Jacobsthal numbers

From Rosetta Code
Task
Jacobsthal numbers
You are encouraged to solve this task according to the task description, using any language you may know.

Jacobsthal numbers are an integer sequence related to Fibonacci numbers. Similar to Fibonacci, where each term is the sum of the previous two terms, each term is the sum of the previous, plus twice the one before that. Traditionally the sequence starts with the given terms 0, 1.


   J0 = 0
   J1 = 1
   Jn = Jn-1 + 2 × Jn-2

Terms may be calculated directly using one of several possible formulas:


   Jn = ( 2n - (-1)n ) / 3


Jacobsthal-Lucas numbers are very similar. They have the same recurrence relationship, the only difference is an initial starting value J0 = 2 rather than J0 = 0.

Terms may be calculated directly using one of several possible formulas:

   
   JLn = 2n + (-1)n
   

Jacobsthal oblong numbers is the sequence obtained from multiplying each Jacobsthal number Jn by its direct successor Jn+1.


Jacobsthal primes are Jacobsthal numbers that are prime.


Task
  • Find and display the first 30 Jacobsthal numbers
  • Find and display the first 30 Jacobsthal-Lucas numbers
  • Find and display the first 20 Jacobsthal oblong numbers
  • Find and display at least the first 10 Jacobsthal primes


See also



11l

Translation of: Python
F isPrime(n)
   L(i) 2 .. Int(n ^ 0.5)
      I n % i == 0
         R 0B
   R 1B

F odd(n)
   R n [&] 1 != 0

F jacobsthal(n)
   R floori((pow(2.0, n) + odd(n)) / 3)

F jacobsthal_lucas(n)
   R Int(pow(2, n) + pow(-1, n))

F jacobsthal_oblong(n)
   R Int64(jacobsthal(n)) * jacobsthal(n + 1)

print(‘First 30 Jacobsthal numbers:’)
L(j) 0..29
   print(jacobsthal(j), end' ‘  ’)

print("\n\nFirst 30 Jacobsthal-Lucas numbers: ")
L(j) 0..29
   print(jacobsthal_lucas(j), end' "\t")

print("\n\nFirst 20 Jacobsthal oblong numbers: ")
L(j) 0..19
   print(jacobsthal_oblong(j), end' ‘  ’)

print("\n\nFirst 10 Jacobsthal primes: ")
L(j) 3..32
   I isPrime(jacobsthal(j))
      print(jacobsthal(j))
Output:
First 30 Jacobsthal numbers:
0  1  1  3  5  11  21  43  85  171  341  683  1365  2731  5461  10923  21845  43691  87381  174763  349525  699051  1398101  2796203  5592405  11184811  22369621  44739243  89478485  178956971  

First 30 Jacobsthal-Lucas numbers: 
2	1	5	7	17	31	65	127	257	511	1025	2047	4097	8191	16385	32767	65537	131071	262145	524287	1048577	2097151	4194305	8388607	16777217	33554431	67108865	134217727	268435457	536870911	

First 20 Jacobsthal oblong numbers: 
0  1  3  15  55  231  903  3655  14535  58311  232903  932295  3727815  14913991  59650503  238612935  954429895  3817763271  15270965703  61084037575  

First 10 Jacobsthal primes: 
3
5
11
43
683
2731
43691
174763
2796203
715827883

Ada

-- Rosetta Code Task written in Ada
-- Task name: "Jacobsthal numbers"
-- Task URL: https://rosettacode.org/wiki/Jacobsthal_numbers
-- I increased the the number of generated Jacobsthal Numbers and
-- Jacobsthal-Lucas Numbers to 35 from the task specified 30.
-- four command line parameters are required: 35 (J_N), 35 (J_L), 20 (J_Oblong), 10 (J_Prime_Limit)
-- September 2024, R. B. E.

pragma Ada_2022;
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
with Ada.Numerics.Big_Numbers.Big_Integers; use Ada.Numerics.Big_Numbers.Big_Integers;
with Ada.Command_Line; use Ada.Command_Line;

procedure Jacobsthal_Numbers is

  function Is_Prime (N : in Natural) return Boolean is
    Temp : Natural := 5;
  begin
    if N < 2 then
      return False;
    end if;
    if N mod 2 = 0 then
      return N = 2;
    end if;
    if N mod 3 = 0 then
      return N = 3;
    end if;
    while Temp * Temp <= N loop
      if N mod Temp = 0 then
        return False;
      end if;
      Temp := Temp + 2;
      if N mod Temp = 0 then
        return False;
      end if;
      Temp := Temp + 4;
    end loop;
    return True;
  end Is_Prime;

  J_N_Limit : constant Positive := Positive'Value (Argument (1)); -- should be 35 (could be more)
  J_L_Limit : constant Positive := Positive'Value (Argument (2)); -- should be 35 (could be more)
  J_O_Limit : constant Positive := Positive'Value (Argument (3)); -- should be 20 (could be more)
  J_Prime_Limit : constant Positive := Positive'Value (Argument (4)); -- should be exactly 10
  type Array_Containing_Big_Naturals is array (natural range <>) of Big_Natural;
  J_N : Array_Containing_Big_Naturals (0..J_N_Limit);
  J_L : Array_Containing_Big_Naturals (0..J_L_Limit);
  J_Oblong : Array_Containing_Big_Naturals (0..J_O_Limit);
  Big_0 : Big_Natural := To_Big_Integer (0);
  Big_1 : Big_Natural := To_Big_Integer (1);
  Big_2 : Big_Natural := To_Big_Integer (2);
  J_Prime_Count : Natural;

begin
   if Argument_Count /= 4 then
      Put_Line ("Usage: ./jacobsthal_numbers 35 35 20 10");
      return;
   end if;

  -- This section is for the Jacobsthal Numbers (generating, preserving, displaying)
  J_N (0) := Big_0;
  J_N (1) := Big_1;
  for I in 2..J_N_Limit loop
    J_N (I) := J_N (I-1) + (Big_2 * J_N (I-2));
  end loop;
  New_Line;
  Put ("The first ");
  Put (J_N_Limit, 0);
  Put_Line (" Jacobsthal numbers:");
  for I in 0..J_N_Limit loop
    Put (To_String (J_N (I)));
  end loop;
  New_Line;

  -- This section is for the Jacobsthal-Lucas Numbers (generating, preserving, displaying)
  J_L (0) := Big_2;
  J_L (1) := Big_1;
  for I in 2..J_L_Limit loop
    J_L (I) := J_L (I-1) + (Big_2 * J_L (I-2));
  end loop;
  New_Line;
  Put ("The first ");
  Put (J_L_Limit, 0);
  Put_Line (" Jacobsthal_Lucas numbers:");
  for I in 0..J_L_Limit loop
    Put (To_String (J_L (I)));
  end loop;
  New_Line;

  -- This section is for the Jacobsthal-Oblong Numbers (generating, preserving, displaying)
  for I in 0..J_O_Limit loop
    J_Oblong (I) := J_N (I) * J_N (I+1);
  end loop;
  New_Line;
  Put ("The first ");
  Put (J_O_Limit, 0);
  Put_Line (" Jacobsthal-Oblong numbers:");
  for I in 0..J_O_Limit loop
    Put (To_String (J_Oblong (I)));
  end loop;
  New_Line;

  -- This section is for the display of Jacobsthal prime numbers
  New_Line;
  Put ("The first ");
  Put (J_Prime_Limit, 0);
  Put_Line (" Jacobsthal prime numbers are:");
  J_Prime_Count := 0;
  -- danger here: Not all items in the J_N array can successfully be converted from Big_Integer to Integer...
  for I in 3..J_N'Last loop
    if Is_Prime (To_Integer ((J_N (I)))) then
      J_Prime_Count := J_Prime_Count + 1;
      Put (To_String (J_N (I)));
      New_Line;
    end if;
    exit when J_Prime_Count >= J_Prime_Limit;
  end loop;
  New_Line;

end Jacobsthal_Numbers;
Output:
The first 35 Jacobsthal numbers:
 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 357913941 715827883 1431655765 2863311531 5726623061 11453246123

The first 35 Jacobsthal_Lucas numbers:
 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 1073741825 2147483647 4294967297 8589934591 17179869185 34359738367

The first 20 Jacobsthal-Oblong numbers:
 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 244335800775

The first 10 Jacobsthal prime numbers are:
 3
 5
 11
 43
 683
 2731
 43691
 174763
 2796203
 715827883

ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32
BEGIN # find some Jacobsthal and related Numbers                             #
    INT max jacobsthal = 29;        # highest Jacobsthal number we will find #
    INT max oblong     = 20; # highest Jacobsthal oblong number we will find #
    INT max j prime    = 20;     # number of Jacobsthal prinmes we will find #
    PR precision 200 PR                 # set the precision of LONG LONG INT #
    PR read "primes.incl.a68" PR                   # include prime utilities #
    [ 0 : max jacobsthal ]LONG INT j;         # will hold Jacobsthal numbers #
    [ 0 : max jacobsthal ]LONG INT jl;  # will hold Jacobsthal-Lucas numbers #
    [ 1 : max oblong     ]LONG INT jo; # will hold Jacobsthal oblong numbers #
    # calculate the Jacobsthal Numbers and related numbers                   #
    # Jacobsthal      : J0  = 0, J1  = 1, Jn  = Jn-1  + 2 × Jn-2             #
    # Jacobsthal-Lucas: JL0 = 2, JL1 = 1, JLn = JLn-1 + 2 × JLn-2            #
    # Jacobsthal oblong: JOn = Jn x Jn-1                                     #
    j[ 0 ] := 0; j[ 1 ] := 1; jl[ 0 ] := 2; jl[ 1 ] := 1; jo[ 1 ] := 0;
    FOR n FROM 2 TO UPB j DO
        j[  n ] := j[  n - 1 ] + ( 2 * j[  n - 2 ] );
        jl[ n ] := jl[ n - 1 ] + ( 2 * jl[ n - 2 ] )
    OD;
    FOR n TO UPB jo DO
        jo[ n ] := j[ n ] * j[ n - 1 ]
    OD;
    # prints an array of numbers with the specified legend                   #
    PROC show numbers = ( STRING legend, []LONG INT numbers )VOID:
         BEGIN
            INT n count := 0;
            print( ( "First ", whole( ( UPB numbers - LWB numbers ) + 1, 0 ), " ", legend, newline ) );
            FOR n FROM LWB numbers TO UPB numbers DO
                print( ( " ", whole( numbers[ n ], -11 ) ) );
                IF ( n count +:= 1 ) MOD 5 = 0 THEN print( ( newline ) ) FI
            OD
         END # show numbers # ;
    # show the various numbers numbers                                       #
    show numbers( "Jacobsthal Numbers:",        j  );
    show numbers( "Jacobsthal-Lucas Numbers:",  jl );
    show numbers( "Jacobsthal oblong Numbers:", jo );
    # find some prime Jacobsthal numbers                                     #
    LONG LONG INT  jn1 := j[ 1 ], jn2 := j[ 0 ];
    INT  p count := 0;
    print( ( "First ", whole( max j prime, 0 ), " Jacobstal primes:", newline ) );
    print( ( "   n  Jn", newline ) );
    FOR n FROM 2 WHILE p count < max j prime DO
        LONG LONG INT jn = jn1 + ( 2 * jn2 );
        jn2        := jn1;
        jn1        := jn;
        IF is probably prime( jn ) THEN
            # have a probably prime Jacobsthal number                        #
            p count +:= 1;
            print( ( whole( n, -4 ), ": ", whole( jn, 0 ), newline ) )
        FI
    OD
END
Output:
First 30 Jacobsthal Numbers:
           0           1           1           3           5
          11          21          43          85         171
         341         683        1365        2731        5461
       10923       21845       43691       87381      174763
      349525      699051     1398101     2796203     5592405
    11184811    22369621    44739243    89478485   178956971
First 30 Jacobsthal-Lucas Numbers:
           2           1           5           7          17
          31          65         127         257         511
        1025        2047        4097        8191       16385
       32767       65537      131071      262145      524287
     1048577     2097151     4194305     8388607    16777217
    33554431    67108865   134217727   268435457   536870911
First 20 Jacobsthal oblong Numbers:
           0           1           3          15          55
         231         903        3655       14535       58311
      232903      932295     3727815    14913991    59650503
   238612935   954429895  3817763271 15270965703 61084037575
First 20 Jacobstal primes:
   n  Jn
   3: 3
   4: 5
   5: 11
   7: 43
  11: 683
  13: 2731
  17: 43691
  19: 174763
  23: 2796203
  31: 715827883
  43: 2932031007403
  61: 768614336404564651
  79: 201487636602438195784363
 101: 845100400152152934331135470251
 127: 56713727820156410577229101238628035243
 167: 62357403192785191176690552862561408838653121833643
 191: 1046183622564446793972631570534611069350392574077339085483
 199: 267823007376498379256993682056860433753700498963798805883563
 313: 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
 347: 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

AppleScript

Procedural

on jacobsthalNumbers(variant, n)
    -- variant: text containing "Lucas", "oblong", or "prime" — or none of these.
    -- n: length of output sequence required.
    
