I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

# Church numerals

Church numerals
You are encouraged to solve this task according to the task description, using any language you may know.

In the Church encoding of natural numbers, the number N is encoded by a function that applies its first argument N times to its second argument.

• Church zero always returns the identity function, regardless of its first argument. In other words, the first argument is not applied to the second argument at all.
• Church one applies its first argument f just once to its second argument x, yielding f(x)
• Church two applies its first argument f twice to its second argument x, yielding f(f(x))
• and each successive Church numeral applies its first argument one additional time to its second argument, f(f(f(x))), f(f(f(f(x)))) ... The Church numeral 4, for example, returns a quadruple composition of the function supplied as its first argument.

Arithmetic operations on natural numbers can be similarly represented as functions on Church numerals.

• Church Zero,
• a Church successor function (a function on a Church numeral which returns the next Church numeral in the series),
• functions for Addition, Multiplication and Exponentiation over Church numerals,
• a function to convert integers to corresponding Church numerals,
• and a function to convert Church numerals to corresponding integers.

You should:

• Derive Church numerals three and four in terms of Church zero and a Church successor function.
• use Church numeral arithmetic to obtain the the sum and the product of Church 3 and Church 4,
• similarly obtain 4^3 and 3^4 in terms of Church numerals, using a Church numeral exponentiation function,
• convert each result back to an integer, and return it or print it to the console.

## AppleScript

Implementing churchFromInt as a fold seems to protect Applescript from overflowing its (famously shallow) stack with even quite low Church numerals.

--------------------- CHURCH NUMERALS -------------------- -- churchZero :: (a -> a) -> a -> aon churchZero(f, x)    xend churchZero  -- churchSucc :: ((a -> a) -> a -> a) -> (a -> a) -> a -> aon churchSucc(n)    script        on |λ|(f)            script                property mf : mReturn(f)                on |λ|(x)                    mf's |λ|(mReturn(n)'s |λ|(mf)'s |λ|(x))                end |λ|            end script        end |λ|    end scriptend churchSucc  -- churchFromInt(n) :: Int -> (b -> b) -> b -> bon churchFromInt(n)    script        on |λ|(f)            foldr(my compose, my |id|, replicate(n, f))        end |λ|    end scriptend churchFromInt  -- intFromChurch :: ((Int -> Int) -> Int -> Int) -> Inton intFromChurch(cn)    mReturn(cn)'s |λ|(my succ)'s |λ|(0)end intFromChurch  on churchAdd(m, n)    script        on |λ|(f)            script                property mf : mReturn(m)                property nf : mReturn(n)                on |λ|(x)                    nf's |λ|(f)'s |λ|(mf's |λ|(f)'s |λ|(x))                end |λ|            end script        end |λ|    end scriptend churchAdd  on churchMult(m, n)    script        on |λ|(f)            script                property mf : mReturn(m)                property nf : mReturn(n)                on |λ|(x)                    mf's |λ|(nf's |λ|(f))'s |λ|(x)                end |λ|            end script        end |λ|    end scriptend churchMult  on churchExp(m, n)    n's |λ|(m)end churchExp  --------------------------- TEST -------------------------on run    set cThree to churchFromInt(3)    set cFour to churchFromInt(4)     map(intFromChurch, ¬        {churchAdd(cThree, cFour), churchMult(cThree, cFour), ¬            churchExp(cFour, cThree), churchExp(cThree, cFour)})end run  ------------------------- GENERIC ------------------------ -- compose (<<<) :: (b -> c) -> (a -> b) -> a -> con compose(f, g)    script        property mf : mReturn(f)        property mg : mReturn(g)        on |λ|(x)            mf's |λ|(mg's |λ|(x))        end |λ|    end scriptend compose  -- id :: a -> aon |id|(x)    xend |id|  -- foldr :: (a -> b -> b) -> b -> [a] -> bon foldr(f, startValue, xs)    tell mReturn(f)        set v to startValue        set lng to length of xs        repeat with i from lng to 1 by -1            set v to |λ|(item i of xs, v, i, xs)        end repeat        return v    end tellend foldr  -- map :: (a -> b) -> [a] -> [b]on map(f, xs)    tell mReturn(f)        set lng to length of xs        set lst to {}        repeat with i from 1 to lng            set end of lst to |λ|(item i of xs, i, xs)        end repeat        return lst    end tellend map  -- Lift 2nd class handler function into 1st class script wrapper -- mReturn :: First-class m => (a -> b) -> m (a -> b)on mReturn(f)    if class of f is script then        f    else        script            property |λ| : f        end script    end ifend mReturn  -- Egyptian multiplication - progressively doubling a list, appending-- stages of doubling to an accumulator where needed for binary -- assembly of a target length-- replicate :: Int -> a -> [a]on replicate(n, a)    set out to {}    if n < 1 then return out    set dbl to {a}     repeat while (n > 1)        if (n mod 2) > 0 then set out to out & dbl        set n to (n div 2)        set dbl to (dbl & dbl)    end repeat    return out & dblend replicate  -- succ :: Int -> Inton succ(x)    1 + xend succ
Output:
{7, 12, 64, 81}

