I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

# Conway's Game of Life

Conway's Game of Life
You are encouraged to solve this task according to the task description, using any language you may know.

The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton.

Conway's game of life is described   here:

A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells.

We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table:

```   C   N                 new C
1   0,1             ->  0  # Lonely
1   4,5,6,7,8       ->  0  # Overcrowded
1   2,3             ->  1  # Lives
0   3               ->  1  # It takes three to give birth!
0   0,1,2,4,5,6,7,8 ->  0  # Barren
```

Assume cells beyond the boundary are always dead.

The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves.

Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid.

References

## 11l

Translation of: Python
`V cellcountx = 6V cellcounty = 5V celltable = [(1, 2) = 1,               (1, 3) = 1,               (0, 3) = 1]DefaultDict[(Int, Int), Int] universeuniverse[(1, 1)] = 1universe[(2, 1)] = 1universe[(3, 1)] = 1universe[(1, 4)] = 1universe[(2, 4)] = 1universe[(3, 4)] = 1 L(i) 4   print("\nGeneration "i‘:’)   L(row) 0 .< cellcounty      print(‘  ’(0 .< cellcountx).map(col -> [‘. ’, ‘O ’][:universe[(@row, col)]]).join(‘’))    DefaultDict[(Int, Int), Int] nextgeneration   L(row) 0 .< cellcounty      L(col) 0 .< cellcountx         nextgeneration[(row, col)] = celltable.get(              (universe[(row, col)],              -universe[(row, col)] + sum(multiloop(row-1..row+1,                                                    col-1..col+1, (r, c) -> :universe[(r, c)]))              ), 0)   universe = nextgeneration`

### More optimal solution

`V cellcountx = 6V cellcounty = 5V universe = [[0B] * cellcountx] * cellcountyuniverse[1][1] = 1Buniverse[2][1] = 1Buniverse[3][1] = 1Buniverse[1][4] = 1Buniverse[2][4] = 1Buniverse[3][4] = 1BV nextgeneration = [[0B] * cellcountx] * cellcounty L(i) 4   print("\nGeneration "i‘:’)   L(row) 0 .< cellcounty      print(‘  ’, end' ‘’)      L(col) 0 .< cellcountx         print(I universe[row][col] {‘O ’} E ‘. ’, end' ‘’)      print()    L(row) 0 .< cellcounty      L(col) 0 .< cellcountx         V s = 0         I row > 0            s = universe[row-1][col]            I col > 0               s += universe[row-1][col-1]            I col < cellcountx-1               s += universe[row-1][col+1]         I col > 0            s += universe[row][col-1]         I col < cellcountx-1            s += universe[row][col+1]         I row < cellcounty-1            s += universe[row+1][col]            I col > 0               s += universe[row+1][col-1]            I col < cellcountx-1               s += universe[row+1][col+1]         nextgeneration[row][col] = I universe[row][col] {s C 2..3} E s == 3   universe = nextgeneration`
Output:
```Generation 0:
. . . . . .
. O . . O .
. O . . O .
. O . . O .
. . . . . .

Generation 1:
. . . . . .
. . . . . .
O O O O O O
. . . . . .
. . . . . .

Generation 2:
. . . . . .
. O O O O .
. O O O O .
. O O O O .
. . . . . .

Generation 3:
. . O O . .
. O . . O .
O . . . . O
. O . . O .
. . O O . .
```

## 6502 Assembly

Works with: [6502asm.com] version 1.2
`randfill:   stx \$01          ;\$200 for indirect            ldx #\$02         ;addressing            stx \$02randloop:   lda \$fe          ;generate random            and #\$01         ;pixels on the            sta (\$01),Y      ;screen            jsr inc0103            cmp #\$00            bne randloop            lda \$02            cmp #\$06            bne randloop  clearmem:   lda #\$df         ;set \$07df-\$0a20            sta \$01          ;to \$#00            lda #\$07            sta \$02clearbyte:  lda #\$00            sta (\$01),Y            jsr inc0103            cmp #\$20            bne clearbyte            lda \$02            cmp #\$0a            bne clearbyte  starttick:copyscreen: lda #\$00         ;set up source            sta \$01          ;pointer at            sta \$03          ;\$01/\$02 and            lda #\$02         ;dest pointer            sta \$02          ;at \$03/\$04            lda #\$08            sta \$04            ldy #\$00copybyte:   lda (\$01),Y      ;copy pixel to            sta (\$03),Y      ;back buffer            jsr inc0103      ;increment pointers            cmp #\$00         ;check to see            bne copybyte     ;if we're at \$600            lda \$02          ;if so, we've            cmp #\$06         ;copied the            bne copybyte     ;entire screen  conway:     lda #\$df         ;apply conway rules            sta \$01          ;reset the pointer            sta \$03          ;to \$#01df/\$#07df            lda #\$01         ;(\$200 - \$21)            sta \$02          ;(\$800 - \$21)            lda #\$07            sta \$04onecell:    lda #\$00         ;process one cell            ldy #\$01         ;upper cell            clc            adc (\$03),Y            ldy #\$41         ;lower cell            clc            adc (\$03),Ychkleft:    tax              ;check to see            lda \$01          ;if we're at the            and #\$1f         ;left edge            tay            txa            cpy #\$1f            beq rightcellsleftcells:  ldy #\$00         ;upper-left cell            clc            adc (\$03),Y            ldy #\$20         ;left cell            clc            adc (\$03),Y            ldy #\$40         ;lower-left cell            clc            adc (\$03),Ychkright:   tax              ;check to see            lda \$01          ;if we're at the            and #\$1f         ;right edge            tay            txa            cpy #\$1e            beq evaluaterightcells: ldy #\$02         ;upper-right cell            clc            adc (\$03),Y            ldy #\$22         ;right cell            clc            adc (\$03),Y            ldy #\$42         ;lower-right cell            clc            adc (\$03),Yevaluate:   ldx #\$01         ;evaluate total            ldy #\$21         ;for current cell            cmp #\$03         ;3 = alive            beq storex            ldx #\$00            cmp #\$02         ;2 = alive if            bne storex       ;c = alive            lda (\$03),Y            and #\$01            taxstorex:     txa              ;store to screen            sta (\$01),Y            jsr inc0103      ;move to next cellconwayloop: cmp #\$e0         ;if not last cell,            bne onecell      ;process next cell            lda \$02            cmp #\$05            bne onecell            jmp starttick    ;run next tick  inc0103:    lda \$01          ;increment \$01            cmp #\$ff         ;and \$03 as 16-bit            bne onlyinc01    ;pointers            inc \$02            inc \$04onlyinc01:  inc \$01            lda \$01            sta \$03            rts`

## 68000 Assembly

I went a little further and created a 40x30 grid, but this implementation is accurate and does have a blinker in it. As always, thanks to Keith of Chibiakumas for the cartridge header and hardware routines. This is the source code for a Sega Genesis game that you can compile with VASM. (It was tested in the Fusion emulator but it should work anywhere.)

Explanation of the implementation:

• I'm using the Genesis's foreground tilemap to create the graphics.
• Grid boundaries are handled by using the classic trick of padding all sides with a value that's not used in the "real" grid, and always counts as a dead cell.
• Every iteration of the main loop does the same thing: check neighbors of each cell in the grid, write the next generation to a buffer, copy that buffer over the original, and display the output. This way, updates don't impact the outcome of the rest of the cells down the line (which would go against the rules of the game, as all cell births/deaths happen simultaneously.)

Explanation of macros:

• pushRegs = MOVEM.L ___,-(SP)
• popRegs = MOVEM.L (SP)+,___
• pushLong = MOVE.L ___,-(SP)
• popLong = MOVE.L (SP)+,___
`include "\SrcALL\68000_Macros.asm";Ram VariablesCursor_X equ \$00FF0000		;Ram for Cursor XposCursor_Y equ \$00FF0000+1	;Ram for Cursor Ypos conwayTilemapRam equ \$00FF1000conwayBackupTilemapRam equ \$00FF2000;Video PortsVDP_data	EQU	\$C00000	; VDP data, R/W word or longword access onlyVDP_ctrl	EQU	\$C00004	; VDP control, word or longword writes only ;constantsROWLENGTH equ 40 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 					Traps	DC.L	\$FFFFFE00		;SP register value	DC.L	ProgramStart	;Start of Program Code	DS.L	7,IntReturn		; bus err,addr err,illegal inst,divzero,CHK,TRAPV,priv viol	DC.L	IntReturn		; TRACE	DC.L	IntReturn		; Line A (1010) emulator	DC.L	IntReturn		; Line F (1111) emulator	DS.L	4,IntReturn		; Reserverd /Coprocessor/Format err/ Uninit Interrupt	DS.L	8,IntReturn		; Reserved	DC.L	IntReturn		; spurious interrupt	DC.L	IntReturn		; IRQ level 1	DC.L	IntReturn		; IRQ level 2 EXT	DC.L	IntReturn		; IRQ level 3	DC.L	IntReturn		; IRQ level 4 Hsync	DC.L	IntReturn		; IRQ level 5	DC.L	IntReturn		; IRQ level 6 Vsync	DC.L	IntReturn		; IRQ level 7 	DS.L	16,IntReturn	; TRAPs	DS.L	16,IntReturn	; Misc (FP/MMU) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;					Header	DC.B	"SEGA GENESIS    "	;System Name	DC.B	"(C)CHBI "			;Copyright 	DC.B	"2019.JAN"			;Date	DC.B	"ChibiAkumas.com                                 " ; Cart Name	DC.B	"ChibiAkumas.com                                 " ; Cart Name (Alt)	DC.B	"GM CHIBI001-00"	;TT NNNNNNNN-RR T=Type (GM=Game) N=game Num  R=Revision	DC.W	\$0000				;16-bit Checksum (Address \$000200+)	DC.B	"J               "	;Control Data (J=3button K=Keyboard 6=6button C=cdrom)	DC.L	\$00000000			;ROM Start	DC.L	\$003FFFFF			;ROM Length	DC.L	\$00FF0000,\$00FFFFFF	;RAM start/end (fixed)	DC.B	"            "		;External RAM Data	DC.B	"            "		;Modem Data	DC.B	"                                        " ;MEMO	DC.B	"JUE             "	;Regions Allowed ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;					Generic Interrupt HandlerIntReturn:	rte;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;					Program StartProgramStart:	;initialize TMSS (TradeMark Security System)	move.b (\$A10001),D0		;A10001 test the hardware version	and.b #\$0F,D0	beq	NoTmss				;branch if no TMSS chip	move.l #'SEGA',(\$A14000);A14000 disable TMSS NoTmss:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;					Set Up Graphics 	lea VDPSettings,A5		;Initialize Screen Registers	move.l #VDPSettingsEnd-VDPSettings,D1 ;length of Settings 	move.w (VDP_ctrl),D0	;C00004 read VDP status (interrupt acknowledge?)	move.l #\$00008000,d5	;VDP Reg command (%8rvv) NextInitByte:	move.b (A5)+,D5			;get next video control byte	move.w D5,(VDP_ctrl)	;C00004 send write register command to VDP		;   8RVV - R=Reg V=Value	add.w #\$0100,D5			;point to next VDP register	dbra D1,NextInitByte	;loop for rest of block  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;					Set up palette and graphics 	move.l #\$C0000000,d0	;Color 0	move.l d0,VDP_Ctrl	MOVE.W #\$0A00,VDP_Data		;BLUE 	move.l #\$C01E0000,d0	;Color 0	move.l d0,VDP_Ctrl	MOVE.W #\$00EE,VDP_Data		;YELLOW 	lea Graphics,a0						;background tiles	move.w #(GraphicsEnd-Graphics)-1,d1	;data size	CLR.L D2							;start loading at tile 0 of VRAM	jsr DefineTiles	 	clr.b Cursor_X			;Clear Cursor XY	clr.b Cursor_Y 	;Turn on screen	move.w	#\$8144,(VDP_Ctrl);C00004 reg 1 = 0x44 unblank display ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	; TESTING AREA 	;load the tilemaps	LEA Conway_Tilemap,a3	LEA ConwayTilemapRam,A2	move.l #(Conway_Backup_Tilemap-Conway_Tilemap),d1	JSR LDIR 	LEA Conway_Backup_Tilemap,a3	LEA conwayBackupTilemapRam,A2	move.l #(Conway_Backup_Tilemap-Conway_Tilemap),d1	JSR LDIR	 	CLR.B Cursor_X	CLR.B Cursor_Y	;print the tilemap once	LEA ConwayTilemapRam,A3	JSR Conway_Print main:		;do the behavior	jsr Conway_CheckTilemap 	;copy the tilemap	lea conwayBackupTilemapRam,A3	LEA ConwayTilemapRam,A2	move.l #(Conway_Backup_Tilemap-Conway_Tilemap),d1	jsr LDIR 	CLR.B Cursor_X	CLR.B Cursor_Y	;print the tilemap	LEA ConwayTilemapRam,A3	JSR Conway_Print 	;repeat	JMP main Conway_CheckTilemap:		;since we don't want the partial results of the checks to mess with later ones, we'll copy the changes to a buffer, and then 	;have that buffer clobber the original. That way, all changes to the ecosystem are effectively atomic. 	LEA ConwayTilemapRam,A0	LEA conwayBackupTilemapRam,A6	LEA (ROWLENGTH+3,A0),A0	;actual data starts here	LEA (ROWLENGTH+3,A6),A6	;actual data starts here.loop:	MOVE.B (A0),D2	CMP.B #255,D2	BEQ .done	CMP.B #2,D2	BEQ .overhead	JSR Conway_CheckNeighbors 	pushLong D0		JSR popcnt_8		MOVE.B D0,D3	popLong D0 	;now implement the table here.	;neighbor bits in D0	;current state in D2	;popcnt in D3	;pointer to where we are in A0 	;the only time the current state is relevant to the output, is when popcnt = 2. Otherwise, it's entirely determined by popcnt.	CMP.B #4,D3	BCC .DeadCell	CMP.B #1,D3	BLS .DeadCell	CMP.B #3,D3	BEQ .LiveCell	;else, must be 2.	MOVE.B D2,(A6)	;store current value into backup table.	bra .overhead.LiveCell:	MOVE.B #1,(A6)	BRA .overhead.DeadCell:		MOVE.B #0,(A6)	;store in backup table..overhead:	ADDA.L #1,A0	ADDA.L #1,A6	JMP .loop.done:	RTS popcnt_8:	pushRegs D2-D5		MOVEQ #8-1,D5		MOVEQ #0,D3.loop:		ROR.B #1,D0		BCC .overhead			ADDQ.B #1,D3.overhead:		dbra d5,.loop	MOVE.B D3,D0	popRegs D2-D5	RTS Conway_CheckNeighbors:	;A0 = pointer to where we are in the tilemap.	;returns: D0.B = uUrRdDlL	;u = top left	;U = top	;r = top Right	;R = Right	;d = bottom right	;D = bottom	;l = bottom Left	;L = Left	pushRegs D2-D5/A0	MOVEQ #0,D0	MOVE.L A0,A1	MOVE.L A1,A2	SUBA.L #ROWLENGTH+2,A1		;POINTS ABOVE	ADDA.L #ROWLENGTH+2,A2		;POINTS BELOW 	MOVE.B (A1),D1	MOVE.B (A2),D2 	CMP.B #1,D1	BNE .noUpper	BSET #6,D0	bra .next.noUpper:	BCLR #6,D0.next:CheckLower:	CMP.B #1,D2	BNE .noLower	BSET #2,D0	bra .next.noLower:	BCLR #2,D0.next:	 	SUBA.L #1,A0	;left	SUBA.L #1,A1	;upper-left	SUBA.L #1,A2	;lower-left 	MOVE.B (A1),D1	MOVE.B (A2),D2	MOVE.B (A0),D3CheckUpperLeft:	CMP.B #1,D1	BNE .noUpperLeft	BSET #7,D0	bra .next.noUpperLeft:	BCLR #7,D0.next:CheckLowerLeft:	CMP.B #1,D2	BNE .noLowerLeft	BSET #1,D0	bra .next.noLowerLeft:	BCLR #1,D0.next:	 CheckLeft:	CMP.B #1,D3	BNE .noLeft	BSET #0,D0	bra .next.noLeft:	BCLR #0,D0.next:	  	addA.L #2,A0	addA.L #2,A1	addA.L #2,A2 	MOVE.B (A1),D1	MOVE.B (A2),D2	MOVE.B (A0),D3 CheckUpperRight:	CMP.B #1,D1	BNE .noUpperRight	BSET #5,D0	bra .next.noUpperRight:	BCLR #5,D0.next:CheckLowerRight:	CMP.B #1,D2	BNE .noLowerRight	BSET #3,D0	bra .next.noLowerRight:	BCLR #3,D0.next:	 CheckRight:	CMP.B #1,D3	BNE .noRight	BSET #4,D0	bra .next.noRight:	BCLR #4,D0.next:		popRegs D2-D5/A0	rts Conway_Print:	;input: A3 = base address of tilemap	MOVE.B (A3)+,D0	CMP.B #255,D0	BEQ .done	CMP.B #2,D0	BEQ .skip	;else, print	JSR Conway_PrintChar.skip	BRA Conway_Print.done	rts Conway_PrintChar:				;Show D0 to screen	moveM.l d0-d7/a0-a7,-(sp)		and.l #\$FF,d0			;Keep only 1 byte		Move.L  #\$40000003,d5	;top 4=write, bottom \$3=Cxxx range		MOVEQ #0,D4				;Tilemap at \$C000+ 		Move.B (Cursor_Y),D4			rol.L #8,D4				;move \$-FFF to \$-FFF----		rol.L #8,D4		rol.L #7,D4				;2 bytes per tile * 64 tiles per line		add.L D4,D5				;add \$4------3 		Move.B (Cursor_X),D4		rol.L #8,D4				;move \$-FFF to \$-FFF----		rol.L #8,D4		rol.L #1,D4				;2 bytes per tile		add.L D4,D5				;add \$4------3 		MOVE.L	D5,(VDP_ctrl)	; C00004 write next character to VDP		MOVE.W	D0,(VDP_data)	; C00000 store next word of name data 		addq.b #1,(Cursor_X)	;INC Xpos		move.b (Cursor_X),d0		cmp.b #39,d0		bls .nextpixel_Xok		jsr NewLine			;If we're at end of line, start newline.nextpixel_Xok:	moveM.l (sp)+,d0-d7/a0-a7	rts ;don't forget, these are in ROM so we can't write to them directly.;instead, they will be copied to ram and worked with from there.Conway_Tilemap:	;(screenwidth + 2) by (screenheight+2)	DC.B \$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$01,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$01,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$01,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$01,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$01,\$01,\$01,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$01,\$01,\$01,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$01,\$01,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$01,\$00,\$00,\$01,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$01,\$01,\$00,\$00,\$00,\$00,\$00,\$00,\$01,\$01,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$01,\$01,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$01,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$01,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$01,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	DC.B \$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02	DC.B 255	EVENConway_Backup_Tilemap:	;(screenwidth + 2) by (screenheight+2)	DC.B \$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02	rept 30	DC.B \$02,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$00,\$02	endr	DC.B \$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02,\$02	DC.B 255	EVEN;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;NewLine:	addq.b #1,(Cursor_Y)		;INC Y	clr.b (Cursor_X)			;Zero X	rts	  LDIR:	;COPY D1 BYTES FROM A3 TO A2	move.b (a3)+,(a2)+	DBRA D1,LDIR	rts DefineTiles:						;Copy D1 bytes of data from A0 to VDP memory D2 	jsr prepareVram					;Calculate the memory location we want to write.again:								; the tile pattern definitions to		move.l (a0)+,(VDP_data)						dbra d1,.again	rts prepareVram:							;To select a memory location D2 we need to calculate 										;the command byte... depending on the memory location	pushall								;\$7FFF0003 = Vram \$FFFF.... \$40000000=Vram \$0000		move.l d2,d0		and.w #%1100000000000000,d0		;Shift the top two bits to the far right 		rol.w #2,d0 		and.l #%0011111111111111,d2	    ; shift all the other bits left two bytes		rol.l #8,d2				rol.l #8,d2 		or.l d0,d2								or.l #\$40000000,d2				;Set the second bit from the top to 1										;#%01000000 00000000 00000000 00000000		move.l d2,(VDP_ctrl)popallRTS:	popall	rts Graphics:	DC.L \$0000000F,\$0000000F,\$0000000F,\$0000000F,\$0000000F,\$0000000F,\$0000000F,\$FFFFFFFF	DC.L \$FFFFFFFF,\$FFFFFFFF,\$FFFFFFFF,\$FFFFFFFF,\$FFFFFFFF,\$FFFFFFFF,\$FFFFFFFF,\$FFFFFFFFGraphicsEnd:VDPSettings:	DC.B \$04 ; 0 mode register 1											---H-1M-	DC.B \$04 ; 1 mode register 2											-DVdP---	DC.B \$30 ; 2 name table base for scroll A (A=top 3 bits)				--AAA--- = \$C000	DC.B \$3C ; 3 name table base for window (A=top 4 bits / 5 in H40 Mode)	--AAAAA- = \$F000	DC.B \$07 ; 4 name table base for scroll B (A=top 3 bits)				-----AAA = \$E000	DC.B \$6C ; 5 sprite attribute table base (A=top 7 bits / 6 in H40)		-AAAAAAA = \$D800	DC.B \$00 ; 6 unused register											--------	DC.B \$00 ; 7 background color (P=Palette C=Color)						--PPCCCC	DC.B \$00 ; 8 unused register											--------	DC.B \$00 ; 9 unused register											--------	DC.B \$FF ;10 H interrupt register (L=Number of lines)					LLLLLLLL	DC.B \$00 ;11 mode register 3											----IVHL	DC.B \$81 ;12 mode register 4 (C bits both1 = H40 Cell)					C---SIIC	DC.B \$37 ;13 H scroll table base (A=Top 6 bits)							--AAAAAA = \$FC00	DC.B \$00 ;14 unused register											--------	DC.B \$02 ;15 auto increment (After each Read/Write)						NNNNNNNN	DC.B \$01 ;16 scroll size (Horiz & Vert size of ScrollA & B)				--VV--HH = 64x32 tiles	DC.B \$00 ;17 window H position (D=Direction C=Cells)					D--CCCCC	DC.B \$00 ;18 window V position (D=Direction C=Cells)					D--CCCCC	DC.B \$FF ;19 DMA length count low										LLLLLLLL	DC.B \$FF ;20 DMA length count high										HHHHHHHH	DC.B \$00 ;21 DMA source address low										LLLLLLLL	DC.B \$00 ;22 DMA source address mid										MMMMMMMM	DC.B \$80 ;23 DMA source address high (C=CMD)							CCHHHHHHVDPSettingsEnd:	even`
Output:

## ABAP

Works with: ABAP version 7.4 SP05 or Above only

For the proposed task use 10,9;10,10;10,11 on screen field P_POS. Can be left blank for random filling

` *&---------------------------------------------------------------------**& Report ZCONWAYS_GAME_OF_LIFE*&---------------------------------------------------------------------**& by Marcelo Bovo*&---------------------------------------------------------------------*report zconways_game_of_life line-size 174 no standard page heading                             line-count 40. parameters: p_char type c default '#',            p_pos  type string. class lcl_game_of_life definition.   public section.     data: x_max      type i value 174,          y_max      type i value 40,          character  type c value abap_true,          x          type i,          y          type i,          pos        type string,          offlimits  type i value 9998,          grid(9999) type c. " every X_MAX characters on grid equals one line on screen     data: o_random_y type ref to cl_abap_random_int,          o_random_x type ref to cl_abap_random_int.     methods: constructor,      play,      initial_position,      initial_grid,      write,      change_grid. endclass. class lcl_game_of_life implementation.  method constructor.    o_random_y = cl_abap_random_int=>create( seed = cl_abap_random=>create( conv i( sy-uzeit ) )->intinrange( low = 1 high = 999999 )                                             min  = 1                                             max = y_max ).     o_random_x = cl_abap_random_int=>create( seed = cl_abap_random=>create( conv i( |{ sy-datum(4) }{ sy-uzeit }| ) )->intinrange( low = 1 high = 999999 )                                             min  = 1                                             max = x_max ).   endmethod.   method play.     "fill initial data ramdonly if user hasnt typed any coordenates    if pos is initial.      initial_position( ).    endif.     initial_grid( ).     write( ).   endmethod.   method initial_position.    do cl_abap_random_int=>create( "seed = conv i( sy-uzeit )                                   min  = 50                                   max = 800 )->get_next( ) times.      data(lv_index) = sy-index.       x = o_random_x->get_next( ).      y = o_random_y->get_next( ).       p_pos = |{ p_pos }{ switch char1( lv_index when '1' then space else ';' ) }{ y },{ x }|.    enddo.  endmethod.   method initial_grid.     "Split coordenates    split p_pos at ';' into table data(lt_pos_inicial) .     "Sort By Line(Easy to read)    sort lt_pos_inicial.     loop at lt_pos_inicial assigning field-symbol(<pos_inicial>).       split <pos_inicial> at ',' into data(y_char) data(x_char).       x = x_char.      y = y_char.       "Ensure maximum coordenates are not surpassed      x = cond #( when x <= x_max then x                   else o_random_x->get_next( ) ).       y = cond #( when y <= y_max then y                   else o_random_y->get_next( ) ).       "Write on string grid      "Every x_max lines represent one line(Y) on the grid      data(grid_xy) = ( x_max * y ) + x - x_max - 1.      grid+grid_xy(1) = character.     endloop.   endmethod.   method write.     skip to line 1.     "Write every line on screen    do y_max times.      data(lv_index) = sy-index - 1.       "Write whole line(current line plus number of maximum X characters)      data(grid_xy) = ( lv_index * x_max ).       write / grid+grid_xy(x_max) no-gap.       if grid+grid_xy(x_max) is initial.        skip.      endif.     enddo.     change_grid( ).   endmethod.   method change_grid.     data(grid_aux) = grid.    clear grid_aux.    data(grid_size) = strlen( grid ).     "Validate neighbours based on previous written grid    "ABC    "D.F    "GHI    do grid_size + x_max times.       "Doens't write anything beyond borders      check sy-index <= x_max * y_max.       data(grid_xy) = sy-index - 1.       data(neighbours) = 0.       "Current Line neighbours      data(d) = grid_xy - 1.      data(f) = grid_xy + 1.       "Line above neighbours      data(b) = grid_xy - x_max.      data(a) = b - 1.      data(c) = b + 1.       "Line Bellow neighbours      data(h) = grid_xy + x_max.      data(g) = h - 1.      data(i) = h + 1.       "Previous Neighbours      neighbours += cond #( when a < 0 then 0 else cond #( when grid+a(1) is not initial then 1 else 0 )   ).      neighbours += cond #( when b < 0 then 0 else cond #( when grid+b(1) is not initial then 1 else 0 )   ).      neighbours += cond #( when c < 0 then 0 else cond #( when grid+c(1) is not initial then 1 else 0 )   ).      neighbours += cond #( when d < 0 then 0 else cond #( when grid+d(1) is not initial then 1 else 0 )   ).       "Next Neighbours      neighbours += cond #( when f > grid_size then 0 else cond #( when grid+f(1) is not initial then 1 else 0 )   ).      neighbours += cond #( when g > grid_size then 0 else cond #( when grid+g(1) is not initial then 1 else 0 )   ).      neighbours += cond #( when h > grid_size then 0 else cond #( when grid+h(1) is not initial then 1 else 0 )   ).      neighbours += cond #( when i > grid_size then 0 else cond #( when grid+i(1) is not initial then 1 else 0 )   ).       grid_aux+grid_xy(1) = cond #( when  neighbours = 3 or (  neighbours = 2  and grid+grid_xy(1) = character )                                     then character                                    else space ).     enddo.     grid = grid_aux.   endmethod.endclass. start-of-selection.   set pf-status 'STANDARD_FULLSCREEN'. "Use &REFRESH button with F8 Shortcut to go to next generation   data(lo_prog) = new lcl_game_of_life( ).  lo_prog->character = p_char.  lo_prog->pos = p_pos.  lo_prog->play( ). at user-command.   case sy-ucomm.    when 'REFR' or '&REFRESH'.      sy-lsind = 1. "Prevents LIST_TOO_MANY_LEVELS DUMP      lo_prog->write( ).    when others.      leave list-processing.  endcase. `

## ACL2

`(defun print-row (row)   (if (endp row)       nil       (prog2\$ (if (first row)                   (cw "[]")                   (cw "  "))               (print-row (rest row))))) (defun print-grid-r (grid)   (if (endp grid)       nil       (progn\$ (cw "|")               (print-row (first grid))               (cw "|~%")               (print-grid-r (rest grid))))) (defun print-line (l)   (if (zp l)       nil       (prog2\$ (cw "-")               (print-line (1- l))))) (defun print-grid (grid)   (progn\$ (cw "+")           (print-line (* 2 (len (first grid))))           (cw "+~%")           (print-grid-r grid)           (cw "+")           (print-line (* 2 (len (first grid))))           (cw "+~%"))) (defun neighbors-row-r (row)   (if (endp (rest (rest row)))       (list (if (first row) 1 0))       (cons (+ (if (first row) 1 0)                (if (third row) 1 0))             (neighbors-row-r (rest row))))) (defun neighbors-row (row)   (cons (if (second row) 1 0)         (neighbors-row-r row))) (defun zip+ (xs ys)   (if (or (endp xs) (endp ys))       (append xs ys)       (cons (+ (first xs) (first ys))             (zip+ (rest xs) (rest ys))))) (defun counts-row (row)   (if (endp row)       nil       (cons (if (first row) 1 0)             (counts-row (rest row))))) (defun neighbors-r (grid prev-counts curr-counts next-counts                         prev-neighbors curr-neighbors                         next-neighbors)   (if (endp (rest grid))       (list (zip+ (zip+ prev-counts                         prev-neighbors)                   (neighbors-row (first grid))))       (cons (zip+ (zip+ (zip+ prev-counts next-counts)                         (zip+ prev-neighbors next-neighbors))                   curr-neighbors)             (neighbors-r (rest grid)                          curr-counts                          next-counts                          (counts-row (third grid))                          curr-neighbors                          next-neighbors                          (neighbors-row (third grid)))))) (defun neighbors (grid)   (neighbors-r grid                nil                (counts-row (first grid))                (counts-row (second grid))                nil                (neighbors-row (first grid))                (neighbors-row (second grid)))) (defun life-rules-row (life neighbors)   (if (or (endp life) (endp neighbors))       nil       (cons (or (and (first life)                      (or (= (first neighbors) 2)                          (= (first neighbors) 3)))                 (and (not (first life))                      (= (first neighbors) 3)))             (life-rules-row (rest life) (rest neighbors))))) (defun life-rules-r (grid neighbors)   (if (or (endp grid) (endp neighbors))       nil       (cons (life-rules-row (first grid) (first neighbors))             (life-rules-r (rest grid) (rest neighbors))))) (defun conway-step (grid)   (life-rules-r grid (neighbors grid))) (defun conway (grid steps)   (if (zp steps)       nil       (progn\$ (print-grid grid)               (conway (conway-step grid) (1- steps)))))`
Output:
```+------+
|  []  |
|  []  |
|  []  |
+------+
+------+
|      |
|[][][]|
|      |
+------+
+------+
|  []  |
|  []  |
|  []  |
+------+```

` WITH Ada.Text_IO;  USE Ada.Text_IO; PROCEDURE Life IS   SUBTYPE Cell IS Natural RANGE 0 .. 1;    TYPE Petri_Dish IS ARRAY (Positive RANGE <>, Positive RANGE <>) OF Cell;    PROCEDURE Step (Gen : IN OUT Petri_Dish) IS      Above       : ARRAY (Gen'Range (2)) OF Cell := (OTHERS => 0);      Left, This  : Cell;   BEGIN      FOR I IN Gen'First (1) + 1 .. Gen'Last (1) - 1 LOOP         Left := 0;         FOR J IN Gen'First (2) + 1 .. Gen'Last (2) - 1 LOOP            This := (CASE Above (J - 1) + Above (J) + Above (J + 1) +                          Left			    + Gen (I, J + 1) +                          Gen (I + 1, J - 1) + Gen (I + 1, J) 	+ Gen (I + 1, J + 1) IS                        WHEN 2      => Gen (I, J),                        WHEN 3      => 1,                        WHEN OTHERS => 0);            Above (J - 1):= Left;            Left         := Gen (I, J);            Gen (I, J) 	 := This;         END LOOP;         Above (Above'Last - 1) := Left;      END LOOP;   END Step;    PROCEDURE Put (Gen : Petri_Dish) IS   BEGIN      FOR I IN Gen'Range (1) LOOP         FOR J IN Gen'Range (2) LOOP            Put ( if Gen (I, J) = 0 then " " else "#");         END LOOP;         New_Line;      END LOOP;   END Put;    Blinker : Petri_Dish := (2 .. 4 => (0, 0, 1, 0, 0), 1 | 5 => (0, 0, 0, 0, 0));   Glider  : Petri_Dish (1..6,1..11):= (2 => (3 => 1, others => 0),                                        3 => (4 => 1, others => 0),                                        4 => (2|3|4=>1, others => 0),                                        others => (others => 0));   PROCEDURE Put_And_Step_Generation (N : Positive; Name : String; P : IN OUT Petri_Dish) IS   BEGIN      FOR Generation IN 1 .. N LOOP         Put_Line (Name & Generation'Img);         Put (P);         Step (P);      END LOOP;   END Put_And_Step_Generation; BEGIN   Put_And_Step_Generation (3, "Blinker", Blinker);   Put_And_Step_Generation (5, "Glider", Glider);END Life;`

The solution uses one cell thick border around square Petri dish as uninhabited dire land. This simplifies computations of neighborhood. Sample output contains 3 generations of the blinker and 5 of the glider:

Output:
```Blinker 1

