Jump to content

Hough transform

From Rosetta Code
Task
Hough transform
You are encouraged to solve this task according to the task description, using any language you may know.
Task

Implement the Hough transform, which is used as part of feature extraction with digital images.

It is a tool that makes it far easier to identify straight lines in the source image, whatever their orientation.

The transform maps each point in the target image, , to the average color of the pixels on the corresponding line of the source image (in -space, where the line corresponds to points of the form ). The idea is that where there is a straight line in the original image, it corresponds to a bright (or dark, depending on the color of the background field) spot; by applying a suitable filter to the results of the transform, it is possible to extract the locations of the lines in the original image.

Sample PNG image to use for the Hough transform.

The target space actually uses polar coordinates, but is conventionally plotted on rectangular coordinates for display. There's no specification of exactly how to map polar coordinates to a flat surface for display, but a convenient method is to use one axis for and the other for , with the center of the source image being the origin.

There is also a spherical Hough transform, which is more suited to identifying planes in 3D data.

BBC BASIC

BBC BASIC uses Cartesian coordinates so the image is 'upside down' compared with some other solutions.

      Width% = 320
      Height% = 240
      
      VDU 23,22,Width%;Height%;8,16,16,128
      *DISPLAY Pentagon.bmp
      OFF
      
      DIM hist%(Width%-1, Height%-1)
      
      rs = 2 * SQR(Width%^2 + Height%^2) / Height% : REM Radial step
      ts = PI / Width% : REM Angular step
      h% = Height% / 2
      
      REM Hough transform:
      FOR y% = 0 TO Height%-1
        FOR x% = 0 TO Width%-1
          IF TINT(x%*2, y%*2) = 0 THEN
            FOR t% = 0 TO Width%-1
              th = t% * ts
              r% = (x%*COS(th) + y%*SIN(th)) / rs + h% + 0.5
              hist%(t%,r%) += 1
            NEXT
          ENDIF
        NEXT
      NEXT y%
      
      REM Find max:
      max% = 0
      FOR y% = 0 TO Height%-1
        FOR x% = 0 TO Width%-1
          IF hist%(x%,y%) > max% max% = hist%(x%,y%)
        NEXT
      NEXT y%
      
      REM Plot:
      GCOL 1
      FOR y% = 0 TO Height%-1
        FOR x% = 0 TO Width%-1
          c% = 255 * hist%(x%,y%) / max%
          COLOUR 1, c%, c%, c%
          LINE x%*2,y%*2,x%*2,y%*2
        NEXT
      NEXT y%
      
      REPEAT
        WAIT 1
      UNTIL FALSE

C

D

Translation of: Go

This uses the module from the Grayscale image Task. The output image is the same as in the Go solution.

import std.math, grayscale_image;

Image!Gray houghTransform(in Image!Gray im,
                          in size_t hx=460, in size_t hy=360)
pure nothrow in {
    assert(im !is null);
    assert(hx > 0 && hy > 0);
    assert((hy & 1) == 0, "hy argument must be even.");
} body {
    auto result = new Image!Gray(hx, hy);
    result.clear(Gray.white);

    immutable double rMax = hypot(im.nx, im.ny);
    immutable double dr = rMax / (hy / 2.0);
    immutable double dTh = PI / hx;

    foreach (immutable y; 0 .. im.ny) {
        foreach (immutable x; 0 .. im.nx) {
            if (im[x, y] == Gray.white)
                continue;
            foreach (immutable iTh; 0 .. hx) {
                immutable double th = dTh * iTh;
                immutable double r = x * cos(th) + y * sin(th);
                immutable iry = hy / 2 - cast(int)floor(r / dr + 0.5);
                if (result[iTh, iry] > Gray(0))
                    result[iTh, iry]--;
            }
        }
    }
    return result;
}

void main() {
    (new Image!RGB)
    .loadPPM6("Pentagon.ppm")
    .rgb2grayImage()
    .houghTransform()
    .savePGM("Pentagon_hough.pgm");
}

Go

Output png
Translation of: Python
package main

import (
    "fmt"
    "image"
    "image/color"
    "image/draw"
    "image/png"
    "math"
    "os"
)

func hough(im image.Image, ntx, mry int) draw.Image {
    nimx := im.Bounds().Max.X
    mimy := im.Bounds().Max.Y

    him := image.NewGray(image.Rect(0, 0, ntx, mry))
    draw.Draw(him, him.Bounds(), image.NewUniform(color.White),
        image.Point{}, draw.Src)

    rmax := math.Hypot(float64(nimx), float64(mimy))
    dr := rmax / float64(mry/2)
    dth := math.Pi / float64(ntx)

    for jx := 0; jx < nimx; jx++ {
        for iy := 0; iy < mimy; iy++ {
            col := color.GrayModel.Convert(im.At(jx, iy)).(color.Gray)
            if col.Y == 255 {
                continue
            }
            for jtx := 0; jtx < ntx; jtx++ {
                th := dth * float64(jtx)
                r := float64(jx)*math.Cos(th) + float64(iy)*math.Sin(th)
                iry := mry/2 - int(math.Floor(r/dr+.5))
                col = him.At(jtx, iry).(color.Gray)
                if col.Y > 0 {
                    col.Y--
                    him.SetGray(jtx, iry, col)
                }
            }
        }
    }
    return him
}

func main() {
    f, err := os.Open("Pentagon.png")
    if err != nil {
        fmt.Println(err)
        return
    }
    pent, err := png.Decode(f)
    if err != nil {
        fmt.Println(err)
        return
    }
    if err = f.Close(); err != nil {
        fmt.Println(err)
    }
    h := hough(pent, 460, 360)
    if f, err = os.Create("hough.png"); err != nil {
        fmt.Println(err)
        return
    }
    if err = png.Encode(f, h); err != nil {
        fmt.Println(err)
    }
    if cErr := f.Close(); cErr != nil && err == nil {
        fmt.Println(err)
    }
}

Haskell

Library: JuicyPixels
import Control.Monad (forM_, when)
import Data.Array ((!))
import Data.Array.ST (newArray, writeArray, readArray, runSTArray)
import qualified Data.Foldable as F (maximum)
import System.Environment (getArgs, getProgName)