using System; public delegate Numeral Numeral(Numeral f); public static class ChurchNumeral{    public static readonly Numeral Zero = f => x => x;     public static Numeral Successor(this Numeral n) => f => x => f(n(f)(x));    public static Numeral Add(this Numeral m, Numeral n) => f => x => m(f)(n(f)(x));    public static Numeral Multiply(this Numeral m, Numeral n) => f => m(n(f));    public static Numeral Pow(this Numeral m, Numeral n) => n(m);     public static Numeral FromInt(int i) => i < 0 ? throw new ArgumentException("Negative church numeral.")        : i == 0 ? Zero : Successor(FromInt(i - 1));     public static int ToInt(this Numeral f) {        int count = 0;        f(x => { count++; return x; })(null);        return count;    }     public static void Main2() {        Numeral c3 = FromInt(3);        Numeral c4 = c3.Successor();        int sum = c3.Add(c4).ToInt();        int product = c3.Multiply(c4).ToInt();        int exp43 = c4.Pow(c3).ToInt();        int exp34 = c3.Pow(c4).ToInt();        Console.WriteLine($"{sum} {product} {exp43} {exp34}"); } } Output: 7 12 64 81  ## Clojure Translation of: Raku (defn zero [f] identity)(defn succ [n] (fn [f] (fn [x] (f ((n f) x)))))(defn add [n,m] (fn [f] (fn [x] ((m f)((n f) x)))))(defn mult [n,m] (fn [f] (fn [x] ((m (n f)) x))))(defn power [b,e] (e b)) (defn to-int [c] (let [countup (fn [i] (+ i 1))] ((c countup) 0))) (defn from-int [n] (letfn [(countdown [i] (if (zero? i) zero (succ (countdown (- i 1)))))] (countdown n))) (def three (succ (succ (succ zero))))(def four (from-int 4)) (doseq [n [(add three four) (mult three four) (power three four) (power four three)]] (println (to-int n))) Output: 7 12 81 64 ## Erlang Translation of: Raku -module(church).-export([main/1, zero/1]).zero(_) -> fun(F) -> F end.succ(N) -> fun(F) -> fun(X) -> F((N(F))(X)) end end.add(N,M) -> fun(F) -> fun(X) -> (M(F))((N(F))(X)) end end.mult(N,M) -> fun(F) -> fun(X) -> (M(N(F)))(X) end end.power(B,E) -> E(B). to_int(C) -> CountUp = fun(I) -> I + 1 end, (C(CountUp))(0). from_int(0) -> fun church:zero/1; from_int(I) -> succ(from_int(I-1)). main(_) -> Zero = fun church:zero/1, Three = succ(succ(succ(Zero))), Four = from_int(4), lists:map(fun(C) -> io:fwrite("~w~n",[to_int(C)]) end, [add(Three,Four), mult(Three,Four), power(Three,Four), power(Four,Three)]).  Output: 7 12 81 64  ## F# type INumeral = abstract Apply : ('a -> 'a) -> 'a -> 'a let zero = {new INumeral with override __.Apply _ x = x}let successor (n: INumeral) = {new INumeral with override __.Apply f x = f (n.Apply f x)}let addition (m: INumeral) (n: INumeral) = {new INumeral with override __.Apply f x = m.Apply f (n.Apply f x)}let multiplication (m: INumeral) (n: INumeral) = {new INumeral with override __.Apply f x = m.Apply (n.Apply f) x}let exponential (m: INumeral) (n: INumeral) = {new INumeral with override __.Apply f x = n.Apply m.Apply f x} let ntoi (n: INumeral) = n.Apply ((+) 1) 0let iton i = List.fold (>>) id (List.replicate i successor) zero let c3 = iton 3let c4 = successor c3 [addition c3 c4;multiplication c3 c4;exponential c4 c3;exponential c3 c4]|> List.map ntoi|> printfn "%A"  Output: [7; 12; 64; 81] ## Fōrmulæ Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition. Programs in Fōrmulæ are created/edited online in its website, However they run on execution servers. By default remote servers are used, but they are limited in memory and processing power, since they are intended for demonstration and casual use. A local server can be downloaded and installed, it has no limitations (it runs in your own computer). Because of that, example programs can be fully visualized and edited, but some of them will not run if they require a moderate or heavy computation/memory resources, and no local server is being used. In this page you can see the program(s) related to this task and their results. ## Go package main import "fmt" type any = interface{} type fn func(any) any type church func(fn) fn func zero(f fn) fn { return func(x any) any { return x }} func (c church) succ() church { return func(f fn) fn { return func(x any) any { return f(c(f)(x)) } }} func (c church) add(d church) church { return func(f fn) fn { return func(x any) any { return c(f)(d(f)(x)) } }} func (c church) mul(d church) church { return func(f fn) fn { return func(x any) any { return c(d(f))(x) } }} func (c church) pow(d church) church { di := d.toInt() prod := c for i := 1; i < di; i++ { prod = prod.mul(c) } return prod} func (c church) toInt() int { return c(incr)(0).(int)} func intToChurch(i int) church { if i == 0 { return zero } else { return intToChurch(i - 1).succ() }} func incr(i any) any { return i.(int) + 1} func main() { z := church(zero) three := z.succ().succ().succ() four := three.succ() fmt.Println("three ->", three.toInt()) fmt.Println("four ->", four.toInt()) fmt.Println("three + four ->", three.add(four).toInt()) fmt.Println("three * four ->", three.mul(four).toInt()) fmt.Println("three ^ four ->", three.pow(four).toInt()) fmt.Println("four ^ three ->", four.pow(three).toInt()) fmt.Println("5 -> five ->", intToChurch(5).toInt())} Output: three -> 3 four -> 4 three + four -> 7 three * four -> 12 three ^ four -> 81 four ^ three -> 64 5 -> five -> 5  ## Groovy class ChurchNumerals { static void main(args) { def zero = { f -> { a -> a } } def succ = { n -> { f -> { a -> f(n(f)(a)) } } } def add = { n -> { k -> { n(succ)(k) } } } def mult = { f -> { g -> { a -> f(g(a)) } } } def pow = { f -> { g -> g(f) } } def toChurchNum toChurchNum = { n -> n == 0 ? zero : succ(toChurchNum(n - 1)) } def toInt = { n -> n(x -> x + 1)(0) } def three = succ(succ(succ(zero))) println toInt(three) // prints 3 def four = succ(three) println toInt(four) // prints 4 println "3 + 4 =${toInt(add(three)(four))}" // prints 3 + 4 = 7        println "4 + 3 = ${toInt(add(four)(three))}" // prints 4 + 3 = 7 println "3 * 4 =${toInt(mult(three)(four))}" // prints 3 * 4 = 12        println "4 * 3 = ${toInt(mult(four)(three))}" // prints 4 * 3 = 12 println "3 ^ 4 =${toInt(pow(three)(four))}" // prints 3 ^ 4 = 81        println "4 ^ 3 = ${toInt(pow(four)(three))}" // prints 4 ^ 3 = 64 }}  Output: 3 4 3 + 4 = 7 4 + 3 = 7 3 * 4 = 12 4 * 3 = 12 3 ^ 4 = 81 4 ^ 3 = 64  ## Haskell --------------------- CHURCH NUMERALS -------------------- churchZero = const id churchSucc = (<*>) (.) churchAdd = (<*>) . fmap (.) churchMult = (.) churchExp = flip id churchFromInt :: Int -> ((a -> a) -> a -> a)churchFromInt 0 = churchZerochurchFromInt n = churchSucc$ churchFromInt (n - 1) -- Or as a fold:-- churchFromInt n = foldr (.) id . replicate n -- Or as an iterate:-- churchFromInt n = iterate churchSucc churchZero !! n intFromChurch :: ((Int -> Int) -> Int -> Int) -> IntintFromChurch cn = cn succ 0  --------------------------- TEST -------------------------main :: IO ()main = do  let [cThree, cFour] = churchFromInt <$> [3, 4] print$    fmap      intFromChurch      [ churchAdd cThree cFour,        churchMult cThree cFour,        churchExp cFour cThree,        churchExp cThree cFour      ]
Output:
[7,12,64,81]

## Java

Works with: Java version 8 and above
package lvijay; import java.util.concurrent.atomic.AtomicInteger;import java.util.function.Function; public class Church {    public static interface ChurchNum extends Function<ChurchNum, ChurchNum> {    }     public static ChurchNum zero() {        return f -> x -> x;    }     public static ChurchNum next(ChurchNum n) {        return f -> x -> f.apply(n.apply(f).apply(x));    }     public static ChurchNum plus(ChurchNum a) {        return b -> f -> x -> b.apply(f).apply(a.apply(f).apply(x));    }     public static ChurchNum pow(ChurchNum m) {        return n -> m.apply(n);    }     public static ChurchNum mult(ChurchNum a) {        return b -> f -> x -> b.apply(a.apply(f)).apply(x);    }     public static ChurchNum toChurchNum(int n) {        if (n <= 0) {            return zero();        }        return next(toChurchNum(n - 1));    }     public static int toInt(ChurchNum c) {        AtomicInteger counter = new AtomicInteger(0);        ChurchNum funCounter = f -> {            counter.incrementAndGet();            return f;        };         plus(zero()).apply(c).apply(funCounter).apply(x -> x);         return counter.get();    }     public static void main(String[] args) {        ChurchNum zero  = zero();        ChurchNum three = next(next(next(zero)));        ChurchNum four  = next(next(next(next(zero))));         System.out.println("3+4=" + toInt(plus(three).apply(four))); // prints 7        System.out.println("4+3=" + toInt(plus(four).apply(three))); // prints 7         System.out.println("3*4=" + toInt(mult(three).apply(four))); // prints 12        System.out.println("4*3=" + toInt(mult(four).apply(three))); // prints 12         // exponentiation.  note the reversed order!        System.out.println("3^4=" + toInt(pow(four).apply(three))); // prints 81        System.out.println("4^3=" + toInt(pow(three).apply(four))); // prints 64         System.out.println("  8=" + toInt(toChurchNum(8))); // prints 8    }}
Output:
3+4=7
4+3=7
3*4=12
4*3=12
3^4=81
4^3=64
8=8


