Cut a rectangle

From Rosetta Code
Task
Cut a rectangle
You are encouraged to solve this task according to the task description, using any language you may know.

A given rectangle is made from m × n squares. If m and n are not both odd, then it is possible to cut a path through the rectangle along the square edges such that the rectangle splits into two connected pieces with the same shape (after rotating one of the pieces by 180°). All such paths for 2 × 2 and 4 × 3 rectangles are shown below.

Write a program that calculates the number of different ways to cut an m × n rectangle. Optionally, show each of the cuts.

Possibly related task: Maze generation for depth-first search.

11l

Translation of: Python
F cut_it(=h, =w)
   V dirs = [(1, 0), (-1, 0), (0, -1), (0, 1)]
   I h % 2 != 0
      swap(&h, &w)
   I h % 2 != 0
      R 0
   I w == 1
      R 1
   V count = 0

   V next = [w + 1, -w - 1, -1, 1]
   V blen = (h + 1) * (w + 1) - 1
   V grid = [0B] * (blen + 1)

   F walk(Int y, x, =count) -> Int
      I y == 0 | y == @h | x == 0 | x == @w
         R count + 1

      V t = y * (@w + 1) + x
      @grid[t] = @grid[@blen - t] = 1B

      L(i) 4
         I !@grid[t + @next[i]]
            count = @walk(y + @dirs[i][0], x + @dirs[i][1], count)

      @grid[t] = @grid[@blen - t] = 0B
      R count

   V t = h I/ 2 * (w + 1) + w I/ 2
   I w % 2 != 0
      grid[t] = grid[t + 1] = 1B
      count = walk(h I/ 2, w I/ 2 - 1, count)
      V res = count
      count = 0
      count = walk(h I/ 2 - 1, w I/ 2, count)
      R res + count * 2
   E
      grid[t] = 1B
      count = walk(h I/ 2, w I/ 2 - 1, count)
      I h == w
         R count * 2
      count = walk(h I/ 2 - 1, w I/ 2, count)
      R count

L(w) 1..9
   L(h) 1..w
      I (w * h) % 2 == 0
         print(‘#. x #.: #.’.format(w, h, cut_it(w, h)))
Output:
2 x 1: 1
2 x 2: 2
3 x 2: 3
4 x 1: 1
4 x 2: 4
4 x 3: 9
4 x 4: 22
5 x 2: 5
5 x 4: 39
6 x 1: 1
6 x 2: 6
6 x 3: 23
6 x 4: 90
6 x 5: 263
6 x 6: 1018
7 x 2: 7
7 x 4: 151
7 x 6: 2947
8 x 1: 1
8 x 2: 8
8 x 3: 53
8 x 4: 340
8 x 5: 1675
8 x 6: 11174
8 x 7: 55939
8 x 8: 369050
9 x 2: 9
9 x 4: 553
9 x 6: 31721
9 x 8: 1812667

C

Exhaustive search on the cutting path. Symmetric configurations are only calculated once, which helps with larger sized grids.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef unsigned char byte;
byte *grid = 0;

int w, h, len;
unsigned long long cnt;

static int next[4], dir[4][2] = {{0, -1}, {-1, 0}, {0, 1}, {1, 0}};
void walk(int y, int x)
{
	int i, t;

	if (!y || y == h || !x || x == w) {
		cnt += 2;
		return;
	}

	t = y * (w + 1) + x;
	grid[t]++, grid[len - t]++;

	for (i = 0; i < 4; i++)
		if (!grid[t + next[i]])
			walk(y + dir[i][0], x + dir[i][1]);

	grid[t]--, grid[len - t]--;
}

unsigned long long solve(int hh, int ww, int recur)
{
	int t, cx, cy, x;

	h = hh, w = ww;

	if (h & 1) t = w, w = h, h = t;
	if (h & 1) return 0;
	if (w == 1) return 1;
	if (w == 2) return h;
	if (h == 2) return w;

	cy = h / 2, cx = w / 2;

	len = (h + 1) * (w + 1);
	grid = realloc(grid, len);
	memset(grid, 0, len--);

	next[0] = -1;
	next[1] = -w - 1;
	next[2] = 1;
	next[3] = w + 1;

	if (recur) cnt = 0;
	for (x = cx + 1; x < w; x++) {
		t = cy * (w + 1) + x;
		grid[t] = 1;
		grid[len - t] = 1;
		walk(cy - 1, x);
	}
	cnt++;

	if (h == w)
		cnt *= 2;
	else if (!(w & 1) && recur)
		solve(w, h, 0);

	return cnt;
}

int main()
{
	int y, x;
	for (y = 1; y <= 10; y++)
		for (x = 1; x <= y; x++)
			if (!(x & 1) || !(y & 1))
				printf("%d x %d: %llu\n", y, x, solve(y, x, 1));

	return 0;
}

output

2 x 1: 1
2 x 2: 2
3 x 2: 3
4 x 1: 1
4 x 2: 4
4 x 3: 9
4 x 4: 22
5 x 2: 5
5 x 4: 39
6 x 1: 1
6 x 2: 6
6 x 3: 23
6 x 4: 90
6 x 5: 263
6 x 6: 1018
7 x 2: 7
7 x 4: 151
7 x 6: 2947
8 x 1: 1
8 x 2: 8
8 x 3: 53
8 x 4: 340
8 x 5: 1675
8 x 6: 11174
8 x 7: 55939
8 x 8: 369050
9 x 2: 9
9 x 4: 553
9 x 6: 31721
9 x 8: 1812667
10 x 1: 1
10 x 2: 10
10 x 3: 115
10 x 4: 1228
10 x 5: 10295
10 x 6: 118276
10 x 7: 1026005
10 x 8: 11736888
10 x 9: 99953769
10 x 10: 1124140214

More awkward solution: after compiling, run ./a.out -v [width] [height] for display of cuts.

#include <stdio.h>
#include <stdlib.h>

typedef unsigned char byte;
int w = 0, h = 0, verbose = 0;
unsigned long count = 0;

byte **hor, **ver, **vis;
byte **c = 0;

enum { U = 1, D = 2, L = 4, R = 8 };

byte ** alloc2(int w, int h)
{
	int i;
	byte **x = calloc(1, sizeof(byte*) * h + h * w);
	x[0] = (byte *)&x[h];
	for (i = 1; i < h; i++)
		x[i] = x[i - 1] + w;
	return x;
}

void show()
{
	int i, j, v, last_v;
	printf("%ld\n", count);
#if 0
	for (i = 0; i <= h; i++) {
		for (j = 0; j <= w; j++)
			printf("%d ", hor[i][j]);
		puts("");
	}
	puts("");

	for (i = 0; i <= h; i++) {
		for (j = 0; j <= w; j++)
			printf("%d ", ver[i][j]);
		puts("");
	}
	puts("");
#endif
	for (i = 0; i < h; i++) {
		if (!i) v = last_v = 0;
		else last_v = v = hor[i][0] ? !last_v : last_v;

		for (j = 0; j < w; v = ver[i][++j] ? !v : v)
			printf(v ? "\033[31m[]" : "\033[33m{}");
		puts("\033[m");
	}
	putchar('\n');
}

void walk(int y, int x)
{
	if (x < 0 || y < 0 || x > w || y > h) return;

	if (!x || !y || x == w || y == h) {
		++count;
		if (verbose) show();
		return;
	}

	if (vis[y][x]) return;
	vis[y][x]++; vis[h - y][w - x]++;

	if (x && !hor[y][x - 1]) {
		hor[y][x - 1] = hor[h - y][w - x] = 1;
		walk(y, x - 1);
		hor[y][x - 1] = hor[h - y][w - x] = 0;
	}
	if (x < w && !hor[y][x]) {
		hor[y][x] = hor[h - y][w - x - 1] = 1;
		walk(y, x + 1);
		hor[y][x] = hor[h - y][w - x - 1] = 0;
	}

	if (y && !ver[y - 1][x]) {
		ver[y - 1][x] = ver[h - y][w - x] = 1;
		walk(y - 1, x);
		ver[y - 1][x] = ver[h - y][w - x] = 0;
	}

	if (y < h && !ver[y][x]) {
		ver[y][x] = ver[h - y - 1][w - x] = 1;
		walk(y + 1, x);
		ver[y][x] = ver[h - y - 1][w - x] = 0;
	}

	vis[y][x]--; vis[h - y][w - x]--;
}

void cut(void)
{
	if (1 & (h * w)) return;

	hor = alloc2(w + 1, h + 1);
	ver = alloc2(w + 1, h + 1);
	vis = alloc2(w + 1, h + 1);

	if (h & 1) {
		ver[h/2][w/2] = 1;
		walk(h / 2, w / 2);
	} else if (w & 1) {
		hor[h/2][w/2] = 1;
		walk(h / 2, w / 2);
	} else {
		vis[h/2][w/2] = 1;

		hor[h/2][w/2-1] = hor[h/2][w/2] = 1;
		walk(h / 2, w / 2 - 1);
		hor[h/2][w/2-1] = hor[h/2][w/2] = 0;

		ver[h/2 - 1][w/2] = ver[h/2][w/2] = 1;
		walk(h / 2 - 1, w/2);
	}
}

void cwalk(int y, int x, int d)
{
	if (!y || y == h || !x || x == w) {
		++count;
		return;
	}
	vis[y][x] = vis[h-y][w-x] = 1;

	if (x && !vis[y][x-1])
		cwalk(y, x - 1, d|1);
	if ((d&1) && x < w && !vis[y][x+1])
		cwalk(y, x + 1, d|1);
	if (y && !vis[y-1][x])
		cwalk(y - 1, x, d|2);
	if ((d&2) && y < h && !vis[y + 1][x])
		cwalk(y + 1, x, d|2);

	vis[y][x] = vis[h-y][w-x] = 0;
}

void count_only(void)
{
	int t;
	long res;
	if (h * w & 1) return;
	if (h & 1) t = h, h = w, w = t;

	vis = alloc2(w + 1, h + 1);
	vis[h/2][w/2] = 1;

	if (w & 1) vis[h/2][w/2 + 1] = 1;
	if (w > 1) {
		cwalk(h/2, w/2 - 1, 1);
		res = 2 * count - 1;
		count = 0;
		if (w != h)
			cwalk(h/2+1, w/2, (w & 1) ? 3 : 2);

		res += 2 * count - !(w & 1);
	} else {
		res = 1;
	}
	if (w == h) res = 2 * res + 2;
	count = res;
}

int main(int c, char **v)
{
	int i;

	for (i = 1; i < c; i++) {
		if (v[i][0] == '-' && v[i][1] == 'v' && !v[i][2]) {
			verbose = 1;
		} else if (!w) {
			w = atoi(v[i]);
			if (w <= 0) goto bail;
		} else if (!h) {
			h = atoi(v[i]);
			if (h <= 0) goto bail;
		} else
			goto bail;
	}
	if (!w) goto bail;
	if (!h) h = w;

	if (verbose) cut();
	else count_only();

	printf("Total: %ld\n", count);
	return 0;

bail:	fprintf(stderr, "bad args\n");
	return 1;
}

C#

Translation of: Java
using System;
using System.Collections.Generic;

public class CutRectangle
{
    private static int[][] dirs = new int[][] { new int[] { 0, -1 }, new int[] { -1, 0 }, new int[] { 0, 1 }, new int[] { 1, 0 } };

    public static void Main(string[] args)
    {
        CutRectangleMethod(2, 2);
        CutRectangleMethod(4, 3);
    }

    static void CutRectangleMethod(int w, int h)
    {
        if (w % 2 == 1 && h % 2 == 1)
            return;

        int[,] grid = new int[h, w];
        Stack<int> stack = new Stack<int>();

        int half = (w * h) / 2;
        long bits = (long)Math.Pow(2, half) - 1;

        for (; bits > 0; bits -= 2)
        {
            for (int i = 0; i < half; i++)
            {
                int r = i / w;
                int c = i % w;
                grid[r, c] = (bits & (1L << i)) != 0 ? 1 : 0;
                grid[h - r - 1, w - c - 1] = 1 - grid[r, c];
            }

            stack.Push(0);
            grid[0, 0] = 2;
            int count = 1;
            while (stack.Count > 0)
            {
                int pos = stack.Pop();
                int r = pos / w;
                int c = pos % w;

                foreach (var dir in dirs)
                {
                    int nextR = r + dir[0];
                    int nextC = c + dir[1];

                    if (nextR >= 0 && nextR < h && nextC >= 0 && nextC < w)
                    {
                        if (grid[nextR, nextC] == 1)
                        {
                            stack.Push(nextR * w + nextC);
                            grid[nextR, nextC] = 2;
                            count++;
                        }
                    }
                }
            }
            if (count == half)
            {
                PrintResult(grid, h, w);
            }
        }
    }

    static void PrintResult(int[,] arr, int height, int width)
    {
        for (int i = 0; i < height; i++)
        {
            for (int j = 0; j < width; j++)
            {
                Console.Write(arr[i, j] + (j == width - 1 ? "" : ", "));
            }
            Console.WriteLine();
        }
        Console.WriteLine();
    }
}
Output:
2, 2
0, 0

2, 0
2, 0

2, 2, 2, 2
2, 2, 0, 0
0, 0, 0, 0

2, 2, 2, 0
2, 2, 0, 0
2, 0, 0, 0

2, 2, 0, 0
2, 2, 0, 0
2, 2, 0, 0

2, 0, 0, 0
2, 2, 0, 0
2, 2, 2, 0

2, 2, 2, 2
0, 2, 0, 2
0, 0, 0, 0

2, 2, 2, 2
2, 0, 2, 0
0, 0, 0, 0

2, 2, 2, 0
2, 0, 2, 0
2, 0, 0, 0

2, 0, 0, 0
2, 0, 2, 0
2, 2, 2, 0

2, 2, 2, 2
0, 0, 2, 2
0, 0, 0, 0



C++

Translation of: Java
#include <array>
#include <iostream>
#include <stack>
#include <vector>

const std::array<std::pair<int, int>, 4> DIRS = {
    std::make_pair(0, -1),
    std::make_pair(-1,  0),
    std::make_pair(0,  1),
    std::make_pair(1,  0),
};

void printResult(const std::vector<std::vector<int>> &v) {
    for (auto &row : v) {
        auto it = row.cbegin();
        auto end = row.cend();

        std::cout << '[';
        if (it != end) {
            std::cout << *it;
            it = std::next(it);
        }
        while (it != end) {
            std::cout << ", " << *it;
            it = std::next(it);
        }
        std::cout << "]\n";
    }
}

void cutRectangle(int w, int h) {
    if (w % 2 == 1 && h % 2 == 1) {
        return;
    }

    std::vector<std::vector<int>> grid(h, std::vector<int>(w));
    std::stack<int> stack;

    int half = (w * h) / 2;
    long bits = (long)pow(2, half) - 1;

    for (; bits > 0; bits -= 2) {
        for (int i = 0; i < half; i++) {
            int r = i / w;
            int c = i % w;
            grid[r][c] = (bits & (1 << i)) != 0 ? 1 : 0;
            grid[h - r - 1][w - c - 1] = 1 - grid[r][c];
        }

        stack.push(0);
        grid[0][0] = 2;
        int count = 1;
        while (!stack.empty()) {
            int pos = stack.top();
            stack.pop();

            int r = pos / w;
            int c = pos % w;
            for (auto dir : DIRS) {
                int nextR = r + dir.first;
                int nextC = c + dir.second;

                if (nextR >= 0 && nextR < h && nextC >= 0 && nextC < w) {
                    if (grid[nextR][nextC] == 1) {
                        stack.push(nextR * w + nextC);
                        grid[nextR][nextC] = 2;
                        count++;
                    }
                }
            }
        }
        if (count == half) {
            printResult(grid);
            std::cout << '\n';
        }
    }
}

int main() {
    cutRectangle(2, 2);
    cutRectangle(4, 3);

    return 0;
}
Output:
[2, 2]
[0, 0]

[2, 0]
[2, 0]

[2, 2, 2, 2]
[2, 2, 0, 0]
[0, 0, 0, 0]

[2, 2, 2, 0]
[2, 2, 0, 0]
[2, 0, 0, 0]

[2, 2, 0, 0]
[2, 2, 0, 0]
[2, 2, 0, 0]

[2, 0, 0, 0]
[2, 2, 0, 0]
[2, 2, 2, 0]

[2, 2, 2, 2]
[0, 2, 0, 2]
[0, 0, 0, 0]

[2, 2, 2, 2]
[2, 0, 2, 0]
[0, 0, 0, 0]

[2, 2, 2, 0]
[2, 0, 2, 0]
[2, 0, 0, 0]

[2, 0, 0, 0]
[2, 0, 2, 0]
[2, 2, 2, 0]

[2, 2, 2, 2]
[0, 0, 2, 2]
[0, 0, 0, 0]

Common Lisp

Count only.

