Balanced ternary

From Rosetta Code
(Redirected from Balanced Ternary)
Task
Balanced ternary
You are encouraged to solve this task according to the task description, using any language you may know.

Balanced ternary is a way of representing numbers. Unlike the prevailing binary representation, a balanced ternary integer is in base 3, and each digit can have the values 1, 0, or −1.


Examples

Decimal 11 = 32 + 31 − 30, thus it can be written as "++−"

Decimal 6 = 32 − 31 + 0 × 30, thus it can be written as "+−0"


Task

Implement balanced ternary representation of integers with the following:

  1. Support arbitrarily large integers, both positive and negative;
  2. Provide ways to convert to and from text strings, using digits '+', '-' and '0' (unless you are already using strings to represent balanced ternary; but see requirement 5).
  3. Provide ways to convert to and from native integer type (unless, improbably, your platform's native integer type is balanced ternary). If your native integers can't support arbitrary length, overflows during conversion must be indicated.
  4. Provide ways to perform addition, negation and multiplication directly on balanced ternary integers; do not convert to native integers first.
  5. Make your implementation efficient, with a reasonable definition of "efficient" (and with a reasonable definition of "reasonable").


Test case With balanced ternaries a from string "+-0++0+", b from native integer -436, c "+-++-":

  • write out a, b and c in decimal notation;
  • calculate a × (bc), write out the result in both ternary and decimal notations.


Note: The pages generalised floating point addition and generalised floating point multiplication have code implementing arbitrary precision floating point balanced ternary.

11l

Translation of: Python
T BalancedTernary
   . -:str2dig = [‘+’ = 1, ‘-’ = -1, ‘0’ = 0]
   . -:dig2str = [1 = ‘+’, -1 = ‘-’, 0 = ‘0’]
   . -:table = [(0, -1), (1, -1), (-1, 0), (0, 0), (1, 0), (-1, 1), (0, 1)]

   [Int] digits

   F (inp)
      I all(inp.map(d -> d C (0, 1, -1)))
         .digits = copy(inp)
      E
         X.throw ValueError(‘BalancedTernary: Wrong input digits.’)

   F :from_str(inp)
      R BalancedTernary(reversed(inp).map(c -> .:str2dig[c]))

   . F :int2ternary(n)
      I n == 0
         R [Int]()
      V n3 = ((n % 3) + 3) % 3
      I n3 == 0 {R  [0] [+] .:int2ternary(n -I/ 3)}
      I n3 == 1 {R  [1] [+] .:int2ternary(n -I/ 3)}
      I n3 == 2 {R [-1] [+] .:int2ternary((n + 1) -I/ 3)}
      X.throw RuntimeError(‘’)

   F :from_int(inp)
      R BalancedTernary(.:int2ternary(inp))

   F to_int()
      R reversed(.digits).reduce(0, (y, x) -> x + 3 * y)

   F String()
      I .digits.empty
         R ‘0’
      R reversed(.digits).map(d -> .:dig2str[d]).join(‘’)

   . F :neg(digs)
      R digs.map(d -> -d)

   F -()
      R BalancedTernary(.:neg(.digits))

   . F :add(a, b, =c = 0)
      I !(!a.empty & !b.empty)
         I c == 0
            R I !a.empty {a} E b
         E
            R .:add([c], I !a.empty {a} E b)
      E
         (V d, c) = .:table[3 + (I !a.empty {a[0]} E 0) + (I !b.empty {b[0]} E 0) + c]
         V res = .:add(a[1..], b[1..], c)
         I !res.empty | d != 0
            R [d] [+] res
         E
            R res

   F +(b)
      R BalancedTernary(.:add(.digits, b.digits))

   F -(b)
      R (.) + (-b)

   F *(b)
      F _mul([Int] a, b) -> [Int]
         I !(!a.empty & !b.empty)
            R [Int]()
         E
            [Int] x
            I   a[0] == -1 {x = .:neg(b)}
            E I a[0] ==  0 {}
            E I a[0] ==  1 {x = b}
            E
               assert(0B)
            V y = [0] [+] @_mul(a[1..], b)
            R .:add(x, y)

      R BalancedTernary(_mul(.digits, b.digits))

V a = BalancedTernary.from_str(‘+-0++0+’)
print(‘a: ’a.to_int()‘ ’a)

V b = BalancedTernary.from_int(-436)
print(‘b: ’b.to_int()‘ ’b)

V c = BalancedTernary.from_str(‘+-++-’)
print(‘c: ’c.to_int()‘ ’c)

V r = a * (b - c)
print(‘a * (b - c): ’r.to_int()‘ ’r)
Output:
a: 523 +-0++0+
b: -436 -++-0--
c: 65 +-++-
a * (b - c): -262023 ----0+--0++0

Ada

Specifications (bt.ads):

with Ada.Finalization;

package BT is
   
   type Balanced_Ternary is private;
   
   -- conversions
   function To_Balanced_Ternary (Num : Integer) return Balanced_Ternary;
   function To_Balanced_Ternary (Str : String)  return Balanced_Ternary;
   function To_Integer (Num : Balanced_Ternary)  return Integer;
   function To_string (Num : Balanced_Ternary)   return String;
     
   -- Arithmetics
   -- unary minus
   function "-" (Left : in Balanced_Ternary)
		return Balanced_Ternary;
   
   -- subtraction
   function "-" (Left, Right : in Balanced_Ternary)
		return Balanced_Ternary;
   
   -- addition
   function "+" (Left, Right : in Balanced_Ternary)
		return Balanced_Ternary;
   -- multiplication
   function "*" (Left, Right : in Balanced_Ternary)
		return Balanced_Ternary;

private   
   -- a balanced ternary number is a unconstrained array of (1,0,-1) 
   -- dinamically allocated, least significant trit leftmost
   type Trit is range -1..1;
   type Trit_Array is array (Positive range <>) of Trit;
   pragma Pack(Trit_Array);
   
   type Trit_Access is access Trit_Array;
   
   type Balanced_Ternary is new Ada.Finalization.Controlled
     with record
	Ref : Trit_access;
   end record;
   
   procedure Initialize (Object : in out Balanced_Ternary);
   procedure Adjust     (Object : in out Balanced_Ternary);
   procedure Finalize   (Object : in out Balanced_Ternary);
   
end BT;

Implementation (bt.adb):

with Ada.Unchecked_Deallocation;

package body BT is
   
   procedure Free is new Ada.Unchecked_Deallocation (Trit_Array, Trit_Access);

   -- Conversions
   -- String to BT
   function To_Balanced_Ternary (Str: String) return Balanced_Ternary is
      J : Positive := 1;
      Tmp : Trit_Access;
   begin
      Tmp := new Trit_Array (1..Str'Last);
      for I in reverse Str'Range loop
	 case Str(I) is
	    when '+' => Tmp (J) := 1;
	    when '-' => Tmp (J) := -1;
	    when '0' => Tmp (J) := 0;
	    when others => raise Constraint_Error;
	 end case;      
	 J := J + 1;
      end loop;
      return (Ada.Finalization.Controlled with Ref => Tmp);
   end To_Balanced_Ternary;
   
   -- Integer to BT
   function To_Balanced_Ternary (Num: Integer) return Balanced_Ternary is
      K      : Integer := 0;
      D      : Integer;
      Value  : Integer := Num;
      Tmp    : Trit_Array(1..19); -- 19 trits is enough to contain
                                   -- a 32 bits signed integer
   begin
      loop
	 D := (Value mod 3**(K+1))/3**K;
	 if D = 2 then D := -1; end if;
	 Value := Value - D*3**K;
	 K := K + 1;
	 Tmp(K) := Trit(D);
	 exit when Value = 0;
      end loop;
      return (Ada.Finalization.Controlled
		with Ref => new Trit_Array'(Tmp(1..K)));
   end To_Balanced_Ternary;

   -- BT to Integer --
   -- If the BT number is too large Ada will raise CONSTRAINT ERROR
   function To_Integer (Num : Balanced_Ternary) return Integer is
      Value : Integer := 0;
      Pos : Integer := 1;
   begin
      for I in Num.Ref.all'Range loop
	 Value := Value + Integer(Num.Ref(I)) * Pos;
	 Pos := Pos * 3;
      end loop;
      return Value;
   end To_Integer;

   -- BT to String --
   function To_String (Num : Balanced_Ternary) return String is
      I : constant Integer := Num.Ref.all'Last;
      Result : String (1..I);
   begin
      for J in Result'Range loop
	 case Num.Ref(I-J+1) is
	    when 0  => Result(J) := '0';
	    when -1 => Result(J) := '-';
	    when 1  => Result(J) := '+';
	 end case;
      end loop;
      return Result;
   end To_String;

   -- unary minus --
   function "-" (Left : in Balanced_Ternary)
		return Balanced_Ternary is
      Result : constant Balanced_Ternary := Left;
   begin
      for I in Result.Ref.all'Range loop
	 Result.Ref(I) := - Result.Ref(I);
      end loop;
      return Result;
   end "-";

   -- addition --
   Carry : Trit;
   
   function Add (Left, Right : in Trit)
		return Trit is
   begin
      if Left /= Right then
	 Carry := 0;
	 return Left + Right;
      else
	 Carry := Left;
	 return -Right;
      end if;
   end Add;
   pragma Inline (Add);
   
   function "+" (Left, Right : in Trit_Array)
		return Balanced_Ternary is
      Max_Size : constant Integer := 
	Integer'Max(Left'Last, Right'Last);
      Tmp_Left, Tmp_Right : Trit_Array(1..Max_Size) := (others => 0);
      Result : Trit_Array(1..Max_Size+1) := (others => 0);
   begin
      Tmp_Left (1..Left'Last) := Left;
      Tmp_Right(1..Right'Last) := Right;
      for I in Tmp_Left'Range loop
	 Result(I) := Add (Result(I), Tmp_Left(I));
	 Result(I+1) := Carry;
	 Result(I) := Add(Result(I), Tmp_Right(I));
	 Result(I+1) := Add(Result(I+1), Carry);
      end loop;
      -- remove trailing zeros
      for I in reverse Result'Range loop
	 if Result(I) /= 0 then
	    return (Ada.Finalization.Controlled
		      with Ref => new Trit_Array'(Result(1..I)));
	 end if;
      end loop;
      return (Ada.Finalization.Controlled
		with Ref => new Trit_Array'(1 => 0));
   end "+";
   
   function "+" (Left, Right : in Balanced_Ternary)
		return Balanced_Ternary is
   begin
      return Left.Ref.all + Right.Ref.all;
   end "+";
   
   -- Subtraction
   function "-" (Left, Right : in Balanced_Ternary)
		return Balanced_Ternary is
   begin
      return Left + (-Right);
   end "-";

   -- multiplication
   function "*" (Left, Right : in Balanced_Ternary)
		return Balanced_Ternary is
      A, B : Trit_Access;
      Result : Balanced_Ternary;   
   begin
      if Left.Ref.all'Length > Right.Ref.all'Length then
	 A := Right.Ref; B := Left.Ref;
      else
	 B := Right.Ref; A := Left.Ref;
      end if;
      for I in A.all'Range loop
	 if A(I) /= 0 then
	    declare
	       Tmp_Result : Trit_Array (1..I+B.all'Length-1) := (others => 0);
	    begin
	       for J in B.all'Range loop
		  Tmp_Result(I+J-1) := B(J) * A(I);
	       end loop;
	       Result := Result.Ref.all + Tmp_Result;
	    end;
	 end if;
      end loop;
      return Result;
   end "*";

   procedure Adjust (Object : in out Balanced_Ternary) is
   begin
      Object.Ref := new Trit_Array'(Object.Ref.all);
   end Adjust;

   procedure Finalize  (Object : in out Balanced_Ternary) is
   begin
      Free (Object.Ref);
   end Finalize;

   procedure Initialize (Object : in out Balanced_Ternary) is
   begin
      Object.Ref := new Trit_Array'(1 => 0);
   end Initialize;

end BT;

Test task requirements (testbt.adb):

with Ada.Text_Io; use Ada.Text_Io;
with Ada.Integer_Text_Io; use Ada.Integer_Text_Io;
with BT; use BT;

procedure TestBT is
   Result, A, B, C : Balanced_Ternary;
begin
   A := To_Balanced_Ternary("+-0++0+");
   B := To_Balanced_Ternary(-436);
   C := To_Balanced_Ternary("+-++-");
   
   Result := A * (B - C);
   
   Put("a = "); Put(To_integer(A), 4); New_Line;
   Put("b = "); Put(To_integer(B), 4); New_Line;
   Put("c = "); Put(To_integer(C), 4); New_Line;
   Put("a * (b - c) = "); Put(To_integer(Result), 4); 
   Put_Line (" " & To_String(Result));
end TestBT;

Output:

a =  523
b = -436
c =   65
a * (b - c) = -262023 ----0+--0++0

ALGOL 68

See also:

AppleScript

To demonstrate the possibility, the integerFromBT and negateBT handlers here work by being tricksy with the characters' Unicode numbers. It's a more efficient way to deal with the characters. But I'm not sure how this'll be taken vis-à-vis not converting to native integers first, so the remaining handlers use a strictly if-then string comparison approach. Applescript's quite happy to convert automatically between integers, reals, numeric strings, and single-item lists containing numbers, so BTFromInteger accepts any of these forms, but the numbers represented must be whole-number values and must be small enough not to error AppleScript's as integer coercion. This coercion is error free for numbers in the range -(2 ^ 31) to 2 ^ 31 - 1, although actual integer class objects can only represent numbers in the range -(2 ^ 29) to 2 ^ 29 - 1. IntegerFromBT doesn't currently impose any integer-class size limit on its output.

-- Build a balanced ternary, as text, from an integer value or acceptable AppleScript substitute.
on BTFromInteger(n)
    try
        if (n mod 1 is not 0) then error (n as text) & " isn't an integer value"
        set n to n as integer
    on error errMsg
        display alert "BTFromInteger handler: parameter error" message errMsg buttons {"OK"} default button 1 as critical
        error number -128
    end try
    if (n is 0) then return "0"
    -- Positive numbers' digits will be indexed from the beginning of a list containing them, negatives' from the end.
    -- AppleScript indices are 1-based, so get the appropriate 1 or -1 add-in.
    set one to 1
    if (n < 0) then set one to -1
    set digits to {"0", "+", "-", "0"}
    -- Build the text digit by digit.
    set bt to ""
    repeat until (n = 0)
        set nMod3 to n mod 3
        set bt to (item (nMod3 + one) of digits) & bt
        set n to n div 3 + nMod3 div 2 -- + nMod3 div 2 adds in a carry when nMod3 is either 2 or -2.
    end repeat
    
    return bt
end BTFromInteger

-- Calculate a balanced ternary's integer value from its characters' Unicode numbers.
on integerFromBT(bt)
    checkInput(bt, "integerFromBT")
    set n to 0
    repeat with thisID in (get bt's id)
        set n to n * 3
        -- Unicode 48 is "0", 43 is "+", 45 is "-".
        if (thisID < 48) then set n to n + (44 - thisID)
    end repeat
    
    return n
end integerFromBT

-- Add two balanced ternaries together.
on addBTs(bt1, bt2)
    checkInput({bt1, bt2}, "addBTs")
    set {longerLength, shorterLength} to {(count bt1), (count bt2)}
    if (longerLength < shorterLength) then set {bt1, bt2, longerLength, shorterLength} to {bt2, bt1, shorterLength, longerLength}
    
    -- Add the shorter number's digits into a list of the longer number's digits, adding in carries too where appropriate.
    set resultList to bt1's characters
    repeat with i from -1 to -shorterLength by -1
        set {carry, item i of resultList} to sumDigits(item i of resultList, character i of bt2)
        repeat with j from (i - 1) to -longerLength by -1
            if (carry is "0") then exit repeat
            set {carry, item j of resultList} to sumDigits(carry, item j of resultList)
        end repeat
        if (carry is not "0") then set beginning of bt1 to carry
    end repeat
    -- Zap any leading zeros resulting from the cancelling out of the longer number's MSD(s).
    set j to -(count resultList)
    repeat while ((item j of resultList is "0") and (j < -1))
        set item j of resultList to ""
        set j to j + 1
    end repeat
    
    return join(resultList, "")
end addBTs

-- Multiply one balanced ternary by another.
on multiplyBTs(bt1, bt2)
    checkInput({bt1, bt2}, "multiplyBTs")
    -- Longer and shorter aren't critical here, but it's more efficient to loop through the lesser number of digits.
    set {longerLength, shorterLength} to {(count bt1), (count bt2)}
    if (longerLength < shorterLength) then set {bt1, bt2, shorterLength} to {bt2, bt1, longerLength}
    
    set multiplicationResult to "0"
    repeat with i from -1 to -shorterLength by -1
        set d2 to character i of bt2
        if (d2 is not "0") then
            set subresult to ""
            -- With each non-"0" subresult, begin with the appropriate number of trailing zeros.
            repeat (-1 - i) times
                set subresult to "0" & subresult
            end repeat
            -- Prepend the longer ternary as is.
            set subresult to bt1 & subresult
            -- Negate the result if the current multiplier from the shorter ternary is "-".
            if (d2 is "-") then set subresult to negateBT(subresult)
            -- Add the subresult to the total so far.
            set multiplicationResult to addBTs(multiplicationResult, subresult)
        end if
    end repeat
    
    return multiplicationResult
end multiplyBTs

-- Negate a balanced ternary by substituting the characters obtained through subtracting its sign characters' Unicode numbers from 88.
on negateBT(bt)
    checkInput(bt, "negateBT")
    set characterIDs to bt's id
    repeat with thisID in characterIDs
        if (thisID < 48) then set thisID's contents to 88 - thisID
    end repeat
    
    return string id characterIDs
end negateBT

(* Private handlers. *)

on checkInput(params as list, handlerName)
    try
        repeat with thisParam in params
            if (thisParam's class is text) then
                if (join(split(thisParam, {"-", "+", "0"}), "") > "") then error "\"" & thisParam & "\" isn't a balanced ternary number."
            else
                error "The parameter isn't text."
            end if
        end repeat
    on error errMsg
        display alert handlerName & " handler: parameter error" message errMsg buttons {"OK"} default button 1 as critical
        error number -128
    end try
end checkInput

-- "Add" two balanced ternaries and return both the carry and the result for the column.
on sumDigits(d1, d2)
    if (d1 is "0") then
        return {"0", d2}
    else if (d2 is "0") then
        return {"0", d1}
    else if (d1 = d2) then
        if (d1 = "+") then
            return {"+", "-"}
        else
            return {"-", "+"}
        end if
    else
        return {"0", "0"}
    end if
end sumDigits

on join(lst, delimiter)
    set astid to AppleScript's text item delimiters
    set AppleScript's text item delimiters to delimiter
    set txt to lst as text
    set AppleScript's text item delimiters to astid
    
    return txt
end join

on split(txt, delimiter)
    set astid to AppleScript's text item delimiters
    set AppleScript's text item delimiters to delimiter
    set lst to txt's text items
    set AppleScript's text item delimiters to astid
    
    return lst
end split

-- Test code:
set a to "+-0++0+"
set b to BTFromInteger(-436) --> "-++-0--"
set c to "+-++-"

set line1 to "a = " & integerFromBT(a)
set line2 to "b = " & integerFromBT(b)
set line3 to "c = " & integerFromBT(c)
tell multiplyBTs(a, addBTs(b, negateBT(c))) to ¬
    set line4 to "a * (b - c) = " & it & " or " & my integerFromBT(it)

return line1 & linefeed & line2 & linefeed & line3 & linefeed & line4
Output:
"a = 523
b = -436
c = 65
a * (b - c) = ----0+--0++0 or -262023"

ATS

(*
** This one is
** translated into ATS from the Ocaml entry
*)

(* ****** ****** *)
//
// How to compile:
// patscc -DATS_MEMALLOC_LIBC -o bternary bternary.dats
//
(* ****** ****** *)

#include
"share/atspre_staload.hats"

(* ****** ****** *)

datatype btd = P | Z | N; typedef btern = List0(btd)

(* ****** ****** *)

fun
btd2int (d: btd): int =
  (case+ d of P() => 1 | Z() => 0 | N() => ~1)

(* ****** ****** *)

fun
btd2string (d:btd): string =
(
case+ d of P() => "+" | Z() => "0" | N() => "-"
)

(* ****** ****** *)

fun
btern2string
(
  ds: btern
) : string =
  strptr2string(res) where
{
  val xs = list_map_cloref (ds, lam d => btd2string(d))
  val xs = list_vt_reverse (xs)
  val res = stringlst_concat($UNSAFE.castvwtp1{List(string)}(xs))
  val () = list_vt_free<string> (xs)
}

(* ****** ****** *)

fun
from_string
  (inp: string): btern = let
//
fun
loop{n:nat}
(
  inp: string(n), ds: btern
) : btern =
(
//
  if isneqz(inp)
    then let
      val c = inp.head()
      val d =
        (case- c of '+' => P | '0' => Z | '-' => N): btd
      // end of [val]
    in
      loop (inp.tail(), list_cons(d, ds))
    end // end of [then]
    else ds // end of [else]
//
) (* end of [loop] *)
//
in
  loop (g1ofg0(inp), list_nil)
end // end of [from_string]

(* ****** ****** *)

fun
to_int (ds: btern): int =
(
case+ ds of
| list_nil () => 0
| list_cons (d, ds) => 3*to_int(ds) + btd2int(d)
) (* end of [to_int] *)

fun
from_int (n: int): btern =
(
if
n = 0
then list_nil
else let
  val r = n mod 3
in
  if r = 0
    then list_cons (Z, from_int (n/3))
    else if (r = 1 || r = ~2)
           then list_cons (P, from_int ((n-1)/3))
           else list_cons (N, from_int ((n+1)/3))
end // end of [else]
) (* end of [from_int] *)

(* ****** ****** *)

fun
neg_btern
  (ds: btern): btern =
list_vt2t
(
list_map_cloref<btd><btd>
  (ds, lam d => case+ d of P() => N() | Z() => Z() | N() => P())
) (* end of [neg_btern] *)

overload ~ with neg_btern

(* ****** ****** *)
//
extern
fun
add_btern_btern: (btern, btern) -> btern
and
sub_btern_btern: (btern, btern) -> btern
overload + with add_btern_btern of 100
overload - with sub_btern_btern of 100
//
extern
fun
mul_btern_btern: (btern, btern) -> btern
overload * with mul_btern_btern of 110
//
(* ****** ****** *)

