Collect and sort square numbers in ascending order from three lists

From Rosetta Code
Collect and sort square numbers in ascending order from three lists is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task


Collect and sort square numbers in ascending order from three lists.
list[1] = [3,4,34,25,9,12,36,56,36]
list[2] = [2,8,81,169,34,55,76,49,7]
list[3] = [75,121,75,144,35,16,46,35]

11l

V lists = [[3, 4, 34, 25, 9, 12, 36, 56, 36], [2, 8, 81, 169, 34, 55, 76, 49, 7], [75, 121, 75, 144, 35, 16, 46, 35]]
[Int] squares

F is_square(x)
   R Int(sqrt(x)) ^ 2 == x

L(l) lists
   L(x) l
      I is_square(x)
         squares.append(x)

squares.sort()
print(squares)
Output:
[4, 9, 16, 25, 36, 36, 49, 81, 121, 144, 169]

ALGOL 68

Library: ALGOL 68-rows
Library: ALGOL 68-sort

Note, the sources of rows.incl.a68 and sort.incl.a68 are on separate pages on Rosetta Code, see the above links.

BEGIN # construct a list of the squares from some other lists                 #
    # lists are represented by arrays in this sample                          #
    PR read "rows.incl.a68" PR               # incldue row printing utilities #
    PR read "sort.incl.a68" PR               # include row sorting  utilities #

    # construct the lists of numbers required by the task #
    [][]INT list = ( (  3,   4, 34,  25,  9, 12, 36, 56, 36 )
                   , (  2,   8, 81, 169, 34, 55, 76, 49,  7 )
                   , ( 75, 121, 75, 144, 35, 16, 46, 35     )         
                   );
    # find the elements of the lists that are squares                         #
    INT r pos   := 0;
    REF[]INT squares := HEAP[ 1 : 0 ]INT;          # start with an empty list #
    FOR i FROM LWB list TO UPB list DO
        FOR j FROM LWB list[ i ] TO UPB list[ i ] DO
            IF   INT  n    = list[ i ][ j ];
                 REAL root = sqrt( n );
                 root = ENTIER root
            THEN # have a square #
                 r pos +:= 1;
                 IF r pos > UPB squares THEN
                     # the squares array isn't big enough - make a larger one #
                     REF[]INT new squares
                                  := HEAP[ 1 : UPB squares + 10 ]INT;
                     new squares[ 1 : UPB squares ] := squares;
                     squares                        := new squares
                 FI;
                 squares[ r pos ] := n
            FI
        OD
    OD;
    squares QUICKSORT ELEMENTS( 1, r pos );
    SHOW squares[ 1 : r pos ]
END
Output:
 4 9 16 25 36 36 49 81 121 144 169

Arturo

lists: [
    [3,4,34,25,9,12,36,56,36]
    [2,8,81,169,34,55,76,49,7]
    [75,121,75,144,35,16,46,35]
]

squares: map 1..inc to :integer sqrt max flatten lists 'x -> x^2
square?: function [n]-> contains? squares n

print select sort fold.seed:[] lists [a,b][a++b] => square?
Output:
4 9 16 25 36 36 49 81 121 144 169

AutoHotkey

list := [], t := [], result := []

list[1] := [3,4,34,25,9,12,36,56,36]
list[2] := [2,8,81,169,34,55,76,49,7]
list[3] := [75,121,75,144,35,16,46,35]

for i, l in list
    for j, n in l
        if ((s:=Sqrt(n)) = Floor(s))
            t[n, j] := true

for n, obj in t
    for i, v in obj
        result.push(n)
Output:
[4, 9, 16, 25, 36, 36, 49, 81, 121, 144, 169]

AWK

# syntax: GAWK -f COLLECT_AND_SORT_SQUARE_NUMBERS_IN_ASCENDING_ORDER_FROM_THREE_LISTS.AWK
BEGIN {
    list[1] = "3,4,34,25,9,12,36,56,36"
    list[2] = "2,8,81,169,34,55,76,49,7"
    list[3] = "75,121,75,144,35,16,46,35"
    for (i=1; i<=length(list); i++) {
      n = split(list[i],list_arr,",")
      for (j=1; j<=n; j++) {
        if (is_square(list_arr[j])) {
          sq_arr[i,j] = list_arr[j]
        }
      }
    }
    PROCINFO["sorted_in"] = "@val_num_asc"
    for (i in sq_arr) {
      printf("%d ",sq_arr[i])
    }
    printf("\n")
    exit(0)
}
function is_square(n) {
    return (int(sqrt(n))^2 == n)
}
Output:
4 9 16 25 36 36 49 81 121 144 169