#
#
#

###

#
#
#

Glider 1

#
#
###

Glider 2

# #
##
#

Glider 3

#
# #
##

Glider 4

#
##
##

Glider 5

#
#
###

```

## APL

APL \ 1130 example (very old APL dialect via simulator)

From: APL \ 1130 Samples

The following APL \ 1130 code will need APL385 font installed to display correctly.

`       ∇LIFE[⎕]∇[0]   NG←LIFE CG;W[1]   W←CG+(¯1⊖CG)+(1⊖CG)+(¯1⌽CG)+(1⌽CG)[2]   W←W+(1⊖1⌽CG)+(¯1⊖1⌽CG)+(1⊖¯1⌽CG)+(¯1⊖¯1⌽CG)[3]   NG←(3=W)+(CG∧4=W)      ∇      RP←5 5⍴0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0      RP0 0 0 0 00 0 1 1 00 1 1 0 00 0 1 0 00 0 0 0 0      LIFE RP0 0 0 0 00 1 1 1 00 1 0 0 00 1 1 0 00 0 0 0 0      LIFE LIFE RP0 0 1 0 00 1 1 0 01 0 0 1 00 1 1 0 00 0 0 0 0  `

## AppleScript

This handler creates and returns a "universe" script object initialised with given "seed" text and dimensions. For convenience, the seed text's visible characters can be anything, the set-up code itself replacing them with "■" characters. The use of the returned universe is demo'd later.

`use AppleScript version "2.4" -- OS X 10.10 (Yosemite) or lateruse framework "Foundation" -- For the regex at the top of newUniverse()use scripting additions -- The characters to represent the live and dead cells.property live : "■" -- character id 9632 (U+25A0).property dead : space-- Infinite universes are expensive to maintain, so only a local region of universe is represented here.-- Its invisible border is a wall of "dead" cells one cell deep, lined with a two-cell buffer layer into which-- objects nominally leaving the region can disappear without being seen to hit the wall or bouncing back.property borderThickness : 3 on newUniverse(seed, {w, h})    -- Replace every visible character in the seed text with "■" and every horizontal space with a space.    set seed to current application's class "NSMutableString"'s stringWithString:(seed)    set regex to current application's NSRegularExpressionSearch    tell seed to replaceOccurrencesOfString:("\\S") withString:(live) options:(regex) range:({0, its |length|()})    tell seed to replaceOccurrencesOfString:("\\h") withString:(dead) options:(regex) range:({0, its |length|()})    -- Ensure the universe dimensions are at least equal to the number of lines and the length of the longest.    set seedLines to paragraphs of (seed as text)    set lineCount to (count seedLines)    if (lineCount > h) then set h to lineCount    set seedWidth to 0    repeat with thisLine in seedLines        set lineLength to (count thisLine)        if (lineLength > seedWidth) then set seedWidth to lineLength    end repeat    if (seedWidth > w) then set w to seedWidth     -- Get a new universe.    script universe        -- State lists. These will contain or be lists of 0s and 1s and will include the border cells.        property newState : {}        property previousState : {}        property currentRow : {}        property rowAbove : {}        property rowBelow : {}        property replacementRow : {}        -- Equivalent text lists. These will only cover what's in the bounded region.        property lineList : {}        property characterGrid : {}        property currentLineCharacters : {}        -- Precalculated border cell indices.        property rightInnerBuffer : borderThickness + w + 1        property rightOuterBuffer : rightInnerBuffer + borderThickness - 2        property bottomInnerBuffer : borderThickness + h + 1        property bottomOuterBuffer : bottomInnerBuffer + borderThickness - 2        -- Generation counter.        property counter : 0        -- Temporary lists used in the set-up.        property rowTemplate : {}        property lineCharacterTemplate : {}         -- Built-in handlers. Both return text representing a universe state and        -- a boolean indicating whether or not the state's the same as the previous one.        on nextState()            set astid to AppleScript's text item delimiters            set AppleScript's text item delimiters to ""            copy newState to previousState            set currentRow to beginning of my previousState            set rowBelow to item 2 of my previousState            -- Check each occupiable cell in each occupiable row of the 'previousState' grid, including the buffer cells.            -- If warranted by the number of live neighbours, edit the equivalent cell in 'newState' and,            -- if within the region's bounds, change the corresponding text character too.            repeat with r from 2 to bottomOuterBuffer                set rowAbove to currentRow                set currentRow to rowBelow                set rowBelow to item (r + 1) of my previousState                set replacementRow to item r of my newState                set rowCrossesRegion to ((r comes after borderThickness) and (r comes before bottomInnerBuffer))                if (rowCrossesRegion) then set currentLineCharacters to item (r - borderThickness) of my characterGrid                set lineChanged to false                repeat with c from 2 to rightOuterBuffer                    set liveNeighbours to ¬                        (item (c - 1) of my rowAbove) + (item c of my rowAbove) + (item (c + 1) of my rowAbove) + ¬                        (item (c - 1) of my currentRow) + (item (c + 1) of my currentRow) + ¬                        (item (c - 1) of my rowBelow) + (item c of my rowBelow) + (item (c + 1) of my rowBelow)                    if (item c of my currentRow is 1) then                        if ((liveNeighbours < 2) or (liveNeighbours > 3)) then                            set item c of my replacementRow to 0                            if ((c comes after borderThickness) and (c comes before rightInnerBuffer) and (rowCrossesRegion)) then                                set item (c - borderThickness) of my currentLineCharacters to dead                                set lineChanged to true                            else if ((c is 3) or (c is rightOuterBuffer) or (r is 3) or (r is bottomOuterBuffer)) then                                -- This is a fudge to dissolve "bombers" entering the buffer zone.                                set item (c - 1) of my replacementRow to -1                                set item c of item (r - 1) of my newState to -1                            end if                        end if                    else if (liveNeighbours is 3) then                        set item c of my replacementRow to 1                        if ((c comes after borderThickness) and (c comes before rightInnerBuffer) and (rowCrossesRegion)) then                            set item (c - borderThickness) of my currentLineCharacters to live                            set lineChanged to true                        end if                    end if                end repeat                if (lineChanged) then set item (r - borderThickness) of my lineList to currentLineCharacters as text            end repeat            set AppleScript's text item delimiters to astid            set counter to counter + 1            set last item of my lineList to "Generation " & counter             return currentState()        end nextState         on currentState()            set noChanges to (newState = previousState)            if (noChanges) then ¬                set last item of my lineList to (last item of my lineList) & " (all dead, still lifes, or left the universe)"            set astid to AppleScript's text item delimiters            set AppleScript's text item delimiters to return            set stateText to lineList as text            set AppleScript's text item delimiters to astid             return {stateText, noChanges}        end currentState    end script     -- Set the universe's start conditions.    -- Build a row template list containing w + 2 * borderThickness zeros    -- and a line character template list containing w 'dead' characters.    repeat (borderThickness * 2) times        set end of universe's rowTemplate to 0    end repeat    repeat w times        set end of universe's rowTemplate to 0        set end of universe's lineCharacterTemplate to dead    end repeat    set astid to AppleScript's text item delimiters    set AppleScript's text item delimiters to ""    set blankLine to universe's lineCharacterTemplate as text     -- Use the templates to populate lists representing the universe's conditions.    -- Firstly the top border rows ('newState' list only).    repeat borderThickness times        copy universe's rowTemplate to end of universe's newState    end repeat    -- Then enough rows and text lines to centre the input roughly halfway down the grid.    set headroom to (h - lineCount) div 2    repeat headroom times        copy universe's rowTemplate to end of universe's newState        copy universe's lineCharacterTemplate to end of universe's characterGrid        set end of universe's lineList to blankLine    end repeat    -- Then the rows and lines representing the input itself, centring it roughly halfway across the grid.    set textInset to (w - seedWidth) div 2    set stateInset to textInset + borderThickness    repeat with thisLine in seedLines        copy universe's rowTemplate to universe's currentRow        copy universe's lineCharacterTemplate to universe's currentLineCharacters        repeat with c from 1 to (count thisLine)            set thisCharacter to character c of thisLine            set item (textInset + c) of universe's currentLineCharacters to thisCharacter            set item (stateInset + c) of universe's currentRow to (thisCharacter is live) as integer        end repeat        set end of universe's newState to universe's currentRow        set end of universe's characterGrid to universe's currentLineCharacters        set end of universe's lineList to universe's currentLineCharacters as text    end repeat    set AppleScript's text item delimiters to astid    -- Then the rows and lines beneath and the bottom border.    repeat (h - (headroom + lineCount)) times        copy universe's rowTemplate to end of universe's newState        copy universe's lineCharacterTemplate to end of universe's characterGrid        set end of universe's lineList to blankLine    end repeat    repeat borderThickness times        copy universe's rowTemplate to end of universe's newState    end repeat    -- Add a generation counter display line to the end of the line list.    set end of universe's lineList to "Generation 0"    -- Lose the no-longer-needed template lists.    set universe's rowTemplate to missing value    set universe's lineCharacterTemplate to universe's rowTemplate     return universeend newUniverse`

In conjunction with the above, this fulfills the task as set:

`on RCTask(seed, dimensions, maxGenerations)    -- Create a universe and start a list with its initial state.    set universe to newUniverse(seed, dimensions)    set {stateText} to universe's currentState()    set output to {stateText}    -- Add successive states to the list.    repeat maxGenerations times        set {stateText, noChanges} to universe's nextState()        set end of output to stateText        if (noChanges) then exit repeat    end repeat    -- Coerce the states to a single text, each followed by a short line of dashes.    set astid to AppleScript's text item delimiters    set AppleScript's text item delimiters to linefeed & "-----" & linefeed & linefeed    set output to (output as text) & linefeed & "-----"    set AppleScript's text item delimiters to astid     return outputend RCTask -- Return text containing the original and three generations of a "blinker" in a 3 x 3 grid.return RCTask("***", {3, 3}, 3)`
Output:
`"   ■■■ Generation 0-----  ■  ■  ■ Generation 1-----  ■■■ Generation 2-----  ■  ■  ■ Generation 3-----"`

This alternative to the task code runs an animation of a "Gosper glider gun" in TextEdit, the AppleScriptable text editor included with macOS. The animation's achieved by replacing the entire text of a document with successive universe states. It's faster than it sounds, but the universe size specified shouldn't be much greater than 150 x 150 with current machines.

`on runGame(seed, dimensions, maxGenerations)    -- Create an RTF file set up for Menlo-Regular 12pt, half spacing, and a reasonable window size.    set fontName to "Menlo-Regular"    set fontSize to 12    set viewScale to fontSize * 12.4 -- Seems to work well.    set {w, h} to dimensions     set RTFHeaders to "{\\rtf1\\ansi\\ansicpg1252\\cocoartf1671\\cocoasubrtf600{\\fonttbl\\f0\\fnil\\fcharset0 " & fontName & ";}{\\colortbl;\\red255\\green255\\blue255;}{\\*\\expandedcolortbl;;}\\margl1440\\margr1440\\vieww" & (w * viewScale as integer) & "\\viewh" & ((h + 1) * viewScale as integer) & "\\viewkind0\\pard\\sl120\\slmult1\\pardirnatural\\partightenfactor0\\f0\\fs" & (fontSize * 2) & " \\cf0  }" -- Contains a space as body text for TextEdit to see as an 'attribute run'.    set RTFFile to ((path to temporary items as text) & "Conway's Game of Life.rtf") as «class furl»    set fRef to (open for access RTFFile with write permission)    try        set eof fRef to 0        write RTFHeaders as «class utf8» to fRef        close access fRef    on error errMsg number errNum        close access fRef        error errMsg number errNum    end try    -- Open the file as a document in TextEdit.    tell application "TextEdit"        activate        tell document "Conway's Game of Life.rtf" to if (it exists) then close saving no        set CGoLDoc to (open RTFFile)    end tell     -- Create a universe and display its initial state in the document window.    set universe to newUniverse(seed, dimensions)    set {stateText} to universe's currentState()    tell application "TextEdit" to set CGoLDoc's first attribute run to stateText    -- Get and display successive states.    repeat maxGenerations times        set {stateText, noChanges} to universe's nextState()        tell application "TextEdit" to set CGoLDoc's first attribute run to stateText        if (noChanges) then exit repeat    end repeatend runGame set GosperGliderGun to "                        *                      * *            **      **            **            *   *    **            ****        *     *   ****        *   * **    * *          *     *       *           *   *            **"-- Run for 500 generations in a 100 x 100 universe.runGame(GosperGliderGun, {100, 100}, 500)`

## ARM Assembly

Works with: TI-Nspire
`	.string "PRG" 	lcd_ptr .req r4	active_fb .req r5	inactive_fb .req r6	offset_r .req r7	backup_fb .req r8 	@ start	push {r4-r10, r12, lr} 	ldr lcd_ptr, =0xC0000000 @ address of the LCD controller	adr offset_r, offsets	ldrh r0, [offset_r, #6] @ 0xffff is already in memory because -1 is in the offsets table	str r0, [lcd_ptr, #0x200] @ set up paletted colors: 1 is black, 0 is white 	ldr r2, [lcd_ptr, #0x18] @ load lcd configuration	bic r2, #14	orr r2, #6 @ Set color mode to 8 bpp, paletted	str r2, [lcd_ptr, #0x18] 	ldr backup_fb, [lcd_ptr, #0x10] @ Save address of OS framebuffer 	@ allocate a buffer for game state / framebuffer	ldr r0, =153600 @ 320 * 240 * 2	add r0, #8	svc #5 @ malloc	push {r0}	orr inactive_fb, r0, #7	add inactive_fb, #1	add active_fb, inactive_fb, #76800 	@ fill buffer with random ones and zeroes	ldr r10, =76800	mov r9, #01:	subs r10, r10, #1	strb r9, [active_fb, r10] @ zero other framebuffer	svc #206 @ rand syscall	and r0, r0, #1	strb r0, [inactive_fb, r10]	bne 1b 	@ set first and last rows to zero	mov r2, #320	mov r1, #0	mov r0, inactive_fb	push {r1,r2}	svc #7 @ memset	pop {r1,r2}	ldr r3, =76480	add r0, r0, r3	svc #7 	@ beginning of main loop, swap framebuffers3:	ldr r0, =76480 @ 320 * 239	str inactive_fb, [lcd_ptr, #0x10]	mov inactive_fb, active_fb	ldr active_fb, [lcd_ptr, #0x10] 	@ per-pixel loop2:	mov r1, #16 @ 8 * 2	mov r2, #0	sub r0, #1 	@ loop to count up neighboring living cells1:	subs r1, #2	ldrsh r3, [offset_r, r1] @ cant use lsl #1	add r3, r3, r0	ldrb r3, [active_fb, r3]	add r2, r2, r3	bne 1b @ at end of loop, r1 and r3 can be discarded 	@ decides whether the cell should live or die based on neighbors	ldrb r1, [active_fb, r0]	add r2, r2, r1	teq r2, #3	moveq r1, #1	teqne r2, #4	movne r1, #0	strb r1, [inactive_fb, r0]	teq r0, #320	bne 2b 	@ checks if the escape key is pressed	ldr r0, =0x900E001C	ldr r1, [r0]	tst r1, #0x80	beq 3b 	str backup_fb, [lcd_ptr, #0x10] @ restores OS framebuffer 	pop {r0}	svc #6 @ free buffer	pop {r4-r10, r12, pc}offsets:	.hword -321, -320, -319, -1, 1, 319, 320, 321 `

## AutoHotkey

ahk discussion

`rows := cols := 10                               ; set grid dimensionsi = -1,0,1, -1,1, -1,0,1                         ; neighbors' x-offsetsj = -1,-1,-1, 0,0, 1,1,1                         ; neighbors' y-offsetsStringSplit i, i, `,                             ; make arraysStringSplit j, j, `, Loop % rows {                                    ; setup grid of checkboxes   r := A_Index, y := r*17-8                     ; looks good in VISTA   Loop % cols {      c := A_Index, x := c*17-5      Gui Add, CheckBox, x%x% y%y% w17 h17 vv%c%_%r% gCheck   }}Gui Add, Button, % "x12 w" x+2, step             ; button to step to next generationGui ShowReturn Check:   GuiControlGet %A_GuiControl%                  ; manual set of cellsReturn ButtonStep:                                      ; move to next generation   Loop % rows {      r := A_Index      Loop % cols {         c := A_Index, n := 0         Loop 8                                  ; w[x,y] <- new states            x := c+i%A_Index%, y := r+j%A_Index%, n += 1=v%x%_%y%         GuiControl,,v%c%_%r%,% w%c%_%r% := v%c%_%r% ? n=2 || n=3 : n=3      }   }   Loop % rows {                                 ; update v[x,y] = states      r := A_Index      Loop % cols         v%A_Index%_%r% := w%A_Index%_%r%   }Return GuiClose:                                        ; exit when GUI is closedExitApp`

## AWK

50x20 grid (hardcoded) with empty border, filled with random cells, running for 220 generations, using ANSI escape-codes for output to terminal:

` BEGIN { c=220; d=619; i=10000;  printf("\033[2J");      # Clear screen while(i--) m[i]=0; while(d--) m[int(rand()*1000)]=1;  while(c--){  for(i=52; i<=949; i++){   d=m[i-1]+m[i+1]+m[i-51]+m[i-50]+m[i-49]+m[i+49]+m[i+50]+m[i+51];   n[i]=m[i];   if(m[i]==0 && d==3) n[i]=1;   else if(m[i]==1 && d<2) n[i]=0;        else if(m[i]==1 && d>3) n[i]=0;  }  printf("\033[1;1H");   # Home cursor  for(i=1;i<=1000;i++)   # gridsize 50x20  {   if(n[i]) printf("O"); else printf(".");   m[i]=n[i];   if(!(i%50)) printf("\n");  }  printf("%3d\n",c);     # Countdown  x=30000; while(x--) ;  # Delay }} `
Output:
Finally:
```..................................................
..........................................OO......
..........................................O.O.....
...........................................O......
......................................OOO.......OO
................................................OO
....................................O.....O.......
....................................O.....O.......
....................................O.....O.......
..................................................
......................................OOO.........
..................................................
..................................................
..................................................
..O...............................................
.O.O..............................................
O.O...........OO...........OO.....................
.O............OO.........O..O.....................
.........................OOO......................
..................................................
0
```

## Axe

 This example is in need of improvement: Improve performance and add a way to interactively seed the map.

This implementation uses the full screen buffer instead of a 3x3 grid. This naive, unoptimized version gets less than 1 FPS.

`Full While getKey(0)End ClrDraw.BLINKERPxl-On(45,45)Pxl-On(46,45)Pxl-On(47,45) .GLIDERPxl-On(1,1)Pxl-On(2,2)Pxl-On(2,3)Pxl-On(3,1)Pxl-On(3,2) Repeat getKey(0) DispGraph EVOLVE() RecallPic ClrDrawʳEndReturn Lbl EVOLVEFor(Y,0,63) For(X,0,95)  0→N  For(B,Y-1,Y+1)   For(A,X-1,X+1)    pxl-Test(A,B)?N++   End  End  pxl_Test(X,Y)?N--  If N=3??(N=2?pxl-Test(X,Y))   Pxl-On(X,Y)ʳ  Else   Pxl-Off(X,Y)ʳ  End EndEndReturn`

## BASIC

### BASIC256

"Thunderbird" methuselah evolution in the Game of Life (created with BASIC-256)

Saving to PNG files function is omited. You can find it in the Galton box animation example.

`# Conway's_Game_of_Life X = 59 : Y = 35 : H = 4 fastgraphicsgraphsize X*H,Y*H dim c(X,Y) : dim cn(X,Y) : dim cl(X,Y) `
` # Thunderbird methuselahc[X/2-1,Y/3+1] = 1 : c[X/2,Y/3+1] = 1 : c[X/2+1,Y/3+1] = 1	c[X/2,Y/3+3] = 1 : c[X/2,Y/3+4] = 1 : c[X/2,Y/3+5] = 1 s = 0do	color black	rect 0,0,graphwidth,graphheight	alive = 0 : stable = 1	s = s + 1	for y = 0 to Y-1 		for x = 0 to X-1			xm1 = (x-1+X)%X : xp1 = (x+1+X)%X			ym1 = (y-1+Y)%Y : yp1 = (y+1+Y)%Y			cn[x,y] = c[xm1,y] + c[xp1,y]			cn[x,y] = c[xm1,ym1] + c[x,ym1] + c[xp1,ym1] + cn[x,y]			cn[x,y] = c[xm1,yp1] + c[x,yp1] + c[xp1,yp1] + cn[x,y]			if c[x,y] = 1 then				if cn[x,y] < 2 or cn[x,y] > 3 then 					cn[x,y] = 0				else 					cn[x,y] = 1					alive = alive + 1				end if			else 				if cn[x,y] = 3 then 					cn[x,y] = 1					alive = alive + 1				else					cn[x,y] = 0				end if			end if			if c[x,y] then				if cn[x,y] then					if cl[x,y] then color purple		# adult					if not cl[x,y] then color green	        # newborn				else 					if cl[x,y] then color red		# old					if not cl[x,y] then color yellow	# shortlived				end if 				rect x*H,y*H,H,H			end if		next x	next y	refresh	pause 0.06	# Copy arrays	for i = 0 to X-1		for j = 0 to Y-1			if cl[i,j]<>cn[i,j] then stable = 0			cl[i,j] = c[i,j]			c[i,j] = cn[i,j]		next j	next i	until not alive or stable if not alive then	print "Died in "+s+" iterations"	color black	rect 0,0,graphwidth,graphheight	refreshelse 	print "Stabilized in "+(s-2)+" iterations"	end if`
Output:
``` Stabilized in 243 iterations
```

### BBC BASIC

`      dx% = 64      dy% = 64      DIM old&(dx%+1,dy%+1), new&(dx%+1,dy%+1)      VDU 23,22,dx%*4;dy%*4;16,16,16,0      OFF       REM Set blinker:      old&(50,50) = 1 : old&(50,51) = 1 : old&(50,52) = 1      REM Set glider:      old&(5,7) = 1 : old&(6,7) = 1 : old&(7,7) = 1 : old&(7,6) = 1 : old&(6,5) = 1       REM Draw initial grid:      FOR X% = 1 TO dx%        FOR Y% = 1 TO dy%          IF old&(X%,Y%) GCOL 11 ELSE GCOL 4          PLOT 69, X%*8-6, Y%*8-4        NEXT      NEXT X%       REM Run:      GCOL 4,0      REPEAT        FOR X% = 1 TO dx%          FOR Y% = 1 TO dy%            S% = old&(X%-1,Y%) + old&(X%,Y%-1) + old&(X%-1,Y%-1) + old&(X%+1,Y%-1) + \            \    old&(X%+1,Y%) + old&(X%,Y%+1) + old&(X%-1,Y%+1) + old&(X%+1,Y%+1)            O% = old&(X%,Y%)            N% = -(S%=3 OR (O%=1 AND S%=2))            new&(X%,Y%) = N%            IF N%<>O% PLOT X%*8-6, Y%*8-4          NEXT        NEXT X%        SWAP old&(), new&()        WAIT 30      UNTIL FALSE`
Output:

### CASIO BASIC

`Filename:JG VIDA Cls 20→D D+2→F 1→E {F,F}→Dim Mat A {F,F}→Dim Mat B {F,F}→Dim Mat C Fill(0,Mat A) Fill(0,Mat B) Fill(0,Mat C) "PONDERACION 1"?→G "PONDERACION 2"?→H For 1→I To D For 1→J To D RanInt#(1,G)→R If R≦H:Then  0→Mat A[I+1,J+1] Else  1→Mat A[I+1,J+1] IfEnd Next Next Goto 2 Lbl 1 Mat A→Mat C Mat B→Mat A Lbl 2 For 1→I To D For 1→J To D I+1→K J+1→L K→M L+20→N If Mat C[K,L]=0:Then  If Mat A[K,L]=1:Then For 0→R To 2 For 0→S To 2 PxlOn 3I+R-2,3J+S-2 Next Next IfEnd IfEnd If Mat C[K,L]=1:Then  If Mat A[K,L]=0:Then For 0→R To 2 For 0→S To 2 PxlOff 3I+R-2,3J+S-2 Next Next IfEnd IfEnd Next NextFor 1→I To D For 1→J To D 0→C I+1→K J+1→L Mat A[I,J]=1⇨C+1→C Mat A[I+1,J]=1⇨C+1→C Mat A[I+2,J]=1⇨C+1→C Mat A[I+2,J+1]=1⇨C+1→C Mat A[I+2,J+2]=1⇨C+1→C Mat A[I+1,J+2]=1⇨C+1→C Mat A[I,J+2]=1⇨C+1→C Mat A[I,J+1]=1⇨C+1→C If Mat A[K,L]=1:Then  C<2⇨0→Mat B[K,L] C>3⇨0→Mat B[K,L] IfEnd If Mat A[K,L]=0:Then  C=3⇨1→Mat B[K,L] IfEnd Next Next Goto 1 `

### FreeBASIC

`' FreeBASIC Conway's Game of Life' May 2015' 07-10-2016 cleanup/little changes' moved test inkey outside the ScreenLock - ScreenUnLock block' compile: fbc -s gui Const As UInteger grid  = 300  '480 by 480Const As UInteger gridy = gridConst As UInteger gridx = gridConst As UInteger pointsize = 5 'pixelsConst As UInteger steps = 10Dim As UInteger gen, n, neighbours, x, y, was Dim As String press Const As UByte red   = 4  'red is color 6Const As UByte white = 15 'colorConst As UByte black = 0  'color 'color 0 normaly is black'color 1 normaly is dark blue'color 2 normaly is greenConst As UInteger bot = 35 'this is 35 lines from the top of the pageDim As UByte old( grid + 10, grid +10), new_( grid +10, grid +10) 'Set blinker:' old( 160, 160) =1: old( 160, 170) =1 : old( 160, 180) =1 'Set blinker:' old( 160, 20) =1: old( 160, 30) =1 : old( 160, 40) =1 'Set blinker:' old( 20, 20) =1: old( 20, 30) =1 : old( 20, 40) =1 'Set glider:'  old(  50,  70) =1: old(  60,  70) =1: old(  70,  70) =1' old(  70,  60) =1: old(  60,  50) =1 ' http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life' Thunderbird methuselah'X = 59 : Y = 35 : H = 4'c[X/2-1,Y/3+1] = 1 : c[X/2,Y/3+1] = 1 : c[X/2+1,Y/3+1] = 1'c[X/2,Y/3+3] = 1 : c[X/2,Y/3+4] = 1 : c[X/2,Y/3+5] = 1 'xb = 59 : yb = 35' old( Xb/2-1,Yb/3+1) =1: old(Xb/2,Yb/3+1) =1: old(Xb/2+1,Yb/3+1) =1' old( Xb/2,Yb/3+3) =1: old(Xb/2,Yb/3+4) =1 :old(Xb/2,Yb/3+5) = 1'r-pentomino'  old( 150,140) =1: old( 160,140) =1'  old( 140,150) =1 :old( 150,150) =1'  old( 150,160) =1 'Die Hard  around 150 generations' old( 150,140) =1: old(160,140) =1 : old(160,150) =1' old( 200,150) =1: old(210,150) =1 : old(210,130) = 1 : old(220,150) = 1 'Acorn  around 450 generations' it looks like this:'   0X'   000X'   XX00XXXold( 180,200) =1old( 200,210) =1old( 170,220) =1 : old( 180,220) =1 : old( 210,220) =1 : old( 220,220) =1 : old( 230,220) =1 Screen 20 'Resolution 800x600 with at least 256 colors Color whiteLine (10, 10) - (gridx + 10, gridy + 10),,B  'box from top left to bottom right Locate bot, 1  'Use a standard place on the bottom of the pageColor whitePrint " Welcome to Conway's Game of Life"Print " Using a constrained playing field (300x300), the Acorn seed runs"Print " for about 450 generations before it becomes stable (or stale)."Print " Enter any key to start"BeepSleep Do      ' flush the key input buffer  press = InkeyLoop Until press = ""'Print "                       " 'Draw initial gridFor x = 10 To gridX Step steps  For y = 10 To gridY Step steps    Color white 'old(x,y)    If old(x,y) = 1 Then Circle (x + pointsize, y + pointsize), pointsize,,,,, F  Next yNext x'Locate bot, 1Color whitePrint " Welcome to Conway's Game of Life"Print " Using a constrained playing field, the Acorn seed runs for      "Print " about 450 generations before it becomes stable (or stale).    "Color redPrint " Enter spacebar to continue or pause, ESC to stop"Sleep'Do      ' flush the key input buffer  press = InkeyLoop Until press = "" Do  gen = gen + 1  Locate bot+5,1  Color white  Print " Gen = "; gen  ScreenLock  For x = 10 To gridX Step steps    For y = 10 To gridY Step steps      'find number of live neighbours      neighbours = old( x - steps, y - steps) +old( x , y - steps)      neighbours = neighbours + old( x + steps, y -steps)      neighbours = neighbours + old( x - steps, y) + old( x + steps, y)      neighbours = neighbours + old( x - steps, y + steps)      neighbours = neighbours + old( x, y + steps) +old( x + steps, y + steps)      was =old( x, y)      If was =0 Then        If neighbours =3 Then N =1 Else N =0      Else        If neighbours =3  Or neighbours =2 Then N =1 Else N =0      End If      new_( x, y) = N      If n = 2 Then Color white      If n = 1 Then Color red      If n = 0 Then Color black      Circle (x + pointsize, y + pointsize), pointsize,,,,, F    Next y  Next x  Color white  Line (10, 10) - (gridx + 10, gridy + 10),,B  'box from top left to bottom right  ' Locate bot,1  '  't = timer  'do  'loop until timer > t + .2  ScreenUnlock  ' might not be slow enough  Sleep 70, 1  ' ignore key press   press = Inkey  If press = " " Then    Do      ' flush the key input buffer      press = Inkey    Loop Until press = ""    Do      ' wait until a key is pressed      press = Inkey    Loop Until press <> ""  End If  If press = Chr(27) Then Exit Do  ' mouse click on close window "X"  If press = Chr(255)+"k" Then End ' stop and close window   For x =10 To gridX Step steps    For y =10 To gridY Step steps      old( x, y) =new_( x, y)    Next y  Next x Loop ' UNTIL press = CHR(27) 'return to do loop up top until "esc" key is pressed. Color whiteLocate bot+3,1Print Space(55) 'clear instructionsLocate bot+6,1Print " Press any key to exit                            "SleepEnd`

### GFA Basic

` '' Conway's Game of Life'' 30x30 world held in an array size 32x32' world is in indices 1->30, 0 and 31 are always false, for neighbourhoods'DIM world!(32,32)DIM ns%(31,31) ! used to hold the neighbour countsclock%=1'' run the world'@setup_world@open_windowDO  @display_world  t\$=INKEY\$  EXIT IF t\$="q" ! need to hold key down to exit  @update_world  DELAY 0.5 ! delay of 0.5s needed in compiled versionLOOP@close_window'' Setup the world, with a blinker in one corner and a glider in the other'PROCEDURE setup_world  ARRAYFILL world!(),FALSE  ' blinker in lower-right  world!(25,25)=TRUE  world!(26,25)=TRUE  world!(27,25)=TRUE  ' glider in top-left  world!(2,2)=TRUE  world!(3,3)=TRUE  world!(3,4)=TRUE  world!(2,4)=TRUE  world!(1,4)=TRUERETURN'' Count the number of neighbours of the point i,j' (Assume i/j +/- 1 will not fall out of world)'FUNCTION count_neighbours(i%,j%)  LOCAL count%,l%  count%=0  FOR l%=-1 TO 1    IF world!(i%+l%,j%-1)      count%=count%+1    ENDIF    IF world!(i%+l%,j%+1)      count%=count%+1    ENDIF  NEXT l%  IF world!(i%-1,j%)    count%=count%+1  ENDIF  IF world!(i%+1,j%)    count%=count%+1  ENDIF  RETURN count%ENDFUNC'' Update the world one step'PROCEDURE update_world  LOCAL i%,j%  ' compute neighbour counts and store  FOR i%=1 TO 30    FOR j%=1 TO 30      ns%(i%,j%)[email protected]_neighbours(i%,j%)    NEXT j%  NEXT i%  ' update the world cells  FOR i%=1 TO 30    FOR j%=1 TO 30      IF world!(i%,j%)        SELECT ns%(i%,j%)        CASE 0,1          world!(i%,j%)=FALSE ! LONELY        CASE 2,3          world!(i%,j%)=TRUE ! LIVES        CASE 4,5,6,7,8          world!(i%,j%)=FALSE ! OVERCROWDED        ENDSELECT      ELSE        IF ns%(i%,j%)=3          world!(i%,j%)=TRUE ! BIRTH        ELSE          world!(i%,j%)=FALSE ! BARREN        ENDIF      ENDIF    NEXT j%  NEXT i%  ' update the clock  clock%=clock%+1RETURN'' Display the world in window'PROCEDURE display_world  LOCAL offsetx%,offsety%,i%,j%,x%,y%,scale%  @clear_window  ' show clock  VSETCOLOR 2,0,0,0  DEFTEXT 2  PRINT AT(5,1);"Clock: ";clock%  ' offset from top-left of display  offsetx%=10  offsety%=10  ' colour to display active cell  VSETCOLOR 1,15,0,0  DEFFILL 1  ' scale of display  scale%=9  ' display each cell in world  FOR i%=1 TO 30    FOR j%=1 TO 30      IF world!(i%,j%)        ' display active cell        x%=offsetx%+scale%*i%        y%=offsety%+scale%*j%        PBOX x%,y%,x%+scale%,y%+scale%      ENDIF    NEXT j%  NEXT i%RETURN'' Manage window for display'PROCEDURE open_window  OPENW 1  CLEARW 1RETURN'PROCEDURE clear_window  VSETCOLOR 0,15,15,15  DEFFILL 0  PBOX 0,0,300,300RETURN'PROCEDURE close_window  CLOSEW 1RETURN `

### GW-BASIC

Allows a blinker to be loaded. It also has a routine for randomising the grid; common objects like blocks, gliders, etc turn up semi-frequently so it won't take long to verify that these all work.

`10 REM Conway's Game of Life20 REM 30x30 grid, padded with zeroes as the boundary30 DIM WORLD(31,  31, 1)40 RANDOMIZE TIMER50 CUR = 0 : BUF = 160 CLS70 SCREEN 280 LOCATE 5,10: PRINT "Press space to perform one iteration"90 LOCATE 6,10: PRINT "B to load a blinker"100 LOCATE 7,10: PRINT "R to randomise the world"110 LOCATE 8,10: PRINT "Q to quit"120 K\$ = INKEY\$130 IF K\$=" " THEN GOSUB 250: GOSUB 180140 IF K\$="B" OR K\$="b" THEN GOSUB 400: GOSUB 180150 IF K\$="R" OR K\$="r" THEN GOSUB 480: GOSUB 180160 IF K\$="Q" OR K\$="q" THEN SCREEN 0: END170 GOTO 120180 REM draw the world190 FOR XX=1 TO 30200 FOR YY=1 TO 30210 PSET (XX, YY), 15*WORLD(XX, YY, CUR)220 NEXT YY230 NEXT XX240 RETURN250 REM perform one iteration260 FOR XX=1 TO 30270 FOR YY=1 TO 30280 SM=0290 SM = SM + WORLD(XX-1, YY-1, CUR) + WORLD(XX, YY-1, CUR) + WORLD(XX+1, YY-1, CUR)300 SM = SM + WORLD(XX-1, YY, CUR) + WORLD(XX+1, YY, CUR)310 SM = SM + WORLD(XX-1, YY+1, CUR) + WORLD(XX, YY+1, CUR) + WORLD(XX+1, YY+1, CUR)320 IF SM<2 OR SM>3 THEN WORLD(XX, YY, BUF) = 0330 IF SM=3 THEN WORLD(XX, YY, BUF) = 1340 IF SM=2 THEN WORLD(XX,YY,BUF) = WORLD(XX,YY,CUR)350 NEXT YY360 NEXT XX370 CUR = BUF : REM exchange identities of current and buffer380 BUF = 1 - BUF390 RETURN400 REM produces a vertical blinker at the top left corner, and blanks the rest410 FOR XX=1 TO 30420 FOR YY=1 TO 30430 WORLD(XX,YY,CUR) = 0440 IF XX=2 AND YY<4 THEN WORLD(XX, YY, CUR) = 1450 NEXT YY460 NEXT XX470 RETURN480 REM randomizes the world with a density of 1/2490 FOR XX = 1 TO 30500 FOR YY = 1 TO 30510 WORLD(XX, YY, CUR) = INT(RND*2)520 NEXT YY530 NEXT XX540 RETURN`

### Liberty BASIC

It will run slow for grids above say 25!

`       nomainwin       gridX = 20      gridY = gridX       mult      =500 /gridX      pointSize =360 /gridX       dim old( gridX +1, gridY +1), new( gridX +1, gridY +1) 'Set blinker:      old( 16, 16) =1: old( 16, 17) =1 : old( 16, 18) =1 'Set glider:      old(  5,  7) =1: old(  6,  7) =1: old(  7,  7) =1      old(  7,  6) =1: old(  6,  5) =1       WindowWidth  =570      WindowHeight =600       open "Conway's 'Game of Life'." for graphics_nsb_nf as #w       #w "trapclose [quit]"      #w "down ; size "; pointSize      #w "fill black" 'Draw initial grid      for x = 1 to gridX        for y = 1 to gridY          '#w "color "; int( old( x, y) *256); " 0 255"          if old( x, y) <>0 then #w "color red" else #w "color darkgray"          #w "set "; x *mult +20; " "; y *mult +20        next y      next x'   ______________________________________________________________________________'Run      do        for x =1 to gridX          for y =1 to gridY            'find number of live Moore neighbours            neighbours =old( x -1, y -1) +old( x, y -1) +old( x +1, y -1)+_                        old( x -1, y)                   +old( x +1, y   )+_                        old( x -1, y +1) +old( x, y +1) +old( x +1, y +1)            was =old( x, y)            if was =0 then                if neighbours =3 then N =1 else N =0            else                if neighbours =3  or neighbours =2 then N =1 else N =0Tail Recursive            end if            new( x, y) = N            '#w "color "; int( N /8 *256); " 0 255"            if N <>0 then #w "color red" else #w "color darkgray"            #w "set "; x *mult +20; " "; y *mult +20          next y        next x        scan'swap        for x =1 to gridX          for y =1 to gridY            old( x, y) =new( x, y)          next y        next x'Re-run until interrupted...      loop until FALSE'User shutdown received    [quit]    close #w    end `

### MSX Basic

` 10 DEFINT A-Z20 DIM L(16,16), N(16,16)30 M = 1640 CLS50 PRINT "PRESS A KEY TO START...";60 W = RND(1)70 IF INKEY\$ = "" THEN 6080 CLS100 FOR I=1 TO M110   FOR J=1 TO M120     IF RND(1)>=.7 THEN N(I,J) = 1 ELSE N(I,J) = 0130   NEXT J140 NEXT I1000 FOR I=0 TO M+11010   LOCATE I,0 : PRINT "+";1020   LOCATE I,M+1 : PRINT "+";1030   LOCATE 0,I : PRINT "+";1040   LOCATE M+1,I : PRINT "+";1050 NEXT I1080 G=01090 LOCATE 1,M+3 : PRINT USING "#####";G1100 FOR I=1 TO M1110   FOR J=1 TO M1115     W = N(I,J) : L(I,J) = W1120     LOCATE I,J 1130     IF W=0 THEN PRINT " "; ELSE PRINT "*";1160   NEXT J1170 NEXT I1180 FOR I=1 TO M1190   FOR J=1 TO M1200     NC=01210     FOR K=I-1 TO I+11215       IF K=0 OR K>M THEN 12601220       FOR W=J-1 TO J+11230         IF W=0 OR W>M OR (K=I AND W=J) THEN 12501240         NC = NC + L(K,W)1250       NEXT W1260     NEXT K1270     IF NC=2 THEN N(I,J)=L(I,J) : GOTO 13001280     IF NC=3 THEN N(I,J)=1 ELSE N(I,J)=01300   NEXT J1310 NEXT I1350 G=G+11360 GOTO 1090 `

### PureBasic

`EnableExplicitDefine.i x, y ,Xmax ,Ymax ,NXmax = 13 : Ymax = 20Dim     world.i(Xmax+1,Ymax+1)Dim Nextworld.i(Xmax+1,Ymax+1)   ; Glider test;------------------------------------------ world(1,1)=1 : world(1,2)=0 : world(1,3)=0 world(2,1)=0 : world(2,2)=1 : world(2,3)=1 world(3,1)=1 : world(3,2)=1 : world(3,3)=0;------------------------------------------ OpenConsole()EnableGraphicalConsole(1)ClearConsole()Print("Press any key to interrupt")Repeat  ConsoleLocate(0,2)  PrintN(LSet("", Xmax+2, "-")) ;---------- endless world ---------  For y = 1 To Ymax    world(0,y)=world(Xmax,y)    world(Xmax+1,y)=world(1,y)    Next  For x = 1 To Xmax    world(x,0)=world(x,Ymax)    world(x,Ymax+1)=world(x,1)  Next  world(0     ,0     )=world(Xmax,Ymax)  world(Xmax+1,Ymax+1)=world(1   ,1   )  world(Xmax+1,0     )=world(1   ,Ymax)  world(     0,Ymax+1)=world(Xmax,1   ) ;---------- endless world ---------  For y = 1 To Ymax    Print("|")     For x = 1 To Xmax      Print(Chr(32+world(x,y)*3))      N = world(x-1,y-1)+world(x-1,y)+world(x-1,y+1)+world(x,y-1)      N + world(x,y+1)+world(x+1,y-1)+world(x+1,y)+world(x+1,y+1)      If (world(x,y) And (N = 2 Or N = 3))Or (world(x,y)=0 And N = 3)        Nextworld(x,y)=1            Else        Nextworld(x,y)=0      EndIf    Next    PrintN("|")  Next  PrintN(LSet("", Xmax+2, "-"))  Delay(100)   ;Swap world() , Nextworld()    ;PB  <4.50  CopyArray(Nextworld(), world());PB =>4.50  Dim Nextworld.i(Xmax+1,Ymax+1) Until Inkey() <> "" PrintN("Press any key to exit"): Repeat: Until Inkey() <> ""`

Sample output:

### QBasic

El código es de Ben Wagner (bwgames.org)
The code is from Ben Wagner (bwgames.org)
Yo solo lo transcrito y comento al español.
I just transcribed it and comment it in Spanish.

`SCREEN 9, 0, 0, 1 RANDOMIZE TIMER WINDOW (0, 0)-(80, 80) 'La matrizA es la actual, la matrizB es la siguiente iteración'ArrayA is current, arrayB is next iterationDIM matrizA(-1 TO 81, -1 TO 81)DIM matrizB(-1 TO 81, -1 TO 81) 'Aleatorizar las celdas de matrizA, 'Randomize cells in arrayA,'y establecer las de matrizB a 0'and set those of matrixB to 0y = 0DO	x = 0  	DO		x = x + 1		matrizA(x, y) = INT(RND + .5)        matrizB(x, y) = 0    LOOP UNTIL x > 80     y = y + 1LOOP UNTIL y > 80 ''--- Bucle Principal ---'' --- Main Loop ---DO    CLS       'Dibuja la matriz     'Draw the matrix    y = 0    DO        x = 0			         DO            IF matrizA(x, y) = 1 THEN LINE (x, y)-(x + 1, y + 1), 1, BF            x = x + 1        LOOP UNTIL x > 80         y = y + 1    LOOP UNTIL y > 80     'Cuenta el recuento de la celda circundante    'Counts the count of the surrounding cell     'Luego aplica la operación a la celda     'Then apply the operation to the cell    y = 0    DO        x = 0        DO            'Cuenta las células circundantes            'Count the surrounding cells            cuenta = 0             IF matrizA(x - 1, y + 1) = 1 THEN cuenta = cuenta + 1            IF matrizA(x, y + 1) = 1 THEN cuenta = cuenta + 1            IF matrizA(x + 1, y + 1) = 1 THEN cuenta = cuenta + 1            IF matrizA(x - 1, y) = 1 THEN cuenta = cuenta + 1            IF matrizA(x + 1, y) = 1 THEN cuenta = cuenta + 1            IF matrizA(x - 1, y - 1) = 1 THEN cuenta = cuenta + 1            IF matrizA(x, y - 1) = 1 THEN cuenta = cuenta + 1            IF matrizA(x + 1, y - 1) = 1 THEN cuenta = cuenta + 1             'Aplica las operaciones            'Apply the operations            'Muerte            'Death            IF matrizA(x, y) = 1 THEN                IF cuenta = 2 OR cuenta = 3 THEN matrizB(x, y) = 1 ELSE matrizB(x, y) = 0            END IF             'Nacimiento            'Birth            IF matrizA(x, y) = 0 THEN                IF cuenta = 3 THEN matrizB(x, y) = 1 ELSE matrizB(x, y) = 0            END IF            x = x + 1        LOOP UNTIL x > 80         y = y + 1    LOOP UNTIL y > 80     'Actualiza la matriz con la nueva matriz que hemos calculado.    'Update the matrix with the new matrix that we have calculated.    y = 0    DO        x = 0        DO            x = x + 1            matrizA(x, y) = matrizB(x, y)        LOOP UNTIL x > 80        y = y + 1     LOOP UNTIL y > 80    PCOPY 0, 1LOOP WHILE INKEY\$ = ""`

### Sinclair ZX81 BASIC

Requires at least 2k of RAM. Expects to find a square array of "0" and "1" characters, L\$(), giving the initial configuration. You can build this up by issuing commands in immediate mode and then run the program by entering `GOTO 1000`, but it's probably easier—assuming you can spare some RAM—to write the setup into the program using line numbers below 1000.

The graphics character in lines 1030 to 1060 can be obtained by typing `SHIFT``9` then `SHIFT``H`, and the one in line 1130 by typing `SHIFT``9` then `SPACE`.

`1000 LET M=LEN L\$(1)1010 DIM N\$(M,M)1020 FOR I=0 TO M+11030 PRINT AT I,0;"▩"1040 PRINT AT I,M+1;"▩"1050 PRINT AT 0,I;"▩"1060 PRINT AT M+1,I;"▩"1070 NEXT I1080 LET G=01090 PRINT AT 1,M+3;G1100 FOR I=1 TO M1110 FOR J=1 TO M1120 IF L\$(I,J)="0" THEN GOTO 11501130 PRINT AT I,J;"■"1140 GOTO 11601150 PRINT AT I,J;" "1160 NEXT J1170 NEXT I1180 FOR I=1 TO M1190 FOR J=1 TO M1200 LET N=01210 FOR K=I-1 TO I+11220 FOR L=J-1 TO J+11230 IF K=0 OR K>M OR L=0 OR L>M OR (K=I AND L=J) THEN GOTO 12501240 LET N=N+VAL L\$(K,L)1250 NEXT L1260 NEXT K1270 LET N\$(I,J)=L\$(I,J)1280 IF N<=1 OR N>=4 THEN LET N\$(I,J)="0"1290 IF N=3 THEN LET N\$(I,J)="1"1300 NEXT J1310 NEXT I1320 FOR I=1 TO M1330 LET L\$(I)=N\$(I)1340 NEXT I1350 LET G=G+11360 GOTO 1090`

`10 DIM L\$(3,3)20 LET L\$(1)="000"30 LET L\$(2)="111"40 LET L\$(3)="000"`

A screenshot of it running can be found here.

To try a random starting configuration on a 16x16 grid, use this:

`10 DIM L\$(16,16)20 FOR I=1 TO 1630 FOR J=1 TO 1640 LET L\$(I,J)="0"50 IF RND>=.7 THEN LET L\$(I,J)="1"60 NEXT J70 NEXT I`

A screenshot is here.

### TI-83 BASIC

This implementation is loosely based on the Processing Version. It uses the home screen and draws cells as "X"s. It is extremely slow, and limited to a bounding box of 16 by 8. In order for it to work, you need to initialize arrays [A] and [B] to be 18x10.

` PROGRAM:CONWAY:While 1:For(X,2,9,1):For(Y,2,17,1):If [A](Y,X):Then:Output(X-1,Y-1,"X"):Else:Output(X-1,Y-1," "):End:[A](Y-1,X-1)+[A](Y,X-1)+[A](Y+1,X-1)+[A](Y-1,X)+[A](Y+1,X)+[A](Y-1,X+1)+[A](Y,X+1)+[A](Y+1,X+1)→N:If ([A](Y,X) and (N=2 or N=3)) or (not([A](Y,X)) and N=3):Then:1→[B](Y,X):Else:0→[B](Y,X):End:End:End:[B]→[A]:End `

Here is an additional, very simple program to input the top corner of the GRAPH screen into the starting array. Make sure to draw on pixels in the rectangle (1,1) to (8,16).

`PROGRAM:PIC2LIFE:For(I,0,17,1):For(J,0,9,1):pxl-Test(J,I)→[A](I+1,J+1):End:End `

### TI-89 BASIC

This program draws its cells as 2x2 blocks on the graph screen. In order to avoid needing external storage for the previous generation, it uses the upper-left corner of each block to mark the next generation's state in all cells, then updates each cell to match its corner pixel.

A further improvement would be to have an option to start with the existing picture rather than clearing, and stop at a point where the picture has clean 2x2 blocks.

`Define life(pattern) = Prgm  Local x,y,nt,count,save,xl,yl,xh,yh  Define nt(y,x) = when(pxlTest(y,x), 1, 0)   {}→save  setGraph("Axes", "Off")→save[1]  setGraph("Grid", "Off")→save[2]  setGraph("Labels", "Off")→save[3]  FnOff  PlotOff  ClrDraw   If pattern = "blinker" Then    36→yl    40→yh    78→xl    82→xh    PxlOn  36,80    PxlOn  38,80    PxlOn  40,80  ElseIf pattern = "glider" Then    30→yl    40→yh    76→xl    88→xh    PxlOn  38,76    PxlOn  36,78    PxlOn  36,80    PxlOn  38,80    PxlOn  40,80  ElseIf pattern = "r" Then    38-5*2→yl    38+5*2→yh    80-5*2→xl    80+5*2→xh    PxlOn  38,78    PxlOn  36,82    PxlOn  36,80    PxlOn  38,80    PxlOn  40,80  EndIf   While getKey() = 0    © Expand upper-left corner to whole cell    For y,yl,yh,2      For x,xl,xh,2        If pxlTest(y,x) Then          PxlOn y+1,x          PxlOn y+1,x+1          PxlOn y,  x+1        Else          PxlOff y+1,x          PxlOff y+1,x+1          PxlOff y,  x+1        EndIf      EndFor    EndFor     © Compute next generation    For y,yl,yh,2      For x,xl,xh,2        nt(y-1,x-1) + nt(y-1,x) + nt(y-1,x+2) + nt(y,x-1) + nt(y+1,x+2) + nt(y+2,x-1) + nt(y+2,x+1) + nt(y+2,x+2) → count        If count = 3 Then          PxlOn y,x        ElseIf count ≠ 2 Then          PxlOff y,x        EndIf      EndFor    EndFor  EndWhile   © Restore changed options  setGraph("Axes", save[1])  setGraph("Grid", save[2])  setGraph("Labels", save[3])EndPrgm`

## Batch File

This code takes three parameters: `m chance iterations` Where,
m - The length and width of the array of cells
chance - The percent chance of any cell within the set array initially being alive. Full numbers only.
iterations - The amount of iterations of evolution the array goes through to display.

If no parameters are parsed, it defaults to 5 iterations of the blinking example.

` @echo offsetlocal enabledelayedexpansion if "%1"=="" (  call:_blinkerArray) else (  call:_randomArray %*) for /l %%i in (1,1,%iterations%) do (  call:_setStatus  call:_display   for /l %%m in (1,1,%m%) do (    for /l %%n in (1,1,%m%) do (      call:_evolution %%m %%n    )  )) :_blinkerArrayfor /l %%m in (0,1,4) do (  for /l %%n in (0,1,4) do (    set cell[%%m][%%n]=0  ))set cell[2][1]=1set cell[2][2]=1set cell[2][3]=1set iterations=5set m=3set cellsaddone=4 exit /b :_randomArrayset cellsaddone=%1+1for /l %%m in (0,1,%cellsaddone%) do for /l %%n in (0,1,%cellsaddone%) do set cell[%%m][%%n]=0for /l %%m in (1,1,%1) do (  for /l %%n in (1,1,%1) do (    set /a cellrandom=!random! %% 101    set cell[%%m][%%n]=0    if !cellrandom! leq %2 set cell[%%m][%%n]=1  ))set iterations=%3set m=%1 exit /b :_setStatusfor /l %%m in (0,1,%cellsaddone%) do (  for /l %%n in (0,1,%cellsaddone%) do (    if !cell[%%m][%%n]!==1 set cellstatus[%%m][%%n]=alive    if !cell[%%m][%%n]!==0 set cellstatus[%%m][%%n]=dead  ))exit /b  :_evolutionset /a lowerm=%1-1set /a upperm=%1+1set /a lowern=%2-1set /a uppern=%2+1set numm=%1set numn=%2set sum=0for /l %%m in (%lowerm%,1,%upperm%) do (  for /l %%n in (%lowern%,1,%uppern%) do (    if %%m==%numm% (      if %%n==%numn% (        set /a sum=!sum!      ) else (        if !cellstatus[%%m][%%n]!==alive set /a sum+=1      )    ) else (      if !cellstatus[%%m][%%n]!==alive set /a sum+=1    )  ))goto:!cell[%numm%][%numn%]! exit /b :0set alive=3set death=0 1 2 4 5 6 7 8 for %%i in (%alive%) do if %sum%==%%i set cell[%numm%][%numn%]=1for %%i in (%death%) do if %sum%==%%i set cell[%numm%][%numn%]=0exit /b :1set alive=2 3set death=0 1 4 5 6 7 8for %%i in (%alive%) do if %sum%==%%i set cell[%1][%2]=1for %%i in (%death%) do if %sum%==%%i set cell[%1][%2]=0exit /b :_displayecho.for /l %%m in (1,1,%m%) do (  set m%%m=   for /l %%n in (1,1,%m%) do set m%%m=!m%%m! !cell[%%m][%%n]!  echo !m%%m!) exit /b `
Output:

```0 0 0
1 1 1
0 0 0

0 1 0
0 1 0
0 1 0

0 0 0
1 1 1
0 0 0

0 1 0
0 1 0
0 1 0

0 0 0
1 1 1
0 0 0
```
Input:
```10 35 5
```
Output:
```1 1 0 0 0 0 1 1 0 0
1 1 0 0 1 1 0 1 1 0
1 0 1 1 0 0 0 1 0 0
0 1 0 1 0 1 0 1 0 1
1 0 0 0 1 0 0 1 0 1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 1
1 1 0 0 1 0 0 1 1 0

1 1 0 0 0 1 1 1 1 0
0 0 0 1 1 1 0 0 1 0
1 0 0 1 0 1 0 1 0 0
1 1 0 1 0 0 0 1 0 0
0 0 1 1 1 0 1 0 0 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 1 0
1 0 1 1 0 0 0 1 1 1
1 1 0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1 1 0
1 1 1 1 0 0 0 0 1 0
1 1 0 1 0 1 0 1 1 0
1 1 0 0 0 1 0 1 0 0
0 1 1 1 1 1 1 0 1 0
0 0 0 1 0 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 1 0 1
1 0 1 0 0 0 1 0 0 0
1 1 1 0 0 0 0 1 0 1

0 1 1 0 0 0 1 1 1 0
1 0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0
0 1 1 0 0 0 1 1 0 0
1 0 0 1 0 0 1 1 0 0
1 0 1 0 0 0 0 0 0 0

0 1 1 0 0 0 1 1 1 0
0 1 0 1 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 1 1 1 0 0 1 1 0 0
0 1 1 1 0 1 0 0 1 0
1 0 0 1 0 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0
```

## Befunge

Takes as input the width and height of the universe, followed by the pattern (which is terminated by the end of file). If your interpreter can't easily redirect the input from a file, or doesn't handle end-of-file detection, you can also type in the pattern manually and mark the end of input with a ~ character.

The pattern format itself is fairly lenient in what it accepts. You can use either space or . for dead cells, and o, O, * or # for live cells. This should make it fairly easy to cut and paste a number of existing formats, including the Life 1.05 format and the Plaintext .cells format used on the LifeWiki website (comments aren't supported though, so make sure to copy just the pattern itself).

In Befunge-93, the maximum value for the width and height of the universe is 127, but there is an additional constraint of 4080 cells in total, so the largest universe would really be something like 120x34 or 68x60. Befunge-98 has no real limit on the size, although in practice a much larger universe will probably be unbearably slow.

`00p10p20p30p&>40p&>50p60p>\$#v~>:55+-vv+`1:%3:+*g04p03< >3/"P"%\56v>p\56*8*/8+:vv5\`\"~"::-*3p06!:!-+67:_^#!<*<!g06!<>1+70g*\:3/"P"%v^ ^::+*g04%<*0v`1:%3\gp08<>6*`*#v_55+-#v_p10g1+10p>^pg08g07+gp08:+8/*8*65\p07:<^ >/10g-50g^87>+1+:01p/8/v>%#74#<-!!70p 00g::1+00p:20g\-:0`*+20p10g::30g\-:0`*+^ ^2+2+g03*<*:v+g06p09:%2<.v,:*93"[2J"0<>"H["39*,,,50g0v!:-1,+55\$_:40g3*20g+2+2/\-40g%50g3^/%\ >:3-\3-90vO>"l52?[">:#,_^v/3+2:*g05g04\$_>:10p40g0^!:-1,g+4\0%2/+1+`1:%3\g+8<^: \$v10!*-g<<g+70g80gp:#v_\$^>1-:::"P"%\"P"/8+:10v  >/10g+1-50g+50g%40g*+::3/"P"^>!|>g*70g80g:p00%g04:-1<<\$_^#!:pg01%"P"\*8%8gp<<  ^3\%g04+g04-1+g00%3:%9+4:-1p06\<90p01/g04`
Input:

Here's an example of what the input could look like for the Blinker pattern in a 5x5 universe:

```5
5
OOO```

And for a more complicated example, this is the Queen bee pattern in a 50x30 universe:

```50
30
...*
..*.*
.*...*
..***
**...**```
Output:

In order to produce an animated view of the universe evolving, we use a few basic ANSI escape sequences to reset the cursor position between frames. Without ANSI support, you'll just see the individual frames scrolling past with a bit of junk inbetween. The output shown below is just an extract of the first three generations of the Blinker in a 5x5 universe.

```.....   .....   .....
.....   ..O..   .....
.OOO.   ..O..   .OOO.
.....   ..O..   .....
.....   .....   .....```

## Brainf***

A life-program written in Brainf***

With Example-Output.