#define :: list_cons

(* ****** ****** *)

local

fun aux0 (ds: btern): btern =
(
  case+ ds of nil() => ds | _ => Z()::ds
)

fun succ(ds:btern) = ds+list_sing(P())
fun pred(ds:btern) = ds+list_sing(N())

in (* in-of-local *)

implement
add_btern_btern
  (ds1, ds2) =
(
case+ (ds1, ds2) of
| (nil(), _) => ds2
| (_, nil()) => ds1
| (P()::ds1, N()::ds2) => aux0 (ds1+ds2)
| (Z()::ds1, Z()::ds2) => aux0 (ds1+ds2)
| (N()::ds1, P()::ds2) => aux0 (ds1+ds2)
| (P()::ds1, P()::ds2) => N() :: succ(ds1 + ds2)
| (N()::ds1, N()::ds2) => P() :: pred(ds1 + ds2)
| (Z()::ds1, btd::ds2) => btd :: (ds1 + ds2)
| (btd::ds1, Z()::ds2) => btd :: (ds1 + ds2)
)

implement
sub_btern_btern (ds1, ds2) = ds1 + (~ds2)

implement
mul_btern_btern (ds1, ds2) =
(
case+ ds2 of
| nil() => nil()
| Z()::ds2 => aux0 (ds1 * ds2)
| P()::ds2 => aux0 (ds1 * ds2) + ds1
| N()::ds2 => aux0 (ds1 * ds2) - ds1
)

end // end of [local]

(* ****** ****** *)

typedef charptr = $extype"char*"

(* ****** ****** *)

implement main0 () =
{
//
val a =
from_string "+-0++0+"
//
val b = from_int (~436)
val c = from_string "+-++-"
//
val d = a * (b - c)
//
val () =
$extfcall
(
  void
, "printf"
, "a = %d\nb = %d\nc = %d\na * (b - c) = %s = %d\n"
, to_int(a)
, to_int(b)
, to_int(c)
, $UNSAFE.cast{charptr}(btern2string(d))
, to_int(d)
) (* end of [val] *)
//
} (* end of [main0] *)

Output:

a =  523
b = -436
c =   65
a * (b - c) = -262023 ----0+--0++0

AutoHotkey

BalancedTernary(n){
	k = 0
	if abs(n)<2
		return n=1?"+":n=0?"0":"-"
	if n<1
		negative := true, n:= -1*n
	while !break {
		d := Mod(n, 3**(k+1)) / 3**k
		d := d=2?-1:d
		n := n - (d * 3**k)
		r := (d=-1?"-":d=1?"+":0) . r
		k++
		if (n = 3**k)
			r := "+" . r	, break := true
	}
	if negative {
		StringReplace, r, r, -,n, all
		StringReplace, r, r, `+,-, all
		StringReplace, r, r, n,+, all
	}
	return r
}

Examples:

data =
(
523
-436
65
-262023
)
loop, Parse, data, `n
	result .= A_LoopField " : " BalancedTernary(A_LoopField) "`n"
MsgBox % result
return

Outputs:

523 	: +-0++0+
-436 	: -++-0--
65 	: +-++-
-262023	: ----0+--0++0

Bruijn

The default syntax sugar for numbers in bruijn is balanced ternary. The implementation of respective arithmetic operators is in std/Number/Ternary and std/Math. Converting between bases can be accomplished using std/Number/Conversion. The following is a library excerpt to show how to define the most common operators (succ,pred,add,sub,mul,eq) efficiently. They can be easily converted to the notation of pure lambda calculus (as originally by Torben Mogensen in "An Investigation of Compact and Efficient Number Representations in the Pure Lambda Calculus").

:import std/Combinator .
:import std/Logic .
:import std/Pair .

# negative trit indicating coefficient of (-1)
t⁻ [[[2]]]

# positive trit indicating coefficient of (+1)
t⁺ [[[1]]]

# zero trit indicating coefficient of 0
t⁰ [[[0]]]

# shifts a negative trit into a balanced ternary number
↑⁻‣ [[[[[2 (4 3 2 1 0)]]]]]

# shifts a positive trit into a balanced ternary number
↑⁺‣ [[[[[1 (4 3 2 1 0)]]]]]

# shifts a zero trit into a balanced ternary number
↑⁰‣ [[[[[0 (4 3 2 1 0)]]]]]

# shifts a specified trit into a balanced ternary number
…↑… [[[[[[5 2 1 0 (4 3 2 1 0)]]]]]]

# negates a balanced ternary number
-‣ [[[[[4 3 1 2 0]]]]]

# increments a balanced ternary number (can introduce leading 0s)
++‣ [~(0 z a⁻ a⁺ a⁰)]
	z (+0) : (+1)
	a⁻ &[[↑⁻1 : ↑⁰1]]
	a⁺ &[[↑⁺1 : ↑⁻0]]
	a⁰ &[[↑⁰1 : ↑⁺1]]

# decrements a balanced ternary number (can introduce leading 0s)
--‣ [~(0 z a⁻ a⁺ a⁰)]
	z (+0) : (-1)
	a⁻ &[[↑⁻1 : ↑⁺0]]
	a⁺ &[[↑⁺1 : ↑⁰1]]
	a⁰ &[[↑⁰1 : ↑⁻1]]

# converts the normal balanced ternary representation into abstract form
→^‣ [0 z a⁻ a⁺ a⁰]
	z (+0)
	a⁻ [[[[[2 4]]]]]
	a⁺ [[[[[1 4]]]]]
	a⁰ [[[[[0 4]]]]]

# converts the abstracted balanced ternary representation back to normal
→_‣ y [[0 z a⁻ a⁺ a⁰]]
	z (+0)
	a⁻ [↑⁻(2 0)]
	a⁺ [↑⁺(2 0)]
	a⁰ [↑⁰(2 0)]

# adds two balanced ternary numbers (can introduce leading 0s)
…+… [[[c (0 z a⁻ a⁺ a⁰)] 1 →^0]]
	b⁻ [1 ↑⁺(3 0 t⁻) ↑⁰(3 0 t⁰) ↑⁻(3 0 t⁰)]
	b⁰ [1 ↑ (3 0 t⁰)]
	b⁺ [1 ↑⁰(3 0 t⁰) ↑⁻(3 0 t⁺) ↑⁺(3 0 t⁰)]
	a⁻ [[[1 (b⁻ 1) b⁻' b⁰ b⁻]]]
		b⁻' [1 ↑⁰(3 0 t⁻) ↑⁻(3 0 t⁰) ↑⁺(3 0 t⁻)]
	a⁺ [[[1 (b⁺ 1) b⁰ b⁺' b⁺]]]
		b⁺' [1 ↑⁺(3 0 t⁰) ↑⁰(3 0 t⁺) ↑⁻(3 0 t⁺)]
	a⁰ [[[1 (b⁰ 1) b⁻ b⁺ b⁰]]]
	z [[0 --(→_1) ++(→_1) →_1]]
	c [[1 0 t⁰]]

# subtracts two balanced ternary numbers (can introduce leading 0s)
…-… [[1 + -0]]

# multiplicates two balanced ternary numbers (can introduce leading 0s)
…⋅… [[1 z a⁻ a⁺ a⁰]]
	z (+0)
	a⁻ [↑⁰0 - 1]
	a⁺ [↑⁰0 + 1]
	a⁰ [↑⁰0]

# true if balanced ternary number is zero
=?‣ [0 true [false] [false] i]

# true if two balanced ternary numbers are equal
# → ignores leading 0s!
…=?… [[[0 z a⁻ a⁺ a⁰] 1 →^0]]
	z [=?(→_0)]
	a⁻ [[0 false [2 0] [false] [false]]]
	a⁺ [[0 false [false] [2 0] [false]]]
	a⁰ [[0 (1 0) [false] [false] [2 0]]]

main [[0]]

# --- tests/examples ---

:test ((-42) + (-1) =? (-43)) (true)
:test ((+1) + (+2) =? (+3)) (true)
:test ((-42) - (-1) =? (-41)) (true)
:test ((+1) - (+2) =? (-1)) (true)
:test ((-1) ⋅ (+42) =? (-42)) (true)
:test ((+3) ⋅ (+11) =? (+33)) (true)

C

Translation of: Perl
#include <stdio.h>
#include <string.h>

void reverse(char *p) {
    size_t len = strlen(p);
    char *r = p + len - 1;
    while (p < r) {
        *p ^= *r;
        *r ^= *p;
        *p++ ^= *r--;
    }
}

void to_bt(int n, char *b) {
    static char d[] = { '0', '+', '-' };
    static int v[] = { 0, 1, -1 };

    char *ptr = b;
    *ptr = 0;

    while (n) {
        int r = n % 3;
        if (r < 0) {
            r += 3;
        }

        *ptr = d[r];
        *(++ptr) = 0;

        n -= v[r];
        n /= 3;
    }

    reverse(b);
}

int from_bt(const char *a) {
    int n = 0;

    while (*a != '\0') {
        n *= 3;
        if (*a == '+') {
            n++;
        } else if (*a == '-') {
            n--;
        }
        a++;
    }

    return n;
}

char last_char(char *ptr) {
    char c;

    if (ptr == NULL || *ptr == '\0') {
        return '\0';
    }

    while (*ptr != '\0') {
        ptr++;
    }
    ptr--;

    c = *ptr;
    *ptr = 0;
    return c;
}

void add(const char *b1, const char *b2, char *out) {
    if (*b1 != '\0' && *b2 != '\0') {
        char c1[16];
        char c2[16];
        char ob1[16];
        char ob2[16];
        char d[3] = { 0, 0, 0 };
        char L1, L2;

        strcpy(c1, b1);
        strcpy(c2, b2);
        L1 = last_char(c1);
        L2 = last_char(c2);
        if (L2 < L1) {
            L2 ^= L1;
            L1 ^= L2;
            L2 ^= L1;
        }

        if (L1 == '-') {
            if (L2 == '0') {
                d[0] = '-';
            }
            if (L2 == '-') {
                d[0] = '+';
                d[1] = '-';
            }
        }
        if (L1 == '+') {
            if (L2 == '0') {
                d[0] = '+';
            }
            if (L2 == '-') {
                d[0] = '0';
            }
            if (L2 == '+') {
                d[0] = '-';
                d[1] = '+';
            }
        }
        if (L1 == '0') {
            if (L2 == '0') {
                d[0] = '0';
            }
        }

        add(c1, &d[1], ob1);
        add(ob1, c2, ob2);
        strcpy(out, ob2);

        d[1] = 0;
        strcat(out, d);
    } else if (*b1 != '\0') {
        strcpy(out, b1);
    } else if (*b2 != '\0') {
        strcpy(out, b2);
    } else {
        *out = '\0';
    }
}

void unary_minus(const char *b, char *out) {
    while (*b != '\0') {
        if (*b == '-') {
            *out++ = '+';
            b++;
        } else if (*b == '+') {
            *out++ = '-';
            b++;
        } else {
            *out++ = *b++;
        }
    }
    *out = '\0';
}

void subtract(const char *b1, const char *b2, char *out) {
    char buf[16];
    unary_minus(b2, buf);
    add(b1, buf, out);
}

void mult(const char *b1, const char *b2, char *out) {
    char r[16] = "0";
    char t[16];
    char c1[16];
    char c2[16];
    char *ptr = c2;

    strcpy(c1, b1);
    strcpy(c2, b2);

    reverse(c2);

    while (*ptr != '\0') {
        if (*ptr == '+') {
            add(r, c1, t);
            strcpy(r, t);
        }
        if (*ptr == '-') {
            subtract(r, c1, t);
            strcpy(r, t);
        }
        strcat(c1, "0");

        ptr++;
    }

    ptr = r;
    while (*ptr == '0') {
        ptr++;
    }
    strcpy(out, ptr);
}

int main() {
    const char *a = "+-0++0+";
    char b[16];
    const char *c = "+-++-";
    char t[16];
    char d[16];

    to_bt(-436, b);
    subtract(b, c, t);
    mult(a, t, d);

    printf("      a: %14s %10d\n", a, from_bt(a));
    printf("      b: %14s %10d\n", b, from_bt(b));
    printf("      c: %14s %10d\n", c, from_bt(c));
    printf("a*(b-c): %14s %10d\n", d, from_bt(d));

    return 0;
}
Output:
      a:        +-0++0+        523
      b:        -++-0--       -436
      c:          +-++-         65
a*(b-c):   ----0+--0++0    -262023

C#

using System;
using System.Text;
using System.Collections.Generic;

public class BalancedTernary
{
	public static void Main()
	{
		BalancedTernary a = new BalancedTernary("+-0++0+");
		System.Console.WriteLine("a: " + a + " = " + a.ToLong());
		BalancedTernary b = new BalancedTernary(-436);
		System.Console.WriteLine("b: " + b + " = " + b.ToLong());
		BalancedTernary c = new BalancedTernary("+-++-");
		System.Console.WriteLine("c: " + c + " = " + c.ToLong());
		BalancedTernary d = a * (b - c);
		System.Console.WriteLine("a * (b - c): " + d + " = " + d.ToLong());
	}

	private enum BalancedTernaryDigit
	{
		MINUS = -1,
		ZERO = 0,
		PLUS = 1
	}

	private BalancedTernaryDigit[] value;

	// empty = 0
	public BalancedTernary()
	{
		this.value = new BalancedTernaryDigit[0];
	}

	// create from String
	public BalancedTernary(String str)
	{
		this.value = new BalancedTernaryDigit[str.Length];
		for (int i = 0; i < str.Length; ++i)
		{
			switch (str[i])
			{
				case '-':
					this.value[i] = BalancedTernaryDigit.MINUS;
					break;
				case '0':
					this.value[i] = BalancedTernaryDigit.ZERO;
					break;
				case '+':
					this.value[i] = BalancedTernaryDigit.PLUS;
					break;
				default:
					throw new ArgumentException("Unknown Digit: " + str[i]);
			}
		}
		Array.Reverse(this.value);
	}

	// convert long integer
	public BalancedTernary(long l)
	{
		List<BalancedTernaryDigit> value = new List<BalancedTernaryDigit>();
		int sign = Math.Sign(l);
		l = Math.Abs(l);
		
		while (l != 0)
		{
			byte rem = (byte)(l % 3);
			switch (rem)
			{
				case 0:
				case 1:
					value.Add((BalancedTernaryDigit)rem);
					l /= 3;
					break;
				case 2:
					value.Add(BalancedTernaryDigit.MINUS);
					l = (l + 1) / 3;
					break;
			}
		}

		this.value = value.ToArray();
		if (sign < 0)
		{
			this.Invert();
		}
	}

	// copy constructor
	public BalancedTernary(BalancedTernary origin)
	{
		this.value = new BalancedTernaryDigit[origin.value.Length];
		Array.Copy(origin.value, this.value, origin.value.Length);
	}

	// only for internal use
	private BalancedTernary(BalancedTernaryDigit[] value)
	{
		int end = value.Length - 1;
		while (value[end] == BalancedTernaryDigit.ZERO)
			--end;
		this.value = new BalancedTernaryDigit[end + 1];
		Array.Copy(value, this.value, end + 1);
	}

	// invert the values
	private void Invert()
	{
		for (int i=0; i < this.value.Length; ++i)
		{
			this.value[i] = (BalancedTernaryDigit)(-(int)this.value[i]);
		}
	}

	// convert to string
	override public String ToString()
	{
		StringBuilder result = new StringBuilder();
		for (int i = this.value.Length - 1; i >= 0; --i)
		{
			switch (this.value[i])
			{
				case BalancedTernaryDigit.MINUS:
					result.Append('-');
					break;
				case BalancedTernaryDigit.ZERO:
					result.Append('0');
					break;
				case BalancedTernaryDigit.PLUS:
					result.Append('+');
					break;
			}
		}
		return result.ToString();
	}

	// convert to long
	public long ToLong()
	{
		long result = 0;
		int digit;
		for (int i = 0; i < this.value.Length; ++i)
		{
			result += (long)this.value[i] * (long)Math.Pow(3.0, (double)i);
		}
		return result;
	}

	// unary minus
	public static BalancedTernary operator -(BalancedTernary origin)
	{
		BalancedTernary result = new BalancedTernary(origin);
		result.Invert();
		return result;
	}

	// addition of digits
	private static BalancedTernaryDigit carry = BalancedTernaryDigit.ZERO;
	private static BalancedTernaryDigit Add(BalancedTernaryDigit a, BalancedTernaryDigit b)
	{
		if (a != b)
		{
			carry = BalancedTernaryDigit.ZERO;
			return (BalancedTernaryDigit)((int)a + (int)b);
		}
		else
		{
			carry = a;
			return (BalancedTernaryDigit)(-(int)b);
		}
	}

	// addition of balanced ternary numbers
	public static BalancedTernary operator +(BalancedTernary a, BalancedTernary b)
	{
		int maxLength = Math.Max(a.value.Length, b.value.Length);
		BalancedTernaryDigit[] resultValue = new BalancedTernaryDigit[maxLength + 1];
		for (int i=0; i < maxLength; ++i)
		{
			if (i < a.value.Length)
			{
				resultValue[i] = Add(resultValue[i], a.value[i]);
				resultValue[i+1] = carry;
			}
			else
			{
				carry = BalancedTernaryDigit.ZERO;
			}
			
			if (i < b.value.Length)
			{
				resultValue[i] = Add(resultValue[i], b.value[i]);
				resultValue[i+1] = Add(resultValue[i+1], carry);
			}
		}
		return new BalancedTernary(resultValue);
	}

	// subtraction of balanced ternary numbers
	public static BalancedTernary operator -(BalancedTernary a, BalancedTernary b)
	{
		return a + (-b);
	}

	// multiplication of balanced ternary numbers
	public static BalancedTernary operator *(BalancedTernary a, BalancedTernary b)
	{
		BalancedTernaryDigit[] longValue = a.value;
		BalancedTernaryDigit[] shortValue = b.value;
		BalancedTernary result = new BalancedTernary();
		if (a.value.Length < b.value.Length)
		{
			longValue = b.value;
			shortValue = a.value;
		}

		for (int i = 0; i < shortValue.Length; ++i)
		{
			if (shortValue[i] != BalancedTernaryDigit.ZERO)
			{
				BalancedTernaryDigit[] temp = new BalancedTernaryDigit[i + longValue.Length];
				for (int j = 0; j < longValue.Length; ++j)
				{
					temp[i+j] = (BalancedTernaryDigit)((int)shortValue[i] * (int)longValue[j]);
				}
				result = result + new BalancedTernary(temp);
			}
		}
		return result;
	}
}

output:

a: +-0++0+ = 523
b: -++-0-- = -436
c: +-++- = 65
a * (b - c): ----0+--0++0 = -262023

C++

#include <iostream>
#include <string>
#include <climits>
using namespace std;

class BalancedTernary {
protected:
	// Store the value as a reversed string of +, 0 and - characters
	string value;

	// Helper function to change a balanced ternary character to an integer
	int charToInt(char c) const {
		if (c == '0')
			return 0;
		return 44 - c;
	}

	// Helper function to negate a string of ternary characters
	string negate(string s) const {
		for (int i = 0; i < s.length(); ++i) {
			if (s[i] == '+')
				s[i] = '-';
			else if (s[i] == '-')
				s[i] = '+';
		}
		return s;
	}

public:
	// Default constructor
	BalancedTernary() {
		value = "0";
	}

	// Construct from a string
	BalancedTernary(string s) {
		value = string(s.rbegin(), s.rend());
	}

	// Construct from an integer
	BalancedTernary(long long n) {
		if (n == 0) {
			value = "0";
			return;
		}

		bool neg = n < 0;
		if (neg) 
			n = -n;

		value = "";
		while (n != 0) {
			int r = n % 3;
			if (r == 0)
				value += "0";
			else if (r == 1)
				value += "+";
			else {
				value += "-";
				++n;
			}

			n /= 3;
		}

		if (neg)
			value = negate(value);
	}

	// Copy constructor
	BalancedTernary(const BalancedTernary &n) {
		value = n.value;
	}

	// Addition operators
	BalancedTernary operator+(BalancedTernary n) const {
		n += *this;
		return n;
	}

	BalancedTernary& operator+=(const BalancedTernary &n) {
		static char *add = "0+-0+-0";
		static char *carry = "--000++";

		int lastNonZero = 0;
		char c = '0';
		for (int i = 0; i < value.length() || i < n.value.length(); ++i) {
			char a = i < value.length() ? value[i] : '0';
			char b = i < n.value.length() ? n.value[i] : '0';

			int sum = charToInt(a) + charToInt(b) + charToInt(c) + 3;
			c = carry[sum];

			if (i < value.length())
				value[i] = add[sum];
			else
				value += add[sum];

			if (add[sum] != '0')
				lastNonZero = i;
		}

		if (c != '0')
			value += c;
		else
			value = value.substr(0, lastNonZero + 1); // Chop off leading zeroes

		return *this;
	}

	// Negation operator
	BalancedTernary operator-() const {
		BalancedTernary result;
		result.value = negate(value);
		return result;
	}

	// Subtraction operators
	BalancedTernary operator-(const BalancedTernary &n) const {
		return operator+(-n);
	}

	BalancedTernary& operator-=(const BalancedTernary &n) {
		return operator+=(-n);
	}

	// Multiplication operators
	BalancedTernary operator*(BalancedTernary n) const {
		n *= *this;
		return n;
	}

	BalancedTernary& operator*=(const BalancedTernary &n) {
		BalancedTernary pos = *this;
		BalancedTernary neg = -pos; // Storing an extra copy to avoid negating repeatedly
		value = "0";

		for (int i = 0; i < n.value.length(); ++i) {
			if (n.value[i] == '+')
				operator+=(pos);
			else if (n.value[i] == '-')
				operator+=(neg);
			pos.value = '0' + pos.value;
			neg.value = '0' + neg.value;
		}

		return *this;
	}

	// Stream output operator
	friend ostream& operator<<(ostream &out, const BalancedTernary &n) {
		out << n.toString();
		return out;
	}

	// Convert to string
	string toString() const {
		return string(value.rbegin(), value.rend());
	}