BQN

lists  ⟨[3,4,34,25,9,12,36,56,36]
         [2,8,81,169,34,55,76,49,7]
         [75,121,75,144,35,16,46,35]⟩
Task   =/¨

Task lists
Output:
⟨ 4 9 16 25 36 36 49 81 121 144 169 ⟩

Delphi

Works with: Delphi version 6.0

The program uses the Delphi standard "TList" component to collect the numbers. Since it normally holds pointers, the integers are recast as pointers. The TList components provides a quick sort routine that is customized by providing your own compare routine.

const List1: array [0..8] of integer = (3,4,34,25,9,12,36,56,36);
const List2: array [0..8] of integer = (2,8,81,169,34,55,76,49,7);
const List3: array [0..7] of integer = (75,121,75,144,35,16,46,35);


function Compare(P1,P2: pointer): integer;
{Compare for quick sort}
begin
Result:=Integer(P1)-Integer(P2);
end;


procedure SortedSquareNumbers(Memo: TMemo);
{Find and sort numbers that are perfect squares}
var I: integer;
var NumList: TList;
var S: string;

	procedure LoadList(L: array of integer);
	{Load only perfect squares from one of the list }
	var I: integer;
	begin
	for I:=0 to High(L) do
	 if  Sqr(Sqrt(L[I]))=L[I] then
	 NumList.Add(Pointer(L[I]));
	end;

begin
NumList:=TList.Create;
try
LoadList(List1);
LoadList(List2);
LoadList(List3);
NumList.Sort(Compare);
S:='';
for I:=0 to NumList.Count-1 do
 S:=S+' '+IntToStr(Integer(NumList[I]));
Memo.Lines.Add(S);
finally NumList.Free; end;
end;
Output:
 4 9 16 25 36 36 49 55 76 81 121 144 169


EasyLang

lists[][] = [ [ 3 4 34 25 9 12 36 56 36 ] [ 2 8 81 169 34 55 76 49 7 ] [ 75 121 75 144 35 16 46 35 ] ]
# 
proc sort . d[] .
   for i = 1 to len d[] - 1
      for j = i + 1 to len d[]
         if d[j] < d[i]
            swap d[j] d[i]
         .
      .
   .
.
func issqr x .
   return if pow floor sqrt x 2 = x
.
for i to len lists[][]
   for e in lists[i][]
      if issqr e = 1
         sqrs[] &= e
      .
   .
.
sort sqrs[]
print sqrs[]

F#

// Collect and sort square numbers in ascending order from three lists. Nigel Galloway: December 21st., 2021
let fN g=g*g in printfn "%A" (([3;4;34;25;9;12;36;56;36]@[2;8;81;169;34;55;76;49;7]@[75;121;75;144;35;16;46;35])|>List.filter(fun n->(float>>sqrt>>int>>fN)n=n)|>List.sort)
Output:
[4; 9; 16; 25; 36; 36; 49; 81; 121; 144; 169]

Factor

Works with: Factor version 0.99
USING: prettyprint project-euler.common sequences sorting ;

{ 3 4 34 25 9 12 36 56 36 }
{ 2 8 81 169 34 55 76 49 7 }
{ 75 121 75 144 35 16 46 35 }
3append [ perfect-square? ] filter sort .
Output:
{ 4 9 16 25 36 36 49 81 121 144 169 }