## Brat

`width = 3height = 3rounds = 3 universe = [[0 1 0]            [0 1 0]            [0 1 0]] next = height.of({width.of(0)}) cell = { x, y |  true? x < width && { x >= 0 && { y >= 0 && { y < height }}}  {    universe[y][x]  }  { 0 }} neighbors = { x, y |  cell(x - 1, y - 1) +  cell(x, y - 1) +  cell(x + 1, y - 1) +  cell(x + 1, y) +  cell(x + 1, y + 1) +  cell(x, y + 1) +  cell(x - 1, y + 1) +  cell(x - 1, y)} set_next = { x, y, v |  next[y][x] = v} step = {  universe.each_with_index { row, y |    row.each_with_index { c, x |      n = neighbors(x, y)       when { n < 2 } { set_next x,y, 0 }           { n > 3 } { set_next x, y, 0 }           { n == 3 } { set_next x, y, 1 }           { true } { set_next x, y, c }    }  }   u2 = universe  universe = next  next = u2} display = {  p universe.map({ r |    r.map({ n | true? n == 0, '-', "O" }).join  }).join("\n")} rounds.times {  display  p  step}`
Output:
```-O-
-O-
-O-

---
OOO
---

-O-
-O-
-O-
```

## BQN

`Life←{   r←¯1(⌽⎉1)¯1⌽(2+≢𝕩)↑𝕩   s←∨´ (1∾<r) ∧ 3‿4 = <+´⥊ ¯1‿0‿1 (⌽⎉1)⌜ ¯1‿0‿1 ⌽⌜ <r   1(↓⎉1) ¯1(↓⎉1) 1↓ ¯1↓s} blinker←>⟨0‿0‿0,1‿1‿1,0‿0‿0⟩(<".#") ⊏¨˜  Life⍟(↕3) blinker`
Output:
```┌─
· ┌─      ┌─      ┌─
╵"...   ╵".#.   ╵"...
###     .#.     ###
..."    .#."    ..."
┘       ┘       ┘
┘```

## C

Play game of life on your console: `gcc -std=c99 -Wall game.c; ./a.out [width] [height]`

`#include <stdio.h>#include <stdlib.h>#include <unistd.h> #define for_x for (int x = 0; x < w; x++)#define for_y for (int y = 0; y < h; y++)#define for_xy for_x for_yvoid show(void *u, int w, int h){	int (*univ)[w] = u;	printf("\033[H");	for_y {		for_x printf(univ[y][x] ? "\033[07m  \033[m" : "  ");		printf("\033[E");	}	fflush(stdout);} void evolve(void *u, int w, int h){	unsigned (*univ)[w] = u;	unsigned new[h][w]; 	for_y for_x {		int n = 0;		for (int y1 = y - 1; y1 <= y + 1; y1++)			for (int x1 = x - 1; x1 <= x + 1; x1++)				if (univ[(y1 + h) % h][(x1 + w) % w])					n++; 		if (univ[y][x]) n--;		new[y][x] = (n == 3 || (n == 2 && univ[y][x]));	}	for_y for_x univ[y][x] = new[y][x];} void game(int w, int h){	unsigned univ[h][w];	for_xy univ[y][x] = rand() < RAND_MAX / 10 ? 1 : 0;	while (1) {		show(univ, w, h);		evolve(univ, w, h);		usleep(200000);	}} int main(int c, char **v){	int w = 0, h = 0;	if (c > 1) w = atoi(v[1]);	if (c > 2) h = atoi(v[2]);	if (w <= 0) w = 30;	if (h <= 0) h = 30;	game(w, h);}`

Also see Conway's Game of Life/C

### C for Arduino

Play game of life on your arduino (using FastLED) - based on the C example.

` #include <FastLED.h> #define LED_PIN     3#define LED_TYPE    WS2812B#define WIDTH       20#define HEIGHT      15#define NUM_LEDS    (WIDTH*HEIGHT)#define BRIGHTNESS  100#define COLOR_ORDER GRB#define SERPENTINE  1#define FRAMERATE   1#define SCALE       1 CRGB leds[NUM_LEDS]; #include <stdio.h>#include <stdlib.h>#include <unistd.h> #define for_x for (int x = 0; x < w; x++)#define for_y for (int y = 0; y < h; y++)#define for_xy for_x for_y const int w = WIDTH, h = HEIGHT;unsigned univ[h][w]; int getLEDpos(int x, int y){ // for a serpentine raster    return (y%2 || !SERPENTINE) ? y*WIDTH + x : y*WIDTH + (WIDTH - 1 - x);} void show(void *u, int w, int h){    int (*univ)[w] = u;    for_xy {        leds[getLEDpos(x, y)] = univ[y][x] ? CRGB::White: CRGB::Black;    }    FastLED.show();} void evolve(void *u, int w, int h){    unsigned (*univ)[w] = u;    unsigned newU[h][w];     for_y for_x {        int n = 0;        for (int y1 = y - 1; y1 <= y + 1; y1++)            for (int x1 = x - 1; x1 <= x + 1; x1++)                if (univ[(y1 + h) % h][(x1 + w) % w])                    n++;         if (univ[y][x]) n--;        newU[y][x] = (n == 3 || (n == 2 && univ[y][x]));    }    for_y for_x univ[y][x] = newU[y][x];} void setup(){    //Initialize leds after safety period    FastLED.delay(500);    FastLED.addLeds<LED_TYPE, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection( TypicalLEDStrip );    FastLED.setBrightness(  BRIGHTNESS );     //Seed random with analog noise    randomSeed(analogRead(0));     for_xy univ[y][x] = random() %10 <= 1 ? 1 : 0;} void loop(){    show(univ, w, h);    evolve(univ, w, h);    FastLED.delay(1000/FRAMERATE);} `

### C for Arduino

Play game of life on your arduino (using two MAX7219 led 'screens') - based on the C example.

`  #include <MaxMatrix.h> int DIN = 11;   // DIN pin of MAX7219 moduleint CS = 12;    // CS pin of MAX7219 moduleint CLK = 13;   // CLK pin of MAX7219 moduleint DIN2 = 8;   // DIN pin of MAX7219 moduleint CS2 = 9;    // CS pin of MAX7219 moduleint CLK2 = 10;   // CLK pin of MAX7219 moduleint maxInUse = 1; //setup two screensMaxMatrix m(DIN, CS, CLK, maxInUse); MaxMatrix m2(DIN2, CS2, CLK2, maxInUse);  void setup() {  randomSeed(analogRead(0));  m.init(); // MAX7219 initialization  m.setIntensity(0); // initial led matrix intensity, 0-15  m.clear(); // Clears the display  m2.init(); // MAX7219 initialization  m2.setIntensity(0); // initial led matrix intensity, 0-15  m2.clear(); // Clears the display} void loop() {  game(16,8);//w,h} void setDot(int x,int y,bool isOn){  if(x<8){    m.setDot(x,y,isOn);   }else{    m2.setDot(x-8,y,isOn);   }} void show(void *u, int w, int h){  int (*univ)[w] = u;  for (int y = 0; y < h; y++){    for (int x = 0; x < w; x++){      bool sh=(univ[y][x]==1);      setDot(x,y,sh);     }  }    } void evolve(void *u, int w, int h){  unsigned (*univ)[w] = u;  unsigned newar[h][w];   for (int y = 0; y < h; y++){    for (int x = 0; x < w; x++){      int n = 0;      for (int y1 = y - 1; y1 <= y + 1; y1++)        for (int x1 = x - 1; x1 <= x + 1; x1++)          if (univ[(y1 + h) % h][(x1 + w) % w])            n++;       if (univ[y][x]) n--;      newar[y][x] = (n == 3 || (n == 2 && univ[y][x]));     }  }    for (int y = 0; y < h; y++){    for (int x = 0; x < w; x++){      univ[y][x] = newar[y][x];    }  }} void game(int w, int h) {  unsigned univ[h][w];  for (int x = 0; x < w; x++){    for (int y = 0; y < h; y++){      univ[y][x] = random(0, 100)>65 ? 1 : 0;    }  }  int sc=0;  while (1) {    show(univ, w, h);    evolve(univ, w, h);    delay(150);    sc++;if(sc>150)break;  }} `

## C#

` using System;using System.Text;using System.Threading; namespace ConwaysGameOfLife{    // Plays Conway's Game of Life on the console with a random initial state.    class Program    {        // The delay in milliseconds between board updates.        private const int DELAY = 50;         // The cell colors.        private const ConsoleColor DEAD_COLOR = ConsoleColor.White;        private const ConsoleColor LIVE_COLOR = ConsoleColor.Black;         // The color of the cells that are off of the board.        private const ConsoleColor EXTRA_COLOR = ConsoleColor.Gray;         private const char EMPTY_BLOCK_CHAR = ' ';        private const char FULL_BLOCK_CHAR = '\u2588';         // Holds the current state of the board.        private static bool[,] board;         // The dimensions of the board in cells.        private static int width = 32;        private static int height = 32;         // True if cell rules can loop around edges.        private static bool loopEdges = true;          static void Main(string[] args)        {            // Use initializeRandomBoard for a larger, random board.            initializeDemoBoard();             initializeConsole();             // Run the game until the Escape key is pressed.            while (!Console.KeyAvailable || Console.ReadKey(true).Key != ConsoleKey.Escape) {                Program.drawBoard();                Program.updateBoard();                 // Wait for a bit between updates.                Thread.Sleep(DELAY);            }        }         // Sets up the Console.        private static void initializeConsole()        {            Console.BackgroundColor = EXTRA_COLOR;            Console.Clear();             Console.CursorVisible = false;             // Each cell is two characters wide.            // Using an extra row on the bottom to prevent scrolling when drawing the board.            int width = Math.Max(Program.width, 8) * 2 + 1;            int height = Math.Max(Program.height, 8) + 1;            Console.SetWindowSize(width, height);            Console.SetBufferSize(width, height);             Console.BackgroundColor = DEAD_COLOR;            Console.ForegroundColor = LIVE_COLOR;        }         // Creates the initial board with a random state.        private static void initializeRandomBoard()        {            var random = new Random();             Program.board = new bool[Program.width, Program.height];            for (var y = 0; y < Program.height; y++) {                for (var x = 0; x < Program.width; x++) {                    // Equal probability of being true or false.                    Program.board[x, y] = random.Next(2) == 0;                }            }        }         // Creates a 3x3 board with a blinker.        private static void initializeDemoBoard()        {            Program.width = 3;            Program.height = 3;             Program.loopEdges = false;             Program.board = new bool[3, 3];            Program.board[1, 0] = true;            Program.board[1, 1] = true;            Program.board[1, 2] = true;        }         // Draws the board to the console.        private static void drawBoard()        {            // One Console.Write call is much faster than writing each cell individually.            var builder = new StringBuilder();             for (var y = 0; y < Program.height; y++) {                for (var x = 0; x < Program.width; x++) {                    char c = Program.board[x, y] ? FULL_BLOCK_CHAR : EMPTY_BLOCK_CHAR;                     // Each cell is two characters wide.                    builder.Append(c);                    builder.Append(c);                }                builder.Append('\n');            }             // Write the string to the console.            Console.SetCursorPosition(0, 0);            Console.Write (builder.ToString());        }         // Moves the board to the next state based on Conway's rules.        private static void updateBoard()        {            // A temp variable to hold the next state while it's being calculated.            bool[,] newBoard = new bool[Program.width, Program.height];             for (var y = 0; y < Program.height; y++) {                for (var x = 0; x < Program.width; x++) {                    var n = countLiveNeighbors(x, y);                    var c = Program.board[x, y];                     // A live cell dies unless it has exactly 2 or 3 live neighbors.                    // A dead cell remains dead unless it has exactly 3 live neighbors.                    newBoard[x, y] = c && (n == 2 || n == 3) || !c && n == 3;                }            }             // Set the board to its new state.            Program.board = newBoard;        }         // Returns the number of live neighbors around the cell at position (x,y).        private static int countLiveNeighbors(int x, int y)        {            // The number of live neighbors.            int value = 0;             // This nested loop enumerates the 9 cells in the specified cells neighborhood.            for (var j = -1; j <= 1; j++) {                // If loopEdges is set to false and y+j is off the board, continue.                if (!Program.loopEdges && y + j < 0 || y + j >= Program.height) {                    continue;                }                 // Loop around the edges if y+j is off the board.                int k = (y + j + Program.height) % Program.height;                 for (var i = -1; i <= 1; i++) {                    // If loopEdges is set to false and x+i is off the board, continue.                    if (!Program.loopEdges && x + i < 0 || x + i >= Program.width) {                        continue;                    }                     // Loop around the edges if x+i is off the board.                    int h = (x + i + Program.width) % Program.width;                     // Count the neighbor cell at (h,k) if it is alive.                    value += Program.board[h, k] ? 1 : 0;                }            }             // Subtract 1 if (x,y) is alive since we counted it as a neighbor.            return value - (Program.board[x, y] ? 1 : 0);        }    }}  `

Output:

` Frame 1:    Frame 2:    Frame 3:              ██              ██████        ██        ██████              ██                     `

## C++

Considering that the simplest implementation in C++ would lack any use of the object-oriented paradigm, this code was specifically written to demonstrate the various object-oriented features of C++. Thus, while it is somewhat verbose, it fully simulates Conway's Game of Life and is relatively simple to expand to feature different starting shapes.

`#include <iostream>#define HEIGHT 4#define WIDTH 4 struct Shape {public:    char xCoord;    char yCoord;    char height;    char width;    char **figure;}; struct Glider : public Shape {    static const char GLIDER_SIZE = 3;    Glider( char x , char y );    ~Glider();}; struct Blinker : public Shape {    static const char BLINKER_HEIGHT = 3;    static const char BLINKER_WIDTH = 1;    Blinker( char x , char y );    ~Blinker();}; class GameOfLife {public:    GameOfLife( Shape sh );    void print();    void update();    char getState( char state , char xCoord , char yCoord , bool toggle);    void iterate(unsigned int iterations);private:    char world[HEIGHT][WIDTH];    char otherWorld[HEIGHT][WIDTH];    bool toggle;    Shape shape;}; GameOfLife::GameOfLife( Shape sh ) :    shape(sh) ,    toggle(true) {    for ( char i = 0; i < HEIGHT; i++ ) {        for ( char j = 0; j < WIDTH; j++ ) {            world[i][j] = '.';        }    }    for ( char i = shape.yCoord; i - shape.yCoord < shape.height; i++ ) {        for ( char j = shape.xCoord; j - shape.xCoord < shape.width; j++ ) {            if ( i < HEIGHT && j < WIDTH ) {                world[i][j] =                     shape.figure[ i - shape.yCoord ][j - shape.xCoord ];            }        }    }} void GameOfLife::print() {    if ( toggle ) {        for ( char i = 0; i < HEIGHT; i++ ) {            for ( char j = 0; j < WIDTH; j++ ) {                std::cout << world[i][j];            }            std::cout << std::endl;        }    } else {        for ( char i = 0; i < HEIGHT; i++ ) {            for ( char j = 0; j < WIDTH; j++ ) {                std::cout << otherWorld[i][j];            }            std::cout << std::endl;        }    }    for ( char i = 0; i < WIDTH; i++ ) {        std::cout << '=';    }    std::cout << std::endl;} void GameOfLife::update() {    if (toggle) {        for ( char i = 0; i < HEIGHT; i++ ) {            for ( char j = 0; j < WIDTH; j++ ) {                otherWorld[i][j] =                     GameOfLife::getState(world[i][j] , i , j , toggle);            }        }        toggle = !toggle;    } else {        for ( char i = 0; i < HEIGHT; i++ ) {            for ( char j = 0; j < WIDTH; j++ ) {                world[i][j] =                     GameOfLife::getState(otherWorld[i][j] , i , j , toggle);            }        }        toggle = !toggle;    }} char GameOfLife::getState( char state, char yCoord, char xCoord, bool toggle ) {    char neighbors = 0;    if ( toggle ) {        for ( char i = yCoord - 1; i <= yCoord + 1; i++ ) {            for ( char j = xCoord - 1; j <= xCoord + 1; j++ ) {                if ( i == yCoord && j == xCoord ) {                    continue;                }                if ( i > -1 && i < HEIGHT && j > -1 && j < WIDTH ) {                    if ( world[i][j] == 'X' ) {                        neighbors++;                    }                }            }        }    } else {        for ( char i = yCoord - 1; i <= yCoord + 1; i++ ) {            for ( char j = xCoord - 1; j <= xCoord + 1; j++ ) {                if ( i == yCoord && j == xCoord ) {                    continue;                }                if ( i > -1 && i < HEIGHT && j > -1 && j < WIDTH ) {                    if ( otherWorld[i][j] == 'X' ) {                        neighbors++;                    }                }            }        }    }    if (state == 'X') {        return ( neighbors > 1 && neighbors < 4 ) ? 'X' : '.';    }    else {        return ( neighbors == 3 ) ? 'X' : '.';    }} void GameOfLife::iterate( unsigned int iterations ) {    for ( int i = 0; i < iterations; i++ ) {        print();        update();    }} Glider::Glider( char x , char y ) {    xCoord = x;    yCoord = y;    height = GLIDER_SIZE;    width = GLIDER_SIZE;    figure = new char*[GLIDER_SIZE];    for ( char i = 0; i < GLIDER_SIZE; i++ ) {        figure[i] = new char[GLIDER_SIZE];    }    for ( char i = 0; i < GLIDER_SIZE; i++ ) {        for ( char j = 0; j < GLIDER_SIZE; j++ ) {            figure[i][j] = '.';        }    }    figure[0][1] = 'X';    figure[1][2] = 'X';    figure[2][0] = 'X';    figure[2][1] = 'X';    figure[2][2] = 'X';} Glider::~Glider() {    for ( char i = 0; i < GLIDER_SIZE; i++ ) {        delete[] figure[i];    }    delete[] figure;} Blinker::Blinker( char x , char y ) {    xCoord = x;    yCoord = y;    height = BLINKER_HEIGHT;    width = BLINKER_WIDTH;    figure = new char*[BLINKER_HEIGHT];    for ( char i = 0; i < BLINKER_HEIGHT; i++ ) {        figure[i] = new char[BLINKER_WIDTH];    }    for ( char i = 0; i < BLINKER_HEIGHT; i++ ) {        for ( char j = 0; j < BLINKER_WIDTH; j++ ) {            figure[i][j] = 'X';        }    }} Blinker::~Blinker() {    for ( char i = 0; i < BLINKER_HEIGHT; i++ ) {        delete[] figure[i];    }    delete[] figure;} int main() {    Glider glider(0,0);    GameOfLife gol(glider);    gol.iterate(5);    Blinker blinker(1,0);    GameOfLife gol2(blinker);    gol2.iterate(4);} `
Output:
first a glider, then a blinker, over a few iterations

(reformatted for convenience).

```.X.. .... .... .... ....
..X. X.X. ..X. .X.. ..X.
XXX. .XX. X.X. ..XX ...X
.... .X.. .XX. .XX. .XXX
==== ==== ==== ==== ====

.X.. .... .X..
.X.. XXX. .X..
.X.. .... .X..
.... .... ....
==== ==== ====
```

### Alternate version

Another aproach - a pretty simple one.
This version allows you to start the automata with different set of rules. Just for the fun of it.

` #include <algorithm>#include <vector>#include <iostream>#include <string> typedef unsigned char byte;  class world {public:    world( int x, int y ) : _wid( x ), _hei( y ) {        int s = _wid * _hei * sizeof( byte );        _cells = new byte[s];        memset( _cells, 0, s );    }    ~world() {        delete [] _cells;    }    int wid() const {        return _wid;    }    int hei() const {        return _hei;    }    byte at( int x, int y ) const {        return _cells[x + y * _wid];    }    void set( int x, int y, byte c ) {        _cells[x + y * _wid] = c;    }    void swap( world* w ) {        memcpy( _cells, w->_cells, _wid * _hei * sizeof( byte ) );    }private:    int _wid, _hei;    byte* _cells;};class rule {public:    rule( world* w ) : wrd( w ) {        wid = wrd->wid();        hei = wrd->hei();        wrdT = new world( wid, hei );    }    ~rule() {        if( wrdT ) delete wrdT;    }    bool hasLivingCells() {        for( int y = 0; y < hei; y++ )            for( int x = 0; x < wid; x++ )                if( wrd->at( x, y ) ) return true;        std::cout << "*** All cells are dead!!! ***\n\n";        return false;    }    void swapWrds() {        wrd->swap( wrdT );    }    void setRuleB( std::vector<int>& birth ) {        _birth = birth;    }    void setRuleS( std::vector<int>& stay ) {        _stay = stay;    }    void applyRules() {        int n;        for( int y = 0; y < hei; y++ ) {            for( int x = 0; x < wid; x++ ) {                n = neighbours( x, y );                if( wrd->at( x, y ) ) {                    wrdT->set( x, y, inStay( n ) ? 1 : 0 );                } else {                    wrdT->set( x, y, inBirth( n ) ? 1 : 0 );                }            }        }    }private:    int neighbours( int xx, int yy ) {        int n = 0, nx, ny;        for( int y = -1; y < 2; y++ ) {            for( int x = -1; x < 2; x++ ) {                if( !x && !y ) continue;                nx = ( wid + xx + x ) % wid;                ny = ( hei + yy + y ) % hei;                n += wrd->at( nx, ny ) > 0 ? 1 : 0;            }        }        return n;    }    bool inStay( int n ) {        return( _stay.end() != find( _stay.begin(), _stay.end(), n ) );    }    bool inBirth( int n ) {        return( _birth.end() != find( _birth.begin(), _birth.end(), n ) );    }    int wid, hei;    world *wrd, *wrdT;    std::vector<int> _stay, _birth;};class cellular {public:    cellular( int w, int h ) : rl( 0 ) {        wrd = new world( w, h );    }    ~cellular() {        if( rl ) delete rl;        delete wrd;    }    void start( int r ) {        rl = new rule( wrd );        gen = 1;        std::vector<int> t;        switch( r ) {            case 1: // conway                t.push_back( 2 ); t.push_back( 3 ); rl->setRuleS( t );                t.clear(); t.push_back( 3 ); rl->setRuleB( t );                break;            case 2: // amoeba                t.push_back( 1 ); t.push_back( 3 ); t.push_back( 5 ); t.push_back( 8 ); rl->setRuleS( t );                t.clear(); t.push_back( 3 ); t.push_back( 5 ); t.push_back( 7 ); rl->setRuleB( t );                break;            case 3: // life34                t.push_back( 3 ); t.push_back( 4 ); rl->setRuleS( t );                rl->setRuleB( t );                break;            case 4: // maze                t.push_back( 1 ); t.push_back( 2 ); t.push_back( 3 ); t.push_back( 4 ); t.push_back( 5 ); rl->setRuleS( t );                t.clear(); t.push_back( 3 ); rl->setRuleB( t );                break;        }         /* just for test - shoud read from a file */        /* GLIDER */        wrd->set( 6, 1, 1 ); wrd->set( 7, 2, 1 );        wrd->set( 5, 3, 1 ); wrd->set( 6, 3, 1 );        wrd->set( 7, 3, 1 );        /* BLINKER */        wrd->set( 1, 3, 1 ); wrd->set( 2, 3, 1 );        wrd->set( 3, 3, 1 );        /******************************************/        generation();    }private:    void display() {        system( "cls" );        int wid = wrd->wid(),            hei = wrd->hei();        std::cout << "+" << std::string( wid, '-' ) << "+\n";        for( int y = 0; y < hei; y++ ) {            std::cout << "|";            for( int x = 0; x < wid; x++ ) {                if( wrd->at( x, y ) ) std::cout << "#";                else std::cout << ".";            }            std::cout << "|\n";        }        std::cout << "+" << std::string( wid, '-' ) << "+\n";        std::cout << "Generation: " << gen << "\n\nPress [RETURN] for the next generation...";        std::cin.get();    }    void generation() {        do {            display();            rl->applyRules();            rl->swapWrds();            gen++;        }        while ( rl->hasLivingCells() );    }    rule* rl;    world* wrd;    int gen; }; int main( int argc, char* argv[] ) {    cellular c( 20, 12 );    std::cout << "\n\t*** CELLULAR AUTOMATA ***" << "\n\n Which one you want to run?\n\n\n";    std::cout << " [1]\tConway's Life\n [2]\tAmoeba\n [3]\tLife 34\n [4]\tMaze\n\n > ";    int o;     do {        std::cin >> o;    }     while( o < 1 || o > 4 );    std::cin.ignore();    c.start( o );    return system( "pause" );} `
Output:
```
+--------------------+  +--------------------+  +--------------------+  +--------------------+
|....................|  |....................|  |....................|  |....................|
|......#.............|  |....................|  |....................|  |....................|
|.......#............|  |..#..#.#............|  |.......#............|  |..#...#.............|
|.###.###............|  |..#...##............|  |.###.#.#............|  |..#....##...........|
|....................|  |..#...#.............|  |......##............|  |..#...##............|
|....................|  |....................|  |....................|  |....................|
|....................|  |....................|  |....................|  |....................|
|....................|  |....................|  |....................|  |....................|
+--------------------+  +--------------------+  +--------------------+  +--------------------+
Generation: 1           Generation: 2           Generation: 3           Generation: 4

```

### Simple Without Classes

Shows a glider over 20 generations Board edges wrap around to simulate infinite board

` #include <iostream>#include <vector>#include <numeric> // ---------------------------------------------------------------------------- using Row   = std::vector<int>;using Cells = std::vector<Row>; // ---------------------------------------------------------------------------- Cells board = {    {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},    {0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},    {0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},    {0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},    {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},    {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},    {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},    {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},    {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},    {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, }; int numRows = 10;int numCols = 20; // ---------------------------------------------------------------------------- int getNeighbor(int row, int col, Cells& board) {    // use modulus to get wrapping effect at board edges    return board.at((row + numRows) % numRows).at((col + numCols) % numCols);} int getCount(int row, int col, Cells& board) {    int count = 0;    std::vector<int> deltas {-1, 0, 1};    for (int dc : deltas) {        for (int dr : deltas) {            if (dr || dc) {                count += getNeighbor(row + dr, col + dc, board);            }        }    }    return count;} void showCell(int cell) {    std::cout << (cell ? "*" : " ");} void showRow(const Row& row) {    std::cout << "|";    for (int cell : row) {showCell(cell);}    std::cout << "|\n";} void showCells(Cells board) {    for (const Row& row : board) { showRow(row); }} int tick(Cells& board, int row, int col) {    int count = getCount(row, col, board);    bool birth = !board.at(row).at(col) && count == 3;    bool survive = board.at(row).at(col) && (count == 2 || count == 3);    return birth || survive;} void updateCells(Cells& board) {    Cells original = board;    for (int row = 0; row < numRows; row++) {        for (int col = 0; col < numCols; col++) {            board.at(row).at(col) = tick(original, row, col);        }    }} int main () {    for (int gen = 0; gen < 20; gen++) {        std::cout << "\ngeneration " << gen << ":\n";        showCells(board);        updateCells(board);    }} `
Output:
```
generation 0:
|                    |
|  *                 |
|   *                |
| ***                |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
generation 1:
|                    |
|                    |
| * *                |
|  **                |
|  *                 |
|                    |
|                    |
|                    |
|                    |
|                    |
generation 2:
|                    |
|                    |
|   *                |
| * *                |
|  **                |
|                    |
|                    |
|                    |
|                    |
|                    |
generation 3:
|                    |
|                    |
|  *                 |
|   **               |
|  **                |
|                    |
|                    |
|                    |
|                    |
|                    |
...

```

## Chapel

` config const gridHeight: int = 3;config const gridWidth: int = 3; enum State { dead = 0, alive = 1 }; class ConwaysGameofLife {   var gridDomain: domain(2);  var computeDomain: subdomain( gridDomain );  var grid: [gridDomain] int;   proc ConwaysGameofLife( height: int, width: int ) {    this.gridDomain = {0..#height+2, 0..#width+2};    this.computeDomain = this.gridDomain.expand( -1 );  }   proc step(){     var tempGrid: [this.computeDomain] State;    forall (i,j) in this.computeDomain {      var isAlive = this.grid[i,j] == State.alive;      var numAlive = (+ reduce this.grid[ i-1..i+1, j-1..j+1 ]) - if isAlive then 1 else 0;            tempGrid[i,j] = if ( (2 == numAlive && isAlive) || numAlive == 3 ) then State.alive else State.dead ;    }     this.grid[this.computeDomain] = tempGrid;   }   proc this( i: int, j: int ) ref : State {    return this.grid[i,j];  }   proc prettyPrint(): string {    var str: string;    for i in this.gridDomain.dim(1) {      if i == 0 || i == gridDomain.dim(1).last {        for j in this.gridDomain.dim(2) {          str += "-";        }      } else {        for j in this.gridDomain.dim(2) {          if j == 0 || j == this.gridDomain.dim(2).last {            str += "|";          } else {            str += if this.grid[i,j] == State.alive then "#" else " ";          }        }      }      str += "\n";    }    return str;  } } proc main{  var game = new ConwaysGameofLife( gridHeight, gridWidth );  game[gridHeight/2 + 1, gridWidth/2     ] = State.alive;  game[gridHeight/2 + 1, gridWidth/2 + 1 ] = State.alive;  game[gridHeight/2 + 1, gridWidth/2 + 2 ] = State.alive;  for i in 1..3 {    writeln( game.prettyPrint() );    game.step();  }} `

Output:

```-----
|   |
|###|
|   |
-----

-----
| # |
| # |
| # |
-----

-----
|   |
|###|
|   |
-----

```

## Clojure

Based on the implementation by Christophe Grand here: http://clj-me.cgrand.net/2011/08/19/conways-game-of-life/ This implementation models the live cells as a set of coordinates.

`(defn moore-neighborhood [[x y]]  (for [dx [-1 0 1]        dy [-1 0 1]        :when (not (= [dx dy] [0 0]))]    [(+ x dx) (+ y dy)])) (defn step [set-of-cells]  (set (for [[cell count] (frequencies (mapcat moore-neighborhood set-of-cells))             :when (or (= 3 count)                       (and (= 2 count) (contains? set-of-cells cell)))]         cell))) (defn print-world   ([set-of-cells] (print-world set-of-cells 10))  ([set-of-cells world-size]     (let [r (range 0 (+ 1 world-size))]       (pprint (for [y r] (apply str (for [x r] (if (set-of-cells [x y]) \# \.)))))))) (defn run-life [world-size num-steps set-of-cells]  (loop [s num-steps          cells set-of-cells]    (print-world cells world-size)    (when (< 0 s)       (recur (- s 1) (step cells))))) (def *blinker* #{[1 2] [2 2] [3 2]})(def *glider* #{[1 0] [2 1] [0 2] [1 2] [2 2]}) `

## COBOL

`identification division.program-id. game-of-life-program.data division.working-storage section.01  grid.    05 cell-table.        10 row occurs 5 times.            15 cell pic x value space occurs 5 times.    05 next-gen-cell-table.        10 next-gen-row occurs 5 times.            15 next-gen-cell pic x occurs 5 times.01  counters.    05 generation pic 9.    05 current-row pic 9.    05 current-cell pic 9.    05 living-neighbours pic 9.    05 neighbour-row pic 9.    05 neighbour-cell pic 9.    05 check-row pic s9.    05 check-cell pic s9.procedure division.control-paragraph.    perform blinker-paragraph varying current-cell from 2 by 1    until current-cell is greater than 4.    perform show-grid-paragraph through life-paragraph    varying generation from 0 by 1    until generation is greater than 2.    stop run.blinker-paragraph.    move '#' to cell(3,current-cell).show-grid-paragraph.    display 'GENERATION ' generation ':'.    display '   +---+'.    perform show-row-paragraph varying current-row from 2 by 1    until current-row is greater than 4.    display '   +---+'.    display ''.life-paragraph.    perform update-row-paragraph varying current-row from 2 by 1    until current-row is greater than 4.    move next-gen-cell-table to cell-table.show-row-paragraph.    display '   |' with no advancing.    perform show-cell-paragraph varying current-cell from 2 by 1    until current-cell is greater than 4.    display '|'.show-cell-paragraph.    display cell(current-row,current-cell) with no advancing.update-row-paragraph.    perform update-cell-paragraph varying current-cell from 2 by 1    until current-cell is greater than 4.update-cell-paragraph.    move 0 to living-neighbours.    perform check-row-paragraph varying check-row from -1 by 1    until check-row is greater than 1.    evaluate living-neighbours,        when 2 move cell(current-row,current-cell) to next-gen-cell(current-row,current-cell),        when 3 move '#' to next-gen-cell(current-row,current-cell),        when other move space to next-gen-cell(current-row,current-cell),    end-evaluate.check-row-paragraph.    add check-row to current-row giving neighbour-row.    perform check-cell-paragraph varying check-cell from -1 by 1    until check-cell is greater than 1.check-cell-paragraph.    add check-cell to current-cell giving neighbour-cell.    if cell(neighbour-row,neighbour-cell) is equal to '#',    and check-cell is not equal to zero or check-row is not equal to zero,    then add 1 to living-neighbours.`
Output:
```GENERATION 0:
+---+
|   |
|###|
|   |
+---+