## JavaScript

(() => {    'use strict';     // ----------------- CHURCH NUMERALS -----------------     const churchZero = f =>        identity;      const churchSucc = n =>        f => compose(f)(n(f));      const churchAdd = m =>        n => f => compose(n(f))(m(f));      const churchMult = m =>        n => f => n(m(f));      const churchExp = m =>        n => n(m);      const intFromChurch = n =>        n(succ)(0);      const churchFromInt = n =>        compose(            foldl(compose)(identity)        )(            replicate(n)        );      // Or, by explicit recursion:    const churchFromInt_ = x => {        const go = i =>            0 === i ? (                churchZero            ) : churchSucc(go(pred(i)));        return go(x);    };      // ---------------------- TEST -----------------------    // main :: IO ()    const main = () => {        const [cThree, cFour] = map(churchFromInt)([3, 4]);         return map(intFromChurch)([            churchAdd(cThree)(cFour),            churchMult(cThree)(cFour),            churchExp(cFour)(cThree),            churchExp(cThree)(cFour),        ]);    };      // --------------------- GENERIC ---------------------     // compose (>>>) :: (a -> b) -> (b -> c) -> a -> c    const compose = f =>        g => x => f(g(x));      // foldl :: (a -> b -> a) -> a -> [b] -> a    const foldl = f =>        a => xs => [...xs].reduce(            (x, y) => f(x)(y),            a        );      // identity :: a -> a    const identity = x => x;      // map :: (a -> b) -> [a] -> [b]    const map = f =>        // The list obtained by applying f        // to each element of xs.        // (The image of xs under f).        xs => [...xs].map(f);      // pred :: Enum a => a -> a    const pred = x =>        x - 1;      // replicate :: Int -> a -> [a]    const replicate = n =>        // n instances of x.        x => Array.from({            length: n        }, () => x);      // succ :: Enum a => a -> a    const succ = x =>        1 + x;     // MAIN ---    console.log(JSON.stringify(main()));})();
Output:
[7,12,64,81]

## jq

In jq, the Church encoding of the natural number $m as per the definition of this task would be church(f;$x; $m) defined as: def church(f;$x; $m): if$m == 0 then .  elif $m == 1 then$x|f  else church(f; $x;$m - 1)  end;

This is because jq's identify function is ..

However, since jq functions are filters, the natural definition would be:

def church(f; $m): if$m < 0 then error("church is not defined on negative integers")  elif $m == 0 then . elif$m == 1 then f  else church(f; $m - 1) | f end; So for example "church 0" can be realized as church(f; 0). Since, jq does not support functions that return functions, the tasks that assume such functionality cannot be directly implemented in jq. ## Julia We could overload the Base operators, but that is not needed here.  id(x) = x -> xzero() = x -> id(x)add(m) = n -> (f -> (x -> n(f)(m(f)(x))))mult(m) = n -> (f -> (x -> n(m(f))(x)))exp(m) = n -> n(m)succ(i::Int) = i + 1succ(cn) = f -> (x -> f(cn(f)(x)))church2int(cn) = cn(succ)(0)int2church(n) = n < 0 ? throw("negative Church numeral") : (n == 0 ? zero() : succ(int2church(n - 1))) function runtests() church3 = int2church(3) church4 = int2church(4) println("Church 3 + Church 4 = ", church2int(add(church3)(church4))) println("Church 3 * Church 4 = ", church2int(mult(church3)(church4))) println("Church 4 ^ Church 3 = ", church2int(exp(church4)(church3))) println("Church 3 ^ Church 4 = ", church2int(exp(church3)(church4)))end runtests()  Output:  Church 3 + Church 4 = 7 Church 3 * Church 4 = 12 Church 4 ^ Church 3 = 64 Church 3 ^ Church 4 = 81  ## Lambdatalk  {def succ {lambda {:n :f :x} {:f {:n :f :x}}}}{def add {lambda {:n :m :f :x} {{:n :f} {:m :f :x}}}} {def mul {lambda {:n :m :f} {:m {:n :f}}}}{def power {lambda {:n :m} {:m :n}}} {def church {lambda {:n} {{:n {+ {lambda {:x} {+ :x 1}}}} 0}}} {def zero {lambda {:f :x} :x}}{def three {succ {succ {succ zero}}}}{def four {succ {succ {succ {succ zero}}}}} 3+4 = {church {add {three} {four}}} -> 73*4 = {church {mul {three} {four}}} -> 123^4 = {church {power {three} {four}}} -> 814^3 = {church {power {four} {three}}} -> 64  ## Lua  function churchZero() return function(x) return x end end function churchSucc(c) return function(f) return function(x) return f(c(f)(x)) end end end function churchAdd(c, d) return function(f) return function(x) return c(f)(d(f)(x)) end end end function churchMul(c, d) return function(f) return c(d(f)) end end function churchExp(c, e) return e(c)end function numToChurch(n) local ret = churchZero for i = 1, n do ret = succ(ret) end return ret end function churchToNum(c) return c(function(x) return x + 1 end)(0) end three = churchSucc(churchSucc(churchSucc(churchZero)))four = churchSucc(churchSucc(churchSucc(churchSucc(churchZero)))) print("'three'\t=", churchToNum(three))print("'four' \t=", churchToNum(four))print("'three' * 'four' =", churchToNum(churchMul(three, four)))print("'three' + 'four' =", churchToNum(churchAdd(three, four)))print("'three' ^ 'four' =", churchToNum(churchExp(three, four)))print("'four' ^ 'three' =", churchToNum(churchExp(four, three))) Output: 'three' = 3 'four' = 4 'three' * 'four' = 12 'three' + 'four' = 7 'three' ^ 'four' = 81 'four' ^ 'three' = 64 ## Nim ### Macros and Pointers Using type erasure, pure functions, and impenetrably terse syntax to keep to the spirit of the untyped lambda calculus: import macros, sugartype Fn = proc(p: pointer): pointer{.noSideEffect.} Church = proc(f: Fn): Fn{.noSideEffect.} MetaChurch = proc(c: Church): Church{.noSideEffect.} #helpers:template λfλx(exp): untyped = (f: Fn){.closure.}=>((x: pointer){.closure.}=>exp)template λcλf(exp): untyped = (c: Church){.closure.}=>((f: Fn){.closure.}=>exp)macro type_erase(body: untyped): untyped = let name = if body.kind == nnkPostFix: body else: body typ = body quote do: body proc name(p: pointer): pointer = template erased: untyped = cast[ptr typ](p)[] erased = erased.name pmacro type_erased(body: untyped): untyped = let (id1, id2, id3) = (body, body, body) quote do: result = id3 result = cast[ptr typeof(id3)]( id1(id2)(result.addr) )[] #simple mathfunc zero*(): Church = λfλx: xfunc succ*(c: Church): Church = λfλx: f (c f)xfunc +*(c, d: Church): Church = λfλx: (c f) (d f)xfunc **(c, d: Church): Church = λfλx: c(d f)x #exponentiationfunc metazero(): MetaChurch = λcλf: ffunc succ(m: MetaChurch): MetaChurch{.type_erase.} = λcλf: c (m c)fconverter toMeta*(c: Church): MetaChurch = type_erased: c(succ)(metazero())func ^*(c: Church, d: MetaChurch): Church = d c #conversions to/from actual numbersfunc incr(x: int): int{.type_erase.} = x+1func toInt(c: Church): int = type_erased: c(incr)(0)func toChurch*(x: int): Church = return if x <= 0: zero() else: toChurch(x-1).succfunc $*(c: Church): string = $c.toInt when isMainModule: let three = zero().succ.succ.succ let four = 4.toChurch echo [three+four, three*four, three^four, four^three]  ### All closures and a union for type-punning Everything is an anonymous function, we dereference with a closure instead of a pointer,and the type-casting is hidden behind a union instead of behind a macro import sugartype In = ()->int Fn = In->In Ch = Fn->Fn Mc = Ch->Ch MMc = Mc->Mc Pun[T]{.union.} = object down: T->T up: (T->T)->(T->T)#automatic type conversions:func lift[T](f: T->T): (T->T)->(T->T) = Pun[T](down: f).upconverter once(c: Ch): Mc = c.liftconverter twice(c: Ch): MMc = c.lift.lift let zero = proc(f: Fn): Fn {.closure.} = (x: In)=>x succ = (c: Ch)=>((f: Fn)=>((x: In)=>f c(f)x )) add = (c: MMc) => ((d: Ch) => c(succ)d) mul = (c: MMc) => ((d: Ch) => c(add d)zero) one = zero.succ exp1 = (c: Ch) => ((d: MMc) => d(mul c)one)#alternatively: exp2 = (c: Ch) => ((d: Mc) => d c) #conversions to int:let incr = (x: In) => (()=>x()+1)proc toChurch(x: int): Ch = result = zero for i in 1..x: result = result.succproc toInt(c: Ch): int = c(incr)(()=>0)()proc $(c: Ch): string = $(c.toInt) when isMainModule: let three = 3.toChurch let four = three.succ echo [(add three)four, (mul three)four, (exp1 three)four, (exp2 four)three]  Output: [7,12,81,64] ## OCaml Original version by User:Vanyamil  (* Church Numerals task for OCaml Church Numerals are numbers represented as functions. A numeral corresponding to a number n is a function that receives 2 arguments - A function f - An input x of some type and outputs the function f applied n times to x: f(f(...(f(x))))*) (* Using type as suggested in https://stackoverflow.com/questions/43426709/does-ocamls-type-system-prevent-it-from-modeling-church-numerals This is an explicitely polymorphic type : it says that f must be of type ('a -> 'a) -> 'a -> 'a for any possible a "at same time".*)type church_num = {f : 'a. ('a -> 'a) -> 'a -> 'a } ;; (* Zero means apply f 0 times to x, aka return x *)let ch_zero : church_num = let f = fun f x -> x in {f} (* The next numeral of a church numeral would apply f one more time *)let ch_succ (n : church_num) : church_num = let f = fun f x -> f (n.f f x) in {f} (* This is just a different way to represent natural numbers - so we can still add/mul/exp them *) (* Adding m and n is applying f m times and then also n times *)let ch_add (m : church_num) (n : church_num) : church_num = let f = fun f x -> n.f f (m.f f x) in {f} (* Multiplying is repeated addition : add n, m times *)let ch_mul (m : church_num) (n : church_num) : church_num = let f = fun f x -> m.f (n.f f) x in {f} (* Exp is repeated multiplication : multiply by base, exp times. However, Church numeral n is in some sense the n'th power of a function f applied to x So exp base = apply function base to the exp'th power = base^exp. Some shenanigans to typecheck though. *)let ch_exp (base : church_num) (exp : church_num) : church_num = let custom_f f x = (exp.f base.f) f x in {f = custom_f} (* Convert a number to a church_num via recursion *)let church_of_int (n : int) : church_num = if n < 0 then raise (Invalid_argument (string_of_int n ^ " is not a natural number")) else (* Tail-recursed helper *) let rec helper n acc = if n = 0 then acc else helper (n-1) (ch_succ acc) in helper n ch_zero (* Convert a church_num to an int is rather easy! Just +1 n times. *)let int_of_church (n : church_num) : int = n.f succ 0;; (* Now the tasks at hand: *) (* Derive Church numerals three and four in terms of Church zero and a Church successor function *) let ch_three = ch_zero |> ch_succ |> ch_succ |> ch_succlet ch_four = ch_three |> ch_succ (* Use Church numeral arithmetic to obtain the the sum and the product of Church 3 and Church 4 *)let ch_7 = ch_add ch_three ch_fourlet ch_12 = ch_mul ch_three ch_four (* Similarly obtain 4^3 and 3^4 in terms of Church numerals, using a Church numeral exponentiation function *)let ch_64 = ch_exp ch_four ch_threelet ch_81 = ch_exp ch_three ch_four;; (* Convert each result back to an integer, and return it or print it to the console *)List.map int_of_church [ch_three; ch_four; ch_7; ch_12; ch_64; ch_81] ;;  ## Octave  zero = @(f) @(x) x;succ = @(n) @(f) @(x) f(n(f)(x));add = @(m, n) @(f) @(x) m(f)(n(f)(x));mul = @(m, n) @(f) @(x) m(n(f))(x);pow = @(b, e) e(b); % Need a short-circuiting ternaryiif = @(varargin) varargin{3 - varargin{1}}(); % Helper for anonymous recursion% The branches are thunked to prevent infinite recursionto_church_ = @(f, i) iif(i == 0, @() zero, @() succ(f(f, i - 1)));to_church = @(i) to_church_(to_church_, i); to_int = @(c) c(@(n) n + 1)(0); three = succ(succ(succ(zero)));four = succ(succ(succ(succ(zero)))); cellfun(to_int, { add(three, four), mul(three, four), pow(three, four), pow(four, three)}) Output: ans = 7 12 81 64 ## Perl Translation of: Raku use 5.020;use feature qw<signatures>;no warnings qw<experimental::signatures>; use constant zero => sub ($f) {                      sub ($x) {$x }}; use constant succ  => sub ($n) { sub ($f) {                      sub ($x) {$f->($n->($f)($x)) }}}; use constant add => sub ($n) {                      sub ($m) { sub ($f) {                      sub ($x) {$m->($f)($n->($f)($x)) }}}}; use constant mult  => sub ($n) { sub ($m) {                      sub ($f) { sub ($x) { $m->($n->($f))($x) }}}}; use constant power => sub ($b) { sub ($e) { $e->($b) }}; use constant countup   => sub ($i) {$i + 1 };use constant countdown => sub ($i) {$i == 0 ? zero : succ->( __SUB__->($i - 1) ) };use constant to_int => sub ($f) { $f->(countup)->(0) };use constant from_int => sub ($x) { countdown->($x) }; use constant three => succ->(succ->(succ->(zero)));use constant four => from_int->(4); say join ' ', map { to_int->($_) } (    add  ->( three )->( four  ),    mult ->( three )->( four  ),    power->( four  )->( three ),    power->( three )->( four  ),);
Output:
7 12 64 81

