Odd and square numbers

From Rosetta Code
Odd and square numbers is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task


Find odd and square numbers (>99) under 1.000

ALGOL 68

<lang algol68>BEGIN # print odd suares between 100 and 1000 #

   # if 2m + 1 and 2m - 1 are consecutive odd numbers, the difference between their squares is 8m #
   INT to next    := 8;
   INT odd square := 1;
   WHILE odd square < 1000 DO
       IF odd square > 99 THEN
           print( ( " ", whole( odd square, 0 ) ) )
       FI;
       odd square +:= to next;
       to next    +:= 8
   OD

END</lang>

Output:
 121 169 225 289 361 441 529 625 729 841 961

ALGOL W

Translation of: PL/M

which is based on the Algol 68 sample.

<lang algolw>begin % print odd squares between 100 and 1000 %

   integer oddSquare, nextGap;
   oddSquare := 1;
   nextGap   := 8;
   while oddSquare < 100 do begin
       oddSquare := oddSquare + nextGap;
       nextGap   := nextGap + 8
   end while_oddSuare_lt_100 ;
   while oddSquare < 1000 do begin
       writeon( i_w := s_w := 1, oddSquare );
       oddSquare := oddSquare + nextGap;
       nextGap   := nextGap + 8
   end while_oddSquare_lt_1000

end.</lang>

Output:
121 169 225 289 361 441 529 625 729 841 961

AWK

<lang AWK>

  1. syntax: GAWK -f ODD_AND_SQUARE_NUMBERS.AWK

BEGIN {

   start = 100
   stop = 999
   i = n = 1
   while (n <= stop) {
     if (n >= start) {
       printf("%5d%1s",n,++count%10?"":"\n")
     }
     n += 8 * i++
   }
   printf("\nOdd and square numbers %d-%d: %d\n",start,stop,count)
   exit(0)

} </lang>

Output:
  121   169   225   289   361   441   529   625   729   841
  961
Odd and square numbers 100-999: 11

F#

<lang fsharp> // Odd and square numbers. Nigel Galloway: November 23rd., 2021 Seq.initInfinite((*)2>>(+)11)|>Seq.map(fun n->n*n)|>Seq.takeWhile((>)1000)|>Seq.iter(printfn "%d") </lang>

Output:
121
169
225
289
361
441
529
625
729
841
961

Factor

Works with: Factor version 0.99 2021-06-02

<lang factor>USING: io math math.functions math.ranges prettyprint sequences ;

11 1000 sqrt 2 <range> [ bl ] [ sq pprint ] interleave nl</lang>

Output:
121 169 225 289 361 441 529 625 729 841 961

Fermat

<lang fermat>Func Oddsq(j)=(2*j-1)^2.; i:=1; n:=1; while n<1000 do

   if n>100 then !!n fi;
   i:+;
   n:=Oddsq(i);

od;</lang>

FreeBASIC

Squares without squaring. <lang freebasic>dim as integer i=1, n=1 while n<1000

   if n>100 then print n
   n+=8*i
   i+=1

wend</lang>

jq

Works with: jq

Works with gojq, the Go implementation of jq

Basic Task

<lang jq># Output: a stream up to but less than $upper def oddSquares($upper):

 label $out
 | 1, foreach range(1;infinite) as $i (1;
    . + 8 * $i;
    if . >= $upper then break $out else . end);

oddSquares(1000) | select(. > 100) </lang>

Output:

As for #Julia.

Extended Example

Translation of: Wren

<lang jq># input: an array

  1. output: a stream of arrays of size size except possibly for the last array

def group(size):

 recurse( .[size:]; length>0) | .[0:size];

foreach range(0; 5) as $p ({pow:1};

   .low = (.pow|sqrt|ceil)
   | if .low % 2 == 0 then .low += 1 else . end
   | .pow *= 10 ;
   [range(.low; 1 + (.pow|sqrt|floor); 2) | . * . ] as $oddSq
   | "\($oddSq|length) odd squares from \(.pow/10) to \(.pow):",
     ( $oddSq | group(10) | join(" ")), "" )</lang>
Output:

As for #Wren.

Julia

Translation of: FreeBASIC

<lang julia>julia> i = n = 1 1

julia> while n < 1000

      n > 100 && println(n)
      n += 8i
      i += 1
      end

121 169 225 289 361 441 529 625 729 841 961 </lang>

Mathematica / Wolfram Language

<lang Mathematica>Cases[Range[100, 1000], _?(IntegerQ[Sqrt@#] && OddQ[#] &)]</lang>

Output:

{121,169,225,289,361,441,529,625,729,841,961}

Perl

Library: ntheory

<lang perl>#!/usr/bin/perl

use strict; use warnings; use ntheory qw( is_square );

print join( ' ', grep $_ & 1 && is_square($_), 100 .. 999 ), "\n";</lang>

Output:
121 169 225 289 361 441 529 625 729 841 961

Phix

with javascript_semantics
pp(sq_power(tagset(floor(sqrt(1000)),11,2),2))
Output:
{121,169,225,289,361,441,529,625,729,841,961}

PL/I

See #Polyglot:PL/I and PL/M

PL/M

Based on the Algol 68 sample.