    -- The two Jacobsthal numbers preceding the current 'j'. Initially the first two in the sequence.
    set {anteprev, prev} to {0, 1}
    -- Default plug-in script. Its handler simply appends the current 'j' to the output.
    script o
        property output : {anteprev, prev}
        on append(dummy, j)
            set end of output to j
        end append
    end script
    
    -- If a variant sequence is specified, change the first value or substitute
    -- a script whose handler decides the values to append to the output. 
    ignoring case
        if (variant contains "Lucas") then
            set anteprev to 2
            set o's output's first item to anteprev
        else if (variant contains "oblong") then
            script
                property output : {0}
                on append(prev, j)
                    set end of output to prev * j
                end append
            end script
            set o to result
        else if (variant contains "prime") then
            script
                property output : {}
                on append(dummy, j)
                    if (isPrime(j)) then set end of output to j
                end append
            end script
            set o to result
        end if
    end ignoring
    
    -- Work through the Jacobsthal process until the required output length is obtained.
    repeat until ((count o's output) = n)
        set j to anteprev + anteprev + prev
        tell o to append(prev, j)
        set anteprev to prev
        set prev to j
    end repeat
    
    return o's output
end jacobsthalNumbers

on isPrime(n)
    if (n < 3) then return (n is 2)
    if (n mod 2 is 0) then return false
    repeat with i from 3 to (n ^ 0.5) div 1 by 2
        if (n mod i is 0) then return false
    end repeat
    return true
end isPrime

-- Task and presentation of results!:
on intToText(n)
    set txt to ""
    repeat until (n < 100000000)
        set txt to text 2 thru 9 of (100000000 + (n mod 100000000) div 1 as text) & txt
        set n to n div 100000000
    end repeat
    return (n as integer as text) & txt
end intToText

on chopList(theList, sublistLen)
    script o
        property lst : theList
        property output : {}
    end script
    
    set listLen to (count o's lst)
    repeat with i from 1 to listLen by sublistLen
        set j to i + sublistLen - 1
        if (j > listLen) then set j to listLen
        set end of o's output to items i thru j of o's lst
    end repeat
    return o's output
end chopList

on matrixToText(matrix, w)
    script o
        property matrix : missing value
        property row : missing value
    end script
    
    set o's matrix to matrix
    set padding to "                   "
    repeat with r from 1 to (count o's matrix)
        set o's row to o's matrix's item r
        repeat with i from 1 to (count o's row)
            set o's row's item i to text -w thru end of (padding & o's row's item i)
        end repeat
        set o's matrix's item r to join(o's row, "")
    end repeat
    
    return join(o's matrix, linefeed)
end matrixToText

on join(lst, delim)
    set astid to AppleScript's text item delimiters
    set AppleScript's text item delimiters to delim
    set txt to lst as text
    set AppleScript's text item delimiters to astid
    return txt
end join

on task()
    set output to {"First 30 Jacobsthal Numbers:", "First 30 Jacobsthal-Lucas Numbers:", ¬
        "First 20 Jacobsthal oblong Numbers:", "First 11 Jacobsthal Primes:"}
    set results to {jacobsthalNumbers("", 30), jacobsthalNumbers("Lucas", 30), ¬
        jacobsthalNumbers("oblong", 20), jacobsthalNumbers("prime", 11)}
    repeat with i from 1 to 4
        set thisSequence to item i of results
        repeat with j in thisSequence
            set j's contents to intToText(j)
        end repeat
        if (i < 4) then
            set theLines to chopList(thisSequence, 10)
        else
            set theLines to chopList(thisSequence, 6)
        end if
        set item i of output to item i of output & linefeed & matrixToText(theLines, (count end of thisSequence) + 1)
    end repeat
    
    return join(output, linefeed & linefeed)
end task

task()
Output:
"First 30 Jacobsthal Numbers:
         0         1         1         3         5        11        21        43        85       171
       341       683      1365      2731      5461     10923     21845     43691     87381    174763
    349525    699051   1398101   2796203   5592405  11184811  22369621  44739243  89478485 178956971

First 30 Jacobsthal-Lucas Numbers:
         2         1         5         7        17        31        65       127       257       511
      1025      2047      4097      8191     16385     32767     65537    131071    262145    524287
   1048577   2097151   4194305   8388607  16777217  33554431  67108865 134217727 268435457 536870911

First 20 Jacobsthal oblong Numbers:
           0           1           3          15          55         231         903        3655       14535       58311
      232903      932295     3727815    14913991    59650503   238612935   954429895  3817763271 15270965703 61084037575

First 11 Jacobsthal Primes:
             3             5            11            43           683          2731
         43691        174763       2796203     715827883 2932031007403"

Functional

-------------------- JACOBSTHAL NUMBERS ------------------

-- e.g. take(10, jacobsthal())

-- jacobsthal :: [Int]
on jacobsthal()
    -- The terms of OEIS:A001045 as a non-finite sequence.
    jacobsthalish(0, 1)
end jacobsthal


-- jacobsthal :: (Int, Int) -> [Int]
on jacobsthalish(x, y)
    -- An infinite sequence of the terms of the 
    -- Jacobsthal-type series which begins with x and y.
    script go
        on |λ|(ab)
            set {a, b} to ab
            
            {a, {b, (2 * a) + b}}
        end |λ|
    end script
    
    unfoldr(go, {x, y})
end jacobsthalish


-------------------------- TESTS -------------------------
on run
    unlines(map(fShow, {¬
        {"terms of the Jacobsthal sequence", ¬
            30, jacobsthal()}, ¬
        {"Jacobsthal-Lucas numbers", ¬
            30, jacobsthalish(2, 1)}, ¬
        {"Jacobsthal oblong numbers", ¬
            20, zipWith(my mul, jacobsthal(), drop(1, jacobsthal()))}, ¬
        {"primes in the Jacobsthal sequence", ¬
            10, filter(isPrime, jacobsthal())}}))
end run


------------------------ FORMATTING ----------------------
on fShow(test)
    set {k, n, xs} to test
    
    str(n) & " first " & k & ":" & linefeed & ¬
        table(5, map(my str, take(n, xs))) & linefeed
end fShow


-- justifyRight :: Int -> Char -> String -> String
on justifyRight(n, cFiller)
    script go
        on |λ|(s)
            if n > length of s then
                text -n thru -1 of ((replicate(n, cFiller) as text) & s)
            else
                s
            end if
        end |λ|
    end script
end justifyRight


-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary 
-- assembly of a target length
-- replicate :: Int -> String -> String
on replicate(n, s)
    -- Egyptian multiplication - progressively doubling a list, 
    -- appending stages of doubling to an accumulator where needed 
    -- for binary assembly of a target length
    script p
        on |λ|({n})
            n  1
        end |λ|
    end script
    
    script f
        on |λ|({n, dbl, out})
            if (n mod 2) > 0 then
                set d to out & dbl
            else
                set d to out
            end if
            {n div 2, dbl & dbl, d}
        end |λ|
    end script
    
    set xs to |until|(p, f, {n, s, ""})
    item 2 of xs & item 3 of xs
end replicate


-- table :: Int -> [String] -> String
on table(n, xs)
    -- A list of strings formatted as
    -- right-justified rows of n columns.
    set w to length of last item of xs
    unlines(map(my unwords, ¬
        chunksOf(n, map(justifyRight(w, space), xs))))
end table


-- unlines :: [String] -> String
on unlines(xs)
    -- A single string formed by the intercalation
    -- of a list of strings with the newline character.
    set {dlm, my text item delimiters} to ¬
        {my text item delimiters, linefeed}
    set s to xs as text
    set my text item delimiters to dlm
    s
end unlines


-- until :: (a -> Bool) -> (a -> a) -> a -> a
on |until|(p, f, x)
    set v to x
    set mp to mReturn(p)
    set mf to mReturn(f)
    repeat until mp's |λ|(v)
        set v to mf's |λ|(v)
    end repeat
    v
end |until|


-- unwords :: [String] -> String
on unwords(xs)
    set {dlm, my text item delimiters} to ¬
        {my text item delimiters, space}
    set s to xs as text
    set my text item delimiters to dlm
    return s
end unwords


------------------------- GENERIC ------------------------

-- Just :: a -> Maybe a
on Just(x)
    -- Constructor for an inhabited Maybe (option type) value.
    -- Wrapper containing the result of a computation.
    {type:"Maybe", Nothing:false, Just:x}
end Just


-- Nothing :: Maybe a
on Nothing()
    -- Constructor for an empty Maybe (option type) value.
    -- Empty wrapper returned where a computation is not possible.
    {type:"Maybe", Nothing:true}
end Nothing


-- abs :: Num -> Num
on abs(x)
    -- Absolute value.
    if 0 > x then
        -x
    else
        x
    end if
end abs


-- any :: (a -> Bool) -> [a] -> Bool
on any(p, xs)
    -- Applied to a predicate and a list, 
    -- |any| returns true if at least one element of the 
    -- list satisfies the predicate.
    tell mReturn(p)
        set lng to length of xs
        repeat with i from 1 to lng
            if |λ|(item i of xs) then return true
        end repeat
        false
    end tell
end any


-- chunksOf :: Int -> [a] -> [[a]]
on chunksOf(k, xs)
    script
        on go(ys)
            set ab to splitAt(k, ys)
            set a to item 1 of ab
            if {}  a then
                {a} & go(item 2 of ab)
            else
                a
            end if
        end go
    end script
    result's go(xs)
end chunksOf


-- drop :: Int -> [a] -> [a]
-- drop :: Int -> String -> String
on drop(n, xs)
    take(n, xs) -- consumed
    xs
end drop


-- enumFromThenTo :: Int -> Int -> Int -> [Int]
on enumFromThenTo(x1, x2, y)
    set xs to {}
    set gap to x2 - x1
    set d to max(1, abs(gap)) * (signum(gap))
    repeat with i from x1 to y by d
        set end of xs to i
    end repeat
    return xs
end enumFromThenTo


-- filter :: (a -> Bool) -> Gen [a] -> Gen [a]
on filter(p, gen)
    -- Non-finite stream of values which are 
    -- drawn from gen, and satisfy p
    script
        property mp : mReturn(p)'s |λ|
        on |λ|()
            set v to gen's |λ|()
            repeat until mp(v)
                set v to gen's |λ|()
            end repeat
            return v
        end |λ|
    end script
end filter


-- isPrime :: Int -> Bool
on isPrime(n)
    -- True if n is prime
    
    if {2, 3} contains n then return true
    
    if 2 > n or 0 = (n mod 2) then return false
    
    if 9 > n then return true
    
    if 0 = (n mod 3) then return false
    
    script p
        on |λ|(x)
            0 = n mod x or 0 = n mod (2 + x)
        end |λ|
    end script
    
    not any(p, enumFromThenTo(5, 11, 1 + (n ^ 0.5)))
end isPrime


-- length :: [a] -> Int
on |length|(xs)
    set c to class of xs
    if list is c or string is c then
        length of xs
    else
        (2 ^ 29 - 1) -- (maxInt - simple proxy for non-finite)
    end if
end |length|


-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
    -- The list obtained by applying f
    -- to each element of xs.
    tell mReturn(f)
        set lng to length of xs
        set lst to {}
        repeat with i from 1 to lng
            set end of lst to |λ|(item i of xs, i, xs)
        end repeat
        return lst
    end tell
end map


-- max :: Ord a => a -> a -> a
on max(x, y)
    if x > y then
        x
    else
        y
    end if
end max


-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
    -- 2nd class handler function lifted into 1st class script wrapper. 
    if script is class of f then
        f
    else
        script
            property |λ| : f
        end script
    end if
end mReturn


-- mul (*) :: Num a => a -> a -> a
on mul(a, b)
    a * b
end mul


-- signum :: Num -> Num
on signum(x)
    if x < 0 then
        -1
    else if x = 0 then
        0
    else
        1
    end if
end signum


-- splitAt :: Int -> [a] -> ([a], [a])
on splitAt(n, xs)
    if n > 0 and n < length of xs then
        if class of xs is text then
            {items 1 thru n of xs as text, ¬
                items (n + 1) thru -1 of xs as text}
        else
            {items 1 thru n of xs, items (n + 1) thru -1 of xs}
        end if
    else
        if n < 1 then
            {{}, xs}
        else
            {xs, {}}
        end if
    end if
end splitAt


-- str :: a -> String
on str(x)
    x as string
end str


-- take :: Int -> [a] -> [a]
-- take :: Int -> String -> String
on take(n, xs)
    set ys to {}
    repeat with i from 1 to n
        set v to |λ|() of xs
        if missing value is v then
            return ys
        else
            set end of ys to v
        end if
    end repeat
    return ys
end take


-- uncons :: [a] -> Maybe (a, [a])
on uncons(xs)
    set lng to |length|(xs)
    if 0 = lng then
        Nothing()
    else
        if (2 ^ 29 - 1) as integer > lng then
            if class of xs is string then
                set cs to text items of xs
                Just({item 1 of cs, rest of cs})
            else
                Just({item 1 of xs, rest of xs})
            end if
        else
            set nxt to take(1, xs)
            if {} is nxt then
                Nothing()
            else
                Just({item 1 of nxt, xs})
            end if
        end if
    end if
end uncons


-- unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
on unfoldr(f, v)
    -- A lazy (generator) list unfolded from a seed value
    -- by repeated application of f to a value until no
    -- residue remains. Dual to fold/reduce.
    -- f returns either nothing (missing value) 
    -- or just (value, residue).
    script
        property valueResidue : {v, v}
        property g : mReturn(f)
        on |λ|()
            set valueResidue to g's |λ|(item 2 of (valueResidue))
            if missing value  valueResidue then
                item 1 of (valueResidue)
            else
                missing value
            end if
        end |λ|
    end script
end unfoldr


-- zipWith :: (a -> b -> c) -> Gen [a] -> Gen [b] -> Gen [c]
on zipWith(f, ga, gb)
    script
        property ma : missing value
        property mb : missing value
        property mf : mReturn(f)
        on |λ|()
            if missing value is ma then
                set ma to uncons(ga)
                set mb to uncons(gb)
            end if
            if Nothing of ma or Nothing of mb then
                missing value
            else
                set ta to Just of ma
                set tb to Just of mb
                set ma to uncons(item 2 of ta)
                set mb to uncons(item 2 of tb)
                |λ|(item 1 of ta, item 1 of tb) of mf
            end if
        end |λ|
    end script
end zipWith
Output:
30 first terms of the Jacobsthal sequence:
        0         1         1         3         5
       11        21        43        85       171
      341       683      1365      2731      5461
    10923     21845     43691     87381    174763
   349525    699051   1398101   2796203   5592405
 11184811  22369621  44739243  89478485 178956971

30 first Jacobsthal-Lucas numbers:
        2         1         5         7        17
       31        65       127       257       511
     1025      2047      4097      8191     16385
    32767     65537    131071    262145    524287
  1048577   2097151   4194305   8388607  16777217
 33554431  67108865 134217727 268435457 536870911

20 first Jacobsthal oblong numbers:
               0                1                3               15               55
             231              903             3655            14535            58311
          232903           932295          3727815         14913991         59650503
       238612935    9.54429895E+8   3.817763271E+9 1.5270965703E+10 6.1084037575E+10

10 first primes in the Jacobsthal sequence:
            3             5            11            43           683
         2731         43691        174763       2796203 7.15827883E+8

Arturo

J:  function [n]-> ((2^n) - (neg 1)^n)/3
JL: function [n]-> (2^n) + (neg 1)^n
JO: function [n]-> (J n) * (J n+1)

printFirst: function [label, what, predicate, count][
    print ["First" count label++":"]
    result: new []
    i: 0
    while [count > size result][
        num: do ~"|what| i"
        if do predicate -> 'result ++ num
        i: i + 1
    ]