(defun cut-it (w h &optional (recur t))
  (if (oddp (* w h)) (return-from cut-it 0))
  (if (oddp h) (rotatef w h))
  (if (= w 1) (return-from cut-it 1))

  (let ((cnt 0)
	(m (make-array (list (1+ h) (1+ w))
		       :element-type 'bit
		       :initial-element 0))
	(cy (truncate h 2))
	(cx (truncate w 2)))

    (setf (aref m cy cx) 1)
    (if (oddp w) (setf (aref m cy (1+ cx)) 1))

    (labels
      ((walk (y x turned)
	     (when (or (= y 0) (= y h) (= x 0) (= x w))
	       (incf cnt (if turned 2 1))
	       (return-from walk))

	     (setf (aref m y x) 1)
	     (setf (aref m (- h y) (- w x)) 1)
	     (loop for i from 0
		   for (dy dx) in '((0 -1) (-1 0) (0 1) (1 0))
		   while (or turned (< i 2)) do
		   (let ((y2 (+ y dy))
			 (x2 (+ x dx)))
		     (when (zerop (aref m y2 x2))
		       (walk y2 x2 (or turned (> i 0))))))
	     (setf (aref m (- h y) (- w x)) 0)
	     (setf (aref m y x) 0)))

      (walk cy (1- cx) nil)
      (cond ((= h w) (incf cnt cnt))
	    ((oddp w) (walk (1- cy) cx t))
	    (recur (incf cnt (cut-it h w nil))))
    cnt)))

(loop for w from 1 to 9 do
      (loop for h from 1 to w do
	    (if (evenp (* w h))
	      (format t "~d x ~d: ~d~%" w h (cut-it w h)))))

output

2 x 1: 2
2 x 2: 2
3 x 2: 3
4 x 1: 4
4 x 2: 4
4 x 3: 9
4 x 4: 22
5 x 2: 5
5 x 4: 39
6 x 1: 6
6 x 2: 6
6 x 3: 23
6 x 4: 90
6 x 5: 263
6 x 6: 1018
7 x 2: 7
7 x 4: 151
7 x 6: 2947
8 x 1: 8
8 x 2: 8
8 x 3: 53
8 x 4: 340
8 x 5: 1675
8 x 6: 11174
8 x 7: 55939
8 x 8: 369050
9 x 2: 9
9 x 4: 553
9 x 6: 31721
9 x 8: 1812667

D

Translation of: C
import core.stdc.stdio, core.stdc.stdlib, core.stdc.string, std.typecons;

enum int[2][4] dir = [[0, -1], [-1, 0], [0, 1], [1, 0]];

__gshared ubyte[] grid;
__gshared uint w, h, len;
__gshared ulong cnt;
__gshared uint[4] next;

void walk(in uint y, in uint x) nothrow @nogc {
    if (!y || y == h || !x || x == w) {
        cnt += 2;
        return;
    }

    immutable t = y * (w + 1) + x;
    grid[t]++;
    grid[len - t]++;

    foreach (immutable i; staticIota!(0, 4))
        if (!grid[t + next[i]])
            walk(y + dir[i][0], x + dir[i][1]);

    grid[t]--;
    grid[len - t]--;
}

ulong solve(in uint hh, in uint ww, in bool recur) nothrow @nogc {
    h = (hh & 1) ? ww : hh;
    w = (hh & 1) ? hh : ww;

    if (h & 1) return 0;
    if (w == 1) return 1;
    if (w == 2) return h;
    if (h == 2) return w;

    immutable cy = h / 2;
    immutable cx = w / 2;

    len = (h + 1) * (w + 1);
    {
        // grid.length = len; // Slower.
        alias T = typeof(grid[0]);
        auto ptr = cast(T*)alloca(len * T.sizeof);
        if (ptr == null)
            exit(1);
        grid = ptr[0 .. len];
    }
    grid[] = 0;
    len--;

    next = [-1, -w - 1, 1, w + 1];

    if (recur)
        cnt = 0;
    foreach (immutable x; cx + 1 .. w) {
        immutable t = cy * (w + 1) + x;
        grid[t] = 1;
        grid[len - t] = 1;
        walk(cy - 1, x);
    }
    cnt++;

    if (h == w)
        cnt *= 2;
    else if (!(w & 1) && recur)
        solve(w, h, 0);

    return cnt;
}

void main() {
    foreach (immutable uint y; 1 .. 11)
        foreach (immutable uint x; 1 .. y + 1)
            if (!(x & 1) || !(y & 1))
                printf("%d x %d: %llu\n", y, x, solve(y, x, true));
}
Output:
2 x 1: 1
2 x 2: 2
3 x 2: 3
4 x 1: 1
4 x 2: 4
4 x 3: 9
4 x 4: 22
5 x 2: 5
5 x 4: 39
6 x 1: 1
6 x 2: 6
6 x 3: 23
6 x 4: 90
6 x 5: 263
6 x 6: 1018
7 x 2: 7
7 x 4: 151
7 x 6: 2947
8 x 1: 1
8 x 2: 8
8 x 3: 53
8 x 4: 340
8 x 5: 1675
8 x 6: 11174
8 x 7: 55939
8 x 8: 369050
9 x 2: 9
9 x 4: 553
9 x 6: 31721
9 x 8: 1812667
10 x 1: 1
10 x 2: 10
10 x 3: 115
10 x 4: 1228
10 x 5: 10295
10 x 6: 118276
10 x 7: 1026005
10 x 8: 11736888
10 x 9: 99953769
10 x 10: 1124140214

Using the LDC2 compiler the runtime is about 15.98 seconds (the first C entry runs in about 16.75 seconds with GCC).

Delphi

Translation of: C
program Cut_a_rectangle;

{$APPTYPE CONSOLE}

uses
  System.SysUtils;

var
  grid: array of byte;
  w, h, len: Integer;
  cnt: UInt64;
  next: array of Integer;
  dir: array of array of Integer = [[0, -1], [-1, 0], [0, 1], [1, 0]];

procedure walk(y, x: Integer);
var
  i, t: Integer;
begin
  if (y = 0) or (y = h) or (x = 0) or (x = w) then
  begin
    inc(cnt);
    Exit;
  end;
  t := y * (w + 1) + x;
  inc(grid[t]);
  inc(grid[len - t]);

  for i := 0 to 3 do
    if grid[t + next[i]] = 0 then
      walk(y + dir[i][0], x + dir[i][1]);
  dec(grid[t]);
  dec(grid[len - t]);
end;

function solve(hh, ww: Integer; recur: Boolean): UInt64;
var
  t, cx, cy, x, i: Integer;
begin
  h := hh;
  w := ww;

  if Odd(h) then
  begin
    t := w;
    w := h;
    h := t;
  end;

  if Odd(h) then
    Exit(0);

  if w = 1 then
    Exit(1);

  if w = 2 then
    Exit(h);

  if h = 2 then
    Exit(w);

  cy := h div 2;
  cx := w div 2;
  len := (h + 1) * (w + 1);

  setlength(grid, len);

  for i := 0 to High(grid) do
    grid[i] := 0;

  dec(len);

  next := [-1, -w - 1, 1, w + 1];

  if recur then
    cnt := 0;

  for x := cx + 1 to w - 1 do
  begin
    t := cy * (w + 1) + x;
    grid[t] := 1;
    grid[len - t] := 1;
    walk(cy - 1, x);
  end;
  Inc(cnt);

  if h = w then
    inc(cnt, 2)
  else if not odd(w) and recur then
    solve(w, h, False);
  Result := cnt;
end;

var
  y, x: Integer;

begin
  for y := 1 to 10 do
    for x := 1 to y do
      if not Odd(x) or not Odd(y) then
        writeln(format('%d x %d:  %d', [y, x, solve(y, x, True)]));
  Readln;
end.
Output:

See #C

EasyLang

Translation of: C
global grid[] blen w h cnt .
dir[][] = [ [ 0 -1 ] [ -1 0 ] [ 0 1 ] [ 1 0 ] ]
# 
proc walk y x . .
   if y = 0 or y = h or x = 0 or x = w
      cnt += 2
      return
   .
   t = y * (w + 1) + x
   grid[t] += 1
   grid[blen - t] += 1
   for i to 4
      dx = dir[i][1]
      dy = dir[i][2]
      d = dx + dy * (w + 1)
      if grid[t + d] = 0
         walk y + dy x + dx
      .
   .
   grid[t] -= 1
   grid[blen - t] -= 1
.
proc solve hh ww recur . .
   w = ww
   h = hh
   if h mod 2 = 1
      swap h w
   .
   if h mod 2 = 1
      cnt = 0
      return
   .
   if w = 1
      cnt = 1
      return
   .
   if w = 2
      cnt = h
      return
   .
   if h = 2
      cnt = w
      return
   .
   cy = h div 2 ; cx = w div 2
   blen = (h + 1) * (w + 1)
   grid[] = [ ]
   len grid[] blen
   blen -= 1
   if recur = 1
      cnt = 0
   .
   for x = cx + 1 to w - 1
      t = cy * (w + 1) + x
      grid[t] = 1
      grid[blen - t] = 1
      walk cy - 1 x
   .
   cnt += 1
   if h = w
      cnt *= 2
   elif w mod 2 = 0 and recur = 1
      solve w h 0
   .
.
proc main . .
   for y = 1 to 8
      for x = 1 to y
         if x mod 2 = 0 or y mod 2 = 0
            solve y x 1
            print y & " x " & x & ": " & cnt
         .
      .
   .
.
main
Output:
2 x 1: 1
2 x 2: 2
3 x 2: 3
4 x 1: 1
4 x 2: 4
4 x 3: 9
4 x 4: 22
5 x 2: 5
5 x 4: 39
6 x 1: 1
6 x 2: 6
6 x 3: 23
6 x 4: 90
6 x 5: 263
6 x 6: 1018
7 x 2: 7
7 x 4: 151
7 x 6: 2947
8 x 1: 1
8 x 2: 8
8 x 3: 53
8 x 4: 340
8 x 5: 1675
8 x 6: 11174
8 x 7: 55939
8 x 8: 369050

Eiffel

class
	APPLICATION

create
	make

feature {NONE} -- Initialization

	make
			-- Finds solution for cut a rectangle up to 10 x 10.
		local
			i, j, n: Integer
			r: GRID
		do
			n := 10
			from
				i := 1
			until
				i > n
			loop
				from
					j := 1
				until
					j > i
				loop
					if i.bit_and (1) /= 1 or j.bit_and (1) /= 1 then
						create r.make (i, j)
						r.print_solution
					end
					j := j + 1
				end
				i := i + 1
			end
		end

end
class
	GRID

create
	make

feature {NONE}

	n: INTEGER

	m: INTEGER

feature

	print_solution
	                -- Prints solution to cut a rectangle.
		do
			calculate_possibilities
			io.put_string ("Rectangle " + n.out + " x " + m.out + ": " + count.out + " possibilities%N")
		end

	count: INTEGER
			-- Number of solutions

	make (a_n: INTEGER; a_m: INTEGER)
	                -- Initialize Problem with 'a_n' and 'a_m'.
		require
			a_n > 0
			a_m > 0
		do
			n := a_n
			m := a_m
			count := 0
		end

	calculate_possibilities
	                -- Select all possible starting points.
		local
			i: INTEGER
		do
			if (n = 1 or m = 1) then
				count := 1
			end

			from
				i := 0
			until
				i > n or (n = 1 or m = 1)
			loop
				solve (create {POINT}.make_with_values (i, 0), create {POINT}.make_with_values (n - i, m), create {LINKED_LIST [POINT]}.make, create {LINKED_LIST [POINT]}.make)
				i := i + 1
			variant
				n - i + 1
			end
			from
				i := 0
			until
				i > m or (n = 1 or m = 1)
			loop
				solve (create {POINT}.make_with_values (n, i), create {POINT}.make_with_values (0, m - i), create {LINKED_LIST [POINT]}.make, create {LINKED_LIST [POINT]}.make)
				i := i + 1
			variant
				m - i + 1
			end
		end

feature {NONE}

	solve (p, q: POINT; visited_p, visited_q: LINKED_LIST [POINT])
	                -- Recursive solution of cut a rectangle.
		local
			possible_next: LINKED_LIST [POINT]
			next: LINKED_LIST [POINT]
			opposite: POINT
		do
			if p.negative or q.negative then

			elseif p.same (q) then
				add_solution
			else
				possible_next := get_possible_next (p)
				create next.make
				across
					possible_next as x
				loop
					if x.item.x >= n or x.item.y >= m then
							-- Next point cannot be on the border. Do nothing.

					elseif x.item.same (q) then
						add_solution
					elseif not contains (x.item, visited_p) and not contains (x.item, visited_q) then
						next.extend (x.item)
					end
				end

				across
					next as x
				loop
						-- Move in one direction
						-- Calculate the opposite end of the cut by moving into the opposite direction (compared to p -> x)
					create opposite.make_with_values (q.x - (x.item.x - p.x), q.y - (x.item.y - p.y))

					visited_p.extend (p)
					visited_q.extend (q)

					solve (x.item, opposite, visited_p, visited_q)

						-- Remove last point again
					visited_p.finish
					visited_p.remove

					visited_q.finish
					visited_q.remove
				end
			end
		end

	get_possible_next (p: POINT): LINKED_LIST [POINT]
			-- Four possible next points.
		local
			q: POINT
		do
			create Result.make

				--up
			create q.make_with_values (p.x + 1, p.y)
			if q.valid and q.x <= n and q.y <= m then
				Result.extend (q);
			end

				--down
			create q.make_with_values (p.x - 1, p.y)
			if q.valid and q.x <= n and q.y <= m then
				Result.extend (q)
			end

				--left
			create q.make_with_values (p.x, p.y - 1)
			if q.valid and q.x <= n and q.y <= m then
				Result.extend (q)
			end

