4-rings or 4-squares puzzle
You are encouraged to solve this task according to the task description, using any language you may know.
- Task
Replace a, b, c, d, e, f, and
g with the decimal
digits LOW ───► HIGH
such that the sum of the letters inside of each of the four large squares add up to
the same sum.
╔══════════════╗ ╔══════════════╗ ║ ║ ║ ║ ║ a ║ ║ e ║ ║ ║ ║ ║ ║ ┌───╫──────╫───┐ ┌───╫─────────┐ ║ │ ║ ║ │ │ ║ │ ║ │ b ║ ║ d │ │ f ║ │ ║ │ ║ ║ │ │ ║ │ ║ │ ║ ║ │ │ ║ │ ╚══════════╪═══╝ ╚═══╪══════╪═══╝ │ │ c │ │ g │ │ │ │ │ │ │ │ │ └──────────────┘ └─────────────┘
Show all output here.
- Show all solutions for each letter being unique with
LOW=1 HIGH=7
- Show all solutions for each letter being unique with
LOW=3 HIGH=9
- Show only the number of solutions when each letter can be non-unique
LOW=0 HIGH=9
- Related task
AArch64 Assembly
<lang AArch64 Assembly> /* ARM assembly AARCH64 Raspberry PI 3B */ /* program square4_64.s */
/*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly*/ .include "../includeConstantesARM64.inc"
.equ NBBOX, 7
/*********************************/
/* Initialized data */
/*********************************/
.data
sMessDeb: .asciz "a= @ b= @ c= @ d= @ e= @ f= @ g= @ \n***********************\n"
szCarriageReturn: .asciz "\n************************\n"
sMessNbSolution: .asciz "Number of solutions : @ \n\n\n"
/*********************************/ /* UnInitialized data */ /*********************************/ .bss .align 8 sZoneConv: .skip 24 qValues_a: .skip 8 * NBBOX qValues_b: .skip 8 * NBBOX - 1 qValues_c: .skip 8 * NBBOX - 2 qValues_d: .skip 8 * NBBOX - 3 qValues_e: .skip 8 * NBBOX - 4 qValues_f: .skip 8 * NBBOX - 5 qValues_g: .skip 8 * NBBOX - 6 qCounterSol: .skip 8
/*********************************/ /* code section */ /*********************************/ .text .global main main: // entry of program
mov x0,#1 mov x1,#7 mov x2,#3 // 0 = rien 1 = display 2 = count 3 = les deux bl searchPb mov x0,#3 mov x1,#9 mov x2,#3 // 0 = rien 1 = display 2 = count 3 = les deux bl searchPb mov x0,#0 mov x1,#9 mov x2,#2 // 0 = rien 1 = display 2 = count 3 = les deux bl prepSearchNU
100: // standard end of the program
mov x0, #0 // return code mov x8, #EXIT // request to exit program svc #0 // perform the system call
qAdrszCarriageReturn: .quad szCarriageReturn
/******************************************************************/ /* search problèm value not unique */ /******************************************************************/ /* x0 contains start digit */ /* x1 contains end digit */ /* x2 contains action (0 display 1 count) */ prepSearchNU:
stp x12,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres stp x8,x9,[sp,-16]! // save registres stp x10,fp,[sp,-16]! // save registres mov x5,#0 // counter mov x12,x0 // a
1:
mov x11,x0 // b
2:
mov x10,x0 // c
3:
mov x9,x0 // d
4:
add x4,x12,x11 // a + b reference add x3,x11,x10 add x3,x3,x9 // b + c + d cmp x4,x3 bne 10f mov x8,x0 // e
5:
mov x7,x0 // f
6:
add x3,x9,x8 add x3,x3,x7 // d + e + f cmp x3,x4 bne 9f mov x6,x0 // g
7:
add x3,x7,x6 // f + g cmp x3,x4 bne 8f // not OK // OK add x5,x5,1 // increment counter
8:
add x6,x6,1 // increment g cmp x6,x1 ble 7b
9:
add x7,x7,1 // increment f cmp x7,x1 ble 6b add x8,x8,1 // increment e cmp x8,x1 ble 5b
10:
add x9,x9,1 // increment d cmp x9,x1 ble 4b add x10,x10,1 // increment c cmp x10,x1 ble 3b add x11,x11,1 // increment b cmp x11,x1 ble 2b add x12,x12,1 // increment a cmp x12,x1 ble 1b // end tst x2,#0b10 // print count ? beq 100f mov x0,x5 // counter ldr x1,qAdrsZoneConv bl conversion10 ldr x0,qAdrsMessNbSolution ldr x1,qAdrsZoneConv // insert conversion in message bl strInsertAtCharInc bl affichageMess
100:
ldp x10,fp,[sp],16 // restaur des 2 registres ldp x8,x9,[sp],16 // restaur des 2 registres ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x12,lr,[sp],16 // restaur des 2 registres ret
//qAdrsMessCounter: .quad sMessCounter qAdrsMessNbSolution: .quad sMessNbSolution qAdrsZoneConv: .quad sZoneConv /******************************************************************/ /* search problem unique solution */ /******************************************************************/ /* x0 contains start digit */ /* x1 contains end digit */ /* x2 contains action (0 display 1 count) */ searchPb:
stp x12,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres stp x8,x9,[sp,-16]! // save registres stp x10,fp,[sp,-16]! // save registres mov x14,x2 // save action // init ldr x3,qAdrqValues_a // area value a mov x4,#0
1: // loop init value a
str x0,[x3,x4,lsl #3] add x4,x4,1 add x0,x0,1 cmp x0,x1 ble 1b mov x5,#0 // solution counter mov x12,#-1
2:
add x12,x12,1 // increment indice a cmp x12,#NBBOX-1 bgt 90f ldr x0,qAdrqValues_a // area value a ldr x1,qAdrqValues_b // area value b mov x2,x12 // indice a mov x3,#NBBOX // number of origin values bl prepValues mov x11,#-1
3:
add x11,x11,1 // increment indice b cmp x11,#NBBOX - 2 bgt 2b ldr x0,qAdrqValues_b // area value b ldr x1,qAdrqValues_c // area value c mov x2,x11 // indice b mov x3,#NBBOX -1 // number of origin values bl prepValues mov x10,#-1
4:
add x10,x10,1 cmp x10,#NBBOX - 3 bgt 3b ldr x0,qAdrqValues_c ldr x1,qAdrqValues_d mov x2,x10 mov x3,#NBBOX - 2 bl prepValues mov x9,#-1
5:
add x9,x9,1 cmp x9,#NBBOX - 4 bgt 4b // control 2 firsts squares ldr x0,qAdrqValues_a ldr x0,[x0,x12,lsl #3] ldr x1,qAdrqValues_b ldr x1,[x1,x11,lsl #3] add x4,x0,x1 // a + b value first square ldr x0,qAdrqValues_c ldr x0,[x0,x10,lsl #3] add x7,x1,x0 // b + c ldr x1,qAdrqValues_d ldr x1,[x1,x9,lsl #3] add x7,x7,x1 // b + c + d cmp x7,x4 // equal first square ? bne 5b ldr x0,qAdrqValues_d ldr x1,qAdrqValues_e mov x2,x9 mov x3,#NBBOX - 3 bl prepValues mov x8,#-1
6:
add x8,x8,1 cmp x8,#NBBOX - 5 bgt 5b ldr x0,qAdrqValues_e ldr x1,qAdrqValues_f mov x2,x8 mov x3,#NBBOX - 4 bl prepValues mov x7,#-1
7:
add x7,x7,1 cmp x7,#NBBOX - 6 bgt 6b ldr x0,qAdrqValues_d ldr x0,[x0,x9,lsl #3] ldr x1,qAdrqValues_e ldr x1,[x1,x8,lsl #3] add x3,x0,x1 // d + e ldr x1,qAdrqValues_f ldr x1,[x1,x7,lsl #3] add x3,x3,x1 // d + e + f cmp x3,x4 // equal first square ? bne 7b ldr x0,qAdrqValues_f ldr x1,qAdrqValues_g mov x2,x7 mov x3,#NBBOX - 5 bl prepValues mov x6,#-1
8:
add x6,x6,1 cmp x6,#NBBOX - 7 bgt 7b ldr x0,qAdrqValues_f ldr x0,[x0,x7,lsl #3] ldr x1,qAdrqValues_g ldr x1,[x1,x6,lsl #3] add x3,x0,x1 // f +g cmp x4,x3 // equal first square ? bne 8b add x5,x5,1 // increment counter tst x14,#0b1 beq 9f // display solution ? ldr x0,qAdrqValues_a ldr x0,[x0,x12,lsl #3] ldr x1,qAdrsZoneConv bl conversion10 ldr x0,qAdrsMessDeb ldr x1,qAdrsZoneConv // insert conversion in message bl strInsertAtCharInc mov x2,x0 ldr x0,qAdrqValues_b ldr x0,[x0,x11,lsl #3] ldr x1,qAdrsZoneConv bl conversion10 mov x0,x2 ldr x1,qAdrsZoneConv // insert conversion in message bl strInsertAtCharInc mov x2,x0 ldr x0,qAdrqValues_c ldr x0,[x0,x10,lsl #3] ldr x1,qAdrsZoneConv bl conversion10 mov x0,x2 ldr x1,qAdrsZoneConv // insert conversion in message bl strInsertAtCharInc mov x2,x0 ldr x0,qAdrqValues_d ldr x0,[x0,x9,lsl #3] ldr x1,qAdrsZoneConv bl conversion10 mov x0,x2 ldr x1,qAdrsZoneConv // insert conversion in message bl strInsertAtCharInc mov x2,x0 ldr x0,qAdrqValues_e ldr x0,[x0,x8,lsl #3] ldr x1,qAdrsZoneConv bl conversion10 mov x0,x2 ldr x1,qAdrsZoneConv // insert conversion in message bl strInsertAtCharInc mov x2,x0 ldr x0,qAdrqValues_f ldr x0,[x0,x7,lsl #3] ldr x1,qAdrsZoneConv bl conversion10 mov x0,x2 ldr x1,qAdrsZoneConv // insert conversion in message bl strInsertAtCharInc mov x2,x0 ldr x0,qAdrqValues_g ldr x0,[x0,x6,lsl #3] ldr x1,qAdrsZoneConv bl conversion10 mov x0,x2 ldr x1,qAdrsZoneConv // insert conversion in message bl strInsertAtCharInc bl affichageMess
9:
b 8b // suite
90:
tst x14,#0b10 beq 100f // display counter ? mov x0,x5 ldr x1,qAdrsZoneConv bl conversion10 ldr x0,qAdrsMessNbSolution ldr x1,qAdrsZoneConv // insert conversion in message bl strInsertAtCharInc bl affichageMess
100:
ldp x10,fp,[sp],16 // restaur des 2 registres ldp x8,x9,[sp],16 // restaur des 2 registres ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x12,lr,[sp],16 // restaur des 2 registres ret
qAdrqValues_a: .quad qValues_a qAdrqValues_b: .quad qValues_b qAdrqValues_c: .quad qValues_c qAdrqValues_d: .quad qValues_d qAdrqValues_e: .quad qValues_e qAdrqValues_f: .quad qValues_f qAdrqValues_g: .quad qValues_g
qAdrsMessDeb: .quad sMessDeb qAdrqCounterSol: .quad qCounterSol /******************************************************************/ /* copy value area and substract value of indice */ /******************************************************************/ /* x0 contains the address of values origin */ /* x1 contains the address of values destination */ /* x2 contains value indice to substract */ /* x3 contains origin values number */ prepValues:
stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres mov x4,#0 // indice origin value mov x5,#0 // indice destination value
1:
cmp x4,x2 // substract indice ? beq 2f // yes -> jump ldr x6,[x0,x4,lsl #3] // no -> copy value str x6,[x1,x5,lsl #3] add x5,x5,1 // increment destination indice
2:
add x4,x4,1 // increment origin indice cmp x4,x3 // end ? blt 1b
100:
ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret
/********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc" </lang>
- Output:
a= 3 b= 7 c= 2 d= 1 e= 5 f= 4 g= 6 *********************** a= 4 b= 5 c= 3 d= 1 e= 6 f= 2 g= 7 *********************** a= 4 b= 7 c= 1 d= 3 e= 2 f= 6 g= 5 *********************** a= 5 b= 6 c= 2 d= 3 e= 1 f= 7 g= 4 *********************** a= 6 b= 4 c= 1 d= 5 e= 2 f= 3 g= 7 *********************** a= 6 b= 4 c= 5 d= 1 e= 2 f= 7 g= 3 *********************** a= 7 b= 2 c= 6 d= 1 e= 3 f= 5 g= 4 *********************** a= 7 b= 3 c= 2 d= 5 e= 1 f= 4 g= 6 *********************** Number of solutions : 8 a= 7 b= 8 c= 3 d= 4 e= 5 f= 6 g= 9 *********************** a= 8 b= 7 c= 3 d= 5 e= 4 f= 6 g= 9 *********************** a= 9 b= 6 c= 4 d= 5 e= 3 f= 7 g= 8 *********************** a= 9 b= 6 c= 5 d= 4 e= 3 f= 8 g= 7 *********************** Number of solutions : 4 Number of solutions : 2860
Ada
<lang Ada>with Ada.Text_IO;
procedure Puzzle_Square_4 is
procedure Four_Rings (Low, High : in Natural; Unique, Show : in Boolean) is subtype Test_Range is Natural range Low .. High;
type Value_List is array (Positive range <>) of Natural; function Is_Unique (Values : Value_List) return Boolean is Count : array (Test_Range) of Natural := (others => 0); begin for Value of Values loop Count (Value) := Count (Value) + 1; if Count (Value) > 1 then return False; end if; end loop; return True; end Is_Unique;
function Is_Valid (A,B,C,D,E,F,G : in Natural) return Boolean is Ring_1 : constant Integer := A + B; Ring_2 : constant Integer := B + C + D; Ring_3 : constant Integer := D + E + F; Ring_4 : constant Integer := F + G; begin return Ring_1 = Ring_2 and Ring_1 = Ring_3 and Ring_1 = Ring_4; end Is_Valid;
use Ada.Text_IO; Count : Natural := 0; begin for A in Test_Range loop for B in Test_Range loop for C in Test_Range loop for D in Test_Range loop for E in Test_Range loop for F in Test_Range loop for G in Test_Range loop if Is_Valid (A,B,C,D,E,F,G) then if not Unique or (Unique and Is_Unique ((A,B,C,D,E,F,G))) then Count := Count + 1; if Show then Put_Line (A'Image & B'Image & C'Image & D'Image & E'Image & F'Image & G'Image); end if; end if; end if; end loop; end loop; end loop; end loop; end loop; end loop; end loop; Put_Line ("There are " & Count'Image & (if Unique then " unique " else " non-unique ") & "solutions in " & Low'Image & " .." & High'Image); New_Line; end Four_Rings;
begin
Four_Rings (Low => 1, High => 7, Unique => True, Show => True); Four_Rings (Low => 3, High => 9, Unique => True, Show => True); Four_Rings (Low => 0, High => 9, Unique => False, Show => False);
end Puzzle_Square_4;</lang>
- Output:
3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 There are 8 unique solutions in 1 .. 7 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 There are 4 unique solutions in 3 .. 9 There are 2860 non-unique solutions in 0 .. 9
ALGOL 68
As with the REXX solution, we use explicit loops to generate the permutations. <lang algol68>BEGIN
# solve the 4 rings or 4 squares puzzle # # we need to find solutions to the equations: a + b = b + c + d = d + e + f = f + g # # where a, b, c, d, e, f, g in lo : hi ( not necessarily unique ) # # depending on show, the solutions will be printed or not # PROC four rings = ( INT lo, hi, BOOL unique, show )VOID: BEGIN INT solutions := 0; BOOL allow duplicates = NOT unique; # calculate field width for printinhg solutions # INT width := -1; INT max := ABS IF ABS lo > ABS hi THEN lo ELSE hi FI; WHILE max > 0 DO width -:= 1; max OVERAB 10 OD; # find solutions # FOR a FROM lo TO hi DO FOR b FROM lo TO hi DO IF allow duplicates OR a /= b THEN INT t = a + b; FOR c FROM lo TO hi DO IF allow duplicates OR ( a /= c AND b /= c ) THEN FOR d FROM lo TO hi DO IF allow duplicates OR ( a /= d AND b /= d AND c /= d ) THEN IF b + c + d = t THEN FOR e FROM lo TO hi DO IF allow duplicates OR ( a /= e AND b /= e AND c /= e AND d /= e ) THEN FOR f FROM lo TO hi DO IF allow duplicates OR ( a /= f AND b /= f AND c /= f AND d /= f AND e /= f ) THEN IF d + e + f = t THEN FOR g FROM lo TO hi DO IF allow duplicates OR ( a /= g AND b /= g AND c /= g AND d /= g AND e /= g AND f /= g ) THEN IF f + g = t THEN solutions +:= 1; IF show THEN print( ( whole( a, width ), whole( b, width ) , whole( c, width ), whole( d, width ) , whole( e, width ), whole( f, width ) , whole( g, width ), newline ) ) FI FI FI OD # g # FI FI OD # f # FI OD # e # FI FI OD # d # FI OD # c # FI OD # b # OD # a # ; print( ( whole( solutions, 0 ) , IF unique THEN " unique" ELSE " non-unique" FI , " solutions in " , whole( lo, 0 ) , " to " , whole( hi, 0 ) , newline , newline ) ) END # four rings # ;
# find the solutions as required for the task # four rings( 1, 7, TRUE, TRUE ); four rings( 3, 9, TRUE, TRUE ); four rings( 0, 9, FALSE, FALSE )
END</lang>
- Output:
3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 8 unique solutions in 1 to 7 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 4 unique solutions in 3 to 9 2860 non-unique solutions in 0 to 9
AppleScript
(Structured search example) <lang applescript>use framework "Foundation" -- for basic NSArray sort
on run
unlines({"rings(true, enumFromTo(1, 7))\n", ¬ map(show, (rings(true, enumFromTo(1, 7)))), ¬ "\nrings(true, enumFromTo(3, 9))\n", ¬ map(show, (rings(true, enumFromTo(3, 9)))), ¬ "\nlength(rings(false, enumFromTo(0, 9)))\n", ¬ show(|length|(rings(false, enumFromTo(0, 9))))})
end run
-- RINGS -----------------------------------------------------------------------
-- rings :: noRepeatedDigits -> DigitList -> Lists of solutions -- rings :: Bool -> [Int] -> Int on rings(u, digits)
set ds to reverse_(sort(digits)) set h to head(ds) -- QUEEN ------------------------------------------------------------------- script queen on |λ|(q) script on |λ|(x) x + q ≤ h end |λ| end script set ts to filter(result, ds) if u then set bs to delete_(q, ts) else set bs to ds end if -- LEFT BISHOP and its ROOK----------------------------------------- script leftBishop on |λ|(lb) set lRook to lb + q if lRook > h then {} else if u then set rbs to difference(ts, {q, lb, lRook}) else set rbs to ds end if -- RIGHT BISHOP and its ROOK --------------------------- script rightBishop on |λ|(rb) set rRook to rb + q if (rRook > h) or (u and (rRook = lb)) then {} else set rookDelta to lRook - rRook if u then set ks to difference(ds, ¬ {q, lb, rb, rRook, lRook}) else set ks to ds end if -- KNIGHTS LEFT AND RIGHT ------------------ script knights on |λ|(k) set k2 to k + rookDelta if elem(k2, ks) and ((not u) or ¬ notElem(k2, ¬ {lRook, k, lb, q, rb, rRook})) then Template:LRook, k, lb, q, rb, k2, rRook else {} end if end |λ| end script concatMap(knights, ks) end if end |λ| end script concatMap(rightBishop, rbs) end if end |λ| end script concatMap(leftBishop, bs) end |λ| end script concatMap(queen, ds)
end rings
-- GENERIC FUNCTIONS -----------------------------------------------------------
-- concatMap :: (a -> [b]) -> [a] -> [b] on concatMap(f, xs)
set lst to {} set lng to length of xs tell mReturn(f) repeat with i from 1 to lng set lst to (lst & |λ|(contents of item i of xs, i, xs)) end repeat end tell return lst
end concatMap
-- delete :: Eq a => a -> [a] -> [a] on delete_(x, xs)
set mbIndex to elemIndex(x, xs) set lng to length of xs if mbIndex is not missing value then if lng > 1 then if mbIndex = 1 then items 2 thru -1 of xs else if mbIndex = lng then items 1 thru -2 of xs else tell xs to items 1 thru (mbIndex - 1) & ¬ items (mbIndex + 1) thru -1 end if else {} end if else xs end if
