Rare numbers

From Rosetta Code
Task
Rare numbers
You are encouraged to solve this task according to the task description, using any language you may know.
Definitions and restrictions

Rare   numbers are positive integers   n   where:

  •   n   is expressed in base ten
  •   r   is the reverse of   n     (decimal digits)
  •   n   must be non-palindromic   (nr)
  •   (n+r)   is the   sum
  •   (n-r)   is the   difference   and must be positive
  •   the   sum   and the   difference   must be perfect squares


Task
  •   find and show the first   5   rare   numbers
  •   find and show the first   8   rare   numbers       (optional)
  •   find and show more   rare   numbers                (stretch goal)


Show all output here, on this page.


References



ALGOL 68

Translation of: FreeBASIC

which is

Translation of: Phix

(naive version)

PROC revn = ( LONG INT na, nda )LONG INT:
BEGIN
    LONG INT n := na, nd := nda, r := 0, i := 0;
    WHILE i +:= 1;
          i <= nd
    DO
        r *:= 10 +:= ( n MOD 10 );
        n OVERAB 10
    OD;
    r
END # revn # ;

LONG INT nd := 2, count := 0, lim := 90, n := 20;

DO
    n +:= 1;
    LONG INT r = revn( n, nd );
    IF  r < n THEN
        LONG INT s = n + r, d = n - r;
        IF  IF   ODD nd
            THEN d MOD 1089 = 0
            ELSE s MOD  121 = 0
            FI
        THEN
            IF  LONG REAL root s = long sqrt( s );
                root s = ENTIER root s
            THEN
                IF  LONG REAL root d = long sqrt( d );
                    root d = ENTIER root d
                THEN
                    count +:= 1;
                    print( (  whole( count, 0 ), ": ", whole( n, 0 ), newline ) );
                    IF count >= 5 THEN stop FI
                FI
            FI
        FI;
        IF  n = lim
        THEN
            lim *:= 10;
            nd  +:=  1;
            n    := ( lim OVER 9 ) * 2 
        FI
    FI
OD
Output:
1: 65
2: 621770
3: 281089082
4: 2022652202
5: 2042832002

C#

Traditional

Translation of: Go

Converted to unsigned longs in order to reach 19 digits.

using System;
using System.Collections.Generic;
using System.Linq;
using static System.Console;
using UI = System.UInt64;
using LST = System.Collections.Generic.List<System.Collections.Generic.List<sbyte>>;
using Lst = System.Collections.Generic.List<sbyte>;
using DT = System.DateTime;

class Program {

    const sbyte MxD = 19;

    public struct term { public UI coeff; public sbyte a, b;
        public term(UI c, int a_, int b_) { coeff = c; a = (sbyte)a_; b = (sbyte)b_; } }

    static int[] digs;   static List<UI> res;   static sbyte count = 0;
    static DT st; static List<List<term>> tLst; static List<LST> lists;
    static Dictionary<int, LST> fml, dmd; static Lst dl, zl, el, ol, il;
    static bool odd; static int nd, nd2; static LST ixs;
    static int[] cnd, di; static LST dis; static UI Dif;

    // converts digs array to the "difference"
    static UI ToDif() { UI r = 0; for (int i = 0; i < digs.Length; i++)
            r = r * 10 + (uint)digs[i]; return r; }
    
    // converts digs array to the "sum"
    static UI ToSum() { UI r = 0; for (int i = digs.Length - 1; i >= 0; i--)
            r = r * 10 + (uint)digs[i]; return Dif + (r << 1); }

    // determines if the nmbr is square or not
    static bool IsSquare(UI nmbr) { if ((0x202021202030213 & (1 << (int)(nmbr & 63))) != 0)
        { UI r = (UI)Math.Sqrt((double)nmbr); return r * r == nmbr; } return false; }

    // returns sequence of sbytes
    static Lst Seq(sbyte from, int to, sbyte stp = 1) { Lst res = new Lst();
        for (sbyte item = from; item <= to; item += stp) res.Add(item); return res; }

    // Recursive closure to generate (n+r) candidates from (n-r) candidates
    static void Fnpr(int lev) { if (lev == dis.Count) { digs[ixs[0][0]] = fml[cnd[0]][di[0]][0];
            digs[ixs[0][1]] = fml[cnd[0]][di[0]][1]; int le = di.Length, i = 1;
            if (odd) digs[nd >> 1] = di[--le]; foreach (sbyte d in di.Skip(1).Take(le - 1)) {
                digs[ixs[i][0]] = dmd[cnd[i]][d][0]; digs[ixs[i][1]] = dmd[cnd[i++]][d][1]; }
            if (!IsSquare(ToSum())) return; res.Add(ToDif()); WriteLine("{0,16:n0}{1,4}   ({2:n0})",
                (DT.Now - st).TotalMilliseconds, ++count, res.Last()); }
        else foreach (var n in dis[lev]) { di[lev] = n; Fnpr(lev + 1); } }

    // Recursive closure to generate (n-r) candidates with a given number of digits.
    static void Fnmr (LST list, int lev) { if (lev == list.Count) { Dif = 0; sbyte i = 0;
            foreach (var t in tLst[nd2]) { if (cnd[i] < 0) Dif -= t.coeff * (UI)(-cnd[i++]);
                else Dif += t.coeff * (UI)cnd[i++]; } if (Dif <= 0 || !IsSquare(Dif)) return;
            dis = new LST { Seq(0, fml[cnd[0]].Count - 1) };
            foreach (int ii in cnd.Skip(1)) dis.Add(Seq(0, dmd[ii].Count - 1));
            if (odd) dis.Add(il); di = new int[dis.Count]; Fnpr(0);
        } else foreach(sbyte n in list[lev]) { cnd[lev] = n; Fnmr(list, lev + 1); } }

    static void init() { UI pow = 1;
        // terms of (n-r) expression for number of digits from 2 to maxDigits
        tLst = new List<List<term>>(); foreach (int r in Seq(2, MxD)) {
            List<term> terms = new List<term>(); pow *= 10; UI p1 = pow, p2 = 1;
            for (int i1 = 0, i2 = r - 1; i1 < i2; i1++, i2--) {
                terms.Add(new term(p1 - p2, i1, i2)); p1 /= 10; p2 *= 10; }
            tLst.Add(terms); }
        //  map of first minus last digits for 'n' to pairs giving this value
        fml = new Dictionary<int, LST> {
            [0] = new LST { new Lst { 2, 2 }, new Lst { 8, 8 } },
            [1] = new LST { new Lst { 6, 5 }, new Lst { 8, 7 } },
            [4] = new LST { new Lst { 4, 0 } },
            [6] = new LST { new Lst { 6, 0 }, new Lst { 8, 2 } } };
        // map of other digit differences for 'n' to pairs giving this value
        dmd = new Dictionary<int, LST>();
        for (sbyte i = 0; i < 10; i++) for (sbyte j = 0, d = i; j < 10; j++, d--) {
                if (dmd.ContainsKey(d)) dmd[d].Add(new Lst { i, j });
                else dmd[d] = new LST { new Lst { i, j } }; }
        dl = Seq(-9, 9);    // all differences
        zl = Seq( 0, 0);    // zero differences only
        el = Seq(-8, 8, 2); // even differences only
        ol = Seq(-9, 9, 2); // odd differences only
        il = Seq( 0, 9); lists = new List<LST>();
        foreach (sbyte f in fml.Keys) lists.Add(new LST { new Lst { f } }); }

    static void Main(string[] args) { init(); res = new List<UI>(); st = DT.Now; count = 0;
        WriteLine("{0,5}{1,12}{2,4}{3,14}", "digs", "elapsed(ms)", "R/N", "Unordered Rare Numbers");
        for (nd = 2, nd2 = 0, odd = false; nd <= MxD; nd++, nd2++, odd = !odd) { digs = new int[nd];
            if (nd == 4) { lists[0].Add(zl); lists[1].Add(ol); lists[2].Add(el); lists[3].Add(ol); }
            else if (tLst[nd2].Count > lists[0].Count) foreach (LST list in lists) list.Add(dl);
            ixs = new LST(); 
            foreach (term t in tLst[nd2]) ixs.Add(new Lst { t.a, t.b });
            foreach (LST list in lists) { cnd = new int[list.Count]; Fnmr(list, 0); }
            WriteLine("  {0,2}  {1,10:n0}", nd, (DT.Now - st).TotalMilliseconds); }
        res.Sort();
        WriteLine("\nThe {0} rare numbers with up to {1} digits are:", res.Count, MxD);
        count = 0; foreach (var rare in res) WriteLine("{0,2}:{1,27:n0}", ++count, rare);
        if (System.Diagnostics.Debugger.IsAttached) ReadKey(); }
}
Output:

Results from a core i7-7700 @ 3.6Ghz. This C# version isn't as fast as the Go version using the same hardware. C# computes up to 17, 18 and 19 digits in under 9 minutes, 1 2/3 hours and over 2 1/2 hours respectively. (Go is about 6 minutes, 1 1/4 hours, and under 2 hours).

The long-to-ulong conversion isn't causing the reduced performance, C# has more overhead as compared to Go. This C# version can easily be converted to use BigIntegers to go beyond 19 digits, but becomes around eight times slower. (ugh!)

 digs elapsed(ms) R/N  Rare Numbers
              27   1   (65)
   2          28
   3          28
   4          29
   5          29
              29   2   (621,770)
   6          29
   7          30
   8          34
              34   3   (281,089,082)
   9          36
              36   4   (2,022,652,202)
              61   5   (2,042,832,002)
  10         121
  11         176
             448   6   (872,546,974,178)
             481   7   (872,568,754,178)
             935   8   (868,591,084,757)
  12       1,232
           1,577   9   (6,979,302,951,885)
  13       2,087
           6,274  10   (20,313,693,904,202)
           6,351  11   (20,313,839,704,202)
           8,039  12   (20,331,657,922,202)
           8,292  13   (20,331,875,722,202)
           9,000  14   (20,333,875,702,202)
          21,212  15   (40,313,893,704,200)
          21,365  16   (40,351,893,720,200)
  14      23,898
          23,964  17   (200,142,385,731,002)
          24,198  18   (221,462,345,754,122)
          27,241  19   (816,984,566,129,618)
          28,834  20   (245,518,996,076,442)
          29,074  21   (204,238,494,066,002)
          29,147  22   (248,359,494,187,442)
          29,476  23   (244,062,891,224,042)
          35,481  24   (403,058,392,434,500)
          35,721  25   (441,054,594,034,340)
  15      38,231
          92,116  26   (2,133,786,945,766,212)
         113,469  27   (2,135,568,943,984,212)
         116,787  28   (8,191,154,686,620,818)
         119,647  29   (8,191,156,864,620,818)
         120,912  30   (2,135,764,587,964,212)
         122,735  31   (2,135,786,765,764,212)
         127,126  32   (8,191,376,864,400,818)
         141,793  33   (2,078,311,262,161,202)
         179,832  34   (8,052,956,026,592,517)
         184,647  35   (8,052,956,206,592,517)
         221,279  36   (8,650,327,689,541,457)
         223,721  37   (8,650,349,867,341,457)
         225,520  38   (6,157,577,986,646,405)
         273,238  39   (4,135,786,945,764,210)
         312,969  40   (6,889,765,708,183,410)
  16     316,349
         322,961  41   (86,965,750,494,756,968)
         323,958  42   (22,542,040,692,914,522)
         502,805  43   (67,725,910,561,765,640)
  17     519,583
         576,058  44   (284,684,666,566,486,482)
         707,530  45   (225,342,456,863,243,522)
         756,188  46   (225,342,458,663,243,522)
         856,346  47   (225,342,478,643,243,522)
         928,546  48   (284,684,868,364,486,482)
       1,311,170  49   (871,975,098,681,469,178)
       2,031,664  50   (865,721,270,017,296,468)
       2,048,209  51   (297,128,548,234,950,692)
       2,057,281  52   (297,128,722,852,950,692)
       2,164,878  53   (811,865,096,390,477,018)
       2,217,508  54   (297,148,324,656,930,692)
       2,242,999  55   (297,148,546,434,930,692)
       2,576,805  56   (898,907,259,301,737,498)
       3,169,675  57   (631,688,638,047,992,345)
       3,200,223  58   (619,431,353,040,136,925)
       3,482,517  59   (619,631,153,042,134,925)
       3,550,566  60   (633,288,858,025,996,145)
       3,623,653  61   (633,488,632,647,994,145)
       4,605,503  62   (653,488,856,225,994,125)
       5,198,241  63   (497,168,548,234,910,690)
  18   6,028,721
       6,130,826  64   (2,551,755,006,254,571,552)
       6,152,283  65   (2,702,373,360,882,732,072)
       6,424,945  66   (2,825,378,427,312,735,282)
       6,447,566  67   (8,066,308,349,502,036,608)
       6,677,925  68   (2,042,401,829,204,402,402)
       6,725,119  69   (2,420,424,089,100,600,242)
       6,843,016  70   (8,320,411,466,598,809,138)
       7,161,527  71   (8,197,906,905,009,010,818)
       7,198,112  72   (2,060,303,819,041,450,202)
       7,450,028  73   (8,200,756,128,308,135,597)
       7,881,502  74   (6,531,727,101,458,000,045)
       9,234,318  75   (6,988,066,446,726,832,640)
  19   9,394,513

The 75 rare numbers with up to 19 digits are:
 1:                         65
 2:                    621,770
 3:                281,089,082
 4:              2,022,652,202
 5:              2,042,832,002
 6:            868,591,084,757
 7:            872,546,974,178
 8:            872,568,754,178
 9:          6,979,302,951,885
10:         20,313,693,904,202
11:         20,313,839,704,202
12:         20,331,657,922,202
13:         20,331,875,722,202
14:         20,333,875,702,202
15:         40,313,893,704,200
16:         40,351,893,720,200
17:        200,142,385,731,002
18:        204,238,494,066,002
19:        221,462,345,754,122
20:        244,062,891,224,042
21:        245,518,996,076,442
22:        248,359,494,187,442
23:        403,058,392,434,500
24:        441,054,594,034,340
25:        816,984,566,129,618
26:      2,078,311,262,161,202
27:      2,133,786,945,766,212
28:      2,135,568,943,984,212
29:      2,135,764,587,964,212
30:      2,135,786,765,764,212
31:      4,135,786,945,764,210
32:      6,157,577,986,646,405
33:      6,889,765,708,183,410
34:      8,052,956,026,592,517
35:      8,052,956,206,592,517
36:      8,191,154,686,620,818
37:      8,191,156,864,620,818
38:      8,191,376,864,400,818
39:      8,650,327,689,541,457
40:      8,650,349,867,341,457
41:     22,542,040,692,914,522
42:     67,725,910,561,765,640
43:     86,965,750,494,756,968
44:    225,342,456,863,243,522
45:    225,342,458,663,243,522
46:    225,342,478,643,243,522
47:    284,684,666,566,486,482
48:    284,684,868,364,486,482
49:    297,128,548,234,950,692
50:    297,128,722,852,950,692
51:    297,148,324,656,930,692
52:    297,148,546,434,930,692
53:    497,168,548,234,910,690
54:    619,431,353,040,136,925
55:    619,631,153,042,134,925
56:    631,688,638,047,992,345
57:    633,288,858,025,996,145
58:    633,488,632,647,994,145
59:    653,488,856,225,994,125
60:    811,865,096,390,477,018
61:    865,721,270,017,296,468
62:    871,975,098,681,469,178
63:    898,907,259,301,737,498
64:  2,042,401,829,204,402,402
65:  2,060,303,819,041,450,202
66:  2,420,424,089,100,600,242
67:  2,551,755,006,254,571,552
68:  2,702,373,360,882,732,072
69:  2,825,378,427,312,735,282
70:  6,531,727,101,458,000,045
71:  6,988,066,446,726,832,640
72:  8,066,308,349,502,036,608
73:  8,197,906,905,009,010,818
74:  8,200,756,128,308,135,597
75:  8,320,411,466,598,809,138

Quicker

Along the lines of the C++ version. Computing the possible squares for the sums and differences, then comparing them together and reporting the ones that have a proper forward, reverse result. To save computation time, some shortcuts have been taken to avoid generating many non-square numbers.

Update, added computation of digital root, which increased performance a few percentage points. Interestingly, the digital root is always zero for the difference list of squares, so no advantage is given by tracking it. Only the sum list of squares benefits from calculating the digital root of the partial sum and using an abbreviated sequence for the last round of permutation.

using static System.Math;          // for Sqrt()
using System.Collections.Generic;  // for List<>, .Count
using System.Linq;                 // for .Last(), .ToList()
using System.Diagnostics;          // for Stopwatch()
using static System.Console;       // for Write(), WriteLine()
using llst = System.Collections.Generic.List<int[]>;
class Program
{
    #region vars
    static int[] d,     // permutation working array
        drar = new int[19], // digital root lookup array
        dac;            // running digital root array
    static long[] p = new long[20],  // powers of 10
        ac,             // accumulator array
        pp;             // long coefficient array that combines with digits of working array
    static bool odd = false;  // flag for odd number of digits
    static long sum,    // calculated sum of terms (square candidate)
        rt;             // root of sum
    static int cn = 0,  // solution counter
        nd = 2,         // number of digits
        nd1 = nd - 1,   // nd helper
        ln,             // previous value of "n" (in Recurse())
        dl;             // length of "d" array;
    static Stopwatch sw = new Stopwatch(), swt = new Stopwatch();  // for timings
    static List<long> sr = new List<long>();  // temporary list of squares used for building
    static readonly int[] tlo = new int[] { 0, 1, 4, 5, 6 },  // primary differences starting point
        all = Seq(-9, 9),     // all possible differences
        odl = Seq(-9, 9, 2),  // odd possible differences
        evl = Seq(-8, 8, 2),  // even possible differences
        thi = new int[] { 4, 5, 6, 9, 10, 11, 14, 15, 16 }, // primary sums staring point. note: (0, 1) omitted, as any square generated will not have enough digits
        alh = Seq(0, 18),     // all possible sums
        odh = Seq(1, 17, 2),  // odd possible sums
        evh = Seq(0, 18, 2),  // even possible sums
        ten = Seq(0, 9),      // used for odd number of digits
        z = Seq(0, 0),        // no difference, used to avoid generating a bunch of negative square candidates
        t7 = new int[] { -3, 7 },   // shortcut for low 5
        nin = new int[] { 9 },      // shortcut for hi 10
        tn = new int[] { 10 },      // shortcut for hi 0 (unused, uneeded)
        t12 = new int[] { 2, 12 },  // shortcut for hi 5
        o11 = new int[] { 1, 11 },  // shortcut for hi 15
        pos = new int[] { 0, 1, 4, 5, 6, 9 }; // shortcut for 2nd lo 0
    static llst lul = new llst { z, odl, null, null, evl, t7, odl },  // shortcut lookup lo primary
      luh = new llst { tn, evh, null, null, evh, t12, odh, null, null, evh, nin, odh, null, null, odh, o11, evh },  // shortcut lookup hi primary
      l2l = new llst { pos, null, null, null, all, null, all },     // shortcut lookup lo secondary
      l2h = new llst { null, null, null, null, alh, null, alh, null, null, null, alh, null, null, null, alh, null, alh }, lu, l2;  // shortcut lookup hi secondary
    static int[][] chTen = new int[][] { new int[] { 0,2,5,8,9 }, new int[] { 0,3,4,6,9 }, new int[] { 1,4,7,8 },   new int[] { 2,3,5,8 },
                new int[] { 0,3,6,7,9 }, new int[] { 1,2,4,7 },   new int[] { 2,5,6,8 },   new int[] { 0,1,3,6,9 }, new int[] { 1,4,5,7 } };
    static int[][] chAH = new int[][] {  new int[] { 0,2,5,8,9,11,14,17,18 }, new int[] { 0,3,4,6,9,12,13,15,18 },  new int[] { 1,4,7,8,10,13,16,17 },
                                         new int[] { 2,3,5,8,11,12,14,17 },   new int[] { 0,3,6,7,9,12,15,16,18 },  new int[] { 1,2,4,7,10,11,13,16 },
                                         new int[] { 2,5,6,8,11,14,15,17 },   new int[] { 0,1,3,6,9,10,12,15,18 },  new int[] { 1,4,5,7,10,13,14,16 } };
    #endregion vars
 
    // Returns a sequence of integers
    static int[] Seq(int f, int t, int s = 1) { int[] r = new int[(t - f) / s + 1]; for (int i = 0; i < r.Length; i++, f += s) r[i] = f; return r; }
 
    // Returns Integer Square Root
    static long ISR(long s) { return (long)Sqrt(s); }

    // Recursively determines whether "r" is the reverse of "f"
    static bool IsRev(int nd, long f, long r) { nd--; return f / p[nd] != r % 10 ? false : (nd < 1 ? true : IsRev(nd, f % p[nd], r / 10)); }
 
    // Recursive procedure to evaluate the permutations, no shortcuts
    static void RecurseLE5(llst lst, int lv) { if (lv == dl) {  // check if on last stage of permutation
            if ((sum = ac[lv - 1]) > 0) if ((rt = (long)Sqrt(sum)) * rt == sum) sr.Add(sum); }  // test accumulated sum, append to result if square
        else foreach (int n in lst[lv]) {       // set up next permutation
                d[lv] = n; if (lv == 0) ac[0] = pp[0] * n; else ac[lv] = ac[lv - 1] + pp[lv] * n; // update accumulated sum
                RecurseLE5(lst, lv + 1); } }    // Recursively call next level
 
    // Recursive procedure to evaluate the hi permutations, shortcuts added to avoid generating many non-squares, digital root calc added
    static void Recursehi(llst lst, int lv) {
        int lv1 = lv - 1; if (lv == dl) {  // check if on last stage of permutation
        if ((0x202021202030213 & (1 << (int)((sum = ac[lv1]) & 63))) != 0)  // test accumulated sum, append to result if square
                if ((rt = (long)Sqrt(sum)) * rt == sum) sr.Add(sum); }
        else foreach (int n in lst[lv]) {  // set up next permutation
                d[lv] = n; if (lv == 0) { ac[0] = pp[0] * n; dac[0] = drar[n]; }  // update accumulated sum and running dr
                else { ac[lv] = ac[lv1] + pp[lv] * n; dac[lv] = dac[lv1] + drar[n]; if (dac[lv] > 8) dac[lv] -= 9; }
                switch (lv) {                                            // shortcuts to be performed on designated levels
                    case 0: lst[1] = lu[ln = n]; lst[2] = l2[n]; break;  // primary level: set shortcuts for secondary level
                    case 1:                                              // secondary level: set shortcuts for tertiary level
                        switch (ln) {  // for sums
                            case 5: case 15: lst[2] = n < 10 ? evh : odh; break;
                            case 9: lst[2] = ((n >> 1) & 1) == 0 ? evh : odh; break;
                            case 11: lst[2] = ((n >> 1) & 1) == 1 ? evh : odh; break; } break; }
                if (lv == dl - 2) lst[dl - 1] = odd ? chTen[dac[dl - 2]] : chAH[dac[dl - 2]]; // reduce last round according to dr calc
                Recursehi(lst, lv + 1); } }       // Recursively call next level
 