FreeBASIC

function issquare( n as integer ) as boolean
    if int(sqr(n))^2=n then return true else return false
end function

dim as integer i, j, nums(1 to 3, 1 to 9) = {{3,4,34,25,9,12,36,56,36},_
 {2,8,81,169,34,55,76,49,7}, {75,121,75,144,35,16,46,35,-1}}, c, d, ii, jj      'pad the last list to make it the same length
redim as integer squares(-1)   'we don't know beforehand how many squares we'll find, so set up a placeholder

while true                     'keep going while there are still squares in the lists
    c = 99999                  'sentinel value
    for i = 1 to 3             'loop through lists
        for j = 1 to 9
            d = nums(i, j)
            if issquare(d) then     'have we found a square?
                if d < c then       'is it the smallest so far?
                    c = d
                    ii = i
                    jj = j
                end if
            end if
        next j
    next i
    if c = 99999 then exit while    'if we didn't find a square, stop looking
    redim preserve squares(0 to ubound(squares)+1)      'update our list
    squares(ubound(squares)) = c
    nums(ii,jj) = 13                'mod the original lists so we don't find that same square again
wend

for i = 0 to ubound(squares)        'output data
    print squares(i);"  ";
next i
Output:
4   9   16   25   36   36   49   81   121   144   169


Go

package main

import (
    "fmt"
    "math"
    "sort"
)

func isSquare(n int) bool {
    s := int(math.Sqrt(float64(n)))
    return s*s == n
}

func main() {
    lists := [][]int{
        {3, 4, 34, 25, 9, 12, 36, 56, 36},
        {2, 8, 81, 169, 34, 55, 76, 49, 7},
        {75, 121, 75, 144, 35, 16, 46, 35},
    }
    var squares []int
    for _, list := range lists {
        for _, e := range list {
            if isSquare(e) {
                squares = append(squares, e)
            }
        }
    }
    sort.Ints(squares)
    fmt.Println(squares)
}
Output:
[4 9 16 25 36 36 49 81 121 144 169]

Haskell

import Data.List (sort)

------- PERFECT SQUARE SUBSET OF THREE LISTS SORTED ------

squaresSorted :: Integral a => [[a]] -> [a]
squaresSorted = sort . concatMap (filter isPerfectSquare)

isPerfectSquare :: Integral a => a -> Bool
isPerfectSquare = (==) <*> ((^ 2) . floor . sqrt . fromIntegral)


--------------------------- TEST -------------------------
main :: IO ()
main =
  print $
    squaresSorted
      [ [3, 4, 34, 25, 9, 12, 36, 56, 36],
        [2, 8, 81, 169, 34, 55, 76, 49, 7],
        [75, 121, 75, 144, 35, 16, 46, 35]
      ]
Output:
[4,9,16,25,36,36,49,81,121,144,169]

J

There's many valid approaches here. Here's one of them:

list1=: 3 4 34 25 9 12 36 56 36
list2=: 2 8 81 169 34 55 76 49 7
list3=: 75 121 75 144 35 16 46 35

   /:~ (#~ ] = <.&.%:) list1,list2,list3
4 9 16 25 36 36 49 81 121 144 169

jq

Works with: jq

Works with gojq, the Go implementation of jq

def isSquare: sqrt | (. == floor);

The Task

def lists: [
    [3,4,34,25,9,12,36,56,36],
    [2,8,81,169,34,55,76,49,7],
    [75,121,75,144,35,16,46,35]
];

[lists[][]] | unique | map(select(isSquare))
Output:
[4,9,16,25,36,49,81,121,144,169]

Julia

vcat is list "addition" in Julia.

lists = [
    [3,4,34,25,9,12,36,56,36],
    [2,8,81,169,34,55,76,49,7],
    [75,121,75,144,35,16,46,35]
]

squares = reduce(vcat, [[s for s in list if isqrt(s)^2 == s] for list in lists])
sort!(squares)
println(squares)

Mathematica / Wolfram Language

list1 = {3, 4, 34, 25, 9, 12, 36, 56, 36};
list2 = {2, 8, 81, 169, 34, 55, 76, 49, 7};
list3 = {75, 121, 75, 144, 35, 16, 46, 35};
Sort@Select[Join[list1, list2, list3], IntegerQ[Sqrt[#]] &]
Output:

{4,9,16,25,36,36,49,81,121,144,169}

Maxima

list[1]: [3,4,34,25,9,12,36,56,36]$
list[2]: [2,8,81,169,34,55,76,49,7]$
list[3]: [75,121,75,144,35,16,46,35]$
block(makelist(sublist(list[i],lambda([x],integerp(sqrt(x)))),i,1,3),map(sort,%%));
Output:

[[4,9,25,36,36],[49,81,169],[16,121,144]]

newLISP

(define (sqr? n) (= n (pow (round (sqrt n)) 2)))