    (predicate=[true])? [
        loop split.every: 5 result 'row [
            print map to [:string] row 'item -> pad item 12
        ]
    ][
        loop result 'row -> print row
    ]
    print ""
]

printFirst "Jacobsthal numbers" 'J [true] 30
printFirst "Jacobsthal-Lucas numbers" 'JL [true] 30
printFirst "Jacobsthal oblong numbers" 'JO [true] 20
printFirst "Jacobsthal primes" 'J [prime? num] 20
Output:
First 30 Jacobsthal numbers: 
           0            1            1            3            5 
          11           21           43           85          171 
         341          683         1365         2731         5461 
       10923        21845        43691        87381       174763 
      349525       699051      1398101      2796203      5592405 
    11184811     22369621     44739243     89478485    178956971 

First 30 Jacobsthal-Lucas numbers: 
           2            1            5            7           17 
          31           65          127          257          511 
        1025         2047         4097         8191        16385 
       32767        65537       131071       262145       524287 
     1048577      2097151      4194305      8388607     16777217 
    33554431     67108865    134217727    268435457    536870911 

First 20 Jacobsthal oblong numbers: 
           0            1            3           15           55 
         231          903         3655        14535        58311 
      232903       932295      3727815     14913991     59650503 
   238612935    954429895   3817763271  15270965703  61084037575 

First 20 Jacobsthal primes: 
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

AutoHotkey

Jacobsthal(n){    
    return SubStr("        " Format("{:.0f}", (2**n - (-1)**n ) / 3), -8)
}

Jacobsthal_Lucas(n){
    return SubStr("        " Format("{:.0f}", 2**n + (-1)**n), -8)
}

prime_numbers(n) {
    if (n <= 3)
        return [n]
    ans := [], done := false
    while !done {
        if !Mod(n,2)
            ans.push(2), n /= 2
        else if !Mod(n,3)
            ans.push(3), n /= 3
        else if (n = 1)
            return ans
        else {
            sr := sqrt(n), done := true, i := 6
            while (i <= sr+6) {
                if !Mod(n, i-1) { ; is n divisible by i-1?
                    ans.push(i-1), n /= i-1, done := false
                    break
                }
                if !Mod(n, i+1) { ; is n divisible by i+1?
                    ans.push(i+1), n /= i+1, done := false
                    break
                }
                i += 6
    }}}
    ans.push(n)
    return ans
}

Examples:

result := "First 30 Jacobsthal numbers:`n"
loop 30
    result .= Jacobsthal(A_Index-1) (mod(A_Index, 5) ? " ":"`n")

result .= "`nFirst 30 Jacobsthal-Lucas numbers:`n"
loop 30
    result .= Jacobsthal_Lucas(A_Index-1) (mod(A_Index, 5) ? " ":"`n")

result .= "`nFirst 20 Jacobsthal oblong numbers:`n"
loop 20
    result .= SubStr("        " Jacobsthal(A_Index-1) * Jacobsthal(A_Index), -8) (mod(A_Index, 5) ? " ":"`n")

result .= "`nFirst 10 Jacobsthal primes:`n"
c:=0
while c < 10
    if (prime_numbers(x:=Jacobsthal(A_Index)).Count() = 1 && x > 1)
        result .= x (mod(++c, 5) ? " ":"`n")

MsgBox, 262144, , % result
return
Output:
First 30 Jacobsthal numbers:
        0         1         1         3         5
       11        21        43        85       171
      341       683      1365      2731      5461
    10923     21845     43691     87381    174763
   349525    699051   1398101   2796203   5592405
 11184811  22369621  44739243  89478485 178956971

First 30 Jacobsthal-Lucas numbers:
        2         1         5         7        17
       31        65       127       257       511
     1025      2047      4097      8191     16385
    32767     65537    131071    262145    524287
  1048577   2097151   4194305   8388607  16777217
 33554431  67108865 134217727 268435457 536870911

First 20 Jacobsthal oblong numbers:
        0         1         3        15        55
      231       903      3655     14535     58311
   232903    932295   3727815  14913991  59650503
238612935 954429895 817763271 270965703 084037575

First 10 Jacobsthal primes:
        3         5        11        43       683
     2731     43691    174763   2796203 715827883

C

Library: GMP
#include <stdio.h>
#include <gmp.h>

void jacobsthal(mpz_t r, unsigned long n) {
    mpz_t s;
    mpz_init(s);
    mpz_set_ui(r, 1);
    mpz_mul_2exp(r, r, n);
    mpz_set_ui(s, 1);
    if (n % 2) mpz_neg(s, s);
    mpz_sub(r, r, s);
    mpz_div_ui(r, r, 3);
}

void jacobsthal_lucas(mpz_t r, unsigned long n) {
    mpz_t a;
    mpz_init(a);
    mpz_set_ui(r, 1);
    mpz_mul_2exp(r, r, n);
    mpz_set_ui(a, 1);
    if (n % 2) mpz_neg(a, a);
    mpz_add(r, r, a);
}

int main() {
    int i, count;
    mpz_t jac[30], j;
    printf("First 30 Jacobsthal numbers:\n");
    for (i = 0; i < 30; ++i) {
        mpz_init(jac[i]);
        jacobsthal(jac[i], i);
        gmp_printf("%9Zd ", jac[i]);
        if (!((i+1)%5)) printf("\n");
    }

    printf("\nFirst 30 Jacobsthal-Lucas numbers:\n");
    mpz_init(j);
    for (i = 0; i < 30; ++i) {
        jacobsthal_lucas(j, i);
        gmp_printf("%9Zd ", j);
        if (!((i+1)%5)) printf("\n");
    }

    printf("\nFirst 20 Jacobsthal oblong numbers:\n");
    for (i = 0; i < 20; ++i) {
        mpz_mul(j, jac[i], jac[i+1]);
        gmp_printf("%11Zd ", j);
        if (!((i+1)%5)) printf("\n");
    }

    printf("\nFirst 20 Jacobsthal primes:\n");
    for (i = 0, count = 0; count < 20; ++i) {
        jacobsthal(j, i);
        if (mpz_probab_prime_p(j, 15) > 0) {
            gmp_printf("%Zd\n", j);
            ++count;
        }
    }

    return 0;
}
Output:
First 30 Jacobsthal numbers:
        0         1         1         3         5 
       11        21        43        85       171 
      341       683      1365      2731      5461 
    10923     21845     43691     87381    174763 
   349525    699051   1398101   2796203   5592405 
 11184811  22369621  44739243  89478485 178956971 

First 30 Jacobsthal-Lucas numbers:
        2         1         5         7        17 
       31        65       127       257       511 
     1025      2047      4097      8191     16385 
    32767     65537    131071    262145    524287 
  1048577   2097151   4194305   8388607  16777217 
 33554431  67108865 134217727 268435457 536870911 

First 20 Jacobsthal oblong numbers:
          0           1           3          15          55 
        231         903        3655       14535       58311 
     232903      932295     3727815    14913991    59650503 
  238612935   954429895  3817763271 15270965703 61084037575 

First 20 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

C#

Translation of: Java
using System;
using System.Numerics;
using System.Threading;

public class JacobsthalNumbers
{
	private static BigInteger currentJacobsthal = 0;
	private static int latestIndex = 0;
	private static readonly BigInteger Three = new BigInteger(3);
	private const int Certainty = 20;
	public static void Main(string[] args)
	{
		Console.WriteLine("The first 30 Jacobsthal Numbers:");
		for (int i = 0; i < 6; i++)
		{
			for (int k = 0; k < 5; k++)
			{
				Console.Write($"{JacobsthalNumber(i * 5 + k), 15}");
			}

			Console.WriteLine();
		}

		Console.WriteLine();
		Console.WriteLine("The first 30 Jacobsthal-Lucas Numbers:");
		for (int i = 0; i < 6; i++)
		{
			for (int k = 0; k < 5; k++)
			{
				Console.Write($"{JacobsthalLucasNumber(i * 5 + k), 15}");
			}

			Console.WriteLine();
		}

		Console.WriteLine();
		Console.WriteLine("The first 20 Jacobsthal oblong Numbers:");
		for (int i = 0; i < 4; i++)
		{
			for (int k = 0; k < 5; k++)
			{
				Console.Write($"{JacobsthalOblongNumber(i * 5 + k), 15}");
			}

			Console.WriteLine();
		}

		Console.WriteLine();
		Console.WriteLine("The first 10 Jacobsthal Primes:");
		for (int i = 0; i < 10; i++)
		{
			Console.WriteLine(JacobsthalPrimeNumber());
		}
	}

	private static BigInteger JacobsthalNumber(int index)
	{
		BigInteger value = new BigInteger(ParityValue(index));
		return ((BigInteger.Parse("1") << index) - value) / Three;
	}

	private static long JacobsthalLucasNumber(int index)
	{
		return (1L << index) + ParityValue(index);
	}

	private static long JacobsthalOblongNumber(int index)
	{
		BigInteger nextJacobsthal = JacobsthalNumber(index + 1);
		long result = (long)(currentJacobsthal * nextJacobsthal);
		currentJacobsthal = nextJacobsthal;
		return result;
	}

	private static long JacobsthalPrimeNumber()
	{
		BigInteger candidate = JacobsthalNumber(latestIndex++);
		while (!candidate.IsProbablyPrime(Certainty))
		{
			candidate = JacobsthalNumber(latestIndex++);
		}

		return (long)candidate;
	}

	private static int ParityValue(int index)
	{
		return (index & 1) == 0 ? +1 : -1;
	}
}


public static class BigIntegerExtensions
{
    private static Random random = new Random();

    public static bool IsProbablyPrime(this BigInteger source, int certainty)
    {
        if (source == 2 || source == 3)
            return true;
        if (source < 2 || source % 2 == 0)
            return false;

        BigInteger d = source - 1;
        int s = 0;

        while (d % 2 == 0)
        {
            d /= 2;
            s += 1;
        }

        for (int i = 0; i < certainty; i++)
        {
            BigInteger a = RandomBigInteger(2, source - 2);
            BigInteger x = BigInteger.ModPow(a, d, source);
            if (x == 1 || x == source - 1)
                continue;

            for (int r = 1; r < s; r++)
            {
                x = BigInteger.ModPow(x, 2, source);
                if (x == 1)
                    return false;
                if (x == source - 1)
                    break;
            }

            if (x != source - 1)
                return false;
        }

        return true;
    }

    private static BigInteger RandomBigInteger(BigInteger minValue, BigInteger maxValue)
    {
        if (minValue > maxValue)
            throw new ArgumentException("minValue must be less than or equal to maxValue");

        BigInteger range = maxValue - minValue + 1;
        int length = range.ToByteArray().Length;
        byte[] buffer = new byte[length];

        BigInteger result;
        do
        {
            random.NextBytes(buffer);
            buffer[buffer.Length - 1] &= 0x7F; // Ensure non-negative
            result = new BigInteger(buffer);
        } while (result < minValue || result >= maxValue);

        return result;
    }
}
Output:
The first 30 Jacobsthal Numbers:
              0              1              1              3              5
             11             21             43             85            171
            341            683           1365           2731           5461
          10923          21845          43691          87381         174763
         349525         699051        1398101        2796203        5592405
       11184811       22369621       44739243       89478485      178956971

The first 30 Jacobsthal-Lucas Numbers:
              2              1              5              7             17
             31             65            127            257            511
           1025           2047           4097           8191          16385
          32767          65537         131071         262145         524287
        1048577        2097151        4194305        8388607       16777217
       33554431       67108865      134217727      268435457      536870911

The first 20 Jacobsthal oblong Numbers:
              0              1              3             15             55
            231            903           3655          14535          58311
         232903         932295        3727815       14913991       59650503
      238612935      954429895     3817763271    15270965703    61084037575

The first 10 Jacobsthal Primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883

C++

Library: GMP
#include <gmpxx.h>

#include <iomanip>
#include <iostream>

using big_int = mpz_class;

bool is_probably_prime(const big_int& n) {
    return mpz_probab_prime_p(n.get_mpz_t(), 30) != 0;
}

big_int jacobsthal_number(unsigned int n) {
    return ((big_int(1) << n) - (n % 2 == 0 ? 1 : -1)) / 3;
}

big_int jacobsthal_lucas_number(unsigned int n) {
    return (big_int(1) << n) + (n % 2 == 0 ? 1 : -1);
}

big_int jacobsthal_oblong_number(unsigned int n) {
    return jacobsthal_number(n) * jacobsthal_number(n + 1);
}

int main() {
    std::cout << "First 30 Jacobsthal Numbers:\n";
    for (unsigned int n = 0; n < 30; ++n) {
        std::cout << std::setw(9) << jacobsthal_number(n)
                  << ((n + 1) % 5 == 0 ? '\n' : ' ');
    }
    std::cout << "\nFirst 30 Jacobsthal-Lucas Numbers:\n";
    for (unsigned int n = 0; n < 30; ++n) {
        std::cout << std::setw(9) << jacobsthal_lucas_number(n)
                  << ((n + 1) % 5 == 0 ? '\n' : ' ');
    }
    std::cout << "\nFirst 20 Jacobsthal oblong Numbers:\n";
    for (unsigned int n = 0; n < 20; ++n) {
        std::cout << std::setw(11) << jacobsthal_oblong_number(n)
                  << ((n + 1) % 5 == 0 ? '\n' : ' ');
    }
    std::cout << "\nFirst 20 Jacobsthal primes:\n";
    for (unsigned int n = 0, count = 0; count < 20; ++n) {
        auto jn = jacobsthal_number(n);
        if (is_probably_prime(jn)) {
            ++count;
            std::cout << jn << '\n';
        }
    }
}
Output:
First 30 Jacobsthal Numbers:
        0         1         1         3         5
       11        21        43        85       171
      341       683      1365      2731      5461
    10923     21845     43691     87381    174763
   349525    699051   1398101   2796203   5592405
 11184811  22369621  44739243  89478485 178956971

First 30 Jacobsthal-Lucas Numbers:
        2         1         5         7        17
       31        65       127       257       511
     1025      2047      4097      8191     16385
    32767     65537    131071    262145    524287
  1048577   2097151   4194305   8388607  16777217
 33554431  67108865 134217727 268435457 536870911

First 20 Jacobsthal oblong Numbers:
          0           1           3          15          55
        231         903        3655       14535       58311
     232903      932295     3727815    14913991    59650503
  238612935   954429895  3817763271 15270965703 61084037575