	// Convert to integer
	long long toInt() const {
		long long result = 0;
		for (long long i = 0, pow = 1; i < value.length(); ++i, pow *= 3)
			result += pow * charToInt(value[i]);
		return result;
	}

	// Convert to integer if possible
	bool tryInt(long long &out) const {
		long long result = 0;
		bool ok = true;

		for (long long i = 0, pow = 1; i < value.length() && ok; ++i, pow *= 3) {
			if (value[i] == '+') {
				ok &= LLONG_MAX - pow >= result; // Clear ok if the result overflows
				result += pow;
			} else if (value[i] == '-') {
				ok &= LLONG_MIN + pow <= result; // Clear ok if the result overflows
				result -= pow;
			}
		}

		if (ok)
			out = result;
		return ok;
	}
};

int main() {
	BalancedTernary a("+-0++0+");
	BalancedTernary b(-436);
	BalancedTernary c("+-++-");

	cout << "a = " << a << " = " << a.toInt() << endl;
	cout << "b = " << b << " = " << b.toInt() << endl;
	cout << "c = " << c << " = " << c.toInt() << endl;

	BalancedTernary d = a * (b - c);

	cout << "a * (b - c) = " << d << " = " << d.toInt() << endl;

	BalancedTernary e("+++++++++++++++++++++++++++++++++++++++++");

	long long n;
	if (e.tryInt(n))
		cout << "e = " << e << " = " << n << endl;
	else
		cout << "e = " << e << " is too big to fit in a long long" << endl;

	return 0;
}

Output

a = +-0++0+ = 523
b = -++-0-- = -436
c = +-++- = 65
a * (b - c) = ----0+--0++0 = -262023
e = +++++++++++++++++++++++++++++++++++++++++ is too big to fit in a long long

Common Lisp

;;; balanced ternary
;;; represented as a list of 0, 1 or -1s, with least significant digit first
 
;;; convert ternary to integer
(defun bt-integer (b)
  (reduce (lambda (x y) (+ x (* 3 y))) b :from-end t :initial-value 0))
 
;;; convert integer to ternary
(defun integer-bt (n)
  (if (zerop n) nil
    (case (mod n 3)
      (0 (cons  0 (integer-bt (/ n 3))))
      (1 (cons  1 (integer-bt (floor n 3))))
      (2 (cons -1 (integer-bt (floor (1+ n) 3)))))))
 
;;; convert string to ternary
(defun string-bt (s)
  (loop with o = nil for c across s do
	  (setf o (cons (case c (#\+ 1) (#\- -1) (#\0 0)) o))
	  finally (return o)))
 
;;; convert ternary to string
(defun bt-string (bt)
  (if (not bt) "0"
    (let* ((l (length bt))
	   (s (make-array l :element-type 'character)))
      (mapc (lambda (b)
	      (setf (aref s (decf l))
		    (case b (-1 #\-) (0 #\0) (1 #\+))))
	    bt)
      s)))
 
;;; arithmetics
(defun bt-neg (a) (map 'list #'- a))
(defun bt-sub (a b) (bt-add a (bt-neg b)))
 
(let ((tbl #((0 -1) (1 -1) (-1 0) (0 0) (1 0) (-1 1) (0 1))))
  (defun bt-add-digits (a b c)
    (values-list (aref tbl (+ 3 a b c)))))
 
(defun bt-add (a b &optional (c 0))
  (if (not (and a b))
    (if (zerop c) (or a b)
      (bt-add (list c) (or a b)))
    (multiple-value-bind (d c)
      (bt-add-digits (if a (car a) 0) (if b (car b) 0) c)
      (let ((res (bt-add (cdr a) (cdr b) c)))
	;; trim leading zeros
	(if (or res (not (zerop d)))
	  (cons d res))))))
 
(defun bt-mul (a b)
  (if (not (and a b))
    nil
    (bt-add (case (car a)
	        (-1 (bt-neg b))
		( 0 nil)
		( 1 b))
	    (cons 0 (bt-mul (cdr a) b)))))
 
;;; division with quotient/remainder, for completeness
(defun bt-truncate (a b)
  (let ((n (- (length a) (length b)))
	(d (car (last b))))
    (if (minusp n)
      (values nil a)
      (labels ((recur (a b x)
	 (multiple-value-bind (quo rem)
	   (if (plusp x) (recur a (cons 0 b) (1- x))
	     (values nil a))
 
	   (loop with g = (car (last rem))
		 with quo = (cons 0 quo)
		 while (= (length rem) (length b)) do
		 (cond ((= g d) (setf rem (bt-sub rem b)
				      quo (bt-add '(1) quo)))
		       ((= g (- d)) (setf rem (bt-add rem b)
					  quo (bt-add '(-1) quo))))
		 (setf x (car (last rem)))
		 finally (return (values quo rem))))))
 
	(recur a b n)))))
 
;;; test case
(let* ((a (string-bt "+-0++0+"))
       (b (integer-bt -436))
       (c (string-bt "+-++-"))
       (d (bt-mul a (bt-sub b c))))
  (format t "a~5d~8t~a~%b~5d~8t~a~%c~5d~8t~a~%a × (b − c) = ~d ~a~%"
	  (bt-integer a) (bt-string a)
	  (bt-integer b) (bt-string b)
	  (bt-integer c) (bt-string c)
	  (bt-integer d) (bt-string d)))

output

a  523  +-0++0+
b -436  -++-0--
c   65  +-++-
a × (b − c) = -262023 ----0+--0++0

D

Translation of: Python
import std.stdio, std.bigint, std.range, std.algorithm;

struct BalancedTernary {
    // Represented as a list of 0, 1 or -1s,
    // with least significant digit first.
    enum Dig : byte { N=-1, Z=0, P=+1 } // Digit.
    const Dig[] digits;

    // This could also be a BalancedTernary template argument.
    static immutable string dig2str = "-0+";

    immutable static Dig[dchar] str2dig; // = ['+': Dig.P, ...];
    nothrow static this() {
        str2dig = ['+': Dig.P, '-':  Dig.N, '0': Dig.Z];
    }

    immutable pure nothrow static Dig[2][] table =
        [[Dig.Z, Dig.N], [Dig.P, Dig.N], [Dig.N, Dig.Z],
         [Dig.Z, Dig.Z], [Dig.P, Dig.Z], [Dig.N, Dig.P],
         [Dig.Z, Dig.P]];

    this(in string inp) const pure {
        this.digits = inp.retro.map!(c => str2dig[c]).array;
    }

    this(in long inp) const pure nothrow {
        this.digits = _bint2ternary(inp.BigInt);
    }

    this(in BigInt inp) const pure nothrow {
        this.digits = _bint2ternary(inp);
    }

    this(in BalancedTernary inp) const pure nothrow {
        // No need to dup, they are virtually immutable.
        this.digits = inp.digits;
    }

    private this(in Dig[] inp) pure nothrow {
        this.digits = inp;
    }

    static Dig[] _bint2ternary(in BigInt n) pure nothrow {
        static py_div(T1, T2)(in T1 a, in T2 b) pure nothrow {
            if (a < 0) {
                return (b < 0) ?
                       -a / -b :
                       -(-a / b) - (-a % b != 0 ? 1 : 0);
            } else {
                return (b < 0) ?
                       -(a / -b) - (a % -b != 0 ? 1 : 0) :
                       a / b;
            }
        }

        if (n == 0) return [];
        // This final switch in D v.2.064 is fake, not enforced.
        final switch (((n % 3) + 3) % 3) { // (n % 3) is the remainder.
            case 0: return Dig.Z ~ _bint2ternary(py_div(n, 3));
            case 1: return Dig.P ~ _bint2ternary(py_div(n, 3));
            case 2: return Dig.N ~ _bint2ternary(py_div(n + 1, 3));
        }
    }

    @property BigInt toBint() const pure nothrow {
        return reduce!((y, x) => x + 3 * y)(0.BigInt, digits.retro);
    }

    string toString() const pure nothrow {
        if (digits.empty) return "0";
        return digits.retro.map!(d => dig2str[d + 1]).array;
    }

    static const(Dig)[] neg_(in Dig[] digs) pure nothrow {
        return digs.map!(a => -a).array;
    }

    BalancedTernary opUnary(string op:"-")() const pure nothrow {
        return BalancedTernary(neg_(this.digits));
    }

    static const(Dig)[] add_(in Dig[] a, in Dig[] b, in Dig c=Dig.Z)
    pure nothrow {
        const a_or_b = a.length ? a : b;
        if (a.empty || b.empty) {
            if (c == Dig.Z)
                return a_or_b;
            else
                return BalancedTernary.add_([c], a_or_b);
        } else {
            // (const d, c) = table[...];
            const dc = table[3 + (a.length ? a[0] : 0) +
                             (b.length ? b[0] : 0) + c];
            const res = add_(a[1 .. $], b[1 .. $], dc[1]);
            // Trim leading zeros.
            if (res.length || dc[0] != Dig.Z)
                return [dc[0]] ~ res;
            else
                return res;
        }
    }

    BalancedTernary opBinary(string op:"+")(in BalancedTernary b)
    const pure nothrow {
        return BalancedTernary(add_(this.digits, b.digits));
    }

    BalancedTernary opBinary(string op:"-")(in BalancedTernary b)
    const pure nothrow {
        return this + (-b);
    }

    static const(Dig)[] mul_(in Dig[] a, in Dig[] b) pure nothrow {
        if (a.empty || b.empty) {
            return [];
        } else {
            const y = Dig.Z ~ mul_(a[1 .. $], b);
            final switch (a[0]) {
                case Dig.N: return add_(neg_(b), y);
                case Dig.Z: return add_([], y);
                case Dig.P: return add_(b, y);
            }
        }
    }

    BalancedTernary opBinary(string op:"*")(in BalancedTernary b)
    const pure nothrow {
        return BalancedTernary(mul_(this.digits, b.digits));
    }
}

void main() {
    immutable a = BalancedTernary("+-0++0+");
    writeln("a: ", a.toBint, ' ', a);

    immutable b = BalancedTernary(-436);
    writeln("b: ", b.toBint, ' ', b);

    immutable c = BalancedTernary("+-++-");
    writeln("c: ", c.toBint, ' ', c);

    const /*immutable*/ r = a * (b - c);
    writeln("a * (b - c): ", r.toBint, ' ', r);
}
Output:
a: 523 +-0++0+
b: -436 -++-0--
c: 65 +-++-
a * (b - c): -262023 ----0+--0++0

Elixir

Translation of: Erlang
defmodule Ternary do
  def to_string(t), do: ( for x <- t, do: to_char(x) ) |> List.to_string
  
  def from_string(s), do: ( for x <- to_char_list(s), do: from_char(x) )
  
  defp to_char(-1), do: ?-
  defp to_char(0), do: ?0
  defp to_char(1), do: ?+
  
  defp from_char(?-), do: -1
  defp from_char(?0), do: 0
  defp from_char(?+), do: 1
  
  def to_ternary(n) when n > 0, do: to_ternary(n,[])
  def to_ternary(n), do: neg(to_ternary(-n))
  
  defp to_ternary(0,acc), do: acc
  defp to_ternary(n,acc) when rem(n, 3) == 0, do: to_ternary(div(n, 3), [0|acc])
  defp to_ternary(n,acc) when rem(n, 3) == 1, do: to_ternary(div(n, 3), [1|acc])
  defp to_ternary(n,acc), do: to_ternary(div((n+1), 3), [-1|acc])
  
  def from_ternary(t), do: from_ternary(t,0)
  
  defp from_ternary([],acc), do: acc
  defp from_ternary([h|t],acc), do: from_ternary(t, acc*3 + h)
  
  def mul(a,b), do: mul(b,a,[])
  
  defp mul(_,[],acc), do: acc
  defp mul(b,[a|as],acc) do
    bp = case a do
           -1 -> neg(b)
            0 -> [0]
            1 -> b
         end
    a = add(bp, acc ++ [0])
    mul(b,as,a)
  end
  
  defp neg(t), do: ( for h <- t, do: -h )
  
  def sub(a,b), do: add(a,neg(b))
  
  def add(a,b) when length(a) < length(b),
    do: add(List.duplicate(0, length(b)-length(a)) ++ a, b)
  def add(a,b) when length(a) > length(b), do: add(b,a)
  def add(a,b), do: add(Enum.reverse(a), Enum.reverse(b), 0, [])
  
  defp add([],[],0,acc), do: acc
  defp add([],[],c,acc), do: [c|acc]
  defp add([a|as],[b|bs],c,acc) do
    [c1,d] = add_util(a+b+c)
    add(as,bs,c1,[d|acc])
  end
  
  defp add_util(-3), do: [-1,0]
  defp add_util(-2), do: [-1,1]
  defp add_util(-1), do: [0,-1]
  defp add_util(3), do: [1,0]
  defp add_util(2), do: [1,-1]
  defp add_util(1), do: [0,1]
  defp add_util(0), do: [0,0]
end

as = "+-0++0+"; at = Ternary.from_string(as); a = Ternary.from_ternary(at)
b = -436; bt = Ternary.to_ternary(b); bs = Ternary.to_string(bt)
cs = "+-++-"; ct = Ternary.from_string(cs); c = Ternary.from_ternary(ct)
rt = Ternary.mul(at,Ternary.sub(bt,ct))
r = Ternary.from_ternary(rt)
rs = Ternary.to_string(rt)
IO.puts "a = #{as} -> #{a}"
IO.puts "b = #{bs} -> #{b}"
IO.puts "c = #{cs} -> #{c}"
IO.puts "a x (b - c) = #{rs} -> #{r}"
Output:
a = +-0++0+ -> 523
b = -++-0-- -> -436
c = +-++- -> 65
a x (b - c) = 0----0+--0++0 -> -262023

Erlang

-module(ternary).
-compile(export_all).

test() ->
    AS = "+-0++0+", AT = from_string(AS), A = from_ternary(AT),
    B = -436, BT = to_ternary(B), BS = to_string(BT),
    CS = "+-++-", CT = from_string(CS), C = from_ternary(CT),
    RT = mul(AT,sub(BT,CT)),
    R = from_ternary(RT),
    RS = to_string(RT),
    io:fwrite("A = ~s -> ~b~n",[AS, A]),
    io:fwrite("B = ~s -> ~b~n",[BS, B]),
    io:fwrite("C = ~s -> ~b~n",[CS, C]),
    io:fwrite("A x (B - C) = ~s -> ~b~n", [RS, R]).

to_string(T) -> [to_char(X) || X <- T].

from_string(S) -> [from_char(X) || X <- S].

to_char(-1) -> $-;
to_char(0) -> $0;
to_char(1) -> $+.

from_char($-) -> -1;
from_char($0) -> 0;
from_char($+) -> 1.

to_ternary(N) when N > 0 ->
    to_ternary(N,[]);
to_ternary(N) ->
    neg(to_ternary(-N)).

to_ternary(0,Acc) ->
    Acc;
to_ternary(N,Acc) when N rem 3 == 0 ->
    to_ternary(N div 3, [0|Acc]);
to_ternary(N,Acc) when N rem 3 == 1 ->
    to_ternary(N div 3, [1|Acc]);
to_ternary(N,Acc) ->
    to_ternary((N+1) div 3, [-1|Acc]).

from_ternary(T) -> from_ternary(T,0).

from_ternary([],Acc) ->
    Acc;
from_ternary([H|T],Acc) ->
    from_ternary(T,Acc*3 + H).

mul(A,B) -> mul(B,A,[]).

mul(_,[],Acc) ->
    Acc;
mul(B,[A|As],Acc) ->
    BP = case A of
             -1 -> neg(B);
             0 ->  [0];
             1 ->  B
         end,
    A1 = Acc++[0],
    A2=add(BP,A1),
    mul(B,As,A2).


neg(T) -> [ -H || H <- T].

sub(A,B) -> add(A,neg(B)).

add(A,B) when length(A) < length(B) ->
    add(lists:duplicate(length(B)-length(A),0)++A,B);
add(A,B) when length(A) > length(B) ->
   add(B,A);
add(A,B) ->
    add(lists:reverse(A),lists:reverse(B),0,[]).

add([],[],0,Acc) ->
    Acc;
add([],[],C,Acc) ->
    [C|Acc];
add([A|As],[B|Bs],C,Acc) ->
    [C1,D] = add_util(A+B+C),
    add(As,Bs,C1,[D|Acc]).

add_util(-3) -> [-1,0];
add_util(-2) -> [-1,1];
add_util(-1) -> [0,-1];
add_util(3) -> [1,0];
add_util(2) -> [1,-1];
add_util(1) -> [0,1];
add_util(0) -> [0,0].

Output

234> ternary:test().
A = +-0++0+ -> 523
B = -++-0-- -> -436
C = +-++- -> 65
A x (B - C) = 0----0+--0++0 -> -262023
ok


Factor

Translation of: Ruby
Translation of: Common Lisp
Works with: Factor version 0.98
USING: kernel combinators locals formatting lint literals
       sequences assocs strings arrays
       math math.functions math.order ;
IN: rosetta-code.bt
CONSTANT: addlookup {
  { 0 CHAR: 0 }
  { 1 CHAR: + }
  { -1 CHAR: - }
}

<PRIVATE

: bt-add-digits ( a b c -- d e ) 
  + + 3 +
  { { 0 -1 } { 1 -1 } { -1 0 } { 0 0 } { 1 0 } { -1 1 } { 0 1 } } 
  nth first2
;

PRIVATE>

! Conversion
: bt>integer ( seq -- x ) 0 [ swap 3 * + ] reduce ;
: integer>bt ( x -- x ) [ dup zero? not ] [
    dup 3 rem {
      { 0 [ 3 / 0 ] }
      { 1 [ 3 / round 1 ] }
      { 2 [ 1 + 3 / round -1 ] }
    } case
  ] produce nip reverse
;
: bt>string ( seq -- str ) [ addlookup at ] map >string ;
: string>bt ( str -- seq ) [ addlookup value-at ] { } map-as ;

! Arithmetic
: bt-neg ( a -- -a ) [ neg ] map ;
:: bt-add ( u v -- w ) 
  u v max-length :> maxl
  u v [ maxl 0 pad-head reverse ] bi@ :> ( u v )
  0 :> carry!
  u v { } [ carry bt-add-digits carry! prefix ] 2reduce
  carry prefix [ zero? ] trim-head
;
: bt-sub ( u v -- w ) bt-neg bt-add ;
:: bt-mul ( u v -- w ) u { } [
    {
      { -1 [ v bt-neg ] }
      { 0  [ { } ] }
      { 1  [ v ] }
    } case bt-add 0 suffix
  ] reduce
  1 head*
;

[let
  "+-0++0+" string>bt :> a
  -436 integer>bt     :> b
  "+-++-" string>bt   :> c
  b c bt-sub a bt-mul :> d
  "a" a bt>integer a bt>string "%s: %d, %s\n" printf
  "b" b bt>integer b bt>string "%s: %d, %s\n" printf
  "c" c bt>integer c bt>string "%s: %d, %s\n" printf
  "a*(b-c)" d bt>integer d bt>string "%s: %d, %s\n" printf
]
a: 523, +-0++0+
b: -436, -++-0--
c: 65, +-++-
a*(b-c): -262023, ----0+--0++0

FreeBASIC

Translation of: Liberty BASIC
#define MAX(a, b) iif((a) > (b), (a), (b))
Dim Shared As Integer pow, signo
Dim Shared As String t
t = "-0+"

Function deci(cadena As String) As Integer
    Dim As Integer i, deci1
    Dim As String c1S
    pow = 1
    For i = Len(cadena) To 1 Step -1
        c1S = Mid(cadena,i,1)
        signo = Instr(t, c1S)-2
        deci1 = deci1 + pow * signo
        pow *= 3
    Next i
    Return deci1
End Function

Function ternary(n As Integer) As String
    Dim As String ternario
    Dim As Integer i, k
    While Abs(n) > 3^k/2
        k += 1
    Wend
    k -= 1
    
    pow = 3^k
    For i = k To 0 Step -1
        signo = (n>0) - (n<0)
        signo *= (Abs(n) > pow/2)
        ternario += Mid(t,signo+2,1)
        n -= signo*pow
        pow /= 3
    Next
    If ternario = "" Then ternario = "0"
    Return ternario
End Function

Function negate(cadena As String) As String
    Dim As String negar = ""
    For i As Integer = 1 To Len(cadena)
        negar += Mid(t, 4-Instr(t, Mid(cadena,i,1)), 1)
    Next i
    Return negar
End Function

Function pad(cadenaA As String, n As Integer) As String  
    Dim As String relleno = cadenaA
    While Len(relleno) < n
        relleno = "0" + relleno
    Wend
    Return relleno
End Function

Function addTernary(cadenaA As String, cadenaB As String) As String
    Dim As Integer l = max(Len(cadenaA), Len(cadenaB))
    Dim As Integer i, x, y, z
    cadenaA = pad(cadenaA, l)
    cadenaB = pad(cadenaB, l)
    Dim As String resultado = ""
    Dim As Byte llevar = 0
    For i = l To 1 Step -1
        x = Instr(t, Mid(cadenaA,i,1))-2
        y = Instr(t, Mid(cadenaB,i,1))-2
        z = x + y + llevar
        
        If Abs(z) < 2 Then
            llevar = 0
        Elseif z > 0 Then
            llevar = 1: z -= 3
        Elseif z < 0 Then
            llevar = -1: z += 3
        End If
        
        resultado = Mid(t,z+2,1) + resultado
    Next i
    If llevar <> 0 Then resultado = Mid(t,llevar+2,1) + resultado

    i = 0
    While Mid(resultado,i+1,1) = "0"
        i += 1
    Wend
    resultado = Mid(resultado,i+1)
    If resultado = "" Then resultado = "0"
    Return resultado
End Function

Function subTernary(cadenaA As String, cadenaB As String) As String
    Return addTernary(cadenaA, negate(cadenaB))
End Function

Function multTernary(cadenaA As String, cadenaB As String) As String
    Dim As String resultado = ""
    Dim As String tS = "", cambio = ""
    For i As Integer = Len(cadenaA) To 1 Step -1
        Select Case Mid(cadenaA,i,1)
        Case "+": tS = cadenaB
        Case "0": tS = "0"
        Case "-": tS = negate(cadenaB)
        End Select
        
        resultado = addTernary(resultado, tS + cambio)
        cambio += "0"
    Next i
    Return resultado
End Function