GENERATION 1:
+---+
| # |
| # |
| # |
+---+

GENERATION 2:
+---+
|   |
|###|
|   |
+---+```

## Common Lisp

`(defun next-life (array &optional results)  (let* ((dimensions (array-dimensions array))         (results (or results (make-array dimensions :element-type 'bit))))    (destructuring-bind (rows columns) dimensions      (labels ((entry (row col)                 "Return array(row,col) for valid (row,col) else 0."                 (if (or (not (< -1 row rows))                         (not (< -1 col columns)))                   0                   (aref array row col)))               (neighbor-count (row col &aux (count 0))                 "Return the sum of the neighbors of (row,col)."                 (dolist (r (list (1- row) row (1+ row)) count)                   (dolist (c (list (1- col) col (1+ col)))                     (unless (and (eql r row) (eql c col))                       (incf count (entry r c))))))               (live-or-die? (current-state neighbor-count)                 (if (or (and (eql current-state 1)                              (<=  2 neighbor-count 3))                         (and (eql current-state 0)                              (eql neighbor-count 3)))                   1                   0)))        (dotimes (row rows results)          (dotimes (column columns)            (setf (aref results row column)                  (live-or-die? (aref array row column)                                (neighbor-count row column))))))))) (defun print-grid (grid &optional (out *standard-output*))  (destructuring-bind (rows columns) (array-dimensions grid)    (dotimes (r rows grid)      (dotimes (c columns (terpri out))        (write-char (if (zerop (aref grid r c)) #\+ #\#) out))))) (defun run-life (&optional world (iterations 10) (out *standard-output*))  (let* ((world (or world (make-array '(10 10) :element-type 'bit)))         (result (make-array (array-dimensions world) :element-type 'bit)))    (do ((i 0 (1+ i))) ((eql i iterations) world)      (terpri out) (print-grid world out)      (psetq world (next-life world result)             result world))))`
`(run-life (make-array '(3 3)                       :element-type 'bit                      :initial-contents '((0 0 0)                                           (1 1 1)                                          (0 0 0)))          3)`

produces

```+++
###
+++

+#+
+#+
+#+

+++
###
+++```

A version using a sparse list of living cells rather than an explicit board.

`(defun moore-neighborhood (cell)  (let ((r '(-1 0 1)))    (mapcan	 (lambda (delta-x)	   (loop for delta-y in r	      unless (and (= delta-x 0) (= delta-y 0))	      collect (cons (+ (car cell) delta-x) (+ (cdr cell) delta-y))))	 r))) (defun frequencies (cells)  (let ((h (make-hash-table :test #'equal)))    (loop for c in cells       if (gethash c h)         do (incf (gethash c h))       else       do (setf (gethash c h) 1))    h)) (defun life-step (cells)  (let ((f (frequencies (mapcan #'moore-neighborhood cells))))    (loop for k being the hash-keys in f       when (or 	     (= (gethash k f) 3) 	     (and (= (gethash k f) 2) (member k cells :test #'equal)))	 collect k))) (defun print-world (live-cells &optional (world-size 10))  (dotimes (y world-size)    (dotimes (x world-size)      (if (member (cons x y) live-cells :test #'equal)	  (format t "X")	  (format t ".")))    (format t "~%"))) (defun run-life (world-size steps cells)  (print-world cells world-size)  (format t "~%")  (when (< 0 steps)    (run-life world-size (- steps 1) (life-step cells)))) (defparameter *blinker* '((1 . 2) (2 . 2) (3 . 2)))(defparameter *glider* '((1 . 0) (2 . 1) (0 . 2) (1 . 2) (2 . 2)))`

## D

`import std.stdio, std.string, std.algorithm, std.array, std.conv; struct GameOfLife {  enum Cell : char { dead = ' ', alive = '#' }  Cell[][] grid, newGrid;   this(in int x, in int y) pure nothrow @safe {    grid = new typeof(grid)(y + 2, x + 2);    newGrid = new typeof(grid)(y + 2, x + 2);  }   void opIndexAssign(in string[] v, in size_t y, in size_t x)  pure /*nothrow*/ @safe /*@nogc*/ {    foreach (immutable nr, row; v)      foreach (immutable nc, state; row)        grid[y + nr][x + nc] = state.to!Cell;  }   void iteration() pure nothrow @safe @nogc {    newGrid[0][] = Cell.dead;    newGrid[\$ - 1][] = Cell.dead;    foreach (row; newGrid)      row[0] = row[\$ - 1] = Cell.dead;     foreach (immutable r; 1 .. grid.length - 1)      foreach (immutable c; 1 .. grid[0].length - 1) {        uint count = 0;        foreach (immutable i; -1 .. 2)          foreach (immutable j; -1 .. 2)            if (i != 0 || j != 0)              count += grid[r + i][c + j] == Cell.alive;        immutable a = count == 3 ||                      (count == 2 && grid[r][c] == Cell.alive);        newGrid[r][c] = a ? Cell.alive : Cell.dead;      }     grid.swap(newGrid);  }   string toString() const pure /*nothrow @safe*/ {    auto ret = "-".replicate(grid[0].length - 1) ~ "\n";    foreach (const row; grid[1 .. \$ - 1])      ret ~= "|%(%c%)|\n".format(row[1 .. \$ - 1]);    return ret ~ "-".replicate(grid[0].length - 1);  }} void main() /*@safe*/ {  immutable glider1 = ["  #", "# #", " ##"];  immutable glider2 = ["#  ", "# #", "## "];   auto uni = GameOfLife(60, 20);  uni[3,  2] = glider1;  uni[3, 15] = glider2;  uni[3, 19] = glider1;  uni[3, 32] = glider2;  uni[5, 50] = [" #  #", "#  ", "#   #", "#### "];  uni.writeln;   foreach (immutable _; 0 .. 20) {    uni.iteration;    uni.writeln;  }}`
Output, first iteration:
```-------------------------------------------------------------
|                                                            |
|                                                            |
|   #          #     #          #                            |
| # #          # # # #          # #                          |
|  ##          ##   ##          ##                 #  #      |
|                                                 #          |
|                                                 #   #      |
|                                                 ####       |
|                                                            |
|                                                            |
|                                                            |
|                                                            |
|                                                            |
|                                                            |
|                                                            |
|                                                            |
|                                                            |
|                                                            |
|                                                            |
|                                                            |
-------------------------------------------------------------```

### Faster Version

Same output.

`import std.stdio, std.string, std.algorithm, std.typetuple,       std.array, std.conv; struct GameOfLife {  enum Cell : char { dead = ' ', alive = '#' }  Cell[] grid, newGrid;  immutable size_t nCols;   this(in int nx, in int ny) pure nothrow @safe {    nCols = nx + 2;    grid = new typeof(grid)(nCols * (ny + 2));    newGrid = new typeof(grid)(grid.length);  }   void opIndexAssign(in string[] v, in size_t y, in size_t x)  pure /*nothrow*/ @safe /*@nogc*/ {    foreach (immutable nr, const row; v)      foreach (immutable nc, immutable state; row)        grid[(y + nr) * nCols + x + nc] = state.to!Cell;  }   void iteration() pure nothrow @safe @nogc {    newGrid[0 .. nCols] = Cell.dead;    newGrid[\$ - nCols .. \$] = Cell.dead;    foreach (immutable nr; 1 .. (newGrid.length / nCols) - 1) {      newGrid[nr * nCols + 0] = Cell.dead;      newGrid[nr * nCols + nCols - 1] = Cell.dead;    }     foreach (immutable nr; 1 .. (grid.length / nCols) - 1) {      size_t nr_nCols = nr * nCols;      foreach (immutable nc; 1 .. nCols - 1) {        uint count = 0;        /*static*/ foreach (immutable i; TypeTuple!(-1, 0, 1))          /*static*/ foreach (immutable j; TypeTuple!(-1, 0, 1))            static if (i != 0 || j != 0)              count += (grid[nr_nCols + i * nCols + nc + j] == Cell.alive);        immutable a = count == 3 ||                      (count == 2 && grid[nr_nCols + nc] == Cell.alive);        newGrid[nr_nCols + nc] = a ? Cell.alive : Cell.dead;      }    }     swap(grid, newGrid);  }   string toString() const pure /*nothrow @safe*/ {    string ret = "-".replicate(nCols - 1) ~ "\n";    foreach (immutable nr; 1 .. (grid.length / nCols) - 1)      ret ~= "|%(%c%)|\n".format(grid[nr * nCols + 1 .. nr * nCols + nCols - 1]);    return ret ~ "-".replicate(nCols - 1);  }} void main() {  immutable glider1 = ["  #", "# #", " ##"];  immutable glider2 = ["#  ", "# #", "## "];   auto uni = GameOfLife(60, 20);  uni[3,  2] = glider1;  uni[3, 15] = glider2;  uni[3, 19] = glider1;  uni[3, 32] = glider2;  uni[5, 50] = [" #  #", "#  ", "#   #", "#### "];  uni.writeln;   foreach (immutable _; 0 .. 20) {    uni.iteration;    uni.writeln;  }}`

## Dart

`/*** States of a cell. A cell is either [ALIVE] or [DEAD].* The state contains its [symbol] for printing.*/class State {  const State(this.symbol);   static final ALIVE = const State('#');  static final DEAD = const State(' ');   final String symbol;} /*** The "business rule" of the game. Depending on the count of neighbours,* the [cellState] changes.*/class Rule {  Rule(this.cellState);   reactToNeighbours(int neighbours) {    if (neighbours == 3) {      cellState = State.ALIVE;    } else if (neighbours != 2) {      cellState = State.DEAD;    }  }   var cellState;} /*** A coordinate on the [Grid].*/class Point {  const Point(this.x, this.y);   operator +(other) => new Point(x + other.x, y + other.y);   final int x;  final int y;} /*** List of the relative indices of the 8 cells around a cell.*/class Neighbourhood {  List<Point> points() {    return [      new Point(LEFT, UP), new Point(MIDDLE, UP), new Point(RIGHT, UP),      new Point(LEFT, SAME), new Point(RIGHT, SAME),      new Point(LEFT, DOWN), new Point(MIDDLE, DOWN), new Point(RIGHT, DOWN)    ];  }   static final LEFT = -1;  static final MIDDLE = 0;  static final RIGHT = 1;  static final UP = -1;  static final SAME = 0;  static final DOWN = 1;} /*** The grid is an endless, two-dimensional [field] of cell [State]s.*/class Grid {  Grid(this.xCount, this.yCount) {    _field = new Map();    _neighbours = new Neighbourhood().points();  }   set(point, state) {    _field[_pos(point)] = state;  }   State get(point) {    var state = _field[_pos(point)];    return state != null ? state : State.DEAD;  }   int countLiveNeighbours(point) =>    _neighbours.filter((offset) => get(point + offset) == State.ALIVE).length;   _pos(point) => '\${(point.x + xCount) % xCount}:\${(point.y + yCount) % yCount}';   print() {    var sb = new StringBuffer();    iterate((point) { sb.add(get(point).symbol); }, (x) { sb.add("\n"); });    return sb.toString();  }   iterate(eachCell, [finishedRow]) {    for (var x = 0; x < xCount; x++) {      for (var y = 0; y < yCount; y++) {         eachCell(new Point(x, y));      }      if(finishedRow != null) {        finishedRow(x);      }    }  }   final xCount, yCount;  List<Point> _neighbours;  Map<String, State> _field;} /*** The game updates the [grid] in each step using the [Rule].*/class Game {  Game(this.grid);   tick() {    var newGrid = createNewGrid();     grid.iterate((point) {      var rule = new Rule(grid.get(point));      rule.reactToNeighbours(grid.countLiveNeighbours(point));      newGrid.set(point, rule.cellState);    });     grid = newGrid;  }   createNewGrid() => new Grid(grid.xCount, grid.yCount);   printGrid() => print(grid.print());   Grid grid;} main() {  // Run the GoL with a blinker.  runBlinker();} runBlinker() {  var game = new Game(createBlinkerGrid());   for(int i = 0; i < 3; i++) {    game.printGrid();    game.tick();  }  game.printGrid();} createBlinkerGrid() {  var grid = new Grid(4, 4);  loadBlinker(grid);  return grid;} loadBlinker(grid) => blinkerPoints().forEach((point) => grid.set(point, State.ALIVE)); blinkerPoints() => [new Point(0, 1), new Point(1, 1), new Point(2, 1)];`

Test cases driving the design of this code:

`#import('<path to sdk>/lib/unittest/unittest.dart'); main() {  group('rules', () {    test('should let living but lonely cell die', () {      var rule = new Rule(State.ALIVE);      rule.reactToNeighbours(1);      expect(rule.cellState, State.DEAD);    });    test('should let proper cell live on', () {      var rule = new Rule(State.ALIVE);      rule.reactToNeighbours(2);      expect(rule.cellState, State.ALIVE);    });    test('should let dead cell with three neighbours be reborn', () {      var rule = new Rule(State.DEAD);      rule.reactToNeighbours(3);      expect(rule.cellState, State.ALIVE);    });    test('should let living cell with too many neighbours die', () {      var rule = new Rule(State.ALIVE);      rule.reactToNeighbours(4);      expect(rule.cellState, State.DEAD);    });  });   group('grid', () {    var origin = new Point(0, 0);    test('should have state', () {      var grid = new Grid(1, 1);      expect(grid.get(origin), State.DEAD);      grid.set(origin, State.ALIVE);      expect(grid.get(origin), State.ALIVE);    });    test('should have dimension', () {      var grid = new Grid(2, 3);      expect(grid.get(origin), State.DEAD);      grid.set(origin, State.ALIVE);      expect(grid.get(origin), State.ALIVE);      expect(grid.get(new Point(1, 2)), State.DEAD);      grid.set(new Point(1, 2), State.ALIVE);      expect(grid.get(new Point(1, 2)), State.ALIVE);    });    test('should be endless', () {      var grid = new Grid(2, 4);      grid.set(new Point(2, 4), State.ALIVE);      expect(grid.get(origin), State.ALIVE);      grid.set(new Point(-1, -1), State.ALIVE);      expect(grid.get(new Point(1, 3)), State.ALIVE);    });    test('should print itself', () {      var grid = new Grid(1, 2);      grid.set(new Point(0, 1), State.ALIVE);      expect(grid.print(), " #\n");    });  });   group('game', () {    test('should exists', () {     var game = new Game(null);     expect(game, isNotNull);    });    test('should create a new grid when ticked', () {      var grid = new Grid(1, 1);      var game = new Game(grid);      game.tick();      expect(game.grid !== grid);    });    test('should have a grid with the same dimension after tick', (){      var game = new Game(new Grid(2, 3));      game.tick();      expect(game.grid.xCount, 2);      expect(game.grid.yCount, 3);    });    test('should apply rules to middle cell', (){      var grid = new Grid(3, 3);      grid.set(new Point(1, 1), State.ALIVE);      var game = new Game(grid);      game.tick();      expect(game.grid.get(new Point(1, 1)), State.DEAD);       grid.set(new Point(0, 0), State.ALIVE);      grid.set(new Point(1, 0), State.ALIVE);      game = new Game(grid);      game.tick();      expect(game.grid.get(new Point(1, 1)), State.ALIVE);    });    test('should apply rules to all cells', (){      var grid = new Grid(3, 3);      grid.set(new Point(0, 1), State.ALIVE);      grid.set(new Point(1, 0), State.ALIVE);      grid.set(new Point(1, 1), State.ALIVE);      var game = new Game(grid);      game.tick();      expect(game.grid.get(new Point(0, 0)), State.ALIVE);    });  });}`
Output:
``` #
#
#

###

#
#
#

###

```

## Delphi

Translation of: Go

Thanks Rudy Velthuis for the Velthuis.Console library.

` program game_of_life; {\$APPTYPE CONSOLE}   uses  System.SysUtils,  Velthuis.Console; // CrlScr type  TBoolMatrix = TArray<TArray<Boolean>>;   TField = record    s: TBoolMatrix;    w, h: Integer;    procedure SetValue(x, y: Integer; b: boolean);    function Next(x, y: Integer): boolean;    function State(x, y: Integer): boolean;    class function NewField(w1, h1: Integer): TField; static;  end;   TLife = record    a, b: TField;    w, h: Integer;    class function NewLife(w1, h1: Integer): TLife; static;    procedure Step;    function ToString: string;  end; { TField } class function TField.NewField(w1, h1: Integer): TField;var  s1: TBoolMatrix;begin  SetLength(s1, h1);  for var i := 0 to High(s1) do    SetLength(s1[i], w1);  with Result do  begin    s := s1;    w := w1;    h := h1;  end;end; function TField.Next(x, y: Integer): boolean;var  _on: Integer;begin  _on := 0;  for var i := -1 to 1 do    for var j := -1 to 1 do      if self.State(x + i, y + j) and not ((j = 0) and (i = 0)) then        inc(_on);  Result := (_on = 3) or (_on = 2) and self.State(x, y);end; procedure TField.SetValue(x, y: Integer; b: boolean);begin  self.s[y, x] := b;end; function TField.State(x, y: Integer): boolean;begin  while y < 0 do    inc(y, self.h);  while x < 0 do    inc(x, self.w);  result := self.s[y mod self.h, x mod self.w]end; { TLife } class function TLife.NewLife(w1, h1: Integer): TLife;var  a1: TField;begin  a1 := TField.NewField(w1, h1);  for var i := 0 to (w1 * h1 div 2) do    a1.SetValue(Random(w1), Random(h1), True);  with Result do  begin    a := a1;    b := TField.NewField(w1, h1);    w := w1;    h := h1;  end;end; procedure TLife.Step;var  tmp: TField;begin  for var y := 0 to self.h - 1 do    for var x := 0 to self.w - 1 do      self.b.SetValue(x, y, self.a.Next(x, y));  tmp := self.a;  self.a := self.b;  self.b := tmp;end; function TLife.ToString: string;begin  result := '';  for var y := 0 to self.h - 1 do  begin    for var x := 0 to self.w - 1 do    begin      var b: char := ' ';      if self.a.State(x, y) then        b := '*';      result := result + b;    end;    result := result + #10;  end;end; begin  Randomize;   var life := TLife.NewLife(80, 15);   for var i := 1 to 300 do  begin    life.Step;    ClrScr;    writeln(life.ToString);    sleep(30);  end;  readln;end.`
Output:
```                *  ***   *        *                   *
*  **                                           **      *
****     *                                   *  *      *
*** *                               *  ** *       *
*** **                              * *  *
*        *                                   *
** **   ****                                ** *
******    **                                  * *
*  *                                     * *** **     ***
**                                          * *
*                                 *    **
*                                   * *
*  *            *                         *
* ***        * *                  *     **
* ***        * *                  *                    ***```

## E

Just does three generations of a blinker in a dead-boundary grid, as specified. (User:Kevin Reid has graphical and wrapping versions.)

`def gridWidth := 3def gridHeight := 3def X := 0..!gridWidthdef Y := 0..!gridHeight def makeFlexList := <elib:tables.makeFlexList>def makeGrid() {  def storage := makeFlexList.fromType(<type:java.lang.Boolean>, gridWidth * gridHeight)  storage.setSize(gridWidth * gridHeight)   def grid {    to __printOn(out) {      for y in Y {        out.print("[")        for x in X {          out.print(grid[x, y].pick("#", " "))        }        out.println("]")      }    }    to get(xb :int, yb :int) {      return if (xb =~ x :X && yb =~ y :Y) {        storage[y * gridWidth + x]      } else {        false      }    }    to put(x :X, y :Y, c :boolean) {       storage[y * gridWidth + x] := c    }  }  return grid} def mooreNeighborhood := [[-1,-1],[0,-1],[1,-1],[-1,0],[1,0],[-1,1],[0,1],[1,1]]def computeNextLife(prevGrid, nextGrid) {  for y in Y {    for x in X {      var neighbors := 0      for [nx, ny] ? (prevGrid[x+nx, y+ny]) in mooreNeighborhood {        neighbors += 1      }      def self := prevGrid[x, y]      nextGrid[x, y] := (self && neighbors == 2 || neighbors == 3)    }  }} var currentFrame := makeGrid()var nextFrame := makeGrid()currentFrame[1, 0] := truecurrentFrame[1, 1] := truecurrentFrame[1, 2] := true for _ in 1..3 {  def frame := nextFrame  computeNextLife(currentFrame, frame)  nextFrame := currentFrame  currentFrame := frame  println(currentFrame)}`

## EasyLang

`n = 70n += 1subr init  for r = 1 to n - 1    for c = 1 to n - 1      i = r * n + c      if randomf < 0.3        f[i] = 1      .    .  ..f = 100 / (n - 1)subr show  clear  for r = 1 to n - 1    for c = 1 to n - 1      if f[r * n + c] = 1        move (c - 1) * f (r - 1) * f        rect f * 0.9 f * 0.9      .    .  ..subr update  swap f[] p[]  for r = 1 to n - 1    sm = 0    i = r * n    sr = p[i - n + 1] + p[i + 1] + p[i + n + 1]    for c = 1 to n - 1      i += 1      sl = sm      sm = sr      sr = p[i - n + 1] + p[i + 1] + p[i + n + 1]      s = sl + sm + sr      if s = 3 or s = 4 and p[i] = 1        f[i] = 1      else        f[i] = 0      .    .  ..on timer  call update  call show  timer 0.2.on mouse_down  c = mouse_x div f  r = mouse_y div f  i = r * n + c + n + 1  f[i] = 1 - f[i]  call show  timer 3.len f[] n * n + n + 1len p[] n * n + n + 1call inittimer 0`

## eC

Library: Ecere
` import "ecere" define seed = 12345;define popInit = 1000;define width = 100;define height = 100;define cellWidth = 4;define cellHeight = 4; Array<byte> grid { size = width * height };Array<byte> newState { size = width * height }; class GameOfLife : Window{   caption = \$"Conway's Game of Life";   background = lightBlue;   borderStyle = sizable;   hasMaximize = true;   hasMinimize = true;   hasClose = true;   clientSize = { width * cellWidth, height * cellHeight };    Timer tickTimer   {      delay = 0.05, started = true, userData = this;       bool DelayExpired()      {         int y, x, ix = 0;         for(y = 0; y < height; y++)         {            for(x = 0; x < width; x++, ix++)            {               int nCount = 0;               byte alive;               if(x > 0       && y > 0        && grid[ix - width - 1]) nCount++;               if(               y > 0        && grid[ix - width    ]) nCount++;               if(x < width-1 && y > 0        && grid[ix - width + 1]) nCount++;               if(x > 0                       && grid[ix         - 1]) nCount++;               if(x < width - 1               && grid[ix         + 1]) nCount++;               if(x > 0       && y < height-1 && grid[ix + width - 1]) nCount++;               if(               y < height-1 && grid[ix + width    ]) nCount++;               if(x < width-1 && y < height-1 && grid[ix + width + 1]) nCount++;                if(grid[ix])                  alive = nCount >= 2 && nCount <= 3; // Death               else                  alive = nCount == 3; // Birth               newState[ix] = alive;            }         }         memcpy(grid.array, newState.array, width * height);         Update(null);         return true;      }   };    void OnRedraw(Surface surface)   {      int x, y;      int ix = 0;       surface.background = navy;      for(y = 0; y < height; y++)      {         for(x = 0; x < width; x++, ix++)         {            if(grid[ix])            {               int sy = y * cellHeight;               int sx = x * cellWidth;               surface.Area(sx, sy, sx + cellWidth-1, sy + cellHeight-1);            }         }      }   }    bool OnCreate()   {      int i;       RandomSeed(seed);       for(i = 0; i < popInit; i++)      {         int x = GetRandom(0, width-1);         int y = GetRandom(0, height-1);          grid[y * width + x] = 1;      }      return true;   }} GameOfLife life {}; `

## Egel

`import "prelude.eg"import "io.ego" using Systemusing Listusing IO def boardsize = 5 def empty = [ X Y -> 0 ] def insert =    [ X Y BOARD ->         [ X0 Y0 -> if and (X0 == X) (Y0 == Y) then 1                    else BOARD X0 Y0 ] ] def coords =    let R = fromto 0 (boardsize - 1) in        [ XX YY -> map (\X -> map (\Y -> X Y) YY) XX ] R R def printcell =    [ 0 -> print ". "    | _ -> print "* " ] def printboard =    [ BOARD ->        let M  = map [XX -> let _ = map [(X Y) -> printcell (BOARD X Y)] XX in print "\n" ] coords in            nop ] def count =    [ BOARD, X, Y ->        (BOARD (X - 1) (Y - 1)) + (BOARD (X) (Y - 1)) + (BOARD (X+1) (Y - 1)) +        (BOARD (X - 1) Y) + (BOARD (X+1) Y) +        (BOARD (X - 1) (Y+1)) + (BOARD (X) (Y+1)) + (BOARD (X+1) (Y+1)) ] def next =    [ 0 N -> if N == 3 then 1 else 0    | _ N -> if or (N == 2) (N == 3) then 1 else 0 ] def updateboard =    [ BOARD ->        let XX = map (\(X Y) -> X Y (BOARD X Y) (count BOARD X Y)) (flatten coords) in        let YY = map (\(X Y C N) -> X Y (next C N)) XX in            foldr [(X Y 0) BOARD -> BOARD | (X Y _) BOARD -> insert X Y BOARD ] empty YY ] def blinker =    (insert 1 2) @ (insert 2 2) @ (insert 3 2) def main =     let GEN0 = blinker empty in    let GEN1 = updateboard GEN0 in    let GEN2 = updateboard GEN1 in    let _ = map [ G -> let _ = print "generation:\n" in printboard G ] {GEN0, GEN1, GEN2} in        nop `

## Elena

ELENA 5.0, using cellular library

`import extensions;import system'threading;import cellular; const int maxX = 48;const int maxY = 28; const int DELAY = 50; sealed class Model{    Space   theSpace;    RuleSet theRuleSet;    bool    started;     event Func<Space, object> OnUpdate;     constructor newRandomset(RuleSet transformSet)    {        theSpace := new IntMatrixSpace.allocate(maxY, maxX, randomSet);         theRuleSet := transformSet;         started := false    }     constructor newLoaded(RuleSet initSet, RuleSet transformSet)    {        theSpace := IntMatrixSpace.allocate(maxY, maxX, initSet);         theRuleSet := transformSet;         started := false    }     private onUpdate()    {        OnUpdate.?(theSpace)    }     run()    {        if (started)        {             theSpace.update(theRuleSet)         }        else        {            started := true        };         self.onUpdate()    }} singleton gameOfLifeRuleSet : RuleSet{    proceed(Space s, int x, int y, ref int retVal)    {        int cell := s.at(x, y);        int number := s.LiveCell(x, y, 1); // NOTE : number of living cells around the self includes the cell itself         if (cell == 0 && number == 3)        {            retVal := 1         }        else if (cell == 1 && (number == 4 || number == 3))        {            retVal := 1         }        else        {            retVal := 0        }    }} public extension presenterOp : Space{    print()    {        console.setCursorPosition(0, 0);         int columns := self.Columns;        int rows := self.Rows;         for(int i := 0, i < rows, i += 1)        {            for(int j := 0, j < columns, j += 1)            {                int cell := self.at(i, j);                 console.write((cell == 0).iif(" ","o"));            };             console.writeLine()        }    }} public program(){    auto model := Model.newRandomset(gameOfLifeRuleSet);    console.clear();     model.OnUpdate := (Space sp){ sp.print() };     until (console.KeyAvailable)    {        model.run();         threadControl.sleep:DELAY    };     console.readChar()}`

## Elixir

Works with: Elixir version 1.2
Translation of: Ruby
`defmodule Conway do  def game_of_life(name, size, generations, initial_life\\nil) do    board = seed(size, initial_life)    print_board(board, name, size, 0)    reason = generate(name, size, generations, board, 1)    case reason do      :all_dead -> "no more life."      :static   -> "no movement"      _         -> "specified lifetime ended"    end    |> IO.puts    IO.puts ""  end   defp new_board(n) do    for x <- 1..n, y <- 1..n, into: %{}, do: {{x,y}, 0}  end   defp seed(n, points) do    if points do      points    else # randomly seed board      (for x <- 1..n, y <- 1..n, do: {x,y}) |> Enum.take_random(10)    end    |> Enum.reduce(new_board(n), fn pos,acc -> %{acc | pos => 1} end)  end   defp generate(_, _, generations, _, gen) when generations < gen, do: :ok  defp generate(name, size, generations, board, gen) do    new = evolve(board, size)    print_board(new, name, size, gen)    cond do      barren?(new) -> :all_dead      board == new -> :static      true         -> generate(name, size, generations, new, gen+1)    end  end   defp evolve(board, n) do    for x <- 1..n, y <- 1..n, into: %{}, do: {{x,y}, fate(board, x, y, n)}  end   defp fate(board, x, y, n) do    irange = max(1, x-1) .. min(x+1, n)    jrange = max(1, y-1) .. min(y+1, n)    sum = ((for i <- irange, j <- jrange, do: board[{i,j}]) |> Enum.sum) - board[{x,y}]    cond do      sum == 3                       -> 1      sum == 2 and board[{x,y}] == 1 -> 1      true                           -> 0    end  end   defp barren?(board) do    Enum.all?(board, fn {_,v} -> v == 0 end)  end   defp print_board(board, name, n, generation) do    IO.puts "#{name}: generation #{generation}"    Enum.each(1..n, fn y ->      Enum.map(1..n, fn x -> if board[{x,y}]==1, do: "#", else: "." end)      |> IO.puts    end)  endend Conway.game_of_life("blinker", 3, 2, [{2,1},{2,2},{2,3}])Conway.game_of_life("glider", 4, 4, [{2,1},{3,2},{1,3},{2,3},{3,3}])Conway.game_of_life("random", 5, 10)`
Output:
```blinker: generation 0
.#.
.#.
.#.
...
###
...
.#.
.#.
.#.