First 20 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

Delphi

Works with: Delphi version 6.0


procedure GetJacobsthalNum(Lucas: boolean; Max: integer; var IA: TInt64DynArray);
{Get Jacobsthal number sequence. If Lucas is true do Lucal variation}
var I: integer;
begin
SetLength(IA,Max);
{Lucas starts sequence with 2 instead of 0}
if Lucas then IA[0]:=2 else IA[0]:=0;
IA[1]:=1;
{Calculate Nn = Nn-1 + 2 Nn-2}
for I:=2 to Max-1 do
  IA[I]:=IA[I-1] + 2 * IA[I-2];
end;


procedure GetJacobsthalOblong(Max: integer; var IA: TInt64DynArray);
{Jacobsthal Oblong numbers is Nn = Jn x Jn=1 where J = Jacobsthal numbers}
var IA2: TInt64DynArray;
var I: integer;
begin
GetJacobsthalNum(False,Max+1,IA2);
SetLength(IA,Max);
for I:=0 to High(IA2)-1 do
	begin
	IA[I]:=IA2[I] * IA2[I+1];
	end;
end;


procedure GetJacobsthalPrimes(Memo: TMemo);
var I: integer;
var Jacob,N1, N2: int64;

	function GetNext: int64;
	{Nn = Nn-1 + 2 x Nn-2}
	begin
	Result:=N1 + 2 * N2;
	N2:=N1; N1:=Result;
	end;

begin
N2:=0; N1:=1;
for I:=1 to 10 do
	begin
	repeat Jacob:=GetNext;
	until IsPrime(Jacob);
	Memo.Lines.Add(IntToStr(I)+' - '+IntToStr(Jacob));
	end;
end;



procedure ShowJacobsthalNumbers(Memo: TMemo);
var I: integer;
var IA: TInt64DynArray;
var S: string;
begin
GetJacobsthalNum(False,30,IA);
Memo.Lines.Add('First 30 Jacobsthal Numbers');
S:='';
for I:=0 to High(IA) do
	begin
	S:=S+Format('%12.0n',[IA[I]+0.0]);
	if (I mod 5)=4 then S:=S+CRLF;
	end;
Memo.Lines.Add(S);

Memo.Lines.Add('');
GetJacobsthalNum(True,30,IA);
Memo.Lines.Add('First 30 Jacobsthal-Lucas Numbers');
S:='';
for I:=0 to High(IA) do
	begin
	S:=S+Format('%14.0n',[IA[I]+0.0]);
	if (I mod 4)=3 then S:=S+CRLF;
	end;
Memo.Lines.Add(S);

Memo.Lines.Add('');
GetJacobsthalOblong(20,IA);
Memo.Lines.Add('First 20 Jacobsthal-Oblong Numbers');
S:='';
for I:=0 to High(IA) do
	begin
	S:=S+Format('%18.0n',[IA[I]+0.0]);
	if (I mod 3)=2 then S:=S+CRLF;
	end;
Memo.Lines.Add(S);

Memo.Lines.Add('');
GetJacobsthalPrimes(Memo);
end;
Output:
First 30 Jacobsthal Numbers
           0           1           1           3           5
          11          21          43          85         171
         341         683       1,365       2,731       5,461
      10,923      21,845      43,691      87,381     174,763
     349,525     699,051   1,398,101   2,796,203   5,592,405
  11,184,811  22,369,621  44,739,243  89,478,485 178,956,971


First 30 Jacobsthal-Lucas Numbers
             2             1             5             7
            17            31            65           127
           257           511         1,025         2,047
         4,097         8,191        16,385        32,767
        65,537       131,071       262,145       524,287
     1,048,577     2,097,151     4,194,305     8,388,607
    16,777,217    33,554,431    67,108,865   134,217,727
   268,435,457   536,870,911

First 20 Jacobsthal-Oblong Numbers
                 0                 1                 3
                15                55               231
               903             3,655            14,535
            58,311           232,903           932,295
         3,727,815        14,913,991        59,650,503
       238,612,935       954,429,895     3,817,763,271
    15,270,965,703    61,084,037,575

1 - 3
2 - 5
3 - 11
4 - 43
5 - 683
6 - 2731
7 - 43691
8 - 174763
9 - 2796203
10 - 715827883

Elapsed Time: 49.627 ms.

F#

// Jacobsthal numbers: Nigel Galloway January 10th., 2023
let J,JL=let fN g ()=Seq.unfold(fun(n,g)->Some(n,(g,g+2UL*n)))(g,1UL) in (fN 0UL,fN 2UL)
printf "First 30 Jacobsthal are "; J()|>Seq.take 30|>Seq.iter(printf "%d "); printfn ""
printf "First 30 Jacobsthal-Lucas are "; JL()|>Seq.take 30|>Seq.iter(printf "%d "); printfn ""
printf "First 20 Jacobsthal Oblong are "; J()|>Seq.pairwise|>Seq.take 20|>Seq.iter(fun(n,g)->printf "%d " (n*g)); printfn ""
let fN g= Open.Numeric.Primes.MillerRabin.IsPrime &g
printf "First 10 Jacobsthal Primes are "; J()|>Seq.filter fN|>Seq.take 10|>Seq.iter(printf "%d "); printfn ""
Output:
First 30 Jacobsthal are 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971
First 30 Jacobsthal-Lucas are 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911
First 20 Jacobsthal Oblong are 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575
First 10 Jacobsthal Primes are 3 5 11 43 683 2731 43691 174763 2796203 715827883

Factor

Works with: Factor version 0.99 2021-06-02
USING: grouping io kernel lists lists.lazy math math.functions
math.primes prettyprint sequences ;

: 2^-1^ ( n -- 2^n -1^n ) dup 2^ -1 rot ^ ;
: jacobsthal ( m -- n ) 2^-1^ - 3 / ;
: jacobsthal-lucas ( m -- n ) 2^-1^ + ;
: as-list ( quot -- list ) 0 lfrom swap lmap-lazy ; inline
: jacobsthals ( -- list ) [ jacobsthal ] as-list ;
: lucas-jacobthals ( -- list ) [ jacobsthal-lucas ] as-list ;
: prime-jacobsthals ( -- list ) jacobsthals [ prime? ] lfilter ;
: show ( n list -- ) ltake list>array 5 group simple-table. nl ;

: oblong ( -- list )
    jacobsthals dup cdr lzip [ product ] lmap-lazy ;

"First 30 Jacobsthal numbers:" print
30 jacobsthals show

"First 30 Jacobsthal-Lucas numbers:" print
30 lucas-jacobthals show

"First 20 Jacobsthal oblong numbers:" print
20 oblong show

"First 20 Jacobsthal primes:" print
20 prime-jacobsthals ltake [ . ] leach
Output:
First 30 Jacobsthal numbers:
0        1        1        3        5
11       21       43       85       171
341      683      1365     2731     5461
10923    21845    43691    87381    174763
349525   699051   1398101  2796203  5592405
11184811 22369621 44739243 89478485 178956971

First 30 Jacobsthal-Lucas numbers:
2        1        5         7         17
31       65       127       257       511
1025     2047     4097      8191      16385
32767    65537    131071    262145    524287
1048577  2097151  4194305   8388607   16777217
33554431 67108865 134217727 268435457 536870911

First 20 Jacobsthal oblong numbers:
0         1         3          15          55
231       903       3655       14535       58311
232903    932295    3727815    14913991    59650503
238612935 954429895 3817763271 15270965703 61084037575

First 20 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

FreeBASIC

Function isPrime(n As Ulongint) As Boolean
    If n < 2 Then Return False
    If n Mod 2 = 0 Then Return false
    For i As Uinteger = 3 To Int(Sqr(n))+1 Step 2
        If n Mod i = 0 Then Return false
    Next i
    Return true
End Function

Dim Shared As Uinteger n(1) 
Dim Shared As Uinteger i0 = 0, i1 = 1
Dim Shared As Integer j, c, P = 1, Q = -2

Print "First 30 Jacobsthal numbers:"
c = 0 : n(i0) = 0: n(i1) = 1
For j = 0 To 29
    c += 1
    Print Using " #########"; n(i0);
    Print Iif (c Mod 5, "", !"\n");
    n(i0) = P * n(i1) - Q * n(i0)
    Swap i0, i1    
Next j

Print !"\n\nFirst 30 Jacobsthal-Lucas numbers: "
c = 0 : n(i0) = 2: n(i1) = 1
For j = 0 To 29
    c += 1
    Print Using " #########"; n(i0);
    Print Iif (c Mod 5, "", !"\n");
    n(i0) = P * n(i1) - Q * n(i0)
    Swap i0, i1    
Next j

Print !"\n\nFirst 20 Jacobsthal oblong numbers: "
c = 0 : n(i0) = 0: n(i1) = 1
For j = 0 To 19
    c += 1
    Print Using " ###########"; n(i0)*n(i1);
    Print Iif (c Mod 5, "", !"\n");
    n(i0) = P * n(i1) - Q * n(i0)
    Swap i0, i1
Next j

Print !"\n\nFirst 10 Jacobsthal primes: "
c = 0 : n(i0) = 0: n(i1) = 1
Do
    If isPrime(n(i0)) Then c += 1 : Print n(i0)
    n(i0) = P * n(i1) - Q * n(i0)
    Swap i0, i1
Loop Until c = 10
Sleep
Output:
First 30 Jacobsthal numbers:
        0         1         1         3         5
       11        21        43        85       171
      341       683      1365      2731      5461
    10923     21845     43691     87381    174763
   349525    699051   1398101   2796203   5592405
 11184811  22369621  44739243  89478485 178956971

First 30 Jacobsthal-Lucas numbers:
        2         1         5         7        17
       31        65       127       257       511
     1025      2047      4097      8191     16385
    32767     65537    131071    262145    524287
  1048577   2097151   4194305   8388607  16777217
 33554431  67108865 134217727 268435457 536870911

First 20 Jacobsthal oblong numbers:
          0           1           3          15          55
        231         903        3655       14535       58311
     232903      932295     3727815    14913991    59650503
  238612935   954429895  3817763271 15270965703 61084037575

First 10 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883

Gambas

Public n As New Long[2]

Public Sub Main()  
  
  Dim i0 As Integer = 0, i1 As Integer = 1 
  Dim j As Integer, c As Integer, P As Integer = 1, Q As Integer = -2 
  
  Print "First 30 Jacobsthal numbers:" 
  c = 0
  n[i0] = 0
  n[i1] = 1 
  For j = 0 To 29 
    c += 1 
    Print Format$(n[i0], " #########");
    If (c Mod 5) Then 
      Print ""; 
    Else 
      Print Chr(10);
    End If
    n[i0] = P * n[i1] - Q * n[i0] 
    Swap i0, i1
  Next
  
  Print "\n\nFirst 30 Jacobsthal-Lucas numbers: " 
  c = 0
  n[i0] = 2
  n[i1] = 1 
  For j = 0 To 29 
    c += 1 
    Print Format$(n[i0], " #########");
    If (c Mod 5) Then 
      Print ""; 
    Else 
      Print Chr(10);
    End If
    n[i0] = P * n[i1] - Q * n[i0] 
    Swap i0, i1     
  Next
  
  Print "\n\nFirst 20 Jacobsthal oblong numbers: " 
  c = 0
  n[i0] = 0
  n[i1] = 1 
  For j = 0 To 19 
    c += 1 
    Print Format$(n[i0] * n[i1], " ###########");
    If (c Mod 5) Then 
      Print ""; 
    Else 
      Print Chr(10);
    End If
    n[i0] = P * n[i1] - Q * n[i0] 
    Swap i0, i1 
  Next
  
  Print "\n\nFirst 10 Jacobsthal primes: " 
  c = 0
  n[i0] = 0
  n[i1] = 1 
  Do 
    If isPrime(n[i0]) Then 
      c += 1
      Print n[i0] 
    End If
    n[i0] = P * n[i1] - Q * n[i0] 
    Swap i0, i1 
  Loop Until c = 10  
  
End

Public Sub isPrime(ValorEval As Long) As Boolean 
  
  If ValorEval < 2 Then Return False 
  If ValorEval Mod 2 = 0 Then Return ValorEval = 2 
  If ValorEval Mod 3 = 0 Then Return ValorEval = 3 
  Dim d As Long = 5
  While d * d <= ValorEval
    If ValorEval Mod d = 0 Then Return False Else d += 2
  Wend 
  Return True
  
End Function
Output:
Same as FreeBASIC entry.

Go

package main

import (
    "fmt"
    "math/big"
)

func jacobsthal(n uint) *big.Int {
    t := big.NewInt(1)
    t.Lsh(t, n)
    s := big.NewInt(1)
    if n%2 != 0 {
        s.Neg(s)
    }
    t.Sub(t, s)
    return t.Div(t, big.NewInt(3))
}

func jacobsthalLucas(n uint) *big.Int {
    t := big.NewInt(1)
    t.Lsh(t, n)
    a := big.NewInt(1)
    if n%2 != 0 {
        a.Neg(a)
    }
    return t.Add(t, a)
}

func main() {
    jac := make([]*big.Int, 30)
    fmt.Println("First 30 Jacobsthal numbers:")
    for i := uint(0); i < 30; i++ {
        jac[i] = jacobsthal(i)
        fmt.Printf("%9d ", jac[i])
        if (i+1)%5 == 0 {
            fmt.Println()
        }
    }

    fmt.Println("\nFirst 30 Jacobsthal-Lucas numbers:")
    for i := uint(0); i < 30; i++ {
        fmt.Printf("%9d ", jacobsthalLucas(i))
        if (i+1)%5 == 0 {
            fmt.Println()
        }
    }

    fmt.Println("\nFirst 20 Jacobsthal oblong numbers:")
    for i := uint(0); i < 20; i++ {
        t := big.NewInt(0)
        fmt.Printf("%11d ", t.Mul(jac[i], jac[i+1]))
        if (i+1)%5 == 0 {
            fmt.Println()
        }
    }

    fmt.Println("\nFirst 20 Jacobsthal primes:")
    for n, count := uint(0), 0; count < 20; n++ {
        j := jacobsthal(n)
        if j.ProbablyPrime(10) {
            fmt.Println(j)
            count++
        }
    }
}
Output:
First 30 Jacobsthal numbers:
        0         1         1         3         5 
       11        21        43        85       171 
      341       683      1365      2731      5461 
    10923     21845     43691     87381    174763 
   349525    699051   1398101   2796203   5592405 
 11184811  22369621  44739243  89478485 178956971 

First 30 Jacobsthal-Lucas numbers:
        2         1         5         7        17 
       31        65       127       257       511 
     1025      2047      4097      8191     16385 
    32767     65537    131071    262145    524287 
  1048577   2097151   4194305   8388607  16777217 
 33554431  67108865 134217727 268435457 536870911 