Dim As String cadenaA = "+-0++0+"
Dim As Integer a = deci(cadenaA)
Print "      a:", a, cadenaA 

Dim As Integer b = -436
Dim As String cadenaB = ternary(b)
Print "      b:", b, cadenaB

Dim As String cadenaC = "+-++-"
Dim As Integer c = deci(cadenaC)
Print "      c:", c, cadenaC

'calcular en ternario
Dim As String resS = multTernary(cadenaA, subTernary(cadenaB, cadenaC))
Print "a*(b-c):", deci(resS), resS

Print !"\nComprobamos:"
Print "a*(b-c): ", a * (b - c)
Sleep
Output:
      a:       523          +-0++0+
      b:      -436          -++-0--
      c:       65           +-++-
a*(b-c):      -262023       ----0+--0++0
Comprobamos:
a*(b-c):      -262023

Glagol

ОТДЕЛ Сетунь+; 
ИСПОЛЬЗУЕТ 
  Параметр ИЗ "...\Отделы\Обмен\", 
  Текст ИЗ "...\Отделы\Числа\", 
  Вывод ИЗ "...\Отделы\Обмен\"; 

ПЕР 
  зч: РЯД 10 ИЗ ЗНАК; 
  счпоз: ЦЕЛ; 
  число: ЦЕЛ; 
  память: ДОСТУП К НАБОР
    ячейки: РЯД 20 ИЗ ЦЕЛ;
    размер: УЗКЦЕЛ;
    отрицательное: КЛЮЧ
  КОН; 

ЗАДАЧА СоздатьПамять; 
УКАЗ 
  СОЗДАТЬ(память); 
  память.размер := 0; 
  память.отрицательное := ОТКЛ 
КОН СоздатьПамять; 

ЗАДАЧА ДобавитьВПамять(что: ЦЕЛ); 
УКАЗ 
  память.ячейки[память.размер] := что; 
  УВЕЛИЧИТЬ(память.размер) 
КОН ДобавитьВПамять; 

ЗАДАЧА ОбратитьПамять; 
ПЕР 
  зчсл: ЦЕЛ; 
  сч: ЦЕЛ; 
УКАЗ 
  ОТ сч := 0 ДО память.размер ДЕЛИТЬ 2 - 1 ВЫП 
    зчсл := память.ячейки[сч]; 
    память.ячейки[сч] := память.ячейки[память.размер-сч-1]; 
    память.ячейки[память.размер-сч-1] := зчсл 
  КОН 
КОН ОбратитьПамять; 

ЗАДАЧА ВывестиПамять; 
ПЕР 
  сч: ЦЕЛ; 
УКАЗ  
  ОТ сч := 0 ДО память.размер-1 ВЫП 
    ЕСЛИ память.ячейки[сч] < 0 ТО
      Вывод.Цепь("-")
    АЕСЛИ память.ячейки[сч] > 0 ТО
      Вывод.Цепь("+")
    ИНАЧЕ Вывод.Цепь("0") КОН 
  КОН 
КОН ВывестиПамять; 

ЗАДАЧА УдалитьПамять; 
УКАЗ 
  память := ПУСТО 
КОН УдалитьПамять; 

ЗАДАЧА Перевести(число: ЦЕЛ); 
ПЕР 
  о: ЦЕЛ; 
  з: КЛЮЧ; 
  ЗАДАЧА ВПамять(что: ЦЕЛ); 
  УКАЗ 
    ЕСЛИ память.отрицательное ТО 
      ЕСЛИ что < 0 ТО ДобавитьВПамять(1)
      АЕСЛИ что > 0 ТО ДобавитьВПамять(-1)
      ИНАЧЕ ДобавитьВПамять(0) КОН 
    ИНАЧЕ 
      ДобавитьВПамять(что) 
    КОН 
  КОН ВПамять; 
УКАЗ 
  ЕСЛИ число < 0 ТО память.отрицательное := ВКЛ КОН; 
  число := МОДУЛЬ(число); 
  з := ОТКЛ; 
  ПОКА число > 0 ВЫП 
    о := число ОСТАТОК 3; 
    число := число ДЕЛИТЬ 3; 
    ЕСЛИ з ТО 
      ЕСЛИ о = 2 ТО ВПамять(0) АЕСЛИ о = 1 ТО ВПамять(-1) ИНАЧЕ ВПамять(1); з := ОТКЛ КОН 
    ИНАЧЕ 
      ЕСЛИ о = 2 ТО ВПамять(-1); з := ВКЛ ИНАЧЕ ВПамять(о) КОН 
    КОН 
  КОН; 
  ЕСЛИ з ТО ВПамять(1) КОН; 
  ОбратитьПамять; 
  ВывестиПамять(ВКЛ); 
КОН Перевести; 

ЗАДАЧА ВЧисло(): ЦЕЛ; 
ПЕР 
  сч, мн: ЦЕЛ; 
  результат: ЦЕЛ; 
УКАЗ 
  результат := 0; 
  мн := 1; 
  ОТ сч := 0 ДО память.размер-1 ВЫП 
    УВЕЛИЧИТЬ(результат, память.ячейки[память.размер-сч-1]*мн); 
    мн := мн * 3 
  КОН; 
  ВОЗВРАТ результат 
КОН ВЧисло; 

УКАЗ 
  Параметр.Текст(1, зч); счпоз := 0; 
  число := Текст.ВЦел(зч, счпоз); 
  СоздатьПамять; 
  Перевести(число); 
  Вывод.ЧЦел(" = %d.", ВЧисло(), 0, 0, 0); 
  УдалитьПамять 

КОН Сетунь.

A crude English/Pidgin Algol translation of the above Category:Glagol code.

PROGRAM Setun+;
USES
  Parameter IS "...\Departments\Exchange\"
  Text IS "...\Departments\Numbers\"
  Output IS "...\Departments\Exchange\";

VAR
  AF: RANGE 10 IS SIGN;
  mfpos: INT;
  number: INT;
  memory ACCESS TO STRUCT
    cell: RANGE 20 IS INT;
    size: UZKEL;
    negative: BOOL
  END;

PROC Create.Memory;
BEGIN
  CREATE(memory);
  memory.size := 0;
  memory.negative := FALSE
END Create.Memory;

PROC Add.Memory(that: INT)
BEGIN
  memory.cells[memory.size] := that;
  ZOOM(memory.size)
END Add.Memory;

PROC Invert.Memory;
VAR
  zchsl: INT;
  account: INT;
BEGIN
  FOR cq := 0 TO memory.size DIVIDE 2 - 1 DO
    zchsl := memory.cells[cq];
    memory.cells[cq] := memory.cells[memory.size-size-1];
    memory.cells[memory.size-MF-1] := zchsl
  END
END Invert.Memory;

PROC Withdraw.Memory;
VAR
  account: INT;
BEGIN 
  FOR cq := 0 TO memory.size-1 DO
    IF memory.cells[cq] < 0 THEN
      Output.Append("-")
    ANDIF memory.cells[cq] > 0 THEN
      Output.Append("+")
    ELSE Output.Append("0") END
  END
END Withdraw.Memory;

PROC Remove.Memory;
BEGIN
  memory := Empty
END Remove.Memory;

PROC Translate(number: INT)
VAR
  about: INT;
  s: BOOL;
  PROC B.Memory(that: INT)
  BEGIN
    IF memory.negative THEN
      IF that < 0 THEN Add.Memory(1)
      ANDIF that > 0 THEN Add.Memory(1)
      ELSE Add.Memory(0) END
    ELSE
      Add.Memory(that)
    END
  END B.Memory;
BEGIN
  IF number < 0 THEN memory.negative := TRUE END;
  number := UNIT(number)
  s := FALSE;
  WHILE number > 0 DO
    about := number BALANCE 3;
    number := number DIVIDE 3;
    IF s THEN
      IF about = 2 THEN B.Memory(0) ANDIF about = 1 THEN B.Memory(1) ELSE B.Memory(1) s := FALSE END
    ELSE
      IF about = 2 THEN B.Memory(-1) s := TRUE ELSE B.Memory(a) END
    END
  END;
  IF s THEN B.Memory(1) END;
  Invert.Memory;
  Withdraw.Memory(TRUE)
END Translate;

PROC InNumber(): INT;
VAR
  MF, MN: INT;
  result: INT;
BEGIN
  result := 0
  pl := 1;
  FOR cq := 0 TO memory.size-1 DO
    ZOOM(result, memory.Cells[memory.size-cq-1] * mn);
    pl := pl * 3
  END;
  RETURN result;
END InNumber;

BEGIN
  Parameter.Text(1, AF); mfpos := 0;
  number := Text.Whole(AF, mfpos);
  Create.Memory;
  Translate(number);
  Output.ChTarget(" = %d.", InNumber(), 0, 0, 0);
  Remove.Memory
END Setun.

Go

package main

import (
    "fmt"
    "strings"
)

// R1: representation is a slice of int8 digits of -1, 0, or 1.
// digit at index 0 is least significant.  zero value of type is
// representation of the number 0.
type bt []int8

// R2: string conversion:

// btString is a constructor.  valid input is a string of any length
// consisting of only '+', '-', and '0' characters.
// leading zeros are allowed but are trimmed and not represented.
// false return means input was invalid.
func btString(s string) (*bt, bool) {
    s = strings.TrimLeft(s, "0")
    b := make(bt, len(s))
    for i, last := 0, len(s)-1; i < len(s); i++ {
        switch s[i] {
        case '-':
            b[last-i] = -1
        case '0':
            b[last-i] = 0
        case '+':
            b[last-i] = 1
        default:
            return nil, false
        }
    }
    return &b, true
}

// String method converts the other direction, returning a string of
// '+', '-', and '0' characters representing the number.
func (b bt) String() string {
    if len(b) == 0 {
        return "0"
    }
    last := len(b) - 1
    r := make([]byte, len(b))
    for i, d := range b {
        r[last-i] = "-0+"[d+1]
    }
    return string(r)
}

// R3: integer conversion
// int chosen as "native integer"

// btInt is a constructor like btString.
func btInt(i int) *bt {
    if i == 0 {
        return new(bt)
    }
    var b bt
    var btDigit func(int)
    btDigit = func(digit int) {
        m := int8(i % 3)
        i /= 3
        switch m {
        case 2:
            m = -1
            i++
        case -2:
            m = 1
            i--
        }
        if i == 0 {
            b = make(bt, digit+1)
        } else {
            btDigit(digit + 1)
        }
        b[digit] = m
    }
    btDigit(0)
    return &b
}

// Int method converts the other way, returning the value as an int type.
// !ok means overflow occurred during conversion, not necessarily that the
// value is not representable as an int.  (Of course there are other ways
// of doing it but this was chosen as "reasonable.")
func (b bt) Int() (r int, ok bool) {
    pt := 1
    for _, d := range b {
        dp := int(d) * pt
        neg := r < 0
        r += dp
        if neg {
            if r > dp {
                return 0, false
            }
        } else {
            if r < dp {
                return 0, false
            }
        }
        pt *= 3
    }
    return r, true
}

// R4: negation, addition, and multiplication
    
func (z *bt) Neg(b *bt) *bt {
    if z != b {
        if cap(*z) < len(*b) {
            *z = make(bt, len(*b))
        } else {
            *z = (*z)[:len(*b)]
        } 
    }
    for i, d := range *b {
        (*z)[i] = -d
    }
    return z 
}

func (z *bt) Add(a, b *bt) *bt {
    if len(*a) < len(*b) {
        a, b = b, a
    }
    r := *z
    r = r[:cap(r)]
    var carry int8 
    for i, da := range *a {
        if i == len(r) {
            n := make(bt, len(*a)+4)
            copy(n, r)
            r = n
        }
        sum := da + carry
        if i < len(*b) {
            sum += (*b)[i]
        }
        carry = sum / 3
        sum %= 3
        switch {
        case sum > 1:
            sum -= 3
            carry++
        case sum < -1:
            sum += 3
            carry--
        } 
        r[i] = sum 
    }
    last := len(*a)
    if carry != 0 {
        if len(r) == last {
            n := make(bt, last+4)
            copy(n, r)
            r = n
        }
        r[last] = carry
        *z = r[:last+1]
        return z
    }
    for {
        if last == 0 {
            *z = nil
            break
        }
        last--
        if r[last] != 0 {
            *z = r[:last+1]
            break
        }
    }
    return z
}

func (z *bt) Mul(a, b *bt) *bt {
    if len(*a) < len(*b) {
        a, b = b, a
    }
    var na bt
    for _, d := range *b {
        if d == -1 {
            na.Neg(a)
            break
        }
    }
    r := make(bt, len(*a)+len(*b))
    for i := len(*b) - 1; i >= 0; i-- {
        switch (*b)[i] {
        case 1:
            p := r[i:]
            p.Add(&p, a)
        case -1:
            p := r[i:]
            p.Add(&p, &na)
        }
    }
    i := len(r)
    for i > 0 && r[i-1] == 0 {
        i--
    }
    *z = r[:i]
    return z
}

func main() {
    a, _ := btString("+-0++0+")
    b := btInt(-436)
    c, _ := btString("+-++-")
    show("a:", a) 
    show("b:", b)
    show("c:", c)
    show("a(b-c):", a.Mul(a, b.Add(b, c.Neg(c))))
}   

func show(label string, b *bt) {
    fmt.Printf("%7s %12v ", label, b)
    if i, ok := b.Int(); ok {
        fmt.Printf("%7d\n", i)
    } else {
        fmt.Println("int overflow")
    }
}
Output:
     a:      +-0++0+     523
     b:      -++-0--    -436
     c:        +-++-      65
a(b-c): ----0+--0++0 -262023

Groovy

Solution:

enum T {
    m('-', -1), z('0', 0), p('+', 1)

    final String symbol
    final int value

    private T(String symbol, int value) {
        this.symbol = symbol
        this.value = value
    }

    static T get(Object key) {
        switch (key) {
            case [m.value, m.symbol] : return m
            case [z.value, z.symbol] : return z
            case [p.value, p.symbol] : return p
            default:                   return null
        }
    }

    T negative() {
        T.get(-this.value)
    }

    String toString() { this.symbol }
}


class BalancedTernaryInteger {
    
    static final MINUS = new BalancedTernaryInteger(T.m)
    static final ZERO  = new BalancedTernaryInteger(T.z)
    static final PLUS  = new BalancedTernaryInteger(T.p)
    private static final LEADING_ZEROES = /^0+/
    
    final String value

    BalancedTernaryInteger(String bt) {
        assert bt && bt.toSet().every { T.get(it) }
        value = bt ==~ LEADING_ZEROES ? T.z : bt.replaceAll(LEADING_ZEROES, '');
    }

    BalancedTernaryInteger(BigInteger i) {
        this(i == 0 ? T.z.symbol : valueFromInt(i));
    }

    BalancedTernaryInteger(T...tArray) {
        this(tArray.sum{ it.symbol });
    }

    BalancedTernaryInteger(List<T> tList) {
        this(tList.sum{ it.symbol });
    }

    private static String valueFromInt(BigInteger i) {
        assert i != null
        if (i < 0) return negate(valueFromInt(-i))
        if (i == 0) return ''
        int bRem = (((i % 3) - 2) ?: -3) + 2
        valueFromInt((i - bRem).intdiv(3)) + T.get(bRem)
    }

    private static String negate(String bt) {
        bt.collect{ T.get(it) }.inject('') { str, t ->
            str + (-t)
        }
    }

    private static final Map INITIAL_SUM_PARTS = [carry:T.z, sum:[]]
    private static final prepValueLen = { int len, String s ->
        s.padLeft(len + 1, T.z.symbol).collect{ T.get(it) }
    }
    private static final partCarrySum = { partialSum, carry, trit ->
        [carry: carry, sum: [trit] + partialSum]
    }
    private static final partSum = { parts, trits ->
        def carrySum = partCarrySum.curry(parts.sum)
        switch ((trits + parts.carry).sort()) {
            case [[T.m, T.m, T.m]]:                  return carrySum(T.m, T.z) //-3
            case [[T.m, T.m, T.z]]:                  return carrySum(T.m, T.p) //-2
            case [[T.m, T.z, T.z], [T.m, T.m, T.p]]: return carrySum(T.z, T.m) //-1
            case [[T.z, T.z, T.z], [T.m, T.z, T.p]]: return carrySum(T.z, T.z) //+0
            case [[T.z, T.z, T.p], [T.m, T.p, T.p]]: return carrySum(T.z, T.p) //+1
            case [[T.z, T.p, T.p]]:                  return carrySum(T.p, T.m) //+2
            case [[T.p, T.p, T.p]]: default:         return carrySum(T.p, T.z) //+3
        }
    }

    BalancedTernaryInteger plus(BalancedTernaryInteger that) {
        assert that != null
        if (this == ZERO) return that
        if (that == ZERO) return this
        def prep = prepValueLen.curry([value.size(), that.value.size()].max())
        List values = [prep(value), prep(that.value)].transpose()
        new BalancedTernaryInteger(values[-1..(-values.size())].inject(INITIAL_SUM_PARTS, partSum).sum)
    }

    BalancedTernaryInteger negative() {
        !this ? this : new BalancedTernaryInteger(negate(value))
    }

    BalancedTernaryInteger minus(BalancedTernaryInteger that) {
        assert that != null
        this + -that
    }

    private static final INITIAL_PRODUCT_PARTS = [sum:ZERO, pad:'']
    private static final sigTritCount = { it.value.replaceAll(T.z.symbol,'').size() }

    private BalancedTernaryInteger paddedValue(String pad) {
        new BalancedTernaryInteger(value + pad)
    }

    private BalancedTernaryInteger partialProduct(T multiplier, String pad){
        switch (multiplier) {
            case T.z:          return ZERO
            case T.m:          return -paddedValue(pad)
            case T.p: default: return paddedValue(pad)
        }
    }

    BalancedTernaryInteger multiply(BalancedTernaryInteger that) {
        assert that != null
        if (that == ZERO)  return ZERO
        if (that == PLUS)  return this
        if (that == MINUS) return -this
        if (this.value.size() == 1 || sigTritCount(this) < sigTritCount(that)) {
            return that.multiply(this)
        }
        that.value.collect{ T.get(it) }[-1..(-value.size())].inject(INITIAL_PRODUCT_PARTS) { parts, multiplier ->
            [sum: parts.sum + partialProduct(multiplier, parts.pad), pad: parts.pad + T.z]
        }.sum
    }

    BigInteger asBigInteger() {
        value.collect{ T.get(it) }.inject(0) { i, trit -> i * 3 + trit.value }
    }

    def asType(Class c) {
        switch (c) {
            case Integer:              return asBigInteger() as Integer
            case Long:                 return asBigInteger() as Long
            case [BigInteger, Number]: return asBigInteger()
            case Boolean:              return this != ZERO
            case String:               return toString()
            default:                   return super.asType(c)
        }
    }

    boolean equals(Object that) {
        switch (that) {
            case BalancedTernaryInteger: return this.value == that?.value
            default:                     return super.equals(that)
        }
    }

    int hashCode() { this.value.hashCode() }

    String toString() { value }
}

Test:

BalancedTernaryInteger a = new BalancedTernaryInteger('+-0++0+')
BalancedTernaryInteger b = new BalancedTernaryInteger(-436)
BalancedTernaryInteger c = new BalancedTernaryInteger(T.p, T.m, T.p, T.p, T.m)
BalancedTernaryInteger bmc = new BalancedTernaryInteger(-436 - (c as Integer))
BalancedTernaryInteger atbmc = new BalancedTernaryInteger((a as Integer) * (-436 - (c as Integer)))

printf ("%9s = %12s %8d\n", 'a', "${a}", a as Number)
printf ("%9s = %12s %8d\n", 'b', "${b}", b as Number)
printf ("%9s = %12s %8d\n", 'c', "${c}", c as Number)
assert (b-c) == bmc
printf ("%9s = %12s %8d\n", 'b-c', "${b-c}", (b-c) as Number)
assert (a * (b-c)) == atbmc
printf ("%9s = %12s %8d\n", 'a * (b-c)', "${a * (b-c)}", (a * (b-c)) as Number)

println "\nDemonstrate failure:"
assert (a * (b-c)) == a

Output:

        a =      +-0++0+      523
        b =      -++-0--     -436
        c =        +-++-       65
      b-c =      -+0-++0     -501
a * (b-c) = ----0+--0++0  -262023

Demonstrate failure:
Caught: Assertion failed: 

assert (a * (b-c)) == a
        | |  |||   |  |
        | |  |||   |  +-0++0+
        | |  |||   false
        | |  ||+-++-
        | |  |-+0-++0
        | |  -++-0--
        | ----0+--0++0
        +-0++0+
...

Haskell

BTs are represented internally as lists of digits in integers from -1 to 1, but displayed as "+-0" strings.

data BalancedTernary = Bt [Int]

zeroTrim a = if null s then [0] else s where
	s = fst $ foldl f ([],[]) a
	f (x,y) 0 = (x, y++[0])
	f (x,y) z = (x++y++[z], [])

btList (Bt a) = a

instance Eq BalancedTernary where
	(==) a b = btList a == btList b

btNormalize = listBt . _carry 0 where
	_carry c [] = if c == 0 then [] else [c]
	_carry c (a:as) = r:_carry cc as where
		(cc, r) = f $ (a+c) `quotRem` 3 where
			f (x,  2) = (x + 1, -1)
			f (x, -2) = (x - 1,  1)
			f x = x

listBt = Bt . zeroTrim

instance Show BalancedTernary where
	show = reverse . map (\d->case d of -1->'-'; 0->'0'; 1->'+') . btList

strBt = Bt . zeroTrim.reverse.map (\c -> case c of '-' -> -1; '0' -> 0; '+' -> 1)

intBt :: Integral a => a -> BalancedTernary
intBt = fromIntegral . toInteger

btInt = foldr (\a z -> a + 3 * z) 0 . btList

listAdd a b = take (max (length a) (length b)) $ zipWith (+) (a++[0,0..]) (b++[0,0..])