Works with: 8080 PL/M Compiler

... under CP/M (or an emulator)

<lang pli>100H: /* PRINT ODD SQUARES BETWEEN 100 AND 1000 */

  /* CP/M BDOS SYSTEM CALL */
  BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5;END;
  /* CONSOLE OUTPUT ROUTINES */
  PR$CHAR:   PROCEDURE( C ); DECLARE C BYTE;    CALL BDOS( 2, C ); END;
  PR$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S ); END;
  PR$NUMBER: PROCEDURE( N );
     DECLARE N ADDRESS;
     DECLARE V ADDRESS, N$STR( 6 ) BYTE, W BYTE;
     V = N;
     W = LAST( N$STR );
     N$STR( W ) = '$';
     N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
     DO WHILE( ( V := V / 10 ) > 0 );
        N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
     END;
     CALL PR$STRING( .N$STR( W ) );
  END PR$NUMBER;
  /* TASK */
  DECLARE ( NEXT$GAP, ODD$SQUARE ) ADDRESS;
  NEXT$GAP   = 8;
  ODD$SQUARE = 1;
  DO WHILE( ODD$SQUARE < 100 );
     ODD$SQUARE = ODD$SQUARE + NEXT$GAP;
     NEXT$GAP   = NEXT$GAP + 8;
  END;
  DO WHILE( ODD$SQUARE < 1000 );
     CALL PR$CHAR( ' ' );
     CALL PR$NUMBER( ODD$SQUARE );
     ODD$SQUARE = ODD$SQUARE + NEXT$GAP;
     NEXT$GAP   = NEXT$GAP + 8;
  END;

EOF</lang>

Output:
 121 169 225 289 361 441 529 625 729 841 961

See also #Polyglot:PL/I and PL/M

Polyglot:PL/I and PL/M

Works with: 8080 PL/M Compiler

... under CP/M (or an emulator)

Should work with many PL/I implementations.

The PL/I include file "pg.inc" can be found on the Polyglot:PL/I and PL/M page. Note the use of text in column 81 onwards to hide the PL/I specifics from the PL/M compiler. <lang pli>/* PRINT ODD SQUARES BETWEEN 100 AND 1000 */ odd_squares_100H: procedure options (main);

/* PL/I DEFINITIONS */ %include 'pg.inc'; /* PL/M DEFINITIONS: CP/M BDOS SYSTEM CALL AND CONSOLE I/O ROUTINES, ETC. */ /*

  DECLARE BINARY LITERALLY 'ADDRESS', CHARACTER LITERALLY 'BYTE';
  BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5;   END;
  PRCHAR:   PROCEDURE( C );   DECLARE C CHARACTER; CALL BDOS( 2, C ); END;
  PRNUMBER: PROCEDURE( N );
     DECLARE N ADDRESS;
     DECLARE V ADDRESS, N$STR( 6 ) BYTE, W BYTE;
     N$STR( W := LAST( N$STR ) ) = '$';
     N$STR( W := W - 1 ) = '0' + ( ( V := N ) MOD 10 );
     DO WHILE( ( V := V / 10 ) > 0 );
        N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
     END; 
     CALL BDOS( 9, .N$STR( W ) );
  END PRNUMBER;

/* END LANGUAGE DEFINITIONS */

  /* TASK */
  DECLARE ( NEXTGAP, ODDSQUARE ) BINARY;
  NEXTGAP   = 8;
  ODDSQUARE = 1;
  DO WHILE( ODDSQUARE < 100 );
     ODDSQUARE = ODDSQUARE + NEXTGAP;
     NEXTGAP   = NEXTGAP   + 8;
  END;
  DO WHILE( ODDSQUARE < 1000 );
     CALL PRCHAR( ' ' );
     CALL PRNUMBER( ODDSQUARE );
     ODDSQUARE = ODDSQUARE + NEXTGAP;
     NEXTGAP   = NEXTGAP   + 8;
  END;

EOF: end odd_squares_100H;</lang>

Output:
 121 169 225 289 361 441 529 625 729 841 961

Python

<lang python> iimport math szamok=[] limit = 1000

for i in range(1,int(math.ceil(math.sqrt(limit))),2):

   num = i*i
   if (num < 1000 and num > 99):

szamok.append(num)

print(szamok) </lang>

Output:
[121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961]