glider: generation 0
.#..
..#.
###.
....
glider: generation 1
....
#.#.
.##.
.#..
glider: generation 2
....
..#.
#.#.
.##.
glider: generation 3
....
.#..
..##
.##.
glider: generation 4
....
..#.
...#
.###

random: generation 0
.#...
#.#..
#...#
###.#
..#..
random: generation 1
.#...
#....
#.#..
#.#..
..##.
random: generation 2
.....
#....
#....
..#..
.###.
random: generation 3
.....
.....
.#...
..##.
.###.
random: generation 4
.....
.....
..#..
...#.
.#.#.
random: generation 5
.....
.....
.....
...#.
..#..
random: generation 6
.....
.....
.....
.....
.....
no more life.
```

## Emacs Lisp

`#!/usr/bin/env emacs -script;; -*- lexical-binding: t -*-;; run: ./conways-life conways-life.config(require 'cl-lib) (defconst blinker '("***"))(defconst toad '(".***" "***."))(defconst pentomino-p '(".**" ".**" ".*."))(defconst pi-heptomino '("***" "*.*" "*.*"))(defconst glider '(".*." "..*" "***"))(defconst pre-pulsar '("***...***" "*.*...*.*" "***...***"))(defconst ship '("**." "*.*" ".**"))(defconst pentadecathalon '("**********"))(defconst clock '("..*." "*.*." ".*.*" ".*..")) (defmacro swap (a b)  `(setq ,b (prog1 ,a (setq ,a ,b)))) (cl-defstruct world rows cols data) (defun new-world (rows cols)  (make-world :rows rows :cols cols :data (make-vector (* rows cols) nil))) (defmacro world-pt (w r c)  `(+ (* (mod ,r (world-rows ,w)) (world-cols ,w))      (mod ,c (world-cols ,w)))) (defmacro world-ref (w r c)  `(aref (world-data ,w) (world-pt ,w ,r ,c))) (defun print-world (world)  (dotimes (r (world-rows world))    (dotimes (c (world-cols world))      (princ (format "%c" (if (world-ref world r c) ?* ?.))))    (terpri))) (defun insert-pattern (world row col shape)  (let ((r row)        (c col))    (unless (listp shape)      (setq shape (symbol-value shape)))    (dolist (row-data shape)      (dolist (col-data (mapcar 'identity row-data))        (setf (world-ref world r c) (not (or (eq col-data ?.))))        (setq c (1+ c)))      (setq r (1+ r))      (setq c col)))) (defun neighbors (world row col)  (let ((n 0))    (dolist (offset '((1 . 1) (1 . 0) (1 . -1) (0 . 1) (0 . -1) (-1 . 1) (-1 . 0) (-1 . -1)))      (when (world-ref world (+ row (car offset)) (+ col (cdr offset)))        (setq n (1+ n))))    n)) (defun advance-generation (old new)  (dotimes (r (world-rows old))    (dotimes (c (world-cols old))      (let ((n (neighbors old r c)))        (setf (world-ref new r c)              (if (world-ref old r c)                  (or (= n 2) (= n 3))                (= n 3))))))) (defun read-config (file-name)  (with-temp-buffer    (insert-file-contents-literally file-name)    (read (current-buffer)))) (defun get-config (key config)  (let ((val (assoc key config)))    (if (null val)        (error (format "missing value for %s" key))      (cdr val)))) (defun insert-patterns (world patterns)  (dolist (p patterns)    (apply 'insert-pattern (cons world p)))) (defun simulate-life (file-name)  (let* ((config (read-config file-name))         (rows (get-config 'rows config))         (cols (get-config 'cols config))         (generations (get-config 'generations config))         (a (new-world rows cols))         (b (new-world rows cols)))    (insert-patterns a (get-config 'patterns config))    (dotimes (g generations)      (princ (format "generation %d\n" g))      (print-world a)      (advance-generation a b)      (swap a b)))) (simulate-life (elt command-line-args-left 0))`

Configuration file, which defines the size starting patterns and how long the simulation will run.

`((rows . 8) (cols . 10) (generations . 3) (patterns  ;; Blinker is defined in the script.  (1 1 blinker)  ;; This is a custom pattern.  (4 4 (".***"        "***."))))`
Output:
```generation 0
..........
.***......
..........
..........
.....***..
....***...
..........
..........
generation 1
..*.......
..*.......
..*.......
......*...
....*..*..
....*..*..
.....*....
..........
generation 2
..........
.***......
..........
..........
.....***..
....***...
..........
..........
```

## Erlang

`  -module(life). -export([bang/1]).  -define(CHAR_DEAD,   32).  % " "-define(CHAR_ALIVE, 111).  % "o"-define(CHAR_BAR,    45).  % "-" -define(GEN_INTERVAL, 100).  -record(state, {x            :: non_neg_integer()               ,y            :: non_neg_integer()               ,n            :: pos_integer()               ,bar          :: nonempty_string()               ,board        :: array()               ,gen_count    :: pos_integer()               ,gen_duration :: non_neg_integer()               ,print_time   :: non_neg_integer()               }).  %% ============================================================================%% API%% ============================================================================ bang(Args) ->    [X, Y] = [atom_to_integer(A) || A <- Args],    {Time, Board} = timer:tc(fun() -> init_board(X, Y) end),    State = #state{x            = X                  ,y            = Y                  ,n            = X * Y                  ,bar          = [?CHAR_BAR || _ <- lists:seq(1, X)]                  ,board        = Board                  ,gen_count    = 1  % Consider inital state to be generation 1                  ,gen_duration = Time                  ,print_time   = 0  % There was no print time yet    },    life_loop(State).  %% ============================================================================%% Internal%% ============================================================================ life_loop(    #state{x            = X          ,y            = Y          ,n            = N          ,bar          = Bar          ,board        = Board          ,gen_count    = GenCount          ,gen_duration = Time          ,print_time   = LastPrintTime    }=State) ->     {PrintTime, ok} = timer:tc(        fun() ->            do_print_screen(Board, Bar, X, Y, N, GenCount, Time, LastPrintTime)        end    ),     {NewTime, NewBoard} = timer:tc(        fun() ->            next_generation(X, Y, Board)        end    ),     NewState = State#state{board        = NewBoard                          ,gen_count    = GenCount + 1                          ,gen_duration = NewTime                          ,print_time   = PrintTime    },     NewTimeMil = NewTime / 1000,    NextGenDelay = at_least_zero(round(?GEN_INTERVAL - NewTimeMil)),    timer:sleep(NextGenDelay),     life_loop(NewState).  at_least_zero(Integer) when Integer >= 0 -> Integer;at_least_zero(_) -> 0.  do_print_screen(Board, Bar, X, Y, N, GenCount, Time, PrintTime) ->    ok = do_print_status(Bar, X, Y, N, GenCount, Time, PrintTime),    ok = do_print_board(Board).  do_print_status(Bar, X, Y, N, GenCount, TimeMic, PrintTimeMic) ->    TimeSec = TimeMic / 1000000,    PrintTimeSec = PrintTimeMic / 1000000,    ok = io:format("~s~n", [Bar]),    ok = io:format(        "X: ~b Y: ~b CELLS: ~b GENERATION: ~b DURATION: ~f PRINT TIME: ~f~n",        [X, Y, N, GenCount, TimeSec, PrintTimeSec]    ),    ok = io:format("~s~n", [Bar]).  do_print_board(Board) ->    % It seems that just doing a fold should be faster than map + to_list    % combo, but, after measuring several times, map + to_list has been    % consistently (nearly twice) faster than either foldl or foldr.    RowStrings = array:to_list(        array:map(            fun(_, Row) ->                array:to_list(                    array:map(                        fun(_, State) ->                            state_to_char(State)                        end,                        Row                    )                )            end,            Board        )    ),     ok = lists:foreach(        fun(RowString) ->            ok = io:format("~s~n", [RowString])        end,        RowStrings    ).  state_to_char(0) -> ?CHAR_DEAD;state_to_char(1) -> ?CHAR_ALIVE.  next_generation(W, H, Board) ->    array:map(        fun(Y, Row) ->            array:map(                fun(X, State) ->                    Neighbors = filter_offsides(H, W, neighbors(X, Y)),                    States = neighbor_states(Board, Neighbors),                    LiveNeighbors = lists:sum(States),                    new_state(State, LiveNeighbors)                end,                Row            )        end,        Board    ).  new_state(1, LiveNeighbors) when LiveNeighbors  <  2 -> 0;new_state(1, LiveNeighbors) when LiveNeighbors  <  4 -> 1;new_state(1, LiveNeighbors) when LiveNeighbors  >  3 -> 0;new_state(0, LiveNeighbors) when LiveNeighbors =:= 3 -> 1;new_state(State, _LiveNeighbors) -> State.  neighbor_states(Board, Neighbors) ->    [array:get(X, array:get(Y, Board)) || {X, Y} <- Neighbors].  filter_offsides(H, W, Coordinates) ->    [{X, Y} || {X, Y} <- Coordinates, is_onside(X, Y, H, W)].  is_onside(X, Y, H, W) when (X >= 0) and (Y >= 0) and (X < W) and (Y < H) -> true;is_onside(_, _, _, _) -> false.  neighbors(X, Y) ->    [{X + OffX, Y + OffY} || {OffX, OffY} <- offsets()].  offsets() ->    [offset(D) || D <- directions()].  offset('N')  -> { 0, -1};offset('NE') -> { 1, -1};offset('E')  -> { 1,  0};offset('SE') -> { 1,  1};offset('S')  -> { 0,  1};offset('SW') -> {-1,  1};offset('W')  -> {-1,  0};offset('NW') -> {-1, -1}.  directions() ->    ['N', 'NE', 'E', 'SE', 'S', 'SW', 'W', 'NW'].  init_board(X, Y) ->    array:map(fun(_, _) -> init_row(X) end, array:new(Y)).  init_row(X) ->    array:map(fun(_, _) -> init_cell_state() end, array:new(X)).  init_cell_state() ->    crypto:rand_uniform(0, 2).  atom_to_integer(Atom) ->    list_to_integer(atom_to_list(Atom)).  `

## ERRE

This is a simple implementation of Conway's game of Life with an endless world. Test pattern configuration is 'glider'.

` PROGRAM LIFE !\$INTEGER !\$KEY!for C-64 compatibility CONST Xmax=38,Ymax=20 DIM x,y,NDIM WORLD[39,21],NextWORLD[39,21] BEGIN ! Glider test!------------------------------------------WORLD[1,1]=1 WORLD[1,2]=0 WORLD[1,3]=0WORLD[2,1]=0 WORLD[2,2]=1 WORLD[2,3]=1WORLD[3,1]=1 WORLD[3,2]=1 WORLD[3,3]=0!------------------------------------------ PRINT(CHR\$(12);"Press any key to interrupt")LOOP  PRINT(CHR\$(11);) PRINT  PRINT(STRING\$(Xmax+2,"-"))  !---------- endless world ---------  FOR y=1 TO Ymax DO    WORLD[0,y]=WORLD[Xmax,y]    WORLD[Xmax+1,y]=WORLD[1,y]  END FOR  FOR x=1 TO Xmax DO    WORLD[x,0]=WORLD[x,Ymax]    WORLD[x,Ymax+1]=WORLD[x,1]  END FOR  WORLD[0,0]=WORLD[Xmax,Ymax]  WORLD[Xmax+1,Ymax+1]=WORLD[1,1]  WORLD[Xmax+1,0]=WORLD[1,Ymax]  WORLD[0,Ymax+1]=WORLD[Xmax,1]  !---------- endless world ---------  FOR y=1 TO Ymax DO    PRINT("|";)    FOR x=1 TO Xmax DO      PRINT(CHR\$(32+WORLD[x,y]*3);)      N=WORLD[x-1,y-1]+WORLD[x-1,y]+WORLD[x-1,y+1]+WORLD[x,y-1]      N=N+WORLD[x,y+1]+WORLD[x+1,y-1]+WORLD[x+1,y]+WORLD[x+1,y+1]      IF (WORLD[x,y]<>0 AND (N=2 OR N=3)) OR (WORLD[x,y]=0 AND N=3) THEN        NextWORLD[x,y]=1      ELSE        NextWORLD[x,y]=0      END IF    END FOR    PRINT("|")  END FOR  PRINT(STRING\$(Xmax+2,"-"))  PAUSE(0.1)   FOR x=0 TO Xmax+1 DO    FOR y=0 TO Ymax+1 DO      WORLD[x,y]=NextWORLD[x,y]      NextWORLD[x,y]=0    END FOR  END FOR  REPEAT      GET(A\$)  UNTIL A\$<>""  EXIT IF A\$=CHR\$(27)END LOOP PRINT("Press any key to exit")REPEATUNTIL GETKEY\$<>""END PROGRAM  `

## F#

The following F# implementation uses for visualization and is easily compiled into a standalone executable:
`let count (a: _ [,]) x y =  let m, n = a.GetLength 0, a.GetLength 1  let mutable c = 0  for x in x-1..x+1 do    for y in y-1..y+1 do      if x>=0 && x<m && y>=0 && y<n && a.[x, y] then        c <- c + 1  if a.[x, y] then c-1 else c let rule (a: _ [,]) x y =  match a.[x, y], count a x y with  | true, (2 | 3) | false, 3 -> true  | _ -> false open System.Windowsopen System.Windows.Media.Imaging [<System.STAThread>]do  let rand = System.Random()  let n = 256  let game = Array2D.init n n (fun _ _ -> rand.Next 2 = 0) |> ref  let image = Controls.Image(Stretch=Media.Stretch.Uniform)  let format = Media.PixelFormats.Gray8  let pixel = Array.create (n*n) 0uy  let update _ =    game := rule !game |> Array2D.init n n    for x in 0..n-1 do      for y in 0..n-1 do        pixel.[x+y*n] <- if (!game).[x, y] then 255uy else 0uy    image.Source <-      BitmapSource.Create(n, n, 1.0, 1.0, format, null, pixel, n)  Media.CompositionTarget.Rendering.Add update  Window(Content=image, Title="Game of Life")  |> (Application()).Run |> ignore`

## Fermat

`;{Conway's Game of Life in Fermat};{square grid with wrap-around boundaries} size:=50;                         {how big a grid do you want? This fits my screen OK, change this for your own screen} Array w1[size,size], w2[size,size];      {set up an active world and a 'scratchpad' world}act:=1;buf:=2;%[1]:=[w1];                      {Fermat doesn't have 3D arrays in the normal sense--}%[2]:=[w2];                      {we need to use the somewhat odd "array of arrays" functionality} Func Cls = for i = 1 to size do !!; od.;     {"clear screen" by printing a bunch of newlines} Func Draw =                     {draw the active screen}    for i = 1 to size do        for j = 1 to size do            if %[act][i, j] = 1 then !('# ') else !('. ') fi;        od;        !;    od;.; Func Rnd =                                   {randomize the grid with a density of 40% live cells}    for i = 1 to size do        for j = 1 to size do            if Rand|5<2 then %[act][i, j] := 1 else %[act][i, j] := 0 fi;        od;    od;    Cls;    Draw;.; Func Blinker =                               {clears the screen except for a blinker in the top left corner}    for i = 1 to size do        for j = 1 to size do            %[act][i, j] := 0;        od;    od;    %[act][1,2] := 1;    %[act][2,2] := 1;    %[act][3,2] := 1;    Cls;    Draw;.; Func Iter =                                 {do one iteration}    for i = 1 to size do        if i = 1 then im := size else im := i - 1 fi;        {handle wrap around}        if i = size then ip := 1 else ip := i + 1 fi;        for j = 1 to size do            if j = 1 then jm := size else jm := j - 1 fi;            if j = size then jp := 1 else jp := j + 1 fi;            neigh :=  %[act][im, jm];                        {count neigbours}            neigh :+ (%[act][im, j ]);            neigh :+ (%[act][im, jp]);            neigh :+ (%[act][i , jm]);            neigh :+ (%[act][i , jp]);            neigh :+ (%[act][ip, jm]);            neigh :+ (%[act][ip, j ]);            neigh :+ (%[act][ip, jp]);            if neigh < 2 or neigh > 3 then %[buf][i, j] := 0 fi;      {alive and dead rules}            if neigh = 2 then %[buf][i, j] := %[act][i, j] fi;            if neigh = 3 then %[buf][i, j] := 1 fi;                                      od;    od;    Swap(act, buf);     {rather than copying the scratch over into the active, just exchange their identities}    Cls;    Draw;.; choice := 9;while choice <> 0 do              {really rough menu, not the point of this exercise}    ?choice;    if choice=4 then Cls fi;    if choice=3 then Blinker fi;    if choice=2 then Rnd fi;    if choice=1 then Iter fi;od; !!'John Horton Conway (26 December 1937 – 11 April 2020)'; `
Output:
One iteration starting from random soup, showing a few well-known objects (blinker, block, glider, beehive, loaf)
```# . . . . . . . . . # . . # . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . # # . . .
. . . . . . . # . . # . . . # . . . . # # . # # . . # # # . . . . . . . . . . . . . . . # # . # . #
. . . . . . # . # # . . . # . . . . . # # . # . . . # . . # . . . . . . . . . . . . . . # # . . # .
. . . . . . # . # . # . . # . . . . . # . # # . . # . . . # . . . . # # . . . . . . . . . . . . . .
. . . . . . . # . # # . . # . . . # # # # . . . . # . . # . . . . # . . # . . . . . . . . . . . . .
. . . . . . . . . . . . # . . . . # . . . . . . . . . . . . . . . . # . . # . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . # # # . . . . . . # # . . . . . . # . . # . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . . . # . # . . . . . . . . . . . . .
. . . . # # # . . . . . . . . . . . # . . . . # # . . . . . . . . . . # . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . # # # # . . # . # . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . # # . . # . . # . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . # # # . . . . . . . # # . . . . . # . . . . . . . . . . # . . . . . . . . . . . . . . .
. . . . . . # # # . . . . . . . . . . . # # . . . . . . . . . . . # . # . . . . . . . . . . . . . .
. . . . . # . . # . # # . . . . . . # # . # . . . . . . . . . . . # . . # . . . . . . . . . . . . .
. . . . . . # # . # # . . . . . . . . # # . . . . . . . . . . . . . # # . . . . . . . . . . . . . .
. . . . . . # # # # # . . . . . . . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . # . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # # . . . . . . . .
. . . . . . . . # # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # # . . . . . . .
. . . . . . . . # # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # # . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # # # . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # # . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . # # . . . . . . # # #
# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # # . . . . . . # . . .
# . . . . . . # # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # # . #
. . . . . . # . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . # # . . . . . . . . . . . . . . . . . . . . . . . . . . . . # # . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . # . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . . . . .
# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # # #
# # . . . . . . . # # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . # #
. # # . . . . . . # # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # # . . #
. # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . # . # # . . . . . . . # # . . .
# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . # . # . . . . . . . . . # # . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . . # . # # . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . . # # # # . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # # # . . # # . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . # # # . . . . . . . . . . . . . . . . . . . . . . . . # . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . # # # . . . . . . . . . . # . . . . . . . .
. . . . . . . . . . . . # . . . . . . . . . . . . . . # . # . # # . # . . . . . . # . . . . . . . .
. . . . . . . . . . . . # . . . . . . . . . . . . . # . . . . . . . . # . . . . . . . . . . . . . .
. . . . . . . . . . . . # . . . . . . . . . . . . # . . # # # # . . . # . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . # # # . . . . . . # . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # # .
. . . . . . . . . . . . . . . . . # # . . . . . . . . . . . . . . . . . . . . . . . . . . . # . # .
. . . . . . . . . . . . # # . . # . . . . . . . . . . . . . . . . . . . . . . . . . . . . # . . # .
. . . . . . . . . . . . # . # . . # . . . . . . . . . . . . . . # . . . . . . . . . . . . # . . . .
. . . . . . . . . . . . # . . . . . . # . . . . . . . . . . . # . . # . . . . . . . . . # # . # . .
. . . . . . . . . . . . . . . . . . # . . . . . . . . . . . . . # # . . . . . . . . . . . . . . # #
. . . . . . . . . . . # . # . . . . # . . # . . . . . . . . . . . . . . . . . . . . . . . # # # . #
```

## Forth

gencell uses an optimization for the core Game of Life rules: new state = (old state | neighbors == 3).

` \ The fast wrapping requires dimensions that are powers of 2. 1 6 lshift constant w \ 64 1 4 lshift constant h \ 16  : rows    w * 2* ; 1 rows constant row h rows constant size  create world size allot world   value old old w + value new  variable gens : clear  world size erase     0 gens ! ; : age  new old to new to old  1 gens +! ;  : col+  1+ ; : col-  1- dup w and + ; \ avoid borrow into row : row+  row + ; : row-  row - ; : wrap ( i -- i ) [ size w - 1- ] literal and ; : [email protected] ( i -- 0/1 ) wrap old + [email protected] ; : w! ( 0/1 i -- ) wrap old + c! ;  : foreachrow ( xt -- )   size 0 do  I over execute  row +loop drop ;  : showrow ( i -- ) cr   old + w over + swap do I [email protected] if [char] * else bl then emit loop ; : show  ['] showrow foreachrow  cr ." Generation " gens @ . ;  : sum-neighbors ( i -- i n )   dup  col- row- [email protected]   over      row- [email protected] +   over col+ row- [email protected] +   over col-      [email protected] +   over col+      [email protected] +   over col- row+ [email protected] +   over      row+ [email protected] +   over col+ row+ [email protected] + ; : gencell ( i -- )   sum-neighbors  over old + [email protected]   or 3 = 1 and   swap new + c! ; : genrow ( i -- )   w over + swap do I gencell loop ; : gen  ['] genrow foreachrow  age ;  : life  begin gen 0 0 at-xy show key? until ;  \ patterns char | constant '|' : pat ( i addr len -- )   rot dup 2swap  over + swap do     I [email protected] '|' = if drop row+ dup else     I [email protected] bl  = 1+ over w!  col+ then   loop 2drop ;  : blinker s" ***" pat ; : toad s" ***| ***" pat ; : pentomino s" **| **| *" pat ; : pi s" **| **|**" pat ; : glider s"  *|  *|***" pat ; : pulsar s" *****|*   *" pat ; : ship s"  ****|*   *|    *|   *" pat ; : pentadecathalon s" **********" pat ; : clock s"  *|  **|**|  *" pat ;  clear  0 glider show  *   * ***  Generation 0  ok gen show  * *  **  * Generation 1  ok`

## Fortran

Works with: Fortran version 90 and later
` PROGRAM LIFE_2D   IMPLICIT NONE    INTEGER, PARAMETER :: gridsize = 10   LOGICAL :: cells(0:gridsize+1,0:gridsize+1) = .FALSE.   INTEGER :: i, j, generation=0   REAL :: rnums(gridsize,gridsize)  !  Start patterns !  ************** !  cells(2,1:3) = .TRUE.                                                  ! Blinker !  cells(3,4:6) = .TRUE. ; cells(4,3:5) = .TRUE.                          ! Toad !  cells(1,2) = .TRUE. ; cells(2,3) = .TRUE. ; cells(3,1:3) = .TRUE.      ! Glider    cells(3:5,3:5) = .TRUE. ; cells(6:8,6:8) = .TRUE.                      ! Figure of Eight !  CALL RANDOM_SEED !  CALL RANDOM_NUMBER(rnums) !  WHERE (rnums>0.6) cells(1:gridsize,1:gridsize) = .TRUE.                ! Random universe    CALL Drawgen(cells(1:gridsize, 1:gridsize), generation)   DO generation = 1, 8      CALL NextgenV2(cells)      CALL Drawgen(cells(1:gridsize, 1:gridsize), generation)   END DO  CONTAINS    SUBROUTINE Drawgen(cells, gen)     LOGICAL, INTENT(IN OUT) :: cells(:,:)     INTEGER, INTENT(IN) :: gen      WRITE(*, "(A,I0)") "Generation ", gen      DO i = 1, SIZE(cells,1)        DO j = 1, SIZE(cells,2)           IF (cells(i,j)) THEN              WRITE(*, "(A)", ADVANCE = "NO") "#"           ELSE              WRITE(*, "(A)", ADVANCE = "NO") " "           END IF        END DO        WRITE(*,*)     END DO     WRITE(*,*)   END SUBROUTINE Drawgen   SUBROUTINE Nextgen(cells)     LOGICAL, INTENT(IN OUT) :: cells(0:,0:)     LOGICAL :: buffer(0:SIZE(cells, 1)-1, 0:SIZE(cells, 2)-1)     INTEGER :: neighbours, i, j      buffer = cells   ! Store current status     DO j = 1, SIZE(cells, 2)-2        DO i = 1, SIZE(cells, 1)-2          if(buffer(i, j)) then            neighbours = sum(count(buffer(i-1:i+1, j-1:j+1), 1)) - 1          else            neighbours = sum(count(buffer(i-1:i+1, j-1:j+1), 1))          end if           SELECT CASE(neighbours)            CASE (0:1, 4:8)               cells(i,j) = .FALSE.             CASE (2)               ! No change             CASE (3)               cells(i,j) = .TRUE.          END SELECT         END DO     END DO  END SUBROUTINE Nextgen !###########################################################################!   In this version instead of cycling through all points an integer array! is used the sum the live neighbors of all points. The sum is done with! the entire array cycling through the eight positions of the neighbors.!   Executing a grid size of 10000 in 500 generations this version gave a ! speedup of almost 4 times.!###########################################################################  PURE SUBROUTINE NextgenV2(cells)     LOGICAL, INTENT(IN OUT) :: cells(:,:)     INTEGER(KIND=1) :: buffer(1:SIZE(cells, 1)-2,1:SIZE(cells, 2)-2)     INTEGER :: gridsize, i, j      gridsize=SIZE(cells, 1)     buffer=0      DO j=-1, 1        DO i=-1,1           IF(i==0 .AND. j==0) CYCLE           WHERE(cells(i+2:gridsize-i-1,j+2:gridsize-j-1)) buffer=buffer+1        END DO     END DO      WHERE(buffer<2 .or. buffer>3) cells(2:gridsize-1,2:gridsize-1) = .FALSE.     WHERE(buffer==3) cells(2:gridsize-1,2:gridsize-1) = .TRUE.  END SUBROUTINE NextgenV2!########################################################################### END PROGRAM LIFE_2D`
Output:
```Blinker
Generation 0