end delete_
-- difference :: [a] -> [a] -> [a] on difference(xs, ys)
script mf on except(a, y) if a contains y then my delete_(y, a) else a end if end except end script foldl(except of mf, xs, ys)
end difference
-- elem :: Eq a => a -> [a] -> Bool on elem(x, xs)
xs contains x
end elem
-- elemIndex :: a -> [a] -> Maybe Int on elemIndex(x, xs)
set lng to length of xs repeat with i from 1 to lng if x = (item i of xs) then return i end repeat return missing value
end elemIndex
-- enumFromTo :: Int -> Int -> [Int] on enumFromTo(m, n)
if n < m then set d to -1 else set d to 1 end if set lst to {} repeat with i from m to n by d set end of lst to i end repeat return lst
end enumFromTo
-- filter :: (a -> Bool) -> [a] -> [a] on filter(f, xs)
tell mReturn(f) set lst to {} set lng to length of xs repeat with i from 1 to lng set v to item i of xs if |λ|(v, i, xs) then set end of lst to v end repeat return lst end tell
end filter
-- foldl :: (a -> b -> a) -> a -> [b] -> a on foldl(f, startValue, xs)
tell mReturn(f) set v to startValue set lng to length of xs repeat with i from 1 to lng set v to |λ|(v, item i of xs, i, xs) end repeat return v end tell
end foldl
-- head :: [a] -> a on head(xs)
if length of xs > 0 then item 1 of xs else missing value end if
end head
-- intercalate :: Text -> [Text] -> Text on intercalate(strText, lstText)
set {dlm, my text item delimiters} to {my text item delimiters, strText} set strJoined to lstText as text set my text item delimiters to dlm return strJoined
end intercalate
-- length :: [a] -> Int on |length|(xs)
length of xs
end |length|
-- map :: (a -> b) -> [a] -> [b] on map(f, xs)
tell mReturn(f) set lng to length of xs set lst to {} repeat with i from 1 to lng set end of lst to |λ|(item i of xs, i, xs) end repeat return lst end tell
end map
-- Lift 2nd class handler function into 1st class script wrapper -- mReturn :: Handler -> Script on mReturn(f)
if class of f is script then f else script property |λ| : f end script end if
end mReturn
-- notElem :: Eq a => a -> [a] -> Bool on notElem(x, xs)
xs does not contain x
end notElem
-- reverse_ :: [a] -> [a] on |reverse|:xs
if class of xs is text then (reverse of characters of xs) as text else reverse of xs end if
end |reverse|:
-- show :: a -> String on show(e)
set c to class of e if c = list then script serialized on |λ|(v) show(v) end |λ| end script "[" & intercalate(", ", map(serialized, e)) & "]" else if c = record then script showField on |λ|(kv) set {k, ev} to kv "\"" & k & "\":" & show(ev) end |λ| end script "{" & intercalate(", ", ¬ map(showField, zip(allKeys(e), allValues(e)))) & "}" else if c = date then "\"" & iso8601Z(e) & "\"" else if c = text then "\"" & e & "\"" else if (c = integer or c = real) then e as text else if c = class then "null" else try e as text on error ("«" & c as text) & "»" end try end if
end show
-- sort :: [a] -> [a] on sort(xs)
((current application's NSArray's arrayWithArray:xs)'s ¬ sortedArrayUsingSelector:"compare:") as list
end sort
-- unlines :: [String] -> String on unlines(xs)
intercalate(linefeed, xs)
end unlines</lang>
- Output:
rings(true, enumFromTo(1, 7)) [7, 3, 2, 5, 1, 4, 6] [6, 4, 1, 5, 2, 3, 7] [5, 6, 2, 3, 1, 7, 4] [4, 7, 1, 3, 2, 6, 5] [7, 2, 6, 1, 3, 5, 4] [6, 4, 5, 1, 2, 7, 3] [4, 5, 3, 1, 6, 2, 7] [3, 7, 2, 1, 5, 4, 6] rings(true, enumFromTo(3, 9)) [9, 6, 4, 5, 3, 7, 8] [8, 7, 3, 5, 4, 6, 9] [9, 6, 5, 4, 3, 8, 7] [7, 8, 3, 4, 5, 6, 9] length(rings(false, enumFromTo(0, 9))) 2860
ARM Assembly
<lang ARM Assembly>
/* ARM assembly Raspberry PI */ /* program square4.s */
/************************************/ /* Constantes */ /************************************/ .equ STDOUT, 1 @ Linux output console .equ EXIT, 1 @ Linux syscall .equ WRITE, 4 @ Linux syscall
.equ NBBOX, 7
/*********************************/ /* Initialized data */ /*********************************/ .data sMessDeb: .ascii "a=" sMessValeur_a: .fill 11, 1, ' ' @ size => 11
.ascii "b="
sMessValeur_b: .fill 11, 1, ' ' @ size => 11
.ascii "c="
sMessValeur_c: .fill 11, 1, ' ' @ size => 11
.ascii "d="
sMessValeur_d: .fill 11, 1, ' ' @ size => 11
.ascii "\n" .ascii "e="
sMessValeur_e: .fill 11, 1, ' ' @ size => 11
.ascii "f="
sMessValeur_f: .fill 11, 1, ' ' @ size => 11
.ascii "g="
sMessValeur_g: .fill 11, 1, ' ' @ size => 11
szCarriageReturn: .asciz "\n************************\n"
sMessNbSolution: .ascii "Number of solutions :" sMessCounter: .fill 11, 1, ' ' @ size => 11
.asciz "\n\n\n"
/*********************************/ /* UnInitialized data */ /*********************************/ .bss .align 4 iValues_a: .skip 4 * NBBOX iValues_b: .skip 4 * NBBOX - 1 iValues_c: .skip 4 * NBBOX - 2 iValues_d: .skip 4 * NBBOX - 3 iValues_e: .skip 4 * NBBOX - 4 iValues_f: .skip 4 * NBBOX - 5 iValues_g: .skip 4 * NBBOX - 6 iCounterSol: .skip 4 /*********************************/ /* code section */ /*********************************/ .text .global main main: @ entry of program
mov r0,#1 mov r1,#7 mov r2,#3 @ 0 = rien 1 = display 2 = count 3 = les deux bl searchPb mov r0,#3 mov r1,#9 mov r2,#3 @ 0 = rien 1 = display 2 = count 3 = les deux bl searchPb mov r0,#0 mov r1,#9 mov r2,#2 @ 0 = rien 1 = display 2 = count 3 = les deux bl prepSearchNU
100: @ standard end of the program
mov r0, #0 @ return code mov r7, #EXIT @ request to exit program svc #0 @ perform the system call
iAdrszCarriageReturn: .int szCarriageReturn
/******************************************************************/ /* search problèm value not unique */ /******************************************************************/ /* r0 contains start digit */ /* r1 contains end digit */ /* r2 contains action (0 display 1 count) */ prepSearchNU:
push {r3-r12,lr} @ save registers mov r5,#0 @ counter mov r12,r0 @ a
1:
mov r11,r0 @ b
2:
mov r10,r0 @ c
3:
mov r9,r0 @ d
4:
add r4,r12,r11 @ a + b reference add r3,r11,r10 add r3,r9 @ b + c + d cmp r4,r3 bne 10f mov r8,r0 @ e
5:
mov r7,r0 @ f
6:
add r3,r9,r8 add r3,r7 @ d + e + f cmp r3,r4 bne 9f mov r6,r0 @ g
7:
add r3,r7,r6 @ f + g cmp r3,r4 bne 8f @ not OK @ OK add r5,#1 @ increment counter
8:
add r6,#1 @ increment g cmp r6,r1 ble 7b
9:
add r7,#1 @ increment f cmp r7,r1 ble 6b add r8,#1 @ increment e cmp r8,r1 ble 5b
10:
add r9,#1 @ increment d cmp r9,r1 ble 4b add r10,#1 @ increment c cmp r10,r1 ble 3b add r11,#1 @ increment b cmp r11,r1 ble 2b add r12,#1 @ increment a cmp r12,r1 ble 1b
@ end tst r2,#0b10 @ print count ? beq 100f mov r0,r5 @ counter ldr r1,iAdrsMessCounter bl conversion10 ldr r0,iAdrsMessNbSolution bl affichageMess
100:
pop {r3-r12,lr} @ restaur registers bx lr @return
iAdrsMessCounter: .int sMessCounter iAdrsMessNbSolution: .int sMessNbSolution
/******************************************************************/ /* search problem unique solution */ /******************************************************************/ /* r0 contains start digit */ /* r1 contains end digit */ /* r2 contains action (0 display 1 count) */ searchPb:
push {r0-r12,lr} @ save registers @ init ldr r3,iAdriValues_a @ area value a mov r4,#0
1: @ loop init value a
str r0,[r3,r4,lsl #2] add r4,#1 add r0,#1 cmp r0,r1 ble 1b
mov r5,#0 @ solution counter mov r12,#-1
2:
add r12,#1 @ increment indice a cmp r12,#NBBOX-1 bgt 90f ldr r0,iAdriValues_a @ area value a ldr r1,iAdriValues_b @ area value b mov r2,r12 @ indice a mov r3,#NBBOX @ number of origin values bl prepValues mov r11,#-1
3:
add r11,#1 @ increment indice b cmp r11,#NBBOX - 2 bgt 2b ldr r0,iAdriValues_b @ area value b ldr r1,iAdriValues_c @ area value c mov r2,r11 @ indice b mov r3,#NBBOX -1 @ number of origin values bl prepValues mov r10,#-1
4:
add r10,#1 cmp r10,#NBBOX - 3 bgt 3b ldr r0,iAdriValues_c ldr r1,iAdriValues_d mov r2,r10 mov r3,#NBBOX - 2 bl prepValues mov r9,#-1
5:
add r9,#1 cmp r9,#NBBOX - 4 bgt 4b @ control 2 firsts squares ldr r0,iAdriValues_a ldr r0,[r0,r12,lsl #2] ldr r1,iAdriValues_b ldr r1,[r1,r11,lsl #2] add r4,r0,r1 @ a + b value first square ldr r0,iAdriValues_c ldr r0,[r0,r10,lsl #2] add r7,r1,r0 @ b + c ldr r1,iAdriValues_d ldr r1,[r1,r9,lsl #2] add r7,r1 @ b + c + d cmp r7,r4 @ equal first square ? bne 5b ldr r0,iAdriValues_d ldr r1,iAdriValues_e mov r2,r9 mov r3,#NBBOX - 3 bl prepValues mov r8,#-1
6:
add r8,#1 cmp r8,#NBBOX - 5 bgt 5b ldr r0,iAdriValues_e ldr r1,iAdriValues_f mov r2,r8 mov r3,#NBBOX - 4 bl prepValues mov r7,#-1
7:
add r7,#1 cmp r7,#NBBOX - 6 bgt 6b ldr r0,iAdriValues_d ldr r0,[r0,r9,lsl #2] ldr r1,iAdriValues_e ldr r1,[r1,r8,lsl #2] add r3,r0,r1 @ d + e ldr r1,iAdriValues_f ldr r1,[r1,r7,lsl #2] add r3,r1 @ de + e + f cmp r3,r4 @ equal first square ? bne 7b ldr r0,iAdriValues_f ldr r1,iAdriValues_g mov r2,r7 mov r3,#NBBOX - 5 bl prepValues mov r6,#-1
8:
add r6,#1 cmp r6,#NBBOX - 7 bgt 7b ldr r0,iAdriValues_f ldr r0,[r0,r7,lsl #2] ldr r1,iAdriValues_g ldr r1,[r1,r6,lsl #2] add r3,r0,r1 @ f +g cmp r4,r3 @ equal first square ? bne 8b add r5,#1 @ increment counter ldr r0,[sp,#8] @ load action for two parameter in stack tst r0,#0b1 beq 9f @ display solution ? ldr r0,iAdriValues_a ldr r0,[r0,r12,lsl #2] ldr r1,iAdrsMessValeur_a bl conversion10 ldr r0,iAdriValues_b ldr r0,[r0,r11,lsl #2] ldr r1,iAdrsMessValeur_b bl conversion10 ldr r0,iAdriValues_c ldr r0,[r0,r10,lsl #2] ldr r1,iAdrsMessValeur_c bl conversion10 ldr r0,iAdriValues_d ldr r0,[r0,r9,lsl #2] ldr r1,iAdrsMessValeur_d bl conversion10 ldr r0,iAdriValues_e ldr r0,[r0,r8,lsl #2] ldr r1,iAdrsMessValeur_e bl conversion10 ldr r0,iAdriValues_f ldr r0,[r0,r7,lsl #2] ldr r1,iAdrsMessValeur_f bl conversion10 ldr r0,iAdriValues_g ldr r0,[r0,r6,lsl #2] ldr r1,iAdrsMessValeur_g bl conversion10 ldr r0,iAdrsMessDeb bl affichageMess
9:
b 8b @ suite
90:
ldr r0,[sp,#8] @ load action for two parameter in stack tst r0,#0b10 beq 100f @ display counter ? mov r0,r5 ldr r1,iAdrsMessCounter bl conversion10 ldr r0,iAdrsMessNbSolution bl affichageMess
100:
pop {r0-r12,lr} @ restaur registers bx lr @return
iAdriValues_a: .int iValues_a iAdriValues_b: .int iValues_b iAdriValues_c: .int iValues_c iAdriValues_d: .int iValues_d iAdriValues_e: .int iValues_e iAdriValues_f: .int iValues_f iAdriValues_g: .int iValues_g
iAdrsMessValeur_a: .int sMessValeur_a iAdrsMessValeur_b: .int sMessValeur_b iAdrsMessValeur_c: .int sMessValeur_c iAdrsMessValeur_d: .int sMessValeur_d iAdrsMessValeur_e: .int sMessValeur_e iAdrsMessValeur_f: .int sMessValeur_f iAdrsMessValeur_g: .int sMessValeur_g iAdrsMessDeb: .int sMessDeb iAdriCounterSol: .int iCounterSol /******************************************************************/ /* copy value area and substract value of indice */ /******************************************************************/ /* r0 contains the address of values origin */ /* r1 contains the address of values destination */ /* r2 contains value indice to substract */ /* r3 contains origin values number */ prepValues:
push {r1-r6,lr} @ save registres mov r4,#0 @ indice origin value mov r5,#0 @ indice destination value
1:
cmp r4,r2 @ substract indice ? beq 2f @ yes -> jump ldr r6,[r0,r4,lsl #2] @ no -> copy value str r6,[r1,r5,lsl #2] add r5,#1 @ increment destination indice
2:
add r4,#1 @ increment origin indice cmp r4,r3 @ end ? blt 1b
100:
pop {r1-r6,lr} @ restaur registres bx lr @return
/******************************************************************/ /* display text with size calculation */ /******************************************************************/ /* r0 contains the address of the message */ affichageMess:
push {r0,r1,r2,r7,lr} @ save registres mov r2,#0 @ counter length
1: @ loop length calculation
ldrb r1,[r0,r2] @ read octet start position + index cmp r1,#0 @ if 0 its over addne r2,r2,#1 @ else add 1 in the length bne 1b @ and loop @ so here r2 contains the length of the message mov r1,r0 @ address message in r1 mov r0,#STDOUT @ code to write to the standard output Linux mov r7, #WRITE @ code call system "write" svc #0 @ call systeme pop {r0,r1,r2,r7,lr} @ restaur des 2 registres */ bx lr @ return
/******************************************************************/ /* Converting a register to a decimal unsigned */ /******************************************************************/ /* r0 contains value and r1 address area */ /* r0 return size of result (no zero final in area) */ /* area size => 11 bytes */ .equ LGZONECAL, 10 conversion10:
push {r1-r4,lr} @ save registers mov r3,r1 mov r2,#LGZONECAL
1: @ start loop
bl divisionpar10U @ unsigned r0 <- dividende. quotient ->r0 reste -> r1 add r1,#48 @ digit strb r1,[r3,r2] @ store digit on area cmp r0,#0 @ stop if quotient = 0 subne r2,#1 @ else previous position bne 1b @ and loop @ and move digit from left of area mov r4,#0
2:
ldrb r1,[r3,r2] strb r1,[r3,r4] add r2,#1 add r4,#1 cmp r2,#LGZONECAL ble 2b @ and move spaces in end on area mov r0,r4 @ result length mov r1,#' ' @ space
3:
strb r1,[r3,r4] @ store space in area add r4,#1 @ next position cmp r4,#LGZONECAL ble 3b @ loop if r4 <= area size
100:
pop {r1-r4,lr} @ restaur registres bx lr @return
/***************************************************/ /* division par 10 unsigned */ /***************************************************/ /* r0 dividende */ /* r0 quotient */ /* r1 remainder */ divisionpar10U:
push {r2,r3,r4, lr} mov r4,r0 @ save value ldr r3,iMagicNumber @ r3 <- magic_number raspberry 1 2 umull r1, r2, r3, r0 @ r1<- Lower32Bits(r1*r0) r2<- Upper32Bits(r1*r0) mov r0, r2, LSR #3 @ r2 <- r2 >> shift 3 add r2,r0,r0, lsl #2 @ r2 <- r0 * 5 sub r1,r4,r2, lsl #1 @ r1 <- r4 - (r2 * 2) = r4 - (r0 * 10) pop {r2,r3,r4,lr} bx lr @ leave function
iMagicNumber: .int 0xCCCCCCCD
</lang>
- Output:
a=3 b=7 c=2 d=1 e=5 f=4 g=6 ************************ a=4 b=5 c=3 d=1 e=6 f=2 g=7 ************************ a=4 b=7 c=1 d=3 e=2 f=6 g=5 ************************ a=5 b=6 c=2 d=3 e=1 f=7 g=4 ************************ a=6 b=4 c=1 d=5 e=2 f=3 g=7 ************************ a=6 b=4 c=5 d=1 e=2 f=7 g=3 ************************ a=7 b=2 c=6 d=1 e=3 f=5 g=4 ************************ a=7 b=3 c=2 d=5 e=1 f=4 g=6 ************************ Number of solutions :8 a=7 b=8 c=3 d=4 e=5 f=6 g=9 ************************ a=8 b=7 c=3 d=5 e=4 f=6 g=9 ************************ a=9 b=6 c=4 d=5 e=3 f=7 g=8 ************************ a=9 b=6 c=5 d=4 e=3 f=8 g=7 ************************ Number of solutions :4 Number of solutions :2860
AWK
<lang AWK>
- syntax: GAWK -f 4-RINGS_OR_4-SQUARES_PUZZLE.AWK
- converted from C
BEGIN {
cmd = "SORT /+16" four_squares(1,7,1,1) four_squares(3,9,1,1) four_squares(0,9,0,0) four_squares(0,6,1,0) four_squares(2,8,1,0) exit(0)
} function four_squares(plo,phi,punique,pshow) {
lo = plo hi = phi unique = punique show = pshow solutions = 0 print("") if (show) { print("A B C D E F G sum A+B B+C+D D+E+F F+G") print("------------- --- -------------------") } acd() close(cmd) tmp = (unique) ? "unique" : "non-unique" printf("%d-%d: %d %s solutions\n",lo,hi,solutions,tmp)
} function acd() {
for (c=lo; c<=hi; c++) { for (d=lo; d<=hi; d++) { if (!unique || c != d) { a = c + d if (a >= lo && a <= hi && (!unique || (c != 0 && d != 0))) { ge() } } } }
} function bf() {
for (f=lo; f<=hi; f++) { if (!unique || (f != a && f != c && f != d && f != g && f != e)) { b = e + f - c if (b >= lo && b <= hi && (!unique || (b != a && b != c && b != d && b != g && b != e && b != f))) { solutions++ if (show) { printf("%d %d %d %d %d %d %d %4d ",a,b,c,d,e,f,g,a+b) | cmd printf("%d+%d ",a,b) | cmd printf("%d+%d+%d ",b,c,d) | cmd printf("%d+%d+%d ",d,e,f) | cmd printf("%d+%d\n",f,g) | cmd } } } }
} function ge() {
for (e=lo; e<=hi; e++) { if (!unique || (e != a && e != c && e != d)) { g = d + e if (g >= lo && g <= hi && (!unique || (g != a && g != c && g != d && g != e))) { bf() } } }
} </lang>
- Output:
A B C D E F G sum A+B B+C+D D+E+F F+G ------------- --- ------------------- 4 5 3 1 6 2 7 9 4+5 5+3+1 1+6+2 2+7 7 2 6 1 3 5 4 9 7+2 2+6+1 1+3+5 5+4 3 7 2 1 5 4 6 10 3+7 7+2+1 1+5+4 4+6 6 4 1 5 2 3 7 10 6+4 4+1+5 5+2+3 3+7 6 4 5 1 2 7 3 10 6+4 4+5+1 1+2+7 7+3 7 3 2 5 1 4 6 10 7+3 3+2+5 5+1+4 4+6 4 7 1 3 2 6 5 11 4+7 7+1+3 3+2+6 6+5 5 6 2 3 1 7 4 11 5+6 6+2+3 3+1+7 7+4 1-7: 8 unique solutions A B C D E F G sum A+B B+C+D D+E+F F+G ------------- --- ------------------- 7 8 3 4 5 6 9 15 7+8 8+3+4 4+5+6 6+9 8 7 3 5 4 6 9 15 8+7 7+3+5 5+4+6 6+9 9 6 4 5 3 7 8 15 9+6 6+4+5 5+3+7 7+8 9 6 5 4 3 8 7 15 9+6 6+5+4 4+3+8 8+7 3-9: 4 unique solutions 0-9: 2860 non-unique solutions 0-6: 4 unique solutions 2-8: 8 unique solutions
Befunge
This is loosely based on the C algorithm, although many of the conditions have been combined to minimize branching. There is no option to choose whether the results are displayed or not - unique solutions are always displayed, and non-unique solutions just return the solution count.
