Sudan function
You are encouraged to solve this task according to the task description, using any language you may know.
The Sudan function is a classic example of a recursive function, notable especially because it is not a primitive recursive function. This is also true of the better-known Ackermann function. The Sudan function was the first function having this property to be published.
The Sudan function is usually defined as follows (svg):
- Task
Write a function which returns the value of F(x, y).
8080 Assembly
org 100h
jmp demo
;; Sudan function. BC=N, DE=X, HL=Y; output in HL.
sudan: mov a,b ; N=0?
ora c
jz sdnbse
mov a,h ; Y=0?
ora l
jz sdnbse
push b ; Save N and Y (we don't need X)
push h
dcx h
call sudan ; Calculate result of inner call
xchg ; Set X = result of inner call
pop h ; Get Y
dad d ; Set Y = Y + result of inner call
pop b ; Get N
dcx b ; N = N-1
jmp sudan ; Calculate result of outer call
sdnbse: dad d ; Return X+Y (base case)
ret
;; Output routine (show 'sudan(N,X,Y) = value'), using CP/M call
show: push h! push d! push b! ; Copies of args
push h! push d! push b! ; For output
lxi d,sdt! call pstr ; Print call
pop h! call prhl
lxi d,sdc! call pstr
pop h! call prhl
lxi d,sdc! call pstr
pop h! call prhl
lxi d,sdi! call pstr
pop b! pop d! pop h! ; Restore args
call sudan! call prhl ; Find and print result
lxi d,sdnl! jmp pstr
prhl: lxi d,numbuf! push d! lxi b,-10
prdgt: lxi d,-1
pdiv: inx d! dad b! jc pdiv
mvi a,'0'+10! add l! pop h
dcx h! mov m,a! push h
xchg! mov a,h! ora l! jnz prdgt
pop d
pstr: mvi c,9! jmp 5
;; Set up big system stack (using CP/M)
demo: lhld 6
sphl
;; Show a couple of values
lxi b,0! lxi d,0! lxi h,0! call show
lxi b,1! lxi d,1! lxi h,1! call show
lxi b,2! lxi d,1! lxi h,1! call show
lxi b,3! lxi d,1! lxi h,1! call show
lxi b,2! lxi d,2! lxi h,1! call show
rst 0
sdt: db 'sudan($'
sdc: db ', $'
sdi: db ') = $'
db '.....'
numbuf: db '$'
sdnl: db 13,10,'$'
- Output:
sudan(0, 0, 0) = 0 sudan(1, 1, 1) = 3 sudan(2, 1, 1) = 8 sudan(3, 1, 1) = 10228 sudan(2, 2, 1) = 27
Ada
with Ada.Text_IO; use Ada.Text_IO;
procedure Sudan_Function is
function F (N, X, Y : Natural) return Natural
is (if N = 0 then X + Y
elsif Y = 0 then X
else F (N => N - 1,
X => F (N, X, Y - 1),
Y => F (N, X, Y - 1) + Y));
begin
Put_Line ("F0 (0, 0) = " & F (0, 0, 0)'Image);
Put_Line ("F1 (1, 1) = " & F (1, 1, 1)'Image);
Put_Line ("F1 (3, 3) = " & F (1, 3, 3)'Image);
Put_Line ("F2 (1, 1) = " & F (2, 1, 1)'Image);
Put_Line ("F2 (2, 1) = " & F (2, 2, 1)'Image);
Put_Line ("F3 (1, 1) = " & F (3, 1, 1)'Image);
end Sudan_Function;
- Output:
F0 (0, 0) = 0 F1 (1, 1) = 3 F1 (3, 3) = 35 F2 (1, 1) = 8 F2 (2, 1) = 27 F3 (1, 1) = 10228
ALGOL 68
...with a minor optimisation.
BEGIN # compute some values of the Sudan function #
PROC sudan = ( INT n, x, y )INT:
IF n = 0 THEN x + y
ELIF y = 0 THEN x
ELSE
INT s = sudan( n, x, y - 1 );
sudan( n - 1, s, s + y )
FI # sudan # ;
FOR n FROM 0 TO 1 DO
print( ( "Values of F(", whole( n, 0 ), ", x, y):", newline ) );
print( ( "y/x 0 1 2 3 4 5", newline ) );
print( ( "----------------------------", newline ) );
FOR y FROM 0 TO 6 DO
print( ( whole( y, 0 ), " |" ) );
FOR x FROM 0 TO 5 DO
print( ( whole( sudan( n, x, y ), -4 ) ) )
OD;
print( ( newline ) )
OD;
print( ( newline ) )
OD;
print( ( newline ) );
print( ( "F(2, 1, 1) = ", whole( sudan( 2, 1, 1 ), 0 ), newline ) );
print( ( "F(3, 1, 1) = ", whole( sudan( 3, 1, 1 ), 0 ), newline ) );
print( ( "F(2, 2, 1) = ", whole( sudan( 2, 2, 1 ), 0 ), newline ) )
END
- Output:
Values of F(0, x, y): y/x 0 1 2 3 4 5 ---------------------------- 0 | 0 1 2 3 4 5 1 | 1 2 3 4 5 6 2 | 2 3 4 5 6 7 3 | 3 4 5 6 7 8 4 | 4 5 6 7 8 9 5 | 5 6 7 8 9 10 6 | 6 7 8 9 10 11 Values of F(1, x, y): y/x 0 1 2 3 4 5 ---------------------------- 0 | 0 1 2 3 4 5 1 | 1 3 5 7 9 11 2 | 4 8 12 16 20 24 3 | 11 19 27 35 43 51 4 | 26 42 58 74 90 106 5 | 57 89 121 153 185 217 6 | 120 184 248 312 376 440 F(2, 1, 1) = 8 F(3, 1, 1) = 10228 F(2, 2, 1) = 27
APL
sudan←{
0∨.>⍺ ⍺⍺ ⍵:'Negative input'⎕SIGNAL 11
⍺⍺=0:⍺+⍵
⍵=0:⍺
tm((⍺⍺-1)∇∇)⍵+tm←⍺∇⍵-1
}
- Output:
0 sudan/¨ ¯1+⍳ 6 7 0 1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 1 sudan/¨ ¯1+⍳ 6 7 0 1 4 11 26 57 120 1 3 8 19 42 89 184 2 5 12 27 58 121 248 3 7 16 35 74 153 312 4 9 20 43 90 185 376 5 11 24 51 106 217 440 1 (2 sudan) 1 8 1 (3 sudan) 1 10228 2 (2 sudan) 1 27
Arturo
sudan: function [n, x, y][
if n = 0 -> return x + y
if y = 0 -> return x
sudan n-1 sudan n x y-1 y + sudan n x y-1
]
print sudan 1 3 3
- Output:
35
Asymptote
int F(int n, int x, int y) {
if (n == 0) return x + y;
if (y == 0) return x;
return F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y);
}
for (int n = 0; n <= 1; ++n) {
write("Values of F(", n, suffix=none);
write(", x, y ):");
write("-----------------------------");
for (int y = 0; y <= 6; ++y) {
write(y, suffix=none);
write(" |", suffix=none);
for (int x = 0; x <= 5; ++x) {
write(" ", F(n, x, y), suffix=none);
}
write();
}
write();
}
write("F(0,0,0) = ", F(0, 0, 0));
write("F(1,3,3) = ", F(1, 3, 3));
write("F(2,1,1) = ", F(2, 1, 1));
write("F(3,1,1) = ", F(3, 1, 1));
write("F(2,2,1) = ", F(2, 2, 1));
AWK
# syntax: GAWK -f SUDAN_FUNCTION.AWK
BEGIN {
for (n=0; n<=1; n++) {
printf("sudan(%d,x,y)\n",n)
printf("y/x 0 1 2 3 4 5\n")
printf("%s\n",strdup("-",28))
for (y=0; y<=6; y++) {
printf("%2d | ",y)
for (x=0; x<=5; x++) {
printf("%3d ",sudan(n,x,y))
}
printf("\n")
}
printf("\n")
}
n=1; x=3; y=3; printf("sudan(%d,%d,%d)=%d\n",n,x,y,sudan(n,x,y))