## Phix

Translation of: Go
with javascript_semantics

type church(object c)
return sequence(c) and length(c)=3
and integer(c) and integer(c)
and sequence(c) and length(c)=2
end type

function succ(church c)
c = deep_copy(c)
c += 1
return c
end function

-- three normal integer-handling routines...
for i=1 to n do
a += b
end for
return a
end function

function mul(integer n, a, b)
for i=1 to n do
a *= b
end for
return a
end function
constant r_mul = routine_id("mul")

function pow(integer n, a, b)
for i=1 to n do
a = power(a,b)
end for
return a
end function
constant r_pow = routine_id("pow")

-- ...and three church constructors to match
--    (no maths here, just pure static data)
return res
end function

function mulch(church c, d)
church res = {r_mul,1,{c,d}}
return res
end function

function powch(church c, d)
church res = {r_pow,1,{c,d}}
return res
end function

function tointch(church c)
-- note this is where the bulk of any processing happens
{integer rid, integer n, object x} = c
x = deep_copy(x)
for i=1 to length(x) do
if church(x[i]) then x[i] = tointch(x[i]) end if
end for
--  return call_func(rid,n&x)
x = deep_copy({n})&deep_copy(x)
return call_func(rid,x)
end function

function inttoch(integer i)
if i=0 then
return zero
else
return succ(inttoch(i-1))
end if
end function

church three = succ(succ(succ(zero))),
four = succ(three)
printf(1,"three        -> %d\n",tointch(three))
printf(1,"four         -> %d\n",tointch(four))
printf(1,"three * four -> %d\n",tointch(mulch(three,four)))
printf(1,"three ^ four -> %d\n",tointch(powch(three,four)))
printf(1,"four ^ three -> %d\n",tointch(powch(four,three)))
printf(1,"5 -> five    -> %d\n",tointch(inttoch(5)))

Output:
three        -> 3
four         -> 4
three + four -> 7
three * four -> 12
three ^ four -> 81
four ^ three -> 64
5 -> five    -> 5


## PHP

<?php$zero = function($f) { return function ($x) { return$x; }; }; $succ = function($n) {   return function($f) use (&$n) {     return function($x) use (&$n, &$f) { return$f( ($n($f))($x) ); }; };};$add = function($n,$m) {  return function($f) use (&$n, &$m) { return function($x) use (&$f, &$n, &$m) { return ($m($f))(($n($f))($x));    };  };}; $mult = function($n, $m) { return function($f) use (&$n, &$m) {    return function($x) use (&$f, &$n, &$m) {      return ($m($n($f)))($x);    };  };}; $power = function($b,$e) { return$e($b);};$to_int = function($f) {$count_up = function($i) { return$i+1; };  return ($f($count_up))(0);}; $from_int = function($x) {  $countdown = function($i) use (&$countdown) { global$zero, $succ; if ($i == 0 ) {      return $zero; } else { return$succ($countdown($i-1));    };  };  return $countdown($x);}; $three =$succ($succ($succ($zero)));$four = $from_int(4);foreach (array($add($three,$four), $mult($three,$four),$power($three,$four), $power($four,$three)) as$ch) {  print($to_int($ch));  print("\n");}?>
Output:
7
12
81
64


## Prolog

Prolog terms can be used to represent church numerals.

church_zero(z). church_successor(Z, c(Z)). church_add(z, Z, Z).church_add(c(X), Y, c(Z)) :-    church_add(X, Y, Z). church_multiply(z, _, z).church_multiply(c(X), Y, R) :-    church_add(Y, S, R),    church_multiply(X, Y, S). % N ^ Mchurch_power(z, z, z).church_power(N, c(z), N).church_power(N, c(c(Z)), R) :-    church_multiply(N, R1, R),    church_power(N, c(Z), R1). int_church(0, z).int_church(I, c(Z)) :-    int_church(Is, Z),    succ(Is, I). run :-    int_church(3, Three),    church_successor(Three, Four),    church_add(Three, Four, Sum),    church_multiply(Three, Four, Product),    church_power(Four, Three, Power43),    church_power(Three, Four, Power34),     int_church(ISum, Sum),    int_church(IProduct, Product),    int_church(IPower43, Power43),    int_church(IPower34, Power34),     !,    maplist(format('~w '), [ISum, IProduct, IPower43, IPower34]),    nl.
Output:
7 12 81 64


## Python

Works with: Python version 3.7
'''Church numerals''' from itertools import repeatfrom functools import reduce  # ----- CHURCH ENCODINGS OF NUMERALS AND OPERATIONS ------ def churchZero():    '''The identity function.       No applications of any supplied f       to its argument.    '''    return lambda f: identity  def churchSucc(cn):    '''The successor of a given       Church numeral. One additional       application of f. Equivalent to       the arithmetic addition of one.    '''    return lambda f: compose(f)(cn(f))  def churchAdd(m):    '''The arithmetic sum of two Church numerals.'''    return lambda n: lambda f: compose(m(f))(n(f))  def churchMult(m):    '''The arithmetic product of two Church numerals.'''    return lambda n: compose(m)(n)  def churchExp(m):    '''Exponentiation of Church numerals. m^n'''    return lambda n: n(m)  def churchFromInt(n):    '''The Church numeral equivalent of       a given integer.    '''    return lambda f: (        foldl        (compose)        (identity)        (replicate(n)(f))    )  # OR, alternatively:def churchFromInt_(n):    '''The Church numeral equivalent of a given       integer, by explicit recursion.    '''    if 0 == n:        return churchZero()    else:        return churchSucc(churchFromInt(n - 1))  def intFromChurch(cn):    '''The integer equivalent of a       given Church numeral.    '''    return cn(succ)(0)  # ------------------------- TEST -------------------------# main :: IO ()def main():    'Tests'     cThree = churchFromInt(3)    cFour = churchFromInt(4)     print(list(map(intFromChurch, [        churchAdd(cThree)(cFour),        churchMult(cThree)(cFour),        churchExp(cFour)(cThree),        churchExp(cThree)(cFour),    ])))  # ------------------ GENERIC FUNCTIONS ------------------- # compose (flip (.)) :: (a -> b) -> (b -> c) -> a -> cdef compose(f):    '''A left to right composition of two       functions f and g'''    return lambda g: lambda x: g(f(x))  # foldl :: (a -> b -> a) -> a -> [b] -> adef foldl(f):    '''Left to right reduction of a list,       using the binary operator f, and       starting with an initial value a.    '''    def go(acc, xs):        return reduce(lambda a, x: f(a)(x), xs, acc)    return lambda acc: lambda xs: go(acc, xs)  # identity :: a -> adef identity(x):    '''The identity function.'''    return x  # replicate :: Int -> a -> [a]def replicate(n):    '''A list of length n in which every       element has the value x.    '''    return lambda x: repeat(x, n)  # succ :: Enum a => a -> adef succ(x):    '''The successor of a value.       For numeric types, (1 +).    '''    return 1 + x if isinstance(x, int) else (        chr(1 + ord(x))    )  if __name__ == '__main__':    main()
Output:
[7, 12, 64, 81]

## Quackery

Quackery is a postfix language, so these are Reverse Polish Church numerals.