				--right
			create q.make_with_values (p.x, p.y + 1)
			if q.valid and q.x <= n and q.y <= m then
				Result.extend (q)
			end
		end

	add_solution
			-- Increment count.
		do
			count := count + 1
		end

	contains (p: POINT; set: LINKED_LIST [POINT]): BOOLEAN
			-- Does set contain 'p'?
		do
			set.compare_objects
			Result := set.has (p)
		end

end
class
	POINT

create
	make, make_with_values



feature

	make_with_values (a_x: INTEGER; a_y: INTEGER)
	-- Initialize x and y with 'a_x' and 'a_y'.
		do
			x := a_x
			y := a_y
		end

	make
	-- Initialize x and y with 0.
		do
			x := 0
			y := 0
		end

	x: INTEGER

	y: INTEGER

	negative: BOOLEAN
			-- Are x or y negative?
		do
			Result := x < 0 or y < 0
		end

	same (other: POINT): BOOLEAN
			-- Does x and y equal 'other's x and y?
		do
			Result := (x = other.x) and (y = other.y)
		end

	valid: BOOLEAN
			-- Are x and y valid points?
		do
			Result := (x > 0) and (y > 0)
		end

end
Output:
Rectangle 2 x 1: 1 possibilities
Rectangle 2 x 2: 2 possibilities
Rectangle 3 x 2: 3 possibilities
Rectangle 4 x 1: 1 possibilities
Rectangle 4 x 2: 4 possibilities
Rectangle 4 x 3: 9 possibilities
Rectangle 4 x 4: 22 possibilities
Rectangle 5 x 2: 5 possibilities
Rectangle 5 x 4: 39 possibilities
Rectangle 6 x 1: 1 possibilities
Rectangle 6 x 2: 6 possibilities
Rectangle 6 x 3: 23 possibilities
Rectangle 6 x 4: 90 possibilities
Rectangle 6 x 5: 263 possibilities
Rectangle 6 x 6: 1018 possibilities
Rectangle 7 x 2: 7 possibilities
Rectangle 7 x 4: 151 possibilities
Rectangle 7 x 6: 2947 possibilities
Rectangle 8 x 1: 1 possibilities
Rectangle 8 x 2: 8 possibilities
Rectangle 8 x 3: 53 possibilities
Rectangle 8 x 4: 340 possibilities
Rectangle 8 x 5: 1675 possibilities
Rectangle 8 x 6: 11174 possibilities
Rectangle 8 x 7: 55939 possibilities
Rectangle 8 x 8: 369050 possibilities
Rectangle 9 x 2: 9 possibilities
Rectangle 9 x 4: 553 possibilities
Rectangle 9 x 6: 31721 possibilities
Rectangle 9 x 8: 1812667 possibilities
Rectangle 10 x 1: 1 possibilities
Rectangle 10 x 2: 10 possibilities
Rectangle 10 x 3: 115 possibilities
Rectangle 10 x 4: 1228 possibilities
Rectangle 10 x 5: 10295 possibilities
Rectangle 10 x 6: 118276 possibilities
Rectangle 10 x 7: 1026005 possibilities
Rectangle 10 x 8: 11736888 possibilities
Rectangle 10 x 9: 99953769 possibilities
Rectangle 10 x 10: 1124140214 possibilities

Elixir

Translation of: Ruby

Count only

import  Integer

defmodule Rectangle do
  def cut_it(h, w) when is_odd(h) and is_odd(w), do: 0
  def cut_it(h, w) when is_odd(h), do: cut_it(w, h)
  def cut_it(_, 1), do: 1
  def cut_it(h, 2), do: h
  def cut_it(2, w), do: w
  def cut_it(h, w) do
    grid = List.duplicate(false, (h + 1) * (w + 1))
    t = div(h, 2) * (w + 1) + div(w, 2)
    if is_odd(w) do
      grid = grid |> List.replace_at(t, true) |> List.replace_at(t+1, true)
      walk(h, w, div(h, 2), div(w, 2) - 1, grid) + walk(h, w, div(h, 2) - 1, div(w, 2), grid) * 2
    else
      grid = grid |> List.replace_at(t, true)
      count = walk(h, w, div(h, 2), div(w, 2) - 1, grid)
      if h == w, do: count * 2,
               else: count + walk(h, w, div(h, 2) - 1, div(w, 2), grid)
    end
  end
  
  defp walk(h, w, y, x, grid, count\\0)
  defp walk(h, w, y, x,_grid, count) when y in [0,h] or x in [0,w], do: count+1
  defp walk(h, w, y, x, grid, count) do
    blen = (h + 1) * (w + 1) - 1
    t = y * (w + 1) + x
    grid = grid |> List.replace_at(t, true) |> List.replace_at(blen-t, true)
    Enum.reduce(next(w), count, fn {nt, dy, dx}, cnt ->
      if Enum.at(grid, t+nt), do: cnt, else: cnt + walk(h, w, y+dy, x+dx, grid)
    end)
  end
  
  defp next(w), do: [{w+1, 1, 0}, {-w-1, -1, 0}, {-1, 0, -1}, {1, 0, 1}]  # {next,dy,dx}
end

Enum.each(1..9, fn w ->
  Enum.each(1..w, fn h ->
    if is_even(w * h), do: IO.puts "#{w} x #{h}: #{Rectangle.cut_it(w, h)}"
  end)
end)
Output:
2 x 1: 1
2 x 2: 2
3 x 2: 3
4 x 1: 1
4 x 2: 4
4 x 3: 9
4 x 4: 22
5 x 2: 5
5 x 4: 39
6 x 1: 1
6 x 2: 6
6 x 3: 23
6 x 4: 90
6 x 5: 263
6 x 6: 1018
7 x 2: 7
7 x 4: 151
7 x 6: 2947
8 x 1: 1
8 x 2: 8
8 x 3: 53
8 x 4: 340
8 x 5: 1675
8 x 6: 11174
8 x 7: 55939
8 x 8: 369050
9 x 2: 9
9 x 4: 553
9 x 6: 31721
9 x 8: 1812667

Show each of the cuts

Works with: Elixir version 1.2
defmodule Rectangle do
  def cut(h, w, disp\\true) when rem(h,2)==0 or rem(w,2)==0 do
    limit = div(h * w, 2)
    start_link
    grid = make_grid(h, w)
    walk(h, w, grid, 0, 0, limit, %{}, [])
    if disp, do: display(h, w)
    result = Agent.get(__MODULE__, &(&1))
    Agent.stop(__MODULE__)
    MapSet.to_list(result)
  end
  
  defp start_link do
    Agent.start_link(fn -> MapSet.new end, name: __MODULE__)
  end
  
  defp make_grid(h, w) do
    for i <- 0..h-1, j <- 0..w-1, into: %{}, do: {{i,j}, true}
  end
  
  defp walk(h, w, grid, x, y, limit, cut, select) do
    grid2 = grid |> Map.put({x,y}, false) |> Map.put({h-x-1,w-y-1}, false)
    select2 = [{x,y} | select] |> Enum.sort
    unless cut[select2] do
      if length(select2) == limit do
        Agent.update(__MODULE__, fn set -> MapSet.put(set, select2) end)
      else
        cut2 = Map.put(cut, select2, true)
        search_next(grid2, select2)
        |> Enum.each(fn {i,j} -> walk(h, w, grid2, i, j, limit, cut2, select2) end)
      end
    end
  end
  
  defp dirs(x, y), do: [{x+1, y}, {x-1, y}, {x, y-1}, {x, y+1}]
  
  defp search_next(grid, select) do
    (for {x,y} <- select, {i,j} <- dirs(x,y), grid[{i,j}], do: {i,j})
    |> Enum.uniq
  end
  
  defp display(h, w) do
    Agent.get(__MODULE__, &(&1))
    |> Enum.each(fn select ->
         grid = Enum.reduce(select, make_grid(h,w), fn {x,y},grid ->
                  %{grid | {x,y} => false}
                end)
         IO.puts to_string(h, w, grid)
       end)
  end
  
  defp to_string(h, w, grid) do
    text = for x <- 0..h*2, into: %{}, do: {x, String.duplicate(" ", w*4+1)}
    text = Enum.reduce(0..h, text, fn i,acc ->
             Enum.reduce(0..w, acc, fn j,txt ->
               to_s(txt, i, j, grid)
             end)
           end)
    Enum.map_join(0..h*2, "\n", fn i -> text[i] end)
  end
  
  defp to_s(text, i, j, grid) do
    text = if grid[{i,j}] != grid[{i-1,j}], do: replace(text, i*2, j*4+1, "---"), else: text
    text = if grid[{i,j}] != grid[{i,j-1}], do: replace(text, i*2+1, j*4, "|"), else: text
    replace(text, i*2, j*4, "+")
  end
  
  defp replace(text, x, y, replacement) do
    len = String.length(replacement)
    Map.update!(text, x, fn str -> 
      String.slice(str, 0, y) <> replacement <> String.slice(str, y+len..-1)
    end)
  end
end

Rectangle.cut(2, 2) |> length |> IO.puts
Rectangle.cut(3, 4) |> length |> IO.puts
Output:
+---+---+
|       |
+---+---+
|       |
+---+---+
+---+---+
|   |   |
+   +   +
|   |   |
+---+---+
2
+---+---+---+---+
|               |
+   +   +---+---+
|       |       |
+---+---+   +   +
|               |
+---+---+---+---+
+---+---+---+---+
|               |
+   +---+   +---+
|   |   |   |   |
+---+   +---+   +
|               |
+---+---+---+---+
+---+---+---+---+
|               |
+---+   +---+   +
|   |   |   |   |
+   +---+   +---+
|               |
+---+---+---+---+
+---+---+---+---+
|               |
+---+---+   +   +
|       |       |
+   +   +---+---+
|               |
+---+---+---+---+
+---+---+---+---+
|           |   |
+   +   +---+   +
|       |       |
+   +---+   +   +
|   |           |
+---+---+---+---+
+---+---+---+---+
|           |   |
+   +---+   +   +
|   |   |   |   |
+   +   +---+   +
|   |           |
+---+---+---+---+
+---+---+---+---+
|       |       |
+   +   +   +   +
|       |       |
+   +   +   +   +
|       |       |
+---+---+---+---+
+---+---+---+---+
|   |           |
+   +---+   +   +
|       |       |
+   +   +---+   +
|           |   |
+---+---+---+---+
+---+---+---+---+
|   |           |
+   +   +---+   +
|   |   |   |   |
+   +---+   +   +
|           |   |
+---+---+---+---+
9

FreeBASIC

Dim Shared As Ubyte grilla()
Dim Shared As Integer ancho, alto, longitud
Dim Shared As Integer cnt
Dim Shared As Integer sgte(3)
Dim Shared As Integer direcc(3, 1) => {{0, -1}, {-1, 0}, {0, 1}, {1, 0}}

Sub Camino(y As Integer, x As Integer)
    If y = 0 Or y = alto Or x = 0 Or x = ancho Then
        cnt += 2
        Return
    End If
    Dim As Integer t = y * (ancho + 1) + x
    grilla(t) += 1
    grilla(longitud - t) += 1
    For i As Integer = 0 To 3
        If grilla(t + sgte(i)) = 0 Then Camino(y + direcc(i, 0), x + direcc(i, 1))
    Next
    grilla(t) -= 1
    grilla(longitud - t) -= 1
End Sub

Function Solve(hh As Integer, ww As Integer, recur As Boolean) As Integer
    alto = hh
    ancho = ww
    
    If (alto And 1) <> 0 Then Swap alto, ancho
    
    Select Case True
    Case (alto And 1) = 1
        Return 0
    Case ancho = 1
        Return 1
    Case ancho = 2
        Return alto
    Case alto = 2
        Return ancho
    End Select
    
    Dim As Integer cy = alto \ 2
    Dim As Integer cx = ancho \ 2
    
    Redim grilla((alto + 1) * (ancho + 1))
    longitud = (alto + 1) * (ancho + 1) - 1
    sgte(0) = -1
    sgte(1) = -ancho - 1
    sgte(2) = 1
    sgte(3) = ancho + 1
    
    If recur Then cnt = 0
    
    For x As Integer = cx + 1 To ancho - 1
        Dim As Integer t = cy * (ancho + 1) + x
        grilla(t) = 1
        grilla(longitud - t) = 1
        Camino(cy - 1, x)
    Next
    cnt += 1
    
    If alto = ancho Then
        cnt *= 2
    Elseif (ancho And 1) = 0 And recur Then
        Solve(ancho, alto, 0)
    End If
    
    Return cnt
End Function

Dim As Integer y, x
For y = 1 To 10
    For x = 1 To y
        If (x And 1) = 0 Or (y And 1) = 0 Then
            Print Using "& x &: &"; y; x; Solve(y, x, True)
        End If
    Next
Next

Sleep
Output:
Same as Go entry.

Go

Translation of: C
package main

import "fmt"

var grid []byte
var w, h, last int
var cnt int
var next [4]int
var dir = [4][2]int{{0, -1}, {-1, 0}, {0, 1}, {1, 0}}

func walk(y, x int) {
    if y == 0 || y == h || x == 0 || x == w {
        cnt += 2
        return
    }
    t := y*(w+1) + x
    grid[t]++
    grid[last-t]++
    for i, d := range dir {
        if grid[t+next[i]] == 0 {
            walk(y+d[0], x+d[1])
        }
    }
    grid[t]--
    grid[last-t]--
}

func solve(hh, ww, recur int) int {
    h = hh
    w = ww

    if h&1 != 0 {
        h, w = w, h
    }
    switch {
    case h&1 == 1:
        return 0
    case w == 1:
        return 1
    case w == 2:
        return h
    case h == 2:
        return w
    }
    cy := h / 2
    cx := w / 2

    grid = make([]byte, (h+1)*(w+1))
    last = len(grid) - 1
    next[0] = -1
    next[1] = -w - 1
    next[2] = 1
    next[3] = w + 1

    if recur != 0 {
        cnt = 0
    }
    for x := cx + 1; x < w; x++ {
        t := cy*(w+1) + x
        grid[t] = 1
        grid[last-t] = 1
        walk(cy-1, x)
    }
    cnt++

    if h == w {
        cnt *= 2
    } else if w&1 == 0 && recur != 0 {
        solve(w, h, 0)
    }
    return cnt
}

func main() {
    for y := 1; y <= 10; y++ {
        for x := 1; x <= y; x++ {
            if x&1 == 0 || y&1 == 0 {
                fmt.Printf("%d x %d: %d\n", y, x, solve(y, x, 1))
            }
        }
    }
}
Output:
2 x 1: 1
2 x 2: 2
3 x 2: 3
4 x 1: 1
4 x 2: 4
4 x 3: 9
4 x 4: 22
5 x 2: 5
5 x 4: 39
6 x 1: 1
6 x 2: 6
6 x 3: 23
6 x 4: 90
6 x 5: 263
6 x 6: 1018
7 x 2: 7
7 x 4: 151
7 x 6: 2947
8 x 1: 1
8 x 2: 8
8 x 3: 53
8 x 4: 340
8 x 5: 1675
8 x 6: 11174
8 x 7: 55939
8 x 8: 369050
9 x 2: 9
9 x 4: 553
9 x 6: 31721
9 x 8: 1812667
10 x 1: 1
10 x 2: 10
10 x 3: 115
10 x 4: 1228
10 x 5: 10295
10 x 6: 118276
10 x 7: 1026005
10 x 8: 11736888
10 x 9: 99953769
10 x 10: 1124140214