###

Generation 1
#
#
#

Generation 2

###
Figure of Eight (a period eight oscillator)
Generation 0

###
###
###
###
###
###

Generation 1

#
# #
#   #
#   #
#   #
#   #
# #
#

Generation 2

#
###
### #
#   #
#   #
# ###
###
#

Generation 3

###
#
#   #
#  # #
# #  #
#   #
#
###

Generation 4
#
##
# ##
###  #
# # #
# # #
#  ###
## #
##
#

Generation 5
##

#   #
#    #
# # #
# # #
#    #
#   #

##

Generation 6

#

# ###
## #
# ##
### #

#

Generation 7

##
## #
#
#
# ##
##

Generation 8

###
###
###
###
###
###
```

## Frink

Simple solution using two dictionaries (a display and a toggle) to store grid and track changes. The program outputs an animation of the game.

` start = now[]// Generate a random 10x10 grid with "1" being on and "0" being offinstructions = ["1000100110","0001100010","1000111101","1001111110","0000110011","1111000001","0100001110","1011101001","1001011000","1101110111"] // Create dictionary of starting positions.rowCounter = 0display = new dictfor instructionStr = instructions{   rowCounter = rowCounter + 1   columnCounter = 0   instructionArr = charList[instructionStr]   for instruction = instructionArr   {      columnCounter = columnCounter + 1      arr = [rowCounter,columnCounter]      if instruction == "1"         [email protected] = 1      else         [email protected] = 0   }} // Create toggle dictionary to track changes. It starts off with everything off.toggle = new dictmultifor[x,y] = [new range[1,10],new range[1,10]]{   arr = [x,y]   [email protected] = 0} // Animate the game of lifea = new Animation[3/s]win = undef // Loop through 10 changes to the grid. The starting points will tick down to two stable unchanging shapes in 10 steps.for i = 1 to 12 // 12 steps so animation will pause on final state.{   // Graphics item for this frame of the animation.   g = new graphics   g.backgroundColor[1,1,1]   // Add in a transparent shape to prevent the image from jiggle to automatic scaling.   g.color[0,0,0,0] // Transparent black   g.fillRectSides[-1, -1, 12, 12] // Set minimum size   g.clipRectSides[-1, -1, 12, 12] // Set maximum size   g.color[0,0,0] // Color back to default black   multifor[x1,y1] = [new range[1,10],new range[1,10]]   {      tval = [x1,y1]      // This is programmed with a hard edge. Points beyond the border aren't considered.      xmax = min[x1+1,10]      xmin = max[x1-1,1]      ymax = min[y1+1,10]      ymin = max[y1-1,1]      // Range will be 8 surrounding cells or cells up to border.      pointx = new range[xmin,xmax]      pointy = new range[ymin,ymax]      pointsum = 0      status = 0      // Process each surrounded point      multifor[x2,y2] = [pointx,pointy]      {         // Assign the array to a variable so it can be used as a dictionary reference.         point = [x2,y2]         if x2 == x1 && y2 == y1         {            status = [email protected]         } else // Calculate the total of surrounding points         {            pointsum = pointsum + [email protected]         }      }      // Animate if the point is on.      if status == 1      {         g.color[0,0,0]         g.fillEllipseCenter[x1,y1,1,1]      }      [email protected] = status // This will be overwritten if needed by neighbor check conditions below.	  // Check if off point has 3 on point neighbors      if status == 0 && pointsum == 3      {         [email protected] = 1      }	  // Check if on point has between 2 and 3 on point neighbors      if status == 1 && (pointsum < 2 || pointsum > 3)      {         [email protected] = 0      }   }   // Add the current frame to the animation   a.add[g]   // Replace the current display with the toggle values.   for toggleKeys = keys[toggle]   {      val = [email protected]      [email protected] = val   }} // Write the animation filea.write["FrinkAnimationGoL.gif",400,400] end = now[]println["Program run time: " + ((end - start)*1.0 -> "seconds")] `

## FunL

`import lists.zipWithIndeximport util.Regex data Rule( birth, survival ) val Mirek = Regex( '([0-8]+)/([0-8]+)' )val Golly = Regex( 'B([0-8]+)/S([0-8]+)' ) def decode( rule ) =  def makerule( b, s ) = Rule( [int(d) | d <- b], [int(d) | d <- s] )   case rule    Mirek( s, b ) -> makerule( b, s )    Golly( b, s ) -> makerule( b, s )    _ -> error( "unrecognized rule: \$rule" ) def fate( state, crowding, rule ) = crowding in rule( int(state) ) def crowd( buffer, x, y ) =  res = 0   def neighbour( x, y ) =    if x >= 0 and x < N and y >= 0 and y < N      res += int( buffer(x, y) )   for i <- x-1..x+1    neighbour( i, y - 1 )    neighbour( i, y + 1 )   neighbour( x - 1, y )  neighbour( x + 1, y )  res def display( buffer ) =  for j <- 0:N    for i <- 0:N      print( if buffer(i, j) then '*' else '\u00b7' )     println() def generation( b1, b2, rule ) =  for i <- 0:N, j <- 0:N    b2(i, j) = fate( b1(i, j), crowd(b1, i, j), rule ) def pattern( p, b, x, y ) =  for (r, j) <- zipWithIndex( list(WrappedString(p).stripMargin().split('\n')).drop(1).dropRight(1) )    for i <- 0:r.length()      b(x + i, y + j) = r(i) == '*' var current = 0val LIFE = decode( '23/3' )val N = 4val buffers = (array( N, N, (_, _) -> false ), array( N, N )) def reset =  for i <- 0:N, j <- 0:N    buffers(0)(i, j) = false   current = 0 def iteration =  display( buffers(current) )  generation( buffers(current), buffers(current = (current + 1)%2), LIFE )  println( 5'-' ) // two patterns to be testedblinker = '''  |  |***  ''' glider = '''  | *  |  *  |***  ''' // load "blinker" pattern and run for three generationspattern( blinker, buffers(0), 0, 0 ) repeat 3  iteration() // clear grid, load "glider" pattern and run for five generationsreset()pattern( glider, buffers(0), 0, 0 ) repeat 5  iteration()`
Output:
```····
***·
····
····
-----
·*··
·*··
·*··
····
-----
····
***·
····
····
-----
·*··
··*·
***·
····
-----
····
*·*·
·**·
·*··
-----
····
··*·
*·*·
·**·
-----
····
·*··
··**
·**·
-----
····
··*·
···*
·***
-----
```

## Furor

` // Life simulator (game). Console (CLI) version.// It is a 'cellular automaton', and was invented by Cambridge mathematician John Conway. // The Rules // For a space that is 'populated'://     Each cell with one or no neighbors dies, as if by solitude.//     Each cell with four or more neighbors dies, as if by overpopulation.//     Each cell with two or three neighbors survives.// For a space that is 'empty' or 'unpopulated'//     Each cell with three neighbors becomes populated.// -----------------------------------------------------#g// Get the terminal-resolution:terminallines   -- sto tlinterminalcolumns    sto tcol// .............................// Verify the commandline parameters:argc 3 < { #s ."Usage: " 0 argv print SPACE 1 argv print ." lifeshape-file.txt\n" end }2 argv 'f !istrue { #s ."The given file ( " 2 argv print ." ) doesn't exist!\n" end }startingshape 2 argv filetolist // read the file into the liststartingshape maxlinelength sto maxlinlenneighbour    @tlin @tcol createlist   // Generate the stringarray for the neighbour-calculationslivingspace  @tlin @tcol createlist   // Generate the stringarray for the actual generationscellscreen   @tlin @tcol createscreen // Generate the stringarray for the visible livingspace// Calculate offset for the shape ( it must be put to the centre):@tlin startingshape~ - 2 / sto originlin@tcol @maxlinlen     - 2 / sto origincol startingshape {{|{{}} {{|}} {{-}} [[]] 32 > { 1 }{ 0 } sto emblemlivingspace @originlin {{|}} + @origincol {{-}} + @emblem [[^]]|}} cursoroff// =================================================================={... // infinite loop startssbr §renderingsbrtopleft cellscreen !printlist."Generation: " {...} print fflush // print the number of the generations.neighbour 0 filluplist // fill up the neighbour list with zero value// Calculate neighbourhoodsneighbour {{|{{|}} {{-}} sbr §neighbors{{}} {{|}} {{-}} @n [[^]] // store the neighbournumber|}} // Now, kill everybody if the neighbors are less than 2 or more than 3:neighbour {{|{{|}} {{-}} sbr §killsbr|}} // Generate the newborn cells:neighbour {{|{{}} {{|}} {{-}} [[]] 3 == { livingspace {{|}} {{-}} 1 [[^]] }|}} 50000 usleep//2 sleep...} // infinite loop ends// ==================================================================endkillsbr:sto innerindex sto outerindexneighbour @outerindex @innerindex [[]] 2 < then §killneighbour @outerindex @innerindex [[]] 3 > then §killrtskill: livingspace @outerindex @innerindex 0 [[^]] rts// ==========================================================neighbors: // This subroutine calculates the quantity of neighborhoodsto y sto x zero nlivingspace @x ? @tlin --                 @y ? @tcol --                  [[]] sum n // upleft    cornerlivingspace @x ? @tlin --                 @y                             [[]] sum n // upmid     cornerlivingspace @x ? @tlin --                 @y ++ dup  @tcol == { drop 0 } [[]] sum n // upright   cornerlivingspace @x                            @y ? @tcol --                  [[]] sum n // midleft   cornerlivingspace @x                            @y ++ dup  @tcol == { drop 0 } [[]] sum n // midright  cornerlivingspace @x ++ dup @tlin == { drop 0 } @y ? @tcol --                  [[]] sum n // downleft  cornerlivingspace @x ++ dup @tlin == { drop 0 } @y                             [[]] sum n // downmid   cornerlivingspace @x ++ dup @tlin == { drop 0 } @y ++ dup  @tcol == { drop 0 } [[]] sum n // downright cornerrts// ==========================================================renderingsbr:livingspace {{|cellscreen   {{|}} {{-}}{{}} {{|}} {{-}} [[]] { '* }{ 32 } [[^]]|}}rts { „startingshape” }{ „livingspace” }{ „cellscreen” }{ „innerindex” }{ „outerindex” }{ „maxlinlen” }{ „neighbour” }{ „originlin” }{ „origincol” }{ „emblem” }{ „tlin” }{ „tcol” }{ „x” } { „y” } { „n” }  `

## Futhark

 This example is incorrect. Please fix the code and remove this message.Details: Futhark's syntax has changed, so this example will not compile
` fun bint(b: bool): int = if b then 1 else 0fun intb(x: int): bool = if x == 0 then False else True fun to_bool_board(board: [][]int): [][]bool =  map (fn (r: []int): []bool  => map intb r) board fun to_int_board(board: [][]bool): [][]int =  map (fn (r: []bool): []int  => map bint r) board fun cell_neighbors(i: int, j: int, board: [n][m]bool): int =  unsafe  let above = (i - 1) % n  let below = (i + 1) % n  let right = (j + 1) % m  let left = (j - 1) % m in  bint board[above,left] + bint board[above,j]  + bint board[above,right] +  bint board[i,left] + bint board[i,right] +  bint board[below,left] + bint board[below,j] + bint board[below,right] fun all_neighbours(board: [n][m]bool): [n][m]int =  map (fn (i: int): []int  =>        map (fn (j: int): int  => cell_neighbors(i,j,board)) (iota m))      (iota n) fun iteration(board: [n][m]bool): [n][m]bool =  let lives = all_neighbours(board) in  zipWith (fn (lives_r: []int) (board_r: []bool): []bool  =>            zipWith (fn (neighbors: int) (alive: bool): bool  =>                      if neighbors < 2                      then False                      else if neighbors == 3 then True                      else if alive && neighbors < 4 then True                      else False)                    lives_r board_r)           lives board fun main(int_board: [][]int, iterations: int): [][]int =  -- We accept the board as integers for convenience, and then we  -- convert to booleans here.  let board = to_bool_board int_board in  loop (board) = for i < iterations do    iteration board in  to_int_board board `

## Go

`package main import (	"bytes"	"fmt"	"math/rand"	"time") type Field struct {	s    [][]bool	w, h int} func NewField(w, h int) Field {	s := make([][]bool, h)	for i := range s {		s[i] = make([]bool, w)	}	return Field{s: s, w: w, h: h}} func (f Field) Set(x, y int, b bool) {	f.s[y][x] = b} func (f Field) Next(x, y int) bool {	on := 0	for i := -1; i <= 1; i++ {		for j := -1; j <= 1; j++ {			if f.State(x+i, y+j) && !(j == 0 && i == 0) {				on++			}		}	}	return on == 3 || on == 2 && f.State(x, y)} func (f Field) State(x, y int) bool {	for y < 0 {		y += f.h	}	for x < 0 {		x += f.w	}	return f.s[y%f.h][x%f.w]} type Life struct {	w, h int	a, b Field} func NewLife(w, h int) *Life {	a := NewField(w, h)	for i := 0; i < (w * h / 2); i++ {		a.Set(rand.Intn(w), rand.Intn(h), true)	}	return &Life{		a: a,		b: NewField(w, h),		w: w, h: h,	}} func (l *Life) Step() {	for y := 0; y < l.h; y++ {		for x := 0; x < l.w; x++ {			l.b.Set(x, y, l.a.Next(x, y))		}	}	l.a, l.b = l.b, l.a} func (l *Life) String() string {	var buf bytes.Buffer	for y := 0; y < l.h; y++ {		for x := 0; x < l.w; x++ {			b := byte(' ')			if l.a.State(x, y) {				b = '*'			}			buf.WriteByte(b)		}		buf.WriteByte('\n')	}	return buf.String()} func main() {	l := NewLife(80, 15)	for i := 0; i < 300; i++ {		l.Step()		fmt.Print("\x0c")		fmt.Println(l)		time.Sleep(time.Second / 30)	}}`

Running this program will compute and draw the first 300 "frames". The final frame looks like this:

```        ** ****        *
* **
*                                         **
*                                                  *  *
*                   **        ****                 **                         *
*                  **       *  **
*                      **        *
**      *
****              *        *                                     **         *
***   **           *         ** ****                             *  *        **
* **     *  **      *              **                              **
*    *** ***
* **
**   **       **
** *  *      * *
```

## Groovy

` class GameOfLife { 	int generations	int dimensions	def board 	GameOfLife(generations = 5, dimensions = 5) {		this.generations = generations		this.dimensions = dimensions		this.board = createBlinkerBoard()	} 	static def createBlinkerBoard() {		[			[].withDefault{0},			[0,0,1].withDefault{0},			[0,0,1].withDefault{0},			[0,0,1].withDefault{0}		].withDefault{[]}	} 	static def createGliderBoard() {		[			[].withDefault{0},			[0,0,1].withDefault{0},			[0,0,0,1].withDefault{0},			[0,1,1,1].withDefault{0}		].withDefault{[]}	} 	static def getValue(board, point) {		def x,y		(x,y) = point		if(x < 0 || y < 0) {			return 0		}		board[x][y] ? 1 : 0	} 	static def countNeighbors(board, point) {		def x,y		(x,y) = point		def neighbors = 0		neighbors += getValue(board, [x-1,y-1])		neighbors += getValue(board, [x-1,y])		neighbors += getValue(board, [x-1,y+1])		neighbors += getValue(board, [x,y-1])		neighbors += getValue(board, [x,y+1])		neighbors += getValue(board, [x+1,y-1])		neighbors += getValue(board, [x+1,y])		neighbors += getValue(board, [x+1,y+1])		neighbors	} 	static def conwaysRule(currentValue, neighbors) {		def newValue = 0		if(neighbors == 3 || (currentValue && neighbors == 2)) {			newValue = 1		}		newValue	} 	static def createNextGeneration(currentBoard, dimensions) {		def newBoard = [].withDefault{[].withDefault{0}}		(0..(dimensions-1)).each { row ->			(0..(dimensions-1)).each { column ->				def point = [row, column]				def currentValue = getValue(currentBoard, point)				def neighbors = countNeighbors(currentBoard, point)				newBoard[row][column] = conwaysRule(currentValue, neighbors)			}		}		newBoard	} 	static def printBoard(generationCount, board, dimensions) {		println "Generation \${generationCount}"		println '*' * 80		(0..(dimensions-1)).each { row ->			(0..(dimensions-1)).each { column ->				print board[row][column] ? 'X' : '.'			}			print System.getProperty('line.separator')		}		println ''	} 	def start() {		(1..generations).each { generation ->			printBoard(generation, this.board, this.dimensions)			this.board = createNextGeneration(this.board, this.dimensions)		}	} } // Blinkerdef game = new GameOfLife()game.start() // Glidergame = new GameOfLife(10, 10)game.board = game.createGliderBoard()game.start() `

The output of this program:

```Generation 1
********************************************************************************
.....
..X..
..X..
..X..
.....

Generation 2
********************************************************************************
.....
.....
.XXX.
.....
.....

Generation 3
********************************************************************************
.....
..X..
..X..
..X..
.....

Generation 4
********************************************************************************
.....
.....
.XXX.
.....
.....

Generation 5
********************************************************************************
.....
..X..
..X..
..X..
.....

Generation 1
********************************************************************************
..........
..X.......
...X......
.XXX......
..........
..........
..........
..........
..........
..........

Generation 2
********************************************************************************
..........
..........
.X.X......
..XX......
..X.......
..........
..........
..........
..........
..........

Generation 3
********************************************************************************
..........
..........
...X......
.X.X......
..XX......
..........
..........
..........
..........
..........

Generation 4
********************************************************************************
..........
..........
..X.......
...XX.....
..XX......
..........
..........
..........
..........
..........

Generation 5
********************************************************************************
..........
..........
...X......
....X.....
..XXX.....
..........
..........
..........
..........
..........

Generation 6
********************************************************************************
..........
..........
..........
..X.X.....
...XX.....
...X......
..........
..........
..........
..........

Generation 7
********************************************************************************
..........
..........
..........
....X.....
..X.X.....
...XX.....
..........
..........
..........
..........

Generation 8
********************************************************************************
..........
..........
..........
...X......
....XX....
...XX.....
..........
..........
..........
..........

Generation 9
********************************************************************************
..........
..........
..........
....X.....
.....X....
...XXX....
..........
..........
..........
..........

Generation 10
********************************************************************************
..........
..........
..........
..........
...X.X....
....XX....
....X.....
..........
..........
..........

```

`import Data.Array.Unboxed type Grid = UArray (Int,Int) Bool -- The grid is indexed by (y, x). life :: Int -> Int -> Grid -> Grid{- Returns the given Grid advanced by one generation. -}life w h old =    listArray b (map f (range b))  where b@((y1,x1),(y2,x2)) = bounds old        f (y, x) = ( c && (n == 2 || n == 3) ) || ( not c && n == 3 )          where c = get x y                n = count [get (x + x') (y + y') |                    x' <- [-1, 0, 1], y' <- [-1, 0, 1],                    not (x' == 0 && y' == 0)]         get x y | x < x1 || x > x2 = False                | y < y1 || y > y2 = False                | otherwise       = old ! (y, x) count :: [Bool] -> Intcount = length . filter id`

Example of use:

`import Data.List (unfoldr) grid :: [String] -> (Int, Int, Grid)grid l = (width, height, a)  where (width, height) = (length \$ head l, length l)        a = listArray ((1, 1), (height, width)) \$ concatMap f l        f = map g        g '.' = False        g _   = True printGrid :: Int -> Grid -> IO ()printGrid width = mapM_ f . split width . elems  where f = putStrLn . map g        g False = '.'        g _     = '#' split :: Int -> [a] -> [[a]]split n = takeWhile (not . null) . unfoldr (Just . splitAt n) blinker = grid   [".#.",    ".#.",    ".#."] glider = grid   ["............",    "............",    "............",    ".......###..",    ".......#....",    "........#...",    "............"] printLife :: Int -> (Int, Int, Grid) -> IO ()printLife n (w, h, g) = mapM_ f \$ take n \$ iterate (life w h) g  where f g = do            putStrLn "------------------------------"            printGrid w g main = printLife 10 glider`

Here's the gridless version. It could probably be improved with some light use of `Data.Set`, but I leave that as an exercise for the reader. Note that the function `lifeStep` is the solution in its entirety. The rest of this code deals with printing and test data for the particular model of the world we're using.

`module Main whereimport Data.List lifeStep :: [(Int, Int)] -> [(Int, Int)]lifeStep cells = [head g | g <- grouped cells, viable g]  where grouped = group . sort . concatMap neighbors        neighbors (x, y) = [(x+dx, y+dy) | dx <- [-1..1], dy <- [-1..1], (dx,dy) /= (0,0)]        viable [_,_,_] = True        viable [c,_] = c `elem` cells        viable _ = False  showWorld :: [(Int, Int)] -> IO ()showWorld cells = mapM_ putStrLn \$ worldToGrid cells  where worldToGrid cells = [[cellChar (x, y) | x <- [least..greatest]] | y <- [least..greatest]]        cellChar cell = if cell `elem` cells then '#' else '.'        (least, greatest) = worldBounds cells worldBounds cells = (least, greatest)  where least = min x y        greatest = max x' y'        (x, y) = head cells        (x', y') = last cells runLife :: Int -> [(Int, Int)] -> IO ()runLife steps cells = rec (steps - 1) cells  where rec 0 cells = showWorld cells        rec s cells = do showWorld cells                         putStrLn ""                         rec (s - 1) \$ lifeStep cells glider = [(1, 0), (2, 1), (0, 2), (1, 2), (2, 2)]blinker = [(1, 0), (1, 1), (1, 2)] main :: IO ()main = do  putStrLn "Glider >> 10"  putStrLn "------------"  runLife 10 glider  putStrLn ""  putStrLn "Blinker >> 3"  putStrLn "------------"  runLife 3 blinker`

## HolyC

Conway's Game of Life in HolyC for TempleOS ported from Conway's_Game_of_Life#C.

Also see the TempleOS implementation of Conway's Game of Life which makes use of the graphics engine.

## Icon and Unicon

`global limit procedure main(args)    n := args[1] | 50        # default is a 50x50 grid    limit := args[2] | &null #  optional limit to number of generations    write("Enter the starting pattern, end with EOF")    grid := getInitialGrid(n)    play(grid)end # This procedure reads in the initial pattern, inserting it#   into an nXn grid of cells.  The nXn grid also gets a#   new border of empty cells, which just makes the test simpler#   for determining what do with a cell on each generation.# It would be better to let the user move the cursor and click#   on cells to create/delete living cells, but this version#   assumes a simple ASCII terminal.procedure getInitialGrid(n)    static notBlank, allStars    initial {        notBlank := ~' '                    allStars := repl("*",*notBlank)        }     g := []                # store as an array of strings     put(g,repl(" ",n))    while r := read() do {                        # read in rows of grid        r := left(r,n)                            #   force each to length n        put(g," "||map(r,notBlank,allStars)||" ") #   and making any life a '*'        }    while *g ~= (n+2) do        put(g,repl(" ",n))     return gend # Simple-minded procedure to 'play' Life from a starting grid.procedure play(grid)    while not allDone(grid) do {        display(grid)        grid := onePlay(grid)        }end # Display the gridprocedure display(g)    write(repl("-",*g[1]))    every write(!g)    write(repl("-",*g[1]))end # Compute one generation of Life from the current one.procedure onePlay(g)    ng := []    every put(ng, !g)        # new generation starts as copy of old    every ng[r := 2 to *g-1][c := 2 to *g-1] := case sum(g,r,c) of {                            3:       "*"     # cell lives (or is born)                            2:       g[r][c] # cell unchanged                            default: " "     # cell dead                            }    return ngend # Return the number of living cells surrounding the current cell.procedure sum(g,r,c)    cnt := 0    every (i := -1 to 1, j := -1 to 1) do        if ((i ~= 0) | (j ~= 0)) & (g[r+i][c+j] == "*") then cnt +:= 1    return cntend # Check to see if all the cells have died or we've exceeded the #   number of allowed generations.procedure allDone(g)   static count   initial count := 0   return ((count +:= 1) > \limit) | (trim(!g) == " ")end`

A sample run:

```->life 3 3
Enter the starting pattern, end with EOF

***
---

***

---
---

*
*
*

---
---

***

---
->
```

## INTERCAL

Works with: [the Pit] version 1

## J

Solution:

`pad=: 0,0,~0,.0,.~]life=: (3 3 (+/ e. 3+0,4&{)@,;._3 ])@padNB. the above could also be a one-line solution:life=: (3 3 (+/ e. 3+0,4&{)@,;._3 ])@(0,0,~0,.0,.~]) `

In other words, given a life instance, the next generation can be found by:

1. . adding extra empty cells, surrounding the life instance,
2. . tessellating the result, finding every overlapping 3 by 3 subinstance,
3. . totaling the number of live cells in each subinstance,
4. . treating a subinstance as a live cell iff that total is a member of the sequence 3,x where x is 3 if the center cell was previously dead, and 4 if the center cell was previously alive (that said, note that 4 is also the index of the center cell, with the sub instance arranged as a flat list).

Example (showing generations 0, 1 and 2 of a blinker):

`   life^:0 1 2 #:0 7 00 0 01 1 10 0 0 0 1 00 1 00 1 0 0 0 01 1 10 0 0`

Example (showing start and six following generations of a glider)

`   blocks=: (2 2\$2) ((7 u:' ▗▖▄▝▐▞▟▘▚▌▙▀▜▛█') {~ #[email protected],);._3 >.&.-:@\$ {. ]`
```   blocks"2 life^:(i.7) 4 5{.#:1 5 3
▖▌
▝▘

▝▄
▝▘

▚
▝▀

▗▗
▛

▗
▝▟

▖
▟▘

▗
▄▌```

## JAMES II/Rule-based Cellular Automata

Library: JAMES II
`@caversion 1; dimensions 2; //using Moore neighborhoodneighborhood moore; //available statesstate DEAD, ALIVE; /* if current state is ALIVE and the  neighborhood does not contain 2 or  3 ALIVE states the cell changes to  DEAD*/rule{ALIVE}:!ALIVE{2,3}->DEAD; /* if current state is DEAD and there  are exactly 3 ALIVE cells in the  neighborhood the cell changes to  ALIVE*/rule{DEAD}:ALIVE{3}->ALIVE;`

Animated output for the blinker example:

## Java

`public class GameOfLife{	public static void main(String[] args){		String[] dish= {				"_#_",				"_#_",				"_#_",};		int gens= 3;		for(int i= 0;i < gens;i++){			System.out.println("Generation " + i + ":");			print(dish);			dish= life(dish);		}	} 	public static String[] life(String[] dish){		String[] newGen= new String[dish.length];		for(int row= 0;row < dish.length;row++){//each row			newGen[row]= "";			for(int i= 0;i < dish[row].length();i++){//each char in the row				String above= "";//neighbors above				String same= "";//neighbors in the same row				String below= "";//neighbors below				if(i == 0){//all the way on the left					//no one above if on the top row					//otherwise grab the neighbors from above					above= (row == 0) ? null : dish[row - 1].substring(i,									i + 2);					same= dish[row].substring(i + 1, i + 2);					//no one below if on the bottom row					//otherwise grab the neighbors from below					below= (row == dish.length - 1) ? null : dish[row + 1]									.substring(i, i + 2);				}else if(i == dish[row].length() - 1){//right					//no one above if on the top row					//otherwise grab the neighbors from above					above= (row == 0) ? null : dish[row - 1].substring(i - 1,									i + 1);					same= dish[row].substring(i - 1, i);					//no one below if on the bottom row					//otherwise grab the neighbors from below					below= (row == dish.length - 1) ? null : dish[row + 1]									.substring(i - 1, i + 1);				}else{//anywhere else					//no one above if on the top row					//otherwise grab the neighbors from above					above= (row == 0) ? null : dish[row - 1].substring(i - 1,									i + 2);					same= dish[row].substring(i - 1, i)									+ dish[row].substring(i + 1, i + 2);					//no one below if on the bottom row					//otherwise grab the neighbors from below					below= (row == dish.length - 1) ? null : dish[row + 1]									.substring(i - 1, i + 2);				}				int neighbors= getNeighbors(above, same, below);				if(neighbors < 2 || neighbors > 3){					newGen[row]+= "_";//<2 or >3 neighbors -> die				}else if(neighbors == 3){					newGen[row]+= "#";//3 neighbors -> spawn/live				}else{					newGen[row]+= dish[row].charAt(i);//2 neighbors -> stay				}			}		}		return newGen;	} 	public static int getNeighbors(String above, String same, String below){		int ans= 0;		if(above != null){//no one above			for(char x: above.toCharArray()){//each neighbor from above				if(x == '#') ans++;//count it if someone is here			}		}		for(char x: same.toCharArray()){//two on either side			if(x == '#') ans++;//count it if someone is here		}		if(below != null){//no one below			for(char x: below.toCharArray()){//each neighbor below				if(x == '#') ans++;//count it if someone is here			}		}		return ans;	} 	public static void print(String[] dish){		for(String s: dish){			System.out.println(s);		}	}}`
Output:
```Generation 0:
_#_
_#_
_#_
Generation 1:
___
###
___
Generation 2:
_#_
_#_
_#_```

### Stretch

This fills in a random 10% of the grid, then activates the Game on it. Uncomment the call to the setCustomConfig function to use your own input. Just mind the grid limits. Use the input file given below to create a cool screensaver on your terminal.

` //package conway; import java.util.*;import java.io.*; public class GameOfLife {	//Set grid size	int l=20,b=60;	public static void main(String[] args)	{ 		GameOfLife now=new GameOfLife();		now.setGame();	}	void setGame()	{		char[][] config=new char[l][b];		startGame(config,l,b);	}	void startGame(char[][] mat,int l, int b)	{		Scanner s=new Scanner(System.in);		String ch="";		float per=0;		while(!ch.equals("y"))		{			per=setConfig(mat);			//setCustomConfig(mat,"GOLglidergun.txt");			display2D(mat);			System.out.println((per*100)+"% of grid filled.");			System.out.println("Begin? y/n");			ch=s.nextLine();		}		while(!ch.equals("x"))		{			mat=transform(mat,l,b);			display2D(mat); 			System.out.println("Ctrl+Z to stop."); 			try			{				Thread.sleep(100);			}			catch(Exception e)			{				System.out.println("Something went horribly wrong.");			} 			//ch=s.nextLine();		}		s.close();		System.out.println("Game Over");	} 	char[][] transform(char[][] mat,int l, int b)	{ 		char[][] newmat=new char[l][b];		for(int i=0;i<l;i++)			for(int j=0;j<b;j++)				newmat[i][j]=flip(mat,i,j);		return newmat;	}	char flip(char[][] mat,int i, int j)	{		int count=around(mat,i,j);		if(mat[i][j]=='*')		{			if(count<2||count>3)				return '_';			return '*';		}		else		{			if(count==3)				return '*';			return '_';		}	}	int around(char[][] mat, int i, int j)	{		int count=0;		for(int x=i-1;x<=i+1;x++)			for(int y=j-1;y<=j+1;y++)			{				if(x==i&&y==j)					continue;				count+=eval(mat,x,y);			}		return count;	}	int eval(char[][] mat, int i, int j)	{		if(i<0||j<0||i==l||j==b)			return 0;		if(mat[i][j]=='*')			return 1;		return 0;	} 	float setCustomConfig(char[][] arr,String infile)	{		try		{			BufferedReader br=new BufferedReader(new FileReader(infile));			String line;			for(int i=0;i<arr.length;i++)			{				line=br.readLine();				for(int j=0;j<arr[0].length;j++)					arr[i][j]=line.charAt(j);			}			br.close();		}		catch(Exception e)		{			System.out.println(e.getMessage());		}		return 0;	} 	float setConfig(char[][] arr)	{		//Enter percentage of grid to be filled.		float per=0.10f;//(float)Math.random();		for(int i=0;i<arr.length;i++)			setConfig1D(arr[i],per);		return per;	}	void setConfig1D(char[] arr,float per)	{		for(int i=0;i<arr.length;i++)		{			if(Math.random()<per)				arr[i]='*';			else				arr[i]='_';		}	}	void display2D(char[][] arr)	{		for(int i=0;i<arr.length;i++)			display1D(arr[i]);		System.out.println();	}	void display1D(char[] arr)	{		for(int i=0;i<arr.length;i++)			System.out.print(arr[i]);		System.out.println();	}} `

Glider Gun design. Save it in GOLglidergun.txt and uncomment the setCustomConfig function.