n=2; x=1; y=1; printf("sudan(%d,%d,%d)=%d\n",n,x,y,sudan(n,x,y))
n=2; x=2; y=1; printf("sudan(%d,%d,%d)=%d\n",n,x,y,sudan(n,x,y))
n=3; x=1; y=1; printf("sudan(%d,%d,%d)=%d\n",n,x,y,sudan(n,x,y))
exit(0)
}
function sudan(n,x,y) {
if (n == 0) { return(x+y) }
if (y == 0) { return(x) }
return sudan(n-1, sudan(n,x,y-1), sudan(n,x,y-1)+y)
}
function strdup(str,n, i,new_str) {
for (i=1; i<=n; i++) {
new_str = new_str str
}
return(new_str)
}
- Output:
sudan(0,x,y) y/x 0 1 2 3 4 5 ---------------------------- 0 | 0 1 2 3 4 5 1 | 1 2 3 4 5 6 2 | 2 3 4 5 6 7 3 | 3 4 5 6 7 8 4 | 4 5 6 7 8 9 5 | 5 6 7 8 9 10 6 | 6 7 8 9 10 11 sudan(1,x,y) y/x 0 1 2 3 4 5 ---------------------------- 0 | 0 1 2 3 4 5 1 | 1 3 5 7 9 11 2 | 4 8 12 16 20 24 3 | 11 19 27 35 43 51 4 | 26 42 58 74 90 106 5 | 57 89 121 153 185 217 6 | 120 184 248 312 376 440 sudan(1,3,3)=35 sudan(2,1,1)=8 sudan(2,2,1)=27 sudan(3,1,1)=10228
BASIC
BASIC256
for n = 0 to 1
print "Values of F(" & n & ", x, y):"
print "y/x 0 1 2 3 4 5"
print ("-"*28)
for y = 0 to 6
print y; " |";
for x = 0 to 5
print rjust(string(F(n,x,y)),4);
next x
print
next y
print
next n
print "F(2,1,1) = "; F(2,1,1)
print "F(3,1,1) = "; F(3,1,1)
print "F(2,2,1) = "; F(2,2,1)
end
function F(n, x, y)
if n = 0 then return x + y
if y = 0 then return x
return F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y)
end function
- Output:
Same as FreeBASIC entry.
Chipmunk Basic
100 sub f(n,x,y)
110 if n = 0 then f = x+y : exit sub
120 if y = 0 then f = x : exit sub
130 f = f(n-1,f(n,x,y-1),f(n,x,y-1)+y)
140 end sub
150 for n = 0 to 1
160 print using " Values of F(#, x, y ):";n
170 print " y/x 0 1 2 3 4 5"
180 print " -----------------------------"
190 for y = 0 to 6
200 print y;" |";
210 for x = 0 to 5
220 print using "####";f(n,x,y);
230 next x
240 print
250 next y
260 print
270 next n
280 print "F(0,0,0) = ";f(0,0,0)
290 print "F(1,3,3) = ";f(1,3,3)
300 print "F(2,1,1) = ";f(2,1,1)
310 print "F(3,1,1) = ";f(3,1,1)
320 print "F(2,2,1) = ";f(2,2,1)
- Output:
Same as FreeBASIC entry.
Gambas
Function F(n As Integer, x As Integer, y As Integer) As Integer
If n = 0 Then Return x + y
If y = 0 Then Return x
Return F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y)
End Function
Public Sub Main()
Dim n, x, y As Integer
For n = 0 To 1
Print " Values of F(" & n & ", x, y):"
Print " y/x 0 1 2 3 4 5"
Print String(29, "-") 'Print " ----------------------------"
For y = 0 To 6
Print y; " | ";
For x = 0 To 5
Print Format$(F(n, x, y), "####");
Next
Print
Next
Print
Next
Print "F(2,1,1) = "; F(2, 1, 1)
Print "F(3,1,1) = "; F(3, 1, 1)
Print "F(2,2,1) = "; F(2, 2, 1)
End
- Output:
Same as FreeBASIC entry.
OxygenBasic
uses console
'
function F(int n, x, y) as int
if n = 0 then
function = x + y
exit function
endif
if y = 0 then
function = x
exit function
endif
function = F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y)
end function
'
int n, x, y
for n = 0 to 1
printl " Values of F(" n ", x, y ):"
printl " y/x 0 1 2 3 4 5"
printl string(52, "-")
for y = 0 to 6
print " " y " |" tab
for x = 0 to 5
print F(n, x, y) tab
next x
printl
next y
printl
next n
'
printl "F(0,0,0) = " F(0, 0, 0)
printl "F(1,3,3) = " F(1, 3, 3)
printl "F(2,1,1) = " F(2, 1, 1)
printl "F(3,1,1) = " F(3, 1, 1)
printl "F(2,2,1) = " F(2, 2, 1)
printl cr "Enter ..."
waitkey
- Output:
Similar to FreeBASIC entry.
PureBasic
Procedure.d F(n.i, x.i, y.i)
If n = 0
ProcedureReturn x + y
ElseIf y = 0
ProcedureReturn x
Else
ProcedureReturn F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y)
EndIf
EndProcedure
OpenConsole()
For n = 0 To 1
PrintN("Values of F(" + Str(n) + ", x, y):")
PrintN("y/x 0 1 2 3 4 5")
PrintN("---------------------------------------------------")
For y = 0 To 6
Print(Str(y) + " |")
For x = 0 To 5
Print(#TAB$ + F(n,x,y))
Next x
PrintN("")
Next y
PrintN("")
Next n
PrintN("F(2,1,1) = " + Str(F(2,1,1)))
PrintN("F(3,1,1) = " + Str(F(3,1,1)))
PrintN("F(2,2,1) = " + Str(F(2,2,1)))
Input()
CloseConsole()
- Output:
Similat to FreeBASIC entry.
QBasic
FUNCTION F(n,x,y)
IF n = 0 THEN
LET F = x + y
ELSE
IF y = 0 THEN
LET F = x
ELSE
LET F = F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y)
END IF
END IF
END FUNCTION
PRINT "F(2,1,1) = "; F(2, 1, 1)
PRINT "F(3,1,1) = "; F(3, 1, 1)
PRINT "F(2,2,1) = "; F(2, 2, 1)
END
Run BASIC
FUNCTION F(n,x,y)
IF n = 0 THEN
LET F = x + y
ELSE
IF y = 0 THEN
LET F = x
ELSE
LET F = F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y)
END IF
END IF
END FUNCTION
PRINT "F(2,1,1) = "; F(2, 1, 1)
PRINT "F(3,1,1) = "; F(3, 1, 1)
PRINT "F(2,2,1) = "; F(2, 2, 1)
END
True BASIC
FUNCTION F(n,x,y)
IF n = 0 THEN
LET F = x + y
ELSE
IF y = 0 THEN
LET F = x
ELSE
LET F = F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y)
END IF
END IF
END FUNCTION
PRINT "F(2,1,1) = "; F(2, 1, 1)
PRINT "F(3,1,1) = "; F(3, 1, 1)
PRINT "F(2,2,1) = "; F(2, 2, 1)
END
XBasic
PROGRAM "Sudan function"
VERSION "0.0000"
DECLARE FUNCTION Entry ()
DECLARE FUNCTION F (n, x, y)
FUNCTION Entry ()
FOR n = 0 TO 1
PRINT " Values of F("; n; ", x, y ):"
PRINT " y/x 0 1 2 3 4 5"
PRINT " ----------------------------"
FOR y = 0 TO 6
PRINT y; " |";
FOR x = 0 TO 5
PRINT FORMAT$("####", F(n, x, y));
NEXT x
PRINT
NEXT y
PRINT
NEXT n
PRINT "F(2,1,1) ="; F(2, 1, 1)
PRINT "F(3,1,1) ="; F(3, 1, 1)
PRINT "F(2,2,1) ="; F(2, 2, 1)
END FUNCTION
FUNCTION F (n, x, y)
IF n = 0 THEN
RETURN x + y
ELSE
IF y = 0 THEN
RETURN x
ELSE
RETURN F (n - 1, F(n, x, y - 1), F(n, x, y - 1) + y)
ENDIF
ENDIF
END FUNCTION
END PROGRAM
- Output:
Same as FreeBASIC entry.