Groovy

Translation of: Java
class CutRectangle {
    private static int[][] dirs = [[0, -1], [-1, 0], [0, 1], [1, 0]]

    static void main(String[] args) {
        cutRectangle(2, 2)
        cutRectangle(4, 3)
    }

    static void cutRectangle(int w, int h) {
        if (w % 2 == 1 && h % 2 == 1) {
            return
        }

        int[][] grid = new int[h][w]
        Stack<Integer> stack = new Stack<>()

        int half = (int) ((w * h) / 2)
        long bits = (long) Math.pow(2, half) - 1

        for (; bits > 0; bits -= 2) {
            for (int i = 0; i < half; i++) {
                int r = (int) (i / w)
                int c = i % w
                grid[r][c] = (bits & (1 << i)) != 0 ? 1 : 0
                grid[h - r - 1][w - c - 1] = 1 - grid[r][c]
            }

            stack.push(0)
            grid[0][0] = 2
            int count = 1
            while (!stack.empty()) {
                int pos = stack.pop()
                int r = (int) (pos / w)
                int c = pos % w

                for (int[] dir : dirs) {
                    int nextR = r + dir[0]
                    int nextC = c + dir[1]

                    if (nextR >= 0 && nextR < h && nextC >= 0 && nextC < w) {
                        if (grid[nextR][nextC] == 1) {
                            stack.push(nextR * w + nextC)
                            grid[nextR][nextC] = 2
                            count++
                        }
                    }
                }
            }
            if (count == half) {
                printResult(grid)
            }
        }
    }

    static void printResult(int[][] arr) {
        for (int[] a : arr) {
            println(Arrays.toString(a))
        }
        println()
    }
}
Output:
[2, 2]
[0, 0]

[2, 0]
[2, 0]

[2, 2, 2, 2]
[2, 2, 0, 0]
[0, 0, 0, 0]

[2, 2, 2, 0]
[2, 2, 0, 0]
[2, 0, 0, 0]

[2, 2, 0, 0]
[2, 2, 0, 0]
[2, 2, 0, 0]

[2, 0, 0, 0]
[2, 2, 0, 0]
[2, 2, 2, 0]

[2, 2, 2, 2]
[0, 2, 0, 2]
[0, 0, 0, 0]

[2, 2, 2, 2]
[2, 0, 2, 0]
[0, 0, 0, 0]

[2, 2, 2, 0]
[2, 0, 2, 0]
[2, 0, 0, 0]

[2, 0, 0, 0]
[2, 0, 2, 0]
[2, 2, 2, 0]

[2, 2, 2, 2]
[0, 0, 2, 2]
[0, 0, 0, 0]

Haskell

Translation of: Python

Calculation of the cuts happens in the ST monad, using a mutable STVector and a mutable STRef. The program style is therefore very imperative. The strictness annotations in the Env type are necessary; otherwise, unevaluated thunks of updates of "env" would pile up with each recursion, ending in a stack overflow.

import qualified Data.Vector.Unboxed.Mutable as V
import Data.STRef
import Control.Monad (forM_, when)
import Control.Monad.ST

dir :: [(Int, Int)]
dir = [(1, 0), (-1, 0), (0, -1), (0, 1)]

data Env = Env { w, h, len, count, ret :: !Int, next :: ![Int] }

cutIt :: STRef s Env -> ST s ()
cutIt env = do
    e <- readSTRef env
    when (odd $ h e) $ modifySTRef env $ \en -> en { h = w e,
        w = h e }
    e <- readSTRef env
    if odd (h e)
        then modifySTRef env $ \en -> en { ret = 0 }
        else
            if w e == 1
            then modifySTRef env $ \en -> en { ret = 1 }
            else do
                let blen = (h e + 1) * (w e + 1) - 1
                    t = (h e `div` 2) * (w e + 1) + (w e `div` 2)
                modifySTRef env $ \en -> en { len = blen,
                    count = 0,
                    next = [ w e + 1, (negate $ w e) - 1, -1, 1] }
                grid <- V.replicate (blen + 1) False
                case odd (w e) of
                    True -> do
                        V.write grid t True
                        V.write grid (t + 1) True
                        walk grid (h e `div` 2) (w e `div` 2 - 1)
                        e1 <- readSTRef env
                        let res1 = count e1
                        modifySTRef env $ \en -> en { count = 0 }
                        walk grid (h e `div` 2 - 1) (w e `div` 2)
                        modifySTRef env $ \en -> en { ret = res1 +
                            (count en * 2) }
                    False -> do
                        V.write grid t True
                        walk grid (h e `div` 2) (w e `div` 2 - 1)
                        e2 <- readSTRef env
                        let count2 = count e2
                        if h e == w e
                            then modifySTRef env $ \en -> en { ret =
                                count2 * 2 }
                            else do
                                walk grid (h e `div` 2 - 1)
                                    (w e `div` 2)
                                modifySTRef env $ \en -> en { ret =
                                    count en }
    where
        walk grid y x = do
            e <- readSTRef env
            if y <= 0 || y >= h e || x <= 0 || x >= w e
                then modifySTRef env $ \en -> en { count = count en + 1 }
                else do
                    let t = y * (w e + 1) + x
                    V.write grid t True
                    V.write grid (len e - t) True
                    forM_ (zip (next e) [0..3]) $ \(n, d) -> do
                        g <- V.read grid (t + n)
                        when (not g) $
                            walk grid (y + fst (dir !! d)) (x + snd (dir !! d))
                    V.write grid t False
                    V.write grid (len e - t) False

cut :: (Int, Int) -> Int
cut (x, y) = runST $ do
    env <- newSTRef $ Env { w = y, h = x, len = 0, count = 0, ret = 0, next = [] }
    cutIt env
    result <- readSTRef env
    return $ ret result

main :: IO ()
main = do
    mapM_ (\(x, y) -> when (even (x * y)) (putStrLn $ 
        show x ++ " x " ++ show y ++ ": " ++ show (cut (x, y))))
        [ (x, y) | x <- [1..10], y <- [1..x] ]

With GHC -O3 the run-time is about 39 times the D entry.

J

init=: - {. 1:               NB. initial state: 1 square choosen
prop=: < {:,~2 ~:/\ ]        NB. propagate: neighboring squares (vertically)
poss=: I.@,@(prop +. prop"1 +. prop&.|. +. prop&.|."1)
keep=: poss -. <:@#@, - I.@, NB. symmetrically valid possibilities
N=: <:@-:@#@,                NB. how many neighbors to add
step=: [: ~.@;  <@(((= i.@$) +. ])"0 _~ keep)"2
all=: step^:N@init

In other words, starting with a boolean matrix with one true square in one corner, make a list of all false squares which neighbor a true square, and then make each of those neighbors true, independently (discarding duplicate matrices from the resulting sequence of boolean matrices), and repeat this N times where N is (total cells divided by two)-1. Then discard those matrices where inverting them (boolean not), then flipping on horizontal and vertical axis is not an identity.

(In other words, this implementation uses a breadth first search -- breadth first searches tend to be natural in J because of the parallelism they offer.)

Example use:

   '.#' <"2@:{~ all 3 4
┌────┬────┬────┬────┬────┬────┬────┬────┬────┐
.###.###..##...#...#................
.#.#..##..##..##.#.#..##.#.##.#.##..
...#...#..##.###.###################
└────┴────┴────┴────┴────┴────┴────┴────┴────┘
   $ all 4 5
39 4 5
   3 13$ '.#' <"2@:{~ all 4 5
┌─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┐
.####.####.####.####.####.####..###..###..###..###..###...##...##
.####.##.#.#..#..###...##....#.####.##.#..###...##....#.####..###
....#.#..#.##.#...##..###.####....#.#..#...##..###.####....#...##
....#....#....#....#....#....#...##...##...##...##...##..###..###
├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
...##...##...##....#....#....#....#....#....#....................
...##....#.#..#.####..###...##....#.#..#.##.#.####..###...##....#
..###.####.##.#....#...##..###.####.##.#.#..#....#...##..###.####
..###..###..###.####.####.####.####.####.########################
├─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
.................................................................
.#..#.##.#..##....#.......#....##..#.##.#..#.#....##...###..####.
.##.#.#..##..###.###########.###..##..#.#.##.####.###..##...#....
#################################################################
└─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘

Java

Works with: Java version 7
import java.util.*;

public class CutRectangle {

    private static int[][] dirs = {{0, -1}, {-1, 0}, {0, 1}, {1, 0}};

    public static void main(String[] args) {
        cutRectangle(2, 2);
        cutRectangle(4, 3);
    }

    static void cutRectangle(int w, int h) {
        if (w % 2 == 1 && h % 2 == 1)
            return;

        int[][] grid = new int[h][w];
        Stack<Integer> stack = new Stack<>();

        int half = (w * h) / 2;
        long bits = (long) Math.pow(2, half) - 1;

        for (; bits > 0; bits -= 2) {

            for (int i = 0; i < half; i++) {
                int r = i / w;
                int c = i % w;
                grid[r][c] = (bits & (1 << i)) != 0 ? 1 : 0;
                grid[h - r - 1][w - c - 1] = 1 - grid[r][c];
            }

            stack.push(0);
            grid[0][0] = 2;
            int count = 1;
            while (!stack.empty()) {

                int pos = stack.pop();
                int r = pos / w;
                int c = pos % w;

                for (int[] dir : dirs) {

                    int nextR = r + dir[0];
                    int nextC = c + dir[1];

                    if (nextR >= 0 && nextR < h && nextC >= 0 && nextC < w) {

                        if (grid[nextR][nextC] == 1) {
                            stack.push(nextR * w + nextC);
                            grid[nextR][nextC] = 2;
                            count++;
                        }
                    }
                }
            }
            if (count == half) {
                printResult(grid);
            }
        }
    }

    static void printResult(int[][] arr) {
        for (int[] a : arr)
            System.out.println(Arrays.toString(a));
        System.out.println();
    }
}
[2, 2]
[0, 0]

[2, 0]
[2, 0]

[2, 2, 2, 2]
[2, 2, 0, 0]
[0, 0, 0, 0]

[2, 2, 2, 0]
[2, 2, 0, 0]
[2, 0, 0, 0]

[2, 2, 0, 0]
[2, 2, 0, 0]
[2, 2, 0, 0]

[2, 0, 0, 0]
[2, 2, 0, 0]
[2, 2, 2, 0]

[2, 2, 2, 2]
[0, 2, 0, 2]
[0, 0, 0, 0]

[2, 2, 2, 2]
[2, 0, 2, 0]
[0, 0, 0, 0]

[2, 2, 2, 0]
[2, 0, 2, 0]
[2, 0, 0, 0]

[2, 0, 0, 0]
[2, 0, 2, 0]
[2, 2, 2, 0]

[2, 2, 2, 2]
[0, 0, 2, 2]
[0, 0, 0, 0]

jq

Adapted from Wren

Works with: jq

The program below also works with gojq, the Go implementation of jq, but gojq's memory consumption will likely limit progress beyond the 10 x 7 line shown below.

def dir: [[0, -1], [-1, 0], [0, 1], [1, 0]] ;

# input and output: {grid, w, h, len, count, next}
def mywalk($y; $x):
  if ($y == 0 or $y == .h or $x == 0 or $x == .w) 
  then .count += 2
  else ($y * (.w + 1) + $x) as $t
  | .grid[$t] += 1
  | .grid[.len-$t] += 1
  | reduce range(0; 4) as $i (.;
      if .grid[$t + .next[$i]] == 0
      then mywalk($y + dir[$i][0]; $x + dir[$i][1])
      else .
      end )
  | .grid[$t] += -1
  | .grid[.len-$t] += -1
  end;

# solve/3 returns an integer.
# If $count is null, the value is the count of permissible cuts for an $h x $w rectangle.
# Otherwise, the computed value augments $count.
def solve($h; $w; $count):
  if $count then {$count} else {} end
  | if $h % 2 == 0
    then . + {$h, $w}
    else . + {w: $h, h: $w}  # swap
    end
  | if (.h % 2 == 1) then 0
    elif (.w == 1)   then 1
    elif (.w == 2)   then .h
    elif (.h == 2)   then .w
    else ((.h/2)|floor) as $cy
    | ((.w/2)|floor) as $cx
    | .len = (.h + 1) * (.w + 1)
    | .grid = [range(0; .len) | 0]
    | .len += -1
    | .next = [-1, - .w - 1, 1, .w + 1]
    | .x = $cx + 1
    | until (.x >= .w;
        ($cy * (.w + 1) + .x) as $t
        | .grid[$t] = 1
        | .grid[.len-$t] = 1
        | mywalk($cy - 1; .x)
        | .x += 1 )
    | .count += 1
    | if .h == .w
      then .count * 2
      elif (.w % 2 == 0) and $count == null
      then solve(.w; .h; .count)
      else .count
      end
    end ;

def task($n):
  range (1; $n+1) as $y
  | range(1; $y + 1) as $x
  | select(($x % 2 == 0) or ($y % 2 == 0))
  | "\($y) x \($x) : \(solve($y; $x; null))" ;

task(10)
Output:

Invocation: jq -nrf cut-a-rectangle.jq

As with Wren, the last two lines are slow to emerge; the last line (10x10) only emerged after several hours.

