# Exactly three adjacent 3 in lists

Exactly three adjacent 3 in lists is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Given 5 lists of ints:
list[1] = [9,3,3,3,2,1,7,8,5]
list[2] = [5,2,9,3,3,7,8,4,1]
list[3] = [1,4,3,6,7,3,8,3,2]
list[4] = [1,2,3,4,5,6,7,8,9]
list[5] = [4,6,8,7,2,3,3,3,1]

For each list, print 'true' if the list contains exactly three '3's that form a consecutive subsequence, otherwise print 'false'.

## 11l

```V lists = [[9,3,3,3,2,1,7,8,5],
[5,2,9,3,3,7,8,4,1],
[1,4,3,6,7,3,8,3,2],
[1,2,3,4,5,6,7,8,9],
[4,6,8,7,2,3,3,3,1]]

L(l) lists
print(l, end' ‘ -> ’)
L(i) 0 .< l.len - 2
I l[i] == l[i + 1] == l[i + 2] == 3
print(‘True’)
L.break
L.was_no_break
print(‘False’)```
Output:
```[9, 3, 3, 3, 2, 1, 7, 8, 5] -> True
[5, 2, 9, 3, 3, 7, 8, 4, 1] -> False
[1, 4, 3, 6, 7, 3, 8, 3, 2] -> False
[1, 2, 3, 4, 5, 6, 7, 8, 9] -> False
[4, 6, 8, 7, 2, 3, 3, 3, 1] -> True
```

## 8080 Assembly

```	org	100h
jmp	demo
;;;	See if the list at [HL] with length DE has three
;;;	consecutive 3s.
;;;	Returns with zero flag set if the list as three 3s,
;;;	clear if not.
three3:	lxi	b,3		; B = threes seen, C holds a 3
t_loop:	mov	a,m		; Get next element
inx	h
cmp	c		; A three?
jz	three
mov	a,b		; Not a three, not part of sequence
cmp	c		; So we must have seen either three 3s,
jz	t_next
ora	a		; or none at all
rnz
t_next:	dcx	d		; Are we at the end yet?
mov	a,d
ora	e
rz
jmp	t_loop		; If not, keep going
three:	inr	b		; A three - count it
mov	a,c		; But see if we don't have too many 3s
cmp	b
rc			; If too many 3s, stop
jmp	t_next
;;;	Test the given lists and print "true" or "false"
demo:	lxi	h,lists		; List pointer
d_loop:	mov	e,m		; Load pointer to next list
inx	h
mov	d,m
inx	h
mov	a,d		; If at the end, stop
ora	e
rz
push	h		; Otherwise, keep the pointer
xchg
lxi	d,9		; The lists are all of length 9
call	three3		; See if the list matches
mvi	c,9		; CP/M 'puts'
lxi	d,true		; Print true or false
jz	d_prn
lxi	d,false
d_prn:	call	5
pop	h		; Get the list pointer back
jmp 	d_loop		; Next list
true:	db	"true \$"
false:	db	"false \$"
;;;	Lists
lists:	dw	list1,list2,list3,list4,list5,0
list1: 	db	9,3,3,3,2,1,7,8,5
list2:	db	5,2,9,3,3,7,8,4,1
list3:	db	1,4,3,6,7,3,8,3,2
list4:	db	1,2,3,4,5,6,7,8,9
list5:	db	4,6,8,7,2,3,3,3,1
```
Output:
`true false false false true`

```with Ada.Text_Io;  use Ada.Text_Io;

procedure Exactly_3 is

type List_Type is array (Positive range <>) of Integer;

function Has_3_Consecutive (List : List_Type) return Boolean is
Conseq : constant Natural := 3;
Match  : constant Integer := 3;
Count  : Natural := 0;
begin
for Element of List loop
if Element = Match then
Count := Count + 1;
else
if Count = Conseq then
return True;
else
Count := 0;
end if;
end if;
end loop;
return (Count = Conseq);
end Has_3_Consecutive;

procedure Put (List : List_Type) is
begin
Put ("[");
for Element of List loop
Put (Integer'Image (Element));
Put (" ");
end loop;
Put ("]");
end Put;

procedure Test (List : List_Type) is
Result : constant Boolean := Has_3_Consecutive (List);
begin
Put (List);
Put (" -> ");
Put (Boolean'Image (Result));
New_Line;
end Test;

begin
Test ((9,3,3,3,2,1,7,8,5));
Test ((5,2,9,3,3,7,8,4,1));
Test ((1,4,3,6,7,3,8,3,2));
Test ((1,2,3,4,5,6,7,8,9));
Test ((4,6,8,7,2,3,3,3,1));

Test ((4,6,8,7,2,3,3,3,3)); -- Four tailing
Test ((4,6,8,7,2,1,3,3,3)); -- Three tailing
Test ((1,3,3,3,3,4,5,8,9));

Test ((3,3,3,3));
Test ((3,3,3));
Test ((3,3));
Test ((1 => 3));        -- One element
Test ((1 .. 0 => <>));  -- No elements
end Exactly_3;
```
Output:
```[ 9  3  3  3  2  1  7  8  5 ] -> TRUE
[ 5  2  9  3  3  7  8  4  1 ] -> FALSE
[ 1  4  3  6  7  3  8  3  2 ] -> FALSE
[ 1  2  3  4  5  6  7  8  9 ] -> FALSE
[ 4  6  8  7  2  3  3  3  1 ] -> TRUE
[ 4  6  8  7  2  3  3  3  3 ] -> FALSE
[ 4  6  8  7  2  1  3  3  3 ] -> TRUE
[ 1  3  3  3  3  4  5  8  9 ] -> FALSE
[ 3  3  3  3 ] -> FALSE
[ 3  3  3 ] -> TRUE
[ 3  3 ] -> FALSE
[ 3 ] -> FALSE
[] -> FALSE
```

## ALGOL 68

Including the extra test cases from the Raku and Wren samples.

```BEGIN # test lists contain exactly 3 threes and that they are adjacent #
[]INT   list1 = ( 9, 3, 3, 3, 2, 1, 7, 8, 5 ); # task test case  #
[]INT   list2 = ( 5, 2, 9, 3, 3, 7, 8, 4, 1 ); #   "    "    "   #
[]INT   list3 = ( 1, 4, 3, 6, 7, 3, 8, 3, 2 ); #   "    "    "   #
[]INT   list4 = ( 1, 2, 3, 4, 5, 6, 7, 8, 9 ); #   "    "    "   #
[]INT   list5 = ( 4, 6, 8, 7, 2, 3, 3, 3, 1 ); #   "    "    "   #
[]INT   list6 = ( 3, 3, 3, 1, 2, 4, 5, 1, 3 ); # additional test from the Raku/Wren sample #
[]INT   list7 = ( 0, 3, 3, 3, 3, 7, 2, 2, 6 ); # additional test from the Raku/Wren sample #
[]INT   list8 = ( 3, 3, 3, 3, 3, 4, 4, 4, 4 ); # additional test from the Raku/Wren sample #
[][]INT lists = ( list1, list2, list3, list4, list5, list6, list7, list8 );
FOR l pos FROM LWB lists TO UPB lists DO
[]INT list       = lists[ l pos ];
INT   threes    := 0;  # number of threes in the list #
INT   three pos := 0;  # position of the last three in the list #
BOOL  list ok   := FALSE;
FOR e pos FROM LWB list TO UPB list DO
IF list[ e pos ] = 3 THEN
threes   +:= 1;
three pos := e pos
FI
OD;
IF threes = 3 THEN
# exactly 3 threes - check they are adjacent #
list ok := ( list[ three pos - 1 ] = 3 AND list[ three pos - 2 ] = 3 )
FI;
# show the result #
print( ( "[" ) );
FOR e pos FROM LWB list TO UPB list DO
print( ( " ", whole( list[ e pos ], 0 ) ) )
OD;
print( ( " ] -> ", IF list ok THEN "true" ELSE "false" FI, newline ) )
OD
END```
Output:
```[ 9 3 3 3 2 1 7 8 5 ] -> true
[ 5 2 9 3 3 7 8 4 1 ] -> false
[ 1 4 3 6 7 3 8 3 2 ] -> false
[ 1 2 3 4 5 6 7 8 9 ] -> false
[ 4 6 8 7 2 3 3 3 1 ] -> true
[ 3 3 3 1 2 4 5 1 3 ] -> false
[ 0 3 3 3 3 7 2 2 6 ] -> false
[ 3 3 3 3 3 4 4 4 4 ] -> false
```