Yabasic
for n = 0 to 1
print "Values of F(", n, ", x, y):"
print "y/x 0 1 2 3 4 5"
print "----------------------------"
for y = 0 to 6
print y, " | ";
for x = 0 to 5
print F(n,x,y) using ("###");
next x
print
next y
print
next n
print "F(2,1,1) = ", F(2,1,1)
print "F(3,1,1) = ", F(3,1,1)
print "F(2,2,1) = ", F(2,2,1)
end
sub F(n, x, y)
if n = 0 return x + y
if y = 0 return x
return F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y)
end sub
- Output:
Same as FreeBASIC entry.
BCPL
get "libhdr"
let sudan(n, x, y) =
n = 0 -> x + y,
y = 0 -> x,
sudan(n-1, sudan(n, x, y-1), sudan(n, x, y-1)+y)
let showtable(f, n, x, y) be
$( writef("sudan(%N,x,y)*N", n)
writes(" ")
for i=0 to x do writed(i, 5)
for i=0 to y
$( writef("*N%I4:", i)
for j=0 to x do writed(f(n, j, i), 5)
$)
writes("*N*N")
$)
let show(f, n, x, y) be
writef("sudan(%I4,%I4,%I4) = %I6*N", n, x, y, f(n, x, y))
let start() be
$( showtable(sudan, 0, 6, 5)
showtable(sudan, 1, 6, 5)
wrch('*N')
show(sudan, 1, 3, 3)
show(sudan, 2, 1, 1)
show(sudan, 2, 2, 1)
show(sudan, 3, 1, 1)
$)
- Output:
sudan(0,x,y) 0 1 2 3 4 5 6 0: 0 1 2 3 4 5 6 1: 1 2 3 4 5 6 7 2: 2 3 4 5 6 7 8 3: 3 4 5 6 7 8 9 4: 4 5 6 7 8 9 10 5: 5 6 7 8 9 10 11 sudan(1,x,y) 0 1 2 3 4 5 6 0: 0 1 2 3 4 5 6 1: 1 3 5 7 9 11 13 2: 4 8 12 16 20 24 28 3: 11 19 27 35 43 51 59 4: 26 42 58 74 90 106 122 5: 57 89 121 153 185 217 249 sudan( 1, 3, 3) = 35 sudan( 2, 1, 1) = 8 sudan( 2, 2, 1) = 27 sudan( 3, 1, 1) = 10228
BQN
_sudan←{
x 0 _𝕣 y: x + y;
x n _𝕣 0: x;
x n _𝕣 y: k (n-1)_𝕣 y+k←x𝕊y-1
}
•Show "⍉(↕7) 0 _sudan⌜ ↕6:"
•Show ⍉(↕7) 0 _sudan⌜ ↕6
•Show "⍉(↕7) 1 _sudan⌜ ↕6:"
•Show ⍉(↕7) 1 _sudan⌜ ↕6
•Show "1 2 _sudan 1: "∾•Fmt 1 2 _sudan 1
•Show "2 2 _sudan 1: "∾•Fmt 2 2 _sudan 1
•Show "1 3 _sudan 1: "∾•Fmt 1 3 _sudan 1
- Output:
"⍉(↕7) 0 _sudan⌜ ↕6:" ┌─ ╵ 0 1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 ┘ "⍉(↕7) 1 _sudan⌜ ↕6:" ┌─ ╵ 0 1 2 3 4 5 6 1 3 5 7 9 11 13 4 8 12 16 20 24 28 11 19 27 35 43 51 59 26 42 58 74 90 106 122 57 89 121 153 185 217 249 ┘ "1 2 _sudan 1: 8" "2 2 _sudan 1: 27" "1 3 _sudan 1: 10228"
C
//Aamrun, 11th July 2022
#include <stdio.h>
int F(int n,int x,int y) {
if (n == 0) {
return x + y;
}
else if (y == 0) {
return x;
}
return F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y);
}
int main() {
printf("F1(3,3) = %d",F(1,3,3));
return 0;
}
Output
F1(3,3) = 35
C++
//Aamrun , 11th July, 2022
#include <iostream>
using namespace std;
int F(int n,int x,int y) {
if (n == 0) {
return x + y;
}
else if (y == 0) {
return x;
}
return F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y);
}
int main() {
cout << "F(1,3,3) = "<<F(1,3,3)<<endl;
return 0;
}
Output
F(1,3,3) = 35
C#
//Aamrun, 11th July 2022
using System;
namespace Sudan
{
class Sudan
{
static int F(int n,int x,int y) {
if (n == 0) {
return x + y;
}
else if (y == 0) {
return x;
}
return F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y);
}
static void Main(string[] args)
{
Console.WriteLine("F(1,3,3) = " + F(1,3,3));
}
}
}
Output
F(1,3,3) = 35
CLU
sudan = proc (n, x, y: int) returns (int)
if n=0 then
return(x + y)
elseif y=0 then
return(x)
else
k: int := sudan(n, x, y-1)
return(sudan(n-1, k, k+y))
end
end sudan
table = proc (n, xs, ys: int) returns (string)
ss: stream := stream$create_output()
stream$putl(ss, "sudan(" || int$unparse(n) || ",x,y):")
stream$puts(ss, " ")
for x: int in int$from_to(0, xs)
do stream$putright(ss, int$unparse(x), 5) end
for y: int in int$from_to(0, ys) do
stream$putl(ss, "")
stream$putright(ss, int$unparse(y) || ":", 5)
for x: int in int$from_to(0, xs)
do stream$putright(ss, int$unparse(sudan(n, x, y)), 5) end
end
stream$putl(ss, "")
return(stream$get_contents(ss))
end table
show = proc (n, x, y: int) returns (string)
return("sudan(" || int$unparse(n)
|| ", " || int$unparse(x)
|| ", " || int$unparse(y)
|| ") = " || int$unparse(sudan(n,x,y)))
end show
start_up = proc ()
po: stream := stream$primary_output()
stream$putl(po, table(0, 6, 5))
stream$putl(po, table(1, 6, 5))
stream$putl(po, show(1, 3, 3))
stream$putl(po, show(2, 1, 1))
stream$putl(po, show(2, 2, 1))
stream$putl(po, show(3, 1, 1))
end start_up
- Output:
sudan(0,x,y): 0 1 2 3 4 5 6 0: 0 1 2 3 4 5 6 1: 1 2 3 4 5 6 7 2: 2 3 4 5 6 7 8 3: 3 4 5 6 7 8 9 4: 4 5 6 7 8 9 10 5: 5 6 7 8 9 10 11 sudan(1,x,y): 0 1 2 3 4 5 6 0: 0 1 2 3 4 5 6 1: 1 3 5 7 9 11 13 2: 4 8 12 16 20 24 28 3: 11 19 27 35 43 51 59 4: 26 42 58 74 90 106 122 5: 57 89 121 153 185 217 249 sudan(1, 3, 3) = 35 sudan(2, 1, 1) = 8 sudan(2, 2, 1) = 27 sudan(3, 1, 1) = 10228
Dart
int F(int n, int x, int y) {
if (n == 0) {
return x + y;
} else if (y == 0) {
return x;
}
return F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y);
}
void main() {
print('F(1,3,3) = ${F(1, 3, 3)}');
}
- Output:
Same as C++ entry.