First 20 Jacobsthal oblong numbers:
          0           1           3          15          55 
        231         903        3655       14535       58311 
     232903      932295     3727815    14913991    59650503 
  238612935   954429895  3817763271 15270965703 61084037575 

First 20 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

Haskell

jacobsthal :: [Integer]
jacobsthal = 0 : 1 : zipWith (\x y -> 2 * x + y) jacobsthal (tail jacobsthal)

jacobsthalLucas :: [Integer]
jacobsthalLucas = 2 : 1 : zipWith (\x y -> 2 * x + y) jacobsthalLucas (tail jacobsthalLucas)

jacobsthalOblong :: [Integer]
jacobsthalOblong = zipWith (*) jacobsthal (tail jacobsthal)

isPrime :: Integer -> Bool
isPrime n = n > 1 && not (or [n `mod` i == 0 | i <- [2 .. floor (sqrt (fromInteger n))]])

main :: IO ()
main = do
  putStrLn "First 30 Jacobsthal numbers:"
  print $ take 30 jacobsthal
  putStrLn ""
  putStrLn "First 30 Jacobsthal-Lucas numbers:"
  print $ take 30 jacobsthalLucas
  putStrLn ""
  putStrLn "First 20 Jacobsthal oblong numbers:"
  print $ take 20 jacobsthalOblong
  putStrLn ""
  putStrLn "First 10 Jacobsthal primes:"
  print $ take 10 $ filter isPrime jacobsthal
Output:
First 30 Jacobsthal numbers:
[0,1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,21845,43691,87381,174763,349525,699051,1398101,2796203,5592405,11184811,22369621,44739243,89478485,178956971]

First 30 Jacobsthal-Lucas numbers:
[2,1,5,7,17,31,65,127,257,511,1025,2047,4097,8191,16385,32767,65537,131071,262145,524287,1048577,2097151,4194305,8388607,16777217,33554431,67108865,134217727,268435457,536870911]

First 20 Jacobsthal oblong numbers:
[0,1,3,15,55,231,903,3655,14535,58311,232903,932295,3727815,14913991,59650503,238612935,954429895,3817763271,15270965703,61084037575]

First 10 Jacobsthal primes:
[3,5,11,43,683,2731,43691,174763,2796203,715827883]


or, defined in terms of unfoldr:

import Data.List (intercalate, transpose, uncons, unfoldr)
import Data.List.Split (chunksOf)
import Data.Numbers.Primes (isPrime)
import Text.Printf (printf)

-------------------- JACOBSTHAL NUMBERS ------------------

jacobsthal :: [Integer]
jacobsthal = jacobsthalish (0, 1)

jacobsthalish :: (Integer, Integer) -> [Integer]
jacobsthalish = unfoldr go
  where
    go (a, b) = Just (a, (b, 2 * a + b))

--------------------------- TEST -------------------------
main :: IO ()
main =
  mapM_
    (putStrLn . format)
    [ ( "terms of the Jacobsthal sequence",
        30,
        jacobsthal
      ),
      ( "Jacobsthal-Lucas numbers",
        30,
        jacobsthalish (2, 1)
      ),
      ( "Jacobsthal oblong numbers",
        20,
        zipWith (*) jacobsthal (tail jacobsthal)
      ),
      ( "Jacobsthal primes",
        10,
        filter isPrime jacobsthal
      )
    ]

format :: (String, Int, [Integer]) -> String
format (k, n, xs) =
  show n <> (' ' : k) <> ":\n"
    <> table
      "  "
      (chunksOf 5 $ show <$> take n xs)

table :: String -> [[String]] -> String
table gap rows =
  let ws = maximum . fmap length <$> transpose rows
      pw = printf . flip intercalate ["%", "s"] . show
   in unlines $ intercalate gap . zipWith pw ws <$> rows
Output:
30 terms of the Jacobsthal sequence:
       0         1         1         3          5
      11        21        43        85        171
     341       683      1365      2731       5461
   10923     21845     43691     87381     174763
  349525    699051   1398101   2796203    5592405
11184811  22369621  44739243  89478485  178956971

30 Jacobsthal-Lucas numbers:
       2         1          5          7         17
      31        65        127        257        511
    1025      2047       4097       8191      16385
   32767     65537     131071     262145     524287
 1048577   2097151    4194305    8388607   16777217
33554431  67108865  134217727  268435457  536870911

20 Jacobsthal oblong numbers:
        0          1           3           15           55
      231        903        3655        14535        58311
   232903     932295     3727815     14913991     59650503
238612935  954429895  3817763271  15270965703  61084037575

10 Jacobsthal primes:
   3      5      11       43        683
2731  43691  174763  2796203  715827883

J

Implementation:

ja=: 3 %~ 2x&^ - _1x&^ NB. Jacobsthal
jl=:      2x&^ + _1x&^ NB.Jacobsthal-Lucas

Task examples:

   ja i.3 10
     0      1       1       3       5       11       21       43       85       171
   341    683    1365    2731    5461    10923    21845    43691    87381    174763
349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971
   jl i.3 10
      2       1       5       7       17       31       65       127       257       511
   1025    2047    4097    8191    16385    32767    65537    131071    262145    524287
1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911
   2 10$2 */\ ja i.21 NB. Jacobsthal oblong
     0      1       3       15       55       231       903       3655       14535       58311
232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575
   ja I.1 p:ja i.32  NB. first ten Jacobsthal primes
3 5 11 43 683 2731 43691 174763 2796203 715827883

Java

import java.math.BigInteger;

public final class JacobsthalNumbers {

	public static void main(String[] aArgs) {
		System.out.println("The first 30 Jacobsthal Numbers:");
		for ( int i = 0; i < 6; i++ ) {
			for ( int k = 0; k < 5; k++ ) {
				System.out.print(String.format("%15s", jacobsthalNumber(i * 5 + k)));
			}
			System.out.println();
		}
		System.out.println();
		
		System.out.println("The first 30 Jacobsthal-Lucas Numbers:");
		for ( int i = 0; i < 6; i++ ) {
			for ( int k = 0; k < 5; k++ ) {
				System.out.print(String.format("%15s", jacobsthalLucasNumber(i * 5 + k)));
			}
			System.out.println();
		}
		System.out.println();		
		
		System.out.println("The first 20 Jacobsthal oblong Numbers:");
		for ( int i = 0; i < 4; i++ ) {
			for ( int k = 0; k < 5; k++ ) {
				System.out.print(String.format("%15s", jacobsthalOblongNumber(i * 5 + k)));
			}
			System.out.println();
		}
		System.out.println();		
		
		System.out.println("The first 10 Jacobsthal Primes:");
		for ( int i = 0; i < 10; i++ ) {
			System.out.println(jacobsthalPrimeNumber(i));
		}
	}
	
	private static BigInteger jacobsthalNumber(int aIndex) {
		BigInteger value = BigInteger.valueOf(parityValue(aIndex));
		return BigInteger.ONE.shiftLeft(aIndex).subtract(value).divide(THREE);
	}
	
	private static long jacobsthalLucasNumber(int aIndex) {
		return ( 1 << aIndex ) + parityValue(aIndex);
	}
	
	private static long jacobsthalOblongNumber(int aIndex) {
		long nextJacobsthal =  jacobsthalNumber(aIndex + 1).longValueExact();
		long result = currentJacobsthal * nextJacobsthal;
		currentJacobsthal = nextJacobsthal;		
		return result;
	}
	
	private static long jacobsthalPrimeNumber(int aIndex) {
		BigInteger candidate = jacobsthalNumber(latestIndex++);
		while ( ! candidate.isProbablePrime(CERTAINTY) ) {
			candidate = jacobsthalNumber(latestIndex++);
		}		
		return candidate.longValueExact();		
	}
	
	private static int parityValue(int aIndex) {
		return ( aIndex & 1 ) == 0 ? +1 : -1;
	}
	
	private static long currentJacobsthal = 0;
	private static int latestIndex = 0;
	
	private static final BigInteger THREE = BigInteger.valueOf(3);
	private static final int CERTAINTY = 20;
}
Output:
The first 30 Jacobsthal Numbers:
              0              1              1              3              5
             11             21             43             85            171
            341            683           1365           2731           5461
          10923          21845          43691          87381         174763
         349525         699051        1398101        2796203        5592405
       11184811       22369621       44739243       89478485      178956971

The first 30 Jacobsthal-Lucas Numbers:
              2              1              5              7             17
             31             65            127            257            511
           1025           2047           4097           8191          16385
          32767          65537         131071         262145         524287
        1048577        2097151        4194305        8388607       16777217
       33554431       67108865      134217727      268435457      536870911

The first 20 Jacobsthal oblong Numbers:
              0              1              3             15             55
            231            903           3655          14535          58311
         232903         932295        3727815       14913991       59650503
      238612935      954429895     3817763271    15270965703    61084037575

The first 10 Jacobsthal Primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883

jq

Works with gojq, the Go implementation of jq

See Erdős-primes#jq for a suitable definition of `is_prime` as used here. As a practical matter, this function limits the exploration of Jacobsthal primes.

Preliminaries

# Split the input array into a stream of arrays
def chunks(n):
  def c: .[0:n], (if length > n then .[n:]|c else empty end);
  c;

def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;

# If $j is 0, then an error condition is raised;
# otherwise, assuming infinite-precision integer arithmetic,
# if the input and $j are integers, then the result will be a pair of integers.
def divmod($j):
  . as $i
  | ($i % $j) as $mod
  | [($i - $mod) / $j, $mod] ;

# To take advantage of gojq's arbitrary-precision integer arithmetic:
def power($b): . as $in | reduce range(0;$b) as $i (1; . * $in);

The Tasks

def jacobsthal:
  . as $n
  | ( (2|power($n)) - (if ($n%2 == 0) then 1 else -1 end)) | divmod(3)[0];
 
def jacobsthalLucas:
  . as $n
  | (2|power($n)) + (if ($n%2 == 0) then 1 else -1 end);

def tasks:
  def pp($width): chunks(5) | map(lpad($width)) | join("");
  
  [range(0;30) | jacobsthal] as $js
  | "First 30 Jacobsthal numbers:",
    ( $js | pp(12)),

    "\nFirst 30 Jacobsthal-Lucas numbers:",
    ( [range(0;30) | jacobsthalLucas]  | pp(12)),
 
    "\nFirst 20 Jacobsthal oblong numbers:",
    ( [range(0;20) | $js[.] * $js[1+.]] | pp(14)),

   "\nFirst 11 Jacobsthal primes:",
    limit(11; range(0; infinite) | jacobsthal | select(is_prime))
;

tasks
Output:
First 30 Jacobsthal numbers:
           0           1           1           3           5
          11          21          43          85         171
         341         683        1365        2731        5461
       10923       21845       43691       87381      174763
      349525      699051     1398101     2796203     5592405
    11184811    22369621    44739243    89478485   178956971

First 30 Jacobsthal-Lucas numbers:
           2           1           5           7          17
          31          65         127         257         511
        1025        2047        4097        8191       16385
       32767       65537      131071      262145      524287
     1048577     2097151     4194305     8388607    16777217
    33554431    67108865   134217727   268435457   536870911

First 20 Jacobsthal oblong numbers:
             0             1             3            15            55
           231           903          3655         14535         58311
        232903        932295       3727815      14913991      59650503
     238612935     954429895    3817763271   15270965703   61084037575

First 11 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403

Julia

using Lazy
using Primes

J(n) = (2^n - (-1)^n) ÷ 3
L(n) =  2^n + (-1)^n

Jacobsthal = @>> Lazy.range(0) map(J)
JLucas = @>> Lazy.range(0) map(L)
Joblong = @>> Lazy.range(big"0") map(n -> J(n) * J(n + 1))
Jprimes = @>> Lazy.range(big"0") map(J) filter(isprime)

function printrows(title, vec, columnsize = 15, columns = 5, rjust=true)
    println(title)
    for (i, n) in enumerate(vec)
        print((rjust ? lpad : rpad)(n, columnsize), i % columns == 0 ? "\n" : "")
    end
    println()
end

printrows("Thirty Jacobsthal numbers:", collect(take(30, Jacobsthal)))
printrows("Thirty Jacobsthal-Lucas numbers:", collect(take(30, JLucas)))
printrows("Twenty oblong Jacobsthal numbers:", collect(take(20, Joblong)))
printrows("Fifteen Jacabsthal prime numbers:", collect(take(15, Jprimes)), 40, 1, false)
Output:
Thirty Jacobsthal numbers:
              0              1              1              3              5
             11             21             43             85            171
            341            683           1365           2731           5461
          10923          21845          43691          87381         174763
         349525         699051        1398101        2796203        5592405
       11184811       22369621       44739243       89478485      178956971

Thirty Jacobsthal-Lucas numbers:
              2              1              5              7             17
             31             65            127            257            511
           1025           2047           4097           8191          16385
          32767          65537         131071         262145         524287
        1048577        2097151        4194305        8388607       16777217
       33554431       67108865      134217727      268435457      536870911

Twenty oblong Jacobsthal numbers:
              0              1              3             15             55
            231            903           3655          14535          58311
         232903         932295        3727815       14913991       59650503
      238612935      954429895     3817763271    15270965703    61084037575

Fifteen Jacabsthal prime numbers:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243

Mathematica /Wolfram Language

ClearAll[Jacobsthal, JacobsthalLucas, JacobsthalOblong]
Jacobsthal[n_]:=(2^n-(-1)^n)/3
JacobsthalLucas[n_]:=2^n+(-1)^n
JacobsthalOblong[n_]:=Jacobsthal[n]Jacobsthal[n+1]
Jacobsthal[Range[0, 29]]
JacobsthalLucas[Range[0, 29]]
JacobsthalOblong[Range[0, 19]]
n=0;
i=0;
Reap[While[n<20,
 If[
  PrimeQ[Jacobsthal[i]]
 ,
  Sow[{i,Jacobsthal[i]}];
  n++;
 ];
 i++;
]][[2,1]]//Grid
Output:
{0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971}

{2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191, 16385, 32767, 65537, 131071, 262145, 524287, 1048577, 2097151, 4194305, 8388607, 16777217, 33554431, 67108865, 134217727, 268435457, 536870911}

{0, 1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575}

3	3
4	5
5	11
7	43
11	683
13	2731
17	43691
19	174763
23	2796203
31	715827883
43	2932031007403
61	768614336404564651
79	201487636602438195784363
101	845100400152152934331135470251
127	56713727820156410577229101238628035243
167	62357403192785191176690552862561408838653121833643
191	1046183622564446793972631570534611069350392574077339085483
199	267823007376498379256993682056860433753700498963798805883563
313	5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
347	95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