    // Recursive procedure to evaluate the lo permutations, shortcuts added to avoid generating many non-squares
    static void Recurselo(llst lst, int lv) { int lv1 = lv - 1; if (lv == dl) {  // check if on last stage of permutation
        if ((sum = ac[lv1]) > 0) if ((rt = (long)Sqrt(sum)) * rt == sum) sr.Add(sum); }  // test accumulated sum, append to result if square
        else foreach (int n in lst[lv]) {  // set up next permutation
                d[lv] = n; if (lv == 0) ac[0] = pp[0] * n; else ac[lv] = ac[lv1] + pp[lv] * n; // update accumulated sum
                switch (lv) {                                            // shortcuts to be performed on designated levels
                    case 0: lst[1] = lu[ln = n]; lst[2] = l2[n]; break;  // primary level: set shortcuts for secondary level
                    case 1:                                              // secondary level: set shortcuts for tertiary level
                        switch (ln) {       // for difs
                            case 1: lst[2] = (((n + 9) >> 1) & 1) == 0 ? evl : odl; break;
                            case 5: lst[2] = n < 0 ? evl : odl; break; } break; }
                Recurselo(lst, lv + 1); } }       // Recursively call next level
 
   // Produces a list of candidate square numbers
    static List<long> listEm(llst lst, llst plu, llst pl2) {
        d = new int[dl = lst.Count]; sr.Clear(); lu = plu; l2 = pl2; ac = new long[dl]; dac = new int[dl]; // init support vars
        pp = new long[dl]; for (int i = 0, j = nd1; i < dl; i++, j--) pp[i] = lst[0].Length > 6 ? p[j] +  p[i] : p[j] - p[i]; // build coefficients array
        if (nd <= 5) RecurseLE5(lst, 0); else { if (lst[0].Length > 8) Recursehi(lst, 0); else Recurselo(lst, 0); } return sr; } // call appropriate recursive procedure
 
    // Reveals whether combining two lists of squares can produce a Rare number
    static void Reveal(List<long> lo, List<long> hi) { List<string> s = new List<string>(); // create temp list of results
        foreach (long l in lo) foreach (long h in hi) { long r = (h - l) >> 1, f = h - r;   // generate all possible fwd & rev candidates from lists
                if (IsRev(nd, f, r)) s.Add(string.Format("{0,20} {1,11} {2,10}  ", f, ISR(h), ISR(l))); } // test and append sucesses to temp list
        s.Sort(); if (s.Count > 0) foreach (string t in s)                                                // if there are any, output sorted results
                Write("{0,2} {1}{2}", ++cn, t, t == s.Last() ? "" : "\n"); else Write("{0,48}", ""); }
  
    static void Main(string[] args) {
        WriteLine("{0,3}{1,20} {2,11} {3,10}  {4,4}{5,16} {6, 17}", "nth", "forward", "rt.sum", "rt.dif", "digs", "block time", "total time");
        p[0] = 1; for (int i = 0, j = 1; j < p.Length; i = j++) p[j] = p[i] * 10;       // create powers of 10 array
        for (int i = 0; i < drar.Length; i++) drar[i] = (i << 1) % 9; // create digital root array
        llst lls = new llst { tlo }, hls = new llst { thi }; sw.Start(); swt.Start();   // initialize permutations list, timers
        for (; nd <= 18; nd1 = nd++, odd = !odd) {                                      // loop through all numbers of digits
            if (nd > 2) if (odd) hls.Add(ten); else { lls.Add(all); hls[hls.Count - 1] = alh; } // build permutations list
            Reveal(listEm(lls, lul, l2l).ToList(), listEm(hls, luh, l2h));   // reveal results
            if (!odd && nd > 5) hls[hls.Count - 1] = alh; // restore last element of hls, so that dr shortcut doesn't mess up next nd
            WriteLine("{0,2}: {1}  {2}", nd, sw.Elapsed, swt.Elapsed); sw.Restart(); }
        // 19
        hls.Add(ten);
        Reveal(listEmU(lls, lul, l2l).ToList(), listEmU(hls, luh, l2h));   // reveal unsigned results
        WriteLine("{0,2}: {1}  {2}", nd, sw.Elapsed, swt.Elapsed);
    }
    #region 19
    static ulong usum,   // unsigned calculated sum of terms (square candidate)
        urt;             // unsigned root of sum
    static ulong[] acu,  // unsigned accumulator array
        ppu;             // unsigned long coefficient array that combines with digits of working array
    static List<ulong> sru = new List<ulong>();  // unsigned temporary list of squares used for building 
 
    // Reveals whether combining two lists of unsigned squares can produce a Rare number
    static void Reveal(List<ulong> lo, List<ulong> hi) {
        List<string> s = new List<string>(); // create temp list of results
        foreach (ulong l in lo) foreach (ulong h in hi) { ulong r = (h - l) >> 1, f = h - r;   // generate all possible fwd & rev candidates from lists
                if (IsRev(nd, f, r)) s.Add(string.Format("{0,20} {1,11} {2,10}  ", f, ISR(h), ISR(l))); } // test and append sucesses to temp list
        s.Sort(); if (s.Count > 0) foreach (string t in s)                                                   // if there are any, output sorted results
                Write("{0,2} {1}{2}", ++cn, t, t == s.Last() ? "" : "\n"); else Write("{0,48}", ""); }
 
    // Produces a list of unsigned candidate square numbers
    static List<ulong> listEmU(llst lst, llst plu, llst pl2) {
        d = new int[dl = lst.Count]; sru.Clear(); lu = plu; l2 = pl2; acu = new ulong[dl]; dac = new int[dl];  // init support vars
        ppu = new ulong[dl]; for (int i = 0, j = nd1; i < dl; i++, j--) ppu[i] = (ulong)(lst[0].Length > 6 ? p[j] + p[i] : p[j] - p[i]);  // build coefficients array
        if (lst[0].Length > 8) RecurseUhi(lst, 0); else RecurseUlo(lst, 0); return sru; } // call recursive procedure
 
    // Recursive procedure to evaluate the unsigned hi permutations, shortcuts added to avoid generating many non-squares, digital root calc added
    static void RecurseUhi(llst lst, int lv) { int lv1 = lv - 1; if (lv == dl) {  // check if on last stage of permutation
            if ((0x202021202030213 & (1 << (int)((usum = acu[lv1]) & 63))) != 0)  // test accumulated sum, append to result if square
                if ((urt = (ulong)Sqrt(usum)) * urt == usum) sru.Add(usum); }
            else foreach (int n in lst[lv]) {  // set up next permutation
                d[lv] = n; if (lv == 0) { acu[0] = ppu[0] * (uint)n; dac[0] = drar[n]; }  // update accumulated sum and running dr
                else { acu[lv] = n >= 0 ? acu[lv1] + ppu[lv] * (uint)n : acu[lv1] - ppu[lv] * (uint)-n; dac[lv] = dac[lv1] + drar[n]; if (dac[lv] > 8) dac[lv] -= 9; }
                switch (lv) {                                            // shortcuts to be performed on designated levels
                    case 0: lst[1] = lu[ln = n]; lst[2] = l2[n]; break;  // primary level: set shortcuts for secondary level
                    case 1:                                              // secondary level: set shortcuts for tertiary level
                        switch (ln) {  // for sums
                            case 5: case 15: lst[2] = n < 10 ? evh : odh; break;
                            case 9: lst[2] = ((n >> 1) & 1) == 0 ? evh : odh; break;
                            case 11: lst[2] = ((n >> 1) & 1) == 1 ? evh : odh; break; } break; }
            if (lv == dl - 2) lst[dl - 1] = odd ? chTen[dac[dl - 2]] : chAH[dac[dl - 2]]; // reduce last round according to dr calc
            RecurseUhi(lst, lv + 1); } }       // Recursively call next level
 
    // Recursive procedure to evaluate the unsigned lo permutations, shortcuts added to avoid generating many non-squares
    static void RecurseUlo(llst lst, int lv) { int lv1 = lv - 1; if (lv == dl) {  // check if on last stage of permutation
            if ((usum = acu[lv1]) > 0) if ((urt = (ulong)Sqrt(usum)) * urt == usum) sru.Add(usum); }  // test accumulated sum, append to result if square
            else foreach (int n in lst[lv]) {  // set up next permutation
                d[lv] = n; if (lv == 0) acu[0] = ppu[0] * (uint)n;
                else acu[lv] = n >= 0 ? acu[lv1] + ppu[lv] * (uint)n : acu[lv1] - ppu[lv] * (uint)-n; // update accumulated sum
                switch (lv) {                                            // shortcuts to be performed on designated levels
                    case 0: lst[1] = lu[ln = n]; lst[2] = l2[n]; break;  // primary level: set shortcuts for secondary level
                    case 1:                                              // secondary level: set shortcuts for tertiary level
                        switch (ln) {       // for difs
                            case 1: lst[2] = (((n + 9) >> 1) & 1) == 0 ? evl : odl; break;
                            case 5: lst[2] = n < 0 ? evl : odl; break; } break; }
            RecurseUlo(lst, lv + 1); } }       // Recursively call next level
 
    // Returns unsigned Integer Square Root
    static ulong ISR(ulong s) { return (ulong)Sqrt(s); }
 
    // Recursively determines whether "r" is the reverse of "f"
    static bool IsRev(int nd, ulong f, ulong r) { nd--; return f / (ulong)p[nd] != r % 10 ? false : (nd < 1 ? true : IsRev(nd, f % (ulong)p[nd], r / 10)); }
    #endregion 19
}
Output:

Results on the core i7-7700 @ 3.6Ghz.

nth             forward      rt.sum     rt.dif  digs      block time        total time
 1                   65          11          3   2: 00:00:00.0030626  00:00:00.0030626
                                                 3: 00:00:00.0001018  00:00:00.0033254
                                                 4: 00:00:00.0000963  00:00:00.0035054
                                                 5: 00:00:00.0000928  00:00:00.0036834
 2               621770         836        738   6: 00:00:00.0021741  00:00:00.0059392
                                                 7: 00:00:00.0001724  00:00:00.0061956
                                                 8: 00:00:00.0002609  00:00:00.0065384
 3            281089082       23708        330   9: 00:00:00.0012672  00:00:00.0079061
 4           2022652202       63602        300
 5           2042832002       63602       6360  10: 00:00:00.0045628  00:00:00.0125626
                                                11: 00:00:00.0201361  00:00:00.0328037
 6         868591084757     1275175     333333
 7         872546974178     1320616      32670
 8         872568754178     1320616      33330  12: 00:00:00.0519065  00:00:00.0848320
 9        6979302951885     3586209    1047717  13: 00:00:00.3772503  00:00:00.4622089
10       20313693904202     6368252     269730
11       20313839704202     6368252     270270
12       20331657922202     6368252     329670
13       20331875722202     6368252     330330
14       20333875702202     6368252     336330
15       40313893704200     6368252    6330336
16       40351893720200     6368252    6336336  14: 00:00:00.9416903  00:00:01.4041338
17      200142385731002    20006998      69300
18      204238494066002    20122102    1891560
19      221462345754122    21045662      69300
20      244062891224042    22011022    1908060
21      245518996076442    22140228     921030
22      248359494187442    22206778    1891560
23      403058392434500    20211202   19940514
24      441054594034340    22011022   19940514
25      816984566129618    40421606     250800  15: 00:00:07.0248881  00:00:08.4296936
26     2078311262161202    64030648    7529850
27     2133786945766212    65272218    2666730
28     2135568943984212    65272218    3267330
29     2135764587964212    65272218    3326670
30     2135786765764212    65272218    3333330
31     4135786945764210    65272218   63333336
32     6157577986646405   105849161   33333333
33     6889765708183410    83866464   82133718
34     8052956026592517   123312255   29999997
35     8052956206592517   123312255   30000003
36     8191154686620818   127950856    3299670
37     8191156864620818   127950856    3300330
38     8191376864400818   127950856    3366330
39     8650327689541457   127246955   33299667
40     8650349867341457   127246955   33300333  16: 00:00:18.1046570  00:00:26.5344137
41    22542040692914522   212329862     333300
42    67725910561765640   269040196  251135808
43    86965750494756968   417050956      33000  17: 00:02:11.8544100  00:02:38.3889020
44   225342456863243522   671330638     297000
45   225342458663243522   671330638     303000
46   225342478643243522   671330638     363000
47   284684666566486482   754565658      30000
48   284684868364486482   754565658     636000
49   297128548234950692   770186978   32697330
50   297128722852950692   770186978   32702670
51   297148324656930692   770186978   33296670
52   297148546434930692   770186978   33303330
53   497168548234910690   770186978  633363336
54   619431353040136925  1071943279  299667003
55   619631153042134925  1071943279  300333003
56   631688638047992345  1083968809  297302703
57   633288858025996145  1083968809  302637303
58   633488632647994145  1083968809  303296697
59   653488856225994125  1083968809  363303363
60   811865096390477018  1273828556   33030330
61   865721270017296468  1315452006   32071170
62   871975098681469178  1320582934    3303300
63   898907259301737498  1339270086   64576740  18: 00:05:38.5737725  00:08:16.9627994
64  2042401829204402402  2021001202   18915600
65  2060303819041450202  2020110202  199405140
66  2420424089100600242  2200110022   19080600
67  2551755006254571552  2259094848     693000
68  2702373360882732072  2324811012     693000
69  2825378427312735282  2377130742    2508000
70  6531727101458000045  3454234451 1063822617
71  6988066446726832640  2729551744 2554541088
72  8066308349502036608  4016542096    2508000
73  8197906905009010818  4046976144  133408770
74  8200756128308135597  4019461925  495417087
75  8320411466598809138  4079154376   36366330  19: 00:42:31.7490390  00:50:48.7120790

C++

Calculate L and H independently

// Rare Numbers : Nigel Galloway - December 20th., 2019;
// Nigel Galloway/Enter your username - January 4th., 2021 (see discussion page.
#include <functional>
#include <bitset>
#include <cmath>
using namespace std;
using Z2 = optional<long long>; using Z1 = function<Z2()>;
// powers of 10 array
constexpr auto pow10 = [] { array <long long, 19> n {1}; for (int j{0}, i{1}; i < 19; j = i++) n[i] = n[j] * 10; return n; } ();
long long acc, l;
bool izRev(int n, unsigned long long i, unsigned long long g) {
  return (i / pow10[n - 1] != g % 10) ? false : n < 2 ? true : izRev(n - 1, i % pow10[n - 1], g / 10);
}
const Z1 fG(Z1 n, int start, int end, int reset, const long long step, long long &l) {
  return [n, i{step * start}, g{step * end}, e{step * reset}, &l, step] () mutable {
    while (i<g){i+=step; return Z2(l+=step);}
    l-=g-(i=e); return n();};
}
struct nLH {
  vector<unsigned long long>even{}, odd{};
  nLH(const Z1 a, const vector<long long> b, long long llim){while (auto i = a()) for (auto ng : b)
    if(ng>0 | *i>llim){unsigned long long sq{ng+ *i}, r{sqrt(sq)}; if (r*r == sq) ng&1 ? odd.push_back(sq) : even.push_back(sq);}}
};
const double fac = 3.94;
const int mbs = (int)sqrt(fac * pow10[9]), mbt = (int)sqrt(fac * fac * pow10[9]) >> 3;
const bitset<100000>bs {[]{bitset<100000>n{false}; for(int g{3};g<mbs;++g) n[(g*g)%100000]=true; return n;}()};
constexpr array<const int,  7>li{1,3,0,0,1,1,1},lin{0,-7,0,0,-8,-3,-9},lig{0,9,0,0,8,7,9},lil{0,2,0,0,2,10,2};
const nLH makeL(const int n){
  constexpr int r{9}; acc=0; Z1 g{[]{return Z2{};}}; int s{-r}, q{(n>11)*5}; vector<long long> w{};
  for (int i{1};i<n/2-q+1;++i){l=pow10[n-i-q]-pow10[i+q-1]; s-=i==n/2-q; g=fG(g,s,r,-r,l,acc+=l*s);}
  if(q){long long g0{0}, g1{0}, g2{0}, g3{0}, g4{0}, l3{pow10[n-5]}; while (g0<7){const long long g{-10000*g4-1000*g3-100*g2-10*g1-g0};
    if (bs[(g+1000000000000LL)%100000]) w.push_back(l3*(g4+g3*10+g2*100+g1*1000+g0*10000)+g);
    if(g4<r) ++g4; else{g4= -r; if(g3<r) ++g3; else{g3= -r; if(g2<r) ++g2; else{g2= -r; if(g1<lig[g0]) g1+=lil[g0]; else {g0+=li[g0];g1=lin[g0];}}}}}}
  return q ? nLH(g,w,0) : nLH(g,{0},0);
}
const bitset<100000>bt {[]{bitset<100000>n{false}; for(int g{11};g<mbt;++g) n[(g*g)%100000]=true; return n;}()};
constexpr array<const int, 17>lu{0,0,0,0,2,0,4,0,0,0,1,4,0,0,0,1,1},lun{0,0,0,0,0,0,1,0,0,0,9,1,0,0,0,1,0},lug{0,0,0,0,18,0,17,0,0,0,9,17,0,0,0,11,18},lul{0,0,0,0,2,0,2,0,0,0,0,2,0,0,0,10,2};
const nLH makeH(const int n){
  acc= -pow10[n>>1]-pow10[(n-1)>>1]; Z1 g{[]{ return Z2{};}}; int q{(n>11)*5}; vector<long long> w {};
  for (int i{1}; i<(n>>1)-q+1; ++i) g = fG(g,0,18,0,pow10[n-i-q]+pow10[i+q-1], acc); 
  if (n & 1){l=pow10[n>>1]<<1; g=fG(g,0,9,0,l,acc+=l);}
  if(q){long long g0{4}, g1{0}, g2{0}, g3{0}, g4{0},l3{pow10[n-5]}; while (g0<17){const long long g{g4*10000+g3*1000+g2*100+g1*10+g0};
    if (bt[g%100000]) w.push_back(l3*(g4+g3*10+g2*100+g1*1000+g0*10000)+g);
    if (g4<18) ++g4; else{g4=0; if(g3<18) ++g3; else{g3=0; if(g2<18) ++g2; else{g2=0; if(g1<lug[g0]) g1+=lul[g0]; else{g0+=lu[g0];g1=lun[g0];}}}}}}
  return q ? nLH(g,w,0) : nLH(g,{0},pow10[n-1]<<2);
}
#include <chrono>
using namespace chrono; using VU = vector<unsigned long long>; using VS = vector<string>;
template <typename T> // concatenates vectors
vector<T>& operator +=(vector<T>& v, const vector<T>& w) { v.insert(v.end(), w.begin(), w.end()); return v; }
int c{0}; // solution counter 
auto st{steady_clock::now()}, st0{st}, tmp{st}; // for determining elasped time
// formats elasped time
string dFmt(duration<double> et, int digs) {
  string res{""}; double dt{et.count()};
  if (dt > 60.0) { int m = (int)(dt / 60.0); dt -= m * 60.0; res = to_string(m) + "m"; }
  res += to_string(dt); return res.substr(0, digs - 1) + 's';
}
// combines list of square differences with list of square sums, reports compatible results
VS dump(int nd, VU lo, VU hi) {
  VS res {};
  for (auto l : lo) for (auto h : hi) {
    auto r { (h - l) >> 1 }, z { h - r };
    if (izRev(nd, r, z)) {
      char buf[99]; sprintf(buf, "%20llu %11lu %10lu", z, (long long)sqrt(h), (long long)sqrt(l));
      res.push_back(buf); } } return res;
}
// reports one block of digits
void doOne(int n, nLH L, nLH H) {
  VS lines = dump(n, L.even, H.even); lines += dump(n, L.odd , H.odd); sort(lines.begin(), lines.end());
  duration<double> tet = (tmp = steady_clock::now()) - st; int ls = lines.size();
  if (ls-- > 0)
    for (int i{0}; i <= ls; ++i)
      printf("%3d %s%s", ++c, lines[i].c_str(), i == ls ? "" : "\n");
  else printf("%s", string(47, ' ').c_str());
  printf("  %2d:     %s  %s\n", n, dFmt(tmp - st0, 8).c_str(), dFmt(tet, 8).c_str()); st0 = tmp;
}
void Rare(int n) { doOne(n, makeL(n), makeH(n)); }
int main(int argc, char *argv[]) {
  int max{argc > 1 ? stoi(argv[1]) : 19}; if (max < 2) max = 2; if (max > 19 ) max = 19;
  printf("%4s %19s %11s %10s %5s %11s %9s\n", "nth", "forward", "rt.sum", "rt.diff", "digs", "block.et", "total.et");
  for (int nd{2}; nd <= max; ++nd) Rare(nd);
}
Output:

Processor Intel(R) Core(TM) i5-1035G1 CPU @ 1.00GHz

 nth             forward      rt.sum    rt.diff  digs    block.et  total.et
  1                   65          11          3   2:     0.00003s  0.00003s
                                                  3:     0.00002s  0.00006s
                                                  4:     0.00001s  0.00008s
                                                  5:     0.00003s  0.00011s
  2               621770         836        738   6:     0.00007s  0.00018s
                                                  7:     0.00035s  0.00054s
                                                  8:     0.00110s  0.00164s
  3            281089082       23708        330   9:     0.00657s  0.00821s
  4           2022652202       63602        300
  5           2042832002       63602       6360  10:     0.02246s  0.03068s
                                                 11:     0.11082s  0.14151s
  6         868591084757     1275175     333333
  7         872546974178     1320616      32670
  8         872568754178     1320616      33330  12:     0.00868s  0.15019s
  9        6979302951885     3586209    1047717  13:     0.03915s  0.18935s
 10       20313693904202     6368252     269730
 11       20313839704202     6368252     270270
 12       20331657922202     6368252     329670
 13       20331875722202     6368252     330330
 14       20333875702202     6368252     336330
 15       40313893704200     6368252    6330336
 16       40351893720200     6368252    6336336  14:     0.11688s  0.30624s
 17      200142385731002    20006998      69300
 18      204238494066002    20122102    1891560
 19      221462345754122    21045662      69300
 20      244062891224042    22011022    1908060
 21      245518996076442    22140228     921030
 22      248359494187442    22206778    1891560
 23      403058392434500    20211202   19940514
 24      441054594034340    22011022   19940514
 25      816984566129618    40421606     250800  15:     0.69490s  1.00114s
 26     2078311262161202    64030648    7529850
 27     2133786945766212    65272218    2666730
 28     2135568943984212    65272218    3267330
 29     2135764587964212    65272218    3326670
 30     2135786765764212    65272218    3333330
 31     4135786945764210    65272218   63333336
 32     6157577986646405   105849161   33333333
 33     6889765708183410    83866464   82133718
 34     8052956026592517   123312255   29999997
 35     8052956206592517   123312255   30000003
 36     8191154686620818   127950856    3299670
 37     8191156864620818   127950856    3300330
 38     8191376864400818   127950856    3366330
 39     8650327689541457   127246955   33299667
 40     8650349867341457   127246955   33300333  16:     2.18232s  3.18347s
 41    22542040692914522   212329862     333300
 42    67725910561765640   269040196  251135808
 43    86965750494756968   417050956      33000  17:     13.1765s  16.3599s
 44   225342456863243522   671330638     297000
 45   225342458663243522   671330638     303000
 46   225342478643243522   671330638     363000
 47   284684666566486482   754565658      30000
 48   284684868364486482   754565658     636000
 49   297128548234950692   770186978   32697330
 50   297128722852950692   770186978   32702670
 51   297148324656930692   770186978   33296670
 52   297148546434930692   770186978   33303330
 53   497168548234910690   770186978  633363336
 54   619431353040136925  1071943279  299667003
 55   619631153042134925  1071943279  300333003
 56   631688638047992345  1083968809  297302703
 57   633288858025996145  1083968809  302637303
 58   633488632647994145  1083968809  303296697
 59   653488856225994125  1083968809  363303363
 60   811865096390477018  1273828556   33030330
 61   865721270017296468  1315452006   32071170
 62   871975098681469178  1320582934    3303300
 63   898907259301737498  1339270086   64576740  18:     41.6983s  58.0583s
 64  2042401829204402402  2021001202   18915600
 65  2060303819041450202  2020110202  199405140
 66  2420424089100600242  2200110022   19080600
 67  2551755006254571552  2259094848     693000
 68  2702373360882732072  2324811012     693000
 69  2825378427312735282  2377130742    2508000
 70  6531727101458000045  3454234451 1063822617
 71  6988066446726832640  2729551744 2554541088
 72  8066308349502036608  4016542096    2508000
 73  8197906905009010818  4046976144  133408770
 74  8200756128308135597  4019461925  495417087
 75  8320411466598809138  4079154376   36366330  19:     5m1.342s  5m59.40s

20+ digits

// Rare Numbers : Nigel Galloway - December 20th., 2019
#include <iostream>
#include <functional>
#include <bitset>
#include <gmpxx.h>
using Z2=std::optional<long>; using Z1=std::function<Z2()>;
constexpr std::array<const long,19> pow10{1,10,100,1000,10000,100000,1000000,10000000,100000000,1000000000,10000000000,100000000000,1000000000000,10000000000000,100000000000000,1000000000000000,10000000000000000,100000000000000000,1000000000000000000};
const bool izRev(const mpz_class n,const mpz_class i,const mpz_class g){return (i/n!=g%10)? false : (n<2)? true : izRev(n/10,i%n,g/10);}
const Z1 fG(Z1 n,int start, int end,int reset,const long step,long &l){return ([n,i{step*start},g{step*end},e{step*reset},&l,step]()mutable{
    while(i<g){l+=step; i+=step; return Z2(l);} i=e; l-=(g-e); return n();});}
struct nLH{
  std::vector<mpz_class>even{};
  std::vector<mpz_class>odd{};
  nLH(std::pair<Z1,std::vector<std::pair<long,long>>> e){auto [n,g]=e; mpz_t w,l,y; mpz_inits(w,l,y,NULL); mpz_set_si(w,pow10[4]); 
   while (auto i=n()){for(auto [ng,gg]:g){if((ng>0)|(*i>0)){mpz_set_si(y,gg+*i); mpz_addmul_ui(y,w,ng);
   if(mpz_perfect_square_p(y)) (gg%2==0)? even.push_back(mpz_class(y)) : odd.push_back(mpz_class(y));}}} mpz_clears(w,l,y,NULL);}
};
class Rare{
  mpz_class r,z,p;
  long acc{0};
  const std::bitset<10000>bs;
  const std::pair<Z1,std::vector<std::pair<long,long>>> makeL(const int n){ //std::cout<<"Making L"<<std::endl;
    Z1 g[n/2-3]; g[0]=([]{return Z2{};}); 
    for(int i{1};i<n/2-3;++i){int s{(i==n/2-4)? -10:-9}; long l=pow10[n-i-4]-pow10[i+3]; acc+=l*s; g[i]=fG(g[i-1],s,9,-9,l,acc);}
    return {g[n/2-4],([g0{0},g1{0},g2{0},g3{0},l3{pow10[n-8]},l2{pow10[n-7]},l1{pow10[n-6]},l0{pow10[n-5]},this]()mutable{std::vector<std::pair<long,long>>w{}; while (g0<10){
      long n{g3*l3+g2*l2+g1*l1+g0*l0}; long g{-1000*g3-100*g2-10*g1-g0}; if(g3<9) ++g3; else{g3=-9; if(g2<9) ++g2; else{g2=-9; if(g1<9) ++g1; else{g1=-9; ++g0;}}} 
      if (bs[(pow10[10]+g)%10000]) w.push_back({n,g});} return w;})()};}
  const std::pair<Z1,std::vector<std::pair<long,long>>> makeH(const int n){ acc=-(pow10[n/2]+pow10[(n-1)/2]); //std::cout<<"Making H"<<std::endl;
    Z1 g[(n+1)/2-3]; g[0]=([]{return Z2{};}); 
    for(int i{1};i<n/2-3;++i) g[i]=fG(g[i-1],(i==(n+1)/2-3)? -1:0,18,0,pow10[n-i-4]+pow10[i+3],acc); 
    if(n%2==1) g[(n+1)/2-4]=fG(g[n/2-4],-1,9,0,2*pow10[n/2],acc);
    return {g[(n+1)/2-4],([g0{1},g1{0},g2{0},g3{0},l3{pow10[n-8]},l2{pow10[n-7]},l1{pow10[n-6]},l0{pow10[n-5]},this]()mutable{std::vector<std::pair<long,long>>w{}; while (g0<17){
      long n{g3*l3+g2*l2+g1*l1+g0*l0}; long g{g3*1000+g2*100+g1*10+g0}; if(g3<18) ++g3; else{g3=0; if(g2<18) ++g2; else{g2=0; if(g1<18) ++g1; else{g1=0; ++g0;}}} 
      if (bs[g%10000]) w.push_back({n,g});} return w;})()};}
  const nLH L,H;
public: Rare(int n):L{makeL(n)},H{makeH(n)},bs{([]{std::bitset<10000>n{false}; for(int g{0};g<10000;++g) n[(g*g)%10000]=true; return n;})()}{
  mpz_ui_pow_ui(p.get_mpz_t(),10,n-1);
  std::cout<<"Rare "<<n<<std::endl;
  for(auto l:L.even) for(auto h:H.even){r=(h-l)/2; z=h-r; if(izRev(p,r,z)) std::cout<<"n="<<z<<" r="<<r<<" n-r="<<l<<" n+r="<<h<<std::endl;}
  for(auto l:L.odd)  for(auto h:H.odd) {r=(h-l)/2; z=h-r; if(izRev(p,r,z)) std::cout<<"n="<<z<<" r="<<r<<" n-r="<<l<<" n+r="<<h<<std::endl;}
}};
int main(){
  Rare(20);
}
Output:

Rare 17
n=67725910561765640 r=4656716501952776 n-r=63069194059812864 n+r=72382627063718416
n=86965750494756968 r=86965749405756968 n-r=1089000000 n+r=173931499900513936
n=22542040692914522 r=22541929604024522 n-r=111088890000 n+r=45083970296939044

Rare 18
n=865721270017296468 r=864692710072127568 n-r=1028559945168900 n+r=1730413980089424036
n=297128548234950692 r=296059432845821792 n-r=1069115389128900 n+r=593187981080772484
n=297128722852950692 r=296059258227821792 n-r=1069464625128900 n+r=593187981080772484
n=898907259301737498 r=894737103952709898 n-r=4170155349027600 n+r=1793644363254447396
n=811865096390477018 r=810774093690568118 n-r=1091002699908900 n+r=1622639190081045136
n=284684666566486482 r=284684665666486482 n-r=900000000 n+r=569369332232972964
n=225342456863243522 r=225342368654243522 n-r=88209000000 n+r=450684825517487044
n=225342458663243522 r=225342366854243522 n-r=91809000000 n+r=450684825517487044
n=225342478643243522 r=225342346874243522 n-r=131769000000 n+r=450684825517487044
n=284684868364486482 r=284684463868486482 n-r=404496000000 n+r=569369332232972964
n=297148324656930692 r=296039656423841792 n-r=1108668233088900 n+r=593187981080772484
n=297148546434930692 r=296039434645841792 n-r=1109111789088900 n+r=593187981080772484
n=871975098681469178 r=871964186890579178 n-r=10911790890000 n+r=1743939285572048356
n=497168548234910690 r=96019432845861794 n-r=401149115389048896 n+r=593187981080772484
n=633488632647994145 r=541499746236884336 n-r=91988886411109809 n+r=1174988378884878481
n=631688638047992345 r=543299740836886136 n-r=88388897211106209 n+r=1174988378884878481
n=653488856225994125 r=521499522658884356 n-r=131989333567109769 n+r=1174988378884878481
n=633288858025996145 r=541699520858882336 n-r=91589337167113809 n+r=1174988378884878481
n=619631153042134925 r=529431240351136916 n-r=90199912690998009 n+r=1149062393393271841
n=619431353040136925 r=529631040353134916 n-r=89800312687002009 n+r=1149062393393271841

Rare 20
n=22134434735752443122 r=22134425753743443122 n-r=8982009000000 n+r=44268860489495886244
n=22134434753752443122 r=22134425735743443122 n-r=9018009000000 n+r=44268860489495886244
n=22134436953532443122 r=22134423535963443122 n-r=13417569000000 n+r=44268860489495886244
n=65459144877856561700 r=716565877844195456 n-r=64742579000012366244 n+r=66175710755700757156
n=22136414517954423122 r=22132445971541463122 n-r=3968546412960000 n+r=44268860489495886244
n=22136414971554423122 r=22132445517941463122 n-r=3969453612960000 n+r=44268860489495886244
n=22136456771730423122 r=22132403717765463122 n-r=4053053964960000 n+r=44268860489495886244
n=61952807156239928885 r=58882993265170825916 n-r=3069813891069102969 n+r=120835800421410754801
n=61999171315484316965 r=56961348451317199916 n-r=5037822864167117049 n+r=118960519766801516881

D

Translation of: Go

Scaled down from the full duration showed in the go example because I got impatient and have not spent time figuring out where the inefficeny is.

import std.algorithm;
import std.array;
import std.conv;
import std.datetime.stopwatch;
import std.math;
import std.stdio;

struct Term {
    ulong coeff;
    byte ix1, ix2;
}

enum maxDigits = 16;

ulong toUlong(byte[] digits, bool reverse) {
    ulong sum = 0;
    if (reverse) {
        for (int i = digits.length - 1; i >= 0; --i) {
            sum = sum * 10 + digits[i];
        }
    } else {
        for (size_t i = 0; i < digits.length; ++i) {
            sum = sum * 10 + digits[i];
        }
    }
    return sum;
}

bool isSquare(ulong n) {
    if ((0x202021202030213 & (1 << (n & 63))) != 0) {
        auto root = cast(ulong)sqrt(cast(double)n);
        return root * root == n;
    }
    return false;
}

byte[] seq(byte from, byte to, byte step) {
    byte[] res;
    for (auto i = from; i <= to; i += step) {
        res ~= i;
    }
    return res;
}

string commatize(ulong n) {
    auto s = n.to!string;
    auto le = s.length;
    for (int i = le - 3; i >= 1; i -= 3) {
        s = s[0..i] ~ "," ~ s[i..$];
    }
    return s;
}

void main() {
    auto sw = StopWatch(AutoStart.yes);
    ulong pow = 1;
    writeln("Aggregate timings to process all numbers up to:");
    // terms of (n-r) expression for number of digits from 2 to maxDigits
    Term[][] allTerms = uninitializedArray!(Term[][])(maxDigits - 1);
    for (auto r = 2; r <= maxDigits; r++) {
        Term[] terms;
        pow *= 10;
        ulong pow1 = pow;
        ulong pow2 = 1;
        byte i1 = 0;
        byte i2 = cast(byte)(r - 1);
        while (i1 < i2) {
            terms ~= Term(pow1 - pow2, i1, i2);

            pow1 /= 10;
            pow2 *= 10;

            i1++;
            i2--;
        }
        allTerms[r - 2] = terms;
    }
    //  map of first minus last digits for 'n' to pairs giving this value
    byte[][][byte] fml = [
        0: [[2, 2], [8, 8]],
        1: [[6, 5], [8, 7]],
        4: [[4, 0]],
        6: [[6, 0], [8, 2]]
    ];
    // map of other digit differences for 'n' to pairs giving this value
    byte[][][byte] dmd;
    for (byte i = 0; i < 100; i++) {
        byte[] a = [i / 10, i % 10];
        auto d = a[0] - a[1];
        dmd[cast(byte)d] ~= a;
    }
    byte[] fl = [0, 1, 4, 6];
    auto dl = seq(-9, 9, 1);    // all differences
    byte[] zl = [0];            // zero diferences only
    auto el = seq(-8, 8, 2);    // even differences only
    auto ol = seq(-9, 9, 2);    // odd differences only
    auto il = seq(0, 9, 1);
    ulong[] rares;
    byte[][][] lists = uninitializedArray!(byte[][][])(4);
    foreach (i, f; fl) {
        lists[i] = [[f]];
    }
    byte[] digits;
    int count = 0;

    // Recursive closure to generate (n+r) candidates from (n-r) candidates
    // and hence find Rare numbers with a given number of digits.
    void fnpr(byte[] cand, byte[] di, byte[][] dis, byte[][] indicies, ulong nmr, int nd, int level) {
        if (level == dis.length) {
            digits[indicies[0][0]] = fml[cand[0]][di[0]][0];
            digits[indicies[0][1]] = fml[cand[0]][di[0]][1];
            auto le = di.length;
            if (nd % 2 == 1) {
                le--;
                digits[nd / 2] = di[le];
            }
            foreach (i, d; di[1..le]) {
                digits[indicies[i + 1][0]] = dmd[cand[i + 1]][d][0];
                digits[indicies[i + 1][1]] = dmd[cand[i + 1]][d][1];
            }
            auto r = toUlong(digits, true);
            auto npr = nmr + 2 * r;
            if (!isSquare(npr)) {
                return;
            }
            count++;
            writef("     R/N %2d:", count);
            auto ms = sw.peek();
            writef("  %9s", ms);
            auto n = toUlong(digits, false);
            writef("  (%s)\n", commatize(n));
            rares ~= n;
        } else {
            foreach (num; dis[level]) {
                di[level] = num;
                fnpr(cand, di, dis, indicies, nmr, nd, level + 1);
            }
        }
    }

    // Recursive closure to generate (n-r) candidates with a given number of digits.
    void fnmr(byte[] cand, byte[][] list, byte[][] indicies, int nd, int level) {
        if (level == list.length) {
            ulong nmr, nmr2;
            foreach (i, t; allTerms[nd - 2]) {
                if (cand[i] >= 0) {
                    nmr += t.coeff * cand[i];
                } else {
                    nmr2 += t.coeff * -cast(int)(cand[i]);
                    if (nmr >= nmr2) {
                        nmr -= nmr2;
                        nmr2 = 0;
                    } else {
                        nmr2 -= nmr;
                        nmr = 0;
                    }
                }
            }
            if (nmr2 >= nmr) {
                return;
            }
            nmr -= nmr2;
            if (!isSquare(nmr)) {
                return;
            }
            byte[][] dis;
            dis ~= seq(0, cast(byte)(fml[cand[0]].length - 1), 1);
            for (auto i = 1; i < cand.length; i++) {
                dis ~= seq(0, cast(byte)(dmd[cand[i]].length - 1), 1);
            }
            if (nd % 2 == 1) {
                dis ~= il;
            }
            byte[] di = uninitializedArray!(byte[])(dis.length);
            fnpr(cand, di, dis, indicies, nmr, nd, 0);
        } else {
            foreach (num; list[level]) {
                cand[level] = num;
                fnmr(cand, list, indicies, nd, level + 1);
            }
        }
    }

    for (int nd = 2; nd <= maxDigits; nd++) {
        digits = uninitializedArray!(byte[])(nd);
        if (nd == 4) {
            lists[0] ~= zl;
            lists[1] ~= ol;
            lists[2] ~= el;
            lists[3] ~= ol;
        } else if (allTerms[nd - 2].length > lists[0].length) {
            for (int i = 0; i < 4; i++) {
                lists[i] ~= dl;
            }
        }
        byte[][] indicies;
        foreach (t; allTerms[nd - 2]) {
            indicies ~= [t.ix1, t.ix2];
        }
        foreach (list; lists) {
            byte[] cand = uninitializedArray!(byte[])(list.length);
            fnmr(cand, list, indicies, nd, 0);
        }
        auto ms = sw.peek();
        writefln("  %2d digits:  %9s", nd, ms);
    }

    rares.sort;
    writefln("\nThe rare numbers with up to %d digits are:", maxDigits);
    foreach (i, rare; rares) {
        writefln("  %2d:  %25s", i + 1, commatize(rare));
    }
}
Output:
Aggregate timings to process all numbers up to:
     R/N  1:  183 ╬╝s and 2 hnsecs  (65)
   2 digits:  193 ╬╝s and 8 hnsecs
   3 digits:  301 ╬╝s and 3 hnsecs
   4 digits:  380 ╬╝s and 1 hnsec
   5 digits:  447 ╬╝s
     R/N  2:  732 ╬╝s and 9 hnsecs  (621,770)
   6 digits:  767 ╬╝s and 1 hnsec
   7 digits:  1 ms, 291 ╬╝s, and 5 hnsecs
   8 digits:  5 ms, 602 ╬╝s, and 2 hnsecs
     R/N  3:  5 ms, 900 ╬╝s, and 2 hnsecs  (281,089,082)
   9 digits:  7 ms, 537 ╬╝s, and 1 hnsec
     R/N  4:  7 ms, 869 ╬╝s, and 5 hnsecs  (2,022,652,202)
     R/N  5:  32 ms, 826 ╬╝s, and 4 hnsecs  (2,042,832,002)
  10 digits:  96 ms, 422 ╬╝s, and 3 hnsecs
  11 digits:  161 ms, 218 ╬╝s, and 4 hnsecs
     R/N  6:  468 ms, 23 ╬╝s, and 9 hnsecs  (872,546,974,178)
     R/N  7:  506 ms, 702 ╬╝s, and 3 hnsecs  (872,568,754,178)
     R/N  8:  1 sec, 39 ms, 845 ╬╝s, and 6 hnsecs  (868,591,084,757)
  12 digits:  1 sec, 437 ms, 602 ╬╝s, and 8 hnsecs
     R/N  9:  1 sec, 835 ms, 95 ╬╝s, and 6 hnsecs  (6,979,302,951,885)
  13 digits:  2 secs, 487 ms, 165 ╬╝s, and 9 hnsecs
     R/N 10:  7 secs, 241 ms, 437 ╬╝s, and 1 hnsec  (20,313,693,904,202)
     R/N 11:  7 secs, 330 ms, 171 ╬╝s, and 2 hnsecs  (20,313,839,704,202)
     R/N 12:  9 secs, 290 ms, 907 ╬╝s, and 3 hnsecs  (20,331,657,922,202)
     R/N 13:  9 secs, 582 ms, 920 ╬╝s, and 5 hnsecs  (20,331,875,722,202)
     R/N 14:  10 secs, 383 ms, 769 ╬╝s, and 1 hnsec  (20,333,875,702,202)
     R/N 15:  25 secs, 835 ms, and 933 ╬╝s  (40,313,893,704,200)
     R/N 16:  26 secs, 14 ms, 774 ╬╝s, and 4 hnsecs  (40,351,893,720,200)
  14 digits:  30 secs, 110 ms, 971 ╬╝s, and 7 hnsecs
     R/N 17:  30 secs, 216 ms, 437 ╬╝s, and 3 hnsecs  (200,142,385,731,002)
     R/N 18:  30 secs, 489 ms, 719 ╬╝s, and 2 hnsecs  (221,462,345,754,122)
     R/N 19:  34 secs, 83 ms, 642 ╬╝s, and 9 hnsecs  (816,984,566,129,618)
     R/N 20:  35 secs, 971 ms, 413 ╬╝s, and 3 hnsecs  (245,518,996,076,442)
     R/N 21:  36 secs, 250 ms, 787 ╬╝s, and 8 hnsecs  (204,238,494,066,002)
     R/N 22:  36 secs, 332 ms, 714 ╬╝s, and 2 hnsecs  (248,359,494,187,442)
     R/N 23:  36 secs, 696 ms, 902 ╬╝s, and 2 hnsecs  (244,062,891,224,042)
     R/N 24:  44 secs, 896 ms, and 665 ╬╝s  (403,058,392,434,500)
     R/N 25:  45 secs, 181 ms, 141 ╬╝s, and 5 hnsecs  (441,054,594,034,340)
  15 digits:  49 secs, 315 ms, 407 ╬╝s, and 4 hnsecs
     R/N 26:  1 minute, 55 secs, 748 ms, 43 ╬╝s, and 4 hnsecs  (2,133,786,945,766,212)
     R/N 27:  2 minutes, 21 secs, 484 ms, 683 ╬╝s, and 7 hnsecs  (2,135,568,943,984,212)
     R/N 28:  2 minutes, 25 secs, 438 ms, 771 ╬╝s, and 7 hnsecs  (8,191,154,686,620,818)
     R/N 29:  2 minutes, 28 secs, 883 ms, 999 ╬╝s, and 6 hnsecs  (8,191,156,864,620,818)
     R/N 30:  2 minutes, 30 secs, 410 ms, and 831 ╬╝s  (2,135,764,587,964,212)
     R/N 31:  2 minutes, 32 secs, 594 ms, 842 ╬╝s, and 1 hnsec  (2,135,786,765,764,212)
     R/N 32:  2 minutes, 37 secs, 880 ms, 100 ╬╝s, and 5 hnsecs  (8,191,376,864,400,818)
     R/N 33:  2 minutes, 55 secs, 943 ms, 190 ╬╝s, and 5 hnsecs  (2,078,311,262,161,202)
     R/N 34:  3 minutes, 49 secs, 750 ms, 39 ╬╝s, and 5 hnsecs  (8,052,956,026,592,517)
     R/N 35:  3 minutes, 55 secs, 554 ms, 720 ╬╝s, and 1 hnsec  (8,052,956,206,592,517)
     R/N 36:  4 minutes, 41 secs, 59 ms, 309 ╬╝s, and 4 hnsecs  (8,650,327,689,541,457)
     R/N 37:  4 minutes, 43 secs, 951 ms, and 206 ╬╝s  (8,650,349,867,341,457)
     R/N 38:  4 minutes, 46 secs, 85 ms, 249 ╬╝s, and 7 hnsecs  (6,157,577,986,646,405)
     R/N 39:  5 minutes, 59 secs, 80 ms, 228 ╬╝s, and 5 hnsecs  (4,135,786,945,764,210)
     R/N 40:  7 minutes, 10 secs, 573 ms, 592 ╬╝s, and 2 hnsecs  (6,889,765,708,183,410)
  16 digits:  7 minutes, 16 secs, 827 ms, 76 ╬╝s, and 4 hnsecs

The rare numbers with up to 16 digits are:
   1:                         65
   2:                    621,770
   3:                281,089,082
   4:              2,022,652,202
   5:              2,042,832,002
   6:            868,591,084,757
   7:            872,546,974,178
   8:            872,568,754,178
   9:          6,979,302,951,885
  10:         20,313,693,904,202
  11:         20,313,839,704,202
  12:         20,331,657,922,202
  13:         20,331,875,722,202
  14:         20,333,875,702,202
  15:         40,313,893,704,200
  16:         40,351,893,720,200
  17:        200,142,385,731,002
  18:        204,238,494,066,002
  19:        221,462,345,754,122
  20:        244,062,891,224,042
  21:        245,518,996,076,442
  22:        248,359,494,187,442
  23:        403,058,392,434,500
  24:        441,054,594,034,340
  25:        816,984,566,129,618
  26:      2,078,311,262,161,202
  27:      2,133,786,945,766,212
  28:      2,135,568,943,984,212
  29:      2,135,764,587,964,212
  30:      2,135,786,765,764,212
  31:      4,135,786,945,764,210
  32:      6,157,577,986,646,405
  33:      6,889,765,708,183,410
  34:      8,052,956,026,592,517
  35:      8,052,956,206,592,517
  36:      8,191,154,686,620,818
  37:      8,191,156,864,620,818
  38:      8,191,376,864,400,818
  39:      8,650,327,689,541,457
  40:      8,650,349,867,341,457

EasyLang

Translation of: Ring
fastfunc next n .
   while 1 = 1
      n += 1
      h = n
      nrev = 0
      while h > 0
         nrev = nrev * 10 + h mod 10
         h = h div 10
      .
      if sqrt (n + nrev) mod 1 = 0
         if n - nrev >= 1 and sqrt (n - nrev) mod 1 = 0
            return n
         .
      .
   .
.
for cnt to 5
   n = next n
   print n
.