-- Library JuicyPixels:
import Codec.Picture
       (DynamicImage(ImageRGB8, ImageRGBA8), Image, PixelRGB8(PixelRGB8),
        PixelRGBA8(PixelRGBA8), imageWidth, imageHeight, pixelAt,
        generateImage, readImage, pixelMap, savePngImage)
import Codec.Picture.Types (extractLumaPlane, dropTransparency)

dot
  :: Num a
  => (a, a) -> (a, a) -> a
dot (x1, y1) (x2, y2) = x1 * x2 + y1 * y2

mag
  :: Floating a
  => (a, a) -> a
mag a = sqrt $ dot a a

sub
  :: Num a
  => (a, a) -> (a, a) -> (a, a)
sub (x1, y1) (x2, y2) = (x1 - x2, y1 - y2)

fromIntegralP
  :: (Integral a, Num b)
  => (a, a) -> (b, b)
fromIntegralP (x, y) = (fromIntegral x, fromIntegral y)

{-
  Create a Hough space image with y+ measuring the distance from
  the center of the input image on the range of 0 to half the hypotenuse
  and x+ measuring from [0, 2 * pi].
  The origin is in the upper left, so y is increasing down.
  The image is scaled according to thetaSize and distSize.
-}
hough :: Image PixelRGB8 -> Int -> Int -> Image PixelRGB8
hough image thetaSize distSize = hImage
  where
    width = imageWidth image
    height = imageHeight image
    wMax = width - 1
    hMax = height - 1
    xCenter = wMax `div` 2
    yCenter = hMax `div` 2
    lumaMap = extractLumaPlane image
    gradient x y =
      let orig = pixelAt lumaMap x y
          x_ = pixelAt lumaMap (min (x + 1) wMax) y
          y_ = pixelAt lumaMap x (min (y + 1) hMax)
      in fromIntegralP (orig - x_, orig - y_)
    gradMap =
      [ ((x, y), gradient x y)
      | x <- [0 .. wMax] 
      , y <- [0 .. hMax] ]
    -- The longest distance from the center, half the hypotenuse of the image.
    distMax :: Double
    distMax = (sqrt . fromIntegral $ height ^ 2 + width ^ 2) / 2
    {-
      The accumulation bins of the polar values.
      For each value in the gradient image, if the gradient length exceeds
      some threshold, consider it evidence of a line and plot all of the
      lines that go through that point in Hough space.
    -}
    accBin =
      runSTArray $
      do arr <- newArray ((0, 0), (thetaSize, distSize)) 0
         forM_ gradMap $
           \((x, y), grad) -> do
             let (x_, y_) = fromIntegralP $ (xCenter, yCenter) `sub` (x, y)
             when (mag grad > 127) $
               forM_ [0 .. thetaSize] $
               \theta -> do
                 let theta_ =
                       fromIntegral theta * 360 / fromIntegral thetaSize / 180 *
                       pi :: Double
                     dist = cos theta_ * x_ + sin theta_ * y_
                     dist_ = truncate $ dist * fromIntegral distSize / distMax
                     idx = (theta, dist_)
                 when (dist_ >= 0 && dist_ < distSize) $
                   do old <- readArray arr idx
                      writeArray arr idx $ old + 1
         return arr
    maxAcc = F.maximum accBin
    -- The image representation of the accumulation bins.
    hTransform x y =
      let l = 255 - truncate ((accBin ! (x, y)) / maxAcc * 255)
      in PixelRGB8 l l l
    hImage = generateImage hTransform thetaSize distSize

houghIO :: FilePath -> FilePath -> Int -> Int -> IO ()
houghIO path outpath thetaSize distSize = do
  image <- readImage path
  case image of
    Left err -> putStrLn err
    Right (ImageRGB8 image_) -> doImage image_
    Right (ImageRGBA8 image_) -> doImage $ pixelMap dropTransparency image_
    _ -> putStrLn "Expecting RGB8 or RGBA8 image"
  where
    doImage image = do
      let houghImage = hough image thetaSize distSize
      savePngImage outpath $ ImageRGB8 houghImage

main :: IO ()
main = do
  args <- getArgs
  prog <- getProgName
  case args of
    [path, outpath, thetaSize, distSize] ->
      houghIO path outpath (read thetaSize) (read distSize)
    _ ->
      putStrLn $
      "Usage: " ++ prog ++ " <image-file> <out-file.png> <width> <height>"

Example use:

HoughTransform Pentagon.png hough.png 360 360

J

Solution:

NB.*houghTransform v Produces a density plot of image y in hough space
NB. y is picture as an array with 1 at non-white points,
NB. x is resolution (width,height) of resulting image
houghTransform=: dyad define
  'w h'=. x                               NB. width and height of target image
  theta=. o. (%~ 0.5+i.) w                NB. theta in radians from 0 to π
  rho=. (4$.$. |.y) +/ .* 2 1 o./theta    NB. rho for each pixel at each theta
  'min max'=. (,~-) +/&.:*: $y            NB. min/max possible rho
  rho=. <. 0.5+ h * (rho-min) % max-min   NB. Rescale rho from 0 to h and round to int
  |.([: <:@(#/.~) (i.h)&,)"1&.|: rho      NB. consolidate into picture
)
Resulting viewmat image from J implementation of Hough Transform on sample pentagon image

Example use:

   require 'viewmat'
   require 'media/platimg'       NB. addon required pre J8
   Img=: readimg_jqtide_ jpath '~temp/pentagon.png'
   viewmat 460 360 houghTransform _1 > Img


Java

Code:

import java.awt.image.*;
import java.io.File;
import java.io.IOException;
import javax.imageio.*;

public class HoughTransform
{
  public static ArrayData houghTransform(ArrayData inputData, int thetaAxisSize, int rAxisSize, int minContrast)
  {
    int width = inputData.width;
    int height = inputData.height;
    int maxRadius = (int)Math.ceil(Math.hypot(width, height));
    int halfRAxisSize = rAxisSize >>> 1;
    ArrayData outputData = new ArrayData(thetaAxisSize, rAxisSize);
    // x output ranges from 0 to pi
    // y output ranges from -maxRadius to maxRadius
    double[] sinTable = new double[thetaAxisSize];
    double[] cosTable = new double[thetaAxisSize];
    for (int theta = thetaAxisSize - 1; theta >= 0; theta--)
    {
      double thetaRadians = theta * Math.PI / thetaAxisSize;
      sinTable[theta] = Math.sin(thetaRadians);
      cosTable[theta] = Math.cos(thetaRadians);
    }
    