<lang befunge>550" :woL">:#,_&>00p" :hgiH">:#,_&>1+10p" :)n/y( euqinU">:#,_>~>:4v v!g03!:\*`\g01\!`\g00:p05:+g03:p04:_$30g1+:10g\`v1g<,+$p02%2_|#`*8< >>+\30g-!+20g*!*00g\#v_$40g1+:10g\`^<<1g00p03<<<_$55+:,\."snoitul"v v!`\g00::p07:+g04p06:<^<`\g01:+1g06$<_v#!\g00*!*g02++!-g05< v"so"< >\10g\`*\:::30g-!\40g-!+\50g-!+\60g-! +60g::30g-!\40g-!+\^ >:#,_@ >0g50g.......55+,0vg02+1_80g1+:10g\`!^>>:80p60g+30g-:90p::00g\`!>>v ^9g03g04g06g08g07<_>>0>>^<<*!*g02++!-g07\+!-g06\+!-g05\+!-g04\!-<<\ >>10g\`*\:::::30g-!\40g-!+\50g-!+\60g-!+\70g-!+\80g-!+80g::::30g^^></lang>
- Output:
Low: 1 High: 7 Unique (y/n): y 4 7 1 3 2 6 5 6 4 1 5 2 3 7 3 7 2 1 5 4 6 5 6 2 3 1 7 4 7 3 2 5 1 4 6 4 5 3 1 6 2 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 8 solutions
Low: 3 High: 9 Unique (y/n): y 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 4 solutions
Low: 0 High: 9 Unique (y/n): n 2860 solutions
C
<lang C>
- include <stdio.h>
- define TRUE 1
- define FALSE 0
int a,b,c,d,e,f,g; int lo,hi,unique,show; int solutions;
void bf() {
for (f = lo;f <= hi; f++) if ((!unique) || ((f != a) && (f != c) && (f != d) && (f != g) && (f != e))) { b = e + f - c; if ((b >= lo) && (b <= hi) && ((!unique) || ((b != a) && (b != c) && (b != d) && (b != g) && (b != e) && (b != f)))) { solutions++; if (show) printf("%d %d %d %d %d %d %d\n",a,b,c,d,e,f,g); } }
}
void
ge()
{
for (e = lo;e <= hi; e++) if ((!unique) || ((e != a) && (e != c) && (e != d))) { g = d + e; if ((g >= lo) && (g <= hi) && ((!unique) || ((g != a) && (g != c) && (g != d) && (g != e)))) bf(); }
}
void acd() {
for (c = lo;c <= hi; c++) for (d = lo;d <= hi; d++) if ((!unique) || (c != d)) { a = c + d; if ((a >= lo) && (a <= hi) && ((!unique) || ((c != 0) && (d != 0)))) ge(); }
}
void
foursquares(int plo,int phi, int punique,int pshow)
{
lo = plo; hi = phi; unique = punique; show = pshow; solutions = 0;
printf("\n");
acd();
if (unique) printf("\n%d unique solutions in %d to %d\n",solutions,lo,hi); else printf("\n%d non-unique solutions in %d to %d\n",solutions,lo,hi);
}
main() {
foursquares(1,7,TRUE,TRUE); foursquares(3,9,TRUE,TRUE); foursquares(0,9,FALSE,FALSE);
} </lang> Output
4 7 1 3 2 6 5 6 4 1 5 2 3 7 3 7 2 1 5 4 6 5 6 2 3 1 7 4 7 3 2 5 1 4 6 4 5 3 1 6 2 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 8 unique solutions in 1 to 7 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 4 unique solutions in 3 to 9 2860 non-unique solutions in 0 to 9
C#
<lang csharp>using System; using System.Linq;
namespace Four_Squares_Puzzle {
class Program { static void Main(string[] args) { fourSquare(1, 7, true, true); fourSquare(3, 9, true, true); fourSquare(0, 9, false, false); }
private static void fourSquare(int low, int high, bool unique, bool print) { int count = 0;
if (print) { Console.WriteLine("a b c d e f g"); } for (int a = low; a <= high; ++a) { for (int b = low; b <= high; ++b) { if (notValid(unique, b, a)) continue;
int fp = a + b; for (int c = low; c <= high; ++c) { if (notValid(unique, c, b, a)) continue; for (int d = low; d <= high; ++d) { if (notValid(unique, d, c, b, a)) continue; if (fp != b + c + d) continue;
for (int e = low; e <= high; ++e) { if (notValid(unique, e, d, c, b, a)) continue; for (int f = low; f <= high; ++f) { if (notValid(unique, f, e, d, c, b, a)) continue; if (fp != d + e + f) continue;
for (int g = low; g <= high; ++g) { if (notValid(unique, g, f, e, d, c, b, a)) continue; if (fp != f + g) continue;
++count; if (print) { Console.WriteLine("{0} {1} {2} {3} {4} {5} {6}", a, b, c, d, e, f, g); } } } } } } } } if (unique) { Console.WriteLine("There are {0} unique solutions in [{1}, {2}]", count, low, high); } else { Console.WriteLine("There are {0} non-unique solutions in [{1}, {2}]", count, low, high); } }
private static bool notValid(bool unique, int needle, params int[] haystack) { return unique && haystack.Any(p => p == needle); } }
}</lang>
- Output:
a b c d e f g 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 There are 8 unique solutions in [1, 7] a b c d e f g 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 There are 4 unique solutions in [3, 9] There are 2860 non-unique solutions in [0, 9]
C++
<lang cpp> //C++14/17
- include <algorithm>//std::for_each
- include <iostream> //std::cout
- include <numeric> //std::iota
- include <vector> //std::vector, save solutions
- include <list> //std::list, for fast erase
using std::begin, std::end, std::for_each;
//Generates all the valid solutions for the problem in the specified range [from, to) std::list<std::vector<int>> combinations(int from, int to) {
if (from > to) return {}; //Return nothing if limits are invalid
auto pool = std::vector<int>(to - from);//Here we'll save our values std::iota(begin(pool), end(pool), from);//Populates pool
auto solutions = std::list<std::vector<int>>{}; //List for the solutions
//Brute-force calculation of valid values... for (auto a : pool) for (auto b : pool) for (auto c : pool) for (auto d : pool) for (auto e : pool) for (auto f : pool) for (auto g : pool) if ( a == c + d && b + c == e + f && d + e == g ) solutions.push_back({a, b, c, d, e, f, g}); return solutions;
}
//Filter the list generated from "combinations" and return only lists with no repetitions std::list<std::vector<int>> filter_unique(int from, int to) {
//Helper lambda to check repetitions: //If the count is > 1 for an element, there must be a repetition inside the range auto has_non_unique_values = [](const auto & range, auto target) { return std::count( begin(range), end(range), target) > 1; };
//Generates all the solutions... auto results = combinations(from, to);
//For each solution, find duplicates inside for (auto subrange = cbegin(results); subrange != cend(results); ++subrange) { bool repetition = false;
//If some element is repeated, repetition becomes true for (auto x : *subrange) repetition |= has_non_unique_values(*subrange, x);
if (repetition) //If repetition is true, remove the current subrange from the list { results.erase(subrange); //Deletes subrange from solutions --subrange; //Rewind to the last subrange analysed } }
return results; //Finally return remaining results
}
template <class Container> //Template for the sake of simplicity inline void print_range(const Container & c) {
for (const auto & subrange : c) { std::cout << "["; for (auto elem : subrange) std::cout << elem << ' '; std::cout << "\b]\n"; }
}
int main()
{
std::cout << "Unique-numbers combinations in range 1-7:\n"; auto solution1 = filter_unique(1, 8); print_range(solution1); std::cout << "\nUnique-numbers combinations in range 3-9:\n"; auto solution2 = filter_unique(3,10); print_range(solution2); std::cout << "\nNumber of combinations in range 0-9: " << combinations(0, 10).size() << "." << std::endl;
return 0;
} </lang> Output
Unique-numbers combinations in range 1-7: [3 7 2 1 5 4 6] [4 5 3 1 6 2 7] [4 7 1 3 2 6 5] [5 6 2 3 1 7 4] [6 4 1 5 2 3 7] [6 4 5 1 2 7 3] [7 2 6 1 3 5 4] [7 3 2 5 1 4 6] Unique-numbers combinations in range 3-9: [7 8 3 4 5 6 9] [8 7 3 5 4 6 9] [9 6 4 5 3 7 8] [9 6 5 4 3 8 7] Number of combinations in range 0-9: 2860.
Clojure
<lang clojure>(use '[clojure.math.combinatorics]
(defn rings [r & {:keys [unique] :or {unique true}}]
(if unique (apply concat (map permutations (combinations r 7))) (selections r 7)))
(defn four-rings [low high & {:keys [unique] :or {unique true}}]
(for [[a b c d e f g] (rings (range low (inc high)) :unique unique) :when (= (+ a b) (+ b c d) (+ d e f) (+ f g))] [a b c d e f g]))
</lang>
- Output:
=> (pprint (four-rings 1 7)) ([3 7 2 1 5 4 6] [4 5 3 1 6 2 7] [4 7 1 3 2 6 5] [5 6 2 3 1 7 4] [6 4 1 5 2 3 7] [6 4 5 1 2 7 3] [7 2 6 1 3 5 4] [7 3 2 5 1 4 6]) nil => (pprint (four-rings 3 9)) ([7 8 3 4 5 6 9] [8 7 3 5 4 6 9] [9 6 4 5 3 7 8] [9 6 5 4 3 8 7]) nil => (count (four-rings 0 9 :unique false)) 2860
Common Lisp
<lang lisp> (defpackage four-rings
(:use common-lisp) (:export display-solutions))
(in-package four-rings)
(defun correct-answer-p (a b c d e f g)
(let ((v (+ a b))) (and (equal v (+ b c d)) (equal v (+ d e f)) (equal v (+ f g)))))
(defun combinations-if (func len unique min max)
(let ((results nil)) (labels ((inner (cur) (if (eql (length cur) len) (when (apply func (reverse cur)) (push cur results)) (dotimes (i (- max min)) (when (or (not unique) (not (member (+ i min) cur))) (inner (append (list (+ i min)) cur))))))) (inner nil)) results))
(defun four-rings-solutions (low high unique)
(combinations-if #'correct-answer-p 7 unique low (1+ high)))
(defun display-solutions ()
(let ((letters '((a b c d e f g)))) (format t "Low 1, High 7, unique letters: ~%~{~{~3A~}~%~}~%" (append letters (four-rings-solutions 1 7 t))) (format t "Low 3, High 9, unique letters: ~%~{~{~3A~}~%~}~%" (append letters (four-rings-solutions 3 9 t))) (format t "Number of solutions for Low 0, High 9 non-unique:~%~A~%" (length (four-rings-solutions 0 9 nil)))))
</lang> Output:
CL-USER> (four-rings:display-solutions) Low 1, High 7, unique letters: A B C D E F G 6 4 1 5 2 3 7 4 5 3 1 6 2 7 3 7 2 1 5 4 6 7 3 2 5 1 4 6 4 7 1 3 2 6 5 5 6 2 3 1 7 4 7 2 6 1 3 5 4 6 4 5 1 2 7 3 Low 3, High 9, unique letters: A B C D E F G 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 Number of solutions for Low 0, High 9 non-unique: 2860 NIL
Crystal
<lang ruby>def check(list)
a, b, c, d, e, f, g = list first = a + b {b + c + d, d + e + f, f + g}.all? &.==(first)
end
def four_squares(low, high, unique = true, show = unique)
solutions = [] of Array(Int32) if unique uniq = "unique" (low..high).to_a.each_permutation(7, true) { |ary| solutions << ary.clone if check(ary) } else uniq = "non-unique" (low..high).to_a.each_repeated_permutation(7, true) { |ary| solutions << ary.clone if check(ary) } end if show puts " " + ("a".."g").join(" ") solutions.each { |ary| p ary } end puts "#{solutions.size} #{uniq} solutions in #{low} to #{high}" puts
end
{ {1, 7}, {3, 9} }.each do |(low, high)|
four_squares(low, high)
end four_squares(0, 9, false)</lang>
D
<lang D>import std.stdio;
void main() {
fourSquare(1,7,true,true); fourSquare(3,9,true,true); fourSquare(0,9,false,false);
}
void fourSquare(int low, int high, bool unique, bool print) {
int count;
if (print) { writeln("a b c d e f g"); } for (int a=low; a<=high; ++a) { for (int b=low; b<=high; ++b) { if (!valid(unique, a, b)) continue;
int fp = a+b; for (int c=low; c<=high; ++c) { if (!valid(unique, c, a, b)) continue; for (int d=low; d<=high; ++d) { if (!valid(unique, d, a, b, c)) continue; if (fp != b+c+d) continue;
for (int e=low; e<=high; ++e) { if (!valid(unique, e, a, b, c, d)) continue; for (int f=low; f<=high; ++f) { if (!valid(unique, f, a, b, c, d, e)) continue; if (fp != d+e+f) continue;
for (int g=low; g<=high; ++g) { if (!valid(unique, g, a, b, c, d, e, f)) continue; if (fp != f+g) continue;
++count; if (print) { writeln(a,' ',b,' ',c,' ',d,' ',e,' ',f,' ',g); } } } } } } } } if (unique) { writeln("There are ", count, " unique solutions in [",low,",",high,"]"); } else { writeln("There are ", count, " non-unique solutions in [",low,",",high,"]"); }
}
bool valid(bool unique, int needle, int[] haystack ...) {
if (unique) { foreach (value; haystack) { if (needle == value) { return false; } } } return true;
}</lang>
- Output:
a b c d e f g 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 There are 8 unique solutions in [1,7] a b c d e f g 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 There are 4 unique solutions in [3,9] There are 2860 non-unique solutions in [0,9]
Delphi
See #Pascal
F#
<lang fsharp> (* A simple function to generate the sequence
Nigel Galloway: January 31st., 2017 *)
type G = {d:int;x:int;b:int;f:int} let N n g =
{(max (n-g) n) .. (min (g-n) g)} |> Seq.collect(fun d->{(max (d+n+n) (n+n))..(min (g+g) (d+g+g))} |> Seq.collect(fun x -> seq{for a in n .. g do for b in n .. g do if (a+b) = x then for c in n .. g do if (b+c+d) = x then yield b} |> Seq.collect(fun b -> seq{for f in n .. g do for G in n .. g do if (f+G) = x then for e in n .. g do if (f+e+d) = x then yield f} |> Seq.map(fun f -> {d=d;x=x;b=b;f=f}))))
</lang> Then: <lang fsharp> printfn "%d" (Seq.length (N 0 9)) </lang>
- Output:
2860
<lang fsharp> (* A simple function to generate the sequence with unique values
Nigel Galloway: January 31st., 2017 *)
type G = {d:int;x:int;b:int;f:int} let N n g =
{(max (n-g) n) .. (min (g-n) g)} |> Seq.filter(fun d -> d <> 0) |> Seq.collect(fun d->{(max (d+n+n) (n+n)) .. (min (g+g) (d+g+g))} |> Seq.collect(fun x -> seq{for a in n .. g do if a <> d then for b in n .. g do if (a+b) = x && b <> a && b <> d then for c in n .. g do if (b+c+d) = x && c <> d && c <> a && c <> b then yield b} |> Seq.collect(fun b -> seq{for f in n .. g do if f <> d && f <> b && f <> (x-b) && f <> (x-d-b) then for G in n .. g do if (f+G) = x && G <> d && G <> b && G <> f && G <> (x-b) && G <> (x-d-b) then for e in n .. g do if (f+e+d) = x && e <> d && e <> b && e <> f && e <> G && e <> (x-b) && e <> (x-d-b) then yield f} |> Seq.map(fun f -> {d=d;x=x;b=b;f=f}))))
</lang> Then: <lang fsharp> for n in N 1 7 do printfn "%d,%d,%d,%d,%d,%d,%d" (n.x-n.b) n.b (n.x-n.d-n.b) n.d (n.x-n.d-n.f) n.f (n.x-n.f) </lang>
- Output:
4,5,3,1,6,2,7 7,2,6,1,3,5,4 3,7,2,1,5,4,6 6,4,5,1,2,7,3 4,7,1,3,2,6,5 5,6,2,3,1,7,4 6,4,1,5,2,3,7 7,3,2,5,1,4,6
and: <lang fsharp> for n in N 3 9 do printfn "%d,%d,%d,%d,%d,%d,%d" (n.x-n.b) n.b (n.x-n.d-n.b) n.d (n.x-n.d-n.f) n.f (n.x-n.f) </lang>
- Output:
7,8,3,4,5,6,9 9,6,5,4,3,8,7 8,7,3,5,4,6,9 9,6,4,5,3,7,8
Factor
This solution uses the backtrack
vocabulary — Factor's implementation of John McCarthy's ambiguous operator. In short, we define 7 integers that can take up any value within the range that we give it, such as [3,9], and assign them names a-g. We then test whether the four sums from the puzzle are equal, and if applicable, whether a-g are unique. We send this boolean value to must-be-true
and if it's false, then the other possibilities will be explored through the power of continuations.
bag-of
is a combinator (higher-order function) that yields every solution in a collection. If we had written 4-rings
without using bag-of
, it would have returned only the first solution it found.