(sort (filter sqr? (flat
  '((3 4 34 25 9 12 36 56 36)
    (2 8 81 169 34 55 76 49 7)
    (75 121 75 144 35 16 46 35)))))
Output:
(4 9 16 25 36 36 49 81 121 144 169)

Nim

import std/[algorithm, math, strutils, sugar]

func isSquare(n: Natural): bool =
  let r = sqrt(n.toFloat).int
  result = n == r * r

const
  List1 = @[3, 4, 34, 25, 9, 12, 36, 56, 36]
  List2 = @[2, 8, 81, 169, 34, 55, 76, 49, 7]
  List3 = @[75, 121, 75, 144, 35, 16, 46, 35]

var squareList = collect:
                   for list in [List1, List2, List3]:
                     for n in list:
                       if n.isSquare:
                         n
squareList.sort()

echo squareList.join(" ")
Output:
4 9 16 25 36 36 49 81 121 144 169

ooRexx

Parse Version v
Say v
l.1=.array~of(3,4,34,25,9,12,36,56,36)
l.2=.array~of(2,8,81,169,34,55,76,49,7)
l.3=.array~of(75,121,75,144,35,16,46,35)
st.0=0
Do li=1 To 3
  Do e over l.li
    If is_square(e) Then
      Call store s
    End
  End
Call Show
Exit

is_square:
Parse Arg x
Do i=1 By 1 UNtil i**2>x
  if i**2=x Then Return 1
  End
Return 0

store:
do i=1 To st.0
  /*
  If st.i=e Then
    Return
  */
  If st.i>e Then Do
    Do j=st.0 To i By -1
      ja=j+1
      st.ja=st.j
      End
    st.0=st.0+1
    Leave i
    End
  End
st.i=e
If i>st.0 Then
  st.0=i
Return

show:
ol='Ordered squares:'
Do i=1 To st.0
  ol=ol st.i
  End
Say ol
Exit
Output:
REXX-ooRexx_5.0.0(MT)_64-bit 6.05 8 Sep 2020
Ordered squares: 4 9 16 25 36 36 49 81 121 144 169

Pascal

Free Pascal

Program SortedSquares;
{$mode ObjFPC}{$H+}

Uses sysutils,fgl;

Type 
  tmap = specialize TFPGList<integer>;

Const List1: array Of integer = (3,4,34,25,9,12,36,56,36);
Const List2: array Of integer = (2,8,81,169,34,55,76,49,7);
Const List3: array Of integer = (75,121,75,144,35,16,46,35);

Var list : specialize TFPGList<integer>;

Procedure addtolist(arr : Array Of integer);
Var i : integer;
Begin
  For i In arr Do
    If ((frac(sqrt(i)) = 0) {check if a square, there will be no fraction}
       And (list.indexof(i) = -1)) {make sure number isn't in list already}
      Then list.add(i);
End;

Function CompareInt(Const Item1,Item2: Integer): Integer;
Begin
  result := item1 - item2;
End;

Var i : integer;
Begin
  list := specialize TFPGList<integer>.create;
  addtolist(list1);
  addtolist(list2);
  addtolist(list3);
  List.Sort(@CompareInt); {quick sort the list}
  For i In list Do
    write(i:4); 
  list.destroy;
End.
Output:
4   9  16  25  36  49  81 121 144 169

Perl

Library: ntheory
#!/usr/bin/perl

use strict; # https://rosettacode.org/wiki/Add_and_sort_square_numbers_in_ascending_order_from_three_lists
use warnings;
use ntheory qw( is_square );
use List::Util qw( sum );

my @lists = (
  [3,4,34,25,9,12,36,56,36],
  [2,8,81,169,34,55,76,49,7],
  [75,121,75,144,35,16,46,35]);

my $sum = sum my @squares = grep is_square($_), sort { $a <=> $b } map @$_, @lists;
print "sum $sum  -  @squares\n";
Output:
sum 690  -  4 9 16 25 36 36 49 81 121 144 169

Phix

with javascript_semantics
procedure squares(sequence lists)
    sequence res = sort(join(lists)), sq = {1}
    while res[$]>sq[$] do sq &= power(length(sq)+1,2) end while
    res = filter(res,"in",sq)
    printf(1,"Added:%,d, Sorted:%V\n",{sum(res),res})
end procedure

squares({{3,4,34,25,9,12,36,56,36},
         {2,8,81,169,34,55,76,49,7},
         {75,121,75,144,35,16,46,35}})

Alternatively, and a smidgen faster but not enough to be measurable here, you could replace that inner while loop with:

    integer m = res[$], s = 1, d = 1
    while m>s do d += 2; s += d; sq &= s; end while
Output:
Added:690, Sorted:{4,9,16,25,36,36,49,81,121,144,169}

You could also apply res:=unique(res), anywhere/8 ways: new line in 3 places, or inline (two ways each) on either existing assignment, or as a replacement for the sort(), which would reduce the length by 1 (the duplicate 36) and yield a total of 654.