F#

The Function

This solution demonstrates the concept described in Talk:Rare_numbers#30_mins_not_30_years. It doesn't use Cartesian_product_of_two_or_more_lists#Extra_Credit

// Find all Rare numbers with a digits. Nigel Galloway: September 18th., 2019. 
let rareNums a=
  let tN=set[1L;4L;5L;6L;9L]
  let izPS g=let n=(float>>sqrt>>int64)g in n*n=g
  let n=[for n in [0..a/2-1] do yield ((pown 10L (a-n-1))-(pown 10L n))]|>List.rev
  let rec fN i g e=seq{match e with 0->yield g |e->for n in i do yield! fN [-9L..9L] (n::g) (e-1)}|>Seq.filter(fun g->let g=Seq.map2(*) n g|>Seq.sum in g>0L && izPS g)
  let rec fG n i g e l=seq{
    match l with
     h::t->for l in max 0L (0L-h)..min 9L (9L-h) do if e>1L||l=0L||tN.Contains((2L*l+h)%10L) then yield! fG (n+l*e+(l+h)*g) (i+l*g+(l+h)*e) (g/10L) (e*10L) t
    |_->if n>(pown 10L (a-1)) then for l in (if a%2=0 then [0L] else [0L..9L]) do let g=l*(pown 10L (a/2)) in if izPS (n+i+2L*g) then yield (i+g,n+g)} 
  fN [0L..9L] [] (a/2) |> Seq.collect(List.rev >> fG 0L 0L (pown 10L (a-1)) 1L)

43 down

let test n=
  let t = System.Diagnostics.Stopwatch.StartNew()
  for n in (rareNums n) do printfn "%A" n
  t.Stop()
  printfn "Elapsed Time: %d ms for length %d" t.ElapsedMilliseconds n

[2..17] |> Seq.iter test
Output:
(56L, 65L)
Elapsed Time: 31 ms for length 2
Elapsed Time: 0 ms for length 3
Elapsed Time: 0 ms for length 4
Elapsed Time: 0 ms for length 5
(77126L, 621770L)
Elapsed Time: 6 ms for length 6
Elapsed Time: 6 ms for length 7
Elapsed Time: 113 ms for length 8
(280980182L, 281089082L)
Elapsed Time: 72 ms for length 9
(2022562202L, 2022652202L)
(2002382402L, 2042832002L)
Elapsed Time: 1525 ms for length 10
Elapsed Time: 1351 ms for length 11
(871479645278L, 872546974178L)
(871457865278L, 872568754178L)
(757480195868L, 868591084757L)
Elapsed Time: 27990 ms for length 12
(5881592039796L, 6979302951885L)
Elapsed Time: 26051 ms for length 13
(20240939631302L, 20313693904202L)
(20240793831302L, 20313839704202L)
(20222975613302L, 20331657922202L)
(20222757813302L, 20331875722202L)
(20220757833302L, 20333875702202L)
(240739831304L, 40313893704200L)
(202739815304L, 40351893720200L)
Elapsed Time: 552922 ms for length 14
(200137583241002L, 200142385731002L)
(221457543264122L, 221462345754122L)
(816921665489618L, 816984566129618L)
(244670699815542L, 245518996076442L)
(200660494832402L, 204238494066002L)
(244781494953842L, 248359494187442L)
(240422198260442L, 244062891224042L)
(5434293850304L, 403058392434500L)
(43430495450144L, 441054594034340L)
Elapsed Time: 512282 ms for length 15
(2126675496873312L, 2133786945766212L)
(2124893498655312L, 2135568943984212L)
(8180266864511918L, 8191154686620818L)
(8180264686511918L, 8191156864620818L)
(2124697854675312L, 2135764587964212L)
(2124675676875312L, 2135786765764212L)
(8180044686731918L, 8191376864400818L)
(2021612621138702L, 2078311262161202L)
(7152956206592508L, 8052956026592517L)
(7152956026592508L, 8052956206592517L)
(7541459867230568L, 8650327689541457L)
(7541437689430568L, 8650349867341457L)
(5046466897757516L, 6157577986646405L)
(124675496875314L, 4135786945764210L)
(143818075679886L, 6889765708183410L)
Elapsed Time: 11568713 ms for length 16
(86965749405756968L, 86965750494756968L)
(22541929604024522L, 22542040692914522L)
(4656716501952776L, 67725910561765640L)
Elapsed Time: 11275839 ms for length 17

FreeBASIC

Made some changes and added a simple test to speed things up. Results in about 1 minute.

Translation of: Phix
Function revn(n As ULongInt, nd As ULongInt) As ULongInt
    Dim As ULongInt r
    For i As UInteger = 1 To nd
        r = r * 10 + n Mod 10
        n = n \ 10
    Next i
    Return r
End Function

Dim As UInteger nd = 2, count, lim = 90, n = 20

Do
    n += 1
    Dim As ULongInt r = revn(n,nd)
    If r < n Then
        Dim As ULongInt s = n + r, d = n - r
        If nd And 1 Then
            If d Mod 1089 <> 0 Then GoTo jump
        Else
            If s Mod 121 <> 0 Then GoTo jump
        End If
        If Frac(Sqr(s)) = 0 And Frac(Sqr(d)) = 0 Then
            count += 1
            Print count; ": "; n
            If count = 5 Then Exit Do : End If
        End If
    End If
jump:
    If n = lim Then
        lim = lim * 10
        nd += 1
        n = (lim \ 9) * 2 
    End If
Loop

Print
Print "Done"
Sleep
Output:
1: 65
2: 621770
3: 281089082
4: 2022652202
5: 2042832002

Go

Traditional

This uses many of the hints within Shyam Sunder Gupta's webpage combined with Nigel Galloway's general approach (see Talk page) of working from (n-r) and deducing the Rare numbers with various numbers of digits from there.

As the algorithm used does not generate the Rare numbers in order, a sorted list is also printed.

package main

import (
    "fmt"
    "math"
    "sort"
    "time"
)

type term struct {
    coeff    uint64
    ix1, ix2 int8
}

const maxDigits = 19

func toUint64(digits []int8, reverse bool) uint64 {
    sum := uint64(0)
    if !reverse {
        for i := 0; i < len(digits); i++ {
            sum = sum*10 + uint64(digits[i])
        }
    } else {
        for i := len(digits) - 1; i >= 0; i-- {
            sum = sum*10 + uint64(digits[i])
        }
    }
    return sum
}

func isSquare(n uint64) bool {
    if 0x202021202030213&(1<<(n&63)) != 0 {
        root := uint64(math.Sqrt(float64(n)))
        return root*root == n
    }
    return false
}

func seq(from, to, step int8) []int8 {
    var res []int8
    for i := from; i <= to; i += step {
        res = append(res, i)
    }
    return res
}

func commatize(n uint64) string {
    s := fmt.Sprintf("%d", n)
    le := len(s)
    for i := le - 3; i >= 1; i -= 3 {
        s = s[0:i] + "," + s[i:]
    }
    return s
}

func main() {
    start := time.Now()
    pow := uint64(1)
    fmt.Println("Aggregate timings to process all numbers up to:")
    // terms of (n-r) expression for number of digits from 2 to maxDigits
    allTerms := make([][]term, maxDigits-1)
    for r := 2; r <= maxDigits; r++ {
        var terms []term
        pow *= 10
        pow1, pow2 := pow, uint64(1)
        for i1, i2 := int8(0), int8(r-1); i1 < i2; i1, i2 = i1+1, i2-1 {
            terms = append(terms, term{pow1 - pow2, i1, i2})
            pow1 /= 10
            pow2 *= 10
        }
        allTerms[r-2] = terms
    }
    //  map of first minus last digits for 'n' to pairs giving this value
    fml := map[int8][][]int8{
        0: {{2, 2}, {8, 8}},
        1: {{6, 5}, {8, 7}},
        4: {{4, 0}},
        6: {{6, 0}, {8, 2}},
    }
    // map of other digit differences for 'n' to pairs giving this value
    dmd := make(map[int8][][]int8)
    for i := int8(0); i < 100; i++ {
        a := []int8{i / 10, i % 10}
        d := a[0] - a[1]
        dmd[d] = append(dmd[d], a)
    }
    fl := []int8{0, 1, 4, 6}
    dl := seq(-9, 9, 1) // all differences
    zl := []int8{0}     // zero differences only
    el := seq(-8, 8, 2) // even differences only
    ol := seq(-9, 9, 2) // odd differences only
    il := seq(0, 9, 1)
    var rares []uint64
    lists := make([][][]int8, 4)
    for i, f := range fl {
        lists[i] = [][]int8{{f}}
    }
    var digits []int8
    count := 0

    // Recursive closure to generate (n+r) candidates from (n-r) candidates
    // and hence find Rare numbers with a given number of digits.
    var fnpr func(cand, di []int8, dis [][]int8, indices [][2]int8, nmr uint64, nd, level int)
    fnpr = func(cand, di []int8, dis [][]int8, indices [][2]int8, nmr uint64, nd, level int) {
        if level == len(dis) {
            digits[indices[0][0]] = fml[cand[0]][di[0]][0]
            digits[indices[0][1]] = fml[cand[0]][di[0]][1]
            le := len(di)
            if nd%2 == 1 {
                le--
                digits[nd/2] = di[le]
            }
            for i, d := range di[1:le] {
                digits[indices[i+1][0]] = dmd[cand[i+1]][d][0]
                digits[indices[i+1][1]] = dmd[cand[i+1]][d][1]
            }
            r := toUint64(digits, true)
            npr := nmr + 2*r
            if !isSquare(npr) {
                return
            }
            count++
            fmt.Printf("     R/N %2d:", count)
            ms := uint64(time.Since(start).Milliseconds())
            fmt.Printf("  %9s ms", commatize(ms))
            n := toUint64(digits, false)
            fmt.Printf("  (%s)\n", commatize(n))
            rares = append(rares, n)
        } else {
            for _, num := range dis[level] {
                di[level] = num
                fnpr(cand, di, dis, indices, nmr, nd, level+1)
            }
        }
    }

    // Recursive closure to generate (n-r) candidates with a given number of digits.
    var fnmr func(cand []int8, list [][]int8, indices [][2]int8, nd, level int)
    fnmr = func(cand []int8, list [][]int8, indices [][2]int8, nd, level int) {
        if level == len(list) {
            var nmr, nmr2 uint64
            for i, t := range allTerms[nd-2] {
                if cand[i] >= 0 {
                    nmr += t.coeff * uint64(cand[i])
                } else {
                    nmr2 += t.coeff * uint64(-cand[i])
                    if nmr >= nmr2 {
                        nmr -= nmr2
                        nmr2 = 0
                    } else {
                        nmr2 -= nmr
                        nmr = 0
                    }
                }
            }
            if nmr2 >= nmr {
                return
            }
            nmr -= nmr2
            if !isSquare(nmr) {
                return
            }
            var dis [][]int8
            dis = append(dis, seq(0, int8(len(fml[cand[0]]))-1, 1))
            for i := 1; i < len(cand); i++ {
                dis = append(dis, seq(0, int8(len(dmd[cand[i]]))-1, 1))
            }
            if nd%2 == 1 {
                dis = append(dis, il)
            }
            di := make([]int8, len(dis))
            fnpr(cand, di, dis, indices, nmr, nd, 0)
        } else {
            for _, num := range list[level] {
                cand[level] = num
                fnmr(cand, list, indices, nd, level+1)
            }
        }
    }

    for nd := 2; nd <= maxDigits; nd++ {
        digits = make([]int8, nd)
        if nd == 4 {
            lists[0] = append(lists[0], zl)
            lists[1] = append(lists[1], ol)
            lists[2] = append(lists[2], el)
            lists[3] = append(lists[3], ol)
        } else if len(allTerms[nd-2]) > len(lists[0]) {
            for i := 0; i < 4; i++ {
                lists[i] = append(lists[i], dl)
            }
        }
        var indices [][2]int8
        for _, t := range allTerms[nd-2] {
            indices = append(indices, [2]int8{t.ix1, t.ix2})
        }
        for _, list := range lists {
            cand := make([]int8, len(list))
            fnmr(cand, list, indices, nd, 0)
        }
        ms := uint64(time.Since(start).Milliseconds())
        fmt.Printf("  %2d digits:  %9s ms\n", nd, commatize(ms))
    }

    sort.Slice(rares, func(i, j int) bool { return rares[i] < rares[j] })
    fmt.Printf("\nThe rare numbers with up to %d digits are:\n", maxDigits)
    for i, rare := range rares {
        fmt.Printf("  %2d:  %25s\n", i+1, commatize(rare))
    }
}
Output:

Timings are for an Intel Core i7-8565U machine with 32GB RAM running Go 1.13.3 on Ubuntu 18.04.

Aggregate timings to process all numbers up to:
     R/N  1:          0 ms  (65)
   2 digits:          0 ms
   3 digits:          0 ms
   4 digits:          0 ms
   5 digits:          0 ms
     R/N  2:          0 ms  (621,770)
   6 digits:          0 ms
   7 digits:          0 ms
   8 digits:          3 ms
     R/N  3:          3 ms  (281,089,082)
   9 digits:          4 ms
     R/N  4:          5 ms  (2,022,652,202)
     R/N  5:         31 ms  (2,042,832,002)
  10 digits:         71 ms
  11 digits:        109 ms
     R/N  6:        328 ms  (872,546,974,178)
     R/N  7:        355 ms  (872,568,754,178)
     R/N  8:        697 ms  (868,591,084,757)
  12 digits:        848 ms
     R/N  9:      1,094 ms  (6,979,302,951,885)
  13 digits:      1,406 ms
     R/N 10:      5,121 ms  (20,313,693,904,202)
     R/N 11:      5,187 ms  (20,313,839,704,202)
     R/N 12:      6,673 ms  (20,331,657,922,202)
     R/N 13:      6,887 ms  (20,331,875,722,202)
     R/N 14:      7,479 ms  (20,333,875,702,202)
     R/N 15:     17,112 ms  (40,313,893,704,200)
     R/N 16:     17,248 ms  (40,351,893,720,200)
  14 digits:     18,338 ms
     R/N 17:     18,356 ms  (200,142,385,731,002)
     R/N 18:     18,560 ms  (221,462,345,754,122)
     R/N 19:     21,181 ms  (816,984,566,129,618)
     R/N 20:     22,491 ms  (245,518,996,076,442)
     R/N 21:     22,674 ms  (204,238,494,066,002)
     R/N 22:     22,734 ms  (248,359,494,187,442)
     R/N 23:     22,994 ms  (244,062,891,224,042)
     R/N 24:     26,868 ms  (403,058,392,434,500)
     R/N 25:     27,063 ms  (441,054,594,034,340)
  15 digits:     28,087 ms
     R/N 26:     74,120 ms  (2,133,786,945,766,212)
     R/N 27:     92,245 ms  (2,135,568,943,984,212)
     R/N 28:     94,972 ms  (8,191,154,686,620,818)
     R/N 29:     97,313 ms  (8,191,156,864,620,818)
     R/N 30:     98,361 ms  (2,135,764,587,964,212)
     R/N 31:     99,971 ms  (2,135,786,765,764,212)
     R/N 32:    103,603 ms  (8,191,376,864,400,818)
     R/N 33:    115,711 ms  (2,078,311,262,161,202)
     R/N 34:    140,972 ms  (8,052,956,026,592,517)
     R/N 35:    145,099 ms  (8,052,956,206,592,517)
     R/N 36:    175,023 ms  (8,650,327,689,541,457)
     R/N 37:    177,145 ms  (8,650,349,867,341,457)
     R/N 38:    178,693 ms  (6,157,577,986,646,405)
     R/N 39:    205,564 ms  (4,135,786,945,764,210)
     R/N 40:    220,480 ms  (6,889,765,708,183,410)
  16 digits:    221,485 ms
     R/N 41:    226,520 ms  (86,965,750,494,756,968)
     R/N 42:    227,431 ms  (22,542,040,692,914,522)
     R/N 43:    345,314 ms  (67,725,910,561,765,640)
  17 digits:    354,815 ms
     R/N 44:    387,879 ms  (284,684,666,566,486,482)
     R/N 45:    510,788 ms  (225,342,456,863,243,522)
     R/N 46:    556,239 ms  (225,342,458,663,243,522)
     R/N 47:    652,051 ms  (225,342,478,643,243,522)
     R/N 48:    718,148 ms  (284,684,868,364,486,482)
     R/N 49:  1,095,093 ms  (871,975,098,681,469,178)
     R/N 50:  1,785,243 ms  (865,721,270,017,296,468)
     R/N 51:  1,800,799 ms  (297,128,548,234,950,692)
     R/N 52:  1,809,196 ms  (297,128,722,852,950,692)
     R/N 53:  1,913,085 ms  (811,865,096,390,477,018)
     R/N 54:  1,965,104 ms  (297,148,324,656,930,692)
     R/N 55:  1,990,018 ms  (297,148,546,434,930,692)
     R/N 56:  2,296,972 ms  (898,907,259,301,737,498)
     R/N 57:  2,691,110 ms  (631,688,638,047,992,345)
     R/N 58:  2,716,487 ms  (619,431,353,040,136,925)
     R/N 59:  2,984,451 ms  (619,631,153,042,134,925)
     R/N 60:  3,047,183 ms  (633,288,858,025,996,145)
     R/N 61:  3,115,724 ms  (633,488,632,647,994,145)
     R/N 62:  3,978,143 ms  (653,488,856,225,994,125)
     R/N 63:  4,255,985 ms  (497,168,548,234,910,690)
  18 digits:  4,531,846 ms
     R/N 64:  4,606,094 ms  (2,551,755,006,254,571,552)
     R/N 65:  4,624,539 ms  (2,702,373,360,882,732,072)
     R/N 66:  4,873,160 ms  (2,825,378,427,312,735,282)
     R/N 67:  4,893,810 ms  (8,066,308,349,502,036,608)
     R/N 68:  5,109,513 ms  (2,042,401,829,204,402,402)
     R/N 69:  5,152,863 ms  (2,420,424,089,100,600,242)
     R/N 70:  5,263,434 ms  (8,320,411,466,598,809,138)
     R/N 71:  5,558,356 ms  (8,197,906,905,009,010,818)
     R/N 72:  5,586,801 ms  (2,060,303,819,041,450,202)
     R/N 73:  5,763,382 ms  (8,200,756,128,308,135,597)
     R/N 74:  6,008,475 ms  (6,531,727,101,458,000,045)
     R/N 75:  6,543,047 ms  (6,988,066,446,726,832,640)
  19 digits:  6,609,905 ms