<lang factor>USING: arrays backtrack formatting grouping kernel locals math
math.ranges prettyprint sequences sequences.generalizations
sets ;
IN: rosetta-code.4-rings
- 4-rings ( lo hi unique? -- seq ) [
7 [ lo hi [a,b] amb-lazy ] replicate 7 firstn :> ( a b c d e f g ) { a b c d e f g } :> p a b + b c d + + d e f + + f g + 4array all-equal? unique? [ p all-unique? and ] when must-be-true p ] bag-of ;
- report ( lo hi unique? -- )
3dup 4-rings over [ dup . ] when length swap "" "non-" ? "In [%d, %d] there are %d %sunique solutions.\n" printf ;
1 7 t report 3 9 t report 0 9 f report</lang>
- Output:
V{ { 3 7 2 1 5 4 6 } { 4 5 3 1 6 2 7 } { 4 7 1 3 2 6 5 } { 5 6 2 3 1 7 4 } { 6 4 1 5 2 3 7 } { 6 4 5 1 2 7 3 } { 7 2 6 1 3 5 4 } { 7 3 2 5 1 4 6 } } In [1, 7] there are 8 unique solutions. V{ { 7 8 3 4 5 6 9 } { 8 7 3 5 4 6 9 } { 9 6 4 5 3 7 8 } { 9 6 5 4 3 8 7 } } In [3, 9] there are 4 unique solutions. In [0, 9] there are 2860 non-unique solutions.
Fortran
This uses the facility standardised in F90 whereby DO-loops can have text labels attached (not in the usual label area) so that the END DO statement can have the corresponding label, and any CYCLE statements can use it also. Similarly, the subroutine's END statement bears the name of the subroutine. This is just syntactic decoration. Rather more useful is extended syntax for dealing with arrays and especially the function ANY for making multiple tests without having to enumerate them in the code. To gain this convenience, the EQUIVALENCE statement makes variables A, B, C, D, E, F, and G occupy the same storage as INTEGER V(7)
, an array.
One could abandon the use of the named variables in favour of manipulating the array equivalent, and indeed develop code which performs the nested loops via messing with the array, but for simplicity, the individual variables are used. However, tempting though it is to write a systematic sequence of seven nested DO-loops, the variables are not in fact all independent: some are fixed once others are chosen. Just cycling through all the notional possibilities when one only is in fact possible is a bit too much brute-force-and-ignorance, though other problems with other constraints, may encourage such exhaustive stepping. As a result, the code is more tightly bound to the specific features of the problem.
Also standardised in F90 is the $ format code, which specifies that the output line is not to end with the WRITE statement. The problem here is that Fortran does not offer an IF ...FI bracketing construction inside an expression, that would allow something like <lang Fortran>WRITE(...) FIRST,LAST,IF (UNIQUE) THEN "Distinct values only" ELSE "Repeated values allowed" FI // "."</lang> so that the correct alternative will be selected. Further, an array (that would hold those two texts) can't be indexed by a LOGICAL variable, and playing with EQUIVALENCE won't help, because the numerical values revealed thereby for .TRUE. and .FALSE. may not be 1 and 0. And anyway, parameters are not allowed to be accessed via EQUIVALENCE to another variable.
So, a two-part output, and to reduce the blather, two IF-statements. <lang Fortran> SUBROUTINE FOURSHOW(FIRST,LAST,UNIQUE) !The "Four Rings" or "Four Squares" puzzle. Choose values such that A+B = B+C+D = D+E+F = F+G, all being integers in FIRST:LAST...
INTEGER FIRST,LAST !The range of allowed values. LOGICAL UNIQUE !Solutions need not have unique values. INTEGER A,B,C,D,E,F,G !Ah, Diophantus of Alexandria. INTEGER V(7),S,N !Assistants. EQUIVALENCE (V(1),A),(V(2),B),(V(3),C), !Yes, 1 (V(4),D),(V(5),E),(V(6),F),(V(7),G) !We're all individuals. WRITE (6,1) FIRST,LAST !Announce: first part. 1 FORMAT (/,"The Four Rings puzzle, over ",I0," to ",I0,".",$) !$: An addendum follows. IF (UNIQUE) WRITE (6,*) "Distinct values only." !Save on the THEN ... ELSE ... END IF blather. IF (.NOT.UNIQUE) WRITE (6,*) "Repeated values allowed." !Perhaps the compiler will be smarter.
N = 0 !No solutions have been found. BB:DO B = FIRST,LAST !Start chugging through the possibilities. CC:DO C = FIRST,LAST !Brute force and ignorance. IF (UNIQUE .AND. B.EQ.C) CYCLE CC !The first constraint shows up. DD:DO D = FIRST,LAST !Start by forming B, C, and D. IF (UNIQUE .AND. ANY(V(2:3).EQ.D)) CYCLE DD !Ignoring A just for now. S = B + C + D !This is the common sum. A = S - B !The value of A is not free from BCD. IF (A < FIRST .OR. A > LAST) CYCLE DD !And it may not be within bounds. IF (UNIQUE .AND. ANY(V(2:4).EQ.A)) CYCLE DD !Or, if required so, unique. EE:DO E = FIRST,LAST !Righto, A,B,C,D are valid. Try an E. IF (UNIQUE .AND. ANY(V(1:4).EQ.E)) CYCLE EE !Precluded already? F = S - (E + D) !No. So therefore, F is determined. IF (F < FIRST .OR. F > LAST) CYCLE EE !Acceptable? IF (UNIQUE .AND. ANY(V(1:5).EQ.F)) CYCLE EE !And, if required, unique? G = S - F !Yes! So finally, G is determined. IF (G < FIRST .OR. G > LAST) CYCLE EE !Acceptable? IF (UNIQUE .AND. ANY(V(1:6).EQ.G)) CYCLE EE !And, if required, unique? N = N + 1 !Yes! Count a solution set! IF (UNIQUE) WRITE (6,"(7I3)") V !Show its values. END DO EE !Consder another E. END DO DD !Consider another D. END DO CC !Consider another C. END DO BB !Consider another B. WRITE (6,2) N !Announce the count. 2 FORMAT (I9," found.") !Numerous, if no need for distinct values. END SUBROUTINE FOURSHOW !That was fun!
PROGRAM POKE
CALL FOURSHOW(1,7,.TRUE.) CALL FOURSHOW(3,9,.TRUE.) CALL FOURSHOW(0,9,.FALSE.)
END </lang>
Output: not in a neat order because the first variable is not determined first.
The Four Rings puzzle, over 1 to 7. Distinct values only. 7 2 6 1 3 5 4 7 3 2 5 1 4 6 6 4 1 5 2 3 7 6 4 5 1 2 7 3 4 5 3 1 6 2 7 5 6 2 3 1 7 4 4 7 1 3 2 6 5 3 7 2 1 5 4 6 8 found. The Four Rings puzzle, over 3 to 9. Distinct values only. 9 6 4 5 3 7 8 9 6 5 4 3 8 7 8 7 3 5 4 6 9 7 8 3 4 5 6 9 4 found. The Four Rings puzzle, over 0 to 9. Repeated values allowed. 2860 found.
One might hope that the ANY function will quit as soon as possible and that it will not be invoked if UNIQUE is false, but the modernisers have rejected reliance on short-circuit evaluation and the "help" is quite general on the workings of the ANY function, as also is modern. Here is a sample of the code produced by the Compaq 6.6a Visual Fortran F90/95 compiler, in its normal "debugging" condition and array bound checking of course active...
31: IF (UNIQUE .AND. ANY(V(1:6).EQ.G)) CYCLE EE !And, if required, unique? 00401496 mov edi,dword ptr [UNIQUE] 00401499 mov edi,dword ptr [edi] 0040149B mov ebx,dword ptr [G (00470380)] 004014A1 mov eax,0 004014A6 mov ecx,1 004014AB mov dword ptr [ebp-60h],1 004014B2 cmp dword ptr [ebp-60h],6 004014B6 jg FOURSHOW+4C4h (004014fc) 004014B8 cmp ecx,1 004014BB jl FOURSHOW+48Ah (004014c2) 004014BD cmp ecx,7 004014C0 jle FOURSHOW+493h (004014cb) 004014C2 xor esi,esi 004014C4 mov dword ptr [ebp-6Ch],esi 004014C7 dec esi 004014C8 bound esi,qword ptr [ebp-6Ch] 004014CB imul esi,ecx,4 004014CE mov esi,dword ptr S+4 (00470364)[esi] 004014D4 xor edx,edx 004014D6 cmp esi,ebx 004014D8 sete dl 004014DB mov dword ptr [ebp-6Ch],edx 004014DE mov edx,eax 004014E0 or edx,dword ptr [ebp-6Ch] 004014E3 and edx,1 004014E6 mov eax,edx 004014E8 neg eax 004014EA mov esi,ecx 004014EC add esi,1 004014EF mov ecx,esi 004014F1 mov edx,dword ptr [ebp-60h] 004014F4 add edx,1 004014F7 mov dword ptr [ebp-60h],edx 004014FA jmp FOURSHOW+47Ah (004014b2) 004014FC and edi,eax 004014FE mov edx,edi 00401500 and edx,1 00401503 cmp edx,0 00401506 jne FOURSHOW+531h (00401569) 32: N = N + 1 !Yes! Count a solution set! 00401508 mov esi,dword ptr [N (0047035c)] 0040150E add esi,1 00401511 mov dword ptr [N (0047035c)],esi 33: IF (UNIQUE) WRITE (6,"(7I3)") V !Show its values.
I'd rather say nothing at all.
FreeBASIC
<lang freebasic>' version 18-03-2017 ' compile with: fbc -s console
' TRUE/FALSE are built-in constants since FreeBASIC 1.04 ' But we have to define them for older versions.
- Ifndef TRUE
#Define FALSE 0 #Define TRUE Not FALSE
- EndIf
Sub four_rings(low As Long, high As Long, unique As Long, show As Long)
Dim As Long a, b, c, d, e, f, g Dim As ULong t, total Dim As ULong l = Len(Str(high)) If l < Len(Str(low)) Then l = Len(Str(low))
If show = TRUE Then For a = 97 To 103 Print Space(l); Chr(a); Next Print Print String((l +1) * 7, "="); Print End If
For a = low To high For b = low To high If unique = TRUE Then If b = a Then Continue For End If t = a + b For c = low To high If unique = TRUE Then If c = a OrElse c = b Then Continue For End If For d = low To high If unique = TRUE Then If d = a OrElse d = b OrElse d = c Then Continue For End If If b + c + d = t Then For e = low To high If unique = TRUE Then If e = a OrElse e = b OrElse e = c OrElse e = d Then Continue For End If For f = low To high If unique = TRUE Then If f = a OrElse f = b OrElse f = c OrElse f = d OrElse f = e Then Continue For End If If d + e + f = t Then For g = low To high If unique = TRUE Then If g = a OrElse g = b OrElse g = c OrElse g = d OrElse g = e OrElse g = f Then Continue For End If If f + g = t Then total += 1 If show = TRUE Then Print Using String(l +1, "#"); a; b; c; d; e; f; g End If End If Next End If Next Next End If Next Next Next Next
If unique = TRUE Then Print Print total; " Unique solutions for "; Str(low); " to "; Str(high) Else Print total; " Non unique solutions for "; Str(low); " to "; Str(high) End If Print String(40, "-") : Print
End Sub
' ------=< MAIN >=------
four_rings(1, 7, TRUE, TRUE) four_rings(3, 9, TRUE, TRUE) four_rings(0, 9, FALSE, FALSE)
' empty keyboard buffer While InKey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>
- Output:
a b c d e f g ============== 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 8 Unique solutions for 1 to 7 ---------------------------------------- a b c d e f g ============== 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 4 Unique solutions for 3 to 9 ---------------------------------------- 2860 Non unique solutions for 0 to 9 ----------------------------------------
Go
<lang go>package main
import "fmt"
func main(){ n, c := getCombs(1,7,true) fmt.Printf("%d unique solutions in 1 to 7\n",n) fmt.Println(c) n, c = getCombs(3,9,true) fmt.Printf("%d unique solutions in 3 to 9\n",n) fmt.Println(c) n, _ = getCombs(0,9,false) fmt.Printf("%d non-unique solutions in 0 to 9\n",n) }
func getCombs(low,high int,unique bool) (num int,validCombs [][]int){ for a := low; a <= high; a++ { for b := low; b <= high; b++ { for c := low; c <= high; c++ { for d := low; d <= high; d++ { for e := low; e <= high; e++ { for f := low; f <= high; f++ { for g := low; g <= high; g++ { if validComb(a,b,c,d,e,f,g) { if !unique || isUnique(a,b,c,d,e,f,g) { num++ validCombs = append(validCombs,[]int{a,b,c,d,e,f,g}) } } } } } } } } } return } func isUnique(a,b,c,d,e,f,g int) (res bool) { data := make(map[int]int) data[a]++ data[b]++ data[c]++ data[d]++ data[e]++ data[f]++ data[g]++ return len(data) == 7 } func validComb(a,b,c,d,e,f,g int) bool{ square1 := a + b square2 := b + c + d square3 := d + e + f square4 := f + g return square1 == square2 && square2 == square3 && square3 == square4 } </lang>
- Output:
8 unique solutions in 1 to 7 [[3 7 2 1 5 4 6] [4 5 3 1 6 2 7] [4 7 1 3 2 6 5] [5 6 2 3 1 7 4] [6 4 1 5 2 3 7] [6 4 5 1 2 7 3] [7 2 6 1 3 5 4] [7 3 2 5 1 4 6]] 4 unique solutions in 3 to 9 [[7 8 3 4 5 6 9] [8 7 3 5 4 6 9] [9 6 4 5 3 7 8] [9 6 5 4 3 8 7]] 2860 non-unique solutions in 0 to 9
Groovy
<lang groovy>class FourRings {
static void main(String[] args) { fourSquare(1, 7, true, true) fourSquare(3, 9, true, true) fourSquare(0, 9, false, false) }
private static void fourSquare(int low, int high, boolean unique, boolean print) { int count = 0
if (print) { println("a b c d e f g") } for (int a = low; a <= high; ++a) { for (int b = low; b <= high; ++b) { if (notValid(unique, a, b)) continue
int fp = a + b for (int c = low; c <= high; ++c) { if (notValid(unique, c, a, b)) continue for (int d = low; d <= high; ++d) { if (notValid(unique, d, a, b, c)) continue if (fp != b + c + d) continue
for (int e = low; e <= high; ++e) { if (notValid(unique, e, a, b, c, d)) continue for (int f = low; f <= high; ++f) { if (notValid(unique, f, a, b, c, d, e)) continue if (fp != d + e + f) continue
for (int g = low; g <= high; ++g) { if (notValid(unique, g, a, b, c, d, e, f)) continue if (fp != f + g) continue
++count if (print) { printf("%d %d %d %d %d %d %d%n", a, b, c, d, e, f, g) } } } } } } } } if (unique) { printf("There are %d unique solutions in [%d, %d]%n", count, low, high) } else { printf("There are %d non-unique solutions in [%d, %d]%n", count, low, high) } }
private static boolean notValid(boolean unique, int needle, int ... haystack) { return unique && Arrays.stream(haystack).anyMatch({ p -> p == needle }) }
}</lang>
- Output:
a b c d e f g 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 There are 8 unique solutions in [1, 7] a b c d e f g 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 There are 4 unique solutions in [3, 9] There are 2860 non-unique solutions in [0, 9]
Haskell
By exhaustive search
<lang haskell>import Data.List import Control.Monad
perms :: (Eq a) => [a] -> a perms [] = [[]] perms xs = [ x:xr | x <- xs, xr <- perms (xs\\[x]) ]
combs :: (Eq a) => Int -> [a] -> a combs 0 _ = [[]] combs n xs = [ x:xr | x <- xs, xr <- combs (n-1) xs ]
ringCheck :: [Int] -> Bool ringCheck [x0, x1, x2, x3, x4, x5, x6] =
v == x1+x2+x3 && v == x3+x4+x5 && v == x5+x6 where v = x0 + x1
fourRings :: Int -> Int -> Bool -> Bool -> IO () fourRings low high allowRepeats verbose = do
let candidates = if allowRepeats then combs 7 [low..high] else perms [low..high]
solutions = filter ringCheck candidates
when verbose $ mapM_ print solutions
putStrLn $ show (length solutions) ++ (if allowRepeats then " non" else "") ++ " unique solutions for " ++ show low ++ " to " ++ show high
putStrLn ""
main = do
fourRings 1 7 False True fourRings 3 9 False True fourRings 0 9 True False</lang>
- Output:
[3,7,2,1,5,4,6] [4,5,3,1,6,2,7] [4,7,1,3,2,6,5] [5,6,2,3,1,7,4] [6,4,1,5,2,3,7] [6,4,5,1,2,7,3] [7,2,6,1,3,5,4] [7,3,2,5,1,4,6] 8 unique solutions for 1 to 7 [7,8,3,4,5,6,9] [8,7,3,5,4,6,9] [9,6,4,5,3,7,8] [9,6,5,4,3,8,7] 4 unique solutions for 3 to 9 2860 non unique solutions for 0 to 9
By structured search
For a faster solution (under a third of a second, vs over 25 seconds on this system for the brute force approach above), we can nest a series of smaller and more focused searches from the central digit outwards.
Two things to notice:
- If we call the central digit the Queen, then in any solution the Queen plus its left neighbour (left Bishop) must sum to the value of the left Rook (leftmost digit). Symmetrically, the right Rook must be the sum of the Queen and right Bishop.
- The difference between the left Rook and the right Rook must be (minus) the difference between the left Knight (between bishop and rook) and the right Knight.
Nesting four bind operators (>>=), we can then build the set of solutions in the order: queens, left bishops and rooks, right bishops and rooks, knights.
Probably less readable, but already fast, and could be further optimised.
<lang haskell>import Data.List (delete, sortBy, (\\))
4 RINGS OR 4 SQUARES PUZZLE --------------
type Rings = [(Int, Int, Int, Int, Int, Int, Int)]
rings :: Bool -> [Int] -> Rings rings u digits =
((>>=) <*> (queen u =<< head)) (sortBy (flip compare) digits)
queen :: Bool -> Int -> [Int] -> Int -> Rings queen u h ds q = xs >>= leftBishop u q h ts ds
where ts = filter ((<= h) . (q +)) ds xs | u = delete q ts | otherwise = ds
leftBishop ::
Bool -> Int -> Int -> [Int] -> [Int] -> Int -> Rings
leftBishop u q h ts ds lb
| lRook <= h = xs >>= rightBishop u q h lb ds lRook | otherwise = [] where lRook = lb + q xs | u = ts \\ [q, lb, lRook] | otherwise = ds
rightBishop ::
Bool -> Int -> Int -> Int -> [Int] -> Int -> Int -> Rings
rightBishop u q h lb ds lRook rb
| (rRook <= h) && (not u || (rRook /= lb)) = let ks | u = (ds \\ [q, lb, rb, rRook, lRook]) | otherwise = ds in ks >>= knights u (lRook - rRook) lRook lb q rb rRook ks | otherwise = [] where rRook = q + rb
knights ::
Bool -> Int -> Int -> Int -> Int -> Int -> Int -> [Int] -> Int -> Rings
knights u rookDelta lRook lb q rb rRook ks k =
[ (lRook, k, lb, q, rb, k2, rRook) | (k2 `elem` ks) && ( not u || notElem k2 [lRook, k, lb, q, rb, rRook] ) ] where k2 = k + rookDelta
TEST -------------------------
main :: IO () main = do
let f (k, xs) = putStrLn k >> nl >> mapM_ print xs >> nl nl = putStrLn [] mapM_ f [ ("rings True [1 .. 7]", rings True [1 .. 7]), ("rings True [3 .. 9]", rings True [3 .. 9]) ] f ( "length (rings False [0 .. 9])", [length (rings False [0 .. 9])] )</lang>
- Output:
rings True [1 .. 7] (7,3,2,5,1,4,6) (6,4,1,5,2,3,7) (5,6,2,3,1,7,4) (4,7,1,3,2,6,5) (7,2,6,1,3,5,4) (6,4,5,1,2,7,3) (4,5,3,1,6,2,7) (3,7,2,1,5,4,6) rings True [3 .. 9] (9,6,4,5,3,7,8) (8,7,3,5,4,6,9) (9,6,5,4,3,8,7) (7,8,3,4,5,6,9) length (rings False [0 .. 9]) 2860
J
Implementation for the unique version of the puzzle:
<lang J>fspuz=:dyad define
range=: x+i.1+y-x lo=. 6+3*x hi=. _3+2*y r=.i.0 0 if. lo <: hi do. for_T.lo ([+[:i.1+-~) hi do. range2=: (#~ (T-{.range)>:]) range range3=: (#~ (T-+/2{.range)>:]) range ab=: (#~ ~:/"1) (,.T-])range2 abc=: ;ab <@([ ,"1 0 -.~)"1/range3 abcd=: (#~ T = +/@}."1) ;abc <@([ ,"1 0 -.~)"1/range3 abcde=: ;abcd <@([ ,"1 0 -.~)"1/range3 abcdef=: (#~ T = +/@(3}.])"1) ;abcde <@([ ,"1 0 -.~)"1/range3 abcdefg=: (#~ T = +/@(5}.])"1) ;abcdef <@([ ,"1 0 -.~)"1/range2 r=.r,(#~ x<:<./"1)(#~ y>:>./"1)abcdefg end. end.
