2 to 20-1 do
[J:= (J1 + 2.0*J2);
JO:= J*J1;
RlOut(0, JO);
if rem((N+1)/5) = 0 then CrLf(0);
J2:= J1; J1:= J;
];
CrLf(0);
J2:= 0.0; J1:= 1.0; N:= 0;
loop [J:= J1 + 2.0*J2;
if IsPrime(fix(J)) then
[RlOut(0, J);
N:= N+1;
if rem(N/5) = 0 then CrLf(0);
if N >= 10 then quit;
];
J2:= J1; J1:= J;
];
]
- Output:
0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 3 5 11 43 683 2731 43691 174763 2796203 715827883
- Programming Tasks
- Solutions by Programming Task
- 11l
- Ada
- ALGOL 68
- ALGOL 68-primes
- AppleScript
- Arturo
- AutoHotkey
- C
- GMP
- C sharp
- C++
- Delphi
- SysUtils,StdCtrls
- F Sharp
- Factor
- FreeBASIC
- Gambas
- Go
- Haskell
- J
- Java
- Jq
- Julia
- Mathematica
- Wolfram Language
- Maxima
- Nim
- OCaml
- PARI/GP
- Perl
- Ntheory
- Phix
- Python
- Quackery
- Raku
- Red
- RPL
- Ruby
- Rust
- SETL
- Sidef
- UBasic/4tH
- V (Vlang)
- V (Vlang) examples needing attention
- Examples needing attention
- Wren
- Wren-big
- Wren-seq
- Wren-fmt
- XPL0