    for (int y = height - 1; y >= 0; y--)
    {
      for (int x = width - 1; x >= 0; x--)
      {
        if (inputData.contrast(x, y, minContrast))
        {
          for (int theta = thetaAxisSize - 1; theta >= 0; theta--)
          {
            double r = cosTable[theta] * x + sinTable[theta] * y;
            int rScaled = (int)Math.round(r * halfRAxisSize / maxRadius) + halfRAxisSize;
            outputData.accumulate(theta, rScaled, 1);
          }
        }
      }
    }
    return outputData;
  }
  
  public static class ArrayData
  {
    public final int[] dataArray;
    public final int width;
    public final int height;
    
    public ArrayData(int width, int height)
    {
      this(new int[width * height], width, height);
    }
    
    public ArrayData(int[] dataArray, int width, int height)
    {
      this.dataArray = dataArray;
      this.width = width;
      this.height = height;
    }
    
    public int get(int x, int y)
    {  return dataArray[y * width + x];  }
    
    public void set(int x, int y, int value)
    {  dataArray[y * width + x] = value;  }
    
    public void accumulate(int x, int y, int delta)
    {  set(x, y, get(x, y) + delta);  }
    
    public boolean contrast(int x, int y, int minContrast)
    {
      int centerValue = get(x, y);
      for (int i = 8; i >= 0; i--)
      {
        if (i == 4)
          continue;
        int newx = x + (i % 3) - 1;
        int newy = y + (i / 3) - 1;
        if ((newx < 0) || (newx >= width) || (newy < 0) || (newy >= height))
          continue;
        if (Math.abs(get(newx, newy) - centerValue) >= minContrast)
          return true;
      }
      return false;
    }
    
    public int getMax()
    {
      int max = dataArray[0];
      for (int i = width * height - 1; i > 0; i--)
        if (dataArray[i] > max)
          max = dataArray[i];
      return max;
    }
  }
  
  public static ArrayData getArrayDataFromImage(String filename) throws IOException
  {
    BufferedImage inputImage = ImageIO.read(new File(filename));
    int width = inputImage.getWidth();
    int height = inputImage.getHeight();
    int[] rgbData = inputImage.getRGB(0, 0, width, height, null, 0, width);
    ArrayData arrayData = new ArrayData(width, height);
    // Flip y axis when reading image
    for (int y = 0; y < height; y++)
    {
      for (int x = 0; x < width; x++)
      {
        int rgbValue = rgbData[y * width + x];
        rgbValue = (int)(((rgbValue & 0xFF0000) >>> 16) * 0.30 + ((rgbValue & 0xFF00) >>> 8) * 0.59 + (rgbValue & 0xFF) * 0.11);
        arrayData.set(x, height - 1 - y, rgbValue);
      }
    }
    return arrayData;
  }
  
  public static void writeOutputImage(String filename, ArrayData arrayData) throws IOException
  {
    int max = arrayData.getMax();
    BufferedImage outputImage = new BufferedImage(arrayData.width, arrayData.height, BufferedImage.TYPE_INT_ARGB);
    for (int y = 0; y < arrayData.height; y++)
    {
      for (int x = 0; x < arrayData.width; x++)
      {
        int n = Math.min((int)Math.round(arrayData.get(x, y) * 255.0 / max), 255);
        outputImage.setRGB(x, arrayData.height - 1 - y, (n << 16) | (n << 8) | 0x90 | -0x01000000);
      }
    }
    ImageIO.write(outputImage, "PNG", new File(filename));
    return;
  }
  
  public static void main(String[] args) throws IOException
  {
    ArrayData inputData = getArrayDataFromImage(args[0]);
    int minContrast = (args.length >= 4) ? 64 : Integer.parseInt(args[4]);
    ArrayData outputData = houghTransform(inputData, Integer.parseInt(args[2]), Integer.parseInt(args[3]), minContrast);
    writeOutputImage(args[1], outputData);
    return;
  }
}
Output from example pentagon image

Example use:

java HoughTransform pentagon.png JavaHoughTransform.png 640 480 100


Julia

using ImageFeatures

img = fill(false,5,5)
img[3,:] .= true

println(hough_transform_standard(img))
Output:

Tuple{Float64,Float64}[(3.0, 1.5708)]

Kotlin

Translation of: Java
import java.awt.image.BufferedImage
import java.io.File
import javax.imageio.ImageIO

internal class ArrayData(val dataArray: IntArray, val width: Int, val height: Int) {

    constructor(width: Int, height: Int) : this(IntArray(width * height), width, height)

    operator fun get(x: Int, y: Int) = dataArray[y * width + x]

    operator fun set(x: Int, y: Int, value: Int) {
        dataArray[y * width + x] = value
    }

    operator fun invoke(thetaAxisSize: Int, rAxisSize: Int, minContrast: Int): ArrayData {
        val maxRadius = Math.ceil(Math.hypot(width.toDouble(), height.toDouble())).toInt()
        val halfRAxisSize = rAxisSize.ushr(1)
        val outputData = ArrayData(thetaAxisSize, rAxisSize)
        // x output ranges from 0 to pi
        // y output ranges from -maxRadius to maxRadius
        val sinTable = DoubleArray(thetaAxisSize)
        val cosTable = DoubleArray(thetaAxisSize)
        for (theta in thetaAxisSize - 1 downTo 0) {
            val thetaRadians = theta * Math.PI / thetaAxisSize
            sinTable[theta] = Math.sin(thetaRadians)
            cosTable[theta] = Math.cos(thetaRadians)
        }

        for (y in height - 1 downTo 0)
            for (x in width - 1 downTo 0)
                if (contrast(x, y, minContrast))
                    for (theta in thetaAxisSize - 1 downTo 0) {
                        val r = cosTable[theta] * x + sinTable[theta] * y
                        val rScaled = Math.round(r * halfRAxisSize / maxRadius).toInt() + halfRAxisSize
                        outputData.accumulate(theta, rScaled, 1)
                    }

        return outputData
    }

    fun writeOutputImage(filename: String) {
        val max = dataArray.max()!!
        val image = BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB)
        for (y in 0..height - 1)
            for (x in 0..width - 1) {
                val n = Math.min(Math.round(this[x, y] * 255.0 / max).toInt(), 255)
                image.setRGB(x, height - 1 - y, n shl 16 or (n shl 8) or 0x90 or -0x01000000)
            }