)</lang>
Implementation for the non-unique version of the puzzle:
<lang J>fspuz2=:dyad define
range=: x+i.1+y-x lo=. 3*x hi=. 2*y r=.i.0 0 if. lo <: hi do. for_T.lo ([+[:i.1+-~) hi do. ab=: (,.T-])range abc=: ,/ab,"1 0/ range abcd=: (#~ T = +/@}."1) ,/abc,"1 0/ range abcde=: ,/abcd,"1 0/ range abcdef=: (#~ T = +/@(3}.])"1) ,/abcde ,"1 0/ range abcdefg=: (#~ T = +/@(5}.])"1) ,/abcdef,"1 0/ range r=.r,(#~ x<:<./"1)(#~ y>:>./"1)abcdefg end. end.
)</lang>
Task examples:
<lang J> 1 fspuz 7 4 5 3 1 6 2 7 7 2 6 1 3 5 4 3 7 2 1 5 4 6 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 3 2 5 1 4 6 4 7 1 3 2 6 5 5 6 2 3 1 7 4
3 fspuz 9
7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7
#0 fspuz2 9
2860</lang>
Java
Uses java 8 features. <lang Java>import java.util.Arrays;
public class FourSquares {
public static void main(String[] args) { fourSquare(1, 7, true, true); fourSquare(3, 9, true, true); fourSquare(0, 9, false, false); }
private static void fourSquare(int low, int high, boolean unique, boolean print) { int count = 0;
if (print) { System.out.println("a b c d e f g"); } for (int a = low; a <= high; ++a) { for (int b = low; b <= high; ++b) { if (notValid(unique, a, b)) continue;
int fp = a + b; for (int c = low; c <= high; ++c) { if (notValid(unique, c, a, b)) continue; for (int d = low; d <= high; ++d) { if (notValid(unique, d, a, b, c)) continue; if (fp != b + c + d) continue;
for (int e = low; e <= high; ++e) { if (notValid(unique, e, a, b, c, d)) continue; for (int f = low; f <= high; ++f) { if (notValid(unique, f, a, b, c, d, e)) continue; if (fp != d + e + f) continue;
for (int g = low; g <= high; ++g) { if (notValid(unique, g, a, b, c, d, e, f)) continue; if (fp != f + g) continue;
++count; if (print) { System.out.printf("%d %d %d %d %d %d %d%n", a, b, c, d, e, f, g); } } } } } } } } if (unique) { System.out.printf("There are %d unique solutions in [%d, %d]%n", count, low, high); } else { System.out.printf("There are %d non-unique solutions in [%d, %d]%n", count, low, high); } }
private static boolean notValid(boolean unique, int needle, int... haystack) { return unique && Arrays.stream(haystack).anyMatch(p -> p == needle); }
}</lang>
- Output:
a b c d e f g 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 There are 8 unique solutions in [1, 7] a b c d e f g 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 There are 4 unique solutions in [3, 9] There are 2860 non-unique solutions in [0, 9]
JavaScript
ES6
(Structured search version)
<lang javascript>(() => {
// 4-rings or 4-squares puzzle ------------------------
// rings :: noRepeatedDigits -> DigitList -> solutions // rings :: Bool -> [Int] -> Int const rings = (uniq, digits) => { return 0 < digits.length ? (() => { const ns = sortBy(flip(compare), digits), h = head(ns);
// CENTRAL DIGIT :: d return bindList( ns, d => { const ts = filter(x => (x + d) <= h, ns);
// LEFT OF CENTRE :: c and a return bindList( uniq ? delete_(d, ts) : ns, c => { const a = c + d;
// RIGHT OF CENTRE :: e and g return a > h ? ( [] ) : bindList(uniq ? ( difference(ts, [d, c, a]) ) : ns, e => { const g = d + e; return ((g > h) || (uniq && (g === c))) ? ( [] ) : (() => { const agDelta = a - g, bfs = uniq ? difference( ns, [d, c, e, g, a] ) : ns;
// MID LEFT, MID RIGHT :: b and f return bindList(bfs, b => { const f = b + agDelta; return elem(f, bfs) && ( !uniq || notElem(f, [ a, b, c, d, e, g ]) ) ? ([ [a, b, c, d, e, f, g] ]) : []; }); })(); }); }); }); })() : [] };
// TEST ----------------------------------------------- const main = () => { return unlines([ 'rings(true, enumFromTo(1,7))\n', unlines(map(show, rings(true, enumFromTo(1, 7)))),
'\nrings(true, enumFromTo(3, 9))\n', unlines(map(show, rings(true, enumFromTo(3, 9)))),
'\nlength(rings(false, enumFromTo(0, 9)))\n', length(rings(false, enumFromTo(0, 9))) .toString(), ]); };
// GENERIC FUNCTIONS ----------------------------------
// bindList (>>=) :: [a] -> (a -> [b]) -> [b] const bindList = (xs, mf) => [].concat.apply([], xs.map(mf));
// compare :: a -> a -> Ordering const compare = (a, b) => a < b ? -1 : (a > b ? 1 : 0);
// delete_ :: Eq a => a -> [a] -> [a] const delete_ = (x, xs) => xs.length > 0 ? ( (x === xs[0]) ? ( xs.slice(1) ) : [xs[0]].concat(delete_(x, xs.slice(1))) ) : [];
// difference :: Eq a => [a] -> [a] -> [a] const difference = (xs, ys) => { const s = new Set(ys); return xs.filter(x => !s.has(x)); };
// elem :: Eq a => a -> [a] -> Bool const elem = (x, xs) => xs.indexOf(x) !== -1;
// enumFromTo :: Int -> Int -> [Int] const enumFromTo = (m, n) => Array.from({ length: Math.floor(n - m) + 1 }, (_, i) => m + i);
// filter :: (a -> Bool) -> [a] -> [a] const filter = (f, xs) => xs.filter(f);
// flip :: (a -> b -> c) -> b -> a -> c const flip = f => (a, b) => f.apply(null, [b, a]);
// head :: [a] -> a const head = xs => xs.length ? xs[0] : undefined;
// length :: [a] -> Int const length = xs => xs.length;
// map :: (a -> b) -> [a] -> [b] const map = (f, xs) => xs.map(f);
// notElem :: Eq a => a -> [a] -> Bool const notElem = (x, xs) => xs.indexOf(x) === -1;
// show :: a -> String const show = x => JSON.stringify(x); //, null, 2);
// sortBy :: (a -> a -> Ordering) -> [a] -> [a] const sortBy = (f, xs) => xs.sort(f);
// unlines :: [String] -> String const unlines = xs => xs.join('\n');
// MAIN --- return main();
})();</lang>
- Output:
rings(true, enumFromTo(1,7)) [7,3,2,5,1,4,6] [6,4,1,5,2,3,7] [5,6,2,3,1,7,4] [4,7,1,3,2,6,5] [7,2,6,1,3,5,4] [6,4,5,1,2,7,3] [4,5,3,1,6,2,7] [3,7,2,1,5,4,6] rings(true, enumFromTo(3, 9)) [9,6,4,5,3,7,8] [8,7,3,5,4,6,9] [9,6,5,4,3,8,7] [7,8,3,4,5,6,9] length(rings(false, enumFromTo(0, 9))) 2860
Julia
<lang julia> using Combinatorics
function foursquares(low, high, onlyunique=true, showsolutions=true)
integers = collect(low:high) count = 0 sumsallequal(c) = c[1] + c[2] == c[2] + c[3] + c[4] == c[4] + c[5] + c[6] == c[6] + c[7] combos = onlyunique ? combinations(integers) : with_replacement_combinations(integers, 7) for combo in combos, plist in unique(collect(permutations(combo, 7))) if sumsallequal(plist) count += 1 if showsolutions println("$plist is a solution for the list $integers") end end end println("""Total $(onlyunique?"unique ":"")solutions for HIGH $high, LOW $low: $count""")
end
foursquares(1, 7, true, true) foursquares(3, 9, true, true) foursquares(0, 9, false, false) </lang>
- Output:
[3, 7, 2, 1, 5, 4, 6] is a solution for the list [1, 2, 3, 4, 5, 6, 7] [4, 5, 3, 1, 6, 2, 7] is a solution for the list [1, 2, 3, 4, 5, 6, 7] [4, 7, 1, 3, 2, 6, 5] is a solution for the list [1, 2, 3, 4, 5, 6, 7] [5, 6, 2, 3, 1, 7, 4] is a solution for the list [1, 2, 3, 4, 5, 6, 7] [6, 4, 1, 5, 2, 3, 7] is a solution for the list [1, 2, 3, 4, 5, 6, 7] [6, 4, 5, 1, 2, 7, 3] is a solution for the list [1, 2, 3, 4, 5, 6, 7] [7, 2, 6, 1, 3, 5, 4] is a solution for the list [1, 2, 3, 4, 5, 6, 7] [7, 3, 2, 5, 1, 4, 6] is a solution for the list [1, 2, 3, 4, 5, 6, 7] Total unique solutions for HIGH 7, LOW 1: 8 [7, 8, 3, 4, 5, 6, 9] is a solution for the list [3, 4, 5, 6, 7, 8, 9] [8, 7, 3, 5, 4, 6, 9] is a solution for the list [3, 4, 5, 6, 7, 8, 9] [9, 6, 4, 5, 3, 7, 8] is a solution for the list [3, 4, 5, 6, 7, 8, 9] [9, 6, 5, 4, 3, 8, 7] is a solution for the list [3, 4, 5, 6, 7, 8, 9] Total unique solutions for HIGH 9, LOW 3: 4 Total solutions for HIGH 9, LOW 0: 2860
Kotlin
<lang scala>// version 1.1.2
class FourSquares(
private val lo: Int, private val hi: Int, private val unique: Boolean, private val show: Boolean
) {
private var a = 0 private var b = 0 private var c = 0 private var d = 0 private var e = 0 private var f = 0 private var g = 0 private var s = 0
init { println() if (show) { println("a b c d e f g") println("-------------") } acd() println("\n$s ${if (unique) "unique" else "non-unique"} solutions in $lo to $hi") }
private fun acd() { c = lo while (c <= hi) { d = lo while (d <= hi) { if (!unique || c != d) { a = c + d if ((a in lo..hi) && (!unique || (c != 0 && d!= 0))) ge() } d++ } c++ } }
private fun bf() { f = lo while (f <= hi) { if (!unique || (f != a && f != c && f != d && f != e && f!= g)) { b = e + f - c if ((b in lo..hi) && (!unique || (b != a && b != c && b != d && b != e && b != f && b!= g))) { s++ if (show) println("$a $b $c $d $e $f $g") } } f++ } }
private fun ge() { e = lo while (e <= hi) { if (!unique || (e != a && e != c && e != d)) { g = d + e if ((g in lo..hi) && (!unique || (g != a && g != c && g != d && g != e))) bf() } e++ } }
}
fun main(args: Array<String>) {
FourSquares(1, 7, true, true) FourSquares(3, 9, true, true) FourSquares(0, 9, false, false)
}</lang>
- Output:
a b c d e f g ------------- 4 7 1 3 2 6 5 6 4 1 5 2 3 7 3 7 2 1 5 4 6 5 6 2 3 1 7 4 7 3 2 5 1 4 6 4 5 3 1 6 2 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 8 unique solutions in 1 to 7 a b c d e f g ------------- 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 4 unique solutions in 3 to 9 2860 non-unique solutions in 0 to 9
Lua
<lang lua>function valid(unique,needle,haystack)
if unique then for _,value in pairs(haystack) do if needle == value then return false end end end return true
end
function fourSquare(low,high,unique,prnt)
count = 0 if prnt then print("a", "b", "c", "d", "e", "f", "g") end for a=low,high do for b=low,high do if valid(unique, a, {b}) then fp = a + b for c=low,high do if valid(unique, c, {a, b}) then for d=low,high do if valid(unique, d, {a, b, c}) and fp == b + c + d then for e=low,high do if valid(unique, e, {a, b, c, d}) then for f=low,high do if valid(unique, f, {a, b, c, d, e}) and fp == d + e + f then for g=low,high do if valid(unique, g, {a, b, c, d, e, f}) and fp == f + g then count = count + 1 if prnt then print(a, b, c, d, e, f, g) end end end end end end end end end end end end end end if unique then print(string.format("There are %d unique solutions in [%d, %d]", count, low, high)) else print(string.format("There are %d non-unique solutions in [%d, %d]", count, low, high)) end
end
fourSquare(1,7,true,true) fourSquare(3,9,true,true) fourSquare(0,9,false,false)</lang>
- Output:
a b c d e f g 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 There are 8 unique solutions in [1, 7] a b c d e f g 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 There are 4 unique solutions in [3, 9] There are 2860 non-unique solutions in [0, 9]
Modula-2
<lang modula2>MODULE FourSquare; FROM Conversions IMPORT IntToStr; FROM Terminal IMPORT *;
PROCEDURE WriteInt(num : INTEGER); VAR str : ARRAY[0..16] OF CHAR; BEGIN
IntToStr(num,str); WriteString(str);
END WriteInt;
PROCEDURE four_square(low, high : INTEGER; unique, print : BOOLEAN); VAR count : INTEGER; VAR a, b, c, d, e, f, g : INTEGER; VAR fp : INTEGER; BEGIN
count:=0;
IF print THEN WriteString('a b c d e f g'); WriteLn; END; FOR a:=low TO high DO FOR b:=low TO high DO IF unique AND (b=a) THEN CONTINUE; END;
fp:=a+b; FOR c:=low TO high DO IF unique AND ((c=a) OR (c=b)) THEN CONTINUE; END; FOR d:=low TO high DO IF unique AND ((d=a) OR (d=b) OR (d=c)) THEN CONTINUE; END; IF fp # b+c+d THEN CONTINUE; END;
FOR e:=low TO high DO IF unique AND ((e=a) OR (e=b) OR (e=c) OR (e=d)) THEN CONTINUE; END; FOR f:=low TO high DO IF unique AND ((f=a) OR (f=b) OR (f=c) OR (f=d) OR (f=e)) THEN CONTINUE; END; IF fp # d+e+f THEN CONTINUE; END;
FOR g:=low TO high DO IF unique AND ((g=a) OR (g=b) OR (g=c) OR (g=d) OR (g=e) OR (g=f)) THEN CONTINUE; END; IF fp # f+g THEN CONTINUE; END;
INC(count); IF print THEN WriteInt(a); WriteString(' '); WriteInt(b); WriteString(' '); WriteInt(c); WriteString(' '); WriteInt(d); WriteString(' '); WriteInt(e); WriteString(' '); WriteInt(f); WriteString(' '); WriteInt(g); WriteLn; END; END; END; END; END; END; END; END; IF unique THEN WriteString('There are '); WriteInt(count); WriteString(' unique solutions in ['); WriteInt(low); WriteString(', '); WriteInt(high); WriteString(']'); WriteLn; ELSE WriteString('There are '); WriteInt(count); WriteString(' non-unique solutions in ['); WriteInt(low); WriteString(', '); WriteInt(high); WriteString(']'); WriteLn; END;
END four_square;
BEGIN
four_square(1,7,TRUE,TRUE); four_square(3,9,TRUE,TRUE); four_square(0,9,FALSE,FALSE); ReadChar; (* Wait so results can be viewed. *)
END FourSquare.</lang>
Nim
Adapted from Rust version. <lang nim>func isUnique(a, b, c, d, e, f, g: uint8): bool =
a != b and a != c and a != d and a != e and a != f and a != g and b != c and b != d and b != e and b != f and b != g and c != d and c != e and c != f and c != g and d != e and d != f and d != f and e != f and e != g and f != g
func isSolution(a, b, c, d, e, f, g: uint8): bool =
let sum = a + b sum == b + c + d and sum == d + e + f and sum == f + g
func fourSquares(l, h: uint8, unique: bool): seq[array[7, uint8]] =
for a in l..h: for b in l..h: for c in l..h: for d in l..h: for e in l..h: for f in l..h: for g in l..h: if (not unique or isUnique(a, b, c, d, e, f, g)) and isSolution(a, b, c, d, e, f, g): result &= [a, b, c, d, e, f, g]
proc printFourSquares(l, h: uint8, unique = true) =
let solutions = fourSquares(l, h, unique)
if unique: for s in solutions: echo s
echo solutions.len, (if unique: " " else: " non-"), "unique solutions in ", l, " to ", h, " range\n"
when isMainModule:
printFourSquares(1, 7) printFourSquares(3, 9) printFourSquares(0, 9, unique = false)</lang>
- Output:
[3, 7, 2, 1, 5, 4, 6] [4, 5, 3, 1, 6, 2, 7] [4, 7, 1, 3, 2, 6, 5] [5, 6, 2, 3, 1, 7, 4] [6, 4, 1, 5, 2, 3, 7] [6, 4, 5, 1, 2, 7, 3] [7, 2, 6, 1, 3, 5, 4] [7, 3, 2, 5, 1, 4, 6] 8 unique solutions in 1 to 7 range [7, 8, 3, 4, 5, 6, 9] [8, 7, 3, 5, 4, 6, 9] [9, 6, 4, 5, 3, 7, 8] [9, 6, 5, 4, 3, 8, 7] 4 unique solutions in 3 to 9 range 2860 non-unique solutions in 0 to 9 range
Pascal
There are so few solutions of 7 consecutive numbers, so I used a modified version, to get all the expected solutions at once. <lang pascal>program square4; {$MODE DELPHI} {$R+,O+} const
LoDgt = 0; HiDgt = 9;
type
tchkset = set of LoDgt..HiDgt; tSol = record solMin : integer; solDat : array[1..7] of integer; end;
var
sum,a,b,c,d,e,f,g,cnt,uniqueCount : NativeInt; sol : array of tSol;
procedure SolOut; var
i,j,mn: NativeInt;
Begin
mn := 0; repeat writeln(mn:3,' ...',mn+6:3); For i := Low(sol) to High(sol) do with sol[i] do IF solMin = mn then Begin For j := 1 to 7 do write(solDat[j]:3); writeln; end; writeln; inc(mn); until mn > HiDgt-6;
end;
function CheckUnique:Boolean; var
i,sum,mn: NativeInt; chkset : tchkset;
Begin
chkset:= []; include(chkset,a);include(chkset,b);include(chkset,c); include(chkset,d);include(chkset,e);include(chkset,f); include(chkset,g); sum := 0; For i := LoDgt to HiDgt do IF i in chkset then inc(sum);
result := sum = 7; IF result then begin inc(uniqueCount); //find the lowest entry mn:= LoDgt; For i := LoDgt to HiDgt do IF i in chkset then Begin mn := i; BREAK; end; // are they consecutive For i := mn+1 to mn+6 do IF NOT(i in chkset) then EXIT;
setlength(sol,Length(sol)+1); with sol[high(sol)] do Begin solMin:= mn; solDat[1]:= a;solDat[2]:= b;solDat[3]:= c; solDat[4]:= d;solDat[5]:= e;solDat[6]:= f; solDat[7]:= g; end; end;
end;
Begin
cnt := 0; uniqueCount := 0; For a:= LoDgt to HiDgt do Begin For b := LoDgt to HiDgt do Begin sum := a+b; //a+b = b+c+d => a = c+d => d := a-c For c := a-LoDgt downto LoDgt do begin d := a-c; e := sum-d; IF e>HiDgt then e:= HiDgt; For e := e downto LoDgt do begin f := sum-e-d; IF f in [loDGt..Hidgt]then Begin g := sum-f; IF g in [loDGt..Hidgt]then Begin inc(cnt); CheckUnique; end; end; end; end; end; end; SolOut; writeln(' solution count for ',loDgt,' to ',HiDgt,' = ',cnt); writeln('unique solution count for ',loDgt,' to ',HiDgt,' = ',uniqueCount);
end.</lang>
- Output:
0 ... 6 4 2 3 1 5 0 6 5 1 3 2 4 0 6 6 0 5 1 3 2 4 6 0 4 2 3 1 5 1 ... 7 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 5 1 2 7 3 6 4 1 5 2 3 7 7 2 6 1 3 5 4 7 3 2 5 1 4 6 2 ... 8 5 7 3 2 6 4 8 5 8 3 2 4 7 6 5 8 2 3 4 6 7 6 7 4 2 3 8 5 7 4 5 2 6 3 8 7 6 4 3 2 8 5 8 3 6 2 5 4 7 8 4 6 2 3 7 5 3 ... 9 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 5 4 3 8 7 9 6 4 5 3 7 8 solution count for 0 to 9 = 2860 unique solution count for 0 to 9 = 192
Perl
Relying on the modules ntheory
and Set::CrossProduct
to generate the tuples needed. Both are supply results via iterators, particularly important in the latter case, to avoid gobbling too much memory.