-- mostly for operators, also small stuff to make GHC happy
instance Num BalancedTernary where
	negate = Bt . map negate . btList
	(+) x y = btNormalize $ listAdd (btList x) (btList y)
	(*) x y = btNormalize $ mul_ (btList x) (btList y) where
		mul_ _ [] = []
                mul_ as b = foldr (\a z -> listAdd (map (a*) b) (0:z)) [] as

	-- we don't need to define binary "-" by hand

	signum (Bt a) = if a == [0] then 0 else Bt [last a]
	abs x = if signum x == Bt [-1] then negate x else x

	fromInteger = btNormalize . f where
		f 0 = []
		f x = fromInteger (rem x 3) : f (quot x 3)


main = let	(a,b,c) = (strBt "+-0++0+", intBt (-436), strBt "+-++-")
		r = a * (b - c)
	in do
		print $ map btInt [a,b,c]
		print $ r
		print $ btInt r

Icon and Unicon

Translation of: java

Works in both languages:

procedure main()
    a := "+-0++0+"
    write("a = +-0++0+"," = ",cvtFromBT("+-0++0+"))
    write("b = -436 = ",b := cvtToBT(-436))
    c := "+-++-"
    write("c = +-++- = ",cvtFromBT("+-++-"))
    d := mul(a,sub(b,c))
    write("a(b-c) = ",d," = ",cvtFromBT(d))
end

procedure bTrim(s)
    return s[upto('+-',s):0] | "0"
end

procedure cvtToBT(n)
    if n=0 then return "0"
    if n<0 then return map(cvtToBT(-n),"+-","-+")
    return bTrim(case n%3 of {
        0: cvtToBT(n/3)||"0"
        1: cvtToBT(n/3)||"+"
        2: cvtToBT((n+1)/3)||"-"
        })
end

procedure cvtFromBT(n)
    sum := 0
    i := -1
    every c := !reverse(n) do {
        sum +:= case c of {
            "+" : 1
            "-" : -1
            "0" : 0
            }*(3^(i+:=1))
        }
    return sum
end

procedure neg(n)
    return map(n,"+-","-+")
end

procedure add(a,b)
    if *b > *a then a :=: b
    b := repl("0",*a-*b)||b
    c := "0"
    sum := ""
    every place := 1 to *a do {
        ds := addDigits(a[-place],b[-place],c)
        c := if *ds > 1 then c := ds[1] else "0"
        sum := ds[-1]||sum
        }
    return bTrim(c||sum)
end

procedure addDigits(a,b,c)
    sum1 := addDigit(a,b)
    sum2 := addDigit(sum1[-1],c)
    if *sum1 = 1 then return sum2
    if *sum2 = 1 then return sum1[1]||sum2
    return sum1[1]
end

procedure addDigit(a,b)
    return case(a||b) of {
                "00"|"0+"|"0-": b
                "+0"|"-0"     : a
                "++"          : "+-"
                "+-"|"-+"     : "0"
                "--"          : "-+"
                }
end

procedure sub(a,b)
    return add(a,neg(b))
end

procedure mul(a,b)
    if b[1] == "-" then {
        b := neg(b)
        negate := "yes"
        }
    b := cvtFromBT(b)
    i := "+"
    mul := "0"
    while cvtFromBT(i) <= b do {
        mul := add(mul,a)
        i := add(i,"+")
        }
    return (\negate,map(mul,"+-","-+")) | mul
end

Output:

->bt
a = +-0++0+ = 523
b = -436 = -++-0--
c = +-++- = 65
a(b-c) = ----0+--0++0 = -262023
->

J

Implementation:

trigits=: 1+3 <.@^. 2 * 1&>.@|
trinOfN=: |.@((_1 + ] #: #.&1@] + [) #&3@trigits) :. nOfTrin
nOfTrin=: p.&3 :. trinOfN
trinOfStr=: 0 1 _1 {~ '0+-'&i.@|. :. strOfTrin
strOfTrin=: {&'0+-'@|. :. trinOfStr

carry=: +//.@:(trinOfN"0)^:_
trimLead0=: (}.~ i.&1@:~:&0)&.|.

add=: carry@(+/@,:)
neg=: -
mul=: trimLead0@carry@(+//.@(*/))

trinary numbers are represented as a sequence of polynomial coefficients. The coefficient values are limited to 1, 0, and -1. The polynomial's "variable" will always be 3 (which happens to illustrate an interesting absurdity in the terminology we use to describe polynomials -- one which might be an obstacle for learning, for some people).

trigits computes the number of trinary "digits" (that is, the number of polynomial coefficients) needed to represent an integer. pseudocode: 1+floor(log3(2*max(1,abs(n))). Note that floating point inaccuracies combined with comparison tolerance may lead to a [harmless] leading zero when converting incredibly large numbers.

fooOfBar converts a bar into a foo. These functions are all invertable (so we can map from one domain to another, perform an operation, and map back using J's under). This aspect is not needed for this task and the definitions could be made simpler by removing it (removing the :. obverse clauses), but it made testing and debugging easier.

carry performs carry propagation. (Intermediate results will have overflowed trinary representation and become regular integers, so we convert them back into trinary and then perform a polynomial sum, repeating until the result is the same as the argument.)

trimLead0 removes leading zeros from a sequence of polynomial coefficients.

add adds these polynomials.
neg negates these polynomials. Note that it's just a name for J's -.
mul multiplies these polynomials.

Definitions for example:

a=: trinOfStr '+-0++0+'
b=: trinOfN -436
c=: trinOfStr '+-++-'

Required example:

   nOfTrin&> a;b;c
523 _436 65

   strOfTrin a mul b (add -) c
----0+--0++0
   nOfTrin   a mul b (add -) c
_262023

Java

/*
 * Test case 
 * With balanced ternaries a from string "+-0++0+", b from native integer -436, c "+-++-":
 * Write out a, b and c in decimal notation;
 * Calculate a × (b − c), write out the result in both ternary and decimal notations. 
 */
public class BalancedTernary 
{
	public static void main(String[] args)
	{
 		BTernary a=new BTernary("+-0++0+");
		BTernary b=new BTernary(-436);
		BTernary c=new BTernary("+-++-");
		
		System.out.println("a="+a.intValue());
		System.out.println("b="+b.intValue());
		System.out.println("c="+c.intValue());
		System.out.println();
		
		//result=a*(b-c)
		BTernary result=a.mul(b.sub(c));
		
		System.out.println("result= "+result+" "+result.intValue());
	}
	
	
	public static class BTernary
	{
		String value;
		public BTernary(String s)
		{
			int i=0;
			while(s.charAt(i)=='0')
				i++;
			this.value=s.substring(i);
		}
		public BTernary(int v)
		{
			this.value="";
			this.value=convertToBT(v);
		}
		
		private String convertToBT(int v)
		{
			if(v<0)
				return flip(convertToBT(-v));
			if(v==0)
				return "";
			int rem=mod3(v);
			if(rem==0)
				return convertToBT(v/3)+"0";
			if(rem==1)
				return convertToBT(v/3)+"+";
			if(rem==2)
				return convertToBT((v+1)/3)+"-";
			return "You can't see me";
		}
		private String flip(String s)
		{
			String flip="";
			for(int i=0;i<s.length();i++)
			{
				if(s.charAt(i)=='+')
					flip+='-';
				else if(s.charAt(i)=='-')
					flip+='+';
				else
					flip+='0';
			}
			return flip;
		}
		private int mod3(int v)
		{
			if(v>0)
				return v%3;
			v=v%3;
			return (v+3)%3;
		}
		
		public int intValue()
		{
			int sum=0;
			String s=this.value;
			for(int i=0;i<s.length();i++)
			{
				char c=s.charAt(s.length()-i-1);
				int dig=0;
				if(c=='+')
					dig=1;
				else if(c=='-')
					dig=-1;
				sum+=dig*Math.pow(3, i);
			}
			return sum;
		}
		
		
		public BTernary add(BTernary that)
		{
			String a=this.value;
			String b=that.value;
			
			String longer=a.length()>b.length()?a:b;
			String shorter=a.length()>b.length()?b:a;
			
			while(shorter.length()<longer.length())
				shorter=0+shorter;
			
			a=longer;
			b=shorter;
			
			char carry='0';
			String sum="";
			for(int i=0;i<a.length();i++)
			{
				int place=a.length()-i-1;
				String digisum=addDigits(a.charAt(place),b.charAt(place),carry);
				if(digisum.length()!=1)
					carry=digisum.charAt(0);
				else
					carry='0';
				sum=digisum.charAt(digisum.length()-1)+sum;
			}
			sum=carry+sum;
			
			return new BTernary(sum);
		}
		private String addDigits(char a,char b,char carry)
		{
			String sum1=addDigits(a,b);
			String sum2=addDigits(sum1.charAt(sum1.length()-1),carry);
			//System.out.println(carry+" "+sum1+" "+sum2);
			if(sum1.length()==1)
				return sum2;
			if(sum2.length()==1)
				return sum1.charAt(0)+sum2;
			return sum1.charAt(0)+"";
		}
		private String addDigits(char a,char b)
		{
			String sum="";
			if(a=='0')
				sum=b+"";
			else if (b=='0')
				sum=a+"";
			else if(a=='+')
			{
				if(b=='+')
					sum="+-";
				else
					sum="0";
			}
			else
			{
				if(b=='+')
					sum="0";
				else
					sum="-+";
			}
			return sum;
		}
		
		public BTernary neg()
		{
			return new BTernary(flip(this.value));
		}
		
		public BTernary sub(BTernary that)
		{
			return this.add(that.neg());
		}
		
		public BTernary mul(BTernary that)
		{
			BTernary one=new BTernary(1);
			BTernary zero=new BTernary(0);
			BTernary mul=new BTernary(0);
			
			int flipflag=0;
			if(that.compareTo(zero)==-1)
			{
				that=that.neg();
				flipflag=1;
			}
			for(BTernary i=new BTernary(1);i.compareTo(that)<1;i=i.add(one))
				mul=mul.add(this);
			
			if(flipflag==1)
				mul=mul.neg();
			return mul;
		}
		
		public boolean equals(BTernary that)
		{
			return this.value.equals(that.value);
		}
		public int compareTo(BTernary that)
		{
			if(this.intValue()>that.intValue())
				return 1;
			else if(this.equals(that))
				return 0;
			 return -1;
		}
		
		public String toString()
		{
			return value;
		}
	}
}

Output:

a=523
b=-436
c=65

result= ----0+--0++0 -262023

jq

Works with: jq

Works with gojq, the Go implementation of jq

Adapted from Wren

### Generic utilities

# Emit a stream of the constituent characters of the input string
def chars: explode[] | [.] | implode;

# Flip "+" and "-" in the input string, and change other characters to 0
def flip:
  {"+": "-", "-": "+"} as $t
  | reduce chars as $c (""; . + ($t[$c] // "0") );

### Balanced ternaries (BT)

# Input is assumed to be an integer (use `new` if checking is required)
def toBT:
  # Helper - input should be an integer
  def mod3:
    if . > 0 then . % 3
    else ((. % 3) + 3) % 3
    end;

  if . < 0 then - . | toBT | flip
  else if . == 0 then ""
       else mod3 as $rem
       | if   $rem == 0 then (. / 3 | toBT) + "0" 
         elif $rem == 1 then (. / 3 | toBT) + "+"
         else                ((. + 1) / 3 | toBT) + "-"
         end
       end
       | sub("^00*";"") 
       | if . == "" then "0" end
  end ;

# Input: BT
def integer:
  . as $in
  | length as $len
  | { sum: 0,
      pow: 1 }
  | reduce range (0;$len) as $i (.;
       $in[$len-$i-1: $len-$i] as $c
       | (if $c == "+" then 1 elif $c == "-" then -1 else 0 end) as $digit
       | if $digit != 0 then .sum += $digit * .pow else . end
       | .pow *= 3 )
  | .sum ;

# If the input is a string, check it is a valid BT, and trim leading 0s;
# if the input is an integer, convert it to a BT;
# otherwise raise an error.
def new:
  if type == "string" and all(chars; IN("0", "+", "-"))
  then sub("^00*"; "") | if . == "" then "0" end
  elif type == "number" and trunc == .
  then toBT
  else "'new' given invalid input: \(.)" | error
  end;

# . + $b
def plus($b):
  # Helper functions:
  def at($i): .[$i:$i+1];
  
  # $a and $b should each be "0", "+" or "-"
  def addDigits2($a; $b):
    if $a == "0" then $b
    elif $b == "0" then $a
    elif $a == "+"
    then if $b == "+" then "+-" else "0" end
    elif $b == "+" then "0" else "-+"
    end;
  
  def addDigits3($a; $b; $carry):
    addDigits2($a; $b) as $sum1
    | addDigits2($sum1[-1:]; $carry) as $sum2
    | if ($sum1|length) == 1
      then $sum2
      elif ($sum2|length) == 1
      then $sum1[0:1] + $sum2
      else $sum1[0:1]
      end;
  
  { longer:  (if length > ($b|length) then . else $b end),
    shorter: (if length > ($b|length) then $b else . end) }
  | until ( (.shorter|length) >= (.longer|length); .shorter = "0" + .shorter )
  | .a = .longer
  | .b = .shorter
  | .carry = "0"
  | .sum = ""
  | reduce range(0; .a|length) as $i (.; 
      ( (.a|length) - $i - 1) as $place
      | addDigits3(.a | at($place); .b | at($place); .carry) as $digisum
      | .carry = (if ($digisum|length) != 1 then $digisum[0:1] else "0" end)
      | .sum = $digisum[-1:] + .sum )
  | .carry + .sum
  | new;

def minus: flip;

# . - $b
def minus($b): plus($b | flip);

def mult($b):
  (1 | new) as $one
  | (0 | new) as $zero
  | { a: .,
      $b,
      mul: $zero,
      flipFlag: false }
  | if .b[0:1] == "-"  # i.e. .b < 0
    then .b |= minus
    | .flipFlag = true
    end
  | .i = $one
  | .in = 1
  | (.b | integer) as $bn
  | until ( .in > $bn;
      .a as $a
      | .mul |= plus($a)
      | .i |= plus($one)
      | .in += 1 )
  | if .flipFlag then .mul | minus else .mul end ;


### Illustration

def a: "+-0++0+";
def b: -436 | new;
def c:  "+-++-";

  (a | integer) as $an
| (b | integer) as $bn
| (c | integer) as $cn
| ($an * ($bn - $cn)) as $in
| (a | mult( (b | minus(c)))) as $i
| "a = \($an)",
  "b = \($bn)",
  "c = \($cn)",
  "a * (b - c) = \($i) ~ \($in) => \($in|new)"
Output:
a = 523
b = -436
c = 65
a * (b - c) = ----0+--0++0 ~ -262023 => ----0+--0++0

Julia

Works with: Julia version 0.6
Translation of: Python
struct BalancedTernary <: Signed
    digits::Vector{Int8}
end
BalancedTernary() = zero(BalancedTernary)
BalancedTernary(n) = convert(BalancedTernary, n)

const sgn2chr = Dict{Int8,Char}(-1 => '-', 0 => '0', +1 => '+')
Base.show(io::IO, bt::BalancedTernary) = print(io, join(sgn2chr[x] for x in reverse(bt.digits)))
Base.copy(bt::BalancedTernary) = BalancedTernary(copy(bt.digits))
Base.zero(::Type{BalancedTernary}) = BalancedTernary(Int8[0])
Base.iszero(bt::BalancedTernary) = bt.digits == Int8[0]
Base.convert(::Type{T}, bt::BalancedTernary) where T<:Number = sum(3 ^ T(ex - 1) * s for (ex, s) in enumerate(bt.digits))
function Base.convert(::Type{BalancedTernary}, n::Signed)
    r = BalancedTernary(Int8[])
    if iszero(n) push!(r.digits, 0) end
    while n != 0
        if mod(n, 3) == 0
            push!(r.digits, 0)
            n = fld(n, 3)
        elseif mod(n, 3) == 1
            push!(r.digits, 1)
            n = fld(n, 3)
        else
            push!(r.digits, -1)
            n = fld(n + 1, 3)
        end
    end
    return r
end
const chr2sgn = Dict{Char,Int8}('-' => -1, '0' => 0, '+' => 1)
function Base.convert(::Type{BalancedTernary}, s::AbstractString)
    return BalancedTernary(getindex.(chr2sgn, collect(reverse(s))))
end

macro bt_str(s)
    convert(BalancedTernary, s)
end

const table = NTuple{2,Int8}[(0, -1), (1, -1), (-1, 0), (0, 0), (1, 0), (-1, 1), (0, 1)]
function _add(a::Vector{Int8}, b::Vector{Int8}, c::Int8=Int8(0))
    if isempty(a) || isempty(b)
        if c == 0 return isempty(a) ? b : a end
        return _add([c], isempty(a) ? b : a)
    else
        d, c = table[4 + (isempty(a) ? 0 : a[1]) + (isempty(b) ? 0 : b[1]) + c]
        r = _add(a[2:end], b[2:end], c)
        if !isempty(r) || d != 0
            return unshift!(r, d)
        else
            return r
        end
    end
end
function Base.:+(a::BalancedTernary, b::BalancedTernary)
    v = _add(a.digits, b.digits)
    return isempty(v) ? BalancedTernary(0) : BalancedTernary(v)
end
Base.:-(bt::BalancedTernary) = BalancedTernary(-bt.digits)
Base.:-(a::BalancedTernary, b::BalancedTernary) = a + (-b)
function _mul(a::Vector{Int8}, b::Vector{Int8})
    if isempty(a) || isempty(b)
        return Int8[]
    else
        if a[1] == -1 x = (-BalancedTernary(b)).digits
        elseif a[1] == 0 x = Int8[]
        elseif a[1] == 1 x = b end
        y = append!(Int8[0], _mul(a[2:end], b))
        return _add(x, y)
    end
end
function Base.:*(a::BalancedTernary, b::BalancedTernary)
    v = _mul(a.digits, b.digits)
    return isempty(v) ? BalancedTernary(0) : BalancedTernary(v)
end

a = bt"+-0++0+"
println("a: $(Int(a)), $a")
b = BalancedTernary(-436)
println("b: $(Int(b)), $b")
c = BalancedTernary("+-++-")
println("c: $(Int(c)), $c")
r = a * (b - c)
println("a * (b - c): $(Int(r)), $r")

@assert Int(r) == Int(a) * (Int(b) - Int(c))
Output:
a: 523, +-0++0+
b: -436, -++-0--
c: 65, +-++-
a * (b - c): -262023, ----0+--0++0

Koka

Based on the OCaml version

type btdigit
  Pos
  Zero
  Neg

alias btern = list<btdigit>

fun to_string(n: btern): string
  join(
    n.reverse.map fn(d)
      match d
        Pos -> "+"
        Zero -> "0"
        Neg -> "-"
  )

fun from_string(s: string): exn btern
  var sl := Nil
  s.foreach fn(c)
    match c
      '+' -> sl := Cons(Pos, sl)
      '0' -> sl := Cons(Zero, sl)
      '-' -> sl := Cons(Neg, sl)
      _ -> throw("Invalid Character")
  sl

fun to_int(n: btern): int
  match n
    Nil -> 0
    Cons(Zero, Nil) -> 0
    Cons(Pos, rst) -> 1+3*rst.to_int
    Cons(Neg, rst) -> -1+3*rst.to_int
    Cons(Zero, rst) -> 3*rst.to_int

fun from_int(n: int): <exn> btern
  if n == 0 then [] else
    match n % 3
      0 -> Cons(Zero, from_int((n/3).unsafe-decreasing))
      1 -> Cons(Pos, from_int(((n - 1)/3).unsafe-decreasing))
      2 -> Cons(Neg, from_int(((n+1)/3).unsafe-decreasing))
      _ -> throw("Impossible")

fun (+)(n1: btern, n2: btern): <exn,div> btern
  match (n1, n2)
    ([], a) -> a
    (a, []) -> a
    (Cons(Pos, t1), Cons(Neg, t2)) -> 
      val sum = t1 + t2
      if sum.is-nil then [] else Cons(Zero, sum)
    (Cons(Neg, t1), Cons(Pos, t2)) ->
      val sum = t1 + t2
      if sum.is-nil then [] else Cons(Zero, sum)
    (Cons(Zero, t1), Cons(Zero, t2)) ->
      val sum = t1 + t2
      if sum.is-nil then [] else Cons(Zero, sum)
    (Cons(Pos, t1), Cons(Pos, t2)) -> Cons(Neg, t1 + t2 + [Pos])
    (Cons(Neg, t1), Cons(Neg, t2)) -> Cons(Pos, t1 + t2 + [Neg])
    (Cons(Zero, t1), Cons(h, t2)) -> Cons(h, t1 + t2)
    (Cons(h, t1), Cons(Zero, t2)) -> Cons(h, t1 + t2)
    _ -> throw("Impossible")

fun neg(n: btern)
  n.map fn(d)
    match d
      Pos -> Neg
      Zero -> Zero
      Neg -> Pos

fun (-)(n1: btern, n2: btern): <exn,div> btern
  n1 + neg(n2)

fun (*)(n1, n2)
  match n2
    [] -> []
    [Pos] -> n1
    [Neg] -> n1.neg
    (Cons(Pos, t)) -> Cons(Zero, t*n1) + n1
    (Cons(Neg, t)) -> Cons(Zero, t*n1) - n1
    (Cons(Zero, t)) -> Cons(Zero, t*n1)

fun main()
  val a = "+-0++0+".from_string
  val b = (-436).from_int
  val c = "+-++-".from_string
  val d = a * (b - c)
  println("a = " ++ a.to_int.show ++ "\nb = " ++ b.to_string ++ "\nc = " ++ c.to_int.show ++ "\na * (b - c) = " ++ d.to_string ++ " = " ++ d.to_int.show )
Output:
a = 523
b = -++-0--
c = 65
a * (b - c) = ----0+--0++0 = -262023

Kotlin

This is based on the Java entry. However, I've added 'BigInteger' support as this is a current requirement of the task description even though it's not actually needed to process the test case:

// version 1.1.3

import java.math.BigInteger

val bigZero = BigInteger.ZERO
val bigOne = BigInteger.ONE
val bigThree = BigInteger.valueOf(3L)

data class BTernary(private var value: String) : Comparable<BTernary> {

    init {
        require(value.all { it in "0+-" })
        value = value.trimStart('0')
    }

    constructor(v: Int) : this(BigInteger.valueOf(v.toLong()))

    constructor(v: BigInteger) : this("") {
        value = toBT(v)
    }

    private fun toBT(v: BigInteger): String {
        if (v < bigZero) return flip(toBT(-v))
        if (v == bigZero) return ""
        val rem = mod3(v)
        return when (rem) {
            bigZero -> toBT(v / bigThree) + "0"
            bigOne  -> toBT(v / bigThree) + "+"
            else    -> toBT((v + bigOne) / bigThree) + "-"
        }
    }

    private fun flip(s: String): String {
        val sb = StringBuilder()
        for (c in s) {
            sb.append(when (c) {
                '+'  -> "-"
                '-'  -> "+"
                else -> "0"
            })
        }
        return sb.toString()
    }

    private fun mod3(v: BigInteger): BigInteger {
        if (v > bigZero) return v % bigThree
        return ((v % bigThree) + bigThree) % bigThree
    }

    fun toBigInteger(): BigInteger {
        val len = value.length
        var sum = bigZero
        var pow = bigOne
        for (i in 0 until len) {
            val c = value[len - i - 1]
            val dig = when (c) {
                '+'  -> bigOne
                '-'  -> -bigOne
                else -> bigZero
            }
            if (dig != bigZero) sum += dig * pow
            pow *= bigThree
        }
        return sum
    }

    private fun addDigits(a: Char, b: Char, carry: Char): String {
        val sum1 = addDigits(a, b)
        val sum2 = addDigits(sum1.last(), carry)
        return when {
            sum1.length == 1 -> sum2
            sum2.length == 1 -> sum1.take(1) + sum2
            else             -> sum1.take(1)
        }
    }

    private fun addDigits(a: Char, b: Char): String =
        when {
            a == '0' -> b.toString()
            b == '0' -> a.toString()
            a == '+' -> if (b == '+') "+-" else "0"
            else     -> if (b == '+') "0" else "-+"
        }

    operator fun plus(other: BTernary): BTernary {
        var a = this.value
        var b = other.value
        val longer = if (a.length > b.length) a else b
        var shorter = if (a.length > b.length) b else a
        while (shorter.length < longer.length) shorter = "0" + shorter
        a = longer
        b = shorter
        var carry = '0'
        var sum = ""
        for (i in 0 until a.length) {
            val place = a.length - i - 1
            val digisum = addDigits(a[place], b[place], carry)
            carry = if (digisum.length != 1) digisum[0] else '0'
            sum = digisum.takeLast(1) + sum
        }
        sum = carry.toString() + sum
        return BTernary(sum)
    }

    operator fun unaryMinus() = BTernary(flip(this.value))

    operator fun minus(other: BTernary) = this + (-other)

    operator fun times(other: BTernary): BTernary {
        var that = other
        val one = BTernary(1)
        val zero = BTernary(0)
        var mul = zero
        var flipFlag = false
        if (that < zero) {
            that = -that
            flipFlag = true
        }
        var i = one
        while (i <= that) {
            mul += this
            i += one
        }
        if (flipFlag) mul = -mul
        return mul
    }

    override operator fun compareTo(other: BTernary) =
        this.toBigInteger().compareTo(other.toBigInteger())

    override fun toString() = value
}

fun main(args: Array<String>) {
    val a = BTernary("+-0++0+")
    val b = BTernary(-436)
    val c = BTernary("+-++-")
    println("a = ${a.toBigInteger()}")
    println("b = ${b.toBigInteger()}")
    println("c = ${c.toBigInteger()}")
    val bResult = a * (b - c)
    val iResult = bResult.toBigInteger()
    println("a * (b - c) = $bResult = $iResult")
}
Output:
a = 523
b = -436
c = 65
a * (b - c) = ----0+--0++0 = -262023

Liberty BASIC

global tt$
tt$="-0+"   '-1 0 1; +2 -> 1 2 3, instr

'Test case:
'With balanced ternaries a from string "+-0++0+", b from native integer -436, c "+-++-":
'* write out a, b and c in decimal notation;
'* calculate a * (b - c), write out the result in both ternary and decimal notations.

a$="+-0++0+"
a=deci(a$)
print "a",a, a$ 

b=-436
b$=ternary$(b)
print "b",b, b$

c$="+-++-"
c=deci(c$)
print "c",c, c$

'calculate in ternary

res$=multTernary$(a$, subTernary$(b$, c$))
print "a * (b - c)", res$
print "In decimal:",deci(res$)

print "Check:"
print "a * (b - c)", a * (b - c)
end

function deci(s$)
    pow = 1
    for i = len(s$) to 1 step -1
        c$ = mid$(s$,i,1)
        'select case c$ 
        '    case "+":sign= 1
        '    case "-":sign=-1
        '    case "0":sign= 0
        'end select
        sign = instr(tt$,c$)-2
        deci = deci+pow*sign
        pow = pow*3
    next
end function

function ternary$(n)
    while abs(n)>3^k/2
        k=k+1
    wend
    k=k-1

    pow = 3^k
    for i = k to 0 step -1
        sign = (n>0) - (n<0)
        sign = sign * (abs(n)>pow/2)
        ternary$ = ternary$+mid$(tt$,sign+2,1)
        n = n - sign*pow
        pow = pow/3
    next
    if  ternary$ = "" then  ternary$ ="0"
end function

function multTernary$(a$, b$)

    c$ = ""
    t$ = ""
    shift$ = ""
    for i = len(a$) to 1 step -1

        select case mid$(a$,i,1)
        case "+": t$ = b$
        case "0": t$ = "0"
        case "-": t$ = negate$(b$)
        end select

        c$ = addTernary$(c$, t$+shift$)

        shift$ = shift$ +"0"
    'print d, t$, c$ 
    next
    multTernary$ = c$
end function

function subTernary$(a$, b$)
     subTernary$ = addTernary$(a$, negate$(b$))
end function

function negate$(s$)
    negate$=""
    for i = 1 to len(s$)
        'print mid$(s$,i,1), instr(tt$, mid$(s$,i,1)), 4-instr(tt$, mid$(s$,i,1))
        negate$=negate$+mid$(tt$, 4-instr(tt$, mid$(s$,i,1)), 1)
    next
end function

function addTernary$(a$, b$)
'add a$ + b$, for now only positive
    l = max(len(a$), len(b$))
    a$=pad$(a$,l)
    b$=pad$(b$,l)
    c$ = "" 'result
    carry = 0
    for i = l to 1 step -1
        a = instr(tt$,mid$(a$,i,1))-2
        b = instr(tt$,mid$(b$,i,1))-2     '-1 0 1
        c = a+b+carry

        select case
        case abs(c)<2
            carry = 0
        case c>0
            carry =1: c=c-3
        case c<0
            carry =-1: c=c+3
        end select

        'print a, b, c
        c$ = mid$(tt$,c+2,1)+c$
    next
    if carry<>0 then c$ = mid$(tt$,carry+2,1) +c$
    'print c$
    'have to trim leading 0's
    i=0
    while mid$(c$,i+1,1)="0"
        i=i+1
    wend
    c$=mid$(c$,i+1)
    if c$="" then c$="0"
    addTernary$ = c$
end function

function pad$(a$,n)  'pad from right with 0 to length n
     pad$ = a$
     while len(pad$)<n
        pad$ = "0"+pad$
     wend
end function
Output:
a             523           +-0++0+
b             -436          -++-0--
c             65            +-++-
a * (b - c)   ----0+--0++0
In decimal:   -262023
Check:
a * (b - c)   -262023

Lua

Translation of: C
function to_bt(n)
    local d = { '0', '+', '-' }
    local v = { 0, 1, -1 }

    local b = ""

    while n ~= 0 do
        local r = n % 3
        if r < 0 then
            r = r + 3
        end

        b = b .. d[r + 1]

        n = n - v[r + 1]
        n = math.floor(n / 3)
    end

    return b:reverse()
end

function from_bt(s)
    local n = 0

    for i=1,s:len() do
        local c = s:sub(i,i)
        n = n * 3
        if c == '+' then
            n = n + 1
        elseif c == '-' then
            n = n - 1
        end
    end

    return n
end

function last_char(s)
    return s:sub(-1,-1)
end

function add(b1,b2)
    local out = "oops"
    if b1 ~= "" and b2 ~= "" then
        local d = ""

        local L1 = last_char(b1)
        local c1 = b1:sub(1,-2)
        local L2 = last_char(b2)
        local c2 = b2:sub(1,-2)
        if L2 < L1 then
            L2, L1 = L1, L2
        end

        if L1 == '-' then
            if L2 == '0' then
                d = "-"
            end
            if L2 == '-' then
                d = "+-"
            end
        elseif L1 == '+' then
            if L2 == '0' then
                d = "+"
            elseif L2 == '-' then
                d = "0"
            elseif L2 == '+' then
                d = "-+"
            end
        elseif L1 == '0' then
            if L2 == '0' then
                d = "0"
            end
        end

        local ob1 = add(c1,d:sub(2,2))
        local ob2 = add(ob1,c2)

        out = ob2 .. d:sub(1,1)
    elseif b1 ~= "" then
        out = b1
    elseif b2 ~= "" then
        out = b2
    else
        out = ""
    end

    return out
end

function unary_minus(b)
    local out = ""

    for i=1, b:len() do
        local c = b:sub(i,i)
        if c == '-' then
            out = out .. '+'
        elseif c == '+' then
            out = out .. '-'
        else
            out = out .. c
        end
    end

    return out
end

function subtract(b1,b2)
    return add(b1, unary_minus(b2))
end

function mult(b1,b2)
    local r = "0"
    local c1 = b1
    local c2 = b2:reverse()

    for i=1,c2:len() do
        local c = c2:sub(i,i)
        if c == '+' then
            r = add(r, c1)
        elseif c == '-' then
            r = subtract(r, c1)
        end
        c1 = c1 .. '0'
    end

    while r:sub(1,1) == '0' do
        r = r:sub(2)
    end

    return r
end

function main()
    local a = "+-0++0+"
    local b = to_bt(-436)
    local c = "+-++-"
    local d = mult(a, subtract(b, c))

    print(string.format("      a: %14s %10d", a, from_bt(a)))
    print(string.format("      b: %14s %10d", b, from_bt(b)))
    print(string.format("      c: %14s %10d", c, from_bt(c)))
    print(string.format("a*(b-c): %14s %10d", d, from_bt(d)))
end

main()
Output:
      a:        +-0++0+        523
      b:        -++-0--       -436
      c:          +-++-         65
a*(b-c):   ----0+--0++0    -262023

Mathematica / Wolfram Language

frombt = FromDigits[StringCases[#, {"+" -> 1, "-" -> -1, "0" -> 0}], 
    3] &;
tobt = If[Quotient[#, 3, -1] == 0, 
     "", #0@Quotient[#, 3, -1]] <> (Mod[#, 
       3, -1] /. {1 -> "+", -1 -> "-", 0 -> "0"}) &;
btnegate = StringReplace[#, {"+" -> "-", "-" -> "+"}] &;
btadd = StringReplace[
    StringJoin[
     Fold[Sort@{#1[[1]], 
          Sequence @@ #2} /. {{x_, x_, x_} :> {x, 
           "0" <> #1[[2]]}, {"-", "+", x_} | {x_, "-", "+"} | {x_, 
            "0", "0"} :> {"0", x <> #1[[2]]}, {"+", "+", "0"} -> {"+",
            "-" <> #1[[2]]}, {"-", "-", "0"} -> {"-", 
           "+" <> #1[[2]]}} &, {"0", ""}, 
      Reverse@Transpose@PadLeft[Characters /@ {#1, #2}] /. {0 -> 
         "0"}]], StartOfString ~~ "0" .. ~~ x__ :> x] &;
btsubtract = btadd[#1, btnegate@#2] &;
btmultiply = 
  btadd[Switch[StringTake[#2, -1], "0", "0", "+", #1, "-", 
     btnegate@#1], 
    If[StringLength@#2 == 1, 
     "0", #0[#1, StringDrop[#2, -1]] <> "0"]] &;

Examples:

frombt[a = "+-0++0+"]
b = tobt@-436
frombt[c = "+-++-"]
btmultiply[a, btsubtract[b, c]]

Outputs:

523

"-++-0--"

65

"----0+--0++0"

МК-61/52

Translation of: Glagol
ЗН	П2	Вx	|x|	П0	0	П3	П4	1	П5
ИП0	/-/	x<0	80
	ИП0	^	^	3	/	[x]	П0	3	*	-	П1
		ИП3	x#0	54
			ИП1	x=0	38	ИП2	ПП	88	0	П3	БП	10
			ИП1	1	-	x=0	49	ИП2	/-/	ПП	88	БП	10
			0	ПП	88	БП	10
			ИП1	x=0	62	0	ПП	88	БП	10
			ИП1	1	-	x=0	72	ИП2	ПП	88	БП	10
			ИП2	/-/	ПП	88	1	П3	БП	10
ИП3	x#0	86	ИП2	ПП	88	ИП4	С/П
8	+	ИП5	*	ИП4	+	П4	ИП5	1	0	*	П5	В/О

Note: the "-", "0", "+" denotes by digits, respectively, the "7", "8", "9".

Nim

import std/[strformat, tables]

type

  # Trit definition.
  Trit = range[-1'i8..1'i8]

  # Balanced ternary number as a sequence of trits stored in little endian way.
  BTernary = seq[Trit]

const

  # Textual representation of trits.
  Trits: array[Trit, char] = ['-', '0', '+']

  # Symbolic names used for trits.
  TN = Trit(-1)
  TZ = Trit(0)
  TP = Trit(1)

  # Table to convert the result of classic addition to balanced ternary numbers.
  AddTable = {-2: @[TP, TN], -1: @[TN], 0: @[TZ], 1: @[TP], 2: @[TN, TP]}.toTable()

  # Mapping from modulo to trits (used for conversion from int to balanced ternary).
  ModTrits: array[-2..2, Trit] = [TP, TN, TZ, TP, TN]


#---------------------------------------------------------------------------------------------------

func normalize(bt: var BTernary) =
  ## Remove the extra zero trits at head of a BTernary number.
  var i = bt.high
  while i >= 0 and bt[i] == 0:
    dec i
  bt.setlen(if i < 0: 1 else: i + 1)

#---------------------------------------------------------------------------------------------------

func `+`*(a, b: BTernary): BTernary =
  ## Add two BTernary numbers.

  # Prepare operands.
  var (a, b) = (a, b)
  if a.len < b.len:
    a.setLen(b.len)
  else:
    b.setLen(a.len)

  # Perform addition trit per trit.
  var carry = TZ
  for i in 0..<a.len:
    var s = AddTable[a[i] + b[i]]
    if carry != TZ:
      s = s + @[carry]
    carry = if s.len > 1: s[1] else: TZ
    result.add(s[0])

  # Append the carry to the result if it is not null.
  if carry != TZ:
    result.add(carry)

#---------------------------------------------------------------------------------------------------

func `+=`*(a: var BTernary; b: BTernary) {.inline.} =
  ## Increment a BTernary number.
  a = a + b

#---------------------------------------------------------------------------------------------------

func `-`(a: BTernary): BTernary =
  ## Negate a BTernary number.
  result.setLen(a.len)
  for i, t in a:
    result[i] = -t

#---------------------------------------------------------------------------------------------------

func `-`*(a, b: BTernary): BTernary {.inline.} =
  ## Subtract a BTernary number to another.
  a + -b

#---------------------------------------------------------------------------------------------------

func `-=`*(a: var BTernary; b: BTernary) {.inline.} =
  ## Decrement a BTernary number.
  a = a + -b

#---------------------------------------------------------------------------------------------------

func `*`*(a, b: BTernary): BTernary =
  ## Multiply two BTernary numbers.

  var start: BTernary
  let na = -a

  # Loop on each trit of "b" and add directly a whole row.
  for t in b:
    case t
    of TP: result += start & a
    of TZ: discard
    of TN: result += start & na
    start.add(TZ)   # Shift next row.
  result.normalize()

#---------------------------------------------------------------------------------------------------

func toTrit*(c: char): Trit =
  ## Convert a char to a trit.
  case c
  of '-': -1
  of '0': 0
  of '+': 1
  else:
    raise newException(ValueError, fmt"Invalid trit: '{c}'")

#---------------------------------------------------------------------------------------------------

func `$`*(bt: BTernary): string =
  ## Return the string representation of a BTernary number.
  result.setLen(bt.len)
  for i, t in bt:
    result[^(i + 1)] = Trits[t]

#---------------------------------------------------------------------------------------------------

func toBTernary*(s: string): BTernary =
  ## Build a BTernary number from its string representation.
  result.setLen(s.len)
  for i, c in s:
    result[^(i + 1)] = c.toTrit()

#---------------------------------------------------------------------------------------------------

func toInt*(bt: BTernary): int =
  ## Convert a BTernary number to an integer.
  ## An overflow error is raised if the result cannot fit in an integer.
  var m = 1
  for t in bt:
    result += m * t
    m *= 3

#---------------------------------------------------------------------------------------------------

func toBTernary(val: int): BTernary =
  ## Convert an integer to a BTernary number.
  var val = val
  while true:
    let trit = ModTrits[val mod 3]
    result.add(trit)
    val = (val - trit) div 3
    if val == 0:
      break

#———————————————————————————————————————————————————————————————————————————————————————————————————

when isMainModule:

  let a = "+-0++0+".toBTernary
  let b = -436.toBTernary
  let c = "+-++-".toBTernary

  echo "Balanced ternary numbers:"
  echo fmt"a = {a}"
  echo fmt"b = {b}"
  echo fmt"c = {c}"
  echo ""

  echo "Their decimal representation:"
  echo fmt"a = {a.toInt: 4d}"
  echo fmt"b = {b.toInt: 4d}"
  echo fmt"c = {c.toInt: 4d}"
  echo ""

  let x = a * (b - c)
  echo "a × (b - c):"
  echo fmt"– in ternary: {x}"
  echo fmt"– in decimal: {x.toInt}"
Output:
Balanced ternary numbers:
a = +-0++0+
b = -++-0--
c = +-++-

Their decimal representation:
a =  523
b = -436
c =   65

a × (b - c):
– in ternary: ----0+--0++0
– in decimal: -262023

OCaml

type btdigit = Pos | Zero | Neg
type btern = btdigit list

let to_string n =
   String.concat ""
      (List.rev_map (function Pos -> "+" | Zero -> "0" | Neg -> "-") n)

let from_string s =
   let sl = ref [] in
   let digit = function '+' -> Pos | '-' -> Neg | '0' -> Zero
     | _ -> failwith "invalid digit" in
    String.iter (fun c -> sl := (digit c) :: !sl) s; !sl

let rec to_int = function
   | [Zero] | [] -> 0
   | Pos :: t -> 1 + 3 * to_int t
   | Neg :: t -> -1 + 3 * to_int t
   | Zero :: t -> 3 * to_int t

let rec from_int n =
   if n = 0 then [] else
   match n mod 3 with
      | 0 -> Zero :: from_int (n/3)
      | 1 | -2 -> Pos :: from_int ((n-1)/3)
      | 2 | -1 -> Neg :: from_int ((n+1)/3)

let rec (+~) n1 n2 = match (n1,n2) with
   | ([], a) | (a,[]) -> a
   | (Pos::t1, Neg::t2) | (Neg::t1, Pos::t2) | (Zero::t1, Zero::t2) ->
      let sum = t1 +~ t2 in if sum = [] then [] else Zero :: sum
   | (Pos::t1, Pos::t2) -> Neg :: t1 +~ t2 +~ [Pos]
   | (Neg::t1, Neg::t2) -> Pos :: t1 +~ t2 +~ [Neg]
   | (Zero::t1, h::t2) | (h::t1, Zero::t2) -> h :: t1 +~ t2

let neg = List.map (function Pos -> Neg | Neg -> Pos | Zero -> Zero)
let (-~) a b = a +~ (neg b)

let rec ( *~) n1 = function
   | [] -> []
   | [Pos] -> n1
   | [Neg] -> neg n1
   | Pos::t -> (Zero :: t *~ n1) +~ n1
   | Neg::t -> (Zero :: t *~ n1) -~ n1
   | Zero::t -> Zero :: t *~ n1

let a = from_string "+-0++0+"
let b = from_int (-436)
let c = from_string "+-++-"
let d = a *~ (b -~ c)
let _ =
  Printf.printf "a = %d\nb = %d\nc = %d\na * (b - c) = %s = %d\n"
   (to_int a) (to_int b) (to_int c) (to_string d) (to_int d);

Output:

a = 523
b = -436
c = 65
a * (b - c) = ----0+--0++0 = -262023

Perl

use strict; 
use warnings; 

my @d = qw( 0 + - ); 
my @v = qw( 0 1 -1 ); 

sub to_bt { 
  my $n = shift; 
  my $b = ''; 
  while( $n ) { 
    my $r = $n%3; 
    $b .= $d[$r]; 
    $n -= $v[$r]; 
    $n /= 3; 
  } 
  return scalar reverse $b; 
} 

sub from_bt { 
  my $n = 0; 
  for( split //, shift ) { # Horner 
    $n *= 3; 
    $n += "${_}1" if $_; 
  } 
  return $n; 
} 

my %addtable = ( 
                '-0' => [ '-', '' ],
                '+0' => [ '+', '' ],
                '+-' => [ '0', '' ],
                '00' => [ '0', '' ],
                '--' => [ '+', '-' ],
                '++' => [ '-', '+' ],
               );

sub add {
  my ($b1, $b2) = @_;
  return ($b1 or $b2 ) unless ($b1 and $b2);
  my $d = $addtable{ join '', sort substr( $b1, -1, 1, '' ), substr( $b2, -1, 1, '' ) };
  return add( add($b1, $d->[1]), $b2 ).$d->[0];
}

sub unary_minus {
  my $b = shift;
  $b =~ tr/-+/+-/;
  return $b;
}

sub subtract {
  my ($b1, $b2) = @_;
  return add( $b1, unary_minus $b2 );
}

sub mult {
  my ($b1, $b2) = @_;
  my $r = '0';
  for( reverse split //, $b2 ){
    $r = add $r, $b1      if $_ eq '+';
    $r = subtract $r, $b1 if $_ eq '-';
    $b1 .= '0';
  }
  $r =~ s/^0+//;
  return $r;
}

my $a = "+-0++0+";
my $b = to_bt( -436 );
my $c = "+-++-";
my $d = mult( $a, subtract( $b, $c ) );
printf "      a: %14s %10d\n", $a, from_bt( $a ); 
printf "      b: %14s %10d\n", $b, from_bt( $b ); 
printf "      c: %14s %10d\n", $c, from_bt( $c ); 
printf "a*(b-c): %14s %10d\n", $d, from_bt( $d );
Output:
      a:        +-0++0+        523
      b:        -++-0--       -436
      c:          +-++-         65
a*(b-c):   ----0+--0++0    -262023