## AppleScript

```------- EXACTLY N INSTANCES OF N AND ALL CONTIGUOUS ------

-- nnPeers :: Int -> [Int] -> Bool
on nnPeers(n)
script p
on |λ|(x)
n = x
end |λ|
end script

script notP
on |λ|(x)
n ≠ x
end |λ|
end script

script
on |λ|(xs)
set {contiguous, residue} to ¬
span(p, dropWhile(notP, xs))

n = length of contiguous and ¬
all(notP, residue)
end |λ|
end script
end nnPeers

--------------------------- TEST -------------------------
on run
set xs to [¬
[9, 3, 3, 3, 2, 1, 7, 8, 5], ¬
[5, 2, 9, 3, 3, 7, 8, 4, 1], ¬
[1, 4, 3, 6, 7, 3, 8, 3, 2], ¬
[1, 2, 3, 4, 5, 6, 7, 8, 9], ¬
[4, 6, 8, 7, 2, 3, 3, 3, 1]]

set p to nnPeers(3)

script test
on |λ|(x)
showList(x) & " -> " & p's |λ|(x)
end |λ|
end script

unlines(map(test, xs))
end run

------------------------- GENERIC ------------------------

-- all :: (a -> Bool) -> [a] -> Bool
on all(p, xs)
-- True if p holds for every value in xs
tell mReturn(p)
set lng to length of xs
repeat with i from 1 to lng
if not |λ|(item i of xs, i, xs) then return false
end repeat
true
end tell
end all

-- dropWhile :: (a -> Bool) -> [a] -> [a]
-- dropWhile :: (Char -> Bool) -> String -> String
on dropWhile(p, xs)
set lng to length of xs
set i to 1
tell mReturn(p)
repeat while i ≤ lng and |λ|(item i of xs)
set i to i + 1
end repeat
end tell
items i thru -1 of xs
end dropWhile

-- intercalate :: String -> [String] -> String
on intercalate(delim, xs)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, delim}
set s to xs as text
set my text item delimiters to dlm
s
end intercalate

-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
-- The list obtained by applying f
-- to each element of xs.
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map

-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
-- 2nd class handler function lifted into 1st class script wrapper.
if script is class of f then
f
else
script
property |λ| : f
end script
end if
end mReturn

-- showList :: [a] -> String
on showList(xs)
"[" & intercalate(", ", map(my str, xs)) & "]"
end showList

-- span :: (a -> Bool) -> [a] -> ([a], [a])
on span(p, xs)
-- The longest (possibly empty) prefix of xs
-- that contains only elements satisfying p,
-- tupled with the remainder of xs.
-- span(p, xs) eq (takeWhile(p, xs), dropWhile(p, xs))
script go
property mp : mReturn(p)
on |λ|(vs)
if {} ≠ vs then
set x to item 1 of vs
if |λ|(x) of mp then
set {ys, zs} to |λ|(rest of vs)
{{x} & ys, zs}
else
{{}, vs}
end if
else
{{}, {}}
end if
end |λ|
end script
|λ|(xs) of go
end span

-- str :: a -> String
on str(x)
x as string
end str

-- unlines :: [String] -> String
on unlines(xs)
-- A single string formed by the intercalation
-- of a list of strings with the newline character.
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set s to xs as text
set my text item delimiters to dlm
s
end unlines
```
Output:
```[9, 3, 3, 3, 2, 1, 7, 8, 5] -> true
[5, 2, 9, 3, 3, 7, 8, 4, 1] -> false
[1, 4, 3, 6, 7, 3, 8, 3, 2] -> false
[1, 2, 3, 4, 5, 6, 7, 8, 9] -> false
[4, 6, 8, 7, 2, 3, 3, 3, 1] -> true```

## AutoHotkey

```lists := [[9, 3, 3, 3, 2, 1, 7, 8, 5]
, [5, 2, 9, 3, 3, 7, 8, 4, 1]
, [1, 4, 3, 6, 7, 3, 8, 3, 2]
, [1, 2, 3, 4, 5, 6, 7, 8, 9]
, [4, 6, 8, 7, 2, 3, 3, 3, 1]]

L := []
for i, list in lists
{
c := cnsctv := 0
for j, v in list
{
cnsctv := (list[j] = 3 && list[j+1] = 3 && list[j+2] = 3) ? true : cnsctv
c += (v = 3) ? 1 : 0
L[i] .= (L[i] ? ", " : "" ) . v
}
result .= "[" L[i] "] : " (cnsctv && c=3 ? "true" : "false") "`n"
}
MsgBox % result
```
Output:
```[9, 3, 3, 3, 2, 1, 7, 8, 5] : true
[5, 2, 9, 3, 3, 7, 8, 4, 1] : false
[1, 4, 3, 6, 7, 3, 8, 3, 2] : false
[1, 2, 3, 4, 5, 6, 7, 8, 9] : false
[4, 6, 8, 7, 2, 3, 3, 3, 1] : true```

## AWK

```# syntax: GAWK -f EXACTLY_THREE_ADJACENT_3_IN_LISTS.AWK
BEGIN {
list[++n] = "9,3,3,3,2,1,7,8,5"
list[++n] = "5,2,9,3,3,7,8,4,1"
list[++n] = "1,4,3,6,7,3,8,3,2"
list[++n] = "1,2,3,4,5,6,7,8,9"
list[++n] = "4,6,8,7,2,3,3,3,1"
for (i=1; i<=n; i++) {
tmp = "," list[i] ","
printf("%s %s\n",sub(/,3,3,3,/,"",tmp)?"T":"F",list[i])
}
exit(0)
}
```
Output:
```T 9,3,3,3,2,1,7,8,5
F 5,2,9,3,3,7,8,4,1
F 1,4,3,6,7,3,8,3,2
F 1,2,3,4,5,6,7,8,9
T 4,6,8,7,2,3,3,3,1
```

## BASIC

### Applesoft BASIC

The GW-BASIC solution works without any changes.