        ImageIO.write(image, "PNG", File(filename))
    }

    private fun accumulate(x: Int, y: Int, delta: Int) {
        set(x, y, get(x, y) + delta)
    }

    private fun contrast(x: Int, y: Int, minContrast: Int): Boolean {
        val centerValue = get(x, y)
        for (i in 8 downTo 0)
            if (i != 4) {
                val newx = x + i % 3 - 1
                val newy = y + i / 3 - 1
                if (newx >= 0 && newx < width && newy >= 0 && newy < height
                        && Math.abs(get(newx, newy) - centerValue) >= minContrast)
                    return true
            }
        return false
    }
}

internal fun readInputFromImage(filename: String): ArrayData {
    val image = ImageIO.read(File(filename))
    val w = image.width
    val h = image.height
    val rgbData = image.getRGB(0, 0, w, h, null, 0, w)
    // flip y axis when reading image
    val array = ArrayData(w, h)
    for (y in 0..h - 1)
        for (x in 0..w - 1) {
            var rgb = rgbData[y * w + x]
            rgb = ((rgb and 0xFF0000).ushr(16) * 0.30 + (rgb and 0xFF00).ushr(8) * 0.59 + (rgb and 0xFF) * 0.11).toInt()
            array[x, h - 1 - y] = rgb
        }

    return array
}

fun main(args: Array<out String>) {
    val inputData = readInputFromImage(args[0])
    val minContrast = if (args.size >= 4) 64 else args[4].toInt()
    inputData(args[2].toInt(), args[3].toInt(), minContrast).writeOutputImage(args[1])
}

Maple

with(ImageTools):
img := Read("pentagon.png")[..,..,1]:
img_x := Convolution (img, Matrix ([[1,2,1], [0,0,0],[-1,-2,-1]])):
img_y := Convolution (img, Matrix ([[-1,0,1],[-2,0,2],[-1,0,1]])):
img := Array (abs (img_x) + abs (img_y), datatype=float[8]):
countPixels := proc(M)
	local r,c,i,j,row,col:
	row := Array([]);
	col := Array([]);
	r,c := LinearAlgebra:-Dimensions(M);
	for i from 1 to r do
		for j from 1 to c do
			if M[i,j] <> 0 then 
				ArrayTools:-Append(row, i, inplace=true):
				ArrayTools:-Append(col, j, inplace=true):
			end if:
		end do:
	end do:
	return row,col:
end proc:
row,col := countPixels(img);
pTheta := proc(acc,r,c,x,y)
	local j, pos:
	for j from 1 to c do
		pos := ceil(x*cos((j-1)*Pi/180)+y*sin((j-1)*Pi/180)+r/2):
		acc[pos,j] := acc[pos,j]+1;
	end do:
end proc:
HoughTransform := proc(img,row,col)
   local r,c,pMax,theta,numThetas,numPs,acc,i:
   r,c := LinearAlgebra:-Dimensions(img);
   pMax := ceil(sqrt(r^2+c^2)):
   theta := [seq(evalf(i), i = 1..181, 1)]:
   numThetas := numelems(theta):
   numPs := 2*pMax+1:
   acc := Matrix(numPs, numThetas, fill=0,datatype=integer[4]):
   for i from 1 to numelems(row) do
   	pTheta(acc,numPs,numThetas,col[i],row[i]):
   end do:
   return acc;
end proc:
result :=HoughTransform(img,row,col);
Embed(Scale(FitIntensity(Create(result)), 1..500,1..500));

Mathematica / Wolfram Language

Radon[image, Method -> "Hough"]

MATLAB

Nim

Translation of: D
Library: nimPNG

We use the modules from tasks “Bitmap” and “Grayscale image”, adding necessary conversions to read and write PNG files.

import lenientops, math
import grayscale_image

const White = 255

func houghTransform*(img: GrayImage; hx = 460; hy = 360): GrayImage =
  assert not img.isNil
  assert hx > 0 and hy > 0
  assert (hy and 1) == 0, "hy argument must be even"

  result = newGrayImage(hx, hy)
  result.fill(White)

  let rMax = hypot(img.w.toFloat, img.h.toFloat)
  let dr = rMax / (hy / 2)
  let dTh = PI / hx

  for y in 0..<img.h:
    for x in 0..<img.w:
      if img[x, y] == White: continue
      for iTh in 0..<hx:
        let th = dTh * iTh
        let r = x * cos(th) + y * sin(th)
        let iry = hy div 2 - (r / dr).toInt
        if result[iTh, iry] > 0:
          result[iTh, iry] = result[iTh, iry] - 1


when isMainModule:
  import nimPNG
  import bitmap

  const Input = "Pentagon.png"
  const Output = "Hough.png"

  let pngImage = loadPNG24(seq[byte], Input).get()
  let grayImage = newGrayImage(pngImage.width, pngImage.height)

  # Convert to grayscale.
  for i in 0..grayImage.pixels.high:
    grayImage.pixels[i] = Luminance(0.2126 * pngImage.data[3 * i] +
                                    0.7152 * pngImage.data[3 * i + 1] +
                                    0.0722 * pngImage.data[3 * i + 2] + 0.5)

  # Apply Hough transform and convert to an RGB image.
  let houghImage = grayImage.houghTransform().toImage()

  # Save into a PNG file.
  # As nimPNG expects a sequence of bytes, not a sequence of colors, we have to make a copy.
  var data = newSeqOfCap[byte](houghImage.pixels.len * 3)
  for color in houghImage.pixels:
    data.add([color.r, color.g, color.b])
  discard savePNG24(Output, data, houghImage.w, houghImage.h)

Perl

Translation of: Sidef
use strict;
use warnings;

use Imager;

use constant pi => 3.14159265;

sub hough {
    my($im)     = shift;
    my($width)  = shift || 460;
    my($height) = shift || 360;
    $height = 2 * int $height/2;
 