```____________________________________________________________
_________________________*__________________________________
_______________________*_*__________________________________
_____________**______**____________**_______________________
____________*___*____**____________**_______________________
_**________*_____*___**_____________________________________
_**________*___*_**____*_*__________________________________
___________*_____*_______*__________________________________
____________*___*___________________________________________
_____________**_____________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
____________________________________________________________
```

### Java 10

` import static java.util.List.of; class GameOfLife {    boolean[][] board = new boolean[3][3];    GameOfLife() {}    GameOfLife(String[] board) {      set((i, j, s) -> board[i].charAt(j * 2) == '■');   }    void set(Setter setter) {      for (int i = 0; i < board.length; i++) {         for (int j = 0; j < board[i].length; j++) {            board[i][j] = setter.set(i, j, board[i][j]);         }      }   }    void get(Getter getter) {      set((i, j, s) -> {         getter.get(i, j, s);         return s;      });   }    int countNeighbors(int i, int j) {      var counter = new Getter() {         int count;          @Override         public void get(int li, int lj, boolean state) {            if (distance(i, j, li, lj) == 1 && board[li][lj])               count++;         }      };      get(counter);      return counter.count;   }    int distance(int i, int j, int li, int lj) {      return Math.max(           Math.abs(i - li),           Math.abs(j - lj));   }    GameOfLife makeNextGeneration() {      var n = new GameOfLife();      n.set((i, j, s) -> {         var alive = board[i][j];         int c = countNeighbors(i, j);         if (alive) {            return c == 2 || c == 3;         } else {            return c == 3;         }      });      return n;   }    void print() {      get((i, j, s) -> {         if (j == 0)            System.out.println();         System.out.print(s ? "■ " : "□ ");      });   }    interface Setter {      boolean set(int i, int j, boolean state);   }    interface Getter {      void get(int i, int j, boolean state);   }    public static void main(String[] args) {      String[] board = {           "□ ■ □ ",           "□ ■ □ ",           "□ ■ □ ",      };      var gol = new GameOfLife(board);      for (var generation : of(0, 1, 2)) {         gol.print();         System.out.println("\n");         gol = gol.makeNextGeneration();      }   } } `

Outputs:

```□ ■ □
□ ■ □
□ ■ □

□ □ □
■ ■ ■
□ □ □

□ ■ □
□ ■ □
□ ■ □
```

## JavaScript

Works with: SpiderMonkey
Works with: V8
`function GameOfLife () { 	this.init = function (turns,width,height) {		this.board = new Array(height);		for (var x = 0; x < height; x++) {			this.board[x] = new Array(width);			for (var y = 0; y < width; y++) {				this.board[x][y] = Math.round(Math.random());			}		}		this.turns = turns;	} 	this.nextGen = function() {		this.boardNext = new Array(this.board.length);		for (var i = 0; i < this.board.length; i++) {			this.boardNext[i] = new Array(this.board[i].length);		}		for (var x = 0; x < this.board.length; x++) {			for (var y = 0; y < this.board[x].length; y++) {				var n = 0;				for (var dx = -1; dx <= 1; dx++) {					for (var dy = -1; dy <= 1; dy++) {						if ( dx == 0 && dy == 0){}						else if (typeof this.board[x+dx] !== 'undefined'								&& typeof this.board[x+dx][y+dy] !== 'undefined'								&& this.board[x+dx][y+dy]) {							n++;						}					}					}				var c = this.board[x][y];				switch (n) {					case 0:					case 1:						c = 0;						break;					case 2:						break; 					case 3:						c = 1;						break;					default:						c = 0;				}				this.boardNext[x][y] = c;			}		}		this.board = this.boardNext.slice();	} 	this.print = function() {		for (var x = 0; x < this.board.length; x++) {			var l = "";			for (var y = 0; y < this.board[x].length; y++) {				if (this.board[x][y])					l += "X";				else					l += " ";			}			print(l);		}	} 	this.start = function() {		for (var t = 0; t < this.turns; t++) {			print("---\nTurn "+(t+1));			this.print();			this.nextGen()		}	} }  var game = new GameOfLife(); print("---\n3x3 Blinker over three turns.");game.init(3);game.board = [	[0,0,0],	[1,1,1],	[0,0,0]];game.start(); print("---\n10x6 Glider over five turns.");game.init(5);game.board = [	[0,0,0,0,0,0,0,0,0,0],	[0,0,1,0,0,0,0,0,0,0],	[0,0,0,1,0,0,0,0,0,0],	[0,1,1,1,0,0,0,0,0,0],	[0,0,0,0,0,0,0,0,0,0],	[0,0,0,0,0,0,0,0,0,0]];game.start(); print("---\nRandom 5x10");game.init(5,5,10);game.start();`
Output:
```---
---
Turn 1

XXX

---
Turn 2
X
X
X
---
Turn 3

XXX

---
10x6 Glider over five turns.
---
Turn 1

X
X
XXX

---
Turn 2

X X
XX
X

---
Turn 3

X
X X
XX

---
Turn 4

X
XX
XX

---
Turn 5

X
X
XXX

---
Random 5x10
---
Turn 1
XXXX
XX
X
XX X
XX
X   X
X
X   X
X
X  XX
---
Turn 2
XXXX
X  XX
XX X
XX
X X
X X
XX
XX
XX XX

---
Turn 3
XX X
X
X   X

XX X

XXX

---
Turn 4
X
X  X

X
X
X
---
Turn 5

XXX
```
Library: HTML5

Essentially the same as the above straight JavaScript but displayed in an HTML5 Canvas.

` <html> 	<head> 		<title></title> 		<script type="text/javascript">  function GameOfLife () { 	this.init = function (turns,width,height) {		this.board = new Array(height);		for (var x = 0; x < height; x++) {			this.board[x] = new Array(width);			for (var y = 0; y < width; y++) {				this.board[x][y] = Math.round(Math.random());			}		}		this.turns = turns;	} 	this.nextGen = function() {		this.boardNext = new Array(this.board.length);		for (var i = 0; i < this.board.length; i++) {			this.boardNext[i] = new Array(this.board[i].length);		}		for (var x = 0; x < this.board.length; x++) {			for (var y = 0; y < this.board[x].length; y++) {				var n = 0;				for (var dx = -1; dx <= 1; dx++) {					for (var dy = -1; dy <= 1; dy++) {						if ( dx == 0 && dy == 0){}						else if (typeof this.board[x+dx] !== 'undefined'								&& typeof this.board[x+dx][y+dy] !== 'undefined'								&& this.board[x+dx][y+dy]) {							n++;						}					}					}				var c = this.board[x][y];				switch (n) {					case 0:					case 1:						c = 0;						break;					case 2:						break; 					case 3:						c = 1;						break;					default:						c = 0;				}				this.boardNext[x][y] = c;			}		}		this.board = this.boardNext.slice();	} 	this.print = function(ctx,w,h) {		if (!w)			w = 8;		if (!h)			h = 8;		for (var x = 0; x < this.board.length; x++) {			var l = "";			for (var y = 0; y < this.board[x].length; y++) {				if (this.board[x][y])				// x and y reversed to draw matrix like it looks in source				// rather than the "actual" positions					ctx.fillStyle = "orange";				else					ctx.fillStyle = "black";				ctx.fillRect(y*h,x*w,h,w);			}		}	} 	this.start = function(ctx,w,h) {		for (var t = 0; t < this.turns; t++) {			this.print(ctx,w,h);			this.nextGen()		}	} } function init() {	// Change document title and text under canvas	document.title = "Conway's Game of Life"; 	// Setup game boards for Conway's Game of Life	var blinker = new GameOfLife();	blinker.board = [		[0,1,0],		[0,1,0],		[0,1,0]]; 	var glider = new GameOfLife();	glider.board = [		[0,0,0,0,0,0],		[0,0,1,0,0,0],		[0,0,0,1,0,0],		[0,1,1,1,0,0],		[0,0,0,0,0,0],		[0,0,0,0,0,0]]; 	var random = new GameOfLife();	random.init(null,8,8); 	// Get canvas contexts or return 1	blinker.canvas = document.getElementById('blinker');	glider.canvas = document.getElementById('glider');	random.canvas = document.getElementById('random');	if (blinker.canvas.getContext && glider.canvas.getContext && random.canvas.getContext) {		blinker.ctx = blinker.canvas.getContext('2d');		glider.ctx = glider.canvas.getContext('2d');		random.ctx = random.canvas.getContext('2d');	} else {		return 1;	}  	// Run main() at set interval	setInterval(function(){run(glider,glider.ctx,25,25)},250);	setInterval(function(){run(blinker,blinker.ctx,25,25)},250);	setInterval(function(){run(random,random.ctx,25,25)},250);	return 0;} function run(game,ctx,w,h) {	game.print(ctx,w,h);	game.nextGen() 	return 0;} 		</script> 	</head> 	<body onLoad="init();"> 		3x3 Blinker<br> 		<canvas id="blinker" width="75" height="75"> 			No canvas support found!		</canvas><br><br> 		6x6 Glider<br> 		<canvas id="glider" width="150" height="150"> 			No canvas support found!		</canvas><br><br> 		8x8 Random<br> 		<canvas id="random" width="200" height="200"> 			No canvas support found!		</canvas><br> 	</body> </html>`
Output:

More functional style:

` const _ = require('lodash'); ///////////////////// LODASH IMPORT ///////////////////// // import all lodash functions to the main namespace, but isNaN not to cause conflicts_.each(_.keys(_), k => global[k === 'isNaN' ? '_isNaN' : k] = _[k]); ///////////////// FUNCTIONS /////////////////const WORLD_WIDTH  = 3,      WORLD_HEIGHT = 3,      displayWorld = (world) => console.log(map(world, x => x.join(' ')).join('\n') + '\n'),       aliveNeighbours = (world, x, y) => chain(range(-1, 2))                                          .reduce((acc, i) => acc.concat(map(range(-1, 2), ii => [i, ii])), [])                                          .reject(partial(isEqual, [0, 0]))                                          .map(i => {                                            try {                                              return world[x + i[0]][y + i[1]];                                            } catch (err) {                                              return null;                                            }                                          })                                          .compact()                                          .value()                                          .length,       isAlive = (cell, numAliveNeighbours) => (cell === 1 && inRange(numAliveNeighbours, 2, 4)) || (cell === 0 && numAliveNeighbours === 3) ? 1 : 0,      updateWorld = (world) => map(world, (row, rowidx) => map(row, (cell, colidx) => isAlive(cell, aliveNeighbours(world, rowidx, colidx))));  // let world = map(range(WORLD_WIDTH), partial(ary(map, 2), range(WORLD_HEIGHT), partial(random, 0, 1, false)));let world = [[0, 0, 0], [1, 1, 1], [0, 0, 0]]; setInterval(() => {  world = updateWorld(world)  displayWorld(world);}, 1000); `

ES6 + :

` const alive = 1;const dead = 0; const conwaysGameOfLife = (game) => {  const newGame = []  for (let y = 0; y < game.length; y += 1) {    const newRow = []    for (let x = 0; x < game[y].length; x += 1) {      const cell = game[y][x];      const prevX = x > 0 ? x - 1 : x;      const nextX = x < game[y].length - 1 ? x + 2 : x + 1;      const counter =        (game[y - 1] ? game[y - 1].slice(prevX, nextX).reduce((acc, v) => acc + v) : 0) +        (game[y][x - 1] || 0) + (game[y][x + 1] || 0) +        (game[y + 1] ? game[y + 1].slice(prevX, nextX).reduce((acc, v) => acc + v) : 0)      cell === alive        ? counter > 1 && counter <= 3          ? newRow.push(alive)          : newRow.push(dead)        : counter === 3          ? newRow.push(alive)          : newRow.push(dead)    }    newGame.push(newRow)  }  return newGame} const generateGame = (height, width) => {  return Array.from({ length: height }, (v, k) => (    Array.from({ length: width}, (v, k) => {      return (Math.random() * 100 | 0) < 50 ? dead : alive    })  ))} const output = (game) =>{  process.stdout.write('\033c');  let screen = '';  for (let i = 0; i < game.length; i += 1) {    screen += game[i].join('')    screen += '\n'  }  console.log(screen)} const setup = ((game) => {  return () => {    setInterval(() => {    output(game)    const newGame = conwaysGameOfLife(game)    game = newGame    }, 1000)  }}) // for random game// const game = generateGame(10, 10) // glider testconst game = [  [0,0,0,0,0,0,0,0,0,0],  [0,0,1,0,0,0,0,0,0,0],  [0,0,0,1,0,0,0,0,0,0],  [0,1,1,1,0,0,0,0,0,0],  [0,0,0,0,0,0,0,0,0,0],  [0,0,0,0,0,0,0,0,0,0]];const run = setup(game);run()  `

## jq

Works with: jq version 1.4

In this implementation, a "world" is simply a suitably constructed string as illustrated by world3 and world11 below. The "game" can be played either by creating separate frames (using frames(n)) or by calling animation(n; sleep) with sleep approximately equal to the number of milliseconds between refreshes.

`# Notes on the implementation: # 1. For efficiency, the implementation requires that the world#    has boundaries, as illustrated in the examples.# 2. For speed, the simulation uses the exploded string.# 3. The ASCII values of the "alive" and "empty" symbols are #    hardcoded: "." => 46; " " => 32# 4. To adjust the refresh rate, adjust the input to "spin". def lines: split("\n")|length; def cols: split("\n")[0]|length + 1;  # allow for the newline # Is there a "." (46) at [x,y] relative to position i,# assuming the width is w?# Input is an array; result is 0 or 1 so we can easily count the total.def isAlive(x; y; i; w): if .[i+ w*y + x] == 46 then 1 else 0 end; def neighborhood(i;w):  isAlive(-1; -1; i; w) + isAlive(0; -1; i; w) + isAlive(1; -1; i; w) +  isAlive(-1;  0; i; w)                        + isAlive(1;  0; i; w) +  isAlive(-1;  1; i; w) + isAlive(0;  1; i; w) + isAlive(1;  1; i; w) ; # The basic rules:def evolve(cell; sum) :   if   cell == 46 then if sum == 2 or sum == 3 then 46 else 32 end  elif cell == 32 then if sum == 3 then 46 else 32 end  else cell  end ; # [world, lines, cols] | next(w) => [world, lines, cols]def next:  .[0] as \$world | .[1] as \$lines | .[2] as \$w  | reduce range(0; \$world|length) as \$i    (\$world;      .[\$i] as \$c      | if \$c == 32 or \$c == 46 then           # updates are "simultaneous" i.e. relative to \$world, not "."           (\$world | neighborhood(\$i; \$w)) as \$sum           | evolve(\$c; \$sum) as \$next           | if \$c == \$next then . else .[\$i] = \$next end        else .        end )  | [., \$lines, \$w] ; `

Animation:

`# "clear screen":def cls: "\u001b[2J"; # Input: an integer; 1000 ~ 1 secdef spin:  reduce range(1; 500 * .) as \$i    (0; . + (\$i|cos)*(\$i|cos) + (\$i|sin)*(\$i|sin) )  |  "" ; # Animate n steps;# if "sleep" is non-negative then cls and # sleep about "sleep" ms between frames.def animate(n; sleep):  if n == 0 then empty  else (if sleep >= 0 then cls else "" end),       (.[0]|implode), n, "\n",       (sleep|spin),       ( next|animate(n-1; sleep) )  end ; # Input: a string representing the initial statedef animation(n; sleep):  [ explode, lines, cols] | animate(n; sleep) ; # Input: a string representing the initial statedef frames(n):  animation(n; -1); `

Examples:

`def world3:"+---+\n" +"|   |\n" +"|...|\n" +"|   |\n" +"+---+\n" ; def world11:"+-----------+\n" +"|           |\n" +"|   ..      |\n" +"|    ...    |\n" +"|      ..   |\n" +"|           |\n" +"+-----------+\n" ;`

`world3 | frames(3)`
Output:
`\$ jq -n -r -f Game_of_life.jq +---+|   ||...||   |+---+ 3    +---+| . || . || . |+---+ 2    +---+|   ||...||   |+---+ 1`

Animation example

`# Animation of 100 frames with approximately 1 second between each update:world11 | animation(100; 1000)`

## Jsish

From Javascript, SpiderMonkey entry.

`/* Conway's game of life, in Jsish */function GameOfLife () {    this.title = "Conway's Game of Life";    this.cls = "\u001B[H\u001B[2J";     this.init = function (turns, width, height) {        this.board = new Array(height);        for (var x = 0; x < height; x++) {            this.board[x] = new Array(width);            for (var y = 0; y < width; y++) {                this.board[x][y] = Math.round(Math.random());            }        }        this.turns = turns;    };     this.nextGen = function() {        this.boardNext = new Array(this.board.length);        for (var i = 0; i < this.board.length; i++) {            this.boardNext[i] = new Array(this.board[i].length);        }        for (var x = 0; x < this.board.length; x++) {            for (var y = 0; y < this.board[x].length; y++) {                var n = 0;                for (var dx = -1; dx <= 1; dx++) {                    for (var dy = -1; dy <= 1; dy++) {                        if ( dx == 0 && dy == 0){}                        else if (typeof this.board[x+dx] !== 'undefined'                                && typeof this.board[x+dx][y+dy] !== 'undefined'                                && this.board[x+dx][y+dy]) {                            n++;                        }                    }                }                var c = this.board[x][y];                switch (n) {                    case 0:                    case 1:                        c = 0;                        break;                    case 2:                        break;                    case 3:                        c = 1;                        break;                    default:                        c = 0;                }                this.boardNext[x][y] = c;            }        }        this.board = this.boardNext.slice(0);    };     this.print = function() {        for (var x = 0; x < this.board.length; x++) {            var l = "";            for (var y = 0; y < this.board[x].length; y++) {                if (this.board[x][y])                    l += "X";                else                    l += " ";            }            puts(l);        }    };     this.start = function() {        for (var t = 0; t < this.turns; t++) {            sleep(500);            printf(this.cls);            puts(this.title + "\n---\nTurn "+(t+1));            this.print();            this.nextGen();        }    }; } var game = new GameOfLife();if (Interp.conf('unitTest')) {    game.init(3,3,3);    game.title="---\n3x3 Blinker over three turns.";    game.board = [        [0,0,0],        [1,1,1],        [0,0,0]];    game.cls="";    game.start();} else {    game.init(3,3,3);    game.title="---\n3x3 Blinker over three turns.";    game.board = [        [0,0,0],        [1,1,1],        [0,0,0]];    game.start();     game.init(5,10,6);    game.title="---\n10x6 Glider over five turns.";    game.board = [        [0,0,0,0,0,0,0,0,0,0],        [0,0,1,0,0,0,0,0,0,0],        [0,0,0,1,0,0,0,0,0,0],        [0,1,1,1,0,0,0,0,0,0],        [0,0,0,0,0,0,0,0,0,0],        [0,0,0,0,0,0,0,0,0,0]];    game.start();     var steps = (console.args[0]) ? parseInt(console.args[0]) || 1  : 50;    game.init(steps, 32,16);    game.title="---\nRandom 32x16, " + steps + " step" + ((steps === 1) ? "" : "s");    game.start();} /*=!EXPECTSTART!=---3x3 Blinker over three turns.---Turn 1 XXX ---3x3 Blinker over three turns.---Turn 2 X X X---3x3 Blinker over three turns.---Turn 3 XXX =!EXPECTEND!=*/`
Output:
```prompt\$ jsish -u conwaysGame.jsi
[PASS] conwaysGame.jsi```

## Julia

Works with: julia version 0.3.5

Using the CellularAutomata package: https://github.com/natj/CellularAutomata.jl

`julia> Pkg.add("CellularAutomata")INFO: Installing CellularAutomata v0.1.2INFO: Package database updated julia> using CellularAutomata julia> gameOfLife{T<:Int}(n::T, m::T, gen::T) = CA2d([3], [2,3], int(randbool(n, m)), gen)gameOfLife (generic function with 1 method) julia> gameOfLife(15, 30, 5)30x15x5 Cellular Automaton`
```       # ##   #   ######  ###  ### ##
#    ####    #  #  # ##  #####
## #   # ## ###   ## # # ##
#  # ##### # # # ## #     #  #
##  ## # #  ##     ###
#   #### ## ## ### # # # # # #
# ## ##### #  ##### # ## ### #
### #   ##        ####  ## #
#### #   ## ##   ### ###  ###
## ####   #######  #    ## #
# ## ##### ## #### # #####
##  ## ##### # # # #  #   # #
#   # ## ##   ## ##   ##### #
##   # #   #  # #############
#      ## #    # ###  ##  ##
```

```                # ###          #
#    # ## #      # #   #
###     # #      #     ##
#   #   # # #   # ##  ## ####
###       #       # # ## # #
#           ##     #     # # #
####        #
##  #
# ##    #      ##    #
#      #
#  #                #  ##   #
## #         #      # #     #
#       ##              #
##   #   #   ##     #       #
#  # ##
```

```             #    ##
##     #         #    # #
## # #  # ##    #  #    #####
#      #       ## #   # ##
##       ## #     #  ##
###           #     # ## #####
#  #
#   ##       ##
# ##
#             # #
# #                  # #
#####       ##       # #   ##
# #       #        #     ##
# #  ### #   ###
#    ### ####
```

```        ##      ###
#### # #  #             ## ##
##  #    ###     # ##  ##   #
#            ### ## ##  #
##      ###      #    ##
# #       #####      #### ####
##           ##       #  #####
# ####
# #           #
#            ##
## #                  # ##
#   #       ##      ##     ##
#  #       #    #
##### # ##    #             #
#   #   # #   #
```

```          ## # ## #
## #     #           ### ##
# #    ##      # ###    # #
## ##             #   ##  #
####      #       ##
##      #   #      ##
#        #          ## ##
#         ###  #          ####
# ####        ##
#           #  #
###                  ## ##   #
##          ##      ## #   ##
# # ##      # #      #     #
####### ####  ###
##    #
```

### GPU calculation based version

Requires a CUDA compatible graphics card and uses the ArrayFire library.

`using ArrayFireusing Imagesusing LinearAlgebra const blinker = [0 0 0; 1 1 1; 0 0 0]const glider = [0 0 1; 1 0 1; 0 1 1]const lwss = [0 1 1 1 1; 1 0 0 0 1; 0 0 0 0 1; 1 0 0 1 0]const glidergun = [  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0;  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0;  0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0;  0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0;  0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0;  0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0;  0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;  0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] function lifegame(fname, initializer, mapsize=30, imgsteps=50, upscaleratio=20)    kernel = convert(Array{Float32}, [1 1 1; 1 0 1; 1 1 1]) |> AFArray    initialstate = zeros(Bool, mapsize, mapsize)    mid = div(mapsize, 2)    (xlen, ylen), (halfx, halfy) = size(initializer), div.(size(initializer), 2)    x1, x2 = mid - halfx, isodd(xlen) ? mid + halfx : mid + halfx - 1    y1, y2 = mid - halfy, isodd(ylen) ? mid + halfy : mid + halfy - 1    initialstate[x1:x2, y1:y2] .= initializer    state = initialstate .+ Float32(.0) |> AFArray    img = zeros(Float32, mapsize * upscaleratio, mapsize * upscaleratio, imgsteps)    for i in 1:imgsteps        nb = convolve2(state, kernel, UInt32(0), UInt32(0))        a = (nb == 2)        b = (nb == 3)        state = ((state .* a .+ b) > 0) + Float32(0)        frame = imresize(state, ratio=upscaleratio)        img[:, :, i] .= frame    end    save(fname, img)end lifegame("blinker.gif", blinker)lifegame("glider.gif", glider)lifegame("lwss.gif", lwss)lifegame("glidergun.gif", glidergun, 90, 200) `

## Kotlin

This is based on the Go entry but has been altered in several respects.

In particular, it now allows for the blinker and glider patterns as well as an initially random pattern.

Also any cells beyond the boundary are now treated as dead as per the current task description.

The particular random pattern used now needs only 99 generations to reach stability.

`// version 1.2.0 import java.util.Random val rand = Random(0) // using a seed to produce same output on each run enum class Pattern { BLINKER, GLIDER, RANDOM } class Field(val w: Int, val h: Int) {    val s = List(h) { BooleanArray(w) }     operator fun set(x: Int, y: Int, b: Boolean) {        s[y][x] = b    }     fun next(x: Int, y: Int): Boolean {        var on = 0        for (i in -1..1) {            for (j in -1..1) {                if (state(x + i, y + j) && !(j == 0 && i == 0)) on++            }        }        return on == 3 || (on == 2 && state(x, y))    }     fun state(x: Int, y: Int): Boolean {        if ((x !in 0 until w) || (y !in 0 until h)) return false        return s[y][x]    }} class Life(val pattern: Pattern) {    val w: Int    val h: Int    var a: Field    var b: Field     init {        when (pattern) {            Pattern.BLINKER -> {                w = 3                h = 3                a = Field(w, h)                b = Field(w, h)                a[0, 1] = true                a[1, 1] = true                a[2, 1] = true            }             Pattern.GLIDER -> {                w = 4                h = 4                a = Field(w, h)                b = Field(w, h)                a[1, 0] = true                a[2, 1] = true                for (i in 0..2) a[i, 2] = true            }             Pattern.RANDOM -> {                w = 80                h = 15                a = Field(w, h)                b = Field(w, h)                for (i in 0 until w * h / 2) {                    a[rand.nextInt(w), rand.nextInt(h)] = true                }            }        }    }     fun step() {        for (y in 0 until h) {            for (x in 0 until w) {                b[x, y] = a.next(x, y)            }        }        val t = a        a = b        b = t    }     override fun toString(): String {        val sb = StringBuilder()        for (y in 0 until h) {            for (x in 0 until w) {                val c = if (a.state(x, y)) '#' else '.'                sb.append(c)            }            sb.append('\n')        }        return sb.toString()    }} fun main(args: Array<String>) {    val lives = listOf(        Triple(Life(Pattern.BLINKER), 3, "BLINKER"),        Triple(Life(Pattern.GLIDER), 4, "GLIDER"),        Triple(Life(Pattern.RANDOM), 100, "RANDOM")    )    for ((game, gens, title) in lives) {        println("\$title:\n")        repeat(gens + 1) {            println("Generation: \$it\n\$game")            Thread.sleep(30)            game.step()        }        println()    }}`
Output:

In the interests of brevity, only generations 0 and 100 are shown for the 'random' pattern:

```BLINKER:

Generation: 0
...
###
...

Generation: 1
.#.
.#.
.#.

Generation: 2
...
###
...

Generation: 3
.#.
.#.
.#.

GLIDER:

Generation: 0
.#..
..#.
###.
....

Generation: 1
....
#.#.
.##.
.#..

Generation: 2
....
..#.
#.#.
.##.

Generation: 3
....
.#..
..##
.##.

Generation: 4
....
..#.
...#
.###

RANDOM:

Generation: 0
....###....#.#....###...#.#..#.###...#..#......#.#..#####......######...##.#.##.
####..###.#....#.#####.##.....####.##..####.####.........#.#.###...#.##.#.#.....
..##.##.#.##...#..#.#..#.#.#.#..####.#...#..##....#..##.........#.#..#....#...#.
..##..#..##.#.#.....#.##.##...#####...##.##.....##...#.....##......###..##.#..##
......##..........#.#.#.......#..#.##.#.##....#.#...#.#.#.#.....#..#.......#.#.#
.#.#.....#####..#..##............#.#.#...###..#...##.....#..##...#.#.##.#..##...
.##.#.#.##.#..#####.....##..#.####..#.#..#...#.#..#...#.#.#.#....#.#..#.#.#..##.
.#..#..#.....#...###..###.....####..........##.##.####.....#..##..####..#...##..
..##.#...#.#..#.#....#..#...##.#..##.......#.#..##..##..##.#.....##.#......#.#.#
#.######..#.#.#.###.#....###.....#.....#..#......####.#.#..#....#...#.......#.#.
#...#..###.##....#.#..##..#..#.#.#...#..#....#....##...#..#..#.#....#...##....#.
#....##.......#.####.##..#....#.#....#....#######.#..####.#..#.#.##....#.#####..
...#.......##..##.##......##....#..#.####.......#..#.#..##.###.#.#.#.#..##.....#
#.##..####....#..#..##..#.#..#..#....#.###.##.....#.....##....#.#..#.##.....##..
...#.#..#.#.....###...#..##.#.....#......#...........###...#.#....#..#.#..##.#.#

Generation: 100
................................................................................
................................................................................
.........................................#......................................
......................#.................#.#.....................................
.##..................#.#................#.#.....................................
.##..................#.#.................#...#..................................
......................#.....................#.#.................................
...........................................#..#.................................
............................................##..................................
.............##.................................................................
............#..#................................................................
.##..........#.#.......................................##..........#............
.##...........#........................................##.........#.#...........
..........##.......................................................##...........
..........##....................................................................
```

## Lua

A slight modernization of my original "life.lua" for Lua 3.x circa 2000 -- heck, we didn't even have for loops back then!  :D (a copy can be found in the 4.0 source distro if interested in comparing syntax)

`local function T2D(w,h) local t={} for y=1,h do t[y]={} for x=1,w do t[y][x]=0 end end return t end local Life = {  new = function(self,w,h)    return setmetatable({ w=w, h=h, gen=1, curr=T2D(w,h), next=T2D(w,h)}, {__index=self})  end,  set = function(self, coords)    for i = 1, #coords, 2 do      self.curr[coords[i+1]][coords[i]] = 1    end  end,  evolve = function(self)    local curr, next = self.curr, self.next    local ym1, y, yp1 = self.h-1, self.h, 1    for i = 1, self.h do      local xm1, x, xp1 = self.w-1, self.w, 1      for j = 1, self.w do        local sum = curr[ym1][xm1] + curr[ym1][x] + curr[ym1][xp1] +                    curr[y][xm1] + curr[y][xp1] +                    curr[yp1][xm1] + curr[yp1][x] + curr[yp1][xp1]        next[y][x] = ((sum==2) and curr[y][x]) or ((sum==3) and 1) or 0        xm1, x, xp1 = x, xp1, xp1+1      end      ym1, y, yp1 = y, yp1, yp1+1    end    self.curr, self.next, self.gen = self.next, self.curr, self.gen+1  end,  render = function(self)    print("Generation "..self.gen..":")    for y = 1, self.h do      for x = 1, self.w do        io.write(self.curr[y][x]==0 and "□ " or "■ ")      end      print()    end  end}`

Example usage. Coordinates wrap to simulate an infinite universe, so here a glider/lwss are evolved through one complete period, then advanced forward until returning to starting conditions.

`print("GLIDER:")local life = Life:new(5,5)life:set({ 2,1, 3,2, 1,3, 2,3, 3,3 })for i = 1, 5 do  life:render()  life:evolve()endfor i = 6,20 do life:evolve() endlife:render() print() print("LWSS:")life = Life:new(10,7)life:set({ 2,2, 5,2, 6,3, 2,4, 6,4, 3,5, 4,5, 5,5, 6,5 })for i = 1, 5 do  life:render()  life:evolve()endfor i = 6,20 do life:evolve() endlife:render()`
Output:
```GLIDER:
Generation 1:
□ ■ □ □ □
□ □ ■ □ □
■ ■ ■ □ □
□ □ □ □ □
□ □ □ □ □
Generation 2:
□ □ □ □ □
■ □ ■ □ □
□ ■ ■ □ □
□ ■ □ □ □
□ □ □ □ □
Generation 3:
□ □ □ □ □
□ □ ■ □ □
■ □ ■ □ □
□ ■ ■ □ □
□ □ □ □ □
Generation 4:
□ □ □ □ □
□ ■ □ □ □
□ □ ■ ■ □
□ ■ ■ □ □
□ □ □ □ □
Generation 5:
□ □ □ □ □
□ □ ■ □ □
□ □ □ ■ □
□ ■ ■ ■ □
□ □ □ □ □
Generation 21:
□ ■ □ □ □
□ □ ■ □ □
■ ■ ■ □ □
□ □ □ □ □
□ □ □ □ □

LWSS:
Generation 1:
□ □ □ □ □ □ □ □ □ □
□ ■ □ □ ■ □ □ □ □ □
□ □ □ □ □ ■ □ □ □ □
□ ■ □ □ □ ■ □ □ □ □
□ □ ■ ■ ■ ■ □ □ □ □
□ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □
Generation 2:
□ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □
□ □ □ □ ■ ■ □ □ □ □
□ □ ■ ■ □ ■ ■ □ □ □
□ □ ■ ■ ■ ■ □ □ □ □
□ □ □ ■ ■ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □
Generation 3:
□ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □
□ □ □ ■ ■ ■ ■ □ □ □
□ □ ■ □ □ □ ■ □ □ □
□ □ □ □ □ □ ■ □ □ □
□ □ ■ □ □ ■ □ □ □ □
□ □ □ □ □ □ □ □ □ □
Generation 4:
□ □ □ □ □ □ □ □ □ □
□ □ □ □ ■ ■ □ □ □ □
□ □ □ ■ ■ ■ ■ □ □ □
□ □ □ ■ ■ □ ■ ■ □ □
□ □ □ □ □ ■ ■ □ □ □
□ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □
Generation 5:
□ □ □ □ □ □ □ □ □ □
□ □ □ ■ □ □ ■ □ □ □
□ □ □ □ □ □ □ ■ □ □
□ □ □ ■ □ □ □ ■ □ □
□ □ □ □ ■ ■ ■ ■ □ □
□ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □
Generation 21:
□ □ □ □ □ □ □ □ □ □
□ ■ □ □ ■ □ □ □ □ □
□ □ □ □ □ ■ □ □ □ □
□ ■ □ □ □ ■ □ □ □ □
□ □ ■ ■ ■ ■ □ □ □ □
□ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □```

## ksh

` #!/bin/ksh#	# Version AJM 93u+ 2012-08-01 # Conway's Game of Life #	# Variables:#integer RAND_MAX=32767LIFE="�[07m  �[m"NULL="  "typeset -a char=( "\$NULL" "\$LIFE" ) #	# Input x y or default to 30x30, positive integers only#integer h=\${1:-30} ; h=\$(( h<=0 ? 30 : h ))		# Height (y)integer w=\${2:-30} ; w=\$(( w<=0 ? 30 : w ))		# Width  (x) #	# Functions:# #	# Function _display(map, h, w)#function _display {	typeset _dmap ; nameref _dmap="\$1"	typeset _h _w ; integer _h=\$2 _w=\$3 	typeset _x _y ; integer _x _y `