### BASIC256

```arraybase 1
dim list(5, 9)
list = {{9,3,3,3,2,1,7,8,5}, {5,2,9,3,3,7,8,4,1},{1,4,3,6,7,3,8,3,2}, {1,2,3,4,5,6,7,8,9},{4,6,8,7,2,3,3,3,1}}

for i = 1 to list[?][]
go = false
pass = true
c = 0
for j = 1 to list[][?]
if list[i, j] = 3 then
c+=1
go = true
else
if go = true and c <> 3 then pass = false
go = false
end if
next j
print i; "   ";
if c = 3 and pass then print "true" else print "false"
next i```
Output:
`Similar to FreeBASIC entry.`

### Chipmunk Basic

Works with: Chipmunk Basic version 3.6.4
```100 cls
110 data 9,3,3,3,2,1,7,8,5
120 data 5,2,9,3,3,7,8,4,1
130 data 1,4,3,6,7,3,8,3,2
140 data 1,2,3,4,5,6,7,8,9
150 data 4,6,8,7,2,3,3,3,1
160 dim lista(5,9)
170 for i = 1 to ubound(lista)
180  for j = 1 to ubound(lista,2)
200  next j
210 next i
220 for i = 1 to ubound(lista)
230  go = false
240  pass = true
250  c = 0
260  for j = 1 to ubound(lista,2)
270   if lista(i,j) = 3 then
280    c = c+1
290    go = true
300   else
310    if go = true and c <> 3 then pass = false
320    go = false
330   endif
340  next j
350  print i;"   ";
360  if c = 3 and pass then print "True" else print "False"
370 next i
380 end
```
Output:
`Similar to FreeBASIC entry.`

### GW-BASIC

Works with: Applesoft BASIC
Works with: Chipmunk Basic
Works with: PC-BASIC version any
Works with: QBasic
Works with: Quite BASIC
```100 CLS : rem  100 HOME for Applesoft BASIC
110 LET f = 0
115 LET t = 1
120 DATA 9,3,3,3,2,1,7,8,5
130 DATA 5,2,9,3,3,7,8,4,1
140 DATA 1,4,3,6,7,3,8,3,2
150 DATA 1,2,3,4,5,6,7,8,9
160 DATA 4,6,8,7,2,3,3,3,1
170 DIM l(5,9)
180 FOR i = 1 TO 5
190  FOR j = 1 TO 9
210  NEXT j
220 NEXT i
230 FOR i = 1 TO 5
240  LET g = f
250  LET p = t
260  LET c = 0
270  FOR j = t TO 9
280   IF l(i,j) = 3 THEN LET c = c+1
281   IF l(i,j) = 3 THEN LET g = t
282   IF l(i,j) <> 3 THEN GOSUB 340
283   IF l(i,j) <> 3 THEN LET g = f
290  NEXT j
300  PRINT i; "   ";
310  IF c = 3 AND p = t THEN PRINT "true"
315  IF c <> 3 OR p <> t THEN PRINT "false"
320 NEXT i
330 END
340 IF g = t AND c <> 3 THEN LET p = f
350 RETURN
```
Output:
`Similar to FreeBASIC entry.`

### Minimal BASIC

Works with: QBasic
Works with: QuickBasic
Works with: Applesoft BASIC
Works with: BASICA
Works with: Chipmunk Basic
Works with: GW-BASIC
Works with: MSX BASIC version any
Translation of: Chipmunk Basic
```100 LET F = 0
110 LET T = 1
120 DATA 9,3,3,3,2,1,7,8,5
130 DATA 5,2,9,3,3,7,8,4,1
140 DATA 1,4,3,6,7,3,8,3,2
150 DATA 1,2,3,4,5,6,7,8,9
160 DATA 4,6,8,7,2,3,3,3,1
170 DIM L(5,9)
180 FOR I = 1 TO 5
190  FOR J = 1 TO 9
210  NEXT J
220 NEXT I
230 FOR I = 1 TO 5
240  LET G = F
250  LET P = T
260  LET C = 0
270  FOR J = T TO 9
280   IF L(I,J) = 3 THEN 300
290   IF L(I,J) <> 3 THEN 330
300   LET C = C + 1
310   LET G = T
320   GOTO 390
330   IF G = T THEN 360
340   LET G = F
350   GOTO 390
360   IF C <> 3 THEN 380
370   GOTO 390
380   LET P = F
390  NEXT J
400  PRINT I; "   ";
410  IF C = 3 THEN 430
420  GOTO 440
430  IF P = T THEN 460
440  IF C <> 3 THEN 480
450  IF P <> T THEN 480
460  PRINT "TRUE"
470  GOTO 490
480  PRINT "FALSE"
490 NEXT I
500 END
```
Output:
`Similar to FreeBASIC entry.`

### MSX Basic

Works with: MSX BASIC version any
```100 CLS
110 false = 0 : true = 1
120 DATA 9,3,3,3,2,1,7,8,5
130 DATA 5,2,9,3,3,7,8,4,1
140 DATA 1,4,3,6,7,3,8,3,2
150 DATA 1,2,3,4,5,6,7,8,9
160 DATA 4,6,8,7,2,3,3,3,1
170 DIM lis(5,9)
180 FOR i = 1 TO 5
190  FOR j = 1 TO 9
210  NEXT j
220 NEXT i
230 FOR i = 1 TO 5
240  go = false
250  pass = true
260  c = 0
270  FOR j = true TO 9
280   IF lis(i,j) = 3 THEN c = c+1 : go = true ELSE GOSUB 340 : go = false
290  NEXT j
300  PRINT i;"   ";
310  IF c = 3 AND pass = true THEN PRINT "true" ELSE PRINT "false"
320 NEXT i
330 END
340 IF go = true AND c <> 3 THEN pass = false
350 RETURN
```
Output:
`Similar to FreeBASIC entry.`

### PureBasic

```OpenConsole()

Dim lista.i(5, 9)
Define.b go, pass
Define.i i, j, c

For i = 1 To ArraySize(lista())
For j = 1 To ArraySize(lista(),2)
Next j
Next i

For i = 1 To ArraySize(lista())
go = #False
pass = #True
c = 0
For j = 1 To ArraySize(lista(),2)
If lista(i, j) = 3:
c + 1
go = #True
Else
If go = #True And c <> 3:
pass = #False
EndIf
go = #False
EndIf
Next j
Print(Str(i) + #TAB\$)
If c = 3 And pass = #True:
PrintN("True")
Else
PrintN("False")
EndIf
Next i

PrintN(#CRLF\$ + "--- terminado, pulsa RETURN---"): Input()
CloseConsole()

DataSection
Data.i 9,3,3,3,2,1,7,8,5
Data.i 5,2,9,3,3,7,8,4,1
Data.i 1,4,3,6,7,3,8,3,2
Data.i 1,2,3,4,5,6,7,8,9
Data.i 4,6,8,7,2,3,3,3,1
EndDataSection```
Output:
`Similar to FreeBASIC entry.`

### QBasic

Works with: QBasic version 1.1
Works with: QuickBasic version 4.5
```CONST False = 0: True = NOT False

DATA 9,3,3,3,2,1,7,8,5
DATA 5,2,9,3,3,7,8,4,1
DATA 1,4,3,6,7,3,8,3,2
DATA 1,2,3,4,5,6,7,8,9
DATA 4,6,8,7,2,3,3,3,1
DIM lista(1 TO 5, 1 TO 9) AS INTEGER
FOR i = 1 TO UBOUND(lista)
FOR j = 1 TO UBOUND(lista, 2)
NEXT j
NEXT i

FOR i = 1 TO UBOUND(lista)
go = False
pass = True
c = 0
FOR j = 1 TO UBOUND(lista, 2)
IF lista(i, j) = 3 THEN
c = c + 1
go = True
ELSE
IF go = True AND c <> 3 THEN pass = False
go = False
END IF
NEXT j
PRINT i; "   ";
IF c = 3 AND pass THEN PRINT "True" ELSE PRINT "False"
NEXT i
```
Output:
`Similar to FreeBASIC entry.`

### Quite BASIC

The GW-BASIC solution works without any changes.

### True BASIC

```DIM lista(5, 9)
DATA 9, 3, 3, 3, 2, 1, 7, 8, 5
DATA 5, 2, 9, 3, 3, 7, 8, 4, 1
DATA 1, 4, 3, 6, 7, 3, 8, 3, 2
DATA 1, 2, 3, 4, 5, 6, 7, 8, 9
DATA 4, 6, 8, 7, 2, 3, 3, 3, 1
FOR i = 1 TO UBOUND(lista,1)
FOR j = 1 TO UBOUND(lista,2)
NEXT j
NEXT i

FOR i = 1 TO UBOUND(lista,1)
LET go = 0
LET pass = 1
LET c = 0
FOR j = 1 TO UBOUND(lista,2)
IF lista(i, j) = 3 THEN
LET c = c + 1
LET go = 1
ELSE
IF go = 1 AND c <> 3 THEN LET pass = 0
LET go = 0
END IF
NEXT j
PRINT i; "   ";
IF c = 3 AND pass <> 0 THEN PRINT "True" ELSE PRINT "False"
NEXT i
END
```
Output:
`Similar to FreeBASIC entry.`

### Yabasic

```dim lista(5, 9)
data 9,3,3,3,2,1,7,8,5
data 5,2,9,3,3,7,8,4,1
data 1,4,3,6,7,3,8,3,2
data 1,2,3,4,5,6,7,8,9
data 4,6,8,7,2,3,3,3,1

for i = 1 to arraysize(lista(),1)
for j = 1 to arraysize(lista(),2)
next j
next i

for i = 1 to arraysize(lista(),1)
go = false
pass = true
c = 0
for j = 1 to arraysize(lista(),2)
if lista(i, j) = 3 then
c = c + 1
go = true
else
if go = true and c <> 3  pass = false
go = false
end if
next j
print i, "   ";
if c = 3 and pass then print "True" else print "False" : fi
next i```
Output:
`Similar to FreeBASIC entry.`

## C

```#include <stdio.h>
#include <stdbool.h>

bool three_3s(const int *items, size_t len) {
int threes = 0;
while (len--)
if (*items++ == 3)
if (threes<3) threes++;
else return false;
else if (threes != 0 && threes != 3)
return false;
return true;
}

void print_list(const int *items, size_t len) {
while (len--) printf("%d ", *items++);
}

int main() {
int lists[][9] = {
{9,3,3,3,2,1,7,8,5},
{5,2,9,3,3,6,8,4,1},
{1,4,3,6,7,3,8,3,2},
{1,2,3,4,5,6,7,8,9},
{4,6,8,7,2,3,3,3,1}
};

size_t list_length = sizeof(lists[0]) / sizeof(int);
size_t n_lists = sizeof(lists) / sizeof(lists[0]);

for (size_t i=0; i<n_lists; i++) {
print_list(lists[i], list_length);
printf("-> %s\n", three_3s(lists[i], list_length) ? "true" : "false");
}

return 0;
}
```
Output:
```9 3 3 3 2 1 7 8 5 -> true
5 2 9 3 3 6 8 4 1 -> false
1 4 3 6 7 3 8 3 2 -> false
1 2 3 4 5 6 7 8 9 -> false
4 6 8 7 2 3 3 3 1 -> true```