Python

import math

print("working...")
list = [(3,4,34,25,9,12,36,56,36),(2,8,81,169,34,55,76,49,7),(75,121,75,144,35,16,46,35)]
Squares = []

def issquare(x):
	for p in range(x):
		if x == p*p:
			return 1
for n in range(3):
	for m in range(len(list[n])):
		if issquare(list[n][m]):
			Squares.append(list[n][m])

Squares.sort()
print(Squares)
print("done...")
Output:
working...
[4, 9, 16, 25, 36, 36, 49, 81, 121, 144, 169]
done...

Quackery

sqrt+ is defined at Isqrt (integer square root) of X#Quackery.

  [ sqrt+ nip 0 = ] is issquare ( n --> b )

  []
  ' [ [  3   4 34  25  9 12 36 56 36 ]
      [  2   8 81 169 34 55 76 49  7 ]
      [ 75 121 75 144 35 16 46 35 ] ]
  witheach
    [ witheach
        [ dup issquare iff
            join else drop ] ]
  sort
  echo
Output:
[ 4 9 16 25 36 36 49 81 121 144 169 ]

Raku

my $s = cache sort ( my $l = ( cache flat

[3,4,34,25,9,12,36,56,36],
[2,8,81,169,34,55,76,49,7],
[75,121,75,144,35,16,46,35]

)).grep: * ∈ cache {$++²}…*>$l.max;

put 'Added - Sorted';
put ' ' ~ $s.sum ~ '  ' ~ $s.gist;
Added - Sorted
 690  (4 9 16 25 36 36 49 81 121 144 169)

REXX

Parse Version v
Say v
l.=0
Call mk_array 1,3,4,34,25,9,12,36,56,36
Call mk_array 2,2,8,81,169,34,55,76,49,7
Call mk_array 3,75,121,75,144,3,5,16,46,35
st.0=0
Do li=1 To 3
  Do ii=1 To l.li.0
    If is_square(l.li.ii) Then
      Call store l.li.ii
    End
  End
Call Show
Exit

mk_array:
an=arg(1)
Do i=1 To arg()-1
  l.an.i=arg(i+1)
  End
l.an.0=arg()-1
Return

is_square:
Parse Arg x
Do i=1 By 1 Until i**2>x
  if i**2=x Then Return 1
  End
Return 0

store:
Parse Arg e
do i=1 To st.0
  If st.i>e Then Do
    Do j=st.0 To i By -1
      ja=j+1
      st.ja=st.j
      End
    st.0=st.0+1
    Leave i
    End
  End
st.i=e
If i>st.0 Then
  st.0=i
Return

show:
ol='Ordered squares:'
Do i=1 To st.0
  ol=ol st.i
  End
Say ol
Exit
Output:
REXX-Regina_3.9.4(MT) 5.00 25 Oct 2021
Ordered squares: 4 9 16 25 36 36 49 81 121 144 169

Ring

load "stdlib.ring"

see "working..." + nl
list = list(3)
list[1] = [3,4,34,25,9,12,36,56,36]
list[2] = [2,8,81,169,34,55,76,49,7]
list[3] = [75,121,75,144,35,16,46,35]
Primes = []

for n = 1 to 3
    for m = 1 to len(list[n])
        if issquare(list[n][m])
           add(Primes,list[n][m])
        ok
    next
next

Primes = sort(Primes)
showArray(Primes)

see nl + "done..." + nl

func issquare(x)
     for n = 1 to sqrt(x)
         if x = pow(n,2)
            return 1
         ok
     next
     return 0

func showArray(array)
     txt = ""
     see "["
     for n = 1 to len(array)
         txt = txt + array[n] + ","
     next
     txt = left(txt,len(txt)-1)
     txt = txt + "]"
     see txt
Output:
working...
[4,9,16,25,36,36,49,81,121,144,169]
done...