<lang perl>use ntheory qw/forperm/; use Set::CrossProduct;
sub four_sq_permute {
my($list) = @_; my @solutions; forperm { @c = @$list[@_]; push @solutions, [@c] if check(@c); } @$list; print +@solutions . " unique solutions found using: " . join(', ', @$list) . "\n"; return @solutions;
}
sub four_sq_cartesian {
my(@list) = @_; my @solutions; my $iterator = Set::CrossProduct->new( [(@list) x 7] ); while( my $c = $iterator->get ) { push @solutions, [@$c] if check(@$c); } print +@solutions . " non-unique solutions found using: " . join(', ', @{@list[0]}) . "\n"; return @solutions;
}
sub check {
my(@c) = @_; $a = $c[0] + $c[1]; $b = $c[1] + $c[2] + $c[3]; $c = $c[3] + $c[4] + $c[5]; $d = $c[5] + $c[6]; $a == $b and $a == $c and $a == $d;
}
sub display {
my(@solutions) = @_; my $fmt = "%2s " x 7 . "\n"; printf $fmt, ('a'..'g'); printf $fmt, @$_ for @solutions; print "\n";
}
display four_sq_permute( [1..7] ); display four_sq_permute( [3..9] ); display four_sq_permute( [8, 9, 11, 12, 17, 18, 20, 21] ); four_sq_cartesian( [0..9] );</lang>
- Output:
8 unique solutions found using: 1, 2, 3, 4, 5, 6, 7 a b c d e f g 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 4 unique solutions found using: 3, 4, 5, 6, 7, 8, 9 a b c d e f g 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 8 unique solutions found using: 8, 9, 11, 12, 17, 18, 20, 21 a b c d e f g 17 21 8 9 11 18 20 17 21 9 8 12 18 20 20 18 8 12 9 17 21 20 18 11 9 8 21 17 20 18 11 9 12 17 21 20 18 12 8 9 21 17 21 17 9 12 8 18 20 21 17 12 9 11 18 20 2860 non-unique solutions found using: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Phix
integer solutions procedure check(sequence set, bool show) integer {a,b,c,d,e,f,g} = set, ab = a+b if ab=b+d+c and ab=d+e+f and ab=f+g then solutions += 1 if show then ?set end if end if end procedure procedure foursquares(integer lo, integer hi, bool uniq, bool show) sequence set = repeat(lo,7) solutions = 0 if uniq then for i=1 to 7 do set[i] = lo+i-1 end for for i=1 to factorial(7) do check(permute(i,set),show) end for else integer done = 0 while not done do check(set,show) for i=1 to 7 do set[i] += 1 if set[i]<=hi then exit end if if i=7 then done = 1 exit end if set[i] = lo end for end while end if printf(1,"%d solutions\n",solutions) end procedure foursquares(1,7,uniq:=true,show:=true) foursquares(3,9,true,true) foursquares(0,9,false,false)
- Output:
{6,4,5,1,2,7,3} {3,7,2,1,5,4,6} {6,4,1,5,2,3,7} {4,7,1,3,2,6,5} {7,3,2,5,1,4,6} {5,6,2,3,1,7,4} {4,5,3,1,6,2,7} {7,2,6,1,3,5,4} 8 solutions {7,8,3,4,5,6,9} {8,7,3,5,4,6,9} {9,6,4,5,3,7,8} {9,6,5,4,3,8,7} 4 solutions 2860 solutions
Picat
<lang Picat>import cp.
main =>
puzzle_all(1, 7, true, Sol1), foreach(Sol in Sol1) println(Sol) end, nl, puzzle_all(3, 9, true, Sol2), foreach(Sol in Sol2) println(Sol) end, nl, puzzle_all(0, 9, false, Sol3), println(len=Sol3.len), nl.
puzzle_all(Min, Max, Distinct, LL) =>
L = [A,B,C,D,E,F,G], L :: Min..Max, if Distinct then all_different(L) else true end, T #= A+B, T #= B+C+D, T #= D+E+F, T #= F+G, % Another approach: % Sums = $[A+B,B+C+D,D+E+F,F+G], % foreach(I in 2..Sums.len) Sums[I] #= Sums[I-1] end, LL = solve_all(L).
</lang>
Test:
Picat> main [3,7,2,1,5,4,6] [4,5,3,1,6,2,7] [4,7,1,3,2,6,5] [5,6,2,3,1,7,4] [6,4,1,5,2,3,7] [6,4,5,1,2,7,3] [7,2,6,1,3,5,4] [7,3,2,5,1,4,6] [7,8,3,4,5,6,9] [8,7,3,5,4,6,9] [9,6,4,5,3,7,8] [9,6,5,4,3,8,7] len = 2860
PL/SQL
<lang plsql> create table allints (v number); create table results ( a number, b number, c number, d number, e number, f number, g number );
create or replace procedure foursquares(lo number,hi number,uniq boolean,show boolean) as
a number; b number; c number; d number; e number; f number; g number; out_line varchar2(2000); cursor results_cur is select a, b, c, d, e, f, g from results order by a,b,c,d,e,f,g;
results_rec results_cur%rowtype; solutions number; uorn varchar2(2000);
begin
solutions := 0; delete from allints; delete from results; for i in lo..hi loop insert into allints values (i); end loop; commit; if uniq = TRUE then insert into results select a.v a, b.v b, c.v c, d.v d, e.v e, f.v f, g.v g from allints a, allints b, allints c,allints d, allints e, allints f, allints g where a.v not in (b.v,c.v,d.v,e.v,f.v,g.v) and b.v not in (c.v,d.v,e.v,f.v,g.v) and c.v not in (d.v,e.v,f.v,g.v) and d.v not in (e.v,f.v,g.v) and e.v not in (f.v,g.v) and f.v not in (g.v) and a.v = c.v + d.v and g.v = d.v + e.v and b.v = e.v + f.v - c.v order by a,b,c,d,e,f,g; uorn := ' unique solutions in '; else insert into results select a.v a, b.v b, c.v c, d.v d, e.v e, f.v f, g.v g from allints a, allints b, allints c,allints d, allints e, allints f, allints g where a.v = c.v + d.v and g.v = d.v + e.v and b.v = e.v + f.v - c.v order by a,b,c,d,e,f,g; uorn := ' non-unique solutions in '; end if; commit;
open results_cur; loop fetch results_cur into results_rec; exit when results_cur%notfound; a := results_rec.a; b := results_rec.b; c := results_rec.c; d := results_rec.d; e := results_rec.e; f := results_rec.f; g := results_rec.g; solutions := solutions + 1; if show = TRUE then out_line := to_char(a) || ' '; out_line := out_line || ' ' || to_char(b) || ' '; out_line := out_line || ' ' || to_char(c) || ' '; out_line := out_line || ' ' || to_char(d) || ' '; out_line := out_line || ' ' || to_char(e) || ' '; out_line := out_line || ' ' || to_char(f) ||' '; out_line := out_line || ' ' || to_char(g); end if; dbms_output.put_line(out_line); end loop; close results_cur; out_line := to_char(solutions) || uorn; out_line := out_line || to_char(lo) || ' to ' || to_char(hi); dbms_output.put_line(out_line);
end; / </lang> Output
SQL> execute foursquares(1,7,TRUE,TRUE); 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 8 unique solutions in 1 to 7 PL/SQL procedure successfully completed. SQL> execute foursquares(3,9,TRUE,TRUE); 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 4 unique solutions in 3 to 9 PL/SQL procedure successfully completed. SQL> execute foursquares(0,9,FALSE,FALSE); 2860 non-unique solutions in 0 to 9 PL/SQL procedure successfully completed.
Prolog
Works with SWI-Prolog 7.5.8 <lang Prolog>
- - use_module(library(clpfd)).
% main predicate my_sum(Min, Max, Top, LL):-
L = [A,B,C,D,E,F,G], L ins Min..Max, ( Top == 0 -> all_distinct(L) ; true), R #= A+B, R #= B+C+D, R #= D+E+F, R #= F+G, setof(L, labeling([ff], L), LL).
my_sum_1(Min, Max) :-
my_sum(Min, Max, 0, LL), maplist(writeln, LL).
my_sum_2(Min, Max, Len) :-
my_sum(Min, Max, 1, LL), length(LL, Len).
</lang> Output
?- my_sum_1(1,7). [3,7,2,1,5,4,6] [4,5,3,1,6,2,7] [4,7,1,3,2,6,5] [5,6,2,3,1,7,4] [6,4,1,5,2,3,7] [6,4,5,1,2,7,3] [7,2,6,1,3,5,4] [7,3,2,5,1,4,6] true. ?- my_sum_1(3,9). [7,8,3,4,5,6,9] [8,7,3,5,4,6,9] [9,6,4,5,3,7,8] [9,6,5,4,3,8,7] true. ?- my_sum_2(0,9,N). N = 2860.
Python
Procedural
Itertools
<lang Python>import itertools
def all_equal(a,b,c,d,e,f,g):
return a+b == b+c+d == d+e+f == f+g
def foursquares(lo,hi,unique,show):
solutions = 0 if unique: uorn = "unique" citer = itertools.combinations(range(lo,hi+1),7) else: uorn = "non-unique" citer = itertools.combinations_with_replacement(range(lo,hi+1),7) for c in citer: for p in set(itertools.permutations(c)): if all_equal(*p): solutions += 1 if show: print str(p)[1:-1]
print str(solutions)+" "+uorn+" solutions in "+str(lo)+" to "+str(hi) print</lang>
Output
foursquares(1,7,True,True) 4, 5, 3, 1, 6, 2, 7 3, 7, 2, 1, 5, 4, 6 5, 6, 2, 3, 1, 7, 4 4, 7, 1, 3, 2, 6, 5 6, 4, 5, 1, 2, 7, 3 7, 3, 2, 5, 1, 4, 6 7, 2, 6, 1, 3, 5, 4 6, 4, 1, 5, 2, 3, 7 8 unique solutions in 1 to 7 foursquares(3,9,True,True) 7, 8, 3, 4, 5, 6, 9 9, 6, 4, 5, 3, 7, 8 8, 7, 3, 5, 4, 6, 9 9, 6, 5, 4, 3, 8, 7 4 unique solutions in 3 to 9 foursquares(0,9,False,False) 2860 non-unique solutions in 0 to 9
Generators
Faster solution without itertools <lang Python> def foursquares(lo,hi,unique,show):
def acd_iter(): """ Iterates through all the possible valid values of a, c, and d. a = c + d """ for c in range(lo,hi+1): for d in range(lo,hi+1): if (not unique) or (c <> d): a = c + d if a >= lo and a <= hi: if (not unique) or (c <> 0 and d <> 0): yield (a,c,d) def ge_iter(): """ Iterates through all the possible valid values of g and e. g = d + e """ for e in range(lo,hi+1): if (not unique) or (e not in (a,c,d)): g = d + e if g >= lo and g <= hi: if (not unique) or (g not in (a,c,d,e)): yield (g,e) def bf_iter(): """ Iterates through all the possible valid values of b and f. b = e + f - c """ for f in range(lo,hi+1): if (not unique) or (f not in (a,c,d,g,e)): b = e + f - c if b >= lo and b <= hi: if (not unique) or (b not in (a,c,d,g,e,f)): yield (b,f)
solutions = 0 acd_itr = acd_iter() for acd in acd_itr: a,c,d = acd ge_itr = ge_iter() for ge in ge_itr: g,e = ge bf_itr = bf_iter() for bf in bf_itr: b,f = bf solutions += 1 if show: print str((a,b,c,d,e,f,g))[1:-1] if unique: uorn = "unique" else: uorn = "non-unique" print str(solutions)+" "+uorn+" solutions in "+str(lo)+" to "+str(hi) print</lang>
Output
foursquares(1,7,True,True) 4, 7, 1, 3, 2, 6, 5 6, 4, 1, 5, 2, 3, 7 3, 7, 2, 1, 5, 4, 6 5, 6, 2, 3, 1, 7, 4 7, 3, 2, 5, 1, 4, 6 4, 5, 3, 1, 6, 2, 7 6, 4, 5, 1, 2, 7, 3 7, 2, 6, 1, 3, 5, 4 8 unique solutions in 1 to 7 foursquares(3,9,True,True) 7, 8, 3, 4, 5, 6, 9 8, 7, 3, 5, 4, 6, 9 9, 6, 4, 5, 3, 7, 8 9, 6, 5, 4, 3, 8, 7 4 unique solutions in 3 to 9 foursquares(0,9,False,False) 2860 non-unique solutions in 0 to 9
Functional
<lang python>4-rings or 4-squares puzzle
from itertools import chain
- rings :: noRepeatedDigits -> DigitList -> Lists of solutions
- rings :: Bool -> [Int] -> Int
def rings(uniq):
Sets of unique or non-unique integer values (drawn from the `digits` argument) for each of the seven names [a..g] such that: (a + b) == (b + c + d) == (d + e + f) == (f + g) def go(digits): ns = sorted(digits, reverse=True) h = ns[0]
# CENTRAL DIGIT :: d def central(d): xs = list(filter(lambda x: h >= (d + x), ns))
# LEFT NEIGHBOUR AND LEFTMOST :: c and a def left(c): a = c + d if a > h: return [] else: # RIGHT NEIGHBOUR AND RIGHTMOST :: e and g def right(e): g = d + e if ((g > h) or (uniq and (g == c))): return [] else: agDelta = a - g bfs = difference(ns)( [d, c, e, g, a] ) if uniq else ns
# MID LEFT AND RIGHT :: b and f def midLeftRight(b): f = b + agDelta return a, b, c, d, e, f, g if ( (f in bfs) and ( (not uniq) or ( f not in [a, b, c, d, e, g] ) ) ) else []
# CANDIDATE DIGITS BOUND TO POSITIONS [a .. g] --------
return concatMap(midLeftRight)(bfs)
return concatMap(right)( difference(xs)([d, c, a]) if uniq else ns )
return concatMap(left)( delete(d)(xs) if uniq else ns )
return concatMap(central)(ns)
return lambda digits: go(digits) if digits else []
- TEST ----------------------------------------------------
- main :: IO ()
def main():
Testing unique digits [1..7], [3..9] and unrestricted digits
print(main.__doc__ + ':\n') print(unlines(map( lambda tpl: '\nrings' + repr(tpl) + ':\n\n' + unlines( map(repr, uncurry(rings)(*tpl)) ), [ (True, enumFromTo(1)(7)), (True, enumFromTo(3)(9)) ] ))) tpl = (False, enumFromTo(0)(9)) print( '\n\nlen(rings' + repr(tpl) + '):\n\n' + str(len(uncurry(rings)(*tpl))) )
- GENERIC -------------------------------------------------
- concatMap :: (a -> [b]) -> [a] -> [b]
def concatMap(f):
A concatenated list over which a function has been mapped. The list monad can be derived by using a function f which wraps its output in a list, (using an empty list to represent computational failure). return lambda xs: list( chain.from_iterable(map(f, xs)) )
- delete :: Eq a => a -> [a] -> [a]
def delete(x):
xs with the first of any instances of x removed. def go(xs): xs.remove(x) return xs return lambda xs: go(list(xs)) if ( x in xs ) else list(xs)
- difference :: Eq a => [a] -> [a] -> [a]
def difference(xs):
All elements of ys except any also found in xs def go(ys): s = set(ys) return [x for x in xs if x not in s] return lambda ys: go(ys)
- enumFromTo :: (Int, Int) -> [Int]
def enumFromTo(m):
Integer enumeration from m to n. return lambda n: list(range(m, 1 + n))
- uncurry :: (a -> b -> c) -> ((a, b) -> c)
def uncurry(f):
A function over a pair of arguments, derived from a vanilla or curried function. return lambda x, y: f(x)(y)
- unlines :: [String] -> String
def unlines(xs):
A single string formed by the intercalation of a list of strings with the newline character. return '\n'.join(xs)
- MAIN ---
if __name__ == '__main__':
main()</lang>
- Output:
Testing unique digits [1..7], [3..9] and unrestricted digits: rings(True, [1, 2, 3, 4, 5, 6, 7]): [7, 3, 2, 5, 1, 4, 6] [6, 4, 1, 5, 2, 3, 7] [5, 6, 2, 3, 1, 7, 4] [4, 7, 1, 3, 2, 6, 5] [7, 2, 6, 1, 3, 5, 4] [6, 4, 5, 1, 2, 7, 3] [4, 5, 3, 1, 6, 2, 7] [3, 7, 2, 1, 5, 4, 6] rings(True, [3, 4, 5, 6, 7, 8, 9]): [9, 6, 4, 5, 3, 7, 8] [8, 7, 3, 5, 4, 6, 9] [9, 6, 5, 4, 3, 8, 7] [7, 8, 3, 4, 5, 6, 9] len(rings(False, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])): 2860
R
Function "perms" is a modified version of the "permutations" function from the "gtools" R package. <lang R># 4 rings or 4 squares puzzle
perms <- function (n, r, v = 1:n, repeats.allowed = FALSE) {
if (repeats.allowed) sub <- function(n, r, v) { if (r == 1) matrix(v, n, 1) else if (n == 1) matrix(v, 1, r) else { inner <- Recall(n, r - 1, v) cbind(rep(v, rep(nrow(inner), n)), matrix(t(inner), ncol = ncol(inner), nrow = nrow(inner) * n, byrow = TRUE)) } } else sub <- function(n, r, v) { if (r == 1) matrix(v, n, 1) else if (n == 1) matrix(v, 1, r) else { X <- NULL for (i in 1:n) X <- rbind(X, cbind(v[i], Recall(n - 1, r - 1, v[-i]))) X } } X <- sub(n, r, v[1:n]) result <- vector(mode = "numeric")
for(i in 1:nrow(X)){ y <- X[i, ] x1 <- y[1] + y[2] x2 <- y[2] + y[3] + y[4] x3 <- y[4] + y[5] + y[6] x4 <- y[6] + y[7] if(x1 == x2 & x2 == x3 & x3 == x4) result <- rbind(result, y) } return(result)
}
print_perms <- function(n, r, v = 1:n, repeats.allowed = FALSE, table.out = FALSE) {
a <- perms(n, r, v, repeats.allowed) colnames(a) <- rep("", ncol(a)) rownames(a) <- rep("", nrow(a)) if(!repeats.allowed){ print(a) cat(paste('\n', nrow(a), 'unique solutions from', min(v), 'to', max(v))) } else { cat(paste('\n', nrow(a), 'non-unique solutions from', min(v), 'to', max(v))) }
}
registerS3method("print_perms", "data.frame", print_perms)
print_perms(7, 7, repeats.allowed = FALSE, table.out = TRUE) print_perms(7, 7, v = 3:9, repeats.allowed = FALSE, table.out = TRUE) print_perms(10, 7, v = 0:9, repeats.allowed = TRUE, table.out = FALSE)
</lang>
- Output:
3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 8 unique solutions from 1 to 7 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 4 unique solutions from 3 to 9 2860 non-unique solutions from 0 to 9
Racket
Using a folder, so we can count as well as produce lists of results
<lang racket>#lang racket
(define solution? (match-lambda [(list a b c d e f g) (= (+ a b) (+ b c d) (+ d e f) (+ f g))]))
(define (fold-4-rings-or-4-squares-puzzle lo hi kons k0)
(for*/fold ((k k0)) ((combination (in-combinations (range lo (add1 hi)) 7)) (permutation (in-permutations combination)) #:when (solution? permutation)) (kons permutation k)))
(fold-4-rings-or-4-squares-puzzle 1 7 cons null) (fold-4-rings-or-4-squares-puzzle 3 9 cons null) (fold-4-rings-or-4-squares-puzzle 0 9 (λ (ignored-solution count) (add1 count)) 0)</lang>
- Output:
'((6 4 1 5 2 3 7) (4 5 3 1 6 2 7) (3 7 2 1 5 4 6) (7 3 2 5 1 4 6) (4 7 1 3 2 6 5) (5 6 2 3 1 7 4) (7 2 6 1 3 5 4) (6 4 5 1 2 7 3)) '((7 8 3 4 5 6 9) (8 7 3 5 4 6 9) (9 6 4 5 3 7 8) (9 6 5 4 3 8 7)) 192
Raku
(formerly Perl 6)
<lang perl6>sub four-squares ( @list, :$unique=1, :$show=1 ) {
my @solutions;
for $unique.&combos -> @c { @solutions.push: @c if [==] @c[0] + @c[1], @c[1] + @c[2] + @c[3], @c[3] + @c[4] + @c[5], @c[5] + @c[6]; }
say +@solutions, ($unique ?? ' ' !! ' non-'), "unique solutions found using {join(', ', @list)}.\n";
my $f = "%{@list.max.chars}s";
say join "\n", (('a'..'g').fmt: $f), @solutions».fmt($f), "\n" if $show;
multi combos ( $ where so * ) { @list.combinations(7).map: |*.permutations }
multi combos ( $ where not * ) { [X] @list xx 7 }
}
- TASK
four-squares( [1..7] ); four-squares( [3..9] ); four-squares( [8, 9, 11, 12, 17, 18, 20, 21] ); four-squares( [0..9], :unique(0), :show(0) );</lang>
- Output:
8 unique solutions found using 1, 2, 3, 4, 5, 6, 7. a b c d e f g 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 4 unique solutions found using 3, 4, 5, 6, 7, 8, 9. a b c d e f g 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 8 unique solutions found using 8, 9, 11, 12, 17, 18, 20, 21. a b c d e f g 17 21 8 9 11 18 20 20 18 11 9 8 21 17 17 21 9 8 12 18 20 20 18 8 12 9 17 21 20 18 12 8 9 21 17 21 17 9 12 8 18 20 20 18 11 9 12 17 21 21 17 12 9 11 18 20 2860 non-unique solutions found using 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
REXX
fast version
This REXX version is faster than the more idiomatic version, but is longer (statement-wise) and
a bit easier to read (visualize).