Delphi
function SudanFunction(N,X,Y: integer): integer;
begin
if n = 0 then Result:=X + Y
else if y = 0 then Result:=X
else Result:=SudanFunction(N - 1, SudanFunction(N, X, Y - 1), SudanFunction(N, X, Y - 1) + Y);
end;
procedure ShowSudanFunction(Memo: TMemo; N,X,Y: integer);
begin
Memo.Lines.Add(Format('Sudan(%d,%d,%d)=%d',[n,x,y,SudanFunction(N,X,Y)]));
end;
procedure ShowSudanFunctions(Memo: TMemo);
var N,X,Y: integer;
var S: string;
begin
for N:=0 to 1 do
begin
Memo.Lines.Add(Format('Sudan(%d,X,Y)',[N]));
Memo.Lines.Add('Y/X 0 1 2 3 4 5');
Memo.Lines.Add('----------------------------');
for Y:=0 to 6 do
begin
S:=Format('%2d | ',[Y]);
for X:=0 to 5 do
begin
S:=S+Format('%3d ',[SudanFunction(N,X,Y)]);
end;
Memo.Lines.Add(S);
end;
Memo.Lines.Add('');
end;
ShowSudanFunction(Memo, 1, 3, 3);
ShowSudanFunction(Memo, 2, 1, 1);
ShowSudanFunction(Memo, 2, 2, 1);
ShowSudanFunction(Memo, 3, 1, 1);
end;
- Output:
Sudan(0,X,Y) Y/X 0 1 2 3 4 5 ---------------------------- 0 | 0 1 2 3 4 5 1 | 1 2 3 4 5 6 2 | 2 3 4 5 6 7 3 | 3 4 5 6 7 8 4 | 4 5 6 7 8 9 5 | 5 6 7 8 9 10 6 | 6 7 8 9 10 11 Sudan(1,X,Y) Y/X 0 1 2 3 4 5 ---------------------------- 0 | 0 1 2 3 4 5 1 | 1 3 5 7 9 11 2 | 4 8 12 16 20 24 3 | 11 19 27 35 43 51 4 | 26 42 58 74 90 106 5 | 57 89 121 153 185 217 6 | 120 184 248 312 376 440 Sudan(1,3,3)=35 Sudan(2,1,1)=8 Sudan(2,2,1)=27 Sudan(3,1,1)=10228 Elapsed Time: 47.644 ms.
Draco
proc sudan(word n, x, y) word:
word k;
if n=0 then
x + y
elif y=0 then
x
else
k := sudan(n, x, y-1);
sudan(n-1, k, k+y)
fi
corp
proc table(word n, xs, ys) void:
word x, y;
writeln("sudan(",n,",x,y):");
write(" ");
for x from 0 upto xs do write(x:5) od;
for y from 0 upto ys do
writeln();
write(y:4, ":");
for x from 0 upto xs do write(sudan(n,x,y):5) od;
od;
writeln();
writeln()
corp
proc show(word n, x, y) void:
writeln("sudan(", n:1, ",", x:3, ",", y:3, ") = ", sudan(n,x,y):5)
corp
proc main() void:
table(0, 6, 5);
table(1, 6, 5);
show(1, 3, 3);
show(2, 1, 1);
show(2, 2, 1);
show(3, 1, 1)
corp
- Output:
sudan(0,x,y): 0 1 2 3 4 5 6 0: 0 1 2 3 4 5 6 1: 1 2 3 4 5 6 7 2: 2 3 4 5 6 7 8 3: 3 4 5 6 7 8 9 4: 4 5 6 7 8 9 10 5: 5 6 7 8 9 10 11 sudan(1,x,y): 0 1 2 3 4 5 6 0: 0 1 2 3 4 5 6 1: 1 3 5 7 9 11 13 2: 4 8 12 16 20 24 28 3: 11 19 27 35 43 51 59 4: 26 42 58 74 90 106 122 5: 57 89 121 153 185 217 249 sudan(1, 3, 3) = 35 sudan(2, 1, 1) = 8 sudan(2, 2, 1) = 27 sudan(3, 1, 1) = 10228
EasyLang
func f n x y .
if n = 0
return x + y
.
if y = 0
return x
.
return f (n - 1) f n x (y - 1) (f n x (y - 1) + y)
.
print "F(1,3,3) = " & f 1 3 3
- Output:
F(1,3,3) = 35
F#
let rec sudan = function
0L, x, y -> x + y
|_, x, 0L -> x
|n, x, y -> let x' = sudan (n, x, y-1L) in sudan (n-1L, x', x' + y)
printfn "%d\n%d\n%d" (sudan(1L, 13L, 14L)) (sudan(2L, 5L, 1L)) (sudan(2L, 2L, 2L))
- Output:
245744 440 15569256417
Factor
USING: combinators kernel math prettyprint ;
: sudan ( n x y -- z )
{
{ [ pick zero? ] [ nipd + ] }
{ [ dup zero? ] [ drop nip ] }
[
[ 2drop 1 - ]
[ 1 - sudan dup ]
[ 2nip + sudan ] 3tri
]
} cond ;
3 1 1 sudan .
- Output:
10228
Or with locals:
USING: combinators kernel locals math prettyprint ;
:: sudan ( n x y -- z )
{
{ [ n zero? ] [ x y + ] }
{ [ y zero? ] [ x ] }
[ n 1 - n x y 1 - sudan dup y + sudan ]
} cond ;
FreeBASIC
Function F(n As Integer, x As Integer, y As Integer) As Integer
If n = 0 Then Return x + y
If y = 0 Then Return x
Return F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y)
End Function
Dim As Integer n, x, y
For n = 0 To 1
Print " Values of F(" & n & ", x, y):"
Print " y/x 0 1 2 3 4 5"
Print String(29, "-")
For y = 0 To 6
Print y; " |";
For x = 0 To 5
Print Using "####"; F(n,x,y);
Next x
Print
Next y
Print
Next n
Print "F(2,1,1) ="; F(2,1,1)
Print "F(3,1,1) ="; F(3,1,1)
Print "F(2,2,1) ="; F(2,2,1)
Sleep
- Output:
Same as Wren entry.