## CLU

```% See if a sequence has three consecutive 3s in it
% Works for any type that can be iterated over
three_3s = proc [T: type] (seq: T) returns (bool)
where T has elements: itertype (T) yields (int)
threes: int := 0

for n: int in T\$elements(seq) do
if n=3 then
if threes<3 then threes := threes + 1
else return(false)
end
else
if threes~=0 & threes~=3 then
return(false)
end
end
end
return(true)
end three_3s

start_up = proc ()
si = sequence[int]
ssi = sequence[si]

lists: ssi := ssi\$[
si\$[9,3,3,3,2,1,7,8,5],
si\$[5,2,9,3,3,6,8,4,1],
si\$[1,4,3,6,7,3,8,3,2],
si\$[1,2,3,4,5,6,7,8,9],
si\$[4,6,8,7,2,3,3,3,1]
]

po: stream := stream\$primary_output()
for list: si in ssi\$elements(lists) do
for i: int in si\$elements(list) do
stream\$puts(po, int\$unparse(i) || " ")
end
if three_3s[si](list) then
stream\$putl(po, "-> true")
else
stream\$putl(po, "-> false")
end
end
end start_up```
Output:
```9 3 3 3 2 1 7 8 5 -> true
5 2 9 3 3 6 8 4 1 -> false
1 4 3 6 7 3 8 3 2 -> false
1 2 3 4 5 6 7 8 9 -> false
4 6 8 7 2 3 3 3 1 -> true```

## Delphi

Works with: Delphi version 6.0

```var ThreeList: array [0..4,0..8] of integer = (
(9,3,3,3,2,1,7,8,5),
(5,2,9,3,3,7,8,4,1),
(1,4,3,6,7,3,8,3,2),
(1,2,3,4,5,6,7,8,9),
(4,6,8,7,2,3,3,3,1));

function CountThrees(TA: array of integer): integer;
{Count the number threes in array}
var I,Cnt: integer;
begin
Result:=0;
for I:=0 to High(TA) do
if TA[I]=3 then
begin
Inc(Result);
if Result=3 then exit;
end
else Result:=0;
end;

procedure TestThreeArrays(Memo: TMemo);
var I,J: integer;
var B: boolean;
var S: string;
begin
for I:=0 to High(ThreeList) do
begin
S:='';
for J:=0 to High(ThreeList[I]) do
begin
if J>0 then S:=S+',';
S:=S+IntToStr(ThreeList[I][J])
end;
if CountThrees(ThreeList[I])=3 then S:=S+' True'
else S:=S+' False';
end;
end;
```
Output:
```9,3,3,3,2,1,7,8,5 True
5,2,9,3,3,7,8,4,1 False
1,4,3,6,7,3,8,3,2 False
1,2,3,4,5,6,7,8,9 False
4,6,8,7,2,3,3,3,1 True
```

## Draco

```proc nonrec three_adjacent([*]int arr) bool:
word i, n;
i := 0;
n := 0;
while i<dim(arr,1)
and (arr[i]=3 or n=0 or n=3)
and n<=3 do
if arr[i]=3 then n := n+1 fi;
i := i+1
od;
i=dim(arr,1) and n=3
corp

proc nonrec main() void:
[5][9]int list = (
(9,3,3,3,2,1,7,8,5),
(5,2,9,3,3,7,8,4,1),
(1,4,3,6,7,3,8,3,2),
(1,2,3,4,5,6,7,8,9),
(4,6,8,7,2,3,3,3,1)
);

word i, j;
for i from 0 upto 4 do
for j from 0 upto 8 do write(list[i][j]:2) od;
writeln(" -> ",
if three_adjacent(list[i]) then "true" else "false" fi)
od
corp```
Output:
``` 9 3 3 3 2 1 7 8 5 -> true
5 2 9 3 3 7 8 4 1 -> false
1 4 3 6 7 3 8 3 2 -> false
1 2 3 4 5 6 7 8 9 -> false
4 6 8 7 2 3 3 3 1 -> true```

## EasyLang

```lists[][] = [ [ 9 3 3 3 2 1 7 8 5 ] [ 5 2 9 3 3 7 8 4 1 ] [ 1 4 3 6 7 3 8 3 2 ] [ 1 2 3 4 5 6 7 8 9 ] [ 4 6 8 7 2 3 3 3 1 ] ]
for v in l[]
if v = 3
cnt += 1
else
if cnt = 3
break 1
.
cnt = 0
.
.
return if cnt = 3
.
for i to len lists[][]
write has3adj3 lists[i][] & " "
.```
Output:
```1 0 0 0 1
```

## F#

Translation of: OCaml
```let has_adjacent n x =
let rec loop c = function
h :: t when h = x -> loop (c+1) t
|_ :: t -> c = n || loop 0 t
|_ -> c = n
in loop 0
```
Output:
```true
false
false
false
true
```

## Factor

Works with: Factor version 0.99 2022-04-03
```USING: formatting generalizations kernel math.statistics
sequences.extras ;

: adjacent? ( seq -- ? )
[ 3 = ] arg-where differences V{ 1 1 } = ;

{ 9 3 3 3 2 1 7 8 5 }
{ 5 2 9 3 3 7 8 4 1 }
{ 1 4 3 6 7 3 8 3 2 }
{ 1 2 3 4 5 6 7 8 9 }
{ 4 6 8 7 2 3 3 3 1 }

[ dup adjacent? "%u -> %u\n" printf ] 5 napply
```
Output:
```{ 9 3 3 3 2 1 7 8 5 } -> t
{ 5 2 9 3 3 7 8 4 1 } -> f
{ 1 4 3 6 7 3 8 3 2 } -> f
{ 1 2 3 4 5 6 7 8 9 } -> f
{ 4 6 8 7 2 3 3 3 1 } -> t
```

A somewhat simpler implementation without the fancy statistics and generalizations vocabs.

```USING: io kernel sequences ;
{
{ 9 3 3 3 2 1 7 8 5 }
{ 5 2 9 3 3 7 8 4 1 }
{ 1 4 3 6 7 3 8 3 2 }
{ 1 2 3 4 5 6 7 8 9 }
{ 4 6 8 7 2 3 3 3 1 }
}
[
[ [ 3 = ] count 3 = ]
[ { 3 3 3 } subseq-of? ]
bi and "true" "false" ? print
] each
```
Output:
```true
false
false
false
true
```

## FreeBASIC

```dim as integer list(1 to 5, 1 to 9) = {_
{9,3,3,3,2,1,7,8,5}, {5,2,9,3,3,7,8,4,1},_
{1,4,3,6,7,3,8,3,2}, {1,2,3,4,5,6,7,8,9},_
{4,6,8,7,2,3,3,3,1}}

dim as boolean go, pass
dim as integer i, j, c

for i = 1 to 5
go = false
pass = true
c = 0
for j = 1 to 9
if list(i, j) = 3 then
c+=1
go = true
else
if go = true and c<>3 then pass=false
go = false
end if
next j
print i;"   ";
if c = 3 and pass then print true else print false
next i```
Output:
```
1   true
2   false
3   false
4   false
5   true

```

## FutureBasic

```include "NSLog.incl"

NSUInteger i, j

CFMutableArrayRef lists = fn MutableArrayNew
MutableArrayInsertObjectAtIndex( lists, @"9,3,3,3,2,1,7,8,5", 0 )
MutableArrayInsertObjectAtIndex( lists, @"5,2,9,3,3,7,8,4,1", 1 )
MutableArrayInsertObjectAtIndex( lists, @"1,4,3,6,7,3,8,3,2", 2 )
MutableArrayInsertObjectAtIndex( lists, @"1,2,3,4,5,6,7,8,9", 3 )
MutableArrayInsertObjectAtIndex( lists, @"4,6,8,7,2,3,3,3,1", 4 )

for i = 0 to len(lists) -1
CFArrayRef tempArr = fn StringComponentsSeparatedByString( lists[i], @"," )
NSUInteger counter = 0, elements = len(tempArr) -1
for j = 0 to elements
if ( counter == 3 ) then NSLog( @"%@:  TRUE — contains 3 adjacent 3s.", lists[i] )
if ( counter != 3 ) and ( j == elements )
NSLog( @"%@: FALSE — doesn't contain 3 adjacent 3s.", lists[i] )
end if
if fn StringIsEqual( tempArr[j], @"3" ) ==  NO then counter = 0 : continue
if fn StringIsEqual( tempArr[j], @"3" ) == YES then counter++   : continue
next
next
end fn

HandleEvents```
Output:
```9,3,3,3,2,1,7,8,5:  TRUE — contains 3 adjacent 3s.
9,3,3,3,2,1,7,8,5: FALSE — doesn't contain 3 adjacent 3s.
5,2,9,3,3,7,8,4,1: FALSE — doesn't contain 3 adjacent 3s.
1,4,3,6,7,3,8,3,2: FALSE — doesn't contain 3 adjacent 3s.
1,2,3,4,5,6,7,8,9: FALSE — doesn't contain 3 adjacent 3s.
4,6,8,7,2,3,3,3,1:  TRUE — contains 3 adjacent 3s.
```

## Go