The rare numbers with up to 19 digits are:
   1:                         65
   2:                    621,770
   3:                281,089,082
   4:              2,022,652,202
   5:              2,042,832,002
   6:            868,591,084,757
   7:            872,546,974,178
   8:            872,568,754,178
   9:          6,979,302,951,885
  10:         20,313,693,904,202
  11:         20,313,839,704,202
  12:         20,331,657,922,202
  13:         20,331,875,722,202
  14:         20,333,875,702,202
  15:         40,313,893,704,200
  16:         40,351,893,720,200
  17:        200,142,385,731,002
  18:        204,238,494,066,002
  19:        221,462,345,754,122
  20:        244,062,891,224,042
  21:        245,518,996,076,442
  22:        248,359,494,187,442
  23:        403,058,392,434,500
  24:        441,054,594,034,340
  25:        816,984,566,129,618
  26:      2,078,311,262,161,202
  27:      2,133,786,945,766,212
  28:      2,135,568,943,984,212
  29:      2,135,764,587,964,212
  30:      2,135,786,765,764,212
  31:      4,135,786,945,764,210
  32:      6,157,577,986,646,405
  33:      6,889,765,708,183,410
  34:      8,052,956,026,592,517
  35:      8,052,956,206,592,517
  36:      8,191,154,686,620,818
  37:      8,191,156,864,620,818
  38:      8,191,376,864,400,818
  39:      8,650,327,689,541,457
  40:      8,650,349,867,341,457
  41:     22,542,040,692,914,522
  42:     67,725,910,561,765,640
  43:     86,965,750,494,756,968
  44:    225,342,456,863,243,522
  45:    225,342,458,663,243,522
  46:    225,342,478,643,243,522
  47:    284,684,666,566,486,482
  48:    284,684,868,364,486,482
  49:    297,128,548,234,950,692
  50:    297,128,722,852,950,692
  51:    297,148,324,656,930,692
  52:    297,148,546,434,930,692
  53:    497,168,548,234,910,690
  54:    619,431,353,040,136,925
  55:    619,631,153,042,134,925
  56:    631,688,638,047,992,345
  57:    633,288,858,025,996,145
  58:    633,488,632,647,994,145
  59:    653,488,856,225,994,125
  60:    811,865,096,390,477,018
  61:    865,721,270,017,296,468
  62:    871,975,098,681,469,178
  63:    898,907,259,301,737,498
  64:  2,042,401,829,204,402,402
  65:  2,060,303,819,041,450,202
  66:  2,420,424,089,100,600,242
  67:  2,551,755,006,254,571,552
  68:  2,702,373,360,882,732,072
  69:  2,825,378,427,312,735,282
  70:  6,531,727,101,458,000,045
  71:  6,988,066,446,726,832,640
  72:  8,066,308,349,502,036,608
  73:  8,197,906,905,009,010,818
  74:  8,200,756,128,308,135,597
  75:  8,320,411,466,598,809,138


Quicker

Translation of: C#

Twice as quick as the first Go version though, despite being a faithful translation, a little slower than the C# and VB.NET versions.

package main

import (
    "fmt"
    "math"
    "sort"
    "time"
)

type llst = [][]int

var (
    d    []int     // permutation working slice
    drar [19]int   // digital root lookup array
    dac  []int     // running digital root slice
    p    [20]int64 // powers of 10
    ac   []int64   // accumulator slice
    pp   []int64   // coefficient slice that combines with digits of working slice
    sr   []int64   // temporary list of squares used for building
)

var (
    odd = false  // flag for odd number of digits
    sum int64    // calculated sum of terms (square candidate)
    rt  int64    // root of sum
    cn  = 0      // solution counter
    nd  = 2      // number of digits
    nd1 = nd - 1 // 'nd' helper
    ln  int      // previous value of 'n' (in recurse())
    dl  int      // length of 'd' slice
)

var (
    tlo = []int{0, 1, 4, 5, 6}                  // primary differences starting point
    all = seq(-9, 9, 1)                         // all possible differences
    odl = seq(-9, 9, 2)                         // odd possible differences
    evl = seq(-8, 8, 2)                         // even possible differences
    thi = []int{4, 5, 6, 9, 10, 11, 14, 15, 16} // primary sums starting point
    alh = seq(0, 18, 1)                         // all possible sums
    odh = seq(1, 17, 2)                         // odd possible sums
    evh = seq(0, 18, 2)                         // even possible sums
    ten = seq(0, 9, 1)                          // used for odd number of digits
    z   = seq(0, 0, 1)                          // no difference, avoids generating a bunch of negative square candidates
    t7  = []int{-3, 7}                          // shortcut for low 5
    nin = []int{9}                              // shortcut for hi 10
    tn  = []int{10}                             // shortcut for hi 0 (unused, unneeded)
    t12 = []int{2, 12}                          // shortcut for hi 5
    o11 = []int{1, 11}                          // shortcut for hi 15
    pos = []int{0, 1, 4, 5, 6, 9}               // shortcut for 2nd lo 0
)

var (
    lul = llst{z, odl, nil, nil, evl, t7, odl} // shortcut lookup lo primary
    luh = llst{tn, evh, nil, nil, evh, t12, odh, nil, nil, evh, nin, odh, nil, nil,
        odh, o11, evh} // shortcut lookup hi primary
    l2l = llst{pos, nil, nil, nil, all, nil, all} // shortcut lookup lo secondary
    l2h = llst{nil, nil, nil, nil, alh, nil, alh, nil, nil, nil, alh, nil, nil, nil,
        alh, nil, alh} // shortcut lookup hi secondary
    lu, l2 llst // ditto
    chTen  = llst{{0, 2, 5, 8, 9}, {0, 3, 4, 6, 9}, {1, 4, 7, 8}, {2, 3, 5, 8},
        {0, 3, 6, 7, 9}, {1, 2, 4, 7}, {2, 5, 6, 8}, {0, 1, 3, 6, 9}, {1, 4, 5, 7}}
    chAH = llst{{0, 2, 5, 8, 9, 11, 14, 17, 18}, {0, 3, 4, 6, 9, 12, 13, 15, 18}, {1, 4, 7, 8, 10, 13, 16, 17},
        {2, 3, 5, 8, 11, 12, 14, 17}, {0, 3, 6, 7, 9, 12, 15, 16, 18}, {1, 2, 4, 7, 10, 11, 13, 16},
        {2, 5, 6, 8, 11, 14, 15, 17}, {0, 1, 3, 6, 9, 10, 12, 15, 18}, {1, 4, 5, 7, 10, 13, 14, 16}}
)

// Returns a sequence of integers.
func seq(f, t, s int) []int {
    r := make([]int, (t-f)/s+1)
    for i := 0; i < len(r); i, f = i+1, f+s {
        r[i] = f
    }
    return r
}

// Returns Integer Square Root.
func isr(s int64) int64 {
    return int64(math.Sqrt(float64(s)))
}

// Recursively determines whether 'r' is the reverse of 'f'.
func isRev(nd int, f, r int64) bool {
    nd--
    if f/p[nd] != r%10 {
        return false
    }
    if nd < 1 {
        return true
    }
    return isRev(nd, f%p[nd], r/10)
}

// Recursive function to evaluate the permutations, no shortcuts.
func recurseLE5(lst llst, lv int) {
    if lv == dl { // check if on last stage of permutation
        sum = ac[lv-1]
        if sum > 0 {
            rt = int64(math.Sqrt(float64(sum)))
            if rt*rt == sum { // test accumulated sum, append to result if square
                sr = append(sr, sum)
            }
        }
    } else {
        for _, n := range lst[lv] { // set up next permutation
            d[lv] = n
            if lv == 0 {
                ac[0] = pp[0] * int64(n)
            } else {
                ac[lv] = ac[lv-1] + pp[lv]*int64(n) // update accumulated sum
            }
            recurseLE5(lst, lv+1) // recursively call next level
        }
    }
}

// Recursive function to evaluate the hi permutations, shortcuts added to avoid generating many non-squares, digital root calc added.
func recursehi(lst llst, lv int) {
    lv1 := lv - 1
    if lv == dl { // check if on last stage of permutation
        sum = ac[lv1]
        if (0x202021202030213 & (1 << (int(sum) & 63))) != 0 { // test accumulated sum, append to result if square
            rt = int64(math.Sqrt(float64(sum)))
            if rt*rt == sum {
                sr = append(sr, sum)
            }
        }
    } else {
        for _, n := range lst[lv] { // set up next permutation
            d[lv] = n
            if lv == 0 {
                ac[0] = pp[0] * int64(n)
                dac[0] = drar[n] // update accumulated sum and running dr
            } else {
                ac[lv] = ac[lv1] + pp[lv]*int64(n)
                dac[lv] = dac[lv1] + drar[n]
                if dac[lv] > 8 {
                    dac[lv] -= 9
                }
            }
            switch lv { // shortcuts to be performed on designated levels
            case 0: // primary level: set shortcuts for secondary level
                ln = n
                lst[1] = lu[ln]
                lst[2] = l2[n]
            case 1: // secondary level: set shortcuts for tertiary level
                switch ln { // for sums
                case 5, 15:
                    if n < 10 {
                        lst[2] = evh
                    } else {
                        lst[2] = odh
                    }
                case 9:
                    if ((n >> 1) & 1) == 0 {
                        lst[2] = evh
                    } else {
                        lst[2] = odh
                    }
                case 11:
                    if ((n >> 1) & 1) == 1 {
                        lst[2] = evh
                    } else {
                        lst[2] = odh
                    }
                }
            }
            if lv == dl-2 {
                // reduce last round according to dr calc
                if odd {
                    lst[dl-1] = chTen[dac[dl-2]]
                } else {
                    lst[dl-1] = chAH[dac[dl-2]]
                }
            }
            recursehi(lst, lv+1) // recursively call next level
        }
    }
}

// Recursive function to evaluate the lo permutations, shortcuts added to avoid
// generating many non-squares.
func recurselo(lst llst, lv int) {
    lv1 := lv - 1
    if lv == dl { // check if on last stage of permutation
        sum = ac[lv1]
        if sum > 0 {
            rt = int64(math.Sqrt(float64(sum)))
            if rt*rt == sum { // test accumulated sum, append to result if square
                sr = append(sr, sum)
            }
        }
    } else {
        for _, n := range lst[lv] { // set up next permutation
            d[lv] = n
            if lv == 0 {
                ac[0] = pp[0] * int64(n)
            } else {
                ac[lv] = ac[lv1] + pp[lv]*int64(n) // update accumulated sum
            }
            switch lv { // shortcuts to be performed on designated levels
            case 0: // primary level: set shortcuts for secondary level
                ln = n
                lst[1] = lu[ln]
                lst[2] = l2[n]
            case 1: // secondary level: set shortcuts for tertiary level
                switch ln { // for difs
                case 1:
                    if (((n + 9) >> 1) & 1) == 0 {
                        lst[2] = evl
                    } else {
                        lst[2] = odl
                    }
                case 5:
                    if n < 0 {
                        lst[2] = evl
                    } else {
                        lst[2] = odl
                    }
                }
            }
            recurselo(lst, lv+1) // Recursively call next level
        }
    }
}

// Produces a list of candidate square numbers.
func listEm(lst, plu, pl2 llst) []int64 {
    dl = len(lst)
    d = make([]int, dl)
    sr = sr[:0]
    lu = plu
    l2 = pl2
    ac = make([]int64, dl)
    dac = make([]int, dl) // init support vars
    pp = make([]int64, dl)
    for i, j := 0, nd1; i < dl; i, j = i+1, j-1 {
        // build coefficients array
        if len(lst[0]) > 6 {
            pp[i] = p[j] + p[i]
        } else {
            pp[i] = p[j] - p[i]
        }
    }
    // call appropriate recursive function
    if nd <= 5 {
        recurseLE5(lst, 0)
    } else if len(lst[0]) > 8 {
        recursehi(lst, 0)
    } else {
        recurselo(lst, 0)
    }
    return sr
}

// Reveals whether combining two lists of squares can produce a Rare number.
func reveal(lo, hi []int64) {
    var s []string // create temp list of results
    for _, l := range lo {
        for _, h := range hi {
            r := (h - l) >> 1
            f := h - r           // generate all possible fwd & rev candidates from lists
            if isRev(nd, f, r) { // test and append sucesses to temp list
                s = append(s, fmt.Sprintf("%20d %11d %10d  ", f, isr(h), isr(l)))
            }
        }
    }
    sort.Strings(s)
    if len(s) > 0 {
        for _, t := range s { // if there are any, output sorted results
            cn++
            tt := ""
            if t != s[len(s)-1] {
                tt = "\n"
            }
            fmt.Printf("%2d %s%s", cn, t, tt)
        }
    } else {
        fmt.Printf("%48s", "")
    }
}

/* Unsigned variables and functions for nd == 19 */

var (
    usum uint64   // unsigned calculated sum of terms (square candidate)
    urt  uint64   // unsigned root of sum
    acu  []uint64 // unsigned accumulator slice
    ppu  []uint64 // unsigned long coefficient slice that combines with digits of working slice
    sru  []uint64 // unsigned temporary list of squares used for building
)

// Returns Unsigned Integer Square Root.
func isrU(s uint64) uint64 {
    return uint64(math.Sqrt(float64(s)))
}

// Recursively determines whether 'r' is the reverse of 'f'.
func isRevU(nd int, f, r uint64) bool {
    nd--
    if f/uint64(p[nd]) != r%10 {
        return false
    }
    if nd < 1 {
        return true
    }
    return isRevU(nd, f%uint64(p[nd]), r/10)
}

// Recursive function to evaluate the unsigned hi permutations, shortcuts added to avoid
// generating many non-squares, digital root calc added.
func recurseUhi(lst llst, lv int) {
    lv1 := lv - 1
    if lv == dl { // check if on last stage of permutation
        usum = acu[lv1]
        if (0x202021202030213 & (1 << (int(usum) & 63))) != 0 { // test accumulated sum, append to result if square
            urt = uint64(math.Sqrt(float64(usum)))
            if urt*urt == usum {
                sru = append(sru, usum)
            }
        }
    } else {
        for _, n := range lst[lv] { // set up next permutation
            d[lv] = n
            if lv == 0 {
                acu[0] = ppu[0] * uint64(n)
                dac[0] = drar[n] // update accumulated sum and running dr
            } else {
                if n >= 0 {
                    acu[lv] = acu[lv1] + ppu[lv]*uint64(n)
                } else {
                    acu[lv] = acu[lv1] - ppu[lv]*uint64(-n)
                }
                dac[lv] = dac[lv1] + drar[n]
                if dac[lv] > 8 {
                    dac[lv] -= 9
                }
            }
            switch lv { // shortcuts to be performed on designated levels
            case 0: // primary level: set shortcuts for secondary level
                ln = n
                lst[1] = lu[ln]
                lst[2] = l2[n]
            case 1: // secondary level: set shortcuts for tertiary level
                switch ln { // for sums
                case 5, 15:
                    if n < 10 {
                        lst[2] = evh
                    } else {
                        lst[2] = odh
                    }
                case 9:
                    if ((n >> 1) & 1) == 0 {
                        lst[2] = evh
                    } else {
                        lst[2] = odh
                    }
                case 11:
                    if ((n >> 1) & 1) == 1 {
                        lst[2] = evh
                    } else {
                        lst[2] = odh
                    }
                }
            }
            if lv == dl-2 {
                // reduce last round according to dr calc
                if odd {
                    lst[dl-1] = chTen[dac[dl-2]]
                } else {
                    lst[dl-1] = chAH[dac[dl-2]]
                }
            }
            recurseUhi(lst, lv+1) // recursively call next level
        }
    }
}

// Recursive function to evaluate the unsigned lo permutations, shortcuts added to avoid
// generating many non-squares.
func recurseUlo(lst llst, lv int) {
    lv1 := lv - 1
    if lv == dl { // check if on last stage of permutation
        usum = acu[lv1]
        if usum > 0 {
            urt = uint64(math.Sqrt(float64(usum)))
            if urt*urt == usum { // test accumulated sum, append to result if square
                sru = append(sru, usum)
            }
        }
    } else {
        for _, n := range lst[lv] { // set up next permutation
            d[lv] = n
            if lv == 0 {
                acu[0] = ppu[0] * uint64(n)
            } else {
                if n >= 0 {
                    acu[lv] = acu[lv1] + ppu[lv]*uint64(n) // update accumulated sum
                } else {
                    acu[lv] = acu[lv1] - ppu[lv]*uint64(-n)
                }
            }
            switch lv { // shortcuts to be performed on designated levels
            case 0: // primary level: set shortcuts for secondary level
                ln = n
                lst[1] = lu[ln]
                lst[2] = l2[n]
            case 1: // secondary level: set shortcuts for tertiary level
                switch ln { // for difs
                case 1:
                    if (((n + 9) >> 1) & 1) == 0 {
                        lst[2] = evl
                    } else {
                        lst[2] = odl
                    }
                case 5:
                    if n < 0 {
                        lst[2] = evl
                    } else {
                        lst[2] = odl
                    }
                }
            }
            recurseUlo(lst, lv+1) // Recursively call next level
        }
    }
}

// Produces a list of candidate square numbers.
func listEmU(lst, plu, pl2 llst) []uint64 {
    dl = len(lst)
    d = make([]int, dl)
    sru = sru[:0]
    lu = plu
    l2 = pl2
    acu = make([]uint64, dl)
    dac = make([]int, dl) // init support vars
    ppu = make([]uint64, dl)
    for i, j := 0, nd1; i < dl; i, j = i+1, j-1 {
        // build coefficients array
        if len(lst[0]) > 6 {
            ppu[i] = uint64(p[j] + p[i])
        } else {
            ppu[i] = uint64(p[j] - p[i])
        }
    }
    // call appropriate recursive functin  on
    if len(lst[0]) > 8 {
        recurseUhi(lst, 0)
    } else {
        recurseUlo(lst, 0)
    }
    return sru
}

// Reveals whether combining two lists of unsigned squares can produce a Rare number.
func revealU(lo, hi []uint64) {
    var s []string // create temp list of results
    for _, l := range lo {
        for _, h := range hi {
            r := (h - l) >> 1
            f := h - r            // generate all possible fwd & rev candidates from lists
            if isRevU(nd, f, r) { // test and append sucesses to temp list
                s = append(s, fmt.Sprintf("%20d %11d %10d  ", f, isrU(h), isrU(l)))
            }
        }
    }
    sort.Strings(s)
    if len(s) > 0 {
        for _, t := range s { // if there are any, output sorted results
            cn++
            tt := ""
            if t != s[len(s)-1] {
                tt = "\n"
            }
            fmt.Printf("%2d %s%s", cn, t, tt)
        }
    } else {
        fmt.Printf("%48s", "")
    }
}

var (
    bStart time.Time // block start time
    tStart time.Time // total start time
)

// Formats time in form hh:mm:ss.fff (i.e. millisecond precision).
func formatTime(d time.Duration) string {
    f := d.Milliseconds()
    s := f / 1000
    f %= 1000
    m := s / 60
    s %= 60
    h := m / 60
    m %= 60
    return fmt.Sprintf("%02d:%02d:%02d.%03d", h, m, s, f)
}

func main() {
    start := time.Now()
    fmt.Printf("%3s%20s %11s %10s  %3s %11s   %11s\n", "nth", "forward", "rt.sum", "rt.dif", "digs", "block time", "total time")
    p[0] = 1
    for i, j := 0, 1; j < len(p); j++ {
        p[j] = p[i] * 10 // create powers of 10 array
        i = j
    }
    for i := 0; i < len(drar); i++ {
        drar[i] = (i << 1) % 9 // create digital root array
    }
    bStart = time.Now()
    tStart = bStart
    lls := llst{tlo}
    hls := llst{thi}
    for nd <= 18 { // loop through all numbers of digits
        if nd > 2 {
            if odd {
                hls = append(hls, ten)
            } else {
                lls = append(lls, all)
                hls[len(hls)-1] = alh
            }
        } // build permutations list
        tmp1 := listEm(lls, lul, l2l)
        tmp2 := make([]int64, len(tmp1))
        copy(tmp2, tmp1)
        reveal(tmp2, listEm(hls, luh, l2h)) // reveal results
        if !odd && nd > 5 {
            hls[len(hls)-1] = alh // restore last element of hls, so that dr shortcut doesn't mess up next nd
        }
        bTime := formatTime(time.Since(bStart))
        tTime := formatTime(time.Since(tStart))
        fmt.Printf("%2d: %s  %s\n", nd, bTime, tTime)
        bStart = time.Now() // restart block timing
        nd1 = nd
        nd++
        odd = !odd
    }
    // nd == 19
    hls = append(hls, ten)
    tmp3 := listEmU(lls, lul, l2l)
    tmp4 := make([]uint64, len(tmp3))
    copy(tmp4, tmp3)
    revealU(tmp4, listEmU(hls, luh, l2h)) // reveal unsigned results
    fbTime := formatTime(time.Since(bStart))
    ftTime := formatTime(time.Since(tStart))
    fmt.Printf("%2d: %s  %s\n", nd, fbTime, ftTime)
}
Output:
nth             forward      rt.sum     rt.dif  digs  block time    total time
 1                   65          11          3   2: 00:00:00.000  00:00:00.000
                                                 3: 00:00:00.000  00:00:00.000
                                                 4: 00:00:00.000  00:00:00.000
                                                 5: 00:00:00.000  00:00:00.000
 2               621770         836        738   6: 00:00:00.000  00:00:00.000
                                                 7: 00:00:00.000  00:00:00.000
                                                 8: 00:00:00.001  00:00:00.001
 3            281089082       23708        330   9: 00:00:00.006  00:00:00.008
 4           2022652202       63602        300  
 5           2042832002       63602       6360  10: 00:00:00.015  00:00:00.023
                                                11: 00:00:00.036  00:00:00.060
 6         868591084757     1275175     333333  
 7         872546974178     1320616      32670  
 8         872568754178     1320616      33330  12: 00:00:00.057  00:00:00.117
 9        6979302951885     3586209    1047717  13: 00:00:00.376  00:00:00.494
10       20313693904202     6368252     269730  
11       20313839704202     6368252     270270  
12       20331657922202     6368252     329670  
13       20331875722202     6368252     330330  
14       20333875702202     6368252     336330  
15       40313893704200     6368252    6330336  
16       40351893720200     6368252    6336336  14: 00:00:00.981  00:00:01.475
17      200142385731002    20006998      69300  
18      204238494066002    20122102    1891560  
19      221462345754122    21045662      69300  
20      244062891224042    22011022    1908060  
21      245518996076442    22140228     921030  
22      248359494187442    22206778    1891560  
23      403058392434500    20211202   19940514  
24      441054594034340    22011022   19940514  
25      816984566129618    40421606     250800  15: 00:00:07.042  00:00:08.517
26     2078311262161202    64030648    7529850  
27     2133786945766212    65272218    2666730  
28     2135568943984212    65272218    3267330  
29     2135764587964212    65272218    3326670  
30     2135786765764212    65272218    3333330  
31     4135786945764210    65272218   63333336  
32     6157577986646405   105849161   33333333  
33     6889765708183410    83866464   82133718  
34     8052956026592517   123312255   29999997  
35     8052956206592517   123312255   30000003  
36     8191154686620818   127950856    3299670  
37     8191156864620818   127950856    3300330  
38     8191376864400818   127950856    3366330  
39     8650327689541457   127246955   33299667  
40     8650349867341457   127246955   33300333  16: 00:00:18.521  00:00:27.039
41    22542040692914522   212329862     333300  
42    67725910561765640   269040196  251135808  
43    86965750494756968   417050956      33000  17: 00:02:13.481  00:02:40.521
44   225342456863243522   671330638     297000  
45   225342458663243522   671330638     303000  
46   225342478643243522   671330638     363000  
47   284684666566486482   754565658      30000  
48   284684868364486482   754565658     636000  
49   297128548234950692   770186978   32697330  
50   297128722852950692   770186978   32702670  
51   297148324656930692   770186978   33296670  
52   297148546434930692   770186978   33303330  
53   497168548234910690   770186978  633363336  
54   619431353040136925  1071943279  299667003  
55   619631153042134925  1071943279  300333003  
56   631688638047992345  1083968809  297302703  
57   633288858025996145  1083968809  302637303  
58   633488632647994145  1083968809  303296697  
59   653488856225994125  1083968809  363303363  
60   811865096390477018  1273828556   33030330  
61   865721270017296468  1315452006   32071170  
62   871975098681469178  1320582934    3303300  
63   898907259301737498  1339270086   64576740  18: 00:06:17.288  00:08:57.810
64  2042401829204402402  2021001202   18915600  
65  2060303819041450202  2020110202  199405140  
66  2420424089100600242  2200110022   19080600  
67  2551755006254571552  2259094848     693000  
68  2702373360882732072  2324811012     693000  
69  2825378427312735282  2377130742    2508000  
70  6531727101458000045  3454234451 1063822617  
71  6988066446726832640  2729551744 2554541088  
72  8066308349502036608  4016542096    2508000  
73  8197906905009010818  4046976144  133408770  
74  8200756128308135597  4019461925  495417087  
75  8320411466598809138  4079154376   36366330  19: 00:45:42.006  00:54:39.816


Turbo

Translation of: C++

A smallish turbo anyway :)

The following, which is a translation of the C++ 10 to 19 digits program and includes improvements suggested by Enter your username (see Talk page), completes in around 15.25 minutes which is more than 3.5 times faster than the 'quicker' version above.