    $height = 2 * int $height/2;
    my($xsize, $ysize) = ($im->getwidth, $im->getheight);
    my $ht = Imager->new(xsize => $width, ysize => $height);
    my @canvas;
    for my $i (0..$height-1) { for my $j (0..$width-1) { $canvas[$i][$j] = 255 } }
    $ht->box(filled => 1, color => 'white');

    my $rmax = sqrt($xsize**2 + $ysize**2);
    my $dr   = 2 * $rmax / $height;
    my $dth  = pi / $width;

    for my $x (0..$xsize-1) {
      for my $y (0..$ysize-1) {
        my $col = $im->getpixel(x => $x, y => $y);
        my($r,$g,$b) = $col->rgba;
        next if $r==255; # && $g==255 && $b==255;
        for my $k (0..$width) {
            my $th = $dth*$k;
            my $r2 = ($x*cos($th) + $y*sin($th));
            my $iry = ($height/2 + int($r2/$dr + 0.5));
            $ht->setpixel(x => $k, y => $iry, color => [ ($canvas[$iry][$k]--) x 3] );
        }
      }
    }
    return $ht;
}

my $img = Imager->new;
$img->read(file => 'ref/pentagon.png') or die "Cannot read: ", $img->errstr;
my $ht = hough($img);
$ht->write(file => 'hough_transform.png');

Phix

Library: Phix/pGUI
Translation of: Sidef
-- demo\rosetta\Hough_transform.exw
without js -- IupImage, imImage, im_width/height/pixel, allocate, 
            -- imFileImageLoadBitmap, IupImageFromImImage
include pGUI.e

function hypot(atom a,b) return sqrt(a*a+b*b) end function

function hough_transform(imImage im, integer width=460, height=360)
    height = 2*floor(height / 2)
    integer xsize = im_width(im),
            ysize = im_height(im)
    sequence canvas = repeat(repeat(255,width),height)
    atom rmax = hypot(xsize, ysize),
         dr = 2*(rmax / height),
         dth = (PI / width)
    for y=0 to ysize-1 do
        for x=0 to xsize-1 do
            integer {r,g,b} = im_pixel(im, x, y)
            if r!=255 then
                for k=1 to width do
                    atom th = dth*(k-1),
                         r2 = (x*cos(th) + y*sin(th))
                    integer iry = (height/2 + floor(r2/dr + 0.5))+1,
                            cik = canvas[iry][k] - 1
                    if cik>=0 then
                        canvas[iry][k] = cik
                    end if
                end for
            end if
        end for
    end for
    canvas = flatten(canvas) -- (needed by IupImage)
    Ihandle new_img = IupImage(width, height, canvas)
    for c=0 to 255 do
        IupSetStrAttributeId(new_img,"",c,"%d %d %d",{c,c,c})
    end for
    return new_img
end function
 
IupOpen()

atom pError = allocate(machine_word())
imImage im1 = imFileImageLoadBitmap("Pentagon320.png",0,pError)
if im1=NULL then ?"error opening Pentagon320.png" abort(0) end if
Ihandln image1 = IupImageFromImImage(im1),
        image2 = hough_transform(im1),
        label1 = IupLabel(),
        label2 = IupLabel()
IupSetAttributeHandle(label1, "IMAGE", image1)
IupSetAttributeHandle(label2, "IMAGE", image2)

Ihandle dlg = IupDialog(IupHbox({label1, label2}))
IupSetAttribute(dlg, "TITLE", "Hough transform")
IupShow(dlg)
if platform()!=JS then -- (no chance...)
    IupMainLoop()
    IupClose()
end if

Python

Library: PIL

This is the classical Hough transform as described in wikipedia. The code does not compute averages; it merely makes a point on the transformed image darker if a lot of points on the original image lie on the corresponding line. The output is almost identical to that of the Tcl code. The code works only with gray-scale images, but it is easy to extend to RGB.

from math import hypot, pi, cos, sin
from PIL import Image


def hough(im, ntx=460, mry=360):
    "Calculate Hough transform."
    pim = im.load()
    nimx, mimy = im.size
    mry = int(mry/2)*2          #Make sure that this is even
    him = Image.new("L", (ntx, mry), 255)
    phim = him.load()

    rmax = hypot(nimx, mimy)
    dr = rmax / (mry/2)
    dth = pi / ntx

    for jx in xrange(nimx):
        for iy in xrange(mimy):
            col = pim[jx, iy]
            if col == 255: continue
            for jtx in xrange(ntx):
                th = dth * jtx
                r = jx*cos(th) + iy*sin(th)
                iry = mry/2 + int(r/dr+0.5)
                phim[jtx, iry] -= 1
    return him


def test():
    "Test Hough transform with pentagon."
    im = Image.open("pentagon.png").convert("L")
    him = hough(im)
    him.save("ho5.bmp")


if __name__ == "__main__": test()

Racket

Raku

(formerly Perl 6) The GD module the output palette to 255 colors, so only transform darker pixels in the image.

Translation of: Perl
use GD;

my $filename = 'pentagon.ppm';
my $in = open($filename, :r, :enc<iso-8859-1>);
my ($type, $dim, $depth) = $in.lines[^3];
my ($xsize,$ysize) = split ' ', $dim;

my ($width, $height) = 460, 360;
my $image = GD::Image.new($width, $height);

my @canvas = [255 xx $width] xx $height;

my $rmax = sqrt($xsize**2 + $ysize**2);
my $dr   = 2 * $rmax / $height;
my $dth  = π / $width;

my $pixel = 0;
my %cstore;
for $in.lines.ords -> $r, $g, $b {
    $pixel++;
    next if $r > 130;

    my $x =       $pixel % $xsize;
    my $y = floor $pixel / $xsize;

    (^$width).map: -> $k {
        my $th = $dth*$k;
        my $r = ($x*cos($th) + $y*sin($th));
        my $iry = ($height/2 + ($r/$dr).round(1)).Int;
        my $c = '#' ~ (@canvas[$iry][$k]--).base(16) x 3;
        %cstore{$c} = $image.colorAllocate($c) if %cstore{$c}:!exists;
        $image.pixel($k, $iry, %cstore{$c});
    }
}

my $png_fh = $image.open("hough-transform.png", "wb");
$image.output($png_fh, GD_PNG);
$png_fh.close;

See Hough Transform (offsite .png image)