```package main

import "fmt"

func main() {
lists := [][]int{
{9, 3, 3, 3, 2, 1, 7, 8, 5},
{5, 2, 9, 3, 3, 7, 8, 4, 1},
{1, 4, 3, 6, 7, 3, 8, 3, 2},
{1, 2, 3, 4, 5, 6, 7, 8, 9},
{4, 6, 8, 7, 2, 3, 3, 3, 1},
{3, 3, 3, 1, 2, 4, 5, 1, 3},
{0, 3, 3, 3, 3, 7, 2, 2, 6},
{3, 3, 3, 3, 3, 4, 4, 4, 4},
}
for d := 1; d <= 4; d++ {
fmt.Printf("Exactly %d adjacent %d's:\n", d, d)
for _, list := range lists {
var indices []int
for i, e := range list {
if e == d {
indices = append(indices, i)
}
}
if len(indices) == d {
for i := 1; i < len(indices); i++ {
if indices[i]-indices[i-1] != 1 {
break
}
}
}
}
fmt.Println()
}
}
```
Output:
```Exactly 1 adjacent 1's:
[9 3 3 3 2 1 7 8 5] -> true
[5 2 9 3 3 7 8 4 1] -> true
[1 4 3 6 7 3 8 3 2] -> true
[1 2 3 4 5 6 7 8 9] -> true
[4 6 8 7 2 3 3 3 1] -> true
[3 3 3 1 2 4 5 1 3] -> false
[0 3 3 3 3 7 2 2 6] -> false
[3 3 3 3 3 4 4 4 4] -> false

[9 3 3 3 2 1 7 8 5] -> false
[5 2 9 3 3 7 8 4 1] -> false
[1 4 3 6 7 3 8 3 2] -> false
[1 2 3 4 5 6 7 8 9] -> false
[4 6 8 7 2 3 3 3 1] -> false
[3 3 3 1 2 4 5 1 3] -> false
[0 3 3 3 3 7 2 2 6] -> true
[3 3 3 3 3 4 4 4 4] -> false

[9 3 3 3 2 1 7 8 5] -> true
[5 2 9 3 3 7 8 4 1] -> false
[1 4 3 6 7 3 8 3 2] -> false
[1 2 3 4 5 6 7 8 9] -> false
[4 6 8 7 2 3 3 3 1] -> true
[3 3 3 1 2 4 5 1 3] -> false
[0 3 3 3 3 7 2 2 6] -> false
[3 3 3 3 3 4 4 4 4] -> false

[9 3 3 3 2 1 7 8 5] -> false
[5 2 9 3 3 7 8 4 1] -> false
[1 4 3 6 7 3 8 3 2] -> false
[1 2 3 4 5 6 7 8 9] -> false
[4 6 8 7 2 3 3 3 1] -> false
[3 3 3 1 2 4 5 1 3] -> false
[0 3 3 3 3 7 2 2 6] -> false
[3 3 3 3 3 4 4 4 4] -> true
```

```import Data.Bifunctor (bimap)
import Data.List (span)

nnPeers :: Int -> [Int] -> Bool
nnPeers n xs =
let p x = n == x
in uncurry (&&) \$
bimap
(p . length)
(not . any p)
(span p \$ dropWhile (not . p) xs)

--------------------------- TEST -------------------------
main :: IO ()
main =
putStrLn \$
unlines \$
fmap
(\xs -> show xs <> " -> " <> show (nnPeers 3 xs))
[ [9, 3, 3, 3, 2, 1, 7, 8, 5],
[5, 2, 9, 3, 3, 7, 8, 4, 1],
[1, 4, 3, 6, 7, 3, 8, 3, 2],
[1, 2, 3, 4, 5, 6, 7, 8, 9],
[4, 6, 8, 7, 2, 3, 3, 3, 1]
]
```
Output:
```[9,3,3,3,2,1,7,8,5] -> True
[5,2,9,3,3,7,8,4,1] -> False
[1,4,3,6,7,3,8,3,2] -> False
[1,2,3,4,5,6,7,8,9] -> False
[4,6,8,7,2,3,3,3,1] -> True```

## J

For the given test cases:

```lists=: >cutLF{{)n
9 3 3 3 2 1 7 8 5
5 2 9 3 3 7 8 4 1
1 4 3 6 7 3 8 3 2
1 2 3 4 5 6 7 8 9
4 6 8 7 2 3 3 3 1
}}

(,.~ (;:'false true')>@{~'3 3 3' +./@E.&".]) lists
true  9 3 3 3 2 1 7 8 5
false 5 2 9 3 3 7 8 4 1
false 1 4 3 6 7 3 8 3 2
false 1 2 3 4 5 6 7 8 9
true  4 6 8 7 2 3 3 3 1
```

However, for example, it's not clear what the result should be for an argument of 3 3 3 3 3 3 3 3 3.

## JavaScript

```(() => {
"use strict";

// ------- N INSTANCES OF N AND ALL CONTIGUOUS -------

// nnPeers :: Int -> [Int] -> Bool
const nnPeers = n =>
// True if xs contains exactly n instances of n
// and the instances are all contiguous.
xs => {
const
p = x => n === x,
mbi = xs.findIndex(p);

return -1 !== mbi ? (() => {
const
rest = xs.slice(mbi),
sample = rest.slice(0, n);

return n === sample.length && (
sample.every(p) && (
!rest.slice(n).some(p)
)
);
})() : false;
};

// ---------------------- TEST -----------------------
const main = () => [
[9, 3, 3, 3, 2, 1, 7, 8, 5],
[5, 2, 9, 3, 3, 7, 8, 4, 1],
[1, 4, 3, 6, 7, 3, 8, 3, 2],
[1, 2, 3, 4, 5, 6, 7, 8, 9],
[4, 6, 8, 7, 2, 3, 3, 3, 1]
]
.map(
xs => `\${JSON.stringify(xs)} -> \${nnPeers(3)(xs)}`
)
.join("\n");

return main();
})();
```
Output:
```[9,3,3,3,2,1,7,8,5] -> true
[5,2,9,3,3,7,8,4,1] -> false
[1,4,3,6,7,3,8,3,2] -> false
[1,2,3,4,5,6,7,8,9] -> false
[4,6,8,7,2,3,3,3,1] -> true```

## jq

Works with: jq

Works with gojq, the Go implementation of jq

The test cases, and the output, are exactly as for entry at #Wren.

Preliminaries

`def count(s): reduce s as \$x (0; .+1);`

```def lists : [
[9,3,3,3,2,1,7,8,5],
[5,2,9,3,3,7,8,4,1],
[1,4,3,6,7,3,8,3,2],
[1,2,3,4,5,6,7,8,9],
[4,6,8,7,2,3,3,3,1],
[3,3,3,1,2,4,5,1,3],
[0,3,3,3,3,7,2,2,6],
[3,3,3,3,3,4,4,4,4]
];

def threeConsecutiveThrees:
count(.[] == 3 // empty) == 3
and index([3,3,3]);

(lists[]
| "\(.) -> \(threeConsecutiveThrees)")```
Output:

As for #Wren.