  [ this nested ]           is zero  (       --> cn )   [ this nested join ]      is succ  (    cn --> cn )   [ zero    [ 2dup = if done      succ      rot succ unrot      recurse ]    2drop ]                 is add   ( cn cn --> cn )   [ zero unrot zero    [ 2dup = if done      succ      2swap      tuck add swap      2swap recurse ]    2drop drop ]            is mul   ( cn cn --> cn )   [ zero succ unrot zero    [ 2dup = if done      succ      2swap      tuck mul swap      2swap recurse ]    2drop drop ]            is exp   ( cn cn --> cn )   [ zero swap times succ ]  is n->cn (     n --> cn )   [ size 1 - ]              is cn->n (    cn -->  n )   ( - - - - - - - - - - - - - - - - - - - - - - - - )   [ zero succ succ succ ]   is three (       --> cn )   [ three succ ]            is four  (       --> cn )   four three add cn->n echo sp  four three mul cn->n echo sp  four three exp cn->n echo sp  three four exp cn->n echo

Output:

7 12 64 81

## R

Translation of: Racket

R was inspired by Scheme and this task offers little room for creativity. As a consequence, our solution will inevitably look a lot like Racket's. Therefore, we have made this easy and just translated their solution. Alternative implementations, denoted by asterisks in their code, are separated out and denoted by "[...]Alt".

zero<-function(f){function(x) x}succ<-function(n){function(f){function(x) f(n(f)(x))}}add<-function(n){function(m){function(f){function(x) m(f)(n(f)(x))}}}mult<-function(n){function(m){function(f) m(n(f))}}expt<-function(n){function(m) m(n)}natToChurch<-function(n){if(n==0) zero else succ(natToChurch(n-1))}churchToNat<-function(n){(n(function(x) x+1))(0)} three<-natToChurch(3)four<-natToChurch(4) churchToNat(add(three)(four))churchToNat(mult(three)(four))churchToNat(expt(three)(four))churchToNat(expt(four)(three))
Output:
> churchToNat(add(three)(four))
 7

> churchToNat(mult(three)(four))
 12

> churchToNat(expt(three)(four))
 81

> churchToNat(expt(four)(three))
 64

Alternative versions (Racket's, again):

zeroAlt<-function(x) identityone<-function(f) f #Not actually requested by the task and only used to define Alt functions, so placed here.oneAlt<-identitysuccAlt<-function(n){function(f){function(x) n(f)(f(x))}}succAltAlt<-add(one)addAlt<-function(n) n(succ)multAlt<-function(n){function(m) m(add(n))(zero)}exptAlt<-function(n){function(m) m(mult(n))(one)}

Extra tests - mostly for the alt versions - not present in the Racket solution:

churchToNat(addAlt(three)(four))churchToNat(multAlt(three)(four))churchToNat(exptAlt(three)(four))churchToNat(exptAlt(four)(three))churchToNat(succ(four))churchToNat(succAlt(four))churchToNat(succAltAlt(four))
Output:
> churchToNat(addAlt(three)(four))
 7

> churchToNat(multAlt(three)(four))
 12

> churchToNat(exptAlt(three)(four))
 81

> churchToNat(exptAlt(four)(three))
 64

> churchToNat(succ(four))
 5

> churchToNat(succAlt(four))
 5

> churchToNat(succAltAlt(four))
 5

## Racket

#lang racket (define zero (λ (f) (λ (x) x)))(define zero* (const identity)) ; zero renamed (define one (λ (f) f))(define one* identity) ; one renamed (define succ (λ (n) (λ (f) (λ (x) (f ((n f) x))))))(define succ* (λ (n) (λ (f) (λ (x) ((n f) (f x)))))) ; different impl (define add (λ (n) (λ (m) (λ (f) (λ (x) ((m f) ((n f) x)))))))(define add* (λ (n) (n succ))) (define succ** (add one)) (define mult (λ (n) (λ (m) (λ (f) (m (n f))))))(define mult* (λ (n) (λ (m) ((m (add n)) zero)))) (define expt  (λ (n) (λ (m) (m n))))(define expt* (λ (n) (λ (m) ((m (mult n)) one)))) (define (nat->church n)  (cond    [(zero? n) zero]    [else (succ (nat->church (sub1 n)))])) (define (church->nat n) ((n add1) 0)) (define three (nat->church 3))(define four (nat->church 4)) (church->nat ((add three) four))(church->nat ((mult three) four))(church->nat ((expt three) four))(church->nat ((expt four) three))
Output:
7
12
81
64


## Raku

(formerly Perl 6)

Translation of: Python
constant $zero = sub (Code$f) {                  sub (     $x) {$x }} constant $succ = sub (Code$n) {                  sub (Code $f) { sub ($x) { $f($n($f)($x)) }}} constant $add = sub (Code$n) {                  sub (Code $m) { sub (Code$f) {                  sub (     $x) {$m($f)($n($f)($x)) }}}} constant $mult = sub (Code$n) {                  sub (Code $m) { sub (Code$f) {                  sub (     $x) {$m($n($f))($x) }}}} constant$power = sub (Code $b) { sub (Code$e) { $e($b) }} sub to_int (Code $f) { sub countup (Int$i) { $i + 1 } return$f(&countup).(0)} sub from_int (Int $x) { multi sub countdown ( 0) {$zero }    multi sub countdown (Int $i) {$succ( countdown($i - 1) ) } return countdown($x);} constant $three =$succ($succ($succ($zero)));constant$four  = from_int(4); say map &to_int,    $add($three )( $four ),$mult(  $three )($four  ),    $power($four  )( $three ),$power( $three )($four  ),;

### Arrow subs without sigils

Translation of: Julia
my \zero  = -> \f {                 -> \x { x               }}my \succ  = -> \n {         -> \f { -> \x { f.(n.(f)(x))    }}}my \add   = -> \n { -> \m { -> \f { -> \x { m.(f)(n.(f)(x)) }}}}my \mult  = -> \n { -> \m { -> \f { -> \x { m.(n.(f))(x)    }}}}my \power = -> \b {                 -> \e { e.(b)           }} my \to_int   = -> \f { f.( -> \i { i + 1 } ).(0) }my \from_int = -> \i { i == 0 ?? zero !! succ.( &?BLOCK(i - 1) ) } my \three = succ.(succ.(succ.(zero)));my \four  = from_int.(4); say map -> \f { to_int.(f) },    add.(   three )( four  ),    mult.(  three )( four  ),    power.( four  )( three ),    power.( three )( four  ),;
Output:
(7 12 64 81)

## Ruby

Translation of: Raku

The traditional methods version uses lambda to declare anonymous functions and calls them with .(); the version with procs all the way down uses proc to declare the anonymous functions and calls them with []. These are stylistic choices and each pair of options is completely interchangeable in the context of this solution.