Curiously, the C++ program itself when compiled with g++ 7.5.0 (-std=c++17 -O3) on the same machine (and incorporating the same improvements) completes in just over 21 minutes though I understand that when using other C++ compilers (clang, mingw) it's much faster than this.

package main

import (
    "fmt"
    "math"
    "sort"
    "time"
)

type (
    z1 func() z2
    z2 struct {
        value    int64
        hasValue bool
    }
)

var pow10 [19]int64

func init() {
    pow10[0] = 1
    for i := 1; i < 19; i++ {
        pow10[i] = 10 * pow10[i-1]
    }
}

func izRev(n int, i, g uint64) bool {
    if i/uint64(pow10[n-1]) != g%10 {
        return false
    }
    if n < 2 {
        return true
    }
    return izRev(n-1, i%uint64(pow10[n-1]), g/10)
}

func fG(n z1, start, end, reset int, step int64, l *int64) z1 {
    i, g, e := step*int64(start), step*int64(end), step*int64(reset)
    return func() z2 {
        for i < g {
            *l += step
            i += step
            return z2{*l, true}
        }
        i = e
        *l -= (g - e)
        return n()
    }
}

type nLH struct{ even, odd []uint64 }

type zp struct {
    n z1
    g [][2]int64
}

func newNLH(e zp) nLH {
    var even, odd []uint64
    n, g := e.n, e.g
    for i := n(); i.hasValue; i = n() {
        for _, p := range g {
            ng, gg := p[0], p[1]
            if (ng > 0) || (i.value > 0) {
                w := uint64(ng*pow10[4] + gg + i.value)
                ws := uint64(math.Sqrt(float64(w)))
                if ws*ws == w {
                    if w%2 == 0 {
                        even = append(even, w)
                    } else {
                        odd = append(odd, w)
                    }
                }
            }
        }
    }
    return nLH{even, odd}
}

func makeL(n int) zp {
    g := make([]z1, n/2-3)
    g[0] = func() z2 { return z2{} }
    for i := 1; i < n/2-3; i++ {
        s := -9
        if i == n/2-4 {
            s = -10
        }
        l := pow10[n-i-4] - pow10[i+3]
        acc += l * int64(s)
        g[i] = fG(g[i-1], s, 9, -9, l, &acc)
    }
    var g0, g1, g2, g3 int64
    l0, l1, l2, l3 := pow10[n-5], pow10[n-6], pow10[n-7], pow10[n-8]
    f := func() [][2]int64 {
        var w [][2]int64
        for g0 < 7 {
            nn := g3*l3 + g2*l2 + g1*l1 + g0*l0
            gg := -1000*g3 - 100*g2 - 10*g1 - g0
            if g3 < 9 {
                g3++
            } else {
                g3 = -9
                if g2 < 9 {
                    g2++
                } else {
                    g2 = -9
                    if g1 < 9 {
                        g1++
                    } else {
                        g1 = -9
                        if g0 == 1 {
                            g0 = 3
                        }
                        g0++
                    }
                }
            }
            if bs[(pow10[10]+gg)%10000] {
                w = append(w, [2]int64{nn, gg})
            }
        }
        return w
    }
    return zp{g[n/2-4], f()}
}

func makeH(n int) zp {
    acc = -(pow10[n/2] + pow10[(n-1)/2])
    g := make([]z1, (n+1)/2-3)
    g[0] = func() z2 { return z2{} }
    for i := 1; i < n/2-3; i++ {
        j := 0
        if i == (n+1)/2-3 {
            j = -1
        }
        g[i] = fG(g[i-1], j, 18, 0, pow10[n-i-4]+pow10[i+3], &acc)
        if n%2 == 1 {
            g[(n+1)/2-4] = fG(g[n/2-4], -1, 9, 0, 2*pow10[n/2], &acc)
        }
    }
    g0 := int64(4)
    var g1, g2, g3 int64
    l0, l1, l2, l3 := pow10[n-5], pow10[n-6], pow10[n-7], pow10[n-8]
    f := func() [][2]int64 {
        var w [][2]int64
        for g0 < 17 {
            nn := g3*l3 + g2*l2 + g1*l1 + g0*l0
            gg := 1000*g3 + 100*g2 + 10*g1 + g0
            if g3 < 18 {
                g3++
            } else {
                g3 = 0
                if g2 < 18 {
                    g2++
                } else {
                    g2 = 0
                    if g1 < 18 {
                        g1++
                    } else {
                        g1 = 0
                        if g0 == 6 || g0 == 9 {
                            g0 += 3
                        }
                        g0++
                    }
                }
            }
            if bs[gg%10000] {
                w = append(w, [2]int64{nn, gg})
            }
        }
        return w
    }
    return zp{g[(n+1)/2-4], f()}
}

var (
    acc  int64
    bs   = make([]bool, 10000)
    L, H nLH
)

func rare(n int) []uint64 {
    acc = 0
    for g := 0; g < 10000; g++ {
        bs[(g*g)%10000] = true
    }
    L = newNLH(makeL(n))
    H = newNLH(makeH(n))
    var rares []uint64
    for _, l := range L.even {
        for _, h := range H.even {
            r := (h - l) / 2
            z := h - r
            if izRev(n, r, z) {
                rares = append(rares, z)
            }
        }
    }
    for _, l := range L.odd {
        for _, h := range H.odd {
            r := (h - l) / 2
            z := h - r
            if izRev(n, r, z) {
                rares = append(rares, z)
            }
        }
    }
    if len(rares) > 0 {
        sort.Slice(rares, func(i, j int) bool {
            return rares[i] < rares[j]
        })
    }
    return rares
}

// Formats time in form hh:mm:ss.fff (i.e. millisecond precision).
func formatTime(d time.Duration) string {
    f := d.Milliseconds()
    s := f / 1000
    f %= 1000
    m := s / 60
    s %= 60
    h := m / 60
    m %= 60
    return fmt.Sprintf("%02d:%02d:%02d.%03d", h, m, s, f)
}

func commatize(n uint64) string {
    s := fmt.Sprintf("%d", n)
    le := len(s)
    for i := le - 3; i >= 1; i -= 3 {
        s = s[0:i] + "," + s[i:]
    }
    return s
}

func main() {
    bStart := time.Now() // block time
    tStart := bStart     // total time
    nth := 3             // i.e. count of rare numbers < 10 digits
    fmt.Println("nth             rare number    digs  block time    total time")
    for nd := 10; nd <= 19; nd++ {
        rares := rare(nd)
        if len(rares) > 0 {
            for i, r := range rares {
                nth++
                t := ""
                if i < len(rares)-1 {
                    t = "\n"
                }
                fmt.Printf("%2d  %25s%s", nth, commatize(r), t)
            }
        } else {
            fmt.Printf("%29s", "")
        }
        fbTime := formatTime(time.Since(bStart))
        ftTime := formatTime(time.Since(tStart))
        fmt.Printf("  %2d: %s  %s\n", nd, fbTime, ftTime)
        bStart = time.Now() // restart block timing
    }
}
Output:
nth             rare number    digs  block time    total time
 4              2,022,652,202
 5              2,042,832,002  10: 00:00:00.002  00:00:00.002
                               11: 00:00:00.008  00:00:00.011
 6            868,591,084,757
 7            872,546,974,178
 8            872,568,754,178  12: 00:00:00.022  00:00:00.033
 9          6,979,302,951,885  13: 00:00:00.097  00:00:00.131
10         20,313,693,904,202
11         20,313,839,704,202
12         20,331,657,922,202
13         20,331,875,722,202
14         20,333,875,702,202
15         40,313,893,704,200
16         40,351,893,720,200  14: 00:00:00.265  00:00:00.396
17        200,142,385,731,002
18        204,238,494,066,002
19        221,462,345,754,122
20        244,062,891,224,042
21        245,518,996,076,442
22        248,359,494,187,442
23        403,058,392,434,500
24        441,054,594,034,340
25        816,984,566,129,618  15: 00:00:01.774  00:00:02.170
26      2,078,311,262,161,202
27      2,133,786,945,766,212
28      2,135,568,943,984,212
29      2,135,764,587,964,212
30      2,135,786,765,764,212
31      4,135,786,945,764,210
32      6,157,577,986,646,405
33      6,889,765,708,183,410
34      8,052,956,026,592,517
35      8,052,956,206,592,517
36      8,191,154,686,620,818
37      8,191,156,864,620,818
38      8,191,376,864,400,818
39      8,650,327,689,541,457
40      8,650,349,867,341,457  16: 00:00:05.407  00:00:07.578
41     22,542,040,692,914,522
42     67,725,910,561,765,640
43     86,965,750,494,756,968  17: 00:00:35.401  00:00:42.979
44    225,342,456,863,243,522
45    225,342,458,663,243,522
46    225,342,478,643,243,522
47    284,684,666,566,486,482
48    284,684,868,364,486,482
49    297,128,548,234,950,692
50    297,128,722,852,950,692
51    297,148,324,656,930,692
52    297,148,546,434,930,692
53    497,168,548,234,910,690
54    619,431,353,040,136,925
55    619,631,153,042,134,925
56    631,688,638,047,992,345
57    633,288,858,025,996,145
58    633,488,632,647,994,145
59    653,488,856,225,994,125
60    811,865,096,390,477,018
61    865,721,270,017,296,468
62    871,975,098,681,469,178
63    898,907,259,301,737,498  18: 00:01:42.745  00:02:25.725
64  2,042,401,829,204,402,402
65  2,060,303,819,041,450,202
66  2,420,424,089,100,600,242
67  2,551,755,006,254,571,552
68  2,702,373,360,882,732,072
69  2,825,378,427,312,735,282
70  6,531,727,101,458,000,045
71  6,988,066,446,726,832,640
72  8,066,308,349,502,036,608
73  8,197,906,905,009,010,818
74  8,200,756,128,308,135,597
75  8,320,411,466,598,809,138  19: 00:12:48.590  00:15:14.316

J

The following function determines whether a given integer is "rare", as can be seen in the sample output.

To use it to find rare numbers, one would simply apply it to each integer seriatim, and keep the numbers where its output is true (I.@:rare i. AS_HIGH_AS_YOU_WANT_TO_CHECK); but since these numbers are, well, rare, actually doing so would take a very long time.

rare     =:  ( np@:] *. (nbrPs rr) ) b10
  np     =:  -.@:(-: |.)    NB. Not palindromic  
  nbrPs  =:  > *. sdPs      NB. n is Bigger than R and the perfect square constraint is satisfied
    sdPs =:  + *.&:ps -     NB. n > rr and both their sum and difference are perfect squares  
    ps   =:  0 = 1 | %:     NB. Perfect square (integral sqrt)
  rr     =:  10&#.@:|.      NB. Do note we do reverse the digits twice (once here, once in np)
  b10    =:  10&#.^:_1      NB. Base 10 digits
Output:
   NB. From OEIS
   R =: 65 621770 281089082 2022652202 2042832002 868591084757 872546974178 872568754178 6979302951885 20313693904202 20313839704202 20331657922202 20331875722202 20333875702202 40313893704200
   rare"0 R
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Java

Translation of: Kotlin
import java.time.Duration;
import java.time.LocalDateTime;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicReference;

public class RareNumbers {
    public interface Consumer5<A, B, C, D, E> {
        void apply(A a, B b, C c, D d, E e);
    }

    public interface Consumer7<A, B, C, D, E, F, G> {
        void apply(A a, B b, C c, D d, E e, F f, G g);
    }

    public interface Recursable5<A, B, C, D, E> {
        void apply(A a, B b, C c, D d, E e, Recursable5<A, B, C, D, E> r);
    }

    public interface Recursable7<A, B, C, D, E, F, G> {
        void apply(A a, B b, C c, D d, E e, F f, G g, Recursable7<A, B, C, D, E, F, G> r);
    }

    public static <A, B, C, D, E> Consumer5<A, B, C, D, E> recurse(Recursable5<A, B, C, D, E> r) {
        return (a, b, c, d, e) -> r.apply(a, b, c, d, e, r);
    }

    public static <A, B, C, D, E, F, G> Consumer7<A, B, C, D, E, F, G> recurse(Recursable7<A, B, C, D, E, F, G> r) {
        return (a, b, c, d, e, f, g) -> r.apply(a, b, c, d, e, f, g, r);
    }

    private static class Term {
        long coeff;
        byte ix1, ix2;

        public Term(long coeff, byte ix1, byte ix2) {
            this.coeff = coeff;
            this.ix1 = ix1;
            this.ix2 = ix2;
        }
    }

    private static final int MAX_DIGITS = 16;

    private static long toLong(List<Byte> digits, boolean reverse) {
        long sum = 0;
        if (reverse) {
            for (int i = digits.size() - 1; i >= 0; --i) {
                sum = sum * 10 + digits.get(i);
            }
        } else {
            for (Byte digit : digits) {
                sum = sum * 10 + digit;
            }
        }
        return sum;
    }

    private static boolean isNotSquare(long n) {
        long root = (long) Math.sqrt(n);
        return root * root != n;
    }

    private static List<Byte> seq(byte from, byte to, byte step) {
        List<Byte> res = new ArrayList<>();
        for (byte i = from; i <= to; i += step) {
            res.add(i);
        }
        return res;
    }

    private static String commatize(long n) {
        String s = String.valueOf(n);
        int le = s.length();
        int i = le - 3;
        while (i >= 1) {
            s = s.substring(0, i) + "," + s.substring(i);
            i -= 3;
        }
        return s;
    }

    public static void main(String[] args) {
        final LocalDateTime startTime = LocalDateTime.now();
        long pow = 1L;
        System.out.println("Aggregate timings to process all numbers up to:");
        // terms of (n-r) expression for number of digits from 2 to maxDigits
        List<List<Term>> allTerms = new ArrayList<>();
        for (int i = 0; i < MAX_DIGITS - 1; ++i) {
            allTerms.add(new ArrayList<>());
        }
        for (int r = 2; r <= MAX_DIGITS; ++r) {
            List<Term> terms = new ArrayList<>();
            pow *= 10;
            long pow1 = pow;
            long pow2 = 1;
            byte i1 = 0;
            byte i2 = (byte) (r - 1);
            while (i1 < i2) {
                terms.add(new Term(pow1 - pow2, i1, i2));

                pow1 /= 10;
                pow2 *= 10;

                i1++;
                i2--;
            }
            allTerms.set(r - 2, terms);
        }
        //  map of first minus last digits for 'n' to pairs giving this value
        Map<Byte, List<List<Byte>>> fml = Map.of(
            (byte) 0, List.of(List.of((byte) 2, (byte) 2), List.of((byte) 8, (byte) 8)),
            (byte) 1, List.of(List.of((byte) 6, (byte) 5), List.of((byte) 8, (byte) 7)),
            (byte) 4, List.of(List.of((byte) 4, (byte) 0)),
            (byte) 6, List.of(List.of((byte) 6, (byte) 0), List.of((byte) 8, (byte) 2))
        );
        // map of other digit differences for 'n' to pairs giving this value
        Map<Byte, List<List<Byte>>> dmd = new HashMap<>();
        for (int i = 0; i < 100; ++i) {
            List<Byte> a = List.of((byte) (i / 10), (byte) (i % 10));

            int d = a.get(0) - a.get(1);
            dmd.computeIfAbsent((byte) d, k -> new ArrayList<>()).add(a);
        }
        List<Byte> fl = List.of((byte) 0, (byte) 1, (byte) 4, (byte) 6);
        List<Byte> dl = seq((byte) -9, (byte) 9, (byte) 1); //  all differences
        List<Byte> zl = List.of((byte) 0);                  // zero differences only
        List<Byte> el = seq((byte) -8, (byte) 8, (byte) 2); // even differences only
        List<Byte> ol = seq((byte) -9, (byte) 9, (byte) 2); //  odd differences only
        List<Byte> il = seq((byte) 0, (byte) 9, (byte) 1);
        List<Long> rares = new ArrayList<>();
        List<List<List<Byte>>> lists = new ArrayList<>();
        for (int i = 0; i < 4; ++i) {
            lists.add(new ArrayList<>());
        }
        for (int i = 0; i < fl.size(); ++i) {
            List<List<Byte>> temp1 = new ArrayList<>();
            List<Byte> temp2 = new ArrayList<>();
            temp2.add(fl.get(i));
            temp1.add(temp2);
            lists.set(i, temp1);
        }
        final AtomicReference<List<Byte>> digits = new AtomicReference<>(new ArrayList<>());
        AtomicInteger count = new AtomicInteger();

        // Recursive closure to generate (n+r) candidates from (n-r) candidates
        // and hence find Rare numbers with a given number of digits.
        Consumer7<List<Byte>, List<Byte>, List<List<Byte>>, List<List<Byte>>, Long, Integer, Integer> fnpr = recurse((cand, di, dis, indicies, nmr, nd, level, func) -> {
            if (level == dis.size()) {
                digits.get().set(indicies.get(0).get(0), fml.get(cand.get(0)).get(di.get(0)).get(0));
                digits.get().set(indicies.get(0).get(1), fml.get(cand.get(0)).get(di.get(0)).get(1));
                int le = di.size();
                if (nd % 2 == 1) {
                    le--;
                    digits.get().set(nd / 2, di.get(le));
                }
                for (int i = 1; i < le; ++i) {
                    digits.get().set(indicies.get(i).get(0), dmd.get(cand.get(i)).get(di.get(i)).get(0));
                    digits.get().set(indicies.get(i).get(1), dmd.get(cand.get(i)).get(di.get(i)).get(1));
                }
                long r = toLong(digits.get(), true);
                long npr = nmr + 2 * r;
                if (isNotSquare(npr)) {
                    return;
                }
                count.getAndIncrement();
                System.out.printf("     R/N %2d:", count.get());
                LocalDateTime checkPoint = LocalDateTime.now();
                long elapsed = Duration.between(startTime, checkPoint).toMillis();
                System.out.printf("  %9sms", elapsed);
                long n = toLong(digits.get(), false);
                System.out.printf("  (%s)\n", commatize(n));
                rares.add(n);
            } else {
                for (Byte num : dis.get(level)) {
                    di.set(level, num);
                    func.apply(cand, di, dis, indicies, nmr, nd, level + 1, func);
                }
            }
        });

        // Recursive closure to generate (n-r) candidates with a given number of digits.
        Consumer5<List<Byte>, List<List<Byte>>, List<List<Byte>>, Integer, Integer> fnmr = recurse((cand, list, indicies, nd, level, func) -> {
            if (level == list.size()) {
                long nmr = 0;
                long nmr2 = 0;
                List<Term> terms = allTerms.get(nd - 2);
                for (int i = 0; i < terms.size(); ++i) {
                    Term t = terms.get(i);
                    if (cand.get(i) >= 0) {
                        nmr += t.coeff * cand.get(i);
                    } else {
                        nmr2 += t.coeff * -cand.get(i);
                        if (nmr >= nmr2) {
                            nmr -= nmr2;
                            nmr2 = 0;
                        } else {
                            nmr2 -= nmr;
                            nmr = 0;
                        }
                    }
                }
                if (nmr2 >= nmr) {
                    return;
                }
                nmr -= nmr2;
                if (isNotSquare(nmr)) {
                    return;
                }
                List<List<Byte>> dis = new ArrayList<>();
                dis.add(seq((byte) 0, (byte) (fml.get(cand.get(0)).size() - 1), (byte) 1));
                for (int i = 1; i < cand.size(); ++i) {
                    dis.add(seq((byte) 0, (byte) (dmd.get(cand.get(i)).size() - 1), (byte) 1));
                }
                if (nd % 2 == 1) {
                    dis.add(il);
                }
                List<Byte> di = new ArrayList<>();
                for (int i = 0; i < dis.size(); ++i) {
                    di.add((byte) 0);
                }
                fnpr.apply(cand, di, dis, indicies, nmr, nd, 0);
            } else {
                for (Byte num : list.get(level)) {
                    cand.set(level, num);
                    func.apply(cand, list, indicies, nd, level + 1, func);
                }
            }
        });

        for (int nd = 2; nd <= MAX_DIGITS; ++nd) {
            digits.set(new ArrayList<>());
            for (int i = 0; i < nd; ++i) {
                digits.get().add((byte) 0);
            }
            if (nd == 4) {
                lists.get(0).add(zl);
                lists.get(1).add(ol);
                lists.get(2).add(el);
                lists.get(3).add(ol);
            } else if (allTerms.get(nd - 2).size() > lists.get(0).size()) {
                for (int i = 0; i < 4; ++i) {
                    lists.get(i).add(dl);
                }
            }
            List<List<Byte>> indicies = new ArrayList<>();
            for (Term t : allTerms.get(nd - 2)) {
                indicies.add(List.of(t.ix1, t.ix2));
            }
            for (List<List<Byte>> list : lists) {
                List<Byte> cand = new ArrayList<>();
                for (int i = 0; i < list.size(); ++i) {
                    cand.add((byte) 0);
                }
                fnmr.apply(cand, list, indicies, nd, 0);
            }
            LocalDateTime checkPoint = LocalDateTime.now();
            long elapsed = Duration.between(startTime, checkPoint).toMillis();
            System.out.printf("  %2d digits:  %9sms\n", nd, elapsed);
        }