RPL

≪ + + OBJ→ → n
   ≪ { } 1 n START
        IF DUP √ FP THEN DROP ELSE + END NEXT
      SORT 
≫ ≫ 'GETSQ' STO
{ 3 4 34 25 9 12 36 56 36 } { 2 8 81 169 34 55 76 49 7 } { 75 121 75 144 35 16 46 35 } GETSQ 

Output:

 1: { 4 9 16 25 36 36 49 81 121 144 169 }


Ruby

class Integer
  def square?
    isqrt = Integer.sqrt(self)
    isqrt*isqrt == self
  end
end

list = [3,4,34,25,9,12,36,56,36].chain(
       [2,8,81,169,34,55,76,49,7],
       [75,121,75,144,35,16,46,35])

p list.select(&:square?).sort
Output:
[4, 9, 16, 25, 36, 36, 49, 81, 121, 144, 169]

Rust

fn main( ) {
   let list1 : Vec<i32> = vec![ 3 , 3 , 34 , 25 , 9 , 12 , 36 , 56 , 36] ;
   let list2 : Vec<i32> = vec![2, 8 , 81 , 169 , 34 , 55 , 76 , 49 , 7] ;
   let list3 : Vec<i32> = vec![ 75 , 121 , 75 , 144 , 35 , 16 , 46 , 35 ] ;
   let mut all_numbers : Vec<f32> = Vec::new( ) ;
   list1.iter( ).for_each( | n | all_numbers.push( *n as f32 ) ) ;
   list2.iter( ).for_each( | n | all_numbers.push( *n as f32)) ;
   list3.iter( ).for_each( | n | all_numbers.push( *n as f32) ) ;
   let squares : Vec<&f32> = all_numbers.iter( ).filter( | i | {
         let root = i.sqrt( ) ;
         root == root.floor( )
         }).collect( ) ;
   let mut found : Vec<i32> = squares.iter( ).map( | n | **n as i32 ).
      collect( )  ;
   found.sort( ) ;
   println!("{:?}" , found ) ;
}
Output:
[9, 16, 25, 36, 36, 49, 81, 121, 144, 169]

Sidef

var lists = [
  [3,4,34,25,9,12,36,56,36],
  [2,8,81,169,34,55,76,49,7],
  [75,121,75,144,35,16,46,35],
]

say lists.flat.grep{.is_square}.sort
Output:
[4, 9, 16, 25, 36, 36, 49, 81, 121, 144, 169]

Wren

Library: Wren-math
import "./math" for Int

var lists = [
    [3,4,34,25,9,12,36,56,36],
    [2,8,81,169,34,55,76,49,7],
    [75,121,75,144,35,16,46,35]
]

var squares = []
for (list in lists) {
    for (e in list) if (Int.isSquare(e)) squares.add(e)
}
squares.sort()
System.print(squares)
Output:
[4, 9, 16, 25, 36, 36, 49, 81, 121, 144, 169]

XPL0

The task description seems to dictate how a program is supposed to solve this, rather than merely provide a procedure that determines the solution. XPL0 doesn't have a built-in list capability like Python. A simple substitute is to treat the lists as arrays. A complication is that list[3] is shorter than the others, which is adjusted here. XPL0 also doesn't have a built-in sort routine (although one is provided in its library). Displaying a small number of sorted items is easily done with a few lines of code.

int List(3+1), Min, I, J, S, MI, MJ;
def Inf = -1>>1;
[List(1):= [3,4,34,25,9,12,36,56,36];
 List(2):= [2,8,81,169,34,55,76,49,7];
 List(3):= [75,121,75,144,35,16,46,35,Inf];
 loop   [Min:= Inf;
        for I:= 1 to 3 do
            for J:= 0 to 8 do
                [S:= sqrt(List(I,J));
                if S*S = List(I,J) then
                  if List(I,J) <= Min then
                    [Min:= List(I,J);  MI:= I;  MJ:= J];
                ];
        if Min = Inf then quit;
        IntOut(0, Min);  ChOut(0, ^ );
        List(MI, MJ):= Inf;
        ];
]
Output:
4 9 16 25 36 36 49 81 121 144 169