2 x 1 : 1
2 x 2 : 2
3 x 2 : 3
4 x 1 : 1
4 x 2 : 4
4 x 3 : 9
4 x 4 : 22
5 x 2 : 5
5 x 4 : 39
6 x 1 : 1
6 x 2 : 6
6 x 3 : 23
6 x 4 : 90
6 x 5 : 263
6 x 6 : 1018
7 x 2 : 7
7 x 4 : 151
7 x 6 : 2947
8 x 1 : 1
8 x 2 : 8
8 x 3 : 53
8 x 4 : 340
8 x 5 : 1675
8 x 6 : 11174
8 x 7 : 55939
8 x 8 : 369050
9 x 2 : 9
9 x 4 : 553
9 x 6 : 31721
9 x 8 : 1812667
10 x 1 : 1
10 x 2 : 10
10 x 3 : 115
10 x 4 : 1228
10 x 5 : 10295
10 x 6 : 118276
10 x 7 : 1026005
10 x 8 : 11736888
10 x 9 : 99953769
10 x 10 : 1124140214

Julia

Translation of: C
const count = [0]
const dir = [[0, -1], [-1, 0], [0, 1], [1, 0]]

function walk(y, x, h, w, grid, len, next)
    if y == 0 || y == h || x == 0 || x == w
        count[1] += 2
        return
    end
    t = y * (w + 1) + x
    grid[t + 1] += UInt8(1)
    grid[len - t + 1] += UInt8(1)
    for i in 1:4
        if grid[t + next[i] + 1] == 0
            walk(y + dir[i][1], x + dir[i][2], h, w, grid, len, next)
        end
    end
    grid[t + 1] -= 1
    grid[len - t + 1] -= 1
end

function cutrectangle(hh, ww, recur)
    if isodd(hh)
        h, w = ww, hh
    else
        h, w = hh, ww
    end
    if isodd(h)
        return 0
    elseif w == 1
        return 1
    elseif w == 2
        return h
    elseif h == 2
        return w
    end
    cy = div(h, 2)
    cx = div(w, 2)
    len = (h + 1) * (w + 1)
    grid = zeros(UInt8, len)
    len -= 1
    next = [-1, -w - 1, 1, w + 1]
    if recur
        count[1] = 0
    end
    for x in cx + 1:w - 1
        t = cy * (w + 1) + x
        grid[t + 1] = 1
        grid[len - t + 1] = 1
        walk(cy - 1, x, h, w, grid, len, next)
    end
    count[1] += 1
    if h == w
        count[1] *= 2
    elseif iseven(w) && recur
        cutrectangle(w, h, false)
    end
    return count[1]
end

function runtest()
    for y in 1:10, x in 1:y
        if iseven(x) || iseven(y)
            println("$y x $x: $(cutrectangle(y, x, true))")
        end
    end
end

runtest()
Output:

2 x 1: 1 2 x 2: 2 3 x 2: 3 4 x 1: 1 4 x 2: 4 4 x 3: 9 4 x 4: 22 5 x 2: 5 5 x 4: 39 6 x 1: 1 6 x 2: 6 6 x 3: 23 6 x 4: 90 6 x 5: 263 6 x 6: 1018 7 x 2: 7 7 x 4: 151 7 x 6: 2947 8 x 1: 1 8 x 2: 8 8 x 3: 53 8 x 4: 340 8 x 5: 1675 8 x 6: 11174 8 x 7: 55939 8 x 8: 369050 9 x 2: 9 9 x 4: 553 9 x 6: 31721 9 x 8: 1812667 10 x 1: 1 10 x 2: 10 10 x 3: 115 10 x 4: 1228 10 x 5: 10295 10 x 6: 118276 10 x 7: 1026005 10 x 8: 11736888 10 x 9: 99953769 10 x 10: 1124140214

Kotlin

Translation of: C
// version 1.0.6

object RectangleCutter {
    private var w: Int = 0
    private var h: Int = 0
    private var len: Int = 0
    private var cnt: Long = 0

    private lateinit var grid: ByteArray
    private val next = IntArray(4)
    private val dir = arrayOf(
        intArrayOf(0, -1),
        intArrayOf(-1, 0),
        intArrayOf(0, 1),
        intArrayOf(1, 0)
    )

    private fun walk(y: Int, x: Int) {
        if (y == 0 || y == h || x == 0 || x == w) {
            cnt += 2
            return
        }
        val t = y * (w + 1) + x
        grid[t]++
        grid[len - t]++
        (0..3).filter { grid[t + next[it]] == 0.toByte() }
            .forEach { walk(y + dir[it][0], x + dir[it][1]) }
        grid[t]--
        grid[len - t]--
    }

    fun solve(hh: Int, ww: Int, recur: Boolean): Long {
        var t: Int
        h = hh
        w = ww
        if ((h and 1) != 0) {
            t = w
            w = h
            h = t
        }
        if ((h and 1) != 0) return 0L
        if (w == 1) return 1L
        if (w == 2) return h.toLong()
        if (h == 2) return w.toLong()
        val cy = h / 2
        val cx = w / 2
        len = (h + 1) * (w + 1)
        grid = ByteArray(len)
        len--
        next[0] = -1
        next[1] = -w - 1
        next[2] = 1
        next[3] = w + 1
        if (recur) cnt = 0L
        for (x in cx + 1 until w) {
            t = cy * (w + 1) + x
            grid[t] = 1
            grid[len - t] = 1
            walk(cy - 1, x)
        }
        cnt++
        if (h == w) cnt *= 2
        else if ((w and 1) == 0 && recur) solve(w, h, false)
        return cnt
    }
}

fun main(args: Array<String>) {
    for (y in 1..10) {
        for (x in 1..y) {
            if ((x and 1) == 0 || (y and 1) == 0) {
                println("${"%2d".format(y)} x ${"%2d".format(x)}: ${RectangleCutter.solve(y, x, true)}")
            }
        }
    }
}
Output:
 2 x  1: 1
 2 x  2: 2
 3 x  2: 3
 4 x  1: 1
 4 x  2: 4
 4 x  3: 9
 4 x  4: 22
 5 x  2: 5
 5 x  4: 39
 6 x  1: 1
 6 x  2: 6
 6 x  3: 23
 6 x  4: 90
 6 x  5: 263
 6 x  6: 1018
 7 x  2: 7
 7 x  4: 151
 7 x  6: 2947
 8 x  1: 1
 8 x  2: 8
 8 x  3: 53
 8 x  4: 340
 8 x  5: 1675
 8 x  6: 11174
 8 x  7: 55939
 8 x  8: 369050
 9 x  2: 9
 9 x  4: 553
 9 x  6: 31721
 9 x  8: 1812667
10 x  1: 1
10 x  2: 10
10 x  3: 115
10 x  4: 1228
10 x  5: 10295
10 x  6: 118276
10 x  7: 1026005
10 x  8: 11736888
10 x  9: 99953769
10 x 10: 1124140214

Lua

Translation of: C++
function array1D(w, d)
    local t = {}
    for i=1,w do
        table.insert(t, d)
    end
    return t
end

function array2D(h, w, d)
    local t = {}
    for i=1,h do
        table.insert(t, array1D(w, d))
    end
    return t
end

function push(s, v)
    s[#s + 1] = v
end

function pop(s)
    return table.remove(s, #s)
end

function empty(s)
    return #s == 0
end

DIRS = {
    {0, -1},
    {-1, 0},
    {0, 1},
    {1, 0}
}

function printResult(aa)
    for i,u in pairs(aa) do
        io.write("[")
        for j,v in pairs(u) do
            if j > 1 then
                io.write(", ")
            end
            io.write(v)
        end
        print("]")
    end
end

function cutRectangle(w, h)
    if w % 2 == 1 and h % 2 == 1 then
        return nil
    end

    local grid = array2D(h, w, 0)
    local stack = {}

    local half = math.floor((w * h) / 2)
    local bits = 2 ^ half - 1

    while bits > 0 do
        for i=1,half do
            local r = math.floor((i - 1) / w)
            local c = (i - 1) % w
            if (bits & (1 << (i - 1))) ~= 0 then
                grid[r + 1][c + 1] = 1
            else
                grid[r + 1][c + 1] = 0
            end
            grid[h - r][w - c] = 1 - grid[r + 1][c + 1]
        end

        push(stack, 0)
        grid[1][1] = 2
        local count = 1
        while not empty(stack) do
            local pos = pop(stack)

            local r = math.floor(pos / w)
            local c = pos % w

            for i,dir in pairs(DIRS) do
                local nextR = r + dir[1]
                local nextC = c + dir[2]

                if nextR >= 0 and nextR < h and nextC >= 0 and nextC < w then
                    if grid[nextR + 1][nextC + 1] == 1 then
                        push(stack, nextR * w + nextC)
                        grid[nextR + 1][nextC + 1] = 2
                        count = count + 1
                    end
                end
            end
        end
        if count == half then
            printResult(grid)
            print()
        end

        -- loop end
        bits = bits - 2
    end
end

cutRectangle(2, 2)
cutRectangle(4, 3)
Output:
[2, 2]
[0, 0]

[2, 0]
[2, 0]

[2, 2, 2, 2]
[2, 2, 0, 0]
[0, 0, 0, 0]

[2, 2, 2, 0]
[2, 2, 0, 0]
[2, 0, 0, 0]

[2, 2, 0, 0]
[2, 2, 0, 0]
[2, 2, 0, 0]

[2, 0, 0, 0]
[2, 2, 0, 0]
[2, 2, 2, 0]

[2, 2, 2, 2]
[0, 2, 0, 2]
[0, 0, 0, 0]

[2, 2, 2, 2]
[2, 0, 2, 0]
[0, 0, 0, 0]

[2, 2, 2, 0]
[2, 0, 2, 0]
[2, 0, 0, 0]

[2, 0, 0, 0]
[2, 0, 2, 0]
[2, 2, 2, 0]

[2, 2, 2, 2]
[0, 0, 2, 2]
[0, 0, 0, 0]

Mathematica /Wolfram Language

ClearAll[CutRectangle]
dirs = AngleVector /@ Most[Range[0, 2 Pi, Pi/2]];
CutRectangle[nm : {n_, m_}] := Module[{start, stop, count, sols},
  If[OddQ[n] \[And] OddQ[m], Return[<|"Count" -> 0, "Solutions" -> {}|>]];

  start = {0, 0};
  stop = nm;
  ClearAll[ValidPosition, ValidRoute, ProceedStep];
  ValidPosition[{x_, y_}] := 0 <= x <= n \[And] 0 <= y <= m;
  ValidRoute[route_List] := Module[{},    
    If[MatchQ[route[[All, 1]], {0 .., Except[0] .., 0, ___}], Return[False]]; (* once it leaves the left border, don't return (disjoint pieces) *)
    If[MatchQ[route[[All, 2]], {0 .., Except[0] .., 0, ___}], Return[False]];(* once it leaves the bottom border, don't return (disjoint pieces) *)
    
    True
    ];
  ProceedStep[nnmm : {nn_, mm_}, steps1_List, steps2_List] := Module[{nextposs, newsteps1, newsteps2, route},
    If[Last[steps1] == Last[steps2],
     route = Join[Most[steps1], Reverse[steps2]];
     If[ValidRoute[route],
      count++;
      AppendTo[sols, route];
      ]
     ,
     If[Length[steps1] >= 2,
      If[Take[steps1, -2] == Reverse[Take[steps2, -2]],
       route = Join[Most[steps1], Reverse[Most[steps2]]];
       If[ValidRoute[route],
        count++;
        AppendTo[sols, route];
        ]
       ]
      ]
     ];
    nextposs = {Last[steps1] + #, Last[steps2] - #} & /@ dirs;
    nextposs //= Select[First/*ValidPosition];
    nextposs //= Select[Last/*ValidPosition];
    nextposs //= Select[! MemberQ[steps1, First[#]] &];
    nextposs //= Select[! MemberQ[steps2, Last[#]] &];
    nextposs //= Select[! MemberQ[Most[steps2], First[#]] &];
    nextposs //= Select[! MemberQ[Most[steps1], Last[#]] &];
     
    Do[
     newsteps1 = Append[steps1, First[np]];
     newsteps2 = Append[steps2, Last[np]];
     ProceedStep[nnmm, newsteps1, newsteps2]
     ,
     {np, nextposs}
     ]
    ];
  count = 0;
  sols = {};
  ProceedStep[nm, {start}, {stop}];
  <|"Count" -> count, "Solutions" -> sols|>
  ]

maxsize = 6;
sols = Reap[Do[
     If[EvenQ[i] \[Or] EvenQ[j],
      If[i >= j,
       Sow@{i, j, CutRectangle[{i, j}]["Count"]}
       ]
      ],
     {i, maxsize},
     {j, maxsize}
     ]][[2, 1]];
Column[Row[{#1, " \[Times] ", #2, ": ", #3}] & @@@ sols]
Output:
2 * 1: 1
2 * 2: 2
3 * 2: 3
4 * 1: 1
4 * 2: 4
4 * 3: 9
4 * 4: 22
5 * 2: 5
5 * 4: 39
6 * 1: 1
6 * 2: 6
6 * 3: 23
6 * 4: 90
6 * 5: 263
6 * 6: 1018

Solutions can be visualised using:

size = {4, 3};
cr = CutRectangle[size];
Graphics[{Style[Rectangle[{0, 0}, size], FaceForm[], EdgeForm[Red]], Style[Arrow[#], Black], Style[Point[#], Black]}, ] & /@ cr["Solutions"]

Which outputs graphical objects for each solution.

Nim

Translation of: C
import strformat

var
  w, h: int
  grid: seq[byte]
  next: array[4, int]
  count: int

const Dirs = [[0, -1], [-1, 0], [0, 1], [1, 0]]

template odd(n: int): bool = (n and 1) != 0

#------------------------------------------------------------------------------

proc walk(y, x: int) =

  if y == 0 or y == h or x == 0 or x == w:
    inc count, 2
    return

  let t = y * (w + 1) + x
  inc grid[t]
  inc grid[grid.high - t]

  for i, dir in Dirs:
    if grid[t + next[i]] == 0:
      walk(y + dir[0], x + dir[1])

  dec grid[t]
  dec grid[grid.high - t]

#------------------------------------------------------------------------------

proc solve(y, x: int; recursive: bool): int =

  h = y
  w = x
  if odd(h): swap w, h

  if odd(h): return 0
  if w == 1: return 1
  if w == 2: return h
  if h == 2: return w

  let cy = h div 2
  let cx = w div 2

  grid = newSeq[byte]((w + 1) * (h + 1))

  next[0] = -1
  next[1] = -w - 1
  next[2] = 1
  next[3] = w + 1

  if recursive: count = 0

  for x in (cx + 1)..<w:
    let t = cy * (w + 1) + x
    grid[t] = 1
    grid[grid.high - t] = 1
    walk(cy - 1, x)
  inc count

  if h == w:
    count *= 2
  elif not odd(w) and recursive:
    discard solve(w, h, false)

  result = count

#——————————————————————————————————————————————————————————————————————————————

for y in 1..10:
  for x in 1..y:
    if not odd(x) or not odd(y):
      echo &"{y:2d} x {x:2d}: {solve(y, x, true)}"
Output:

Result obtained in 4.3 seconds.