Ruby

require 'mathn'
require 'rubygems'
require 'gd2'
include GD2

def hough_transform(img)
  mx, my = img.w*0.5, img.h*0.5
  max_d = Math.sqrt(mx**2 + my**2)
  min_d = max_d * -1
  hough = Hash.new(0)
  (0..img.w).each do |x|
    puts "#{x} of #{img.w}"
    (0..img.h).each do |y|
      if img.pixel2color(img.get_pixel(x,y)).g > 32
        (0...180).each do |a|
          rad = a * (Math::PI / 180.0)
          d = (x-mx) * Math.cos(rad) + (y-my) * Math.sin(rad)
          hough["#{a.to_i}_#{d.to_i}"] = hough["#{a.to_i}_#{d.to_i}"] + 1
        end
      end
    end
  end
  heat = GD2::Image.import 'heatmap.png'
  out = GD2::Image::TrueColor.new(180,max_d*2)
  max = hough.values.max
  p max
  hough.each_pair do |k,v|
    a,d = k.split('_').map(&:to_i)
    c = (v / max) * 255
    c = heat.get_pixel(c,0)
    out.set_pixel(a, max_d + d, c)
  end
  out
end

Rust

//! Contributed by Gavin Baker <gavinb@antonym.org>
//! Adapted from the Go version

use std::fs::File;
use std::io::{self, BufRead, BufReader, BufWriter, Read, Write};
use std::iter::repeat;

/// Simple 8-bit grayscale image
struct ImageGray8 {
    width: usize,
    height: usize,
    data: Vec<u8>,
}

fn load_pgm(filename: &str) -> io::Result<ImageGray8> {
    // Open file
    let mut file = BufReader::new(File::open(filename)?);

    // Read header
    let mut magic_in = String::new();
    let _ = file.read_line(&mut magic_in)?;
    let mut width_in = String::new();
    let _ = file.read_line(&mut width_in)?;
    let mut height_in = String::new();
    let _ = file.read_line(&mut height_in)?;
    let mut maxval_in = String::new();
    let _ = file.read_line(&mut maxval_in)?;

    assert_eq!(magic_in, "P5\n");
    assert_eq!(maxval_in, "255\n");

    // Parse header
    let width = width_in
        .trim()
        .parse::<usize>()
        .map_err(|_| io::ErrorKind::InvalidData)?;
    let height: usize = height_in
        .trim()
        .parse::<usize>()
        .map_err(|_| io::ErrorKind::InvalidData)?;

    println!("Reading pgm file {}: {} x {}", filename, width, height);

    // Create image and allocate buffer
    let mut img = ImageGray8 {
        width,
        height,
        data: vec![],
    };

    // Read image data
    let expected_bytes = width * height;
    let bytes_read = file.read_to_end(&mut img.data)?;
    if bytes_read != expected_bytes {
        let kind = if bytes_read < expected_bytes {
            io::ErrorKind::UnexpectedEof
        } else {
            io::ErrorKind::InvalidData
        };
        let msg = format!("expected {} bytes", expected_bytes);
        return Err(io::Error::new(kind, msg));
    }

    Ok(img)
}

fn save_pgm(img: &ImageGray8, filename: &str) {
    // Open file
    let mut file = BufWriter::new(File::create(filename).unwrap());

    // Write header
    if let Err(e) = writeln!(&mut file, "P5\n{}\n{}\n255", img.width, img.height) {
        println!("Failed to write header: {}", e);
    }

    println!(
        "Writing pgm file {}: {} x {}",
        filename, img.width, img.height
    );

    // Write binary image data
    if let Err(e) = file.write_all(&(img.data[..])) {
        println!("Failed to image data: {}", e);
    }
}

#[allow(clippy::cast_precision_loss)]
#[allow(clippy::clippy::cast_possible_truncation)]
fn hough(image: &ImageGray8, out_width: usize, out_height: usize) -> ImageGray8 {
    let in_width = image.width;
    let in_height = image.height;

    // Allocate accumulation buffer
    let out_height = ((out_height / 2) * 2) as usize;
    let mut accum = ImageGray8 {
        width: out_width,
        height: out_height,
        data: repeat(255).take(out_width * out_height).collect(),
    };

    // Transform extents
    let rmax = (in_width as f64).hypot(in_height as f64);
    let dr = rmax / (out_height / 2) as f64;
    let dth = std::f64::consts::PI / out_width as f64;

    // Process input image in raster order
    for y in 0..in_height {
        for x in 0..in_width {
            let in_idx = y * in_width + x;
            let col = image.data[in_idx];
            if col == 255 {
                continue;
            }

            // Project into rho,theta space
            for jtx in 0..out_width {
                let th = dth * (jtx as f64);
                let r = (x as f64) * (th.cos()) + (y as f64) * (th.sin());

                let iry = out_height as i64 / 2 - (r / (dr as f64) + 0.5).floor() as i64;
                #[allow(clippy::clippy::cast_sign_loss)]
                let out_idx = (jtx as i64 + iry * out_width as i64) as usize;
                let col = accum.data[out_idx];
                if col > 0 {
                    accum.data[out_idx] = col - 1;
                }
            }
        }
    }
    accum
}

fn main() -> io::Result<()> {
    let image = load_pgm("resources/Pentagon.pgm")?;
    let accum = hough(&image, 460, 360);
    save_pgm(&accum, "hough.pgm");
    Ok(())
}


Scala

Translation of: Kotlin
import java.awt.image._
import java.io.File
import javax.imageio._

object HoughTransform extends App {
    override def main(args: Array[String]) {
        val inputData = readDataFromImage(args(0))
        val minContrast = if (args.length >= 4) 64 else args(4).toInt
        inputData(args(2).toInt, args(3).toInt, minContrast).writeOutputImage(args(1))
    }

    private def readDataFromImage(filename: String) = {
        val image = ImageIO.read(new File(filename))
        val width = image.getWidth
        val height = image.getHeight
        val rgbData = image.getRGB(0, 0, width, height, null, 0, width)
        val arrayData = new ArrayData(width, height)
        for (y <- 0 until height; x <- 0 until width) {
            var rgb = rgbData(y * width + x)
            rgb = (((rgb & 0xFF0000) >>> 16) * 0.30 + ((rgb & 0xFF00) >>> 8) * 0.59 +
                    (rgb & 0xFF) * 0.11).toInt
            arrayData(x, height - 1 - y) = rgb
        }
        arrayData
    }
}

class ArrayData(val width: Int, val height: Int) {
    def update(x: Int, y: Int, value: Int) {
        dataArray(x)(y) = value
    }