FutureBasic
int local fn F( n as int, x as int, y as int )
if ( n == 0 ) then return x + y
if ( y == 0 ) then return x
end fn = fn F( n-1, fn F( n, x, y-1 ), fn F( n, x, y-1 ) + y )
printf @"F(1,3,3) = %d",fn F(1,3,3)
HandleEvents
- Output:
F(1,3,3) = 35
Go
package main
import "fmt"
func F(n, x, y int) int {
if n == 0 {
return x + y
}
if y == 0 {
return x
}
return F(n-1, F(n, x, y-1), F(n, x, y-1)+y)
}
func main() {
for n := 0; n < 2; n++ {
fmt.Printf("Values of F(%d, x, y):\n", n)
fmt.Println("y/x 0 1 2 3 4 5")
fmt.Println("----------------------------")
for y := 0; y < 7; y++ {
fmt.Printf("%d |", y)
for x := 0; x < 6; x++ {
fmt.Printf("%4d", F(n, x, y))
}
fmt.Println()
}
fmt.Println()
}
fmt.Printf("F(2, 1, 1) = %d\n", F(2, 1, 1))
fmt.Printf("F(3, 1, 1) = %d\n", F(3, 1, 1))
fmt.Printf("F(2, 2, 1) = %d\n", F(2, 2, 1))
}
- Output:
Identical to Wren example.
Haskell
import Control.Monad.Memo (Memo, memo, startEvalMemo)
import Data.List.Split (chunksOf)
import System.Environment (getArgs)
import Text.Tabular (Header(..), Properties(..), Table(..))
import Text.Tabular.AsciiArt (render)
type SudanArgs = (Int, Integer, Integer)
-- Given argument (n, x, y) calculate Fₙ(x, y). For performance reasons we do
-- the calculation in a memoization monad.
sudan :: SudanArgs -> Memo SudanArgs Integer Integer
sudan (0, x, y) = return $ x + y
sudan (_, x, 0) = return x
sudan (n, x, y) = memo sudan (n, x, y-1) >>= \x2 -> sudan (n-1, x2, x2 + y)
-- A table of Fₙ(x, y) values, where the rows are y values and the columns are
-- x values.
sudanTable :: Int -> [Integer] -> [Integer] -> String
sudanTable n xs ys = render show show show
$ Table (Group NoLine $ map Header ys)
(Group NoLine $ map Header xs)
$ chunksOf (length xs)
$ startEvalMemo
$ sequence
$ [sudan (n, x, y) | y <- ys, x <- xs]
main :: IO ()
main = do
args <- getArgs
case args of
[n, xlo, xhi, ylo, yhi] -> do
putStrLn $ "Fₙ(x, y), where the rows are y values " ++
"and the columns are x values.\n"
putStr $ sudanTable (read n)
[read xlo .. read xhi]
[read ylo .. read yhi]
_ -> error "Usage: sudan n xmin xmax ymin ymax"
- Output:
$ sudan 0 0 5 0 6 Fₙ(x, y), where the rows are y values and the columns are x values. +---++---------------+ | || 0 1 2 3 4 5 | +===++===============+ | 0 || 0 1 2 3 4 5 | | 1 || 1 2 3 4 5 6 | | 2 || 2 3 4 5 6 7 | | 3 || 3 4 5 6 7 8 | | 4 || 4 5 6 7 8 9 | | 5 || 5 6 7 8 9 10 | | 6 || 6 7 8 9 10 11 | +---++---------------+ $ sudan 1 0 5 0 6 Fₙ(x, y), where the rows are y values and the columns are x values. +---++-------------------------+ | || 0 1 2 3 4 5 | +===++=========================+ | 0 || 0 1 2 3 4 5 | | 1 || 1 3 5 7 9 11 | | 2 || 4 8 12 16 20 24 | | 3 || 11 19 27 35 43 51 | | 4 || 26 42 58 74 90 106 | | 5 || 57 89 121 153 185 217 | | 6 || 120 184 248 312 376 440 | +---++-------------------------+
Hoon
|= [n=@ x=@ y=@]
^- @
|-
?: =(n 0)
(add x y)
?: =(y 0)
x
$(n (dec n), x $(n n, x x, y (dec y)), y (add $(n n, x x, y (dec y)) y))
J
This is, of course, not particularly efficient and some results are too large for a computer to represent.
F=: {{ 'N X Y'=. y assert. N>:0
if. 0=N do. X+Y
elseif. Y=0 do. X
else. F (N-1),(F N,X,Y-1), Y+F N, X, Y-1
end.
}}"1
Examples:
F 0 0 0
0
F 1 1 1
3
F 2 1 1
8
F 3 1 1
10228
F 2 2 1
27
Java
//Aamrun, 11th July 2022
public class Main {
private static int F(int n,int x,int y) {
if (n == 0) {
return x + y;
}
else if (y == 0) {
return x;
}
return F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y);
}
public static void main(String[] args) {
System.out.println("F(1,3,3) = " + F(1,3,3));
}
}
Output
F(1,3,3) = 35
JavaScript
/**
* @param {bigint} n
* @param {bigint} x
* @param {bigint} y
* @returns {bigint}
*/
function F(n, x, y) {
if (n === 0) {
return x + y;
}
if (y === 0) {
return x;
}
return F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y);
}
jq
def sudan(n;x;y):
if n == 0 then x+y
elif y == 0 then x
else sudan(n-1; sudan(n;x;y-1); sudan(n;x;y-1) + y)
end;
# For testing and syntactic convenience:
def sudan:
"sudan(\(.[0]); \(.[1]); \(.[2])) => \(sudan(.[0]; .[1]; .[2]))";
# Illustrations
[0,0,0], [1,1,1], [2,1,1], [3,1,1], [2,2,1]
| sudan
- Output:
sudan(0; 0; 0) => 0 sudan(1; 1; 1) => 3 sudan(2; 1; 1) => 8 sudan(3; 1; 1) => 10228 sudan(2; 2; 1) => 27
Julia
using Memoize
@memoize function sudan(n, x, y)
return n == 0 ? x + y : y == 0 ? x : sudan(n - 1, sudan(n, x, y - 1), sudan(n, x, y - 1) + y)
end
foreach(t -> println("sudan($(t[1]), $(t[2]), $(t[3])) = ",
sudan(t[1], t[2], t[3])), ((0,0,0), (1,1,1), (2,1,1), (3,1,1), (2,2,1)))
- Output:
sudan(0, 0, 0) = 0 sudan(1, 1, 1) = 3 sudan(2, 1, 1) = 8 sudan(3, 1, 1) = 10228 sudan(2, 2, 1) = 27
Lua
function F (n, x, y)
if n == 0 then
return x + y
elseif y == 0 then
return x
else
return F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y)
end
end
local testCases = {
{0, 0, 0},
{1, 1, 1},
{1, 3, 3},
{2, 1, 1},
{2, 2, 1},
{3, 1, 1}
}
for _, v in pairs(testCases) do
io.write("F(" .. table.concat(v, ",") .. ") = ")
print(F(unpack(v)))
end
- Output:
F(0,0,0) = 0 F(1,1,1) = 3 F(1,3,3) = 35 F(2,1,1) = 8 F(2,2,1) = 27 F(3,1,1) = 10228
MAD
NORMAL MODE IS INTEGER
R WE HAVE TO DEFINE OUR OWN STACK FIRST
DIMENSION STACK(1000)
SET LIST TO STACK
R SUDAN FUNCTION
INTERNAL FUNCTION(N,X,Y)
ENTRY TO SUDAN.
R BASE CASES
WHENEVER N.E.0, FUNCTION RETURN X+Y
WHENEVER Y.E.0, FUNCTION RETURN X
R RECURSIVE CASE - WITH MANUAL STACK MANIPULATION
R NOTE WE DON'T NEED X AFTER THE FIRST CALL
SAVE RETURN
SAVE DATA N,Y
K = SUDAN.(N,X,Y-1)
RESTORE DATA N,Y
RESTORE RETURN
SAVE RETURN
K = SUDAN.(N-1, K, K+Y)
RESTORE RETURN
FUNCTION RETURN K
END OF FUNCTION
INTERNAL FUNCTION(N,X,Y)
ENTRY TO SHOW.