Maxima

jacobstahl(n):=(2^n-(-1)^n)/3$

jacobstahl_lucas(n):=2^n+(-1)^n$

jacobstahl_oblong(n):=jacobstahl(n)*jacobstahl(n+1)$

/* Function that returns a list of the first len jacobstahl primes */
jacobstahl_primes_count(len):=block(
    [i:0,count:0,result:[]],
    while count<len do (if primep(jacobstahl(i)) then (result:endcons(jacobstahl(i),result),count:count+1),i:i+1),
    result)$

/* Test cases */
makelist(jacobstahl(i),i,0,29);
makelist(jacobstahl_lucas(i),i,0,29);
makelist(jacobstahl_oblong(i),i,0,19);
jacobstahl_primes_count(10);
Output:
[0,1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,21845,43691,87381,174763,349525,699051,1398101,2796203,5592405,11184811,22369621,44739243,89478485,178956971]
	[2,1,5,7,17,31,65,127,257,511,1025,2047,4097,8191,16385,32767,65537,131071,262145,524287,1048577,2097151,4194305,8388607,16777217,33554431,67108865,134217727,268435457,536870911]
	[0,1,3,15,55,231,903,3655,14535,58311,232903,932295,3727815,14913991,59650503,238612935,954429895,3817763271,15270965703,61084037575]

[3,5,11,43,683,2731,43691,174763,2796203,715827883]

Nim

import std/strutils

func isPrime(n: Natural): bool =
  ## Return true if "n" is prime.
  if n < 2: return false
  if n mod 2 == 0: return n == 2
  if n mod 3 == 0: return n == 3
  var step = 2
  var d = 5
  while d * d <= n:
    if n mod d == 0: return false
    inc d, step
    step = 6 - step
  result = true

iterator jacobsthalSequence(first, second: int): int =
  ## Yield the successive Jacobsthal numbers or
  ## Jacobsthal-Lucas numbers.
  var prev = first
  var curr = second
  yield prev
  yield curr
  while true:
    swap prev, curr
    curr += curr + prev
    yield curr

iterator jacobsthalOblong(): int =
  ## Yield the successive Jacobsthal oblong numbers.
  var prev = -1
  for n in jacobsthalSequence(0, 1):
    if prev >= 0:
      yield prev * n
    prev = n

iterator jacobsthalPrimes(): int =
  ## Yield the successive Jacobsthal prime numbers.
  for n in jacobsthalSequence(0, 1):
    if n.isPrime:
      yield n


echo "First 30 Jacobsthal numbers:"
var count = 0
for n in jacobsthalSequence(0, 1):
  inc count
  stdout.write align($n, 11)
  if count mod 6 == 0: echo()
  if count == 30: break

echo "\nFirst 30 Jacobsthal-Lucas numbers:"
count = 0
for n in jacobsthalSequence(2, 1):
  inc count
  stdout.write align($n, 11)
  if count mod 6 == 0: echo()
  if count == 30: break

echo "\nFirst 20 Jacobsthal oblong numbers:"
count = 0
for n in jacobsthalOblong():
  inc count
  stdout.write align($n, 13)
  if count mod 5 == 0: echo()
  if count == 20: break

echo "\nFirst 10 Jacobsthal prime numbers:"
count = 0
for n in jacobsthalPrimes():
  inc count
  stdout.write align($n, 11)
  if count mod 5 == 0: echo()
  if count == 10: break
Output:
First 30 Jacobsthal numbers:
          0          1          1          3          5         11
         21         43         85        171        341        683
       1365       2731       5461      10923      21845      43691
      87381     174763     349525     699051    1398101    2796203
    5592405   11184811   22369621   44739243   89478485  178956971

First 30 Jacobsthal-Lucas numbers:
          2          1          5          7         17         31
         65        127        257        511       1025       2047
       4097       8191      16385      32767      65537     131071
     262145     524287    1048577    2097151    4194305    8388607
   16777217   33554431   67108865  134217727  268435457  536870911

First 20 Jacobsthal oblong numbers:
            0            1            3           15           55
          231          903         3655        14535        58311
       232903       932295      3727815     14913991     59650503
    238612935    954429895   3817763271  15270965703  61084037575

First 10 Jacobsthal prime numbers:
          3          5         11         43        683
       2731      43691     174763    2796203  715827883

OCaml

let is_prime n =
  let rec test x =
    x * x > n || n mod x <> 0 && n mod (x + 2) <> 0 && test (x + 6)
  in
  if n < 5
  then n land 2 <> 0
  else n land 1 <> 0 && n mod 3 <> 0 && test 5

let seq_jacobsthal =
  let rec next b a () = Seq.Cons (a, next (a + a + b) b) in
  next 1

let seq_jacobsthal_oblong =
  let rec next b a () = Seq.Cons (a * b, next (a + a + b) b) in
  next 1 0

let () =
  let show (n, seq, s) =
    Seq.take n seq
    |> Seq.fold_left (Printf.sprintf "%s %u") (Printf.sprintf "First %u %s numbers:\n" n s)
    |> print_endline
  in
  List.iter show [
    30, seq_jacobsthal 0, "Jacobsthal";
    30, seq_jacobsthal 2, "Jacobsthal-Lucas";
    20, seq_jacobsthal_oblong, "Jacobsthal oblong";
    10, Seq.filter is_prime (seq_jacobsthal 0), "Jacobsthal prime"]
Output:
First 30 Jacobsthal numbers:
 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971
First 30 Jacobsthal-Lucas numbers:
 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911
First 20 Jacobsthal oblong numbers:
 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575
First 10 Jacobsthal prime numbers:
 3 5 11 43 683 2731 43691 174763 2796203 715827883

PARI/GP

\\ Define the Jacobsthal function
Jacobsthal(n) = (2^n - (-1)^n) / 3;

\\ Define the JacobsthalLucas function
JacobsthalLucas(n) = 2^n + (-1)^n;

\\ Define the JacobsthalOblong function
JacobsthalOblong(n) = Jacobsthal(n) * Jacobsthal(n + 1);


{
\\ Generate and print Jacobsthal numbers for 0 through 29
print(vector(30, n, Jacobsthal(n-1)));

\\ Generate and print JacobsthalLucas numbers for 0 through 29
print(vector(30, n, JacobsthalLucas(n-1)));

\\ Generate and print JacobsthalOblong numbers for 0 through 19
print(vector(20, n, JacobsthalOblong(n-1)));

\\ Find the first 20 prime numbers in the Jacobsthal sequence
myprimes = [];
i = 0;
while(#myprimes < 40, 
    if(isprime(Jacobsthal(i)), myprimes = concat(myprimes, [i, Jacobsthal(i)])); 
    i++;
);

for (i = 1, #myprimes\2,      print(myprimes[2*i-1] "	" myprimes[2*i]); );
}
Output:
[0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971]
[2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191, 16385, 32767, 65537, 131071, 262145, 524287, 1048577, 2097151, 4194305, 8388607, 16777217, 33554431, 67108865, 134217727, 268435457, 536870911]
[0, 1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575]
3	3
4	5
5	11
7	43
11	683
13	2731
17	43691
19	174763
23	2796203
31	715827883
43	2932031007403
61	768614336404564651
79	201487636602438195784363
101	845100400152152934331135470251
127	56713727820156410577229101238628035243
167	62357403192785191176690552862561408838653121833643
191	1046183622564446793972631570534611069350392574077339085483
199	267823007376498379256993682056860433753700498963798805883563
313	5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
347	95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

Perl

Library: ntheory
use strict;
use warnings;
use feature <say state>;
use bigint;
use List::Util 'max';
use ntheory 'is_prime';

sub table { my $t = 5 * (my $c = 1 + length max @_); ( sprintf( ('%'.$c.'d')x@_, @_) ) =~ s/.{1,$t}\K/\n/gr }

sub jacobsthal       { my($n) = @_; state  @J = (0, 1); do { push  @J,  $J[-1] + 2 *  $J[-2]} until  @J > $n;  $J[$n] }
sub jacobsthal_lucas { my($n) = @_; state @JL = (2, 1); do { push @JL, $JL[-1] + 2 * $JL[-2]} until @JL > $n; $JL[$n] }

my(@j,@jp,$c,$n);
push @j, jacobsthal $_ for 0..29;
do { is_prime($n = ( 2**++$c - -1**$c ) / 3) and push @jp, $n } until @jp == 20;

say "First 30 Jacobsthal numbers:\n",        table @j;
say "First 30 Jacobsthal-Lucas numbers:\n",  table map { jacobsthal_lucas $_-1 } 1..30;
say "First 20 Jacobsthal oblong numbers:\n", table map { $j[$_-1] * $j[$_]     } 1..20;
say "First 20 Jacobsthal primes:\n",         join "\n", @jp;
Output:
First 30 Jacobsthal numbers:
         0         1         1         3         5
        11        21        43        85       171
       341       683      1365      2731      5461
     10923     21845     43691     87381    174763
    349525    699051   1398101   2796203   5592405
  11184811  22369621  44739243  89478485 178956971

First 30 Jacobsthal-Lucas numbers:
         2         1         5         7        17
        31        65       127       257       511
      1025      2047      4097      8191     16385
     32767     65537    131071    262145    524287
   1048577   2097151   4194305   8388607  16777217
  33554431  67108865 134217727 268435457 536870911

First 20 Jacobsthal oblong numbers:
           0           1           3          15          55
         231         903        3655       14535       58311
      232903      932295     3727815    14913991    59650503
   238612935   954429895  3817763271 15270965703 61084037575

First 20 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

Phix

You can run this online here.

with javascript_semantics 
function jacobsthal(integer n)
    return floor((power(2,n)+odd(n))/3)
end function

function jacobsthal_lucas(integer n)
    return power(2,n)+power(-1,n)
end function

function jacobsthal_oblong(integer n)
    return jacobsthal(n)*jacobsthal(n+1)
end function

function jba(string fmt, sequence s, integer b=5)
    return {join_by(apply(true,sprintf,{{fmt},s}),1,b," ")}
end function
printf(1,"First 30 Jacobsthal numbers:\n%s\n",       jba("%9d",apply(tagset(29,0),jacobsthal)))
printf(1,"First 30 Jacobsthal-Lucas numbers:\n%s\n", jba("%9d",apply(tagset(29,0),jacobsthal_lucas)))
printf(1,"First 20 Jacobsthal oblong numbers:\n%s\n",jba("%11d",apply(tagset(19,0),jacobsthal_oblong)))
--printf(1,"First 10 Jacobsthal primes:\n%s\n", jba("%d",filter(apply(tagset(31,0),jacobsthal),is_prime),1))
--hmm(""), fine, but to go further roll out gmp:
include mpfr.e
mpz z = mpz_init()
integer n = 1, found = 0
printf(1,"First 20 jacobsthal primes:\n")
while found<20 do
    mpz_ui_pow_ui(z,2,n)
    mpz_add_ui(z,z,odd(n))
    {} = mpz_fdiv_q_ui(z,z,3)
    if mpz_prime(z) then
        found += 1
        printf(1,"%s\n",{mpz_get_str(z)})
    end if
    n += 1
end while

Likewise should you want the three basic functions to go further they'll have to look much more like the C submission above.

Output:
First 30 Jacobsthal numbers:
        0         1         1         3         5
       11        21        43        85       171
      341       683      1365      2731      5461
    10923     21845     43691     87381    174763
   349525    699051   1398101   2796203   5592405
 11184811  22369621  44739243  89478485 178956971

First 30 Jacobsthal-Lucas numbers:
        2         1         5         7        17
       31        65       127       257       511
     1025      2047      4097      8191     16385
    32767     65537    131071    262145    524287
  1048577   2097151   4194305   8388607  16777217
 33554431  67108865 134217727 268435457 536870911

First 20 Jacobsthal oblong numbers:
          0           1           3          15          55
        231         903        3655       14535       58311
     232903      932295     3727815    14913991    59650503
  238612935   954429895  3817763271 15270965703 61084037575

First 20 jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

Python

Translation of: Phix
#!/usr/bin/python
from math import floor, pow

def isPrime(n):
    for i in range(2, int(n**0.5) + 1):
        if n % i == 0:
            return False        
    return True

def odd(n):
    return n and 1 != 0
    
def jacobsthal(n):
    return floor((pow(2,n)+odd(n))/3)

def jacobsthal_lucas(n):
    return int(pow(2,n)+pow(-1,n))

def jacobsthal_oblong(n):
    return jacobsthal(n)*jacobsthal(n+1)


if __name__ == '__main__':
    print("First 30 Jacobsthal numbers:")
    for j in range(0, 30):
        print(jacobsthal(j), end="  ")

    print("\n\nFirst 30 Jacobsthal-Lucas numbers: ")
    for j in range(0, 30):
        print(jacobsthal_lucas(j), end = '\t')

    print("\n\nFirst 20 Jacobsthal oblong numbers: ")
    for j in range(0, 20):
        print(jacobsthal_oblong(j), end="  ")

    print("\n\nFirst 10 Jacobsthal primes: ")
    for j in range(3, 33):
        if isPrime(jacobsthal(j)):
            print(jacobsthal(j))
Output:
First 30 Jacobsthal numbers:
0  1  1  3  5  11  21  43  85  171  341  683  1365  2731  5461  10923  21845  43691  87381  174763  349525  699051  1398101  2796203  5592405  11184811  22369621  44739243  89478485  178956971  

First 30 Jacobsthal-Lucas numbers: 
2	1	5	7	17	31	65	127	257	511	1025	2047	4097	8191	16385	32767	65537	131071	262145	524287	1048577	2097151	4194305	8388607	16777217	33554431	67108865	134217727	268435457	536870911	

First 20 Jacobsthal oblong numbers: 
0  1  3  15  55  231  903  3655  14535  58311  232903  932295  3727815  14913991  59650503  238612935  954429895  3817763271  15270965703  61084037575  

First 10 Jacobsthal primes: 
3
5
11
43
683
2731
43691
174763
2796203
715827883


Or, defining an infinite series in terms of a general unfoldr anamorphism:

'''Jacobsthal numbers'''

from itertools import islice
from operator import mul


# jacobsthal :: [Integer]
def jacobsthal():
    '''Infinite sequence of terms of OEIS A001045
    '''
    return jacobsthalish(0, 1)