        Collections.sort(rares);
        System.out.printf("\nThe rare numbers with up to %d digits are:\n", MAX_DIGITS);
        for (int i = 0; i < rares.size(); ++i) {
            System.out.printf("  %2d:  %25s\n", i + 1, commatize(rares.get(i)));
        }
    }
}
Output:
Aggregate timings to process all numbers up to:
     R/N  1:         17ms  (65)
   2 digits:         19ms
   3 digits:         20ms
   4 digits:         21ms
   5 digits:         21ms
     R/N  2:         29ms  (621,770)
   6 digits:         55ms
   7 digits:         57ms
   8 digits:         72ms
     R/N  3:         76ms  (281,089,082)
   9 digits:         85ms
     R/N  4:         89ms  (2,022,652,202)
     R/N  5:        237ms  (2,042,832,002)
  10 digits:        451ms
  11 digits:        503ms
     R/N  6:        833ms  (872,546,974,178)
     R/N  7:        869ms  (872,568,754,178)
     R/N  8:       1324ms  (868,591,084,757)
  12 digits:       1582ms
     R/N  9:       1888ms  (6,979,302,951,885)
  13 digits:       2299ms
     R/N 10:       6199ms  (20,313,693,904,202)
     R/N 11:       6272ms  (20,313,839,704,202)
     R/N 12:       7831ms  (20,331,657,922,202)
     R/N 13:       8070ms  (20,331,875,722,202)
     R/N 14:       8708ms  (20,333,875,702,202)
     R/N 15:      19681ms  (40,313,893,704,200)
     R/N 16:      19823ms  (40,351,893,720,200)
  14 digits:      21712ms
     R/N 17:      21758ms  (200,142,385,731,002)
     R/N 18:      21991ms  (221,462,345,754,122)
     R/N 19:      24990ms  (816,984,566,129,618)
     R/N 20:      26552ms  (245,518,996,076,442)
     R/N 21:      26774ms  (204,238,494,066,002)
     R/N 22:      26846ms  (248,359,494,187,442)
     R/N 23:      27158ms  (244,062,891,224,042)
     R/N 24:      32349ms  (403,058,392,434,500)
     R/N 25:      32576ms  (441,054,594,034,340)
  15 digits:      34465ms
     R/N 26:      85843ms  (2,133,786,945,766,212)
     R/N 27:     105944ms  (2,135,568,943,984,212)
     R/N 28:     109027ms  (8,191,154,686,620,818)
     R/N 29:     111677ms  (8,191,156,864,620,818)
     R/N 30:     112849ms  (2,135,764,587,964,212)
     R/N 31:     114572ms  (2,135,786,765,764,212)
     R/N 32:     118622ms  (8,191,376,864,400,818)
     R/N 33:     132237ms  (2,078,311,262,161,202)
     R/N 34:     164708ms  (8,052,956,026,592,517)
     R/N 35:     169421ms  (8,052,956,206,592,517)
     R/N 36:     203280ms  (8,650,327,689,541,457)
     R/N 37:     205555ms  (8,650,349,867,341,457)
     R/N 38:     207237ms  (6,157,577,986,646,405)
     R/N 39:     246082ms  (4,135,786,945,764,210)
     R/N 40:     275691ms  (6,889,765,708,183,410)
  16 digits:     278088ms

The rare numbers with up to 16 digits are:
   1:                         65
   2:                    621,770
   3:                281,089,082
   4:              2,022,652,202
   5:              2,042,832,002
   6:            868,591,084,757
   7:            872,546,974,178
   8:            872,568,754,178
   9:          6,979,302,951,885
  10:         20,313,693,904,202
  11:         20,313,839,704,202
  12:         20,331,657,922,202
  13:         20,331,875,722,202
  14:         20,333,875,702,202
  15:         40,313,893,704,200
  16:         40,351,893,720,200
  17:        200,142,385,731,002
  18:        204,238,494,066,002
  19:        221,462,345,754,122
  20:        244,062,891,224,042
  21:        245,518,996,076,442
  22:        248,359,494,187,442
  23:        403,058,392,434,500
  24:        441,054,594,034,340
  25:        816,984,566,129,618
  26:      2,078,311,262,161,202
  27:      2,133,786,945,766,212
  28:      2,135,568,943,984,212
  29:      2,135,764,587,964,212
  30:      2,135,786,765,764,212
  31:      4,135,786,945,764,210
  32:      6,157,577,986,646,405
  33:      6,889,765,708,183,410
  34:      8,052,956,026,592,517
  35:      8,052,956,206,592,517
  36:      8,191,154,686,620,818
  37:      8,191,156,864,620,818
  38:      8,191,376,864,400,818
  39:      8,650,327,689,541,457
  40:      8,650,349,867,341,457

Julia

Translation of: Go
using Formatting, Printf

struct Term
    coeff::UInt64
    ix1::Int8
    ix2::Int8
end

function toUInt64(dgits, reverse)
    return reverse ? foldr((i, j) -> i + 10j, UInt64.(dgits)) :
                     foldl((i, j) -> 10i + j, UInt64.(dgits))
end

function issquare(n)
    if 0x202021202030213 & (1 << (UInt64(n) & 63)) != 0
        root = UInt64(floor(sqrt(n)))
        return root * root == n
    end
    return false
end

seq(from, to, step) = Int8.(collect(from:step:to))

commatize(n::Integer) = format(n, commas=true)

const verbose = true
const count = [0]

"""
Recursive closure to generate (n+r) candidates from (n-r) candidates
and hence find Rare numbers with a given number of digits.
"""
function fnpr(cand, di, dis, indices, nmr, nd, level, dgits, fml, dmd, start, rares, il)
    if level == length(dis)
        dgits[indices[1][1] + 1] = fml[cand[1]][di[1] + 1][1]
        dgits[indices[1][2] + 1] = fml[cand[1]][di[1] + 1][2]
        le = length(di)
        if nd % 2 == 1
            le -= 1
            dgits[nd ÷ 2 + 1] = di[le + 1]
        end
        for (i, d) in enumerate(di[2:le])
            dgits[indices[i+1][1] + 1] = dmd[cand[i+1]][d + 1][1]
            dgits[indices[i+1][2] + 1] = dmd[cand[i+1]][d + 1][2]
        end
        r = toUInt64(dgits, true)
        npr = nmr + 2 * r
        !issquare(npr) && return
        count[1] += 1
        verbose && @printf("     R/N %2d:", count[1])
        !verbose && print("$count rares\b\b\b\b\b\b\b\b\b")
        ms = UInt64(time() * 1000 - start)
        verbose && @printf("  %9s ms", commatize(Int(ms)))
        n = toUInt64(dgits, false)
        verbose && @printf("  (%s)\n", commatize(BigInt(n)))
        push!(rares, n)
    else
        for num in dis[level + 1]
            di[level + 1] = num
            fnpr(cand, di, dis, indices, nmr, nd, level + 1, dgits, fml, dmd, start, rares, il)
        end
    end
end # function fnpr

# Recursive closure to generate (n-r) candidates with a given number of digits.
# var fnmr func(cand []int8, list [][]int8, indices [][2]int8, nd, level int)
function fnmr(cand, list, indices, nd, level, allterms, fml, dmd, dgits, start, rares, il)
    if level == length(list)
        nmr, nmr2 = zero(UInt64), zero(UInt64)
        for (i, t) in enumerate(allterms[nd - 1])
            if cand[i] >= 0
                nmr += t.coeff * UInt64(cand[i])
            else
                nmr2 += t.coeff * UInt64(-cand[i])
                if nmr >= nmr2
                    nmr -= nmr2
                    nmr2 = zero(nmr2)
                else
                    nmr2 -= nmr
                    nmr = zero(nmr)
                end
            end
        end
        nmr2 >= nmr && return
        nmr -= nmr2
        !issquare(nmr) && return
        dis = [[seq(0, Int8(length(fml[cand[1]]) - 1), 1)] ;
            [seq(0, Int8(length(dmd[c]) - 1), 1) for c in cand[2:end]]]
        isodd(nd) && push!(dis, il)
        di = zeros(Int8, length(dis))
        fnpr(cand, di, dis, indices, nmr, nd, 0, dgits, fml, dmd, start, rares, il)
    else
        for num in list[level + 1]
            cand[level + 1] = num
            fnmr(cand, list, indices, nd, level + 1, allterms, fml, dmd, dgits, start, rares, il)
        end
    end
end # function fnmr

function findrare(maxdigits = 19)
    start = time() * 1000.0
    pow = one(UInt64)
    verbose && println("Aggregate timings to process all numbers up to:")
    # terms of (n-r) expression for number of digits from 2 to maxdigits
    allterms = Vector{Vector{Term}}()
    for r in 2:maxdigits
        terms = Term[]
        pow *= 10
        pow1, pow2, i1, i2 = pow, one(UInt64), zero(Int8), Int8(r - 1)
        while i1 < i2
            push!(terms, Term(pow1 - pow2, i1, i2))
            pow1, pow2, i1, i2 = pow1 ÷ 10, pow2 * 10, i1 + 1, i2 - 1
        end
        push!(allterms, terms)
    end
    #  map of first minus last digits for 'n' to pairs giving this value
    fml = Dict(
        0 => [2 => 2, 8 => 8],
        1 => [6 => 5, 8 => 7],
        4 => [4 => 0],
        6 => [6 => 0, 8 => 2],
    )
    # map of other digit differences for 'n' to pairs giving this value
    dmd = Dict{Int8, Vector{Vector{Int8}}}()
    for i in 0:99
        a = [Int8(i ÷ 10), Int8(i % 10)]
        d = a[1] - a[2]
        v = get!(dmd, d, [])
        push!(v, a)
    end
    fl = Int8[0, 1, 4, 6]
    dl = seq(-9, 9, 1)  # all differences
    zl = Int8[0]        # zero differences only
    el = seq(-8, 8, 2)  # even differences only
    ol = seq(-9, 9, 2)  # odd differences only
    il = seq(0, 9, 1)
    rares = UInt64[]
    lists = [[[f]] for f in fl]
    dgits = Int8[]
    count[1] = 0

    for nd = 2:maxdigits
        dgits = zeros(Int8, nd)
        if nd == 4
            push!(lists[1], zl)
            push!(lists[2], ol)
            push!(lists[3], el)
            push!(lists[4], ol)
        elseif length(allterms[nd - 1]) > length(lists[1])
            for i in 1:4
                push!(lists[i], dl)
            end
        end
        indices = Vector{Vector{Int8}}()
        for t in allterms[nd - 1]
            push!(indices, Int8[t.ix1, t.ix2])
        end
        for list in lists
            cand = zeros(Int8, length(list))
            fnmr(cand, list, indices, nd, 0, allterms, fml, dmd, dgits, start, rares, il)
        end
        ms = UInt64(time() * 1000 - start)
        verbose && @printf("  %2d digits:  %9s ms\n", nd, commatize(Int(ms)))
    end

    sort!(rares)
    @printf("\nThe rare numbers with up to %d digits are:\n", maxdigits)
    for (i, rare) in enumerate(rares)
        @printf("  %2d:  %25s\n", i, commatize(BigInt(rare)))
    end
end # findrare function

findrare()
Output:

Timings are on a 2.9 GHz i5 processor, 16 Gb RAM, under Windows 10.

Aggregate timings to process all numbers up to:
     R/N  1:          5 ms  (65)
   2 digits:        132 ms
   3 digits:        133 ms
   4 digits:        134 ms
   5 digits:        134 ms
     R/N  2:        135 ms  (621,770)
   6 digits:        135 ms
   7 digits:        136 ms
   8 digits:        140 ms
     R/N  3:        141 ms  (281,089,082)
   9 digits:        143 ms
     R/N  4:        144 ms  (2,022,652,202)
     R/N  5:        168 ms  (2,042,832,002)
  10 digits:        209 ms
  11 digits:        251 ms
     R/N  6:        443 ms  (872,546,974,178)
     R/N  7:        467 ms  (872,568,754,178)
     R/N  8:        773 ms  (868,591,084,757)
  12 digits:        919 ms
     R/N  9:      1,178 ms  (6,979,302,951,885)
  13 digits:      1,510 ms
     R/N 10:      4,662 ms  (20,313,693,904,202)
     R/N 11:      4,722 ms  (20,313,839,704,202)
     R/N 12:      6,028 ms  (20,331,657,922,202)
     R/N 13:      6,223 ms  (20,331,875,722,202)
     R/N 14:      6,753 ms  (20,333,875,702,202)
     R/N 15:     15,475 ms  (40,313,893,704,200)
     R/N 16:     15,594 ms  (40,351,893,720,200)
  14 digits:     16,749 ms
     R/N 17:     16,772 ms  (200,142,385,731,002)
     R/N 18:     17,006 ms  (221,462,345,754,122)
     R/N 19:     20,027 ms  (816,984,566,129,618)
     R/N 20:     21,669 ms  (245,518,996,076,442)
     R/N 21:     21,895 ms  (204,238,494,066,002)
     R/N 22:     21,974 ms  (248,359,494,187,442)
     R/N 23:     22,302 ms  (244,062,891,224,042)
     R/N 24:     27,158 ms  (403,058,392,434,500)
     R/N 25:     27,405 ms  (441,054,594,034,340)
  15 digits:     28,744 ms
     R/N 26:     79,350 ms  (2,133,786,945,766,212)
     R/N 27:     99,360 ms  (2,135,568,943,984,212)
     R/N 28:    102,426 ms  (8,191,154,686,620,818)
     R/N 29:    105,135 ms  (8,191,156,864,620,818)
     R/N 30:    106,334 ms  (2,135,764,587,964,212)
     R/N 31:    108,038 ms  (2,135,786,765,764,212)
     R/N 32:    112,142 ms  (8,191,376,864,400,818)
     R/N 33:    125,607 ms  (2,078,311,262,161,202)
     R/N 34:    154,417 ms  (8,052,956,026,592,517)
     R/N 35:    159,075 ms  (8,052,956,206,592,517)
     R/N 36:    192,323 ms  (8,650,327,689,541,457)
     R/N 37:    194,651 ms  (8,650,349,867,341,457)
     R/N 38:    196,344 ms  (6,157,577,986,646,405)
     R/N 39:    227,492 ms  (4,135,786,945,764,210)
     R/N 40:    244,502 ms  (6,889,765,708,183,410)
  16 digits:    245,658 ms
     R/N 41:    251,178 ms  (86,965,750,494,756,968)
     R/N 42:    252,157 ms  (22,542,040,692,914,522)
     R/N 43:    382,883 ms  (67,725,910,561,765,640)
  17 digits:    393,371 ms
     R/N 44:    427,555 ms  (284,684,666,566,486,482)
     R/N 45:    549,740 ms  (225,342,456,863,243,522)
     R/N 46:    594,392 ms  (225,342,458,663,243,522)
     R/N 47:    688,221 ms  (225,342,478,643,243,522)
     R/N 48:    753,385 ms  (284,684,868,364,486,482)
     R/N 49:  1,108,538 ms  (871,975,098,681,469,178)
     R/N 50:  1,770,255 ms  (865,721,270,017,296,468)
     R/N 51:  1,785,243 ms  (297,128,548,234,950,692)
     R/N 52:  1,793,571 ms  (297,128,722,852,950,692)
     R/N 53:  1,892,872 ms  (811,865,096,390,477,018)
     R/N 54:  1,941,208 ms  (297,148,324,656,930,692)
     R/N 55:  1,964,502 ms  (297,148,546,434,930,692)
     R/N 56:  2,267,616 ms  (898,907,259,301,737,498)
     R/N 57:  2,677,207 ms  (631,688,638,047,992,345)
     R/N 58:  2,702,836 ms  (619,431,353,040,136,925)
     R/N 59:  2,960,274 ms  (619,631,153,042,134,925)
     R/N 60:  3,019,846 ms  (633,288,858,025,996,145)
     R/N 61:  3,084,695 ms  (633,488,632,647,994,145)
     R/N 62:  3,924,801 ms  (653,488,856,225,994,125)
     R/N 63:  4,229,162 ms  (497,168,548,234,910,690)
  18 digits:  4,563,375 ms
     R/N 64:  4,643,118 ms  (2,551,755,006,254,571,552)
     R/N 65:  4,662,645 ms  (2,702,373,360,882,732,072)
     R/N 66:  4,925,324 ms  (2,825,378,427,312,735,282)
     R/N 67:  4,947,368 ms  (8,066,308,349,502,036,608)
     R/N 68:  5,170,716 ms  (2,042,401,829,204,402,402)
     R/N 69:  5,216,832 ms  (2,420,424,089,100,600,242)
     R/N 70:  5,329,680 ms  (8,320,411,466,598,809,138)
     R/N 71:  5,634,991 ms  (8,197,906,905,009,010,818)
     R/N 72:  5,665,799 ms  (2,060,303,819,041,450,202)
     R/N 73:  5,861,019 ms  (8,200,756,128,308,135,597)
     R/N 74:  6,136,091 ms  (6,531,727,101,458,000,045)
     R/N 75:  6,770,242 ms  (6,988,066,446,726,832,640)
  19 digits:  6,846,705 ms

The rare numbers with up to 19 digits are:
   1:                         65
   2:                    621,770
   3:                281,089,082
   4:              2,022,652,202
   5:              2,042,832,002
   6:            868,591,084,757
   7:            872,546,974,178
   8:            872,568,754,178
   9:          6,979,302,951,885
  10:         20,313,693,904,202
  11:         20,313,839,704,202
  12:         20,331,657,922,202
  13:         20,331,875,722,202
  14:         20,333,875,702,202
  15:         40,313,893,704,200
  16:         40,351,893,720,200
  17:        200,142,385,731,002
  18:        204,238,494,066,002
  19:        221,462,345,754,122
  20:        244,062,891,224,042
  21:        245,518,996,076,442
  22:        248,359,494,187,442
  23:        403,058,392,434,500
  24:        441,054,594,034,340
  25:        816,984,566,129,618
  26:      2,078,311,262,161,202
  27:      2,133,786,945,766,212
  28:      2,135,568,943,984,212
  29:      2,135,764,587,964,212
  30:      2,135,786,765,764,212
  31:      4,135,786,945,764,210
  32:      6,157,577,986,646,405
  33:      6,889,765,708,183,410
  34:      8,052,956,026,592,517
  35:      8,052,956,206,592,517
  36:      8,191,154,686,620,818
  37:      8,191,156,864,620,818
  38:      8,191,376,864,400,818
  39:      8,650,327,689,541,457
  40:      8,650,349,867,341,457
  41:     22,542,040,692,914,522
  42:     67,725,910,561,765,640
  43:     86,965,750,494,756,968
  44:    225,342,456,863,243,522
  45:    225,342,458,663,243,522
  46:    225,342,478,643,243,522
  47:    284,684,666,566,486,482
  48:    284,684,868,364,486,482
  49:    297,128,548,234,950,692
  50:    297,128,722,852,950,692
  51:    297,148,324,656,930,692
  52:    297,148,546,434,930,692
  53:    497,168,548,234,910,690
  54:    619,431,353,040,136,925
  55:    619,631,153,042,134,925
  56:    631,688,638,047,992,345
  57:    633,288,858,025,996,145
  58:    633,488,632,647,994,145
  59:    653,488,856,225,994,125
  60:    811,865,096,390,477,018
  61:    865,721,270,017,296,468
  62:    871,975,098,681,469,178
  63:    898,907,259,301,737,498
  64:  2,042,401,829,204,402,402
  65:  2,060,303,819,041,450,202
  66:  2,420,424,089,100,600,242
  67:  2,551,755,006,254,571,552
  68:  2,702,373,360,882,732,072
  69:  2,825,378,427,312,735,282
  70:  6,531,727,101,458,000,045
  71:  6,988,066,446,726,832,640
  72:  8,066,308,349,502,036,608
  73:  8,197,906,905,009,010,818
  74:  8,200,756,128,308,135,597
  75:  8,320,411,466,598,809,138

Kotlin

Translation of: D
import java.time.Duration
import java.time.LocalDateTime
import kotlin.math.sqrt

class Term(var coeff: Long, var ix1: Byte, var ix2: Byte)

const val maxDigits = 16

fun toLong(digits: List<Byte>, reverse: Boolean): Long {
    var sum: Long = 0
    if (reverse) {
        var i = digits.size - 1
        while (i >= 0) {
            sum = sum * 10 + digits[i]
            i--
        }
    } else {
        var i = 0
        while (i < digits.size) {
            sum = sum * 10 + digits[i]
            i++
        }
    }
    return sum
}

fun isSquare(n: Long): Boolean {
    val root = sqrt(n.toDouble()).toLong()
    return root * root == n
}

fun seq(from: Byte, to: Byte, step: Byte): List<Byte> {
    val res = mutableListOf<Byte>()
    var i = from
    while (i <= to) {
        res.add(i)
        i = (i + step).toByte()
    }
    return res
}

fun commatize(n: Long): String {
    var s = n.toString()
    val le = s.length
    var i = le - 3
    while (i >= 1) {
        s = s.slice(0 until i) + "," + s.substring(i)
        i -= 3
    }
    return s
}

fun main() {
    val startTime = LocalDateTime.now()
    var pow = 1L
    println("Aggregate timings to process all numbers up to:")
    // terms of (n-r) expression for number of digits from 2 to maxDigits
    val allTerms = mutableListOf<MutableList<Term>>()
    for (i in 0 until maxDigits - 1) {
        allTerms.add(mutableListOf())
    }
    for (r in 2..maxDigits) {
        val terms = mutableListOf<Term>()
        pow *= 10
        var pow1 = pow
        var pow2 = 1L
        var i1: Byte = 0
        var i2 = (r - 1).toByte()
        while (i1 < i2) {
            terms.add(Term(pow1 - pow2, i1, i2))

            pow1 /= 10
            pow2 *= 10

            i1++
            i2--
        }
        allTerms[r - 2] = terms
    }
    //  map of first minus last digits for 'n' to pairs giving this value
    val fml = mapOf(
        0.toByte() to listOf(listOf<Byte>(2, 2), listOf<Byte>(8, 8)),
        1.toByte() to listOf(listOf<Byte>(6, 5), listOf<Byte>(8, 7)),
        4.toByte() to listOf(listOf<Byte>(4, 0)),
        6.toByte() to listOf(listOf<Byte>(6, 0), listOf<Byte>(8, 2))
    )
    // map of other digit differences for 'n' to pairs giving this value
    val dmd = mutableMapOf<Byte, MutableList<List<Byte>>>()
    for (i in 0 until 100) {
        val a = listOf((i / 10).toByte(), (i % 10).toByte())
        val d = a[0] - a[1]
        dmd.getOrPut(d.toByte(), { mutableListOf() }).add(a)
    }
    val fl = listOf<Byte>(0, 1, 4, 6)
    val dl = seq(-9, 9, 1)  // all differences
    val zl = listOf<Byte>(0)                 // zero differences only
    val el = seq(-8, 8, 2)  // even differences only
    val ol = seq(-9, 9, 2)  // odd differences only
    val il = seq(0, 9, 1)
    val rares = mutableListOf<Long>()
    val lists = mutableListOf<MutableList<List<Byte>>>()
    for (i in 0 until 4) {
        lists.add(mutableListOf())
    }
    for (i_f in fl.withIndex()) {
        lists[i_f.index] = mutableListOf(listOf(i_f.value))
    }
    var digits = mutableListOf<Byte>()
    var count = 0