VECTOR VALUES FMT = $7HSUDAN.(,I1,1H,,I1,1H,,I1,4H) = ,I8*$
PRINT FORMAT FMT,N,X,Y,SUDAN.(N,X,Y)
END OF FUNCTION
SHOW.(1,3,3)
SHOW.(2,1,1)
SHOW.(2,2,1)
SHOW.(3,1,1)
END OF PROGRAM
- Output:
SUDAN.(1,3,3) = 35 SUDAN.(2,1,1) = 8 SUDAN.(2,2,1) = 27 SUDAN.(3,1,1) = 10228
Mathematica /Wolfram Language
ClearAll[sudan];
sudan[0, x_Integer?NonNegative, y_Integer?NonNegative] := x + y;
sudan[n_Integer?NonNegative, y_Integer?NonNegative, 0] := y;
sudan[n_Integer?NonNegative, x_Integer?NonNegative,
y_Integer?NonNegative] :=
sudan[n - 1, sudan[n, x, y - 1], sudan[n, x, y - 1] + y];
sudan @@@ {{0, 0, 0}, {1, 1, 1}, {1, 3, 3}, {2, 1, 1}, {2, 2, 1}, {3, 1, 1}}
- Output:
{0, 3, 35, 8, 27, 10228}
Modula-2
MODULE Sudan;
FROM InOut IMPORT WriteCard, WriteString, WriteLn;
PROCEDURE sudan(n, x, y: CARDINAL): CARDINAL;
VAR k: CARDINAL;
BEGIN
IF n = 0 THEN RETURN x+y
ELSIF y = 0 THEN RETURN x
ELSE
k := sudan(n, x, y-1);
RETURN sudan(n-1, k, k+y)
END
END sudan;
PROCEDURE Show(n, x, y: CARDINAL);
BEGIN
WriteString("sudan(");
WriteCard(n, 0);
WriteString(", ");
WriteCard(x, 0);
WriteString(", ");
WriteCard(y, 0);
WriteString(") = ");
WriteCard(sudan(n,x,y), 0);
WriteLn
END Show;
BEGIN
Show(0, 0, 0);
Show(1, 1, 1);
Show(2, 1, 1);
Show(3, 1, 1);
Show(2, 2, 1)
END Sudan.
- Output:
sudan(0, 0, 0) = 0 sudan(1, 1, 1) = 3 sudan(2, 1, 1) = 8 sudan(3, 1, 1) = 10228 sudan(2, 2, 1) = 27
Nim
import std/[unicode, strformat]
func sudan(n, x, y: Natural): int =
if n == 0: return x + y
if y == 0: return x
let z = sudan(n, x, y - 1)
return sudan(n - 1, z, z + y)
const Delta = ord("₀".toRunes()[0]) - ord('0')
func subscript(n: Natural): string =
for c in $n:
result.add Rune(ord(c) + Delta)
for (n, x, y) in [(0, 0, 0), (1, 1, 1), (2, 1, 1), (2, 2, 1), (2, 2, 2), (3, 1, 1)]:
echo &"F{subscript(n)}({x}, {y}) = {sudan(n, x, y)}"
- Output:
F₀(0, 0) = 0 F₁(1, 1) = 3 F₂(1, 1) = 8 F₂(2, 1) = 27 F₂(2, 2) = 15569256417 F₃(1, 1) = 10228
OCaml
let rec sudan = function
| 0, x, y -> x + y
| _, x, 0 -> x
| n, x, y -> let x' = sudan (n, x, pred y) in sudan (pred n, x', x' + y)
# sudan (1, 13, 14) ;; - : int = 245744 # sudan (2, 5, 1) ;; - : int = 440 # sudan (2, 2, 2) ;; - : int = 15569256417
REXX
/* REXX implement the SUDAN function */
Say '+---++-------------------------+'
Say '| y ||x= 0 1 2 3 4 5 |'
Say '+===++=========================+'
Do y=0 To 6
s='|' y '||'
Do x=0 To 5
s=s format(sudan(x,y),3)
End
Say s '|'
End
Say '+===++=========================+'
Exit
sudan: Procedure
Parse Arg x,y
Return sudan1(1,x,y)
sudan1: Procedure
Parse Arg n,x,y
Select
When n=0 Then Return x+y
When y=0 Then Return x
Otherwise Return sudan1(n-1,sudan1(n,x,y-1),sudan1(n,x,y-1)+y)
End
- output:
+---++-------------------------+ | y ||x= 0 1 2 3 4 5 | +===++=========================+ | 0 || 0 1 2 3 4 5 | | 1 || 1 3 5 7 9 11 | | 2 || 4 8 12 16 20 24 | | 3 || 11 19 27 35 43 51 | | 4 || 26 42 58 74 90 106 | | 5 || 57 89 121 153 185 217 | | 6 || 120 184 248 312 376 440 | +===++=========================+
Pascal
Free Pascal
program Sudan;
//trans https://rosettacode.org/wiki/Sudan_function#Delphi
{$IFDEF FPC} {$MODE DELPHI} {$OPTIMIZATION ON,ALL}{$ENDIF}
{$IFDEF WINDOWS}{$APPTYPE CONSOLE}{$ENDIF}
uses
sysutils;
function SudanFunction(N,X,Y: UInt64): UInt64;
begin
if n = 0 then
Result:=X + Y
else
if y = 0 then
Result:=X
else
Result:=SudanFunction(N - 1, SudanFunction(N, X, Y - 1), SudanFunction(N, X, Y - 1) + Y);
end;
procedure ShowSudanFunction(N,X,Y: UInt64);
begin
writeln(Format('Sudan(%d,%d,%d)=%d',[n,x,y,SudanFunction(N,X,Y)]));
end;
procedure ShowSudanFunctions;
var
N,X,Y: UInt64;
S: string;
begin
for N:=0 to 1 do
begin
writeln(Format('Sudan(%d,X,Y)',[N]));
writeln('Y/X 0 1 2 3 4 5');
writeln('----------------------------');
for Y:=0 to 6 do
begin
S:=Format('%2d | ',[Y]);
for X:=0 to 5 do
begin
S:=S+Format('%3d ',[SudanFunction(N,X,Y)]);
end;
writeln(S);
end;
writeln('');
end;
end;
BEGIN
ShowSudanFunctions;
ShowSudanFunction( 1, 3, 3);
ShowSudanFunction( 2, 1, 1);
ShowSudanFunction( 2, 2, 1);
ShowSudanFunction( 2, 1, 2);
ShowSudanFunction( 3, 1, 1);
ShowSudanFunction( 2, 2, 2);
END.
- @TIO.RUN:
Sudan(0,X,Y) Y/X 0 1 2 3 4 5 ----------------------------
0 | 0 1 2 3 4 5 1 | 1 2 3 4 5 6 2 | 2 3 4 5 6 7 3 | 3 4 5 6 7 8 4 | 4 5 6 7 8 9 5 | 5 6 7 8 9 10 6 | 6 7 8 9 10 11Sudan(1,X,Y) Y/X 0 1 2 3 4 5 ----------------------------
0 | 0 1 2 3 4 5 1 | 1 3 5 7 9 11 2 | 4 8 12 16 20 24 3 | 11 19 27 35 43 51 4 | 26 42 58 74 90 106 5 | 57 89 121 153 185 217 6 | 120 184 248 312 376 440Sudan(1,3,3)=35 Sudan(2,1,1)=8 Sudan(2,2,1)=27 Sudan(2,1,2)=10228 Sudan(3,1,1)=10228 Sudan(2,2,2)=15569256417
Real time: 3.822 s CPU share: 98.74 %
PascalABC.NET
function F(n,x,y: integer): integer;
begin
if n = 0 then
Result := x + y
else if y = 0 then
Result := x
else Result := F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y);
end;
begin
F(1,3,3).Println;
end.