def zero(f)  return lambda {|x| x}endZero = lambda { |f| zero(f) } def succ(n)  return lambda { |f| lambda { |x| f.(n.(f).(x)) } }end Three = succ(succ(succ(Zero))) def add(n, m)  return lambda { |f| lambda { |x| m.(f).(n.(f).(x)) } }end def mult(n, m)  return lambda { |f| lambda { |x| m.(n.(f)).(x) } }end def power(b, e)  return e.(b)end def int_from_couch(f)  countup = lambda { |i| i+1 }  f.(countup).(0)end def couch_from_int(x)  countdown = lambda { |i|    case i       when 0 then Zero       else succ(countdown.(i-1))    end  }  countdown.(x)end Four  = couch_from_int(4) puts [ add(Three, Four),       mult(Three, Four),       power(Three, Four),       power(Four, Three) ].map {|f| int_from_couch(f) }
Output:
7
12
81
64

### Procs all the way down

Zero  = proc { |f| proc { |x| x } } Succ = proc { |n| proc { |f| proc { |x| f[n[f][x]] } } } Add = proc { |n, m| proc { |f| proc { |x| m[f][n[f][x]] } } } Mult = proc { |n, m| proc { |f| proc { |x| m[n[f]][x] } } } Power = proc { |b, e| e[b] } ToInt = proc { |f| countup = proc { |i| i+1 }; f[countup] } FromInt = proc { |x|  countdown = proc { |i|    case i      when 0 then Zero      else Succ[countdown[i-1]]    end  }  countdown[x]} Three = Succ[Succ[Succ[Zero]]]Four  = FromInt puts [ Add[Three, Four],       Mult[Three, Four],       Power[Three, Four],       Power[Four, Three] ].map(&ToInt)
Output:
7
12
81
64

## Rust

use std::rc::Rc;use std::ops::{Add, Mul}; #[derive(Clone)]struct Church<'a, T: 'a> {    runner: Rc<dyn Fn(Rc<dyn Fn(T) -> T + 'a>) -> Rc<dyn Fn(T) -> T + 'a> + 'a>,} impl<'a, T> Church<'a, T> {    fn zero() -> Self {        Church {            runner: Rc::new(|_f| {                Rc::new(|x| x)            })        }    }     fn succ(self) -> Self {        Church {            runner: Rc::new(move |f| {                let g = self.runner.clone();                Rc::new(move |x| f(g(f.clone())(x)))            })        }    }     fn run(&self, f: impl Fn(T) -> T + 'a) -> Rc<dyn Fn(T) -> T + 'a> {        (self.runner)(Rc::new(f))    }     fn exp(self, rhs: Church<'a, Rc<dyn Fn(T) -> T + 'a>>) -> Self    {        Church {            runner: (rhs.runner)(self.runner)        }    }} impl<'a, T> Add for Church<'a, T> {    type Output = Church<'a, T>;     fn add(self, rhs: Church<'a, T>) -> Church<T> {        Church {            runner: Rc::new(move |f| {                let self_runner = self.runner.clone();                let rhs_runner = rhs.runner.clone();                Rc::new(move |x| (self_runner)(f.clone())((rhs_runner)(f.clone())(x)))            })        }    }} impl<'a, T> Mul for Church<'a, T> {    type Output = Church<'a, T>;     fn mul(self, rhs: Church<'a, T>) -> Church<T> {        Church {            runner: Rc::new(move |f| {                (self.runner)((rhs.runner)(f))            })        }    }} impl<'a, T> From<i32> for Church<'a, T> {    fn from(n: i32) -> Church<'a, T> {        let mut ret = Church::zero();        for _ in 0..n {            ret = ret.succ();        }        ret    }} impl<'a> From<&Church<'a, i32>> for i32  {    fn from(c: &Church<'a, i32>) -> i32 {        c.run(|x| x + 1)(0)    }} fn three<'a, T>() -> Church<'a, T> {    Church::zero().succ().succ().succ()} fn four<'a, T>() -> Church<'a, T> {    Church::zero().succ().succ().succ().succ()} fn main() {    println!("three =\t{}", i32::from(&three()));    println!("four =\t{}", i32::from(&four()));     println!("three + four =\t{}", i32::from(&(three() + four())));    println!("three * four =\t{}", i32::from(&(three() * four())));     println!("three ^ four =\t{}", i32::from(&(three().exp(four()))));    println!("four ^ three =\t{}", i32::from(&(four().exp(three()))));}
Output:
three =	3
four =	4
three + four =	7
three * four =	12
three ^ four =	81
four ^ three =	64

## Standard ML

 val demo = fn () =>let open IntInf   val zero        =  fn f       =>  fn x => x ;  fun succ  n     =  fn f       =>  f o (n f)  ;                                                   (* successor *) val rec church  =  fn 0       =>  zero                        | n     =>  succ ( church (n-1) ) ;                                        (* natural to church numeral *) val natural     =  fn churchn =>  churchn  (fn x => x+1) (fromInt 0) ;                           (* church numeral to natural *)  val mult        =  fn cn    =>  fn cm   =>  cn o cm  ; val add         =  fn cn    =>  fn cm   =>  fn f => (cn f) o (cm  f) ; val exp         =  fn cn    =>  fn em   =>  em cn;  in    List.app    (fn i=>print( (toString i)^"\n" ))     ( List.map natural       [ add (church 3) (church 4)  , mult (church 3) (church 4) , exp (church 4) (church 3) , exp (church 3) (church 4) ]  ) end;

output

 demo ();7126481

## Swift

func succ<A, B, C>(_ n: @escaping (@escaping (A) -> B) -> (C) -> A) -> (@escaping (A) -> B) -> (C) -> B {  return {f in    return {x in      return f(n(f)(x))    }  }} func zero<A, B>(_ a: A) -> (B) -> B {  return {b in    return b  }} func three<A>(_ f: @escaping (A) -> A) -> (A) -> A {  return {x in    return succ(succ(succ(zero)))(f)(x)  }} func four<A>(_ f: @escaping (A) -> A) -> (A) -> A {  return {x in    return succ(succ(succ(succ(zero))))(f)(x)  }} func add<A, B, C>(_ m: @escaping (B) -> (A) -> C) -> (@escaping (B) -> (C) -> A) -> (B) -> (C) -> C {  return {n in    return {f in      return {x in        return m(f)(n(f)(x))      }    }  }} func mult<A, B, C>(_ m: @escaping (A) -> B) -> (@escaping (C) -> A) -> (C) -> B {  return {n in    return {f in      return m(n(f))    }  }} func exp<A, B, C>(_ m: A) -> (@escaping (A) -> (B) -> (C) -> C) -> (B) -> (C) -> C {  return {n in    return {f in      return {x in        return n(m)(f)(x)      }    }  }} func church<A>(_ x: Int) -> (@escaping (A) -> A) -> (A) -> A {  guard x != 0 else { return zero }   return {f in    return {a in      return f(church(x - 1)(f)(a))    }  }} func unchurch<A>(_ f: (@escaping (Int) -> Int) -> (Int) -> A) -> A {  return f({i in    return i + 1  })(0)} let a = unchurch(add(three)(four))let b = unchurch(mult(three)(four))// We can even compose operationslet c = unchurch(exp(mult(four)(church(1)))(three))let d = unchurch(exp(mult(three)(church(1)))(four)) print(a, b, c, d)
Output:
7 12 64 81

## Tailspin

In Tailspin functions can be used as parameters but currently not as values, so they need to be wrapped in processor (object) instances.