<lang rexx>/*REXX pgm solves the 4-rings puzzle, where letters represent unique (or not) digits). */
arg LO HI unique show . /*the ARG statement capitalizes args.*/
if LO== | LO=="," then LO=1 /*Not specified? Then use the default.*/
if HI== | HI=="," then HI=7 /* " " " " " " */
if unique== | unique==',' | unique=='UNIQUE' then unique=1 /*unique letter solutions*/
else unique=0 /*non-unique " */
if show== | show==',' | show=='SHOW' then show=1 /*noshow letter solutions*/
else show=0 /* show " " */
w=max(3, length(LO), length(HI) ) /*maximum width of any number found. */ bar=copies('═', w) /*define a horizontal bar (for title). */ times=HI - LO + 1 /*calculate number of times to loop. */
- =0 /*number of solutions found (so far). */
do a=LO for times do b=LO for times if unique then if b==a then iterate do c=LO for times if unique then do; if c==a then iterate if c==b then iterate end do d=LO for times if unique then do; if d==a then iterate if d==b then iterate if d==c then iterate end do e=LO for times if unique then do; if e==a then iterate if e==b then iterate if e==c then iterate if e==d then iterate end do f=LO for times if unique then do; if f==a then iterate if f==b then iterate if f==c then iterate if f==d then iterate if f==e then iterate end do g=LO for times if unique then do; if g==a then iterate if g==b then iterate if g==c then iterate if g==d then iterate if g==e then iterate if g==f then iterate end sum=a+b if f+g\==sum then iterate if b+c+d\==sum then iterate if d+e+f\==sum then iterate #=# + 1 /*bump the count of solutions.*/ if #==1 then call align 'a', 'b', 'c', 'd', 'e', 'f', 'g' if #==1 then call align bar, bar, bar, bar, bar, bar, bar call align a, b, c, d, e, f, g end /*g*/ end /*f*/ end /*e*/ end /*d*/ end /*c*/ end /*b*/ end /*a*/
say
_= ' non-unique'
if unique then _= ' unique ' say # _ 'solutions found.' exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ align: parse arg a1,a2,a3,a4,a5,a6,a7
if show then say left(,9) center(a1,w) center(a2,w) center(a3,w) center(a4,w), center(a5,w) center(a6,w) center(a7,w) return</lang>
- output when using the default inputs: 1 7
a b c d e f g ═══ ═══ ═══ ═══ ═══ ═══ ═══ 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 8 unique solutions found.
- output when using the input of: 3 9
a b c d e f g ═══ ═══ ═══ ═══ ═══ ═══ ═══ 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 4 unique solutions found.
- output when using the input of: 0 9 non-unique noshow
2860 non-unique solutions found.
idiomatic version
This REXX version is slower than the faster version (because of the multiple if clauses.
Note that the REXX language doesn't have short-circuits (when executing multiple clauses in if (and other) statements. <lang rexx>/*REXX pgm solves the 4-rings puzzle, where letters represent unique (or not) digits). */ arg LO HI unique show . /*the ARG statement capitalizes args.*/ if LO== | LO=="," then LO=1 /*Not specified? Then use the default.*/ if HI== | HI=="," then HI=7 /* " " " " " " */ if unique== | unique==',' | unique=='UNIQUE' then u=1 /*unique letter solutions*/
else u=0 /*non-unique " */
if show== | show==',' | show=='SHOW' then show=1 /*noshow letter solutions*/
else show=0 /* show " " */
w=max(3, length(LO), length(HI) ) /*maximum width of any number found. */ bar=copies('═', w) /*define a horizontal bar (for title). */ times=HI - LO + 1 /*calculate number of times to loop. */
- =0 /*number of solutions found (so far). */
do a=LO for times do b=LO for times; if u then if b==a then iterate do c=LO for times; if u then if c==a|c==b then iterate do d=LO for times; if u then if d==a|d==b|d==c then iterate do e=LO for times; if u then if e==a|e==b|e==c|e==d then iterate do f=LO for times; if u then if f==a|f==b|f==c|f==d|f==e then iterate do g=LO for times; if u then if g==a|g==b|g==c|g==d|g==e|g==f then iterate sum=a+b if f+g==sum & b+c+d==sum & d+e+f==sum then #=#+1 /*bump # of solutions.*/ else iterate /*sum not equal, no─go*/ if #==1 then call align 'a', 'b', 'c', 'd', 'e', 'f', 'g' if #==1 then call align bar, bar, bar, bar, bar, bar, bar call align a, b, c, d, e, f, g end /*g*/ /*for 1st time, show title*/ end /*f*/ end /*e*/ end /*d*/ end /*c*/ end /*b*/ end /*a*/
say
_= ' non-unique'
if u then _= ' unique ' say # _ 'solutions found.' exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ align: parse arg a1,a2,a3,a4,a5,a6,a7
if show then say left(,9) center(a1,w) center(a2,w) center(a3,w) center(a4,w), center(a5,w) center(a6,w) center(a7,w) return</lang>
- output is identical to the faster REXX version.
Ruby
<lang ruby>def four_squares(low, high, unique=true, show=unique)
f = -> (a,b,c,d,e,f,g) {[a+b, b+c+d, d+e+f, f+g].uniq.size == 1} if unique uniq = "unique" solutions = [*low..high].permutation(7).select{|ary| f.call(*ary)} else uniq = "non-unique" solutions = [*low..high].repeated_permutation(7).select{|ary| f.call(*ary)} end if show puts " " + [*"a".."g"].join(" ") solutions.each{|ary| p ary} end puts "#{solutions.size} #{uniq} solutions in #{low} to #{high}" puts
end
[[1,7], [3,9]].each do |low, high|
four_squares(low, high)
end four_squares(0, 9, false)</lang>
- Output:
a b c d e f g [3, 7, 2, 1, 5, 4, 6] [4, 5, 3, 1, 6, 2, 7] [4, 7, 1, 3, 2, 6, 5] [5, 6, 2, 3, 1, 7, 4] [6, 4, 1, 5, 2, 3, 7] [6, 4, 5, 1, 2, 7, 3] [7, 2, 6, 1, 3, 5, 4] [7, 3, 2, 5, 1, 4, 6] 8 unique solutions in 1 to 7 a b c d e f g [7, 8, 3, 4, 5, 6, 9] [8, 7, 3, 5, 4, 6, 9] [9, 6, 4, 5, 3, 7, 8] [9, 6, 5, 4, 3, 8, 7] 4 unique solutions in 3 to 9 2860 non-unique solutions in 0 to 9
Rust
<lang rust>
- ![feature(inclusive_range_syntax)]
fn is_unique(a: u8, b: u8, c: u8, d: u8, e: u8, f: u8, g: u8) -> bool {
a != b && a != c && a != d && a != e && a != f && a != g && b != c && b != d && b != e && b != f && b != g && c != d && c != e && c != f && c != g && d != e && d != f && d != g && e != f && e != g && f != g
}
fn is_solution(a: u8, b: u8, c: u8, d: u8, e: u8, f: u8, g: u8) -> bool {
a + b == b + c + d && b + c + d == d + e + f && d + e + f == f + g
}
fn four_squares(low: u8, high: u8, unique: bool) -> Vec<Vec<u8>> {
let mut results: Vec<Vec<u8>> = Vec::new();
for a in low..=high { for b in low..=high { for c in low..=high { for d in low..=high { for e in low..=high { for f in low..=high { for g in low..=high { if (!unique || is_unique(a, b, c, d, e, f, g)) && is_solution(a, b, c, d, e, f, g) { results.push(vec![a, b, c, d, e, f, g]); } } } } } } } } results
}
fn print_results(solutions: &Vec<Vec<u8>>) {
for solution in solutions { println!("{:?}", solution) }
}
fn print_results_summary(solutions: usize, low: u8, high: u8, unique: bool) {
let uniqueness = if unique { "unique" } else { "non-unique" }; println!("{} {} solutions in {} to {} range", solutions, uniqueness, low, high)
}
fn uniques(low: u8, high: u8) {
let solutions = four_squares(low, high, true); print_results(&solutions); print_results_summary(solutions.len(), low, high, true);
}
fn nonuniques(low: u8, high: u8) {
let solutions = four_squares(low, high, false); print_results_summary(solutions.len(), low, high, false);
}
fn main() {
uniques(1, 7); println!(); uniques(3, 9); println!(); nonuniques(0, 9);
} </lang>
- Output:
[3, 7, 2, 1, 5, 4, 6] [4, 5, 3, 1, 6, 2, 7] [4, 7, 1, 3, 2, 6, 5] [5, 6, 2, 3, 1, 7, 4] [6, 4, 1, 5, 2, 3, 7] [6, 4, 5, 1, 2, 7, 3] [7, 2, 6, 1, 3, 5, 4] [7, 3, 2, 5, 1, 4, 6] 8 unique solutions in 1 to 7 range [7, 8, 3, 4, 5, 6, 9] [8, 7, 3, 5, 4, 6, 9] [9, 6, 4, 5, 3, 7, 8] [9, 6, 5, 4, 3, 8, 7] 4 unique solutions in 3 to 9 range 2860 non-unique solutions in 0 to 9 range
Scala
<lang scala>object FourRings {
def isValid(unique: Boolean, needle: Integer, haystack: Integer*): Boolean = !unique || !haystack.contains(needle)
def fourSquare(low: Int, high: Int, unique: Boolean, print: Boolean): Unit = { var count = 0 if (print) { println("a b c d e f g") } (low to high).foreach(a => (low to high).foreach(b => if (isValid(unique, a, b)) { val fp = a + b (low to high).foreach(c => if (isValid(unique, c, a, b)) { (low to high).foreach(d => if (isValid(unique, d, a, b, c) && fp == b + c + d) { (low to high).foreach(e => if (isValid(unique, e, a, b, c, d)) { (low to high).foreach(f => if (isValid(unique, f, a, b, c, d, e) && fp == d + e + f) { (low to high).foreach(g => if (isValid(unique, g, a, b, c, d, e, f) && fp == f + g) { count = count + 1 if (print) { printf("%d %d %d %d %d %d %d%n", a, b, c, d, e, f, g) } }) }) }) }) }) })) if (unique) { printf("There are %d unique solutions in [%d, %d]%n", count, low, high) } else { printf("There are %d non-unique solutions in [%d, %d]%n", count, low, high) } }
def main(args: Array[String]): Unit = { fourSquare(1, 7, unique = true, print = true) fourSquare(3, 9, unique = true, print = true) fourSquare(0, 9, unique = false, print = false) }
}</lang>
- Output:
a b c d e f g 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 There are 8 unique solutions in [1, 7] a b c d e f g 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 There are 4 unique solutions in [3, 9] There are 2860 non-unique solutions in [0, 9]
Scheme
<lang scheme> (import (scheme base)
(scheme write) (srfi 1))
- return all combinations of size elements from given set
(define (combinations size set unique?)
(if (zero? size) (list '()) (let loop ((base-combns (combinations (- size 1) set unique?)) (results '()) (items set)) (cond ((null? base-combns) ; end, as no base-combinations to process results) ((null? items) ; check next base-combination (loop (cdr base-combns) results set)) ((and unique? ; ignore if wanting list unique (member (car items) (car base-combns) =)) (loop base-combns results (cdr items))) (else ; keep the new combination (loop base-combns (cons (cons (car items) (car base-combns)) results) (cdr items)))))))
- checks if all 4 sums are the same
(define (solution? a b c d e f g)
(= (+ a b) (+ b c d) (+ d e f) (+ f g)))
- Tasks
(display "Solutions: LOW=1 HIGH=7\n") (display (filter (lambda (combination) (apply solution? combination))
(combinations 7 (iota 7 1) #t))) (newline)
(display "Solutions: LOW=3 HIGH=9\n") (display (filter (lambda (combination) (apply solution? combination))
(combinations 7 (iota 7 3) #t))) (newline)
(display "Solution count: LOW=0 HIGH=9 non-unique\n") (display (count (lambda (combination) (apply solution? combination))
(combinations 7 (iota 10 0) #f))) (newline)
</lang>
- Output:
Solutions: LOW=1 HIGH=7 ((4 5 3 1 6 2 7) (6 4 1 5 2 3 7) (3 7 2 1 5 4 6) (7 3 2 5 1 4 6) (4 7 1 3 2 6 5) (7 2 6 1 3 5 4) (5 6 2 3 1 7 4) (6 4 5 1 2 7 3)) Solutions: LOW=3 HIGH=9 ((7 8 3 4 5 6 9) (8 7 3 5 4 6 9) (9 6 4 5 3 7 8) (9 6 5 4 3 8 7)) Solution count: LOW=0 HIGH=9 non-unique 2860
Sidef
<lang ruby>func four_squares (list, unique=true, show=true) {
var solutions = []
func check(c) { solutions << c if ([ c[0] + c[1], c[1] + c[2] + c[3], c[3] + c[4] + c[5], c[5] + c[6], ].uniq.len == 1) }
if (unique) { list.combinations(7, {|*a| a.permutations { |*c| check(c) } }) } else { 7.of { list }.cartesian {|*c| check(c) } }
say (solutions.len, (unique ? ' ' : ' non-'), "unique solutions found using #{list.join(', ')}.\n")
if (show) { var f = "%#{list.max.len+1}s" say ("\n".join( ('a'..'g').map{f % _}.join, solutions.map{ .map{f % _}.join }... ), "\n") }
}
- TASK
four_squares(@(1..7)) four_squares(@(3..9)) four_squares([8, 9, 11, 12, 17, 18, 20, 21]) four_squares(@(0..9), unique: false, show: false)</lang>
- Output:
8 unique solutions found using 1, 2, 3, 4, 5, 6, 7. a b c d e f g 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 4 unique solutions found using 3, 4, 5, 6, 7, 8, 9. a b c d e f g 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 8 unique solutions found using 8, 9, 11, 12, 17, 18, 20, 21. a b c d e f g 17 21 8 9 11 18 20 20 18 11 9 8 21 17 17 21 9 8 12 18 20 20 18 8 12 9 17 21 20 18 12 8 9 21 17 21 17 9 12 8 18 20 20 18 11 9 12 17 21 21 17 12 9 11 18 20 2860 non-unique solutions found using 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Simula
<lang simula>BEGIN
INTEGER PROCEDURE GETCOMBS(LOW, HIGH, UNIQUE, COMBS); INTEGER LOW, HIGH; INTEGER ARRAY COMBS; BOOLEAN UNIQUE; BEGIN INTEGER A, B, C, D, E, F, G; INTEGER NUM;
BOOLEAN PROCEDURE ISUNIQUE(A, B, C, D, E, F, G); INTEGER A, B, C, D, E, F, G; BEGIN INTEGER ARRAY DATA(LOW:HIGH); INTEGER I;
FOR I := LOW STEP 1 UNTIL HIGH DO DATA(I) := -1;
FOR I := A, B, C, D, E, F, G DO IF DATA(I) = -1 THEN DATA(I) := 1 ELSE GOTO L;
ISUNIQUE := TRUE; L: END;
PROCEDURE ADDCOMB; BEGIN NUM := NUM + 1; COMBS(NUM, LOW + 0) := A; COMBS(NUM, LOW + 1) := B; COMBS(NUM, LOW + 2) := C; COMBS(NUM, LOW + 3) := D; COMBS(NUM, LOW + 4) := E; COMBS(NUM, LOW + 5) := F; COMBS(NUM, LOW + 6) := G; END;
FOR A := LOW STEP 1 UNTIL HIGH DO FOR B := LOW STEP 1 UNTIL HIGH DO FOR C := LOW STEP 1 UNTIL HIGH DO FOR D := LOW STEP 1 UNTIL HIGH DO FOR E := LOW STEP 1 UNTIL HIGH DO FOR F := LOW STEP 1 UNTIL HIGH DO FOR G := LOW STEP 1 UNTIL HIGH DO BEGIN IF VALIDCOMB(A, B, C, D, E, F, G) THEN BEGIN IF UNIQUE THEN BEGIN IF ISUNIQUE(A, B, C, D, E, F, G) THEN ADDCOMB END ELSE ADDCOMB; END; END; GETCOMBS := NUM; END;
BOOLEAN PROCEDURE VALIDCOMB(A, B, C, D, E, F, G); INTEGER A, B, C, D, E, F, G; BEGIN INTEGER SQUARE1, SQUARE2, SQUARE3, SQUARE4;
SQUARE1 := A + B; SQUARE2 := B + C + D; SQUARE3 := D + E + F; SQUARE4 := F + G; VALIDCOMB := SQUARE1 = SQUARE2 AND SQUARE2 = SQUARE3 AND SQUARE3 = SQUARE4 END;
COMMENT ----- MAIN PROGRAM ----- ;
INTEGER ARRAY LO(1:3); INTEGER ARRAY HI(1:3); BOOLEAN ARRAY UQ(1:3); INTEGER I;
LO(1) := 1; HI(1) := 7; UQ(1) := TRUE; LO(2) := 3; HI(2) := 9; UQ(2) := TRUE; LO(3) := 0; HI(3) := 9; UQ(3) := FALSE;
FOR I := 1 STEP 1 UNTIL 3 DO BEGIN INTEGER LOW, HIGH; BOOLEAN UNIQ;
LOW := LO(I); HIGH := HI(I); UNIQ := UQ(I); BEGIN INTEGER ARRAY VALIDCOMBS(1:8000, LOW:HIGH); INTEGER N;
N := GETCOMBS(LOW, HIGH, UNIQ, VALIDCOMBS); OUTINT(N, 0); IF UNIQ THEN OUTTEXT(" UNIQUE"); OUTTEXT(" SOLUTIONS IN "); OUTINT(LOW, 0); OUTTEXT(" TO "); OUTINT(HIGH, 0); OUTIMAGE; IF I < 3 THEN BEGIN INTEGER I, J; FOR I := 1 STEP 1 UNTIL N DO BEGIN OUTTEXT("["); FOR J := LOW STEP 1 UNTIL HIGH DO OUTINT(VALIDCOMBS(I, J), 2); OUTTEXT(" ]"); OUTIMAGE; END; END; END; END;
END. </lang>
- Output:
8 UNIQUE SOLUTIONS IN 1 TO 7 [ 3 7 2 1 5 4 6 ] [ 4 5 3 1 6 2 7 ] [ 4 7 1 3 2 6 5 ] [ 5 6 2 3 1 7 4 ] [ 6 4 1 5 2 3 7 ] [ 6 4 5 1 2 7 3 ] [ 7 2 6 1 3 5 4 ] [ 7 3 2 5 1 4 6 ] 4 UNIQUE SOLUTIONS IN 3 TO 9 [ 7 8 3 4 5 6 9 ] [ 8 7 3 5 4 6 9 ] [ 9 6 4 5 3 7 8 ] [ 9 6 5 4 3 8 7 ] 2860 SOLUTIONS IN 0 TO 9
SQL PL
version 9.7 or higher.