 2 x  1: 1
 2 x  2: 2
 3 x  2: 3
 4 x  1: 1
 4 x  2: 4
 4 x  3: 9
 4 x  4: 22
 5 x  2: 5
 5 x  4: 39
 6 x  1: 1
 6 x  2: 6
 6 x  3: 23
 6 x  4: 90
 6 x  5: 263
 6 x  6: 1018
 7 x  2: 7
 7 x  4: 151
 7 x  6: 2947
 8 x  1: 1
 8 x  2: 8
 8 x  3: 53
 8 x  4: 340
 8 x  5: 1675
 8 x  6: 11174
 8 x  7: 55939
 8 x  8: 369050
 9 x  2: 9
 9 x  4: 553
 9 x  6: 31721
 9 x  8: 1812667
10 x  1: 1
10 x  2: 10
10 x  3: 115
10 x  4: 1228
10 x  5: 10295
10 x  6: 118276
10 x  7: 1026005
10 x  8: 11736888
10 x  9: 99953769
10 x 10: 1124140214

Perl

Translation of: C

Output is identical to C's.

use strict;
use warnings;
my @grid = 0;
 
my ($w, $h, $len);
my $cnt = 0;
 
my @next;
my @dir = ([0, -1], [-1, 0], [0, 1], [1, 0]);

sub walk {
    my ($y, $x) = @_;

    if (!$y || $y == $h || !$x || $x == $w) {
	$cnt += 2;
	return;
    }

    my $t = $y * ($w + 1) + $x;
    $grid[$_]++ for $t, $len - $t;
 
    for my $i (0 .. 3) {
	if (!$grid[$t + $next[$i]]) {
	    walk($y + $dir[$i]->[0], $x + $dir[$i]->[1]);
	}
    }
 
    $grid[$_]-- for $t, $len - $t;
}
 
sub solve {
    my ($hh, $ww, $recur) = @_;
    my ($t, $cx, $cy, $x);
    ($h, $w) = ($hh, $ww);
 
    if ($h & 1) { ($t, $w, $h) = ($w, $h, $w); }
    if ($h & 1) { return 0; }
    if ($w == 1) { return 1; }
    if ($w == 2) { return $h; }
    if ($h == 2) { return $w; }
 
    {
	use integer;
	($cy, $cx) = ($h / 2, $w / 2);
    }
 
    $len = ($h + 1) * ($w + 1);
    @grid = ();
    $grid[$len--] = 0;
 
    @next = (-1, -$w - 1, 1, $w + 1);
 
    if ($recur) { $cnt = 0; }
    for ($x = $cx + 1; $x < $w; $x++) {
	$t = $cy * ($w + 1) + $x;
	@grid[$t, $len - $t] = (1, 1);
	walk($cy - 1, $x);
    }
    $cnt++;
 
    if ($h == $w) {
	$cnt *= 2;
    } elsif (!($w & 1) && $recur) {
	solve($w, $h);
    }
 
    return $cnt;
}
 
sub MAIN {
    print "ok\n";
    my ($y, $x);
    for my $y (1 .. 10) {
	for my $x (1 .. $y) {
	    if (!($x & 1) || !($y & 1)) {
		printf("%d x %d: %d\n", $y, $x, solve($y, $x, 1));
	    }
	}
    }
}

MAIN();

Phix

Using a completely different home-brewed algorithm, slightly sub-optimal as noted in the code.

with javascript_semantics
integer show = 2,       -- max number to show
                        -- (nb mirrors are not shown)
        chance = 1000   -- 1=always, 2=50%, 3=33%, etc
 
sequence grid
 
integer gh, -- = length(grid),
        gw  -- = length(grid[1])
 
integer ty1, ty2, tx1, tx2  -- target {y,x}s
 
procedure mirror(integer y, x, ch)
-- plant/reset ch and the symmetric copy
    grid[y,x] = ch
    grid[gh-y+1,gw-x+1] = ch
end procedure
 
enum             RIGHT,  UP,   DOWN,  LEFT
constant dyx = {{0,+1},{-1,0},{+1,0},{0,-1}},
         chx = "-||-"
 
function search(integer y, x, d, level)
    integer count = 0
    if level=0 or grid[y,x]!='x' then
        mirror(y,x,'x')
        integer {dy,dx} = dyx[d],
                {ny,nx} = {y+dy,x+dx},
                {yy,xx} = {y+dy*2,x+dx*3}
        if grid[ny,nx]=' ' then
            integer c = chx[d]
            mirror(ny,nx,c)
            if c='-' then
                mirror(ny,nx+dx,c)
            end if
            integer meet = (yy=ty1 or yy=ty2) and (xx=tx1 or xx=tx2)
            if meet then
                count = 1
                if show and rand(chance)=chance then
                    show -= 1
                    sequence g = deep_copy(grid) -- (make copy/avoid reset)
                    -- fill in(/overwrite) the last cut, if any
                    if    ty1!=ty2 then g[ty1+1,tx1] = '|'
                    elsif tx1!=tx2 then g[ty1][tx1+1..tx1+2] = "--"
                    end if
                    puts(1,join(g,'\n')&"\n\n")
                end if
            else
                if grid[yy,xx]='+' then -- (minor gain)
                    for d=RIGHT to LEFT do -- (kinda true!)
                        count += search(yy,xx,d,level+1)
                    end for
                end if
            end if 
            mirror(ny,nx,' ')
            if c='-' then
                mirror(ny,nx+dx,' ')
            end if
        end if 
        if level!=0 then
            -- ((level=0)==leave outer edges 'x' for next iteration)
            mirror(y,x,'+')
        end if
    end if
    return count
end function
 
procedure make_grid(integer w,h)
-- The outer edges are 'x'; the inner '+' become 'x' when visited.
-- Likewise edges are cuts but the inner ones get filled in later.
sequence tb = join(repeat("x",w+1),"--"),
         hz = join('x'&repeat("+",w-1)&'x',"  ")&"\n",
         vt = "|"&repeat(' ',w*3-1)&"|\n"
    grid = split(tb&"\n"&join(repeat(vt,h),hz)&tb,'\n')
    -- set size (for mirroring) and target info:
    gh = length(grid)       gw = length(grid[1])
    ty1 = h+even(h)         ty2 = ty1+odd(h)*2
    tx1 = floor(w/2)*3+1    tx2 = tx1+odd(w)*3
end procedure
 
function side(integer w, h)
    make_grid(w,h)
    -- search top to mid-point
    integer count = 0, last = 0
    for r=3 to h+1 by 2 do
        last = search(r,1,RIGHT,0) -- left to right
        count += 2*last
    end for
    if even(h) then
        count -= last -- (un-double the centre line)
    end if
    return count
end function
 
--atom t0 = time()
-- nb sub-optimal: obviously "grid" was designed for easy display, rather than speed.
for y=1 to iff(platform()=JS?7:9) do        -- 24s
--for y=1 to 10 do      -- (gave up on >10x8)
    for x=1 to y do
--  for x=1 to min(y,8) do  -- 4 mins 16s (with y to 10)
        if even(x*y) then
            integer count = side(x,y)
            if x=y then
                count *= 2
            else
                count += side(y,x)
            end if
            printf(1,"%d x %d: %d\n", {y, x, count})
        end if
    end for
end for
--?elapsed(time()-t0)
Output:

Includes two random grids

2 x 1: 1
2 x 2: 2
3 x 2: 3
4 x 1: 1
4 x 2: 4
4 x 3: 9
4 x 4: 22
5 x 2: 5
5 x 4: 39
6 x 1: 1
6 x 2: 6
6 x 3: 23
6 x 4: 90
6 x 5: 263
6 x 6: 1018
7 x 2: 7
7 x 4: 151
x--x--x--x--x--x--x
|                 |
x--x  +  +  +  +  x
|  |              |
x  x  x--x--x  +  x
|  |  |     |     |
x  x--x  x--x  +  x
|        |        |
x  +  x--x  x--x  x
|     |     |  |  |
x  +  x--x--x  x  x
|              |  |
x  +  +  +  +  x--x
|                 |
x--x--x--x--x--x--x

x--x--x--x--x--x--x--x
|                    |
x  +  x--x--x--x--x  x
|     |           |  |
x--x--x  x--x--x  x  x
|        |     |  |  |
x  x--x  x--x  x--x  x
|  |  |     |        |
x  x  x--x--x  x--x--x
|  |           |     |
x  x--x--x--x--x  +  x
|                    |
x--x--x--x--x--x--x--x

7 x 6: 2947
8 x 1: 1
8 x 2: 8
8 x 3: 53
8 x 4: 340
8 x 5: 1675
8 x 6: 11174
8 x 7: 55939
8 x 8: 369050
9 x 2: 9
9 x 4: 553
9 x 6: 31721
9 x 8: 1812667
10 x 1: 1
10 x 2: 10
10 x 3: 115
10 x 4: 1228
10 x 5: 10295
10 x 6: 118276
10 x 7: 1026005
10 x 8: 11736888

It is about 6 times slower under pwa/p2js, hence capped at 7 (which makes it complete in 0.2s).

Python

Translation of: D
def cut_it(h, w):
    dirs = ((1, 0), (-1, 0), (0, -1), (0, 1))
    if h % 2: h, w = w, h
    if h % 2: return 0
    if w == 1: return 1
    count = 0

    next = [w + 1, -w - 1, -1, 1]
    blen = (h + 1) * (w + 1) - 1
    grid = [False] * (blen + 1)

    def walk(y, x, count):
        if not y or y == h or not x or x == w:
            return count + 1

        t = y * (w + 1) + x
        grid[t] = grid[blen - t] = True

        if not grid[t + next[0]]:
            count = walk(y + dirs[0][0], x + dirs[0][1], count)
        if not grid[t + next[1]]:
            count = walk(y + dirs[1][0], x + dirs[1][1], count)
        if not grid[t + next[2]]:
            count = walk(y + dirs[2][0], x + dirs[2][1], count)
        if not grid[t + next[3]]:
            count = walk(y + dirs[3][0], x + dirs[3][1], count)

        grid[t] = grid[blen - t] = False
        return count

    t = h // 2 * (w + 1) + w // 2
    if w % 2:
        grid[t] = grid[t + 1] = True
        count = walk(h // 2, w // 2 - 1, count)
        res = count
        count = 0
        count = walk(h // 2 - 1, w // 2, count)
        return res + count * 2
    else:
        grid[t] = True
        count = walk(h // 2, w // 2 - 1, count)
        if h == w:
            return count * 2
        count = walk(h // 2 - 1, w // 2, count)
        return count

def main():
    for w in xrange(1, 10):
        for h in xrange(1, w + 1):
            if not((w * h) % 2):
                print "%d x %d: %d" % (w, h, cut_it(w, h))

main()

Output:

2 x 1: 1
2 x 2: 2
3 x 2: 3
4 x 1: 1
4 x 2: 4
4 x 3: 9
4 x 4: 22
5 x 2: 5
5 x 4: 39
6 x 1: 1
6 x 2: 6
6 x 3: 23
6 x 4: 90
6 x 5: 263
6 x 6: 1018
7 x 2: 7
7 x 4: 151
7 x 6: 2947
8 x 1: 1
8 x 2: 8
8 x 3: 53
8 x 4: 340
8 x 5: 1675
8 x 6: 11174
8 x 7: 55939
8 x 8: 369050
9 x 2: 9
9 x 4: 553
9 x 6: 31721
9 x 8: 1812667

Faster version

Translation of: D
try:
    import psyco
except ImportError:
    pass
else:
    psyco.full()

w, h = 0, 0
count = 0
vis = []

def cwalk(y, x, d):
    global vis, count, w, h
    if not y or y == h or not x or x == w:
        count += 1
        return

    vis[y][x] = vis[h - y][w - x] = 1

    if x and not vis[y][x - 1]:
        cwalk(y, x - 1, d | 1)
    if (d & 1) and x < w and not vis[y][x+1]:
        cwalk(y, x + 1, d|1)
    if y and not vis[y - 1][x]:
        cwalk(y - 1, x, d | 2)
    if (d & 2) and y < h and not vis[y + 1][x]:
        cwalk(y + 1, x, d | 2)

    vis[y][x] = vis[h - y][w - x] = 0

def count_only(x, y):
    global vis, count, w, h
    count = 0
    w = x
    h = y

    if (h * w) & 1:
        return count
    if h & 1:
        w, h = h, w

    vis = [[0] * (w + 1) for _ in xrange(h + 1)]
    vis[h // 2][w // 2] = 1

    if w & 1:
        vis[h // 2][w // 2 + 1] = 1

    res = 0
    if w > 1:
        cwalk(h // 2, w // 2 - 1, 1)
        res = 2 * count - 1
        count = 0
        if w != h:
            cwalk(h // 2 + 1, w // 2, 3 if (w & 1) else 2)

        res += 2 * count - (not (w & 1))
    else:
        res = 1

    if w == h:
        res = 2 * res + 2
    return res

def main():
    for y in xrange(1, 10):
        for x in xrange(1, y + 1):
            if not (x & 1) or not (y & 1):
                print "%d x %d: %d" % (y, x, count_only(x, y))

main()

The output is the same.

Racket

#lang racket

(define (cuts W H [count 0]) ; count = #f => visualize instead
  (define W1 (add1 W)) (define H1 (add1 H))
  (define B (make-vector (* W1 H1) #f))
  (define (fD d) (cadr (assq d '([U D] [D U] [L R] [R L] [#f #f] [#t #t]))))
  (define (fP p) (- (* W1 H1) p 1))
  (define (Bset! p d) (vector-set! B p d) (vector-set! B (fP p) (fD d)))
  (define center (/ (fP 0) 2))
  (when (integer? center) (Bset! center #t))
  (define (run c* d)
    (define p (- center c*))
    (Bset! p d)
    (let loop ([p p])
      (define-values [q r] (quotient/remainder p W1))
      (if (and (< 0 r W) (< 0 q H))
        (for ([d '(U D L R)])
          (define n (+ p (case d [(U) (- W1)] [(D) W1] [(L) -1] [(R) 1])))
          (unless (vector-ref B n) (Bset! n (fD d)) (loop n) (Bset! n #f)))
        (if count (set! count (add1 count)) (visualize B W H))))
    (Bset! p #f))
  (when (even? W) (run (if (odd? H) (/ W1 2) W1) 'D))
  (when (even? H) (run (if (odd? W) 1/2 1)       'R))
  (or count (void)))

(define (visualize B W H)
  (define W2 (+ 2 (* W 2))) (define H2 (+ 1 (* H 2)))
  (define str (make-string (* H2 W2) #\space))
  (define (Sset! i c) (string-set! str i c))
  (for ([i (in-range (- W2 1) (* W2 H2) W2)]) (Sset! i #\newline))
  (for ([i (in-range 0 (- W2 1))]) (Sset! i #\#) (Sset! (+ i (* W2 H 2)) #\#))
  (for ([i (in-range 0 (* W2 H2) W2)]) (Sset! i #\#) (Sset! (+ i W2 -2) #\#))
  (for* ([i (add1 W)] [j (add1 H)])
    (define p (* 2 (+ i (* j W2))))
    (define b (vector-ref B (+ i (* j (+ W 1)))))
    (cond [b (Sset! p #\#)
             (define d (case b [(U) (- W2)] [(D) W2] [(R) 1] [(L) -1]))
             (when (integer? d) (Sset! (+ p d) #\#))]
          [(equal? #\space (string-ref str p)) (Sset! p #\.)]))
  (display str) (newline))

(printf "Counts:\n")
(for* ([W (in-range 1 10)] [H (in-range 1 (add1 W))]
       #:unless (and (odd? W) (odd? H)))
  (printf "~s x ~s: ~s\n" W H (cuts W H)))

(newline)
(cuts 4 3 #f)
Output:
Counts:
2 x 1: 1
2 x 2: 2
3 x 2: 3
4 x 1: 1
4 x 2: 4
4 x 3: 9
4 x 4: 22
5 x 2: 5
5 x 4: 39
6 x 1: 1
6 x 2: 6
6 x 3: 23
6 x 4: 90
6 x 5: 263
6 x 6: 1018
7 x 2: 7
7 x 4: 151
7 x 6: 2947
8 x 1: 1
8 x 2: 8
8 x 3: 53
8 x 4: 340
8 x 5: 1675
8 x 6: 11174
8 x 7: 55939
8 x 8: 369050
9 x 2: 9
9 x 4: 553
9 x 6: 31721
9 x 8: 1812667

#########
#   #   #
# . # . #
#   #   #
# . # . #
#   #   #
#########

#########
# #     #
# ### . #
#   #   #
# . ### #
#     # #
#########

#########
#     # #
# ### # #
# # # # #
# # ### #
# #     #
#########

#########
#       #
# ### ###
# # # # #
### ### #
#       #
#########

#########
#       #
##### . #
#   #   #
# . #####
#       #
#########

#########
#     # #
# . ### #
#   #   #
# ### . #
# #     #
#########

#########
# #     #
# # ### #
# # # # #
# ### # #
#     # #
#########

#########
#       #
### ### #
# # # # #
# ### ###
#       #
#########

#########
#       #
# . #####
#   #   #
##### . #
#       #
#########

Raku

(formerly Perl 6)