    def apply(thetaAxisSize: Int, rAxisSize: Int, minContrast: Int) = {
        val maxRadius = Math.ceil(Math.hypot(width, height)).toInt
        val halfRAxisSize = rAxisSize >>> 1
        val outputData = new ArrayData(thetaAxisSize, rAxisSize)
        val sinTable = Array.ofDim[Double](thetaAxisSize)
        val cosTable = sinTable.clone()
        for (theta <- thetaAxisSize - 1 until -1 by -1) {
            val thetaRadians = theta * Math.PI / thetaAxisSize
            sinTable(theta) = Math.sin(thetaRadians)
            cosTable(theta) = Math.cos(thetaRadians)
        }
        for (y <- height - 1 until -1 by -1; x <- width - 1 until -1 by -1)
            if (contrast(x, y, minContrast))
                for (theta <- thetaAxisSize - 1 until -1 by -1) {
                    val r = cosTable(theta) * x + sinTable(theta) * y
                    val rScaled = Math.round(r * halfRAxisSize / maxRadius).toInt + halfRAxisSize
                    outputData.dataArray(theta)(rScaled) += 1
                }

        outputData
    }

    def writeOutputImage(filename: String) {
        var max = Int.MinValue
        for (y <- 0 until height; x <- 0 until width) {
            val v = dataArray(x)(y)
            if (v > max) max = v
        }
        val image = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB)
        for (y <- 0 until height; x <- 0 until width) {
            val n = Math.min(Math.round(dataArray(x)(y) * 255.0 / max).toInt, 255)
            image.setRGB(x, height - 1 - y, (n << 16) | (n << 8) | 0x90 | -0x01000000)
        }
        ImageIO.write(image, "PNG", new File(filename))
    }

    private def contrast(x: Int, y: Int, minContrast: Int): Boolean = {
        val centerValue = dataArray(x)(y)
        for (i <- 8 until -1 by -1 if i != 4) {
            val newx = x + (i % 3) - 1
            val newy = y + (i / 3) - 1
            if (newx >= 0 && newx < width && newy >= 0 && newy < height &&
                    Math.abs(dataArray(newx)(newy) - centerValue) >= minContrast)
                return true
        }

        false
    }

    private val dataArray = Array.ofDim[Int](width, height)
}

SequenceL

Translation of: Java

Tail-Recursive SequenceL Code:

import <Utilities/Sequence.sl>;
import <Utilities/Math.sl>;

hough: int(2) * int * int * int -> int(2);
hough(image(2), thetaAxisSize, rAxisSize, minContrast) :=
    let
        initialResult[r,theta] := 0 foreach r within 1 ... rAxisSize, theta within 1 ... thetaAxisSize;
        
        result := houghHelper(image, minContrast, 1, 1, initialResult);
        
        max := vectorMax(vectorMax(result));
    in
        255 - min(round((result * 255 / max)), 255);

houghHelper(image(2), minContrast, x, y, result(2)) :=
    let
        thetaAxisSize := size(head(result));
        rAxisSize := size(result);
        
        width := size(head(image));
        height := size(image);
        maxRadius := ceiling(sqrt(width^2 + height^2));
        halfRAxisSize := rAxisSize / 2;
        
        rs[theta] := round((cos(theta) * x + sin(theta) * y) * halfRAxisSize / maxRadius) + halfRAxisSize
                     foreach theta within (0 ... (thetaAxisSize-1)) * pi / thetaAxisSize;
        
        newResult[r,theta] := result[r,theta] + 1 when rs[theta] = r-1 else result[r,theta];
        
        nextResult := result when not checkContrast(image, x, y, minContrast) else newResult;
        
        nextX := 1 when x = width else x + 1;
        nextY := y + 1 when x = width else y;
    in
        nextResult when x = width and y = height
    else
        houghHelper(image, minContrast, nextX, nextY, nextResult);
        
checkContrast(image(2), x, y, minContrast) := 
    let
        neighbors[i,j] := image[i,j] when i > 0 and i < size(image) and j > 0 and j < size(image[i])
                          foreach i within y-1 ... y+1, 
                                  j within x-1 ... x+1;
    in
        some(some(abs(image[y,x] - neighbors) >= minContrast));

C++ Driver Code:

Library: CImg
#include "SL_Generated.h"
#include "CImg.h"

using namespace cimg_library;

int main( int argc, char** argv )
{
    string fileName = "Pentagon.bmp";
    if(argc > 1) fileName = argv[1];
    int thetaAxisSize = 640; if(argc > 2) thetaAxisSize = atoi(argv[2]);
    int rAxisSize = 480; if(argc > 3) rAxisSize = atoi(argv[3]);
    int minContrast = 64; if(argc > 4) minContrast = atoi(argv[4]);
    int threads = 0; if(argc > 5) threads = atoi(argv[5]);
    char titleBuffer[200];
    SLTimer t;

    CImg<int> image(fileName.c_str());
    int imageDimensions[] = {image.height(), image.width(), 0};
    Sequence<Sequence<int> > imageSeq((void*) image.data(), imageDimensions);
    Sequence< Sequence<int> > result;

    sl_init(threads);

    t.start();
    sl_hough(imageSeq, thetaAxisSize, rAxisSize, minContrast, threads, result);
    t.stop();
    
    CImg<int> resultImage(result[1].size(), result.size());
    for(int y = 0; y < result.size(); y++)
        for(int x = 0; x < result[y+1].size(); x++)
            resultImage(x,result.size() - 1 - y) = result[y+1][x+1];
    
    sprintf(titleBuffer, "SequenceL Hough Transformation: %d X %d Image to %d X %d Result | %d Cores | Processed in %f sec\0", 
                         image.width(), image.height(), resultImage.width(), resultImage.height(), threads, t.getTime());
    resultImage.display(titleBuffer);

    sl_done();
    return 0;
}
Output:

Output Screenshot

Sidef

Translation of: Python
require('Imager')

func hough(im, width=460, height=360) {

    height = 2*floor(height / 2)

    var xsize = im.getwidth
    var ysize = im.getheight

    var ht = %s|Imager|.new(xsize => width, ysize => height)
    var canvas = height.of { width.of(255) }

    ht.box(filled => true, color => 'white')

    var rmax = hypot(xsize, ysize)
    var dr = 2*(rmax / height)
    var dth = (Num.pi / width)

    for y,x in (^ysize ~X ^xsize) {
        var col = im.getpixel(x => x, y => y)
        var (r,g,b) = col.rgba
        (r==255 && g==255 && b==255) && next
        for k in ^width {
            var th = dth*k
            var r = (x*cos(th) + y*sin(th))
            var iry = (height/2 + int(r/dr + 0.5))
            ht.setpixel(x => k, y => iry, color => 3.of(--canvas[iry][k]))
        }
    }

    return ht
}

var img = %s|Imager|.new(file => 'Pentagon.png')
var ht = hough(img)
ht.write(file => 'Hough transform.png')