## Julia

```function onlyconsecutivein(a::Vector{T}, lis::Vector{T}) where T
return any(i -> a == lis[i:i+length(a)-1], 1:length(lis)-length(a)+1) &&
all(count(x -> x == a[i], lis) == count(x -> x == a[i], a) for i in eachindex(a))
end

needle = [3, 3, 3]
for haystack in [
[9,3,3,3,2,1,7,8,5],
[5,2,9,3,3,7,8,4,1],
[1,4,3,3,3,3,8,3,2],
[1,2,3,4,5,6,7,8,9],
[4,6,8,7,2,3,3,3,1]]
println("\$needle in \$haystack: ", onlyconsecutivein(needle, haystack))
end

needle = [3, 2, 3]
for haystack in [
[9,3,3,3,2,3,7,8,5],
[5,6,9,1,3,2,3,4,1],
[1,4,3,6,7,3,8,3,2],
[1,2,3,4,5,6,7,8,9],
[4,6,8,7,2,3,2,3,1]]
println("\$needle in \$haystack: ", onlyconsecutivein(needle, haystack))
end
```
Output:
```[3, 3, 3] in [9, 3, 3, 3, 2, 1, 7, 8, 5]: true
[3, 3, 3] in [5, 2, 9, 3, 3, 7, 8, 4, 1]: false
[3, 3, 3] in [1, 4, 3, 3, 3, 3, 8, 3, 2]: false
[3, 3, 3] in [1, 2, 3, 4, 5, 6, 7, 8, 9]: false
[3, 3, 3] in [4, 6, 8, 7, 2, 3, 3, 3, 1]: true
[3, 2, 3] in [9, 3, 3, 3, 2, 3, 7, 8, 5]: false
[3, 2, 3] in [5, 6, 9, 1, 3, 2, 3, 4, 1]: true
[3, 2, 3] in [1, 4, 3, 6, 7, 3, 8, 3, 2]: false
[3, 2, 3] in [1, 2, 3, 4, 5, 6, 7, 8, 9]: false
[3, 2, 3] in [4, 6, 8, 7, 2, 3, 2, 3, 1]: false
```

## Mathematica / Wolfram Language

```(# -> MemberQ[Partition[#, 3, 1], {3, 3, 3}]) & /@ {{9, 3, 3, 3, 2, 1,
7, 8, 5}, {5, 2, 9, 3, 3, 7, 8, 4, 1}, {1, 4, 3, 6, 7, 3, 8, 3,
2}, {1, 2, 3, 4, 5, 6, 7, 8, 9}, {4, 6, 8, 7, 2, 3, 3, 3,
1}} // TableForm
```
Output:
```
{9,3,3,3,2,1,7,8,5}->True
{5,2,9,3,3,7,8,4,1}->False
{1,4,3,6,7,3,8,3,2}->False
{1,2,3,4,5,6,7,8,9}->False
{4,6,8,7,2,3,3,3,1}->True

```

## Nim

```const Lists = [[9, 3, 3, 3, 2, 1, 7, 8, 5],
[5, 2, 9, 3, 3, 7, 8, 4, 1],
[1, 4, 3, 6, 7, 3, 8, 3, 2],
[1, 2, 3, 4, 5, 6, 7, 8, 9],
[4, 6, 8, 7, 2, 3, 3, 3, 1]]

if s.len < 3: return false
var count = 0
for i in 0..s.high:
if s[i] == 3:
inc count
if count == 3: return true
else:
count = 0

for list in Lists:
```
Output:
```[9, 3, 3, 3, 2, 1, 7, 8, 5]: true
[5, 2, 9, 3, 3, 7, 8, 4, 1]: false
[1, 4, 3, 6, 7, 3, 8, 3, 2]: false
[1, 2, 3, 4, 5, 6, 7, 8, 9]: false
[4, 6, 8, 7, 2, 3, 3, 3, 1]: true
```

## OCaml

```let has_adjacent n x =
let rec loop c = function
| h :: t when h = x -> loop (succ c) t
| _ :: t -> c = n || loop 0 t
| _ -> c = n
in loop 0

let list = [
[9; 3; 3; 3; 2; 1; 7; 8; 5];
[5; 2; 9; 3; 3; 7; 8; 4; 1];
[1; 4; 3; 6; 7; 3; 8; 3; 2];
[1; 2; 3; 4; 5; 6; 7; 8; 9];
[4; 6; 8; 7; 2; 3; 3; 3; 1]]

let () =
List.iter (fun l -> Printf.printf " %B" (has_adjacent 3 3 l)) list
```
Output:
` true false false false true`

## Perl

### Specific

```#!/usr/bin/perl

use warnings;

my @lists = (
[9,3,3,3,2,1,7,8,5],
[5,2,9,3,3,7,8,4,1],
[1,4,3,6,7,3,8,3,2],
[1,2,3,4,5,6,7,8,9],
[4,6,8,7,2,3,3,3,1]);

for my \$ref ( @lists )
{
my @n = grep \$ref->[\$_] == 3, 0 .. \$#\$ref;
print "@\$ref => ",
@n == 3 && \$n[0] == \$n[1] - 1 && \$n[1] == \$n[2] - 1 ? 'true' : 'false',
"\n";
}
```
Output:
```9 3 3 3 2 1 7 8 5 => true
5 2 9 3 3 7 8 4 1 => false
1 4 3 6 7 3 8 3 2 => false
1 2 3 4 5 6 7 8 9 => false
4 6 8 7 2 3 3 3 1 => true```

### General

```use strict;
use warnings;

my @lists = (
[ < 9 3 3 3 2 1 7 8 5 > ],
[ < 5 2 9 3 3 7 8 4 1 > ],
[ < 1 4 3 6 7 3 8 3 2 > ],
[ < 1 2 3 4 5 6 7 8 9 > ],
[ < 4 6 8 7 2 3 3 3 1 > ],
[ < 3 3 3 1 2 4 5 1 3 > ],
[ < 0 3 9 3 3 7 2 2 6 > ],
[ < 3 3 3 3 3 4 4 4 4 > ],
);

print ' 'x21 . '0x0 1x1 2x2 3x3 4x4' . "\n";
for my \$ref ( @lists ) {
print "@\$ref: ";
for my \$n (0..4) {
my @i = grep \$ref->[\$_] == \$n, 0 .. \$#\$ref;
print '   ', \$n==0 && !@i || @i == \$n && (\$n==1 || (\$n-1 == grep \$i[\$_-1]+1 == \$i[\$_], 1..\$n-1)) ? 'Y' : 'N';
}
print "\n";
}
```
Output:
```                     0x0 1x1 2x2 3x3 4x4
9 3 3 3 2 1 7 8 5:    Y   Y   N   Y   N
5 2 9 3 3 7 8 4 1:    Y   Y   N   N   N
1 4 3 6 7 3 8 3 2:    Y   Y   N   N   N
1 2 3 4 5 6 7 8 9:    Y   Y   N   N   N
4 6 8 7 2 3 3 3 1:    Y   Y   N   Y   N
3 3 3 1 2 4 5 1 3:    Y   N   N   N   N
0 3 9 3 3 7 2 2 6:    N   N   Y   N   N
3 3 3 3 3 4 4 4 4:    Y   N   N   N   Y```

## Phix

```with javascript_semantics
procedure test(integer n, sequence s)
sequence f = find_all(n,s)
printf(1,"%v: %t\n",{s,length(f)=n and f[\$]-f[1]=n-1})
end procedure

papply(true,test,{3,{{9, 3, 3, 3, 2, 1, 7, 8, 5},
{5, 2, 9, 3, 3, 7, 8, 4, 1},
{1, 4, 3, 6, 7, 3, 8, 3, 2},
{1, 2, 3, 4, 5, 6, 7, 8, 9},
{4, 6, 8, 7, 2, 3, 3, 3, 1}}})
```
Output:

(Agrees with Raku and Wren with a for loop and the three extra tests)

```Exactly 3 adjacent 3's:
{9,3,3,3,2,1,7,8,5}: true
{5,2,9,3,3,7,8,4,1}: false
{1,4,3,6,7,3,8,3,2}: false
{1,2,3,4,5,6,7,8,9}: false
{4,6,8,7,2,3,3,3,1}: true
```

## Python

```'''N instances of N and all contiguous'''

from itertools import dropwhile, takewhile

# nnPeers :: Int -> [Int] -> Bool
def nnPeers(n):
'''True if xs contains exactly n instances of n
and all instances are contiguous.
'''
def p(x):
return n == x

def go(xs):
fromFirstMatch = list(dropwhile(
lambda v: not p(v),
xs
))
ns = list(takewhile(p, fromFirstMatch))
rest = fromFirstMatch[len(ns):]

return p(len(ns)) and (
not any(p(x) for x in rest)
)

return go

# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''Tests for N=3'''
print(
'\n'.join([
f'{xs} -> {nnPeers(3)(xs)}' for xs in [
[9, 3, 3, 3, 2, 1, 7, 8, 5],
[5, 2, 9, 3, 3, 7, 8, 4, 1],
[1, 4, 3, 6, 7, 3, 8, 3, 2],
[1, 2, 3, 4, 5, 6, 7, 8, 9],
[4, 6, 8, 7, 2, 3, 3, 3, 1]
]
])
)

# MAIN ---
if __name__ == '__main__':
main()
```
Output:
```[9, 3, 3, 3, 2, 1, 7, 8, 5] -> True
[5, 2, 9, 3, 3, 7, 8, 4, 1] -> False
[1, 4, 3, 6, 7, 3, 8, 3, 2] -> False
[1, 2, 3, 4, 5, 6, 7, 8, 9] -> False
[4, 6, 8, 7, 2, 3, 3, 3, 1] -> True```

## Quackery

Includes the extra test cases from the Raku and Wren solutions.