    // Recursive closure to generate (n+r) candidates from (n-r) candidates
    // and hence find Rare numbers with a given number of digits.
    fun fnpr(
        cand: List<Byte>,
        di: MutableList<Byte>,
        dis: List<List<Byte>>,
        indicies: List<List<Byte>>,
        nmr: Long,
        nd: Int,
        level: Int
    ) {
        if (level == dis.size) {
            digits[indicies[0][0].toInt()] = fml[cand[0]]?.get(di[0].toInt())?.get(0)!!
            digits[indicies[0][1].toInt()] = fml[cand[0]]?.get(di[0].toInt())?.get(1)!!
            var le = di.size
            if (nd % 2 == 1) {
                le--
                digits[nd / 2] = di[le]
            }
            for (i_d in di.slice(1 until le).withIndex()) {
                digits[indicies[i_d.index + 1][0].toInt()] = dmd[cand[i_d.index + 1]]?.get(i_d.value.toInt())?.get(0)!!
                digits[indicies[i_d.index + 1][1].toInt()] = dmd[cand[i_d.index + 1]]?.get(i_d.value.toInt())?.get(1)!!
            }
            val r = toLong(digits, true)
            val npr = nmr + 2 * r
            if (!isSquare(npr)) {
                return
            }
            count++
            print("     R/N %2d:".format(count))
            val checkPoint = LocalDateTime.now()
            val elapsed = Duration.between(startTime, checkPoint).toMillis()
            print("  %9sms".format(elapsed))
            val n = toLong(digits, false)
            println("  (${commatize(n)})")
            rares.add(n)
        } else {
            for (num in dis[level]) {
                di[level] = num
                fnpr(cand, di, dis, indicies, nmr, nd, level + 1)
            }
        }
    }

    // Recursive closure to generate (n-r) candidates with a given number of digits.
    fun fnmr(cand: MutableList<Byte>, list: List<List<Byte>>, indicies: List<List<Byte>>, nd: Int, level: Int) {
        if (level == list.size) {
            var nmr = 0L
            var nmr2 = 0L
            for (i_t in allTerms[nd - 2].withIndex()) {
                if (cand[i_t.index] >= 0) {
                    nmr += i_t.value.coeff * cand[i_t.index]
                } else {
                    nmr2 += i_t.value.coeff * -cand[i_t.index]
                    if (nmr >= nmr2) {
                        nmr -= nmr2
                        nmr2 = 0
                    } else {
                        nmr2 -= nmr
                        nmr = 0
                    }
                }
            }
            if (nmr2 >= nmr) {
                return
            }
            nmr -= nmr2
            if (!isSquare(nmr)) {
                return
            }
            val dis = mutableListOf<List<Byte>>()
            dis.add(seq(0, ((fml[cand[0]] ?: error("oops")).size - 1).toByte(), 1))
            for (i in 1 until cand.size) {
                dis.add(seq(0, (dmd[cand[i]]!!.size - 1).toByte(), 1))
            }
            if (nd % 2 == 1) {
                dis.add(il)
            }
            val di = mutableListOf<Byte>()
            for (i in 0 until dis.size) {
                di.add(0)
            }
            fnpr(cand, di, dis, indicies, nmr, nd, 0)
        } else {
            for (num in list[level]) {
                cand[level] = num
                fnmr(cand, list, indicies, nd, level + 1)
            }
        }
    }

    for (nd in 2..maxDigits) {
        digits = mutableListOf()
        for (i in 0 until nd) {
            digits.add(0)
        }
        if (nd == 4) {
            lists[0].add(zl)
            lists[1].add(ol)
            lists[2].add(el)
            lists[3].add(ol)
        } else if (allTerms[nd - 2].size > lists[0].size) {
            for (i in 0 until 4) {
                lists[i].add(dl)
            }
        }
        val indicies = mutableListOf<List<Byte>>()
        for (t in allTerms[nd - 2]) {
            indicies.add(listOf(t.ix1, t.ix2))
        }
        for (list in lists) {
            val cand = mutableListOf<Byte>()
            for (i in 0 until list.size) {
                cand.add(0)
            }
            fnmr(cand, list, indicies, nd, 0)
        }
        val checkPoint = LocalDateTime.now()
        val elapsed = Duration.between(startTime, checkPoint).toMillis()
        println("  %2d digits:  %9sms".format(nd, elapsed))
    }

    rares.sort()
    println("\nThe rare numbers with up to $maxDigits digits are:")
    for (i_rare in rares.withIndex()) {
        println("  %2d:  %25s".format(i_rare.index + 1, commatize(i_rare.value)))
    }
}
Output:
Aggregate timings to process all numbers up to:
     R/N  1:        130ms  (65)
   2 digits:        133ms
   3 digits:        133ms
   4 digits:        135ms
   5 digits:        136ms
     R/N  2:        155ms  (621,770)
   6 digits:        171ms
   7 digits:        176ms
   8 digits:        238ms
     R/N  3:        243ms  (281,089,082)
   9 digits:        266ms
     R/N  4:        272ms  (2,022,652,202)
     R/N  5:        432ms  (2,042,832,002)
  10 digits:        693ms
  11 digits:       1037ms
     R/N  6:       1690ms  (872,546,974,178)
     R/N  7:       1757ms  (872,568,754,178)
     R/N  8:       2380ms  (868,591,084,757)
  12 digits:       2682ms
     R/N  9:       3081ms  (6,979,302,951,885)
  13 digits:       3612ms
     R/N 10:       9091ms  (20,313,693,904,202)
     R/N 11:       9180ms  (20,313,839,704,202)
     R/N 12:      11322ms  (20,331,657,922,202)
     R/N 13:      11611ms  (20,331,875,722,202)
     R/N 14:      12477ms  (20,333,875,702,202)
     R/N 15:      26933ms  (40,313,893,704,200)
     R/N 16:      27128ms  (40,351,893,720,200)
  14 digits:      29696ms
     R/N 17:      29759ms  (200,142,385,731,002)
     R/N 18:      30024ms  (221,462,345,754,122)
     R/N 19:      33577ms  (816,984,566,129,618)
     R/N 20:      35392ms  (245,518,996,076,442)
     R/N 21:      35662ms  (204,238,494,066,002)
     R/N 22:      35748ms  (248,359,494,187,442)
     R/N 23:      36108ms  (244,062,891,224,042)
     R/N 24:      42484ms  (403,058,392,434,500)
     R/N 25:      42760ms  (441,054,594,034,340)
  15 digits:      45334ms
     R/N 26:     106307ms  (2,133,786,945,766,212)
     R/N 27:     130390ms  (2,135,568,943,984,212)
     R/N 28:     134315ms  (8,191,154,686,620,818)
     R/N 29:     137815ms  (8,191,156,864,620,818)
     R/N 30:     139449ms  (2,135,764,587,964,212)
     R/N 31:     141563ms  (2,135,786,765,764,212)
     R/N 32:     146705ms  (8,191,376,864,400,818)
     R/N 33:     163353ms  (2,078,311,262,161,202)
     R/N 34:     204546ms  (8,052,956,026,592,517)
     R/N 35:     209994ms  (8,052,956,206,592,517)
     R/N 36:     251686ms  (8,650,327,689,541,457)
     R/N 37:     254537ms  (8,650,349,867,341,457)
     R/N 38:     256579ms  (6,157,577,986,646,405)
     R/N 39:     307145ms  (4,135,786,945,764,210)
     R/N 40:     347119ms  (6,889,765,708,183,410)
  16 digits:     350388ms

The rare numbers with up to 16 digits are:
   1:                         65
   2:                    621,770
   3:                281,089,082
   4:              2,022,652,202
   5:              2,042,832,002
   6:            868,591,084,757
   7:            872,546,974,178
   8:            872,568,754,178
   9:          6,979,302,951,885
  10:         20,313,693,904,202
  11:         20,313,839,704,202
  12:         20,331,657,922,202
  13:         20,331,875,722,202
  14:         20,333,875,702,202
  15:         40,313,893,704,200
  16:         40,351,893,720,200
  17:        200,142,385,731,002
  18:        204,238,494,066,002
  19:        221,462,345,754,122
  20:        244,062,891,224,042
  21:        245,518,996,076,442
  22:        248,359,494,187,442
  23:        403,058,392,434,500
  24:        441,054,594,034,340
  25:        816,984,566,129,618
  26:      2,078,311,262,161,202
  27:      2,133,786,945,766,212
  28:      2,135,568,943,984,212
  29:      2,135,764,587,964,212
  30:      2,135,786,765,764,212
  31:      4,135,786,945,764,210
  32:      6,157,577,986,646,405
  33:      6,889,765,708,183,410
  34:      8,052,956,026,592,517
  35:      8,052,956,206,592,517
  36:      8,191,154,686,620,818
  37:      8,191,156,864,620,818
  38:      8,191,376,864,400,818
  39:      8,650,327,689,541,457
  40:      8,650,349,867,341,457

Lambdatalk

Just coding the definition of a rare number without any optimization.

{def lt_israre
 {lambda {:n}
  {let { {:n :n} 
         {:r {W.reverse :n}}
       } {if {and {> :n :r} 
                  {isInt {sqrt {+ :n :r}}}
                  {isInt {sqrt {- :n :r}}}}
          then :n
          else}}}}
-> lt_israre

{S.map lt_israre {S.serie 1 700000}}
-> 65 621770              // computed in 7650ms

Testing:

{S.map lt_israre {S.serie 1 280000000}}
-> ... crushes Firefox working in my small iPad Pro.

And so I ask javascript some help:

LAMBDATALK.DICT["js_israres"] = function() {
  var args = arguments[0].trim().split(" "),
      i0 = Number( args[0] ),
      i1 = Number( args[1] ),
      a = [];

  var israre = function(n) {
    var r = Number( n.toString().split("").reverse().join("") );
    return (n > r) && (Number.isInteger(Math.sqrt(n+r))) 
                   && (Number.isInteger(Math.sqrt(n-r))) 
  };

  for (var i=i0; i < i1; i++)
    if (israre(i)) a.push(i);
  return a   
};

Testing:

{js_israres 1 2050000000} 
-> [65,621770,281089082,2022652202,2042832002]]  
 // computed in 784307ms ~ 13 minutes

Too slow to try to go further.

langur

not optimized

It could look something like the following (ignoring whatever optimizations the other examples are using), if it was fast enough. I did not have the time/processor to test finding the first 5. The israre() function appears to return the right answer, tested with individual numbers.

val perfectsquare = fn n: (n ^/ 2) div 1

val israre = fn(n) {
    val r = reverse(n)
    if n == r: return false
    val sum = n + r
    val diff = n - r
    diff > 0 and perfectsquare(sum) and perfectsquare(diff)
}

val findfirst = fn(mx) {
    for[=[]] i = 0; len(_for) < mx; i += 1 {
        if israre(i) {
            _for ~= [i]
        }
    }
}

writeln findfirst(5)

Lua

Translation of: Phix – niave version, via FreeBASIC and Algol 68
do  -- find the first five rare numbers

    local function revn ( na )
        local n, r = na, 0
        while n > 0 do
            r = r * 10   r = r + ( n % 10 )
            n = math.floor( n / 10 )
        end
        return r
    end -- revn

    local nd, count, lim, n = 2, 0, 90, 20
    local oddNd = nd % 2 == 1
    while true do
        n = n + 1
        local r = revn( n )
        if  r < n then
            local s, d = n + r, n - r
            local tryThis = false
            if   oddNd
            then tryThis = d % 1089 == 0
            else tryThis = s %  121 == 0
            end
            if tryThis then
                local rootS = math.sqrt( s )
                if  rootS == math.floor(rootS )
                then
                    local rootD = math.sqrt( d )
                    if    rootD == math.floor( rootD )
                    then
                        count = count + 1
                        io.write( count, ": ", n, "\n" )
                        if count >= 5 then os.exit() end
                    end
                end
            end
            if  n == lim
            then
                lim   = lim * 10
                nd    = nd  +  1
                oddNd = not oddNd
                n     = math.floor( lim / 9 ) * 2 
            end
        end
    end
end
Output:
1: 65
2: 621770
3: 281089082
4: 2022652202
5: 2042832002

Mathematica /Wolfram Language

c = Compile[{{k, _Integer}}, 
  Module[{out = {0}, start = 0, stop = 0, rlist = {0}, r = 0, 
    sum = 0.0, diff = 0.0, imax = 8, step = 10},
   Do[
    If[j == k, imax = 2, imax = 8];
    Do[
     If[i == 2,
      start = i 10^j + 2;
      stop = (i + 1) 10^j - 1;
      step = 10;
      ,
      start = i 10^j;
      stop = (i + 1) 10^j - 1;
      step = 1;
      ];
     Do[
      rlist = IntegerDigits[n];
      r = 0;
      Do[
       r += rlist[[ri]] 10^(ri - 1)
       ,
       {ri, 1, Length[rlist]}
       ];
      If[r != n,
       sum = n + r;
       sum = Sqrt[sum];
       If[Floor[sum] == sum,
        diff = n - r;
        If[diff > 0,
         diff = Sqrt[diff];
         If[Floor[diff] == diff,
          AppendTo[out, n]
          ]
         ]
        ]
       ]
      ,
      {n, start, stop, step}
      ]
     ,
     {i, 2, imax, 2}
     ]
    ,
    {j, 0, k}
    ];
   out
   ]
  ];
Rest[c[9]] (*takes about 310 sec*)
Output:
{65, 621770, 281089082, 2022652202, 2042832002}

Nim

Translation of: Go

Translation of the second Go version, limited to 18 digits.

import algorithm, math, strformat, times

type Llst = seq[seq[int]]

const
  # Powers of 10.
  P = block:
        var p: array[19, int64]
        p[0] = 1i64
        for i in 1..18: p[i] = 10 * p[i - 1]
        p

  # Digital root lookup array.
  Drar = block:
           var drar: array[19, int]
           for i in 0..18: drar[i] = i shl 1 mod 9
           drar

var
  d: seq[int]           # permutation working slice
  dac: seq[int]         # running digital root slice
  ac: seq[int64]        # accumulator slice
  pp: seq[int64]        # coefficient slice that combines with digits of working slice
  sr: seq[int64]        # temporary list of squares used for building

var
  odd = false     # flag for odd number of digits
  sum: int64      # calculated sum of terms (square candidate)
  cn = 0          # solution counter
  nd = 2          # number of digits
  nd1 = nd - 1    # 'nd' helper
  ln: int         # previous value of 'n' (in recurse())
  dl: int         # length of 'd' slice

func newIntSeq(f, t, s: int): seq[int] =
  ## Return a sequence of integers.
  result = newSeq[int]((t - f) div s + 1)
  var f = f
  for i in 0..result.high:
    result[i] = f
    inc f, s

const
  Tlo = @[0, 1, 4, 5, 6]                   # primary differences starting point
  All = newIntSeq(-9, 9, 1)                # all possible differences
  Odl = newIntSeq(-9, 9, 2)                # odd possible differences
  Evl = newIntSeq(-8, 8, 2)                # even possible differences
  Thi = @[4, 5, 6, 9, 10, 11, 14, 15, 16]  # primary sums starting point
  Alh = newIntSeq(0, 18, 1)                # all possible sums
  Odh = newIntSeq(1, 17, 2)                # odd possible sums
  Evh = newIntSeq(0, 18, 2)                # even possible sums
  Ten = newIntSeq(0, 9, 1)                 # used for odd number of digits
  Z   = newIntSeq(0, 0, 1)                 # no difference, avoids generating a bunch of negative square candidates
  T7  = @[-3, 7]                           # shortcut for low 5
  Nin = @[9]                               # shortcut for hi 10
  Tn  = @[10]                              # shortcut for hi 0 (unused, unneeded)
  T12 = @[2, 12]                           # shortcut for hi 5
  O11 = @[1, 11]                           # shortcut for hi 15
  Pos = @[0, 1, 4, 5, 6, 9]                # shortcut for 2nd lo 0

var
  lul: Llst = @[Z, Odl, @[], @[], Evl, T7, Odl]             # shortcut lookup lo primary
  luh: Llst = @[Tn, Evh, @[], @[], Evh, T12, Odh, @[], @[],
                Evh, Nin, Odh, @[], @[], Odh, O11, Evh]     # shortcut lookup hi primary
  l2l: Llst = @[Pos, @[], @[], @[], All, @[], All]          # shortcut lookup lo secondary
  l2h: Llst = @[@[], @[], @[], @[], Alh, @[], Alh, @[], @[],
                @[], Alh, @[], @[], @[], Alh, @[], Alh]     # shortcut lookup hi secondary
  chTen: Llst = @[@[0, 2, 5, 8, 9], @[0, 3, 4, 6, 9], @[1, 4, 7, 8],
                  @[2, 3, 5, 8], @[0, 3, 6, 7, 9], @[1, 2, 4, 7],
                  @[2, 5, 6, 8], @[0, 1, 3, 6, 9], @[1, 4, 5, 7]]
  chAH: Llst = @[@[0, 2, 5, 8, 9, 11, 14, 17, 18], @[0, 3, 4, 6, 9, 12, 13, 15, 18],
                 @[1, 4, 7, 8, 10, 13, 16, 17], @[2, 3, 5, 8, 11, 12, 14, 17],
                 @[0, 3, 6, 7, 9, 12, 15, 16, 18], @[1, 2, 4, 7, 10, 11, 13, 16],
                 @[2, 5, 6, 8, 11, 14, 15, 17], @[0, 1, 3, 6, 9, 10, 12, 15, 18],
                 @[1, 4, 5, 7, 10, 13, 14, 16]]

var lu, l2: Llst

func isr(s: int64): int64 {.inline.} =
  ## Return integer square root.
  int64(sqrt(float(s)))

proc isRev(nd: int; f, r: int64): bool =
  ## Recursively determines whether 'r' is the reverse of 'f'.
  let nd = nd - 1
  if f div P[nd] != r mod 10: return false
  if nd < 1: return true
  result = isRev(nd, f mod P[nd], r div 10)

proc recurseLE5(lst: Llst; lv: int) =
  ## Recursive function to evaluate the permutations, no shortcuts.
  if lv == dl:        # Check if on last stage of permutation.
    sum = ac[lv - 1]
    if sum > 0:
      let rt = int64(sqrt(float(sum)))
      if rt * rt == sum: sr.add sum
  else:
    for n in lst[lv]:     # Set up next permutation.
      d[lv] = n
      if lv == 0: ac[0] = pp[0] * n
      else: ac[lv] = ac[lv - 1] + pp[lv] * n   # Update accumulated sum.
      recurseLE5(lst, lv + 1)                  # Recursively call next level.

proc recursehi(lst: var Llst; lv: int) =
  ## Recursive function to evaluate the hi permutations.
  ## Shortcuts added to avoid generating many non-squares, digital root calc added.
  let lv1 = lv - 1
  if lv == dl:    # Check if on last stage of permutation.
    sum = ac[lv1]
    if (0x202021202030213 and (1 shl (sum and 63))) != 0:
      # Test accumulated sum, append to result if square.
      let rt = int64(sqrt(float64(sum)))
      if rt * rt == sum: sr.add sum
  else:
    for n in lst[lv]:     # Set up next permutation.
      d[lv] = n
      if lv == 0:
        ac[0] = pp[0] * n
        dac[0] = Drar[n]    # Update accumulated sum and running dr.
      else:
        ac[lv] = ac[lv1] + pp[lv] * n
        dac[lv] = dac[lv1] + Drar[n]
        if dac[lv] > 8: dec dac[lv], 9
      case lv     # Shortcuts to be performed on designated levels.
      of 0:       # Primary level: set shortcuts for secondary level.
        ln = n
        lst[1] = lu[ln]
        lst[2] = l2[n]
      of 1:       # Secondary level: set shortcuts for tertiary level.
        case ln   # For sums.
        of 5, 15: lst[2] = if n < 10: Evh else: Odh
        of 9: lst[2] = if (n shr 1 and 1) == 0: Evh else: Odh
        of 11: lst[2] = if (n shr 1 and 1) == 1: Evh else: Odh
        else: discard
      else: discard
      if lv == dl - 2:
        # Reduce last round according to dr calc.
        lst[dl - 1] = if odd: chTen[dac[dl - 2]] else: chAH[dac[dl - 2]]
      recursehi(lst, lv + 1)  # Recursively call next level.

proc recurselo(lst: var Llst; lv: int) =
  ## Recursive function to evaluate the lo permutations.
  ## Shortcuts added to avoid generating many non-squares.
  let lv1 = lv - 1
  if lv == dl:    # Check if on last stage of permutation.
    sum = ac[lv1]
    if sum > 0:
      let rt = int64(sqrt(float64(sum)))
      if rt * rt == sum: sr.add sum
  else:
    for n in lst[lv]:     # Set up next permutation.
      d[lv] = n
      if lv == 0: ac[0] = pp[0] * n
      else: ac[lv] = ac[lv1] + pp[lv] * n  # Update accumulated sum.
      case lv     # Shortcuts to be performed on designated levels.
      of 0:       # Primary level: set shortcuts for secondary level.
        ln = n
        lst[1] = lu[ln]