Phix

Using strings to represent balanced ternary. Note that as implemented dec2bt and bt2dec are limited to Phix integers (~+/-1,000,000,000), but it would probably be pretty trivial (albeit quite a bit slower) to replace them with (say) ba2bt and bt2ba which use/yield bigatoms.

with javascript_semantics
function bt2dec(string bt)
    integer res = 0
    for i=1 to length(bt) do
        res = 3*res+(bt[i]='+')-(bt[i]='-')
    end for
    return res
end function
 
function negate(string bt)
    for i=1 to length(bt) do
        if bt[i]!='0' then
            bt[i] = '+'+'-'-bt[i]
        end if
    end for
    return bt
end function
 
function dec2bt(integer n)
    string res = "0"
    if n!=0 then
        integer neg = n<0
        if neg then n = -n end if
        res = ""
        while n!=0 do
            integer r = mod(n,3)
            res = "0+-"[r+1]&res
            n = floor((n+(r=2))/3)
        end while
        if neg then res = negate(res) end if
    end if
    return res
end function
 
-- res,carry for a+b+carry lookup tables (not the fastest way to do it, I'm sure):
constant {tadd,addres} = columnize({{"---","0-"},{"--0","+-"},{"--+","-0"},
                                    {"-0-","+-"},{"-00","-0"},{"-0+","00"},
                                    {"-+-","-0"},{"-+0","00"},{"-++","+0"},
                                    {"0--","+-"},{"0-0","-0"},{"0-+","00"},
                                    {"00-","-0"},{"000","00"},{"00+","+0"},
                                    {"0+-","00"},{"0+0","+0"},{"0++","-+"},
                                    {"+--","-0"},{"+-0","00"},{"+-+","+0"},
                                    {"+0-","00"},{"+00","+0"},{"+0+","-+"},
                                    {"++-","+0"},{"++0","-+"},{"+++","0+"}})
 
 
function bt_add(string a, b)
    integer padding = length(a)-length(b),
            carry = '0', ch
    if padding!=0 then
        if padding<0 then
            a = repeat('0',-padding)&a
        else
            b = repeat('0',padding)&b
        end if
    end if
    for i=length(a) to 1 by -1 do
        string cc = addres[find(a[i]&b[i]&carry,tadd)]
        a[i] = cc[1]
        carry = cc[2]
    end for
    if carry!='0' then
        a = carry&a
    else
        while length(a)>1 and a[1]='0' do
            a = a[2..$]
        end while
    end if
    return a
end function
 
function bt_mul(string a, string b)
    string pos = a, neg = negate(a), res = "0"
    for i=length(b) to 1 by -1 do
        integer ch = b[i]
        if ch='+' then
            res = bt_add(res,pos)
        elsif ch='-' then
            res = bt_add(res,neg)
        end if
        pos = pos&'0'
        neg = neg&'0'
    end for 
    return res
end function
 
string a = "+-0++0+", b = dec2bt(-436), c = "+-++-",
       res = bt_mul(a,bt_add(b,negate(c)))
printf(1,"%7s:  %12s  %9d\n",{"a",a,bt2dec(a)})
printf(1,"%7s:  %12s  %9d\n",{"b",b,bt2dec(b)})
printf(1,"%7s:  %12s  %9d\n",{"c",c,bt2dec(c)})
printf(1,"%7s:  %12s  %9d\n",{"a*(b-c)",res,bt2dec(res)})
Output:
       a:        +-0++0+        523
       b:        -++-0--       -436
       c:          +-++-         65
 a*(b-c):   ----0+--0++0    -262023

Proof of arbitrary large value support is provided by calculating 1000! and 999! and using a naive subtraction loop to effect division. The limit for factorials that can be held in native integers is a mere 12, and for atoms 170, mind you, inaccurate above 22. The timings show it manages a 5000+digit multiplication and subtraction in about 0.2s, which I say is "reasonable", given that I didn't try very hard, as evidenced by that daft addition lookup table!

with javascript_semantics
atom t0 = time()
string f999 = dec2bt(1)
for i=2 to 999 do
    f999 = bt_mul(f999,dec2bt(i))
end for
string f1000 = bt_mul(f999,dec2bt(1000))
 
printf(1,"In balanced ternary, f999 has %d digits and f1000 has %d digits\n",{length(f999),length(f1000)})
 
integer count = 0
f999 = negate(f999)
while f1000!="0" do
    f1000 = bt_add(f1000,f999)
    count += 1
end while
printf(1,"It took %d subtractions to reach 0. (%3.2fs)\n",{count,time()-t0})
Output:
In balanced ternary, f999 has 5376 digits and f1000 has 5383 digits
It took 1000 subtractions to reach 0. (9.30s)

PicoLisp

(seed (in "/dev/urandom" (rd 8)))

(setq *G '((0 -1) (1 -1) (-1 0) (0 0) (1 0) (-1 1) (0 1)))

# For humans
(de negh (L)
   (mapcar
      '((I)
         (case I
            (- '+)
            (+ '-)
            (T 0) ) )
      L ) )

(de trih (X)
   (if (num? X)
      (let (S (lt0 X)  X (abs X)  R NIL)
         (if (=0 X)
            (push 'R 0)
            (until (=0 X)
               (push 'R
                  (case (% X 3)
                     (0 0)
                     (1 '+)
                     (2 (inc 'X) '-) ) )
               (setq X (/ X 3)) ) )
         (if S (pack (negh R)) (pack R)) )
      (let M 1
         (sum
            '((C)
               (prog1
                  (unless (= C "0") ((intern C) M))
                  (setq M (* 3 M)) ) )
            (flip (chop X)) ) ) ) )
               
# For robots
(de neg (L)
   (mapcar
      '((I)
         (case I (-1 1) (1 -1) (T 0)) )
      L ) )

(de tri (X)
   (if (num? X)
      (let (S (lt0 X)  X (abs X)  R NIL)
         (if (=0 X)
            (push 'R 0)
            (until (=0 X)
               (push 'R
                  (case (% X 3)
                     (0 0)
                     (1 1)
                     (2 (inc 'X) (- 1)) ) )
               (setq X (/ X 3)) ) )
         (flip (if S (neg R) R)) )
      (let M 1
         (sum
            '((C)
               (prog1 (* C M) (setq M (* 3 M))) )
            X ) ) ) )

(de add (D1 D2)
   (let
      (L (max (length D1) (length D2))
         D1 (need (- L) D1 0)
         D2 (need (- L) D2 0)
         C 0 )
      (mapcon
         '((L1 L2)
            (let R
               (get
                  *G 
                  (+ 4 (+ (car L1) (car L2) C)) )
               (ifn (cdr L1) 
                  R
                  (setq C (cadr R))
                  (cons (car R)) ) ) )
         D1
         D2 ) ) )

(de mul (D1 D2)
   (ifn (and D1 D2)
      0
      (add 
         (case (car D1)
            (0 0)
            (1 D2)
            (-1 (neg D2)) )
         (cons 0 (mul (cdr D1) D2) ) ) ) )
 
(de sub (D1 D2)
   (add D1 (neg D2)) )

# Random testing
(let (X 0  Y 0  C 2048)
   (do C
      (setq 
         X (rand (- C) C)
         Y (rand (- C) C) )
      (test X (trih (trih X)))
      (test X (tri (tri X)))
      (test
         (+ X Y)
         (tri (add (tri X) (tri Y))) ) 
      (test
         (- X Y)
         (tri (sub (tri X) (tri Y))) )
      (test
         (* X Y)
         (tri (mul (tri X) (tri Y))) ) ) )

(println 'A (trih 523) (trih "+-0++0+"))
(println 'B (trih -436) (trih "-++-0--"))
(println 'C (trih 65) (trih "+-++-"))
(let R 
   (tri
      (mul 
         (tri (trih "+-0++0+"))
         (sub (tri -436) (tri (trih "+-++-"))) ) )
   (println 'R (trih R) R) )

(bye)

Prolog

Works with SWI-Prolog and library clpfd written by Markus Triska.
Three modules, one for the conversion, one for the addition and one for the multiplication.

The conversion.
Library clpfd is used so that bt_convert works in both ways Decimal => Ternary and Ternary ==> Decimal.

:- module('bt_convert.pl', [bt_convert/2,
			    op(950, xfx, btconv),
			    btconv/2]).

:- use_module(library(clpfd)).

:- op(950, xfx, btconv).

X btconv Y :-
	bt_convert(X, Y).

% bt_convert(?X, ?L)
bt_convert(X, L) :-
	(   (nonvar(L), \+is_list(L)) ->string_to_list(L, L1);  L1 = L),
	convert(X, L1),
	(   var(L) -> string_to_list(L, L1); true).

% map numbers toward digits +, - 0
plus_moins( 1, 43).
plus_moins(-1, 45).
plus_moins( 0, 48).


convert(X, [48| L]) :-
	var(X),
	(   L \= [] -> convert(X, L); X = 0, !).

convert(0, L) :-
	var(L), !, string_to_list(L, [48]).

convert(X, L) :-
	(   (nonvar(X), X > 0)
	;   (var(X), X #> 0,
	    L = [43|_],
	     maplist(plus_moins, L1, L))),
	!,
	convert(X, 0, [], L1),
	(   nonvar(X) -> maplist(plus_moins, L1, LL),  string_to_list(L, LL)
	;   true).

convert(X, L) :-
	(  nonvar(X) -> Y is -X
	;  X #< 0,
	   maplist(plus_moins, L2, L),
	   maplist(mult(-1), L2, L1)),
	convert(Y, 0, [], L1),
	(   nonvar(X) ->
	    maplist(mult(-1), L1, L2),
	    maplist(plus_moins, L2, LL),
            string_to_list(L, LL)
	;   X #= -Y).

mult(X, Y, Z) :-
	Z #= X * Y.


convert(0, 0, L, L) :-  !.

convert(0, 1, L, [1 | L]) :- !.


convert(N, C, LC, LF) :-
	R #= N mod 3 + C,
	R #> 1 #<==> C1,
	N1 #= N / 3,
	R1 #= R - 3 * C1, % C1 #= 1,
	convert(N1, C1, [R1 | LC], LF).


The addition.
The same predicate is used for addition and substraction.

:- module('bt_add.pl', [bt_add/3,
			bt_add1/3,
			op(900, xfx, btplus),
			op(900, xfx, btmoins),
			btplus/2,
			btmoins/2,
			strip_nombre/3
		       ]).

:- op(900, xfx, btplus).
:- op(900, xfx, btmoins).

% define operator btplus
A is X btplus Y :-
	bt_add(X, Y, A).

% define operator btmoins
% no need to define a predicate for the substraction
A is X btmoins Y :-
       X is Y btplus A.


% bt_add(?X, ?Y, ?R)
% R is X + Y
% X, Y, R are strings
% At least 2 args must be instantiated
bt_add(X, Y, R) :-
	(   nonvar(X) -> string_to_list(X, X1);  true),
	(   nonvar(Y) -> string_to_list(Y, Y1);  true),
	(   nonvar(R) -> string_to_list(R, R1);  true),
	bt_add1(X1, Y1, R1),
	(   var(X) -> string_to_list(X, X1); true),
	(   var(Y) -> string_to_list(Y, Y1); true),
	(   var(R) -> string_to_list(R, R1); true).



% bt_add1(?X, ?Y, ?R)
% R is X + Y
% X, Y, R are lists
bt_add1(X, Y, R) :-
	% initialisation :  X and Y must have the same length
	% we add zeros at the beginning of the shortest list
	(   nonvar(X) -> length(X, LX);  length(R, LR)),
	(   nonvar(Y) ->  length(Y, LY);  length(R, LR)),
	(   var(X) -> LX is max(LY, LR) , length(X1, LX), Y1 = Y ; X1 = X),
	(   var(Y) -> LY is max(LX, LR) , length(Y1, LY), X1 = X ; Y1 = Y),

	Delta is abs(LX - LY),
	(   LX < LY -> normalise(Delta, X1, X2), Y1 = Y2
	;   LY < LX -> normalise(Delta, Y1, Y2), X1 = X2
	;   X1 = X2, Y1 = Y2),


	% if R is instancied, it must have, at least, the same length than X or Y
	Max is max(LX, LY),
	(   (nonvar(R), length(R, LR), LR < Max) -> Delta1 is Max - LR, normalise(Delta1, R, R2)
	;   nonvar(R) -> R = R2
	;   true),

	 bt_add(X2, Y2, C, R2),

	(   C = 48 -> strip_nombre(R2, R, []),
	              (	  var(X) -> strip_nombre(X2, X, []) ; true),
	              (	  var(Y) -> strip_nombre(Y2, Y, []) ; true)
	;   var(R) -> strip_nombre([C|R2], R, [])
	;   ( select(C, [45,43], [Ca]),
	    ( var(X) -> strip_nombre([Ca | X2], X, [])
	    ;	strip_nombre([Ca | Y2], Y, [])))).


% here we actually compute the sum
bt_add([], [], 48, []).

bt_add([H1|T1], [H2|T2], C3, [R2 | L]) :-
	bt_add(T1, T2, C, L),
	% add HH1 and H2
	ternary_sum(H1, H2, R1, C1),
	% add first carry,
	ternary_sum(R1, C, R2, C2),
	% add second carry
	ternary_sum(C1, C2, C3, _).



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ternary_sum
% @arg1 : V1
% @arg2 : V2
% @arg3 : R is V1 + V2
% @arg4 : Carry
ternary_sum(43, 43, 45, 43).

ternary_sum(43, 45, 48, 48).

ternary_sum(45, 43, 48, 48).

ternary_sum(45, 45, 43, 45).

ternary_sum(X, 48, X, 48).

ternary_sum(48, X, X, 48).


% if L has a length smaller than N, complete L with 0 (code 48)
normalise(0, L, L) :- !.
normalise(N, L1, L) :-
	N1 is N - 1,
	normalise(N1, [48 | L1], L).


% contrary of normalise
% remove leading zeros.
% special case of number 0 !
strip_nombre([48]) --> {!}, "0".

% enlève les zéros inutiles
strip_nombre([48 | L]) -->
	strip_nombre(L).


strip_nombre(L) -->
	L.

The multiplication.
We give a predicate euclide(?A, +B, ?Q, ?R) which computes both the multiplication and the division, but it is very inefficient.
The predicates multiplication(+B, +Q, -A) and division(+A, +B, -Q, -R) are much more efficient.

:- module('bt_mult.pl', [op(850, xfx, btmult),
			 btmult/2,
			 multiplication/3
			]).

:- use_module('bt_add.pl').

:- op(850, xfx, btmult).
A is B btmult C :-
	multiplication(B, C, A).

neg(A, B) :-
	maplist(opp, A, B).

opp(48, 48).
opp(45, 43).
opp(43, 45).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the multiplication (efficient)
% multiplication(+BIn, +QIn, -AOut)
% Aout is BIn * QIn
% BIn, QIn, AOut are strings
multiplication(BIn, QIn, AOut) :-
	string_to_list(BIn, B),
	string_to_list(QIn, Q),

	% We work with positive numbers
	(   B = [45 | _] -> Pos0 = false, neg(B,BP) ; BP = B, Pos0 = true),
	(   Q = [45 | _] -> neg(Q, QP), select(Pos0, [true, false], [Pos1]); QP = Q, Pos1 = Pos0),

	multiplication_(BP, QP, [48], A),
	(   Pos1 = false -> neg(A, A1); A1 = A),
	string_to_list(AOut, A1).


multiplication_(_B, [], A, A).

multiplication_(B, [H | T], A, AF) :-
	multiplication_1(B, H, B1),
	append(A, [48], A1),
	bt_add1(B1, A1, A2),
	multiplication_(B, T, A2, AF).

% by 1 (digit '+' code 43)
multiplication_1(B, 43, B).

% by 0 (digit '0' code 48)
multiplication_1(_, 48, [48]).

% by -1 (digit '-' code 45)
multiplication_1(B, 45, B1) :- neg(B, B1).


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the division (efficient)
% division(+AIn, +BIn, -QOut, -ROut)
%
division(AIn, BIn, QOut, ROut) :-
	string_to_list(AIn, A),
	string_to_list(BIn, B),
	length(B, LB),
	length(A, LA),
	Len is LA - LB,
	(   Len < 0 -> Q = [48], R = A
	;   neg(B, NegB), division_(A, B, NegB, LB, Len, [], Q, R)),
	string_to_list(QOut, Q),
	string_to_list(ROut, R).


division_(A, B, NegB, LenB, LenA, QC, QF, R) :-
	% if the remainder R is negative (last number A), we must decrease the quotient Q, annd add B to R
	(   LenA = -1 -> (A = [45 | _]  -> positive(A, B, QC, QF, R) ;	QF = QC, A = R)
	;   extract(LenA, _, A, AR, AF),
	    length(AR, LR),

	    (	LR >= LenB -> ( AR = [43 | _] ->
			        bt_add1(AR, NegB, S), Q0 = [43],
				% special case : R has the same length than B
				% and his first digit is + (1)
				% we must do another one substraction
				(   (length(S, LenB), S = [43|_]) ->
				                       bt_add1(S, NegB, S1),
				                       bt_add1(QC, [43], QC1),
				                       Q00 = [45]
				;   S1 = S, QC1 = QC, Q00 = Q0)


	                        ; bt_add1(AR, B, S1), Q00 = [45], QC1 = QC),
				append(QC1, Q00, Q1),
		                append(S1, AF, A1),
				strip_nombre(A1, A2, []),
				LenA1 is LenA - 1,
				division_(A2, B, NegB, LenB, LenA1, Q1, QF, R)

	    ;   append(QC, [48], Q1), LenA1 is LenA - 1,
	        division_(A, B, NegB, LenB, LenA1, Q1, QF, R))).

% extract(+Len, ?N1, +L, -Head, -Tail)
% remove last N digits from the list L
% put them in Tail.
extract(Len, Len, [], [], []).

extract(Len, N1, [H|T], AR1, AF1) :-
	extract(Len, N, T, AR, AF),
	N1 is N-1,
	(   N > 0 -> AR = AR1, AF1 = [H | AF]; AR1 = [H | AR], AF1 = AF).



positive(R, _, Q, Q, R) :- R = [43 | _].

positive(S, B, Q, QF, R ) :-
	bt_add1(S, B, S1),
	bt_add1(Q, [45], Q1),
	positive(S1, B, Q1, QF, R).


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% "euclidian" division (inefficient)
% euclide(?A, +BIn, ?Q, ?R)
% A = B * Q + R
euclide(A, B, Q, R) :-
	mult(A, B, Q, R).


mult(AIn, BIn, QIn, RIn) :-
	(   nonvar(AIn) -> string_to_list(AIn, A); A = AIn),
	(   nonvar(BIn) -> string_to_list(BIn, B); B = BIn),
	(   nonvar(QIn) -> string_to_list(QIn, Q); Q = QIn),
	(   nonvar(RIn) -> string_to_list(RIn, R); R = RIn),

	% we use positive numbers
	(   B = [45 | _] -> Pos0 = false, neg(B,BP) ; BP = B, Pos0 = true),
	(   (nonvar(Q), Q = [45 | _]) -> neg(Q, QP), select(Pos0, [true, false], [Pos1])
	;   nonvar(Q) -> Q = QP , Pos1 = Pos0
	;   Pos1 = Pos0),
	(   (nonvar(A), A = [45 | _]) -> neg(A, AP)
	;   nonvar(A) -> AP = A
	;   true),

	% is R instancied ?
	( nonvar(R) -> R1 = R; true),
	% multiplication ? we add B to A and substract 1 (digit '-') to Q 
	(   nonvar(Q) -> BC = BP, Ajout = [45],
	    (	nonvar(R) ->  bt_add1(BC, R, AP) ; AP = BC)
	% division ? we substract B to A and add 1 (digit '+') to Q
	;    neg(BP, BC), Ajout = [43], QP = [48]),

	% do the real job
	mult_(BC, QP, AP, R1, Resultat, Ajout),

	(   var(QIn) -> (Pos1 = false -> neg(Resultat, QT); Resultat = QT), string_to_list(QIn, QT)
	;   true),
	(   var(AIn) -> (Pos1 = false -> neg(Resultat, AT); Resultat = AT), string_to_list(AIn, AT)
	;   true),
	(   var(RIn) -> string_to_list(RIn, R1); true).

% @arg1 : divisor
% @arg2 : quotient
% @arg3 : dividend
% @arg4 : remainder
% @arg5 : Result :  receive either the dividend A
%                           either the quotient Q
mult_(B, Q, A, R, Resultat, Ajout) :-
	bt_add1(Q, Ajout, Q1),
	bt_add1(A, B, A1),
	(  Q1 = [48] -> Resultat = A % a multiplication
	;  ( A1 = [45 | _], Ajout = [43]) -> Resultat = Q, R = A  % a division
	;  mult_(B, Q1, A1, R, Resultat, Ajout)) .

Example of output :

 ?- A btconv "+-0++0+".
A = 523.

 ?- -436 btconv B.
B = "-++-0--".

 ?- C btconv "+-++-".
C = 65.

 ?- X is "-++-0--" btmoins "+-++-", Y is "+-0++0+" btmult X, Z btconv Y.
X = "-+0-++0",
Y = "----0+--0++0",
Z = -262023 .

Python

Translation of: Common Lisp
class BalancedTernary:
    # Represented as a list of 0, 1 or -1s, with least significant digit first.

    str2dig = {'+': 1, '-': -1, '0': 0} # immutable
    dig2str = {1: '+', -1: '-', 0: '0'} # immutable
    table = ((0, -1), (1, -1), (-1, 0), (0, 0), (1, 0), (-1, 1), (0, 1)) # immutable

    def __init__(self, inp):
        if isinstance(inp, str):
            self.digits = [BalancedTernary.str2dig[c] for c in reversed(inp)]
        elif isinstance(inp, int):
            self.digits = self._int2ternary(inp)
        elif isinstance(inp, BalancedTernary):
            self.digits = list(inp.digits)
        elif isinstance(inp, list):
            if all(d in (0, 1, -1) for d in inp):
                self.digits = list(inp)
            else:
                raise ValueError("BalancedTernary: Wrong input digits.")
        else:
            raise TypeError("BalancedTernary: Wrong constructor input.")