# jacobsthalish :: (Int, Int) -> [Int]
def jacobsthalish(*xy):
    '''Infinite sequence of jacobsthal-type series
       beginning with a, b
    '''
    def go(ab):
        a, b = ab
        return a, (b, 2 * a + b)

    return unfoldr(go)(xy)


# ------------------------- TEST -------------------------
# main :: IO ()
def main():
    '''First 15 terms each n-step Fibonacci(n) series
       where n is drawn from [2..8]
    '''
    print('\n\n'.join([
        fShow(*x) for x in [
            (
                'terms of the Jacobsthal sequence',
                30, jacobsthal()),
            (
                'Jacobsthal-Lucas numbers',
                30, jacobsthalish(2, 1)
            ),
            (
                'Jacobsthal oblong numbers',
                20, map(
                    mul, jacobsthal(),
                    drop(1)(jacobsthal())
                )
            ),
            (
                'primes in the Jacobsthal sequence',
                10, filter(isPrime, jacobsthal())
            )
        ]
    ]))


# fShow :: (String, Int, [Integer]) -> String
def fShow(k, n, xs):
    '''N tabulated terms of XS, prefixed by the label K
    '''
    return f'{n} {k}:\n' + spacedTable(
        list(chunksOf(5)(
            [str(t) for t in take(n)(xs)]
        ))
    )


# ----------------------- GENERIC ------------------------

# drop :: Int -> [a] -> [a]
# drop :: Int -> String -> String
def drop(n):
    '''The sublist of xs beginning at
       (zero-based) index n.
    '''
    def go(xs):
        if isinstance(xs, (list, tuple, str)):
            return xs[n:]
        else:
            take(n)(xs)
            return xs
    return go


# isPrime :: Int -> Bool
def isPrime(n):
    '''True if n is prime.'''
    if n in (2, 3):
        return True
    if 2 > n or 0 == n % 2:
        return False
    if 9 > n:
        return True
    if 0 == n % 3:
        return False

    def p(x):
        return 0 == n % x or 0 == n % (2 + x)

    return not any(map(p, range(5, 1 + int(n ** 0.5), 6)))


# take :: Int -> [a] -> [a]
# take :: Int -> String -> String
def take(n):
    '''The prefix of xs of length n,
       or xs itself if n > length xs.
    '''
    def go(xs):
        return (
            xs[0:n]
            if isinstance(xs, (list, tuple))
            else list(islice(xs, n))
        )
    return go


# unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
def unfoldr(f):
    '''Generic anamorphism.
       A lazy (generator) list unfolded from a seed value by
       repeated application of f until no residue remains.
       Dual to fold/reduce.
       f returns either None, or just (value, residue).
       For a strict output value, wrap in list().
    '''
    def go(x):
        valueResidue = f(x)
        while None is not valueResidue:
            yield valueResidue[0]
            valueResidue = f(valueResidue[1])
    return go


# ---------------------- FORMATTING ----------------------

# chunksOf :: Int -> [a] -> [[a]]
def chunksOf(n):
    '''A series of lists of length n, subdividing the
       contents of xs. Where the length of xs is not evenly
       divisible, the final list will be shorter than n.
    '''
    def go(xs):
        return (
            xs[i:n + i] for i in range(0, len(xs), n)
        ) if 0 < n else None
    return go


# spacedTable :: [[String]] -> String
def spacedTable(rows):
    '''Tabulated stringification of rows'''
    columnWidths = [
        max([len(x) for x in col])
        for col in zip(*rows)
    ]
    return '\n'.join([
        ' '.join(
            map(
                lambda x, w: x.rjust(w, ' '),
                row, columnWidths
            )
        )
        for row in rows
    ])


# MAIN ---
if __name__ == '__main__':
    main()
Output:
30 terms of the Jacobsthal sequence:
       0        1        1        3         5
      11       21       43       85       171
     341      683     1365     2731      5461
   10923    21845    43691    87381    174763
  349525   699051  1398101  2796203   5592405
11184811 22369621 44739243 89478485 178956971

30 Jacobsthal-Lucas numbers:
       2        1         5         7        17
      31       65       127       257       511
    1025     2047      4097      8191     16385
   32767    65537    131071    262145    524287
 1048577  2097151   4194305   8388607  16777217
33554431 67108865 134217727 268435457 536870911

20 Jacobsthal oblong numbers:
        0         1          3          15          55
      231       903       3655       14535       58311
   232903    932295    3727815    14913991    59650503
238612935 954429895 3817763271 15270965703 61084037575

10 primes in the Jacobsthal sequence:
   3     5     11      43       683
2731 43691 174763 2796203 715827883

Quackery

isprime is defined at Primality by trial division#Quackery.

  [ 2 over ** -1 rot ** - 3 / ] is j  ( n --> n )

  [ 2 over ** -1 rot ** + ]     is jl ( n --> n )

  [ dup 1+ j swap j * ]         is jo ( n --> n )

  say "First 30 Jacobsthal numbers:"
  cr
  30 times [ i^ j echo sp ]
  cr cr
  say "First 30 Jacobsthal-Lucas numbers:"
  cr
  30 times [ i^ jl echo sp ]
  cr cr
  say "First 20 Jacobsthal oblong numbers:"
  cr
  20 times [ i^ jo echo sp ]
  cr cr
  say "First 10 Jacobsthal primes:"
  cr
  [] 0
  [ dup j dup isprime iff
      [ swap dip join ]
    else drop
    1+
    over size 10 = until ]
   drop
   witheach [ echo sp ]
Output:
First 30 Jacobsthal numbers:
0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 

First 30 Jacobsthal-Lucas numbers:
2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 

First 20 Jacobsthal oblong numbers:
0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 

First 10 Jacobsthal primes:
3 5 11 43 683 2731 43691 174763 2796203 715827883 

Raku

my $jacobsthal = cache lazy 0, 1, * × 2 + * … *;
my $jacobsthal-lucas = lazy 2, 1, * × 2 + * … *;

say "First 30 Jacobsthal numbers:";
say $jacobsthal[^30].batch(5)».fmt("%9d").join: "\n";

say "\nFirst 30 Jacobsthal-Lucas numbers:";
say $jacobsthal-lucas[^30].batch(5)».fmt("%9d").join: "\n";

say "\nFirst 20 Jacobsthal oblong numbers:";
say (^∞).map( { $jacobsthal[$_] × $jacobsthal[$_+1] } )[^20].batch(5)».fmt("%11d").join: "\n";

say "\nFirst 20 Jacobsthal primes:";
say $jacobsthal.grep( &is-prime )[^20].join: "\n";
Output:
First 30 Jacobsthal numbers:
        0         1         1         3         5
       11        21        43        85       171
      341       683      1365      2731      5461
    10923     21845     43691     87381    174763
   349525    699051   1398101   2796203   5592405
 11184811  22369621  44739243  89478485 178956971

First 30 Jacobsthal-Lucas numbers:
        2         1         5         7        17
       31        65       127       257       511
     1025      2047      4097      8191     16385
    32767     65537    131071    262145    524287
  1048577   2097151   4194305   8388607  16777217
 33554431  67108865 134217727 268435457 536870911

First 20 Jacobsthal oblong numbers:
          0           1           3          15          55
        231         903        3655       14535       58311
     232903      932295     3727815    14913991    59650503
  238612935   954429895  3817763271 15270965703 61084037575

First 20 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

Red

Red ["Jacobsthal numbers"]

jacobsthal: function [n] [to-integer (2 ** n - (-1 ** n) / 3)]

lucas: function [n] [2 ** n + (-1 ** n)]

oblong: function [n] [
    first split mold multiply to-float jacobsthal n to-float jacobsthal n + 1 #"."   ; work around integer overflow
]

prime?: function [
    "Returns true if the input is a prime number"
    n [number!] "An integer to check for primality"
][
    if 2 = n [return true]
    if any [1 = n even? n] [return false]
    limit: sqrt n
    candidate: 3
    while [candidate < limit][
        if n % candidate = 0 [return false]
        candidate: candidate + 2
    ]
    true
]

show: function [n fn][
    cols: length? mold fn n
    repeat i n [
        prin [pad fn subtract i 1 cols]
        if i % 5 = 0 [prin newline]
    ]
    prin newline
]

print "First 30 Jacobsthal numbers:"
show 30 :jacobsthal

print "First 30 Jacobsthal-Lucas numbers:"
show 30 :lucas

print "First 20 Jacobsthal oblong numbers:"
show 20 :oblong

print "First 10 Jacobsthal primes:"
primes: n: 0
while [primes < 10][
    if prime? jacobsthal n [
        print jacobsthal n
        primes: primes + 1
    ]
    n: n + 1
]
Output:
First 30 Jacobsthal numbers:
0        1        1        3        5        
11       21       43       85       171      
341      683      1365     2731     5461     
10923    21845    43691    87381    174763   
349525   699051   1398101  2796203  5592405  
11184811 22369621 44739243 89478485 178956971

First 30 Jacobsthal-Lucas numbers:
2         1         5         7         17        
31        65        127       257       511       
1025      2047      4097      8191      16385     
32767     65537     131071    262145    524287    
1048577   2097151   4194305   8388607   16777217  
33554431  67108865  134217727 268435457 536870911 

First 20 Jacobsthal oblong numbers:
0             1             3             15            55            
231           903           3655          14535         58311         
232903        932295        3727815       14913991      59650503      
238612935     954429895     3817763271    15270965703   61084037575   

First 10 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883

RPL

Straightforward approach

The Jacobstahl pieces of code are macros more than programs.

≪ 2 OVER ^ -1 ROT ^ - 3 / ≫
'JCBN' STO

≪ 2 OVER ^ -1 ROT ^ + ≫
'JCBL' STO

≪ DUP JCBN SWAP 1 + JCBN * ≫  
'JCBO' STO

The primality test is the only one that deserves such a name:

≪ IF DUP 5 ≤ THEN 
     { 2 3 5 } SWAP POS 
  ELSE
     IF DUP 2 MOD NOT THEN
        2
     ELSE
        DUP √ CEIL → lim 
        ≪ 3 
           WHILE DUP2 MOD OVER lim ≤ AND REPEAT 2 + END
        ≫
     END
     MOD 
  END
 SIGN
≫
'PRIM?' STO

Using binary integers

The task is an opportunity to showcase the use of binary integers in RPL, but it's actually slower and fatter, as many RPL instructions are designed for floating point numbers only.

≪  → n 
  ≪ # 1h 1 n START SL NEXT
    IF n R→B # 1h AND B→R THEN 1 + ELSE 1 - END
    3 / B→R 
≫ ≫
'JCBN' STO

Testing program

≪ → func count 
   ≪ { } 0 
      DO DUP func 
         IF EVAL THEN ROT SWAP + SWAP ELSE DROP END 
         1 + 
      UNTIL OVER SIZE count ≥ END 
      DROP
≫ ≫
'ASSRT' STO
JCBN 1 ≫ 30 ASSRTJCBL 1 ≫ 30 ASSRTJCBO 1 ≫ 20 ASSRT
≪ DUP JCBN PRIM? ≫ 10 ASSRT
Works with: Halcyon Calc version 4.2.7
Output:
4: { 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971 }
3: { 2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911 }
2: { 0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575 }
1: { 3 5 11 43 683 2731 43691 174763 2796203 715827883 }

Ruby

Since version 3.0, Ruby supports "end-less" method definitions.

require 'prime'

def jacobsthal(n) = (2**n + n[0])/3
def jacobsthal_lucas(n) = 2**n + (-1)**n
def jacobsthal_oblong(n) = jacobsthal(n) * jacobsthal(n+1)

puts "First 30 Jacobsthal numbers:"
puts (0..29).map{|n| jacobsthal(n) }.join(" ")

puts "\nFirst 30 Jacobsthal-Lucas numbers: "
puts (0..29).map{|n| jacobsthal_lucas(n) }.join(" ")

puts "\nFirst 20 Jacobsthal-Oblong numbers: "
puts (0..19).map{|n| jacobsthal_oblong(n) }.join(" ")

puts "\nFirst 10 prime Jacobsthal numbers: "
res = (0..).lazy.filter_map do |i|
  j = jacobsthal(i) 
  j if j.prime?
end
puts res.take(10).force.join(" ")
Output:
First 30 Jacobsthal numbers:
0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971

First 30 Jacobsthal-Lucas numbers: 
2 1 5 7 17 31 65 127 257 511 1025 2047 4097 8191 16385 32767 65537 131071 262145 524287 1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911

First 20 Jacobsthal-Oblong numbers: 
0 1 3 15 55 231 903 3655 14535 58311 232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575

First 10 prime Jacobsthal numbers: 
3 5 11 43 683 2731 43691 174763 2796203 715827883

Rust

// [dependencies]
// rug = "0.3"

use rug::integer::IsPrime;
use rug::Integer;

fn jacobsthal_numbers() -> impl std::iter::Iterator<Item = Integer> {
    (0..).map(|x| ((Integer::from(1) << x) - if x % 2 == 0 { 1 } else { -1 }) / 3)
}

fn jacobsthal_lucas_numbers() -> impl std::iter::Iterator<Item = Integer> {
    (0..).map(|x| (Integer::from(1) << x) + if x % 2 == 0 { 1 } else { -1 })
}

fn jacobsthal_oblong_numbers() -> impl std::iter::Iterator<Item = Integer> {
    let mut jn = jacobsthal_numbers();
    let mut n0 = jn.next().unwrap();
    std::iter::from_fn(move || {
        let n1 = jn.next().unwrap();
        let result = Integer::from(&n0 * &n1);
        n0 = n1;
        Some(result)
    })
}

fn jacobsthal_primes() -> impl std::iter::Iterator<Item = Integer> {
    jacobsthal_numbers().filter(|x| x.is_probably_prime(30) != IsPrime::No)
}

fn main() {
    println!("First 30 Jacobsthal Numbers:");
    for (i, n) in jacobsthal_numbers().take(30).enumerate() {
        print!("{:9}{}", n, if (i + 1) % 5 == 0 { "\n" } else { " " });
    }
    println!("\nFirst 30 Jacobsthal-Lucas Numbers:");
    for (i, n) in jacobsthal_lucas_numbers().take(30).enumerate() {
        print!("{:9}{}", n, if (i + 1) % 5 == 0 { "\n" } else { " " });
    }
    println!("\nFirst 20 Jacobsthal oblong Numbers:");
    for (i, n) in jacobsthal_oblong_numbers().take(20).enumerate() {
        print!("{:11}{}", n, if (i + 1) % 5 == 0 { "\n" } else { " " });
    }
    println!("\nFirst 20 Jacobsthal primes:");
    for n in jacobsthal_primes().take(20) {
        println!("{}", n);
    }
}
Output:
First 30 Jacobsthal Numbers:
        0         1         1         3         5
       11        21        43        85       171
      341       683      1365      2731      5461
    10923     21845     43691     87381    174763
   349525    699051   1398101   2796203   5592405
 11184811  22369621  44739243  89478485 178956971