Raku

Vote for deletion: trivial. But if we gotta keep it, at least make it slightly interesting. <lang perl6>for 1..5 {

   my $max = exp $_, 10;
   put "\n{+$_} odd squares from {$max / 10} to $max:\n{ .batch(10).join: "\n" }"
   given ({(2 × $++ + 1)²} … * > $max).grep: $max / 10 ≤ * ≤ $max

}</lang>

Output:
2 odd squares from 1 to 10:
1 9

3 odd squares from 10 to 100:
25 49 81

11 odd squares from 100 to 1000:
121 169 225 289 361 441 529 625 729 841
961

34 odd squares from 1000 to 10000:
1089 1225 1369 1521 1681 1849 2025 2209 2401 2601
2809 3025 3249 3481 3721 3969 4225 4489 4761 5041
5329 5625 5929 6241 6561 6889 7225 7569 7921 8281
8649 9025 9409 9801

108 odd squares from 10000 to 100000:
10201 10609 11025 11449 11881 12321 12769 13225 13689 14161
14641 15129 15625 16129 16641 17161 17689 18225 18769 19321
19881 20449 21025 21609 22201 22801 23409 24025 24649 25281
25921 26569 27225 27889 28561 29241 29929 30625 31329 32041
32761 33489 34225 34969 35721 36481 37249 38025 38809 39601
40401 41209 42025 42849 43681 44521 45369 46225 47089 47961
48841 49729 50625 51529 52441 53361 54289 55225 56169 57121
58081 59049 60025 61009 62001 63001 64009 65025 66049 67081
68121 69169 70225 71289 72361 73441 74529 75625 76729 77841
78961 80089 81225 82369 83521 84681 85849 87025 88209 89401
90601 91809 93025 94249 95481 96721 97969 99225

Red

<lang rebol>Red[]

n: 11 limit: sqrt 1000 while [n < limit][

   print n * n
   n: n + 2

]</lang>

Output:
121
169
225
289
361
441
529
625
729
841
961

Ring

<lang ring> see "working..." + nl limit = 1000 list = []

for i = 1 to ceil(sqrt(limit)) step 2

   num = pow(i,2)
   if (num < 1000 and num > 99)

add(list,num)

   ok

next

showArray(list)

see nl + "done..." + nl

func showArray(array)

    txt = ""
    see "["
    for n = 1 to len(array)
        txt = txt + array[n] + ","
    next
    txt = left(txt,len(txt)-1)
    txt = txt + "]"
    see txt 

</lang>

Output:
working...
[121,169,225,289,361,441,529,625,729,841,961]
done...

Wren

Library: Wren-trait
Library: Wren-seq

<lang ecmascript>import "./trait" for Stepped import "./seq" for Lst

var pow = 1 for (p in 0..4) {

   var low = pow.sqrt.ceil
   if (low % 2 == 0) low = low + 1
   pow = pow * 10
   var high = pow.sqrt.floor
   var oddSq = Stepped.new(low..high, 2).map { |i| i * i }.toList
   System.print("%(oddSq.count) odd squares from %(pow/10) to %(pow):")
   for (chunk in Lst.chunks(oddSq, 10)) System.print(chunk.join(" "))
   System.print()

}</lang>

Output:
2 odd squares from 1 to 10:
1 9

3 odd squares from 10 to 100:
25 49 81

11 odd squares from 100 to 1000:
121 169 225 289 361 441 529 625 729 841
961

34 odd squares from 1000 to 10000:
1089 1225 1369 1521 1681 1849 2025 2209 2401 2601
2809 3025 3249 3481 3721 3969 4225 4489 4761 5041
5329 5625 5929 6241 6561 6889 7225 7569 7921 8281
8649 9025 9409 9801

108 odd squares from 10000 to 100000:
10201 10609 11025 11449 11881 12321 12769 13225 13689 14161
14641 15129 15625 16129 16641 17161 17689 18225 18769 19321
19881 20449 21025 21609 22201 22801 23409 24025 24649 25281
25921 26569 27225 27889 28561 29241 29929 30625 31329 32041
32761 33489 34225 34969 35721 36481 37249 38025 38809 39601
40401 41209 42025 42849 43681 44521 45369 46225 47089 47961
48841 49729 50625 51529 52441 53361 54289 55225 56169 57121
58081 59049 60025 61009 62001 63001 64009 65025 66049 67081
68121 69169 70225 71289 72361 73441 74529 75625 76729 77841
78961 80089 81225 82369 83521 84681 85849 87025 88209 89401
90601 91809 93025 94249 95481 96721 97969 99225

XPL0

<lang XPL0>int N2, N; [for N2:= 101 to 999 do

   [N:= sqrt(N2);
   if N*N=N2 & (N&1)=1 then
       [IntOut(0, N2);  ChOut(0, ^ )];
   ];

]</lang>

Output:
121 169 225 289 361 441 529 625 729 841 961