Translation of: C
sub solve($hh, $ww, $recurse) {
    my ($h, $w, $t, @grid) = $hh, $ww, 0;
    state $cnt;
    $cnt = 0 if $recurse;

    ($t, $w, $h) = ($w, $h, $w) if $h +& 1;
    return 0  if $h == 1;
    return 1  if $w == 1;
    return $h if $w == 2;
    return $w if $h == 2;

    my ($cy, $cx) = ($h, $w) «div» 2;
    my $len = ($h + 1) × ($w + 1);
    @grid[$len--] = 0;
    my @next = -1, -$w-1, 1, $w+1;

    for $cx+1 ..^ $w -> $x {
        $t = $cy × ($w + 1) + $x;
        @grid[$_] = 1 for $t, $len-$t;
        walk($cy - 1, $x);
    }

    sub walk($y, $x) {
        constant @dir = <0 -1 0 1> Z <-1 0 1 0>;
        $cnt += 2 and return if not $y or $y == $h or not $x or $x == $w;
        my $t = $y × ($w+1) + $x;
        @grid[$_]++ for $t, $len-$t;
        walk($y + @dir[$_;0], $x + @dir[$_;1]) if not @grid[$t + @next[$_]] for 0..3;
        @grid[$_]-- for $t, $len-$t;
    }

    $cnt++;
    if    $h == $w                 { $cnt ×= 2            }
    elsif $recurse and not $w +& 1 { solve($w, $h, False) }
    $cnt
}

((1..9 X 1..9).grep:{ .[0] ≥ .[1] }).flat.map: -> $y, $x {
   say "$y × $x: " ~ solve $y, $x, True unless $x +& 1 and $y +& 1;
}
Output:
2 × 1: 1
2 × 2: 2
3 × 2: 3
4 × 1: 1
4 × 2: 4
4 × 3: 9
4 × 4: 22
5 × 2: 5
5 × 4: 39
6 × 1: 1
6 × 2: 6
6 × 3: 23
6 × 4: 90
6 × 5: 263
6 × 6: 1018
7 × 2: 7
7 × 4: 151
7 × 6: 2947
8 × 1: 1
8 × 2: 8
8 × 3: 53
8 × 4: 340
8 × 5: 1675
8 × 6: 11174
8 × 7: 55939
8 × 8: 369050
9 × 2: 9
9 × 4: 553
9 × 6: 31721
9 × 8: 1812667

REXX

idiomatic

/*REXX program cuts rectangles into two symmetric pieces,  the rectangles are cut along */
/*────────────────────────────────────────────────── unit dimensions and may be rotated.*/
numeric digits 20                                /*be able to handle some big integers. */
parse arg N .;    if N=='' | N==","  then N= 10  /*N  not specified?   Then use default.*/
dir.= 0;   dir.0.1= -1;   dir.1.0= -1;   dir.2.1= 1;   dir.3.0= 1  /*the four directions*/

     do   y=2   to N;   say                      /*calculate rectangles up to size  NxN.*/
       do x=1  for y;   if x//2  &  y//2  then iterate            /*Both X&Y odd?  Skip.*/
       z= solve(y,x,1);  _= comma(z);  _= right(_, max(14, length(_)))   /*align output.*/
       say right(y, 9)    "x"    right(x, 2)    'rectangle can be cut'    _     "way"s(z).
       end   /*x*/
     end     /*y*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
comma: procedure; arg _;  do k=length(_)-3  to 1  by -3; _=insert(',',_,k); end;  return _
s:     if arg(1)=1  then return arg(3);   return word( arg(2) 's', 1)      /*pluralizer.*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
solve: procedure expose # @. dir. h len next. w;  @.= 0    /*zero rectangle coördinates.*/
       parse arg h,w,recur                                 /*get values for some args.  */
       if h//2  then do;    t= w;    w= h;    h= t;    if h//2  then return 0
                     end
       if w==1  then return 1
       if w==2  then return h
       if h==2  then return w                              /* [↓]  % is REXX's integer ÷*/
       cy= h % 2;       cx= w % 2;     wp= w + 1           /*cut the rectangle in half. */
       len= (h+1) * wp - 1                                 /*extend area of rectangle.  */
       next.0= '-1';    next.1= -wp;   next.2= 1;     next.3= wp  /*direction & distance*/
       if recur  then #= 0
       cywp= cy * wp                                              /*shortcut calculation*/
                        do x=cx+1  to  w-1;     t= cywp + x;          @.t= 1
                        _= len - t;             @._= 1;               call walk cy - 1,  x
                        end   /*x*/
       #= # + 1
       if h==w  then #= # + #                              /*double rectangle cut count.*/
                else if w//2==0  &  recur  then call solve w, h, 0
       return #
/*──────────────────────────────────────────────────────────────────────────────────────*/
walk:  procedure expose # @. dir. h len next. w wp;              parse arg y,x
       if y==h | x==0 | x==w | y==0  then do;   #= # + 2;        return;            end
       t= y*wp + x;     @.t= @.t + 1;           _= len - t
       @._= @._ + 1
                     do j=0  for 4;       _= t + next.j      /*try each of 4 directions.*/
                     if @._==0  then call walk  y + dir.j.0,     x + dir.j.1
                     end   /*j*/
       @.t= @.t - 1
       _= len - t;      @._= @._ - 1;           return
output   when using the default input:
        2 x  1 rectangle can be cut              1 way.
        2 x  2 rectangle can be cut              2 ways.

        3 x  2 rectangle can be cut              3 ways.

        4 x  1 rectangle can be cut              1 way.
        4 x  2 rectangle can be cut              4 ways.
        4 x  3 rectangle can be cut              9 ways.
        4 x  4 rectangle can be cut             22 ways.

        5 x  2 rectangle can be cut              5 ways.
        5 x  4 rectangle can be cut             39 ways.

        6 x  1 rectangle can be cut              1 way.
        6 x  2 rectangle can be cut              6 ways.
        6 x  3 rectangle can be cut             23 ways.
        6 x  4 rectangle can be cut             90 ways.
        6 x  5 rectangle can be cut            263 ways.
        6 x  6 rectangle can be cut          1,018 ways.

        7 x  2 rectangle can be cut              7 ways.
        7 x  4 rectangle can be cut            151 ways.
        7 x  6 rectangle can be cut          2,947 ways.

        8 x  1 rectangle can be cut              1 way.
        8 x  2 rectangle can be cut              8 ways.
        8 x  3 rectangle can be cut             53 ways.
        8 x  4 rectangle can be cut            340 ways.
        8 x  5 rectangle can be cut          1,675 ways.
        8 x  6 rectangle can be cut         11,174 ways.
        8 x  7 rectangle can be cut         55,939 ways.
        8 x  8 rectangle can be cut        369,050 ways.

        9 x  2 rectangle can be cut              9 ways.
        9 x  4 rectangle can be cut            553 ways.
        9 x  6 rectangle can be cut         31,721 ways.
        9 x  8 rectangle can be cut      1,812,667 ways.

       10 x  1 rectangle can be cut              1 way.
       10 x  2 rectangle can be cut             10 ways.
       10 x  3 rectangle can be cut            115 ways.
       10 x  4 rectangle can be cut          1,228 ways.
       10 x  5 rectangle can be cut         10,295 ways.
       10 x  6 rectangle can be cut        118,276 ways.
       10 x  7 rectangle can be cut      1,026,005 ways.
       10 x  8 rectangle can be cut     11,736,888 ways.
       10 x  9 rectangle can be cut     99,953,769 ways.
       10 x 10 rectangle can be cut  1,124,140,214 ways.

optimized

This version replaced the (first) multiple clause   if   instructions in the   walk   subroutine with a
short circuit version.   Other optimizations were also made.   This made the program about   20%   faster.

A test run was executed to determine the order of the   if   statements   (by counting which
comparison would yield the most benefit by placing it first).

Also, I've discovered a formula for calculating the number of cuts for even   M   when   N   is   3.

/*REXX program cuts rectangles into two symmetric pieces,  the rectangles are cut along */
/*────────────────────────────────────────────────── unit dimensions and may be rotated.*/
numeric digits 40                                /*be able to handle some big integers. */
parse arg m .                                    /*obtain optional argument from the CL.*/
if m=='' | m==","  then m= 9                     /*Not specified?  Then use the default.*/
if m<0             then start= max(2, abs(m) )   /*<0? Then just use this size rectangle*/
                   else start=  2                /*start from two for regular invocation*/
dir.= 0;   dir.0.1= -1;   dir.1.0= -1;   dir.2.1= 1;   dir.3.0= 1    /*the 4 directions.*/
                 $= '# @. dir. h len next. w wp'
                                                 /*define the default for memoizations. */
      do   y=start  to abs(m);  yOdd= y//2;  say /*calculate rectangles up to size  MxM.*/
        do x=1  for y;    if x//2  then if yOdd  then iterate      /*X and Y odd?  Skip.*/
        z= solve(y, x, 1);        zc= comma(z)   /*add commas to the result for  SOLVE. */
        zca= right(zc, max(14,length(zc) ) )     /*align the output for better perusing.*/
        say right(y, 9)   "x"    right(x, 2)     'rectangle can be cut'   zca   "way"s(z).
        end   /*x*/
      end     /*y*/
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
comma: procedure; arg ?;  do k=length(?)-3  to 1  by -3; ?=insert(',',?,k); end;  return ?
s:     if arg(1)=1  then return arg(3);     return word(arg(2) 's', 1)     /*pluralizer.*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
solve: procedure expose ($);  @.= 0                        /*zero rectangle coördinates.*/
       parse arg h,w,recurse                               /*get values for some args.  */
       if w==3  then do;      z= h % 2  + 2;      return 2**z  -  (z + z)  +  1
                     end
       if h//2  then do;      t= w;    w= h;      h= t;           if h//2  then return 0
                     end
       if w==1  then return 1
       if w==2  then return h
       if h==2  then return w                    /* [↓]   %  is REXX's integer division.*/
       cy= h % 2;       cx= w % 2;     wp= w + 1 /*cut the  [XY]  rectangle in half.    */
       len= (h+1) * wp - 1                       /*extend the area of the rectangle.    */
       next.0= '-1';    next.1= -wp;   next.2= 1;    next.3= wp   /*direction & distance*/
       if recurse  then #= 0                                      /*doing recursion ?   */
       cywp= cy * wp                                              /*shortcut calculation*/
                           do x=cx+1  to  w-1;    t= cywp + x;      @.t= 1
                           __= len - t;           @.__= 1;          call walk cy - 1,  x
                           end   /*x*/
       #= # + 1
       if h==w  then #= # + #                    /*double the count of rectangle cuts.  */
                else if w//2==0  then if recurse  then call solve w, h, 0
       return #
/*──────────────────────────────────────────────────────────────────────────────────────*/
walk:  procedure expose ($);           parse arg y,x
       if y==h  then do;   #= # + 2;   return;   end  /* ◄──┐      REXX short circuit.  */
       if x==0  then do;   #= # + 2;   return;   end  /* ◄──┤        "    "      "      */
       if x==w  then do;   #= # + 2;   return;   end  /* ◄──┤        "    "      "      */
       if y==0  then do;   #= # + 2;   return;   end  /* ◄──┤        "    "      "      */
       q= y*wp + x;      @.q= @.q + 1;     _= len - q /*    │ordered by most likely ►──┐*/
       @._= @._ + 1                                   /*    └──────────────────────────┘*/
                     do j=0  for 4;  _= q + next.j    /*try each of the four directions.*/
                     if @._==0  then do;      yn= y + dir.j.0
                                           if yn==h  then do;   #= # + 2;   iterate;   end
                                              xn= x + dir.j.1
                                           if xn==0  then do;   #= # + 2;   iterate;   end
                                           if xn==w  then do;   #= # + 2;   iterate;   end
                                           if yn==0  then do;   #= # + 2;   iterate;   end
                                           call walk  yn, xn
                                     end
                     end   /*j*/
       @.q= @.q - 1;                 _= len - q;          @._= @._ - 1;           return
output   is the same as the idiomatic version   (above).



Ruby

Translation of: Python
def cut_it(h, w)
  if h.odd?
    return 0  if w.odd?
    h, w = w, h
  end
  return 1  if w == 1
  
  nxt = [[w+1, 1, 0], [-w-1, -1, 0], [-1, 0, -1], [1, 0, 1]]  # [next,dy,dx]
  blen = (h + 1) * (w + 1) - 1
  grid = [false] * (blen + 1)
  
  walk = lambda do |y, x, count=0|
    return count+1  if y==0 or y==h or x==0 or x==w
    t = y * (w + 1) + x
    grid[t] = grid[blen - t] = true
    nxt.each do |nt, dy, dx|
      count += walk[y + dy, x + dx]  unless grid[t + nt]
    end
    grid[t] = grid[blen - t] = false
    count
  end
  
  t = h / 2 * (w + 1) + w / 2
  if w.odd?
    grid[t] = grid[t + 1] = true
    count = walk[h / 2, w / 2 - 1]
    count + walk[h / 2 - 1, w / 2] * 2
  else
    grid[t] = true
    count = walk[h / 2, w / 2 - 1]
    return count * 2  if h == w
    count + walk[h / 2 - 1, w / 2]
  end
end

for w in 1..9
  for h in 1..w
    puts "%d x %d: %d" % [w, h, cut_it(w, h)]  if (w * h).even?
  end
end
Output:
2 x 1: 1
2 x 2: 2
3 x 2: 3
4 x 1: 1
4 x 2: 4
4 x 3: 9
4 x 4: 22
5 x 2: 5
5 x 4: 39
6 x 1: 1
6 x 2: 6
6 x 3: 23
6 x 4: 90
6 x 5: 263
6 x 6: 1018
7 x 2: 7
7 x 4: 151
7 x 6: 2947
8 x 1: 1
8 x 2: 8
8 x 3: 53
8 x 4: 340
8 x 5: 1675
8 x 6: 11174
8 x 7: 55939
8 x 8: 369050
9 x 2: 9
9 x 4: 553
9 x 6: 31721
9 x 8: 1812667