- Output:
35
Perl
Three ways of doing the same thing.
use v5.36;
use experimental 'for_list';
sub F1($n, $x, $y) { $n ? $y ? F1($n-1, F2($n,$x,$y-1), F3($n,$x,$y-1)+$y) : $x : $x+$y }
sub F2($n, $x, $y) { $n == 0 ? $x+$y : $y == 0 ? $x : F2($n-1, F1($n,$x,$y-1), F3($n,$x,$y-1)+$y) }
sub F3($n, $x, $y) {
return $x + $y if $n == 0;
return $x if $y == 0;
F3($n-1, F1($n, $x, $y-1), F2($n, $x, $y-1) + $y)
}
for my($n,$x,$y) (0,0,0, 1,1,1, 2,1,1, 3,1,1, 2,2,1) {
say join ' ',F1($n,$x,$y), F2($n,$x,$y), F3($n,$x,$y)
}
- Output:
0 0 0 3 3 3 8 8 8 10228 10228 10228 27 27 27
Phix
with javascript_semantics function F(integer n, x, y) if n=0 then return x+y end if if y=0 then return x end if integer t = F(n,x,y-1) return F(n-1,t,t+y) end function for n=0 to 1 do printf(1,"Values of F(%d, x, y):\n",n) printf(1,"y/x 0 1 2 3 4 5\n") printf(1,"----------------------------\n") for y=0 to 6 do sequence r = apply(true,F,{n,tagset(5,0),y}) printf(1,"%d |%s\n",{y,join(r,"",fmt:="%4d")}) end for printf(1,"\n") end for for t in {{2,1,1},{3,1,1},{2,2,1}} do integer {n,x,y} = t printf(1,"F(%d, %d, %d) = %d\n",{n,x,y,F(n,x,y)}) end for
Output same as Wren.
PHP
#Aamrun , 11th July 2022
<?php
function F(int $n,int $x,int $y) {
if ($n == 0) {
return $x + $y;
}
else if ($y == 0) {
return $x;
}
return F($n - 1, F($n, $x, $y - 1), F($n, $x, $y - 1) + $y);
}
echo "F(1,3,3) = " . F(1,3,3);
?>
Output
F(1,3,3) = 35
Python
# Aamrun, 11th July 2022
def F(n,x,y):
if n==0:
return x + y
elif y==0:
return x
else:
return F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y)
print("F(1,3,3) = ", F(1,3,3))
Output
F(1,3,3) = 35
Quackery
[ rot dup 0 = iff
[ drop + ] done
over 0 = iff
2drop done
over temp put
dup 1 -
swap 2swap 1 -
recurse
dup temp take +
again ] is sudan ( n x y --> f(n) )
' [ [ 0 0 0 ]
[ 1 1 1 ]
[ 1 3 3 ]
[ 2 1 1 ]
[ 2 2 1 ]
[ 3 1 1 ] ]
witheach
[ dup echo say " = "
do sudan echo cr ]
- Output:
[ 0 0 0 ] = 0 [ 1 1 1 ] = 3 [ 1 3 3 ] = 35 [ 2 1 1 ] = 8 [ 2 2 1 ] = 27 [ 3 1 1 ] = 10228
R
#Aamrun, 11th July 2022
F <- function(n, x, y) {
if(n==0){
F <- x+y
return (F)
}
else if(y == 0) {
F <- x
return (F)
}
F <- F(n - 1, F(n, x, y - 1), F(n, x, y - 1) + y)
return (F)
}
print(paste("F(1,3,3) = " , F(1,3,3)))
Output
[1] "F(1,3,3) = 35"
Raku
Outputting wiki-tables to more closely emulate the wikipedia examples. Not very efficient but good enough.
multi F (0, $x, $y) { $x + $y }
multi F ($n where * > 0, $x, 0) { $x }
multi F ($n, $x, $y) { F($n-1, F($n, $x, $y-1), F($n, $x, $y-1) + $y) }
# Testing
for 0, 6, 1, 15 -> $f, $g {
my @range = ^$g;
say "\{|class=\"wikitable\"\n", "|+ F\<sub>$f\</sub> (x,y)\n" ~ '!x\y!!', join '!!', @range;
-> $r { say "|-\n" ~ '|' ~ join '||', $r, @range.map:{ F($f, $r, $_) } } for @range;
say( "|}" );
}
- Output:
x\y | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 2 | 3 | 4 | 5 | 6 |
2 | 2 | 3 | 4 | 5 | 6 | 7 |
3 | 3 | 4 | 5 | 6 | 7 | 8 |
4 | 4 | 5 | 6 | 7 | 8 | 9 |
5 | 5 | 6 | 7 | 8 | 9 | 10 |
x\y | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 4 | 11 | 26 | 57 | 120 | 247 | 502 | 1013 | 2036 | 4083 | 8178 | 16369 | 32752 |
1 | 1 | 3 | 8 | 19 | 42 | 89 | 184 | 375 | 758 | 1525 | 3060 | 6131 | 12274 | 24561 | 49136 |
2 | 2 | 5 | 12 | 27 | 58 | 121 | 248 | 503 | 1014 | 2037 | 4084 | 8179 | 16370 | 32753 | 65520 |
3 | 3 | 7 | 16 | 35 | 74 | 153 | 312 | 631 | 1270 | 2549 | 5108 | 10227 | 20466 | 40945 | 81904 |
4 | 4 | 9 | 20 | 43 | 90 | 185 | 376 | 759 | 1526 | 3061 | 6132 | 12275 | 24562 | 49137 | 98288 |
5 | 5 | 11 | 24 | 51 | 106 | 217 | 440 | 887 | 1782 | 3573 | 7156 | 14323 | 28658 | 57329 | 114672 |
6 | 6 | 13 | 28 | 59 | 122 | 249 | 504 | 1015 | 2038 | 4085 | 8180 | 16371 | 32754 | 65521 | 131056 |
7 | 7 | 15 | 32 | 67 | 138 | 281 | 568 | 1143 | 2294 | 4597 | 9204 | 18419 | 36850 | 73713 | 147440 |
8 | 8 | 17 | 36 | 75 | 154 | 313 | 632 | 1271 | 2550 | 5109 | 10228 | 20467 | 40946 | 81905 | 163824 |
9 | 9 | 19 | 40 | 83 | 170 | 345 | 696 | 1399 | 2806 | 5621 | 11252 | 22515 | 45042 | 90097 | 180208 |
10 | 10 | 21 | 44 | 91 | 186 | 377 | 760 | 1527 | 3062 | 6133 | 12276 | 24563 | 49138 | 98289 | 196592 |
11 | 11 | 23 | 48 | 99 | 202 | 409 | 824 | 1655 | 3318 | 6645 | 13300 | 26611 | 53234 | 106481 | 212976 |
12 | 12 | 25 | 52 | 107 | 218 | 441 | 888 | 1783 | 3574 | 7157 | 14324 | 28659 | 57330 | 114673 | 229360 |
13 | 13 | 27 | 56 | 115 | 234 | 473 | 952 | 1911 | 3830 | 7669 | 15348 | 30707 | 61426 | 122865 | 245744 |
14 | 14 | 29 | 60 | 123 | 250 | 505 | 1016 | 2039 | 4086 | 8181 | 16372 | 32755 | 65522 | 131057 | 262128 |
RPL
« IF DUP2 2 GET AND THEN DUP 2 GET 3 PICK ROT { 0 1 } - SUDAN SWAP OVER + 2 →LIST SWAP 1 - SWAP SUDAN ELSE ∑LIST SWAP DROP END » 'SUDAN' STO @ ( n { x y } ) → Fn(x,y) )
{ { 0 { 0 0 } } { 1 { 1 1 } } { 1 { 3 3 } } { 2 { 1 1 } } { 2 { 2 1 } } { 3 { 1 1 } } } 1 « EVAL SUDAN » DOLIST
- Output:
1: { 0 3 35 8 27 10228 }
Ruby
def sudan(n, x, y)
return x + y if n == 0
return x if y == 0
sudan(n - 1, sudan(n, x, y - 1), sudan(n, x, y - 1) + y)
end
Output
puts sudan(1, 3, 3) > 35
Swift
I have started working on Swift and am going to practice on RosettaCode. On converting my C implementation for this task to Swift which I contributed last year, I found Swift allows statement ending semicolons and enclosing parantheses in if/else statements which are mandatory in C. I didn't find that anywhere while learning Swift so I am posting both implementations here, the "C like" and the "Pure" Swift.