Tcl

Library: Tk

Wren

Translation of: Kotlin
Library: DOME
import "graphics" for Canvas, Color, ImageData
import "dome" for Window, Process
import "math" for Math

var Hypot = Fn.new { |x, y| (x*x + y*y).sqrt }

class ArrayData {
    construct new(width, height) {
        _width  = width
        _height = height
        _dataArray = List.filled(width * height, 0)
    }

    width  { _width }
    height { _height }

    [x, y] { _dataArray[y * _width + x] }

    [x, y]=(v) { _dataArray[y * _width + x] = v }

    transform(thetaAxisSize, rAxisSize, minContrast) {
        var maxRadius = Math.ceil(Hypot.call(_width, _height))
        var halfRAxisSize = rAxisSize >> 1
        var outputData = ArrayData.new(thetaAxisSize, rAxisSize)
        // x output ranges from 0 to pi
        // y output ranges from -maxRadius to maxRadius
        var sinTable = List.filled(thetaAxisSize, 0)
        var cosTable = List.filled(thetaAxisSize, 0)
        for (theta in thetaAxisSize - 1..0) {
            var thetaRadians = theta * Num.pi / thetaAxisSize
            sinTable[theta] = Math.sin(thetaRadians)
            cosTable[theta] = Math.cos(thetaRadians)
        }
        for (y in _height - 1..0) {
            for (x in _width - 1..0) {
                if (contrast(x, y, minContrast)) {
                    for (theta in thetaAxisSize - 1..0) {
                        var r = cosTable[theta] * x + sinTable[theta] * y
                        var rScaled = Math.round(r * halfRAxisSize / maxRadius) + halfRAxisSize
                        outputData.accumulate(theta, rScaled, 1)
                    }
                }
            }
        }
        return outputData
    }

    accumulate(x, y, delta) { this[x, y] = this[x, y] + delta }

    contrast(x, y, minContrast) {
        var centerValue = this[x, y]
        for (i in 8..0) {
            if (i != 4) {
                var newx = x + i % 3 - 1
                var newy = y + (i / 3).truncate - 1
                if (newx >= 0 && newx < width && newy >= 0 && newy < height &&
                    Math.abs(this[newx, newy] - centerValue) >= minContrast) return true
            }
        }
        return false
    }

    max {
        var max = _dataArray[0]
        for (i in width * height - 1..1) {
            if (_dataArray[i] > max) max = _dataArray[i]
        }
        return max
    }
}

class HoughTransform {
    construct new(inFile, outFile, width, height, minCont) {
        Window.title = "Hough Transform"
        Window.resize(width, height)
        Canvas.resize(width, height)
        _width   = width
        _height  = height
        _inFile  = inFile
        _outFile = outFile
        _minCont = minCont
    }

    init() {
        var dataArray = readInputFromImage(_inFile)
        dataArray = dataArray.transform(_width, _height, _minCont)
        writeOutputImage(_outFile, dataArray)
    }

    readInputFromImage(filename) {
        var inputImage = ImageData.load(filename)
        var width  = inputImage.width
        var height = inputImage.height
        var rgbData = []
        for (y in 0...height) {
            for (x in 0...width) rgbData.add(inputImage.pget(x, y))
        }
        var arrayData = ArrayData.new(width, height)
        // Flip y axis when reading image
        for (y in 0...height) {
            for (x in 0...width) {
                var rgbValue = rgbData[y * width + x]
                rgbValue = (rgbValue.r * 0.3 + rgbValue.g * 0.59 + rgbValue.b * 0.11).floor
                arrayData[x, height - 1 - y] = rgbValue
            }
        }
        return arrayData
    }

    writeOutputImage(filename, arrayData) {
        var max = arrayData.max
        var outputImage = ImageData.create(filename, arrayData.width, arrayData.height)
        for (y in 0...arrayData.height) {
            for (x in 0...arrayData.width) {
                var n = Math.min(Math.round(arrayData[x, y] * 255 / max), 255)
                var c = Color.new(n, n, 0x90)
                outputImage.pset(x, arrayData.height - 1 - y, c)
             }
        }
        outputImage.draw(0, 0)
        outputImage.saveToFile(filename)
    }

    update() {}

    draw(alpha) {}
}

var args = Process.args
System.print(args)
if (args.count != 7) Fiber.abort("There should be exactly 5 command line arguments.")
var inFile  = args[2]
var outFile = args[3]
var width   = Num.fromString(args[4])
var height  = Num.fromString(args[5])
var minCont = Num.fromString(args[6])
var Game = HoughTransform.new(inFile, outFile, width, height, minCont)
Output:
When called with: 'dome hough_transform.wren Pentagon.png Pentagon2.png 640 480 100' the resulting image is similar to that of the Java entry.

zkl

Uses the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl

Translation of: D
const WHITE=0xffFFff, X=0x010101;
fcn houghTransform(image,hx=460,hy=360){
   if(hy.isOdd) hy-=1; // hy argument must be even
   out:=PPM(hx,hy,WHITE);
   rMax:=image.w.toFloat().hypot(image.h);
   dr,dTh:=rMax/(hy/2), (0.0).pi/hx;

   foreach y,x in (image.h,image.w){
      if(image[x,y]==WHITE) continue;
      foreach iTh in (hx){
         th,r:=dTh*iTh, th.cos()*x + th.sin()*y;
	 iry:=hy/2 + (r/dr + 0.5).floor();  // y==0 is top 
	 if(out[iTh,iry]>0) out[iTh,iry]=out[iTh,iry] - X;
      }
   }
   out
}
fcn readPNG2PPM(fileName){
   p:=System.popen("convert \"%s\" ppm:-".fmt(fileName),"r");
      img:=PPM.readPPM(p);
   p.close();
   img
}
houghTransform(readPNG2PPM("pentagon.png"))
.write(File("pentagon_hough.ppm","wb"));
Output:

The output image looks the same as in the Go solution.

http://www.zenkinetic.com/Images/RosettaCode/pentagon_hough.jpg

Cookies help us deliver our services. By using our services, you agree to our use of cookies.