    @staticmethod
    def _int2ternary(n):
        if n == 0: return []
        if (n % 3) == 0: return [0] + BalancedTernary._int2ternary(n // 3)
        if (n % 3) == 1: return [1] + BalancedTernary._int2ternary(n // 3)
        if (n % 3) == 2: return [-1] + BalancedTernary._int2ternary((n + 1) // 3)

    def to_int(self):
        return reduce(lambda y,x: x + 3 * y, reversed(self.digits), 0)

    def __repr__(self):
        if not self.digits: return "0"
        return "".join(BalancedTernary.dig2str[d] for d in reversed(self.digits))

    @staticmethod
    def _neg(digs):
        return [-d for d in digs]

    def __neg__(self):
        return BalancedTernary(BalancedTernary._neg(self.digits))

    @staticmethod
    def _add(a, b, c=0):
        if not (a and b):
            if c == 0:
                return a or b
            else:
                return BalancedTernary._add([c], a or b)
        else:
            (d, c) = BalancedTernary.table[3 + (a[0] if a else 0) + (b[0] if b else 0) + c]
            res = BalancedTernary._add(a[1:], b[1:], c)
            # trim leading zeros
            if res or d != 0:
                return [d] + res
            else:
                return res

    def __add__(self, b):
        return BalancedTernary(BalancedTernary._add(self.digits, b.digits))

    def __sub__(self, b):
        return self + (-b)

    @staticmethod
    def _mul(a, b):
        if not (a and b):
            return []
        else:
            if   a[0] == -1: x = BalancedTernary._neg(b)
            elif a[0] ==  0: x = []
            elif a[0] ==  1: x = b
            else: assert False
            y = [0] + BalancedTernary._mul(a[1:], b)
            return BalancedTernary._add(x, y)

    def __mul__(self, b):
        return BalancedTernary(BalancedTernary._mul(self.digits, b.digits))


def main():
    a = BalancedTernary("+-0++0+")
    print "a:", a.to_int(), a

    b = BalancedTernary(-436)
    print "b:", b.to_int(), b

    c = BalancedTernary("+-++-")
    print "c:", c.to_int(), c

    r = a * (b - c)
    print "a * (b - c):", r.to_int(), r

main()
Output:
a: 523 +-0++0+
b: -436 -++-0--
c: 65 +-++-
a * (b - c): -262023 ----0+--0++0

Racket

#lang racket

;; Represent a balanced-ternary number as a list of 0's, 1's and -1's.
;;
;; e.g. 11 = 3^2 + 3^1 - 3^0 ~ "++-" ~ '(-1 1 1)
;;       6 = 3^2 - 3^1       ~ "+-0" ~ '(0 -1 1)
;;
;; Note: the list-rep starts with the least signifcant tert, while
;;       the string-rep starts with the most significsnt tert.

(define (bt->integer t)
  (if (null? t) 
      0
      (+ (first t) (* 3 (bt->integer (rest t))))))

(define (integer->bt n)
  (letrec ([recur (λ (b r) (cons b (convert (floor (/ r 3)))))]
           [convert (λ (n) (if (zero? n) null
                               (case (modulo n 3)
                                 [(0) (recur 0 n)]
                                 [(1) (recur 1 n)]
                                 [(2) (recur -1 (add1 n))])))])
    (convert n)))

(define (bt->string t)
  (define (strip-leading-zeroes a)
    (if (or (null? a) (not (= (first a) 0))) a (strip-leading-zeroes (rest a))))
  (string-join (map (λ (u) 
                      (case u 
                        [(1) "+"] 
                        [(-1) "-"] 
                        [(0) "0"])) 
                    (strip-leading-zeroes (reverse t))) ""))

(define (string->bt s)
  (reverse
   (map (λ (c) 
          (case c 
            [(#\+) 1] 
            [(#\-) -1] 
            [(#\0) 0])) 
        (string->list s))))

(define (bt-negate t)
  (map (λ (u) (- u)) t))

(define (bt-add a b [c 0])
  (cond [(and (null? a) (null? b)) (if (zero? c) null (list c))]
        [(null? b) (if (zero? c) a (bt-add a (list c)))]
        [(null? a) (bt-add b a c)]
        [else (let* ([t (+ (first a) (first b) c)]
                     [carry (if (> (abs t) 1) (sgn t) 0)]
                     [v (case (abs t)
                          [(3) 0]
                          [(2) (- (sgn t))]
                          [else t])])
                (cons v (bt-add (rest a) (rest b) carry)))]))

(define (bt-multiply a b)
  (cond [(null? a) null]
        [(null? b) null]
        [else (bt-add (case (first a)
                        [(-1) (bt-negate b)]
                        [(0) null]
                        [(1) b])
                      (cons 0 (bt-multiply (rest a) b)))]))
 
; test case
(let* ([a (string->bt "+-0++0+")]
       [b (integer->bt -436)]
       [c (string->bt "+-++-")]
       [d (bt-multiply a (bt-add b (bt-negate c)))])
  (for ([bt (list a b c d)]
        [description (list 'a 'b 'c "a×(b−c)")])
    (printf "~a = ~a or ~a\n" description (bt->integer bt) (bt->string bt))))
Output:
a = 523 or +-0++0+
b = -436 or -++-0--
c = 65 or +-++-
a×(b−c) = -262023 or ----0+--0++0

Raku

(formerly Perl 6)

Works with: rakudo version 2017.01
class BT {
    has @.coeff;

    my %co2bt = '-1' => '-', '0' => '0', '1' => '+';
    my %bt2co = %co2bt.invert;

    multi method new (Str $s) {
	self.bless(coeff => %bt2co{$s.flip.comb});
    }
    multi method new (Int $i where $i >= 0) {
	self.bless(coeff => carry $i.base(3).comb.reverse);
    }
    multi method new (Int $i where $i < 0) {
	self.new(-$i).neg;
    }

    method Str () { %co2bt{@!coeff}.join.flip }
    method Int () { [+] @!coeff Z* (1,3,9...*) }

    multi method neg () {
	self.new: coeff => carry self.coeff X* -1;
    }
}

sub carry (*@digits is copy) {
    loop (my $i = 0; $i < @digits; $i++) {
	while @digits[$i] < -1 { @digits[$i] += 3; @digits[$i+1]--; }
	while @digits[$i] > 1  { @digits[$i] -= 3; @digits[$i+1]++; }
    }
    pop @digits while @digits and not @digits[*-1];
    @digits;
}

multi prefix:<-> (BT $x) { $x.neg }

multi infix:<+> (BT $x, BT $y) {
    my ($b,$a) = sort +*.coeff, ($x, $y);
    BT.new: coeff => carry ($a.coeff Z+ |$b.coeff, |(0 xx $a.coeff - $b.coeff));
}

multi infix:<-> (BT $x, BT $y) { $x + $y.neg }

multi infix:<*> (BT $x, BT $y) {
    my @x = $x.coeff;
    my @y = $y.coeff;
    my @z = 0 xx @x+@y-1;
    my @safe;
    for @x -> $xd {
	@z = @z Z+ |(@y X* $xd), |(0 xx @z-@y);
	@safe.push: @z.shift;
    }
    BT.new: coeff => carry @safe, @z;
}

my $a = BT.new: "+-0++0+";
my $b = BT.new: -436;
my $c = BT.new: "+-++-";
my $x = $a * ( $b - $c );

say 'a == ', $a.Int;
say 'b == ', $b.Int;
say 'c == ', $c.Int;
say "a × (b − c) == ", ~$x, ' == ', $x.Int;
Output:
a == 523
b == -436
c == 65
a × (b − c) == ----0+--0++0 == -262023

REXX

The REXX program could be optimized by using   (procedure) with   expose   and having the   $.   and   @.   variables set only once.

/*REXX program converts decimal  ◄───►  balanced ternary;  it also performs arithmetic. */
numeric digits 10000                             /*be able to handle  gihugic  numbers. */
Ao = '+-0++0+' ;    Abt =      Ao                /*   [↓]  2 literals used by subroutine*/
Bo =    '-436' ;    Bbt = d2bt(Bo);                    @ = "(decimal)"
Co =   '+-++-' ;    Cbt =      Co ;                   @@ = "balanced ternary ="
                  call btShow  '[a]',       Abt
                  call btShow  '[b]',       Bbt
                  call btShow  '[c]',       Cbt
                  say;                      $bt = btMul(Abt, btSub(Bbt, Cbt) )
                  call btShow '[a*(b-c)]',  $bt
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
d2bt: procedure; parse arg x 1;  x= x / 1;    p= 0;  $.= '-';   $.1= "+";   $.0= 0;     #=
                    do  until x==0;           _= (x // (3** (p+1) ) )  %  3**p
                    if _== 2  then _= -1
                              else if _== -2  then _= 1
                    x= x  -  _ * (3**p);      p= p + 1;                     #= $._  ||  #
                    end   /*until*/;          return #
/*──────────────────────────────────────────────────────────────────────────────────────*/
bt2d: procedure; parse arg x;  r= reverse(x);  $.= -1;  $.0= 0;  #= 0;    _= '+';   $._= 1
                    do j=1  for length(x);  _= substr(r, j, 1);  #= #  +  $._ * 3 ** (j-1)
                    end   /*j*/;                         return #
/*──────────────────────────────────────────────────────────────────────────────────────*/
btAdd: procedure; parse arg x,y;    rx= reverse(x);      ry= reverse(y);          carry= 0
       @.= 0;   _= '-';   @._= -1;   _= "+";  @._= 1;  $.= '-';   $.0= 0;   $.1= "+";   #=
                                           do j=1  for max( length(x), length(y) )
                                           x_= substr(rx, j, 1);            xn= @.x_
                                           y_= substr(ry, j, 1);            yn= @.y_
                                           s= xn + yn + carry;           carry= 0
                                           if s== 2  then do;   s=-1;    carry= 1;    end
                                           if s== 3  then do;   s= 0;    carry= 1;    end
                                           if s==-2  then do;   s= 1;    carry=-1;    end
                                           #= $.s || #
                                           end   /*j*/
       if carry\==0  then #= $.carry || #;                      return btNorm(#)
/*──────────────────────────────────────────────────────────────────────────────────────*/
btMul: procedure; parse arg x 1 x1 2, y 1 y1 2; if x==0 | y==0  then return 0;  S= 1;  P=0
       x= btNorm(x); y= btNorm(y); Lx= length(x); Ly= length(y)  /*handle: 0-xxx values.*/
       if x1=='-'  then do;   x= btNeg(x);   S= -S;   end        /*positate the number. */
       if y1=='-'  then do;   y= btNeg(y);   S= -S;   end        /*    "     "    "     */
       if Ly>Lx    then parse value  x y  with  y x              /*optimize  "    "     */
                                             do   until  y==0    /*keep adding 'til done*/
                                             P= btAdd(P,  x )    /*multiple the hard way*/
                                             y= btSub(y, '+')    /*subtract  1  from  Y.*/
                                             end   /*until*/
       if S==-1  then P= btNeg(P);  return P       /*adjust the product's sign;  return.*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
btNeg:  return translate( arg(1), '-+', "+-")                    /*negate bal_ternary #.*/
btNorm: _= strip(arg(1), 'L', 0);  if _==''  then _=0;  return _ /*normalize the number.*/
btSub:  return btAdd( arg(1), btNeg( arg(2) ) )                  /*subtract two BT args.*/
btShow: say center( arg(1), 9)  right( arg(2), 20)  @@  right( bt2d(arg(2)), 9) @;  return
output   when using the default input:
   [a]                 +-0++0+ balanced ternary =       523 (decimal)
   [b]                 -++-0-- balanced ternary =      -436 (decimal)
   [c]                   +-++- balanced ternary =        65 (decimal)

[a*(b-c)]         ----0+--0++0 balanced ternary =   -262023 (decimal)

RPL

Translation of: Nim
Works with: RPL version HP-48
« "-0+" SWAP POS 2 - 
» 'CH→TR' STO
 
« "-0+" SWAP 2 + DUP SUB 
» 'TR→CH' STO

« WHILE DUP SIZE OVER HEAD "0" == AND REPEAT TAIL END
» 'NOZEROS' STO
 
« DUP SIZE → bt len
  « 0
    1 len FOR j
       bt j DUP SUB CH→TR 
       3 len j - ^ * +
    NEXT
» » 'BT→I' STO

« DUP "" "0" IFTE
  WHILE OVER REPEAT
     OVER 3 MOD 
     1 ≤ LASTARG NEG IFTE     @ convert 2 into -1
     DUP TR→CH ROT - 3 / IP SWAP
  END 
  SWAP DROP 
» 'I→BT' STO

« IF OVER SIZE OVER SIZE < THEN SWAP END
  WHILE OVER SIZE OVER SIZE > REPEAT "0" SWAP + END
  → a b
  « "" 0
    a SIZE 1 FOR j
       a j DUP SUB CH→TR + b j DUP SUB CH→TR + 
       IF DUP ABS 2 ≥ THEN
          DUP 3 MOD 1 ≤ LASTARG NEG IFTE
          SWAP SIGN
       ELSE 0 END
       SWAP TR→CH ROT + SWAP 
    -1 STEP
    IF THEN LASTARG TR→CH SWAP + END
    NOZEROS
» » 'ADDBT' STO

« "" 
  1 3 PICK SIZE FOR j 
     OVER j DUP SUB 
     CH→TR NEG TR→CH +
  NEXT 
  SWAP DROP
» 'NEGBT' STO

« "" → a b shift
  « "0"
    a SIZE 1 FOR j
       a j DUP SUB
       IF DUP "0" ≠ THEN
          b 
          IF SWAP "-" == THEN NEGBT END
       END 
       shift + ADDBT
       'shift' "0" STO+
    -1 STEP
    NOZEROS
» » 'MULBT' STO

« "+-0++0+" -436 I→BT "+-++-" → a b c
  « a BT→I b BT→I c BT→I 3 →LIST
    a b c NEGBT ADDBT MULBT
» » 'TASK' STO
Output:
3: { 523 -436 65 }
2: "----0+--0++0"
1: -262023

Ruby

class BalancedTernary
  include Comparable
  def initialize(str = "")
    if str =~ /[^-+0]+/
      raise ArgumentError, "invalid BalancedTernary number: #{str}"
    end
    @digits = trim0(str)
  end
   
  I2BT = {0 => ["0",0], 1 => ["+",0], 2 => ["-",1]}
  def self.from_int(value)
    n = value.to_i
    digits = ""
    while n != 0
      quo, rem = n.divmod(3)
      bt, carry = I2BT[rem]
      digits = bt + digits
      n = quo + carry
    end
    new(digits)
  end
  
  BT2I = {"-" => -1, "0" => 0, "+" => 1}
  def to_int
    @digits.chars.inject(0) do |sum, char|
      sum = 3 * sum + BT2I[char]
    end
  end
  alias :to_i :to_int
  
  def to_s
    @digits.dup                 # String is mutable
  end
  alias :inspect :to_s
  
  def <=>(other)
    to_i <=> other.to_i
  end
  
  ADDITION_TABLE = {
    "---" => ["-","0"], "--0" => ["-","+"], "--+" => ["0","-"],
    "-0-" => ["-","+"], "-00" => ["0","-"], "-0+" => ["0","0"],
    "-+-" => ["0","-"], "-+0" => ["0","0"], "-++" => ["0","+"],
    "0--" => ["-","+"], "0-0" => ["0","-"], "0-+" => ["0","0"],
    "00-" => ["0","-"], "000" => ["0","0"], "00+" => ["0","+"],
    "0+-" => ["0","0"], "0+0" => ["0","+"], "0++" => ["+","-"],
    "+--" => ["0","-"], "+-0" => ["0","0"], "+-+" => ["0","+"],
    "+0-" => ["0","0"], "+00" => ["0","+"], "+0+" => ["+","-"],
    "++-" => ["0","+"], "++0" => ["+","-"], "+++" => ["+","0"],
  }
  
  def +(other)
    maxl = [to_s.length, other.to_s.length].max
    a = pad0_reverse(to_s, maxl)
    b = pad0_reverse(other.to_s, maxl)
    carry = "0"
    sum = a.zip( b ).inject("") do |sum, (c1, c2)|
      carry, digit = ADDITION_TABLE[carry + c1 + c2]
      sum = digit + sum
    end
    self.class.new(carry + sum)
  end
  
  MULTIPLICATION_TABLE = {
    "-" => "+0-",
    "0" => "000",
    "+" => "-0+",
  }
  
  def *(other)
    product = self.class.new
    other.to_s.each_char do |bdigit|
      row = to_s.tr("-0+", MULTIPLICATION_TABLE[bdigit])
      product += self.class.new(row)
      product << 1
    end
    product >> 1
  end
  
  # negation
  def -@()
    self.class.new(@digits.tr('-+','+-'))
  end
 
  # subtraction
  def -(other)
    self + (-other)
  end
  
  # shift left
  def <<(count)
    @digits = trim0(@digits + "0"*count)
    self
  end
  
  # shift right
  def >>(count)
    @digits[-count..-1] = "" if count > 0
    @digits = trim0(@digits)
    self
  end
  
  private
  
  def trim0(str)
    str = str.sub(/^0+/, "")
    str = "0" if str.empty?
    str
  end
  
  def pad0_reverse(str, len)
    str.rjust(len, "0").reverse.chars
  end
end

a = BalancedTernary.new("+-0++0+")
b = BalancedTernary.from_int(-436)
c = BalancedTernary.new("+-++-")

%w[a b c a*(b-c)].each do |exp|
  val = eval(exp)
  puts "%8s :%13s,%8d" % [exp, val, val.to_i]
end
Output:
       a :      +-0++0+,     523
       b :      -++-0--,    -436
       c :        +-++-,      65
 a*(b-c) : ----0+--0++0, -262023

Rust

use std::{
    cmp::min,
    convert::{TryFrom, TryInto},
    fmt,
    ops::{Add, Mul, Neg},
    str::FromStr,
};

fn main() -> Result<(), &'static str> {
    let a = BalancedTernary::from_str("+-0++0+")?;
    let b = BalancedTernary::from(-436);
    let c = BalancedTernary::from_str("+-++-")?;
    println!("a = {} = {}", a, i128::try_from(a.clone())?);
    println!("b = {} = {}", b, i128::try_from(b.clone())?);
    println!("c = {} = {}", c, i128::try_from(c.clone())?);

    let d = a * (b + -c);
    println!("a * (b - c) = {} = {}", d, i128::try_from(d.clone())?);

    let e = BalancedTernary::from_str(
        "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++",
    )?;
    assert_eq!(i128::try_from(e).is_err(), true);

    Ok(())
}

#[derive(Clone, Copy, PartialEq)]
enum Trit {
    Zero,
    Pos,
    Neg,
}

impl TryFrom<char> for Trit {
    type Error = &'static str;

    fn try_from(value: char) -> Result<Self, Self::Error> {
        match value {
            '0' => Ok(Self::Zero),
            '+' => Ok(Self::Pos),
            '-' => Ok(Self::Neg),
            _ => Err("Invalid character for balanced ternary"),
        }
    }
}

impl From<Trit> for char {
    fn from(x: Trit) -> Self {
        match x {
            Trit::Zero => '0',
            Trit::Pos => '+',
            Trit::Neg => '-',
        }
    }
}

impl Add for Trit {
    // (Carry, Current)
    type Output = (Self, Self);

    fn add(self, rhs: Self) -> Self::Output {
        use Trit::{Neg, Pos, Zero};
        match (self, rhs) {
            (Zero, x) | (x, Zero) => (Zero, x),
            (Pos, Neg) | (Neg, Pos) => (Zero, Zero),
            (Pos, Pos) => (Pos, Neg),
            (Neg, Neg) => (Neg, Pos),
        }
    }
}

impl Mul for Trit {
    type Output = Self;

    fn mul(self, rhs: Self) -> Self::Output {
        use Trit::{Neg, Pos, Zero};
        match (self, rhs) {
            (Zero, _) | (_, Zero) => Zero,
            (Pos, Pos) | (Neg, Neg) => Pos,
            (Pos, Neg) | (Neg, Pos) => Neg,
        }
    }
}

impl Neg for Trit {
    type Output = Self;

    fn neg(self) -> Self::Output {
        match self {
            Trit::Zero => Trit::Zero,
            Trit::Pos => Trit::Neg,
            Trit::Neg => Trit::Pos,
        }
    }
}

// The vector is stored in reverse from how it would be viewed, as
// operations tend to work backwards
#[derive(Clone)]
struct BalancedTernary(Vec<Trit>);

impl fmt::Display for BalancedTernary {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "{}",
            self.0
                .iter()
                .rev()
                .map(|&d| char::from(d))
                .collect::<String>()
        )
    }
}

impl Add for BalancedTernary {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        use Trit::Zero;

        // Trim leading zeroes
        fn trim(v: &mut Vec<Trit>) {
            while let Some(last_elem) = v.pop() {
                if last_elem != Zero {
                    v.push(last_elem);
                    break;
                }
            }
        }

        if rhs.0.is_empty() {
            // A balanced ternary shouldn't be empty
            if self.0.is_empty() {
                return BalancedTernary(vec![Zero]);
            }
            return self;
        }

        let length = min(self.0.len(), rhs.0.len());
        let mut sum = Vec::new();
        let mut carry = vec![Zero];

        for i in 0..length {
            let (carry_dig, digit) = self.0[i] + rhs.0[i];
            sum.push(digit);
            carry.push(carry_dig);
        }
        // At least one of these two loops will be ignored
        for i in length..self.0.len() {
            sum.push(self.0[i]);
        }
        for i in length..rhs.0.len() {
            sum.push(rhs.0[i]);
        }

        trim(&mut sum);
        trim(&mut carry);

        BalancedTernary(sum) + BalancedTernary(carry)
    }
}

// This version of `Mul` requires an implementation of the `Add` trait
impl Mul for BalancedTernary {
    type Output = Self;

    fn mul(self, rhs: Self) -> Self::Output {
        let mut results = Vec::with_capacity(rhs.0.len());
        for i in 0..rhs.0.len() {
            let mut digits = vec![Trit::Z