```  [ [] swap witheach
[ 3 = if
[ i^ join ] ]
dup size 3 != iff
[ drop false ]
done
unpack
1 - over != iff
[ 2drop false ]
done
1 - = ]             is three-threes ( [ --> b )

' [ [ 9 3 3 3 2 1 7 8 5 ]
[ 5 2 9 3 3 7 8 4 1 ]
[ 1 4 3 6 7 3 8 3 2 ]
[ 1 2 3 4 5 6 7 8 9 ]
[ 4 6 8 7 2 3 3 3 1 ]
[ 3 3 3 1 2 4 5 1 3 ]
[ 0 3 3 3 3 7 2 2 6 ]
[ 3 3 3 3 3 4 4 4 4 ] ]

witheach
[ dup echo sp
three-threes iff
[ say "true" ]
else [ say "false" ]
cr ]```
Output:
```[ 9 3 3 3 2 1 7 8 5 ] true
[ 5 2 9 3 3 7 8 4 1 ] false
[ 1 4 3 6 7 3 8 3 2 ] false
[ 1 2 3 4 5 6 7 8 9 ] false
[ 4 6 8 7 2 3 3 3 1 ] true
[ 3 3 3 1 2 4 5 1 3 ] false
[ 0 3 3 3 3 7 2 2 6 ] false
[ 3 3 3 3 3 4 4 4 4 ] false
```

## Raku

Generalized

```for 1 .. 4 -> \$n {

say "\nExactly \$n {\$n}s, and they are consecutive:";

say .gist, ' ', lc (.Bag{\$n} == \$n) && ( so .rotor(\$n=>-(\$n - 1)).grep: *.all == \$n ) for
[9,3,3,3,2,1,7,8,5],
[5,2,9,3,3,7,8,4,1],
[1,4,3,6,7,3,8,3,2],
[1,2,3,4,5,6,7,8,9],
[4,6,8,7,2,3,3,3,1],
[3,3,3,1,2,4,5,1,3],
[0,3,3,3,3,7,2,2,6],
[3,3,3,3,3,4,4,4,4]
}
```
Output:
```Exactly 1 1s, and they are consecutive:
[9 3 3 3 2 1 7 8 5] true
[5 2 9 3 3 7 8 4 1] true
[1 4 3 6 7 3 8 3 2] true
[1 2 3 4 5 6 7 8 9] true
[4 6 8 7 2 3 3 3 1] true
[3 3 3 1 2 4 5 1 3] false
[0 3 3 3 3 7 2 2 6] false
[3 3 3 3 3 4 4 4 4] false

Exactly 2 2s, and they are consecutive:
[9 3 3 3 2 1 7 8 5] false
[5 2 9 3 3 7 8 4 1] false
[1 4 3 6 7 3 8 3 2] false
[1 2 3 4 5 6 7 8 9] false
[4 6 8 7 2 3 3 3 1] false
[3 3 3 1 2 4 5 1 3] false
[0 3 3 3 3 7 2 2 6] true
[3 3 3 3 3 4 4 4 4] false

Exactly 3 3s, and they are consecutive:
[9 3 3 3 2 1 7 8 5] true
[5 2 9 3 3 7 8 4 1] false
[1 4 3 6 7 3 8 3 2] false
[1 2 3 4 5 6 7 8 9] false
[4 6 8 7 2 3 3 3 1] true
[3 3 3 1 2 4 5 1 3] false
[0 3 3 3 3 7 2 2 6] false
[3 3 3 3 3 4 4 4 4] false

Exactly 4 4s, and they are consecutive:
[9 3 3 3 2 1 7 8 5] false
[5 2 9 3 3 7 8 4 1] false
[1 4 3 6 7 3 8 3 2] false
[1 2 3 4 5 6 7 8 9] false
[4 6 8 7 2 3 3 3 1] false
[3 3 3 1 2 4 5 1 3] false
[0 3 3 3 3 7 2 2 6] false
[3 3 3 3 3 4 4 4 4] true```

## Ring

```see "working..." + nl

list = List(5)
list[1] = [9,3,3,3,2,1,7,8,5]
list[2] = [5,2,9,3,3,7,8,4,1]
list[3] = [1,4,3,6,7,3,8,3,2]
list[4] = [1,2,3,4,5,6,7,8,9]
list[5] = [4,6,8,7,2,3,3,3,1]

for n = 1 to 5
good = 0
cnt = 0
len = len(list[n])
for p = 1 to len
if list[n][p] = 3
good++
ok
next
if good = 3
for m = 1 to len-2
if list[n][m] = 3 and list[n][m+1] = 3 and list[n][m+2] = 3
cnt++
ok
next
ok
showarray(list[n])
if cnt = 1
see " > " + "true" + nl
else
see " > " + "false" + nl
ok
next

see "done..." + nl

func showArray(array)
txt = ""
see "["
for n = 1 to len(array)
txt = txt + array[n] + ","
next
txt = left(txt,len(txt)-1)
txt = txt + "]"
see txt```
Output:
```working...
[9,3,3,3,2,1,7,8,5] > true
[5,2,9,3,3,7,8,4,1] > false
[1,4,3,6,7,3,8,3,2] > false
[1,2,3,4,5,6,7,8,9] > false
[4,6,8,7,2,3,3,3,1] > true
done...
```

## RPL

The program below creates a list of the positions of the number 3, then calculates the list of first differences, which must be equal to { 1 1 } if there are exactly 3 adjacent 3 in the input list.

```≪ → list
≪ { } 1 list SIZE FOR j
IF list j GET 3 == THEN j + END NEXT
IFERR ΔLIST { 1 1 } == THEN DROP 0 END

≪ {{9,3,3,3,2,1,7,8,5}
{5,2,9,3,3,7,8,4,1}
{1,4,3,6,7,3,8,3,2}
{1,2,3,4,5,6,7,8,9}
{4,6,8,7,2,3,3,3,1}
{3,3,3,1,2,4,5,1,3}
{0,3,3,3,3,7,2,2,6}
{3,3,3,3,3,4,4,4,4}} → cases
≪ { } 1 cases SIZE FOR j cases j GET ADJ3?’ + NEXT ≫ ≫ ‘TASK’ STO
```
Output:
```1: { 1 0 0 0 1 0 0 0 }
```

## Ruby

Using the Raku/Wren testset:

```tests = [[9,3,3,3,2,1,7,8,5],
[5,2,9,3,3,7,8,4,1],
[1,4,3,6,7,3,8,3,2],
[1,2,3,4,5,6,7,8,9],
[4,6,8,7,2,3,3,3,1],
[3,3,3,1,2,4,5,1,3],
[0,3,3,3,3,7,2,2,6],
[3,3,3,3,3,4,4,4,4]]

(1..4).each do |n|
c = [n]*n
puts "Contains exactly #{n} #{n}s, consecutive:"
tests.each { |t| puts "#{t.inspect} : #{t.count(n)==n && t.each_cons(n).any?{|chunk| chunk == c }}" }
end
```
Output:
```Contains exactly 1 1s, consecutive:
[9, 3, 3, 3, 2, 1, 7, 8, 5] : true
[5, 2, 9, 3, 3, 7, 8, 4, 1] : true
[1, 4, 3, 6, 7, 3, 8, 3, 2] : true
[1, 2, 3, 4, 5, 6, 7, 8, 9] : true
[4, 6, 8, 7, 2, 3, 3, 3, 1] : true
[3, 3, 3, 1, 2, 4, 5, 1, 3] : false
[0, 3, 3, 3, 3, 7, 2, 2, 6] : false
[3, 3, 3, 3, 3, 4, 4, 4, 4] : false
Contains exactly 2 2s, consecutive:
[9, 3, 3, 3, 2, 1, 7, 8, 5] : false
[5, 2, 9, 3, 3, 7, 8, 4, 1] : false
[1, 4, 3, 6, 7, 3, 8, 3, 2] : false
[1, 2, 3, 4, 5, 6, 7, 8, 9] : false
[4, 6, 8, 7, 2, 3, 3, 3, 1] : false
[3, 3, 3, 1, 2, 4, 5, 1, 3] : false
[0, 3, 3, 3, 3, 7, 2, 2, 6] : true
[3, 3, 3, 3, 3, 4, 4, 4, 4] : false
Contains exactly 3 3s, consecutive:
[9, 3, 3, 3, 2, 1, 7, 8, 5] : true
[5, 2, 9, 3, 3, 7, 8, 4, 1] : false
[1, 4, 3, 6, 7, 3, 8, 3, 2] : false
[1, 2, 3, 4, 5, 6, 7, 8, 9] : false
[4, 6, 8, 7, 2, 3, 3, 3, 1] : true
[3, 3, 3, 1, 2, 4, 5, 1, 3] : false
[0, 3, 3, 3, 3, 7, 2, 2, 6] : false
[3, 3, 3, 3, 3, 4, 4, 4, 4] : false
Contains exactly 4 4s, consecutive:
[9, 3, 3, 3, 2, 1, 7, 8, 5] : false
[5, 2, 9, 3, 3, 7, 8, 4, 1] : false
[1, 4, 3, 6, 7, 3, 8, 3, 2] : false
[1, 2, 3, 4, 5, 6, 7, 8, 9] : false
[4, 6, 8, 7, 2, 3, 3, 3, 1] : false
[3, 3, 3, 1, 2, 4, 5, 1, 3] : false
[0, 3, 3, 3, 3, 7, 2, 2, 6] : false
[3, 3, 3, 3, 3, 4, 4, 4, 4] : true
```