Both have been tested with Xcode 14.2 (14C18)
C like
//Aamrun, 3rd February 2023
func F(n: Int,x: Int,y: Int) -> Int {
if (n == 0) {
return x + y;
}
else if (y == 0) {
return x;
}
return F(n: n - 1, x: F(n: n, x: x, y: y - 1), y: F(n: n, x: x, y: y - 1) + y);
}
print("F1(3,3) = " + String(F(n: 1,x: 3,y: 3)));
Pure Swift
//Aamrun, 3rd February 2023
func F(n: Int,x: Int,y: Int) -> Int {
if n == 0 {
return x + y
}
else if y == 0 {
return x
}
return F(n: n - 1, x: F(n: n, x: x, y: y - 1), y: F(n: n, x: x, y: y - 1) + y)
}
print("F1(3,3) = " + String(F(n: 1,x: 3,y: 3)))
Output is the same for both
- Output:
F1(3,3) = 35
V (Vlang)
fn sudan(n int, x int, y int) int {
if n == 0 {
return x + y
}
if y == 0 {
return x
}
return sudan(n-1, sudan(n, x, y-1), sudan(n, x, y-1) + y)
}
fn main() {
for n := 0; n < 2; n++ {
println("Values of F($n, x, y):")
println("y/x 0 1 2 3 4 5")
println("----------------------------")
for y := 0; y < 7; y++ {
print("$y |")
for x := 0; x < 6; x++ {
s := sudan(n, x, y)
print("${s:4}")
}
println('')
}
println('')
}
println("F(2, 1, 1) = ${sudan(2, 1, 1)}")
println("F(3, 1, 1) = ${sudan(3, 1, 1)}")
println("F(2, 2, 1) = ${sudan(2, 2, 1)}")
}
- Output:
Identical to Wren example.
Wren
import "./fmt" for Fmt
var F = Fn.new { |n, x, y|
if (n == 0) return x + y
if (y == 0) return x
return F.call(n - 1, F.call(n, x, y-1), F.call(n, x, y-1) + y)
}
for (n in 0..1) {
System.print("Values of F(%(n), x, y):")
System.print("y/x 0 1 2 3 4 5")
System.print("----------------------------")
for (y in 0..6) {
System.write("%(y) |")
for (x in 0..5) {
var sudan = F.call(n, x, y)
Fmt.write("$4d", sudan)
}
System.print()
}
System.print()
}
System.print("F(2, 1, 1) = %(F.call(2, 1, 1))")
System.print("F(3, 1, 1) = %(F.call(3, 1, 1))")
System.print("F(2, 2, 1) = %(F.call(2, 2, 1))")
- Output:
Values of F(0, x, y): y/x 0 1 2 3 4 5 ---------------------------- 0 | 0 1 2 3 4 5 1 | 1 2 3 4 5 6 2 | 2 3 4 5 6 7 3 | 3 4 5 6 7 8 4 | 4 5 6 7 8 9 5 | 5 6 7 8 9 10 6 | 6 7 8 9 10 11 Values of F(1, x, y): y/x 0 1 2 3 4 5 ---------------------------- 0 | 0 1 2 3 4 5 1 | 1 3 5 7 9 11 2 | 4 8 12 16 20 24 3 | 11 19 27 35 43 51 4 | 26 42 58 74 90 106 5 | 57 89 121 153 185 217 6 | 120 184 248 312 376 440 F(2, 1, 1) = 8 F(3, 1, 1) = 10228 F(2, 2, 1) = 27
XPL0
func F; int N, X, Y;
[if N = 0 then return X + Y;
if Y = 0 then return X;
return F(N-1, F(N, X, Y-1), F(N, X, Y-1) + Y);
];
int N, X, Y;
[Format(4, 0);
for N:= 0 to 1 do
[Text(0, "Values of F("); IntOut(0, N); Text(0, ", X, Y):^m^j");
Text(0, "Y/X 0 1 2 3 4 5^m^j");
Text(0, "----------------------------^m^j");
for Y:= 0 to 6 do
[IntOut(0, Y); Text(0, " |");
for X:= 0 to 5 do
RlOut(0, float(F(N, X, Y)));
CrLf(0);
];
CrLf(0);
];
Text(0, "F(2, 1, 1) = "); IntOut(0, F(2, 1, 1)); CrLf(0);
Text(0, "F(3, 1, 1) = "); IntOut(0, F(3, 1, 1)); CrLf(0);
Text(0, "F(2, 2, 1) = "); IntOut(0, F(2, 2, 1)); CrLf(0);
]
- Output:
Values of F(0, X, Y): Y/X 0 1 2 3 4 5 ---------------------------- 0 | 0 1 2 3 4 5 1 | 1 2 3 4 5 6 2 | 2 3 4 5 6 7 3 | 3 4 5 6 7 8 4 | 4 5 6 7 8 9 5 | 5 6 7 8 9 10 6 | 6 7 8 9 10 11 Values of F(1, X, Y): Y/X 0 1 2 3 4 5 ---------------------------- 0 | 0 1 2 3 4 5 1 | 1 3 5 7 9 11 2 | 4 8 12 16 20 24 3 | 11 19 27 35 43 51 4 | 26 42 58 74 90 106 5 | 57 89 121 153 185 217 6 | 120 184 248 312 376 440 F(2, 1, 1) = 8 F(3, 1, 1) = 10228 F(2, 2, 1) = 27
- Programming Tasks
- Recursion
- Memoization
- Classic CS problems and programs
- 8080 Assembly
- Ada
- ALGOL 68
- APL
- Arturo
- Asymptote
- AWK
- BASIC
- BASIC256
- Chipmunk Basic
- Gambas
- OxygenBasic
- PureBasic
- QBasic
- Run BASIC
- True BASIC
- XBasic
- Yabasic
- BCPL
- BQN
- C
- C++
- C sharp
- CLU
- Dart
- Delphi
- SysUtils,StdCtrls
- Draco
- EasyLang
- F Sharp
- Factor
- FreeBASIC
- FutureBasic
- Go
- Haskell
- Hoon
- J
- Java
- JavaScript
- Jq
- Julia
- Lua
- MAD
- Mathematica
- Wolfram Language
- Modula-2
- Nim
- OCaml
- REXX
- Pascal
- Free Pascal
- PascalABC.NET
- Perl
- Phix
- PHP
- Python
- Quackery
- R
- Raku
- RPL
- Ruby
- Swift
- V (Vlang)
- Wren
- Wren-fmt
- XPL0