First 30 Jacobsthal-Lucas Numbers:
        2         1         5         7        17
       31        65       127       257       511
     1025      2047      4097      8191     16385
    32767     65537    131071    262145    524287
  1048577   2097151   4194305   8388607  16777217
 33554431  67108865 134217727 268435457 536870911

First 20 Jacobsthal oblong Numbers:
          0           1           3          15          55
        231         903        3655       14535       58311
     232903      932295     3727815    14913991    59650503
  238612935   954429895  3817763271 15270965703 61084037575

First 20 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

SETL

program jacobsthal_numbers;
    print("First 30 Jacobsthal numbers:");
    printseq([j n : n in [0..29]]);
    print;

    print("First 30 Jacobsthal-Lucas numbers:");
    printseq([jl n : n in [0..29]]);
    print;

    print("First 20 Jacobsthal oblong numbers:");
    printseq([jo n : n in [0..19]]);
    print;

    print("First 10 Jacobsthal primes:");
    printseq([j n : n in [0..31] | prime j n]);

    proc printseq(seq);
        loop for n in seq do
            nprint(lpad(str n, 14));
            if (i +:= 1) mod 5 = 0 then print; end if;
        end loop;
    end proc;

    op j(n);
        return (2**n - (-1)**n) div 3;
    end op;

    op jl(n);
        return 2**n + (-1)**n;
    end op;

    op jo(n);
        return j n * j (n+1);
    end op;

    op prime(n);
        if n<=4 then return n in {2,3}; end if;
        return not exists d in [2..floor sqrt n] | n mod d = 0;
    end op;
end program;
Output:
First 30 Jacobsthal numbers:
             0             1             1             3             5
            11            21            43            85           171
           341           683          1365          2731          5461
         10923         21845         43691         87381        174763
        349525        699051       1398101       2796203       5592405
      11184811      22369621      44739243      89478485     178956971

First 30 Jacobsthal-Lucas numbers:
             2             1             5             7            17
            31            65           127           257           511
          1025          2047          4097          8191         16385
         32767         65537        131071        262145        524287
       1048577       2097151       4194305       8388607      16777217
      33554431      67108865     134217727     268435457     536870911

First 20 Jacobsthal oblong numbers:
             0             1             3            15            55
           231           903          3655         14535         58311
        232903        932295       3727815      14913991      59650503
     238612935     954429895    3817763271   15270965703   61084037575

First 10 Jacobsthal primes:
             3             5            11            43           683
          2731         43691        174763       2796203     715827883

Sidef

func jacobsthal(n) {
    lucasU(1, -2, n)
}

func lucas_jacobsthal(n) {
    lucasV(1, -2, n)
}

say "First 30 Jacobsthal numbers:"
say 30.of(jacobsthal)

say "\nFirst 30 Jacobsthal-Lucas numbers:"
say 30.of(lucas_jacobsthal)

say "\nFirst 20 Jacobsthal oblong numbers:"
say 21.of(jacobsthal).cons(2, {|a,b| a * b })

say "\nFirst 20 Jacobsthal primes:";
say (1..Inf -> lazy.map(jacobsthal).grep{.is_prime}.first(20))
Output:
First 30 Jacobsthal numbers:
[0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971]

First 30 Jacobsthal-Lucas numbers:
[2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191, 16385, 32767, 65537, 131071, 262145, 524287, 1048577, 2097151, 4194305, 8388607, 16777217, 33554431, 67108865, 134217727, 268435457, 536870911]

First 20 Jacobsthal oblong numbers:
[0, 1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575]

First 20 Jacobsthal primes:
[3, 5, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243, 62357403192785191176690552862561408838653121833643, 1046183622564446793972631570534611069350392574077339085483, 267823007376498379256993682056860433753700498963798805883563, 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731, 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443]

uBasic/4tH

Translation of: FreeBASIC
Dim @n(2) 
x = 0
y = 1
p = 1
q = -2

Print "First 30 Jacobsthal numbers:"
c = 0 : @n(x) = 0: @n(y) = 1
For j = 0 To 29
    c = c + 1
    Print Using " ____________#"; @n(x);
    If (c % 5) = 0 Then Print
    @n(x) = P * @n(y) - Q * @n(x)
    Push x : x = y : y = Pop()   
Next

Print : Print "First 30 Jacobsthal-Lucas numbers: "
c = 0 : @n(x) = 2: @n(y) = 1
For j = 0 To 29
    c = c + 1
    Print Using " ____________#"; @n(x);
    If (c % 5) = 0 Then Print
    @n(x) = P * @n(y) - Q * @n(x)
    Push x : x = y : y = Pop()     
Next

Print : Print "First 20 Jacobsthal oblong numbers: "
c = 0 : @n(x) = 0: @n(y) = 1
For j = 0 To 19
    c = c + 1
    Print Using " ____________#"; @n(x)*@n(y);
    If (c % 5) = 0 Then Print
    @n(x) = P * @n(y) - Q * @n(x)
    Push x : x = y : y = Pop()
Next

Print : Print "First 10 Jacobsthal primes: "
c = 0 : @n(x) = 0 : @n(y) = 1
Do
    If FUNC(_isPrime(@n(x))) Then c = c + 1 : Print @n(x)
    @n(x) = P * @n(y) - Q * @n(x)
    Push x : x = y : y = Pop()    
Until c = 10
Loop 

End

_isPrime
  Param (1)
  Local (1)

  If (a@ < 2) Then Return (0)
  If (a@ % 2) = 0 Then Return (0)
  For b@ = 3 To Func(_Sqrt(a@, 0))+1 Step 2
      If (a@ % b@) = 0 Then Unloop : Return (0)
  Next
Return (1)

_Sqrt
  Param (2)
  Local (2)

  If a@ = 0 Return (0)
  c@ = Max(Shl(Set(a@, a@*(10^(b@*2))), -10), 1024)

  Do
    d@ = (c@+a@/c@)/2
  While (c@ > d@)
    c@ = d@
  Loop
Return (c@)
Output:
First 30 Jacobsthal numbers:
             0             1             1             3             5
            11            21            43            85           171
           341           683          1365          2731          5461
         10923         21845         43691         87381        174763
        349525        699051       1398101       2796203       5592405
      11184811      22369621      44739243      89478485     178956971

First 30 Jacobsthal-Lucas numbers: 
             2             1             5             7            17
            31            65           127           257           511
          1025          2047          4097          8191         16385
         32767         65537        131071        262145        524287
       1048577       2097151       4194305       8388607      16777217
      33554431      67108865     134217727     268435457     536870911

First 20 Jacobsthal oblong numbers: 
             0             1             3            15            55
           231           903          3655         14535         58311
        232903        932295       3727815      14913991      59650503
     238612935     954429895    3817763271   15270965703   61084037575

First 10 Jacobsthal primes: 
3
5
11
43
683
2731
43691
174763
2796203
715827883

0 OK, 0:1024 

V (Vlang)

Translation of: go
This example is incomplete. Probably Prime section isn't implemented yet (This is in development) Please ensure that it meets all task requirements and remove this message.
import math.big

fn jacobsthal(n u32) big.Integer {
    mut t := big.one_int
    t=t.lshift(n)
    mut s := big.one_int
    if n%2 != 0 {
        s=s.neg()
    }
    t -= s
    return t/big.integer_from_int(3)
}
 
fn jacobsthal_lucas(n u32) big.Integer {
    mut t := big.one_int
    t=t.lshift(n)
    mut a := big.one_int
    if n%2 != 0 {
        a=a.neg()
    }
    return t+a
}
 
fn main() {
    mut jac := []big.Integer{len: 30}
    println("First 30 Jacobsthal numbers:")
    for i := u32(0); i < 30; i++ {
        jac[i] = jacobsthal(i)
        print("${jac[i]:9} ")
        if (i+1)%5 == 0 {
            println('')
        }
    }
 
    println("\nFirst 30 Jacobsthal-Lucas numbers:")
    for i := u32(0); i < 30; i++ {
        print("${jacobsthal_lucas(i):9} ")
        if (i+1)%5 == 0 {
            println('')
        }
    }
 
    println("\nFirst 20 Jacobsthal oblong numbers:")
    for i := u32(0); i < 20; i++ {
        print("${jac[i]*jac[i+1]:11} ")
        if (i+1)%5 == 0 {
            println('')
        }
    }
 
    /*println("\nFirst 20 Jacobsthal primes:")
    for n, count := u32(0), 0; count < 20; n++ {
        j := jacobsthal(n)
        if j.probably_prime(10) {
            println(j)
            count++
        }
    }*/
}
Output:
First 30 Jacobsthal numbers:
           0            1            1            3            5
          11           21           43           85          171
         341          683        1,365        2,731        5,461
      10,923       21,845       43,691       87,381      174,763
     349,525      699,051    1,398,101    2,796,203    5,592,405
  11,184,811   22,369,621   44,739,243   89,478,485  178,956,971

First 30 Jacobsthal-Lucas numbers:
           2            1            5            7           17
          31           65          127          257          511
       1,025        2,047        4,097        8,191       16,385
      32,767       65,537      131,071      262,145      524,287
   1,048,577    2,097,151    4,194,305    8,388,607   16,777,217
  33,554,431   67,108,865  134,217,727  268,435,457  536,870,911

First 20 Jacobsthal oblong numbers:
             0              1              3             15             55
           231            903          3,655         14,535         58,311
       232,903        932,295      3,727,815     14,913,991     59,650,503
   238,612,935    954,429,895  3,817,763,271 15,270,965,703 61,084,037,575

Wren

Library: Wren-big
Library: Wren-seq
Library: Wren-fmt
import "./big" for BigInt
import "./seq" for Lst
import "./fmt" for Fmt

var jacobsthal = Fn.new { |n| ((BigInt.one << n) - ((n%2 == 0) ? 1 : -1)) / 3 }

var jacobsthalLucas = Fn.new { |n| (BigInt.one << n) + ((n%2 == 0) ? 1 : -1) }

System.print("First 30 Jacobsthal numbers:")
var js = (0..29).map { |i| jacobsthal.call(i) }.toList
Fmt.tprint("$,12i", js, 5)

System.print("\nFirst 30 Jacobsthal-Lucas numbers:")
var jsl = (0..29).map { |i| jacobsthalLucas.call(i) }.toList
Fmt.tprint("$,12i", jsl, 5)

System.print("\nFirst 20 Jacobsthal oblong numbers:")
var oblongs = (0..19).map { |i| js[i] * js[i+1] }.toList
Fmt.tprint("$,14i", oblongs, 5)

var primes = js.where { |j| j.isProbablePrime(10) }.toList
var count = primes.count
var i = 31
while (count < 20) {
    var j = jacobsthal.call(i)
    if (j.isProbablePrime(10)) {
        primes.add(j)
        count = count + 1
    }
    i = i + 1
}
System.print("\nFirst 20 Jacobsthal primes:")
for (i in 0..19) Fmt.print("$i", primes[i])
Output:
First 30 Jacobsthal numbers:
           0            1            1            3            5
          11           21           43           85          171
         341          683        1,365        2,731        5,461
      10,923       21,845       43,691       87,381      174,763
     349,525      699,051    1,398,101    2,796,203    5,592,405
  11,184,811   22,369,621   44,739,243   89,478,485  178,956,971

First 30 Jacobsthal-Lucas numbers:
           2            1            5            7           17
          31           65          127          257          511
       1,025        2,047        4,097        8,191       16,385
      32,767       65,537      131,071      262,145      524,287
   1,048,577    2,097,151    4,194,305    8,388,607   16,777,217
  33,554,431   67,108,865  134,217,727  268,435,457  536,870,911

First 20 Jacobsthal oblong numbers:
             0              1              3             15             55
           231            903          3,655         14,535         58,311
       232,903        932,295      3,727,815     14,913,991     59,650,503
   238,612,935    954,429,895  3,817,763,271 15,270,965,703 61,084,037,575

First 20 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

XPL0

func IsPrime(N);        \Return 'true' if N is prime
int  N, I;
[if N <= 2 then return N = 2;
if (N&1) = 0 then \even >2\ return false;
for I:= 3 to sqrt(N) do
    [if rem(N/I) = 0 then return false;
    I:= I+1;
    ];
return true;
];

proc Jaco(J2);          \Display 30 Jacobsthal (or -Lucas) numbers
real J2, J1, J;
int  N;
[RlOut(0, J2);
J1:= 1.0;
RlOut(0, J1);
for N:= 2 to 30-1 do
        [J:= J1 + 2.0*J2;
        RlOut(0, J);
        if rem((N+1)/5) = 0 then CrLf(0);
        J2:= J1;  J1:= J;
        ];
CrLf(0);
];

real J, J1, J2, JO;
int  N;
[Format(14, 0);
Jaco(0.0);
Jaco(2.0);
J2:= 1.0;
RlOut(0, 0.0);
J1:= 1.0;
RlOut(0, J1);
for N:= 2 to 20-1 do
        [J:= (J1 + 2.0*J2);
        JO:= J*J1;
        RlOut(0, JO);
        if rem((N+1)/5) = 0 then CrLf(0);
        J2:= J1;  J1:= J;
        ];
CrLf(0);
J2:= 0.0;  J1:= 1.0;  N:= 0;
loop    [J:= J1 + 2.0*J2;
        if IsPrime(fix(J)) then
            [RlOut(0, J);
            N:= N+1;
            if rem(N/5) = 0 then CrLf(0);
            if N >= 10 then quit;
            ];
        J2:= J1;  J1:= J;
        ];
]
Output:
             0             1             1             3             5
            11            21            43            85           171
           341           683          1365          2731          5461
         10923         21845         43691         87381        174763
        349525        699051       1398101       2796203       5592405
      11184811      22369621      44739243      89478485     178956971

             2             1             5             7            17
            31            65           127           257           511
          1025          2047          4097          8191         16385
         32767         65537        131071        262145        524287
       1048577       2097151       4194305       8388607      16777217
      33554431      67108865     134217727     268435457     536870911

             0             1             3            15            55
           231           903          3655         14535         58311
        232903        932295       3727815      14913991      59650503
     238612935     954429895    3817763271   15270965703   61084037575

             3             5            11            43           683
          2731         43691        174763       2796203     715827883