## Sidef

```func contains_n_consecutive_objs(arr, n, obj) {

# In Sidef >= 3.99, we can also say:
# arr.contains(n.of(obj)...)

arr.each_cons(n, {|*a|
if (a.all { _ == obj }) {
return true
}
})

return false
}

var lists = [
[9,3,3,3,2,1,7,8,5],
[5,2,9,3,3,7,8,4,1],
[1,4,3,6,7,3,8,3,2],
[1,2,3,4,5,6,7,8,9],
[4,6,8,7,2,3,3,3,1],
]

lists.each {|list|
say (list, " => ", contains_n_consecutive_objs(list, 3, 3))
}
```
Output:
```[9, 3, 3, 3, 2, 1, 7, 8, 5] => true
[5, 2, 9, 3, 3, 7, 8, 4, 1] => false
[1, 4, 3, 6, 7, 3, 8, 3, 2] => false
[1, 2, 3, 4, 5, 6, 7, 8, 9] => false
[4, 6, 8, 7, 2, 3, 3, 3, 1] => true
```

## V (Vlang)

Translation of: go
```fn main() {
lists := [
[9, 3, 3, 3, 2, 1, 7, 8, 5],
[5, 2, 9, 3, 3, 7, 8, 4, 1],
[1, 4, 3, 6, 7, 3, 8, 3, 2],
[1, 2, 3, 4, 5, 6, 7, 8, 9],
[4, 6, 8, 7, 2, 3, 3, 3, 1],
[3, 3, 3, 1, 2, 4, 5, 1, 3],
[0, 3, 3, 3, 3, 7, 2, 2, 6],
[3, 3, 3, 3, 3, 4, 4, 4, 4],
]
for d := 1; d <= 4; d++ {
for list in lists {
mut indices := []int{}
for i, e in list {
if e == d {
indices << i
}
}
if indices.len == d {
for i in 1..indices.len {
if indices[i]-indices[i-1] != 1 {
break
}
}
}
}
println('')
}
}```
Output:
```Exactly three adjacent 3's:
[9, 3, 3, 3, 2, 1, 7, 8, 5] -> true
[5, 2, 9, 3, 3, 7, 8, 4, 1] -> false
[1, 4, 3, 6, 7, 3, 8, 3, 2] -> false
[1, 2, 3, 4, 5, 6, 7, 8, 9] -> false
[4, 6, 8, 7, 2, 3, 3, 3, 1] -> true
[3, 3, 3, 1, 2, 4, 5, 1, 3] -> false
[0, 3, 3, 3, 3, 7, 2, 2, 6] -> false
[3, 3, 3, 3, 3, 4, 4, 4, 4] -> false```

## Wren

Library: Wren-seq
```import "./seq" for Lst

var lists = [
[9,3,3,3,2,1,7,8,5],
[5,2,9,3,3,7,8,4,1],
[1,4,3,6,7,3,8,3,2],
[1,2,3,4,5,6,7,8,9],
[4,6,8,7,2,3,3,3,1],
[3,3,3,1,2,4,5,1,3],
[0,3,3,3,3,7,2,2,6],
[3,3,3,3,3,4,4,4,4]
]
for (list in lists) {
var condition = list.count { |n| n == 3 } == 3 && Lst.isSliceOf(list, [3, 3, 3])
System.print("%(list) -> %(condition)")
}
```
Output:
```Exactly three adjacent 3's:
[9, 3, 3, 3, 2, 1, 7, 8, 5] -> true
[5, 2, 9, 3, 3, 7, 8, 4, 1] -> false
[1, 4, 3, 6, 7, 3, 8, 3, 2] -> false
[1, 2, 3, 4, 5, 6, 7, 8, 9] -> false
[4, 6, 8, 7, 2, 3, 3, 3, 1] -> true
[3, 3, 3, 1, 2, 4, 5, 1, 3] -> false
[0, 3, 3, 3, 3, 7, 2, 2, 6] -> false
[3, 3, 3, 3, 3, 4, 4, 4, 4] -> false
```

Or, more generally, replacing everything after 'lists' with the following:

```for (d in 1..4) {
for (list in lists) {
var condition = list.count { |n| n == d } == d && Lst.isSliceOf(list, [d] * d)
System.print("%(list) -> %(condition)")
}
System.print()
}
```
Output:
```Exactly 1 adjacent 1's:
[9, 3, 3, 3, 2, 1, 7, 8, 5] -> true
[5, 2, 9, 3, 3, 7, 8, 4, 1] -> true
[1, 4, 3, 6, 7, 3, 8, 3, 2] -> true
[1, 2, 3, 4, 5, 6, 7, 8, 9] -> true
[4, 6, 8, 7, 2, 3, 3, 3, 1] -> true
[3, 3, 3, 1, 2, 4, 5, 1, 3] -> false
[0, 3, 3, 3, 3, 7, 2, 2, 6] -> false
[3, 3, 3, 3, 3, 4, 4, 4, 4] -> false

[9, 3, 3, 3, 2, 1, 7, 8, 5] -> false
[5, 2, 9, 3, 3, 7, 8, 4, 1] -> false
[1, 4, 3, 6, 7, 3, 8, 3, 2] -> false
[1, 2, 3, 4, 5, 6, 7, 8, 9] -> false
[4, 6, 8, 7, 2, 3, 3, 3, 1] -> false
[3, 3, 3, 1, 2, 4, 5, 1, 3] -> false
[0, 3, 3, 3, 3, 7, 2, 2, 6] -> true
[3, 3, 3, 3, 3, 4, 4, 4, 4] -> false

[9, 3, 3, 3, 2, 1, 7, 8, 5] -> true
[5, 2, 9, 3, 3, 7, 8, 4, 1] -> false
[1, 4, 3, 6, 7, 3, 8, 3, 2] -> false
[1, 2, 3, 4, 5, 6, 7, 8, 9] -> false
[4, 6, 8, 7, 2, 3, 3, 3, 1] -> true
[3, 3, 3, 1, 2, 4, 5, 1, 3] -> false
[0, 3, 3, 3, 3, 7, 2, 2, 6] -> false
[3, 3, 3, 3, 3, 4, 4, 4, 4] -> false

[9, 3, 3, 3, 2, 1, 7, 8, 5] -> false
[5, 2, 9, 3, 3, 7, 8, 4, 1] -> false
[1, 4, 3, 6, 7, 3, 8, 3, 2] -> false
[1, 2, 3, 4, 5, 6, 7, 8, 9] -> false
[4, 6, 8, 7, 2, 3, 3, 3, 1] -> false
[3, 3, 3, 1, 2, 4, 5, 1, 3] -> false
[0, 3, 3, 3, 3, 7, 2, 2, 6] -> false
[3, 3, 3, 3, 3, 4, 4, 4, 4] -> true
```

## XPL0

```func Check(L);  \Return 'true' if three adjacent 3's
int  L, C, I, J;
def  Size = 9;  \number of items in each List
[C:= 0;
for I:= 0 to Size-1 do
if L(I) = 3 then [C:= C+1;  J:= I];
if C # 3 then return false;     \must have exactly three 3's
return L(J-1)=3 & L(J-2)=3;     \the 3's must be adjacent
];

int List(5+1), I;
[List(1):= [9,3,3,3,2,1,7,8,5];
List(2):= [5,2,9,3,3,7,8,4,1];
List(3):= [1,4,3,6,7,3,8,3,2];
List(4):= [1,2,3,4,5,6,7,8,9];
List(5):= [4,6,8,7,2,3,3,3,1];
for I:= 1 to 5 do
[IntOut(0, I);
Text(0, if Check(List(I)) then " true" else " false");
CrLf(0);
];
]```
Output:
```1 true
2 false
3 false
4 false
5 true
```