Show each of the cuts

class Rectangle
  DIRS = [[1, 0], [-1, 0], [0, -1], [0, 1]]
  def initialize(h, w)
    raise ArgumentError  if (h.odd? and w.odd?) or h<=0 or w<=0
    @h, @w = h, w
    @limit = h * w / 2
  end
  
  def cut(disp=true)
    @cut = {}
    @select = []
    @result = []
    @grid = make_grid
    walk(0,0)
    display  if disp
    @result
  end
  
  def make_grid
    Array.new(@h+1) {|i| Array.new(@w+1) {|j| true if i<@h and j<@w }}
  end
  
  def walk(y, x)
    @grid[y][x] = @grid[@h-y-1][@w-x-1] = false
    @select.push([y,x])
    select = @select.sort
    unless @cut[select]
      @cut[select] = true
      if @select.size == @limit
        @result << select
      else
        search_next.each {|yy,xx| walk(yy,xx)}
      end
    end
    @select.pop
    @grid[y][x] = @grid[@h-y-1][@w-x-1] = true
  end
  
  def search_next
    nxt = {}
    @select.each do |y,x|
      DIRS.each do |dy, dx|
        nxt[[y+dy, x+dx]] = true  if @grid[y+dy][x+dx]
      end
    end
    nxt.keys
  end
  
  def display
    @result.each do |select|
      @grid = make_grid
      select.each {|y,x| @grid[y][x] = false}
      puts to_s
    end
  end
  
  def to_s
    text = Array.new(@h*2+1) {" " * (@w*4+1)}
    for i in 0..@h
      for j in 0..@w
        text[i*2][j*4+1,3] = "---"  if @grid[i][j] != @grid[i-1][j]
        text[i*2+1][j*4]   = "|"    if @grid[i][j] != @grid[i][j-1]
        text[i*2][j*4]     = "+"
      end
    end
    text.join("\n")
  end
end

rec = Rectangle.new(2,2)
puts rec.cut.size

rec = Rectangle.new(3,4)
puts rec.cut.size
Output:
+---+---+
|   |   |
+   +   +
|   |   |
+---+---+
+---+---+
|       |
+---+---+
|       |
+---+---+
2
+---+---+---+---+
|           |   |
+   +   +---+   +
|       |       |
+   +---+   +   +
|   |           |
+---+---+---+---+
+---+---+---+---+
|       |       |
+   +   +   +   +
|       |       |
+   +   +   +   +
|       |       |
+---+---+---+---+
+---+---+---+---+
|           |   |
+   +---+   +   +
|   |   |   |   |
+   +   +---+   +
|   |           |
+---+---+---+---+
+---+---+---+---+
|               |
+   +   +---+---+
|       |       |
+---+---+   +   +
|               |
+---+---+---+---+
+---+---+---+---+
|               |
+   +---+   +---+
|   |   |   |   |
+---+   +---+   +
|               |
+---+---+---+---+
+---+---+---+---+
|   |           |
+   +---+   +   +
|       |       |
+   +   +---+   +
|           |   |
+---+---+---+---+
+---+---+---+---+
|   |           |
+   +   +---+   +
|   |   |   |   |
+   +---+   +   +
|           |   |
+---+---+---+---+
+---+---+---+---+
|               |
+---+   +---+   +
|   |   |   |   |
+   +---+   +---+
|               |
+---+---+---+---+
+---+---+---+---+
|               |
+---+---+   +   +
|       |       |
+   +   +---+---+
|               |
+---+---+---+---+
9

Rust

Translation of: Python
fn cwalk(mut vis: &mut Vec<Vec<bool>>, count: &mut isize, w: usize, h: usize, y: usize, x: usize, d: usize) {
    if x == 0 || y == 0 || x == w || y == h {
        *count += 1;
        return;
    }
 
    vis[y][x] = true;
    vis[h - y][w - x] = true;

    if x != 0 && ! vis[y][x - 1] {
        cwalk(&mut vis, count, w, h, y, x - 1, d | 1);
    }
    if d & 1 != 0 && x < w && ! vis[y][x+1] {
        cwalk(&mut vis, count, w, h, y, x + 1, d | 1);
    }
    if y != 0 && ! vis[y - 1][x] {
        cwalk(&mut vis, count, w, h, y - 1, x, d | 2);
    }
    if d & 2 != 0 && y < h && ! vis[y + 1][x] {
        cwalk(&mut vis, count, w, h, y + 1, x, d | 2);
    }

    vis[y][x] = false;
    vis[h - y][w - x] = false;
}

fn count_only(x: usize, y: usize) -> isize {
    let mut count = 0;
    let mut w = x;
    let mut h = y;
 
    if (h * w) & 1 != 0 {
        return count;
    }
    if h & 1 != 0 {
        std::mem::swap(&mut w, &mut h);
    }
 
    let mut vis = vec![vec![false; w + 1]; h + 1];
    vis[h / 2][w / 2] = true;
 
    if w & 1 != 0 {
        vis[h / 2][w / 2 + 1] = true;
    }
    let mut res;
    if w > 1 {
        cwalk(&mut vis, &mut count, w, h, h / 2, w / 2 - 1, 1);
        res = 2 * count - 1;
        count = 0;
        if w != h {
            cwalk(&mut vis, &mut count, w, h, h / 2 + 1, w / 2, if w & 1 != 0 { 3 } else { 2 });
        } 
        res += 2 * count - if w & 1 == 0 { 1 } else { 0 };
    }
    else {
        res = 1;
    }
 
    if w == h {
        res = 2 * res + 2;
    }
    res
}

fn main() {
    for y in 1..10 {
        for x in 1..y + 1 {
            if x & 1 == 0 || y & 1 == 0 {
                println!("{} x {}: {}", y, x, count_only(x, y));
            }
        }
    }
}

Tcl

Translation of: C
package require Tcl 8.5

proc walk {y x} {
    global w ww h cnt grid len
    if {!$y || $y==$h || !$x || $x==$w} {
	incr cnt 2
	return
    }
    set t [expr {$y*$ww + $x}]
    set m [expr {$len - $t}]
    lset grid $t [expr {[lindex $grid $t] + 1}]
    lset grid $m [expr {[lindex $grid $m] + 1}]
    if {![lindex $grid [expr {$y*$ww + $x-1}]]} {
	walk $y [expr {$x-1}]
    }
    if {![lindex $grid [expr {($y-1)*$ww + $x}]]} {
	walk [expr {$y-1}] $x
    }
    if {![lindex $grid [expr {$y*$ww + $x+1}]]} {
	walk $y [expr {$x+1}]
    }
    if {![lindex $grid [expr {($y+1)*$ww + $x}]]} {
	walk [expr {$y+1}] $x
    }
    lset grid $t [expr {[lindex $grid $t] - 1}]
    lset grid $m [expr {[lindex $grid $m] - 1}]
}

# Factored out core of [solve]
proc SolveCore {} {
    global w ww h cnt grid len
    set ww [expr {$w+1}]
    set cy [expr {$h / 2}]
    set cx [expr {$w / 2}]

    set len [expr {($h+1) * $ww}]
    set grid [lrepeat $len 0]
    incr len -1

    for {set x $cx;incr x} {$x < $w} {incr x} {
	set t [expr {$cy*$ww+$x}]
	lset grid $t 1
	lset grid [expr {$len - $t}] 1
	walk [expr {$cy - 1}] $x
    }
    incr cnt
}
proc solve {H W} {
    global w h cnt
    set h $H
    set w $W
    if {$h & 1} {
	set h $W
	set w $H
    }
    if {$h & 1} {
	return 0
    }
    if {$w==1} {return 1}
    if {$w==2} {return $h}
    if {$h==2} {return $w}

    set cnt 0
    SolveCore
    if {$h==$w} {
	incr cnt $cnt
    } elseif {!($w & 1)} {
	lassign [list $w $h] h w
	SolveCore
    }
    return $cnt
}

apply {{limit} {
    for {set yy 1} {$yy <= $limit} {incr yy} {
	for {set xx 1} {$xx <= $yy} {incr xx} {
	    if {!($xx&1 && $yy&1)} {
		puts [format "%d x %d: %ld" $yy $xx [solve $yy $xx]]
	    }
	}
    }
}} 10

Output is identical.

Wren

Translation of: C
Library: Wren-fmt

Last two are very slooow to emerge (about 7¼ mins overall).

import "./fmt" for Fmt

var grid = []
var w = 0
var h = 0
var len = 0
var cnt = 0
var next = [0] * 4
var dir  = [[0, -1], [-1, 0], [0, 1], [1, 0]]

var walk // recursive
walk = Fn.new { |y, x|
    if (y == 0 || y == h || x == 0 || x == w) {
        cnt = cnt + 2
        return
    }
    var t = y * (w + 1) + x
    grid[t] = grid[t] + 1
    grid[len-t] = grid[len-t] + 1
    for (i in 0..3) {
        if (grid[t + next[i]] == 0) {
            walk.call(y + dir[i][0], x + dir[i][1])
        }
    }
    grid[t] = grid[t] - 1
    grid[len-t] = grid[len-t] - 1
}

var solve // recursive
solve = Fn.new { |hh, ww, recur|
    h = hh
    w = ww
    if (h&1 != 0) {
        var t = w
        w = h
        h = t
    }
    if (h&1 != 0) return 0
    if (w == 1) return 1
    if (w == 2) return h
    if (h == 2) return w
    var cy = (h/2).floor
    var cx = (w/2).floor
    len = (h + 1) * (w + 1)
    grid = List.filled(len, 0)
    len  = len - 1
    next[0] = -1
    next[1] = -w - 1
    next[2] = 1
    next[3] = w + 1
    if (recur) cnt = 0
    var x = cx + 1
    while (x < w) {
        var t = cy * (w + 1) + x
        grid[t] = 1
        grid[len-t] = 1
        walk.call(cy - 1, x)
        x = x + 1
    }
    cnt = cnt + 1
    if (h == w) {
        cnt = cnt * 2
    } else if ((w&1 == 0) && recur) {
        solve.call(w, h, false)
    }
    return cnt
}

for (y in 1..10) {
    for (x in 1..y) {
        if ((x&1 == 0) || (y&1 ==0)) {
            Fmt.print("$2d x $2d : $d", y, x, solve.call(y, x, true))
        }
    }
}
Output:
 2 x  1 : 1
 2 x  2 : 2
 3 x  2 : 3
 4 x  1 : 1
 4 x  2 : 4
 4 x  3 : 9
 4 x  4 : 22
 5 x  2 : 5
 5 x  4 : 39
 6 x  1 : 1
 6 x  2 : 6
 6 x  3 : 23
 6 x  4 : 90
 6 x  5 : 263
 6 x  6 : 1018
 7 x  2 : 7
 7 x  4 : 151
 7 x  6 : 2947
 8 x  1 : 1
 8 x  2 : 8
 8 x  3 : 53
 8 x  4 : 340
 8 x  5 : 1675
 8 x  6 : 11174
 8 x  7 : 55939
 8 x  8 : 369050
 9 x  2 : 9
 9 x  4 : 553
 9 x  6 : 31721
 9 x  8 : 1812667
10 x  1 : 1
10 x  2 : 10
10 x  3 : 115
10 x  4 : 1228
10 x  5 : 10295
10 x  6 : 118276
10 x  7 : 1026005
10 x  8 : 11736888
10 x  9 : 99953769
10 x 10 : 1124140214

XPL0

Translation of: C

Works on Raspberry Pi. ReallocMem is not available in the DOS versions. Takes about 40 seconds on Pi4.

include xpllib; \for Print

char Grid;
int  W, H, Len, Cnt;
int  Next(4), Dir;

proc Walk(Y, X);
int  Y, X;
int  I, T;
[if Y=0 or Y=H or X=0 or X=W then
    [Cnt:= Cnt+2;  return];
T:= Y * (W + 1) + X;
Grid(T):= Grid(T)+1;
Grid(Len-T):= Grid(Len-T)+1;
for I:= 0 to 4-1 do
    if Grid(T + Next(I)) = 0 then
        Walk(Y+Dir(I,0), X+Dir(I,1));
Grid(T):= Grid(T)-1;
Grid(Len-T):= Grid(Len-T)-1;
];

func Solve(HH, WW, Recur);
int HH, WW, Recur;
int T, CX, CY, X;
[H:= HH;  W:= WW;
if H & 1 then [T:= W;  W:= H;  H:= T];
if H & 1 then return 0;
if W = 1 then return 1;
if W = 2 then return H;
if H = 2 then return W;
CY:= H/2;  CX:= W/2;
Len:= (H + 1) * (W + 1);
Grid:= ReallocMem(Grid, Len);
FillMem(Grid, 0, Len);  Len:= Len-1;
Next(0):= -1;
Next(1):= -W - 1;
Next(2):= 1;
Next(3):= W + 1;
if Recur then Cnt:= 0;
for X:= CX+1 to W-1 do
    [T:= CY * (W + 1) + X;
    Grid(T):= 1;
    Grid(Len - T):= 1;
    Walk(CY - 1, X);
    ];
Cnt:= Cnt+1;
if H = W then Cnt:= Cnt * 2
else if (W&1) = 0 and Recur then Solve(W, H, 0);
return Cnt;
];

int Y, X;
[Grid:= 0;
Dir:= [[0, -1], [-1, 0], [0, 1], [1, 0]];
for Y:= 1 to 10 do
    for X:= 1 to Y do
        if (X&1) = 0 or (Y&1) = 0 then
            Print("%d x %d: %d\n", Y, X, Solve(Y, X, 1));
]
Output:
2 x 1: 1
2 x 2: 2
3 x 2: 3
4 x 1: 1
4 x 2: 4
4 x 3: 9
4 x 4: 22
5 x 2: 5
5 x 4: 39
6 x 1: 1
6 x 2: 6
6 x 3: 23
6 x 4: 90
6 x 5: 263
6 x 6: 1018
7 x 2: 7
7 x 4: 151
7 x 6: 2947
8 x 1: 1
8 x 2: 8
8 x 3: 53
8 x 4: 340
8 x 5: 1675
8 x 6: 11174
8 x 7: 55939
8 x 8: 369050
9 x 2: 9
9 x 4: 553
9 x 6: 31721
9 x 8: 1812667
10 x 1: 1
10 x 2: 10
10 x 3: 115
10 x 4: 1228
10 x 5: 10295
10 x 6: 118276
10 x 7: 1026005
10 x 8: 11736888
10 x 9: 99953769
10 x 10: 1124140214

zkl

Translation of: Ruby
fcn cut_it(h,w){
   if(h.isOdd){
      if(w.isOdd) return(0);
      t,h,w=h,w,t;  // swap w,h: a,b=c,d --> a=c; b=d; so need a tmp
   }
   if(w==1) return(1);
 
   nxt :=T(T(w+1, 1,0), T(-w-1, -1,0), T(-1, 0,-1), T(1, 0,1)); #[next, dy,dx]
   blen:=(h + 1)*(w + 1) - 1;
   grid:=(blen + 1).pump(List(),False); //-->L(False,False...)
 
   walk:='wrap(y,x){ // lambda closure
      if(y==0 or y==h or x==0 or x==w) return(1);
      count,t:=0,y*(w + 1) + x;
      grid[t]=grid[blen - t]=True;
      foreach nt,dy,dx in (nxt){
         if(not grid[t + nt]) count+=self.fcn(y + dy, x + dx,vm.pasteArgs(2));
      }
      grid[t]=grid[blen - t]=False;
      count
   };

   t:=h/2*(w + 1) + w/2;
   if(w.isOdd){
      grid[t]=grid[t + 1]=True;
      count:=walk(h/2, w/2 - 1);
      count + walk(h/2 - 1, w/2)*2;
   }else{
      grid[t]=True;
      count:=walk(h/2, w/2 - 1);
      if(h==w) return(count*2);
      count + walk(h/2 - 1, w/2);
   }
}

Note the funkiness in walk: vm.pasteArgs. This is because zkl functions are unaware of their scope, so a closure is needed (when calling walk) to capture state (nxt, blen, grid, h, w). Rather than creating a closure object each call, that state is passed in the arg list. So, when doing recursion, that state needs to be restored to the stack (the compiler isn't smart enough to recognize this case).

foreach w,h in ([1..9],[1..w]){
   if((w*h).isEven) println("%d x %d: %d".fmt(w, h, cut_it(w,h)));
}
Output:

Output is identical.

2 x 1: 1
2 x 2: 2
3 x 2: 3
4 x 1: 1
4 x 2: 4
4 x 3: 9
4 x 4: 22
...

9 x 2: 9
9 x 4: 553
9 x 6: 31721