### Using lambda calculus compositions

 processor ChurchZero  templates apply&{f:}    $! end applyend ChurchZero def zero:$ChurchZero; processor Successor  def predecessor: $; templates apply&{f:}$ -> predecessor::apply&{f: f} -> f !  end applyend Successor templates churchFromInt  @: $zero;$ -> #  when <=0> do [email protected]!  when <1..> do @: [email protected] -> Successor; $-1 -> #end churchFromInt templates intFromChurch templates add1$ + 1 !  end add1  def church: $; 0 -> church::apply&{f: add1} !end intFromChurch def three:$zero -> Successor -> Successor -> Successor;def four: 4 -> churchFromInt; processor Add&{to:}  def add: $; templates apply&{f:}$ -> add::apply&{f: f} -> to::apply&{f: f} !  end applyend Add $three -> Add&{to:$four} -> intFromChurch -> '$;' -> !OUT::write processor Multiply&{by:} def multiply:$;  templates apply&{f:}    $-> multiply::apply&{f: by::apply&{f: f}} ! end applyend Multiply$three -> Multiply&{by: $four} -> intFromChurch -> '$;' -> !OUT::write processor Power&{exp:}  def base: $; templates apply&{f:} processor Wrap&{f:} templates function$ -> f !      end function    end Wrap    templates compose      def p:$;$Wrap&{f: base::apply&{f: p::function}} !    end compose    def pow: $Wrap&{f: f} -> exp::apply&{f: compose};$ -> pow::function !  end applyend Power $three -> Power&{exp:$four} -> intFromChurch -> '$;' -> !OUT::write$four -> Power&{exp: $three} -> intFromChurch -> '$;' -> !OUT::write
Output:
7
12
81
64


### Using basic mathematical definitions

Less efficient but prettier functions can be gotten by just implementing Add as a repeated application of Successor, Multiply as a repeated application of Add and Power as a repeated application of Multiply

 processor ChurchZero  templates apply&{f:}    $! end applyend ChurchZero def zero:$ChurchZero; processor Successor  def predecessor: $; templates apply&{f:}$ -> predecessor::apply&{f: f} -> f !  end applyend Successor templates churchFromInt  @: $zero;$ -> #  when <=0> do [email protected]!  when <1..> do @: [email protected] -> Successor; $-1 -> #end churchFromInt templates intFromChurch templates add1$ + 1 !  end add1  def church: $; 0 -> church::apply&{f: add1} !end intFromChurch def three:$zero -> Successor -> Successor -> Successor;def four: 4 -> churchFromInt; templates add&{to:}  $-> to::apply&{f: Successor} !end add$three -> add&{to: $four} -> intFromChurch -> '$;' -> !OUT::write templates multiply&{by:}  def m: $;$zero -> by::apply&{f: add&{to: $m}} !end multiply$three -> multiply&{by: $four} -> intFromChurch -> '$;' -> !OUT::write templates power&{exp:}  def base: $;$zero -> Successor -> exp::apply&{f: multiply&{by: $base}} !end power$three -> power&{exp: $four} -> intFromChurch -> '$;' -> !OUT::write $four -> power&{exp:$three} -> intFromChurch -> '\$;' -> !OUT::write
Output:
7
12
81
64


## Wren

Translation of: Lua
class Church {    static zero { Fn.new { Fn.new { |x| x } } }     static succ(c) { Fn.new { |f| Fn.new { |x| f.call(c.call(f).call(x)) } } }     static add(c, d) { Fn.new { |f| Fn.new { |x| c.call(f).call(d.call(f).call(x)) } } }     static mul(c, d) { Fn.new { |f| c.call(d.call(f)) } }     static pow(c, e) { e.call(c) }     static fromInt(n) {        var ret = zero        if (n > 0) for (i in 1..n) ret = succ(ret)        return ret    }     static toInt(c) { c.call(Fn.new { |x| x + 1 }).call(0) }} var three = Church.succ(Church.succ(Church.succ(Church.zero)))var four = Church.succ(three) System.print("three         -> %(Church.toInt(three))")System.print("four          -> %(Church.toInt(four))")System.print("three + four  -> %(Church.toInt(Church.add(three, four)))")System.print("three * four  -> %(Church.toInt(Church.mul(three, four)))")System.print("three ^ four  -> %(Church.toInt(Church.pow(three, four)))")System.print("four  ^ three -> %(Church.toInt(Church.pow(four, three)))")
Output:
three         -> 3
four          -> 4
three + four  -> 7
three * four  -> 12
three ^ four  -> 81
four  ^ three -> 64


## zkl

class Church{  // kinda heavy, just an int + fcn churchAdd(ca,cb) would also work   fcn init(N){ var n=N; }	// Church Zero is Church(0)   fcn toInt(f,x){ do(n){ x=f(x) } x } // c(3)(f,x) --> f(f(f(x)))   fcn succ{ self(n+1) }   fcn __opAdd(c){ self(n+c.n)      }   fcn __opMul(c){ self(n*c.n)      }   fcn pow(c)    { self(n.pow(c.n)) }   fcn toString{ String("Church(",n,")") }}
c3,c4 := Church(3),c3.succ();f,x := Op("+",1),0;println("f=",f,", x=",x);println("%s+%s=%d".fmt(c3,c4, (c3+c4).toInt(f,x)      ));println("%s*%s=%d".fmt(c3,c4, (c3*c4).toInt(f,x)      ));println("%s^%s=%d".fmt(c4,c3, (c4.pow(c3)).toInt(f,x) ));println("%s^%s=%d".fmt(c3,c4, (c3.pow(c4)).toInt(f,x) ));println();T(c3+c4,c3*c4,c4.pow(c3),c3.pow(c4)).apply("toInt",f,x).println();
Output:
f=Op(+1), x=0
Church(3)+Church(4)=7
Church(3)*Church(4)=12
Church(4)^Church(3)=64
Church(3)^Church(4)=81

L(7,12,64,81)


OK, that was the easy sleazy cheat around way to do it. The wad of nested functions way is as follows:

fcn churchZero{ return(fcn(x){ x }) } // or fcn churchZero{ self.fcn.idFcn }fcn churchSucc(c){ return('wrap(f){ return('wrap(x){ f(c(f)(x)) }) }) }fcn churchAdd(c1,c2){ return('wrap(f){ return('wrap(x){ c1(f)(c2(f)(x)) }) }) }fcn churchMul(c1,c2){ return('wrap(f){ c1(c2(f)) }) }fcn churchPow(c1,c2){ return('wrap(f){ c2(c1)(f) }) }fcn churchToInt(c,f,x){ c(f)(x) }fcn churchFromInt(n){ c:=churchZero; do(n){ c=churchSucc(c) } c }//fcn churchFromInt(n){ (0).reduce(n,churchSucc,churchZero) } // what ever
c3,c4 := churchFromInt(3),churchSucc(c3);f,x   := Op("+",1),0;	// x>=0, ie natural numberT(c3,c4,churchAdd(c3,c4),churchMul(c3,c4),churchPow(c4,c3),churchPow(c3,c4))   .apply(churchToInt,f,x).println();
Output:
L(3,4,7,12,64,81)