With SQL PL: <lang sql pl> --#SET TERMINATOR @
SET SERVEROUTPUT ON @
CREATE TABLE ALL_INTS (
V INTEGER
)@
CREATE TABLE RESULTS (
A INTEGER, B INTEGER, C INTEGER, D INTEGER, E INTEGER, F INTEGER, G INTEGER
)@
CREATE OR REPLACE PROCEDURE FOUR_SQUARES(
IN LO INTEGER, IN HI INTEGER, IN UNIQ SMALLINT, --IN UNIQ BOOLEAN, IN SHOW SMALLINT) --IN SHOW BOOLEAN) BEGIN DECLARE A INTEGER; DECLARE B INTEGER; DECLARE C INTEGER; DECLARE D INTEGER; DECLARE E INTEGER; DECLARE F INTEGER; DECLARE G INTEGER; DECLARE OUT_LINE VARCHAR(2000); DECLARE I SMALLINT; DECLARE SOLUTIONS INTEGER; DECLARE UORN VARCHAR(2000);
SET SOLUTIONS = 0; DELETE FROM ALL_INTS; DELETE FROM RESULTS; SET I = LO; WHILE (I <= HI) DO INSERT INTO ALL_INTS VALUES (I); SET I = I + 1; END WHILE; COMMIT; -- Computes unique solutions. IF (UNIQ = 0) THEN --IF (UNIQ = TRUE) THEN INSERT INTO RESULTS SELECT A.V A, B.V B, C.V C, D.V D, E.V E, F.V F, G.V G FROM ALL_INTS A, ALL_INTS B, ALL_INTS C, ALL_INTS D, ALL_INTS E, ALL_INTS F, ALL_INTS G WHERE A.V NOT IN (B.V, C.V, D.V, E.V, F.V, G.V) AND B.V NOT IN (C.V, D.V, E.V, F.V, G.V) AND C.V NOT IN (D.V, E.V, F.V, G.V) AND D.V NOT IN (E.V, F.V, G.V) AND E.V NOT IN (F.V, G.V) AND F.V NOT IN (G.V) AND A.V = C.V + D.V AND G.V = D.V + E.V AND B.V = E.V + F.V - C.V ORDER BY A, B, C, D, E, F, G; SET UORN = ' unique solutions in '; ELSE -- Compute non-unique solutions. INSERT INTO RESULTS SELECT A.V A, B.V B, C.V C, D.V D, E.V E, F.V F, G.V G FROM ALL_INTS A, ALL_INTS B, ALL_INTS C, ALL_INTS D, ALL_INTS E, ALL_INTS F, ALL_INTS G WHERE A.V = C.V + D.V AND G.V = D.V + E.V AND B.V = E.V + F.V - C.V ORDER BY A, B, C, D, E, F, G; SET UORN = ' non-unique solutions in '; END IF; COMMIT; -- Counts the possible solutions. FOR v AS c CURSOR FOR SELECT A, B, C, D, E, F, G FROM RESULTS ORDER BY A, B, C, D, E, F, G DO SET SOLUTIONS = SOLUTIONS + 1; -- Shows the results. IF (SHOW = 0) THEN --IF (SHOW = TRUE) THEN SET OUT_LINE = A || ' ' || B || ' ' || C || ' ' || D || ' ' || E || ' ' || F ||' ' || G; CALL DBMS_OUTPUT.PUT_LINE(OUT_LINE); END IF; END FOR;
SET OUT_LINE = SOLUTIONS || UORN || LO || ' to ' || HI; CALL DBMS_OUTPUT.PUT_LINE(OUT_LINE); END
@
CALL FOUR_SQUARES(1, 7, 0, 0)@ CALL FOUR_SQUARES(3, 9, 0, 0)@ CALL FOUR_SQUARES(0, 9, 1, 1)@ </lang> Output:
db2 -td@ db2 => CREATE TABLE ALL_INTS ( V INTEGER ) DB20000I The SQL command completed successfully. db2 => CREATE TABLE RESULTS ( A INTEGER, B INTEGER, C INTEGER, D INTEGER, E INTEGER, F INTEGER, G INTEGER ) DB20000I The SQL command completed successfully. db2 => CREATE OR REPLACE PROCEDURE FOUR_SQUARES( ... db2 (cont.) => END @ DB20000I The SQL command completed successfully. db2 => CALL FOUR_SQUARES(1, 7, 0, 0) Return Status = 0 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 8 unique solutions in 1 TO 7 db2 => CALL FOUR_SQUARES(3, 9, 0, 0) Return Status = 0 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 4 unique solutions in 3 TO 9 CALL FOUR_SQUARES(0, 9, 1, 1) Return Status = 0 2860 non-unique solutions in 0 TO 9
Stata
Use the program perm in the Permutations task for the first two questions, as it's fast enough. Use joinby for the third.
<lang stata>perm 7 rename * (a b c d e f g) list if a==c+d & b+c==e+f & d+e==g, noobs sep(50)
+---------------------------+ | a b c d e f g | |---------------------------| | 3 7 2 1 5 4 6 | | 4 5 3 1 6 2 7 | | 4 7 1 3 2 6 5 | | 5 6 2 3 1 7 4 | | 6 4 1 5 2 3 7 | | 6 4 5 1 2 7 3 | | 7 2 6 1 3 5 4 | | 7 3 2 5 1 4 6 | +---------------------------+
foreach var of varlist _all { replace `var'=`var'+2 } list if a==c+d & b+c==e+f & d+e==g, noobs sep(50)
+---------------------------+ | a b c d e f g | |---------------------------| | 7 8 3 4 5 6 9 | | 8 7 3 5 4 6 9 | | 9 6 4 5 3 7 8 | | 9 6 5 4 3 8 7 | +---------------------------+
clear set obs 10 gen b=_n-1 gen q=1 save temp, replace rename b c joinby q using temp rename b d joinby q using temp rename b e gen a=c+d gen g=d+e drop if a>9 | g>9 joinby q using temp gen f=b+c-e drop if f<0 | f>9 drop q order a b c d e f g erase temp.dta count
2,860</lang>
Tcl
This task is a good opportunity to practice metaprogramming in Tcl. The procedure compile_4rings builds a lambda expression which takes values for {a b c d e f g} as parameters and returns true if those values satisfy the specified expressions ($exprs). This approach lets the bytecode compiler optimise our code.
For the final challenge, we vary the code generation a bit in compile_4rings_hard: instead of a lambda taking parameters, this generates a nested loop that searches exhaustively through the possible values for each variable.
The puzzle can be varied freely by changing the values of $vars and $exprs specified at the top of the script.
<lang Tcl>set vars {a b c d e f g} set exprs {
{$a+$b} {$b+$c+$d} {$d+$e+$f} {$f+$g}
}
proc permute {xs} {
if {[llength $xs] < 2} { return $xs } set i -1 foreach x $xs { incr i set rest [lreplace $xs $i $i] foreach rest [permute $rest] { lappend res [list $x {*}$rest] } } return $res
}
proc range {a b} {
set a [uplevel 1 [list expr $a]] set b [uplevel 1 [list expr $b]] set res {} while {$a <= $b} { lappend res $a incr a } return $res
}
proc compile_4rings {vars exprs} {
set script "set _ \[[list expr [lindex $exprs 0]]\]\n" foreach expr [lrange $exprs 1 end] { append script "if {\$_ != $expr} {return false}\n" } append script "return true\n" list $vars $script
}
proc solve_4rings {vars exprs range} {
set lambda [compile_4rings $vars $exprs] foreach values [permute $range] { if {[apply $lambda {*}$values]} { puts " $values" } }
}
proc compile_4rings_hard {vars exprs values} {
append script "set _ \[[list expr [lindex $exprs 0]]\]\n" foreach expr [lrange $exprs 1 end] { append script "if {\$_ != $expr} {continue}\n" } append script "incr res\n" foreach var $vars { set script [list foreach $var $values $script] } set script "set res 0\n$script\nreturn \$res" list {} $script
}
proc solve_4rings_hard {vars exprs range} {
apply [compile_4rings_hard $vars $exprs $range]
}
puts "# Combinations of 1..7:" solve_4rings $vars $exprs [range 1 7] puts "# Combinations of 3..9:" solve_4rings $vars $exprs [range 3 9] puts "# Number of solutions, free over 0..9:" puts [solve_4rings_hard $vars $exprs [range 0 9]]</lang>
- Output:
# Combinations of 1..7: 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 # Combinations of 3..9: 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 # Number of solutions, free over 0..9: 2860
VBA
<lang vb>Dim a As Integer, b As Integer, c As Integer, d As Integer Dim e As Integer, f As Integer, g As Integer Dim lo As Integer, hi As Integer, unique As Boolean, show As Boolean Dim solutions As Integer Private Sub bf()
For f = lo To hi If ((Not unique) Or _ ((f <> a And f <> c And f <> d And f <> g And f <> e))) Then b = e + f - c If ((b >= lo) And (b <= hi) And _ ((Not unique) Or ((b <> a) And (b <> c) And _ (b <> d) And (b <> g) And (b <> e) And (b <> f)))) Then solutions = solutions + 1 If show Then Debug.Print a; b; c; d; e; f; g End If End If Next
End Sub Private Sub ge()
For e = lo To hi If ((Not unique) Or ((e <> a) And (e <> c) And (e <> d))) Then g = d + e If ((g >= lo) And (g <= hi) And _ ((Not unique) Or ((g <> a) And (g <> c) And _ (g <> d) And (g <> e)))) Then bf End If End If Next
End Sub Private Sub acd()
For c = lo To hi For d = lo To hi If ((Not unique) Or (c <> d)) Then a = c + d If ((a >= lo) And (a <= hi) And _ ((Not unique) Or ((c <> 0) And (d <> 0)))) Then ge End If End If Next d Next c
End Sub Private Sub foursquares(plo As Integer, phi As Integer, punique As Boolean, pshow As Boolean)
lo = plo hi = phi unique = punique show = pshow solutions = 0 acd Debug.Print If unique Then Debug.Print solutions; " unique solutions in"; lo; "to"; hi Else Debug.Print solutions; " non-unique solutions in"; lo; "to"; hi End If
End Sub Public Sub program()
Call foursquares(1, 7, True, True) Debug.Print Call foursquares(3, 9, True, True) Call foursquares(0, 9, False, False)
End Sub </lang>
- Output:
4 7 1 3 2 6 5 6 4 1 5 2 3 7 3 7 2 1 5 4 6 5 6 2 3 1 7 4 7 3 2 5 1 4 6 4 5 3 1 6 2 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 8 unique solutions in 1 to 7 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 4 unique solutions in 3 to 9 2860 non-unique solutions in 0 to 9
Visual Basic .NET
Similar to the other brute-force algorithims, but with a couple of enhancements. A "used" list is maintained to simplify checking of the nested variables overlap. Also the d, f and g For Each loops are constrained by the other variables instead of blindly going through all combinations. <lang vbnet>Module Module1
Dim CA As Char() = "0123456789ABC".ToCharArray()
Sub FourSquare(lo As Integer, hi As Integer, uni As Boolean, sy As Char()) If sy IsNot Nothing Then Console.WriteLine("a b c d e f g" & vbLf & "-------------") Dim r = Enumerable.Range(lo, hi - lo + 1).ToList(), u As New List(Of Integer), t As Integer, cn As Integer = 0 For Each a In r u.Add(a) For Each b In r If uni AndAlso u.Contains(b) Then Continue For u.Add(b) t = a + b For Each c In r : If uni AndAlso u.Contains(c) Then Continue For u.Add(c) For d = a - c To a - c If d < lo OrElse d > hi OrElse uni AndAlso u.Contains(d) OrElse t <> b + c + d Then Continue For u.Add(d) For Each e In r If uni AndAlso u.Contains(e) Then Continue For u.Add(e) For f = b + c - e To b + c - e If f < lo OrElse f > hi OrElse uni AndAlso u.Contains(f) OrElse t <> d + e + f Then Continue For u.Add(f) For g = t - f To t - f : If g < lo OrElse g > hi OrElse uni AndAlso u.Contains(g) Then Continue For cn += 1 : If sy IsNot Nothing Then _ Console.WriteLine("{0} {1} {2} {3} {4} {5} {6}", sy(a), sy(b), sy(c), sy(d), sy(e), sy(f), sy(g)) Next : u.Remove(f) : Next : u.Remove(e) : Next : u.Remove(d) Next : u.Remove(c) : Next : u.Remove(b) : Next : u.Remove(a) Next : Console.WriteLine("{0} {1}unique solutions for [{2},{3}]{4}", cn, If(uni, "", "non-"), lo, hi, vbLf) End Sub
Sub main() fourSquare(1, 7, True, CA) fourSquare(3, 9, True, CA) fourSquare(0, 9, False, Nothing) fourSquare(5, 12, True, CA) End Sub
End Module</lang>
- Output:
Added the zkl example for [5,12]
a b c d e f g ------------- 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 8 unique solutions for [1,7] a b c d e f g ------------- 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 4 unique solutions for [3,9] 2860 non-unique solutions for [0,9] a b c d e f g ------------- B 9 6 5 7 8 C B A 6 5 7 9 C C 8 7 5 6 9 B C 9 7 5 6 A B 4 unique solutions for [5,12]
Wren
<lang ecmascript>import "/fmt" for Fmt
var a = 0 var b = 0 var c = 0 var d = 0 var e = 0 var f = 0 var g = 0
var lo var hi var unique var show var solutions
var bf = Fn.new {
f = lo while (f <= hi) { if (!unique || (f != a && f != c && f != d && f != e && f != g)) { b = e + f - c if (b >= lo && b <= hi && (!unique || (b != a && b != c && b != d && b != e && b != f && b != g))) { solutions = solutions + 1 if (show) Fmt.lprint("$d $d $d $d $d $d $d", [a, b, c, d, e, f, g]) } } f = f + 1 }
}
var ge = Fn.new {
e = lo while (e <= hi) { if (!unique || (e != a && e != c && e != d)) { g = d + e if (g >= lo && g <= hi && (!unique || (g != a && g != c && g != d && g != e))) bf.call() } e = e + 1 }
}
var acd = Fn.new {
c = lo while (c <= hi) { d = lo while (d <= hi) { if (!unique || c != d) { a = c + d if (a >= lo && a <= hi && (!unique || (c != 0 && d != 0))) ge.call() } d = d + 1 } c = c + 1 }
}
var foursquares = Fn.new { |plo, phi, punique, pshow|
lo = plo hi = phi unique = punique show = pshow solutions = 0 if (show) { System.print("\na b c d e f g") System.print("-------------") } acd.call() if (unique) { Fmt.print("\n$d unique solutions in $d to $d", solutions, lo, hi) } else { Fmt.print("\n$d non-unique solutions in $d to $d\n", solutions, lo, hi) }
}
foursquares.call(1, 7, true, true) foursquares.call(3, 9, true, true) foursquares.call(0, 9, false, false)</lang>
- Output:
a b c d e f g ------------- 4 7 1 3 2 6 5 6 4 1 5 2 3 7 3 7 2 1 5 4 6 5 6 2 3 1 7 4 7 3 2 5 1 4 6 4 5 3 1 6 2 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 8 unique solutions in 1 to 7 a b c d e f g ------------- 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 4 unique solutions in 3 to 9 2860 non-unique solutions in 0 to 9
X86 Assembly
See 4-rings_or_4-squares_puzzle/X86 Assembly
XPL0
<lang XPL0>proc FourSq(Lo, Hi, Unique); int Lo, Hi, Unique; int A, B, C, D, E, F, G; \(must be in order) int Cnt, T, I; [Cnt:= 0; for A:= Lo to Hi do
[for B:= Lo to Hi do [for C:= Lo to Hi do [D:= A-C; if D >= Lo then [for E:= Lo to Hi do [F:= B+C-E; G:= A+B-F; if F>=Lo & F<=Hi & G>=Lo & G<=Hi then [T:= A+B; if T=B+C+D & T=D+E+F & T=F+G then [Cnt:= Cnt+1; if Unique then [if 1<<A + 1<<B + 1<<C + 1<<D + 1<<E + 1<<F + 1<<G = $7F<<Lo then [T:= @A; \show solution for I:= 0 to 6 do [IntOut(0, T(I)); ChOut(0, ^ )]; CrLf(0); ]; ]; ]; ]; ]; ]; ]; ]; ];
if not Unique then
[IntOut(0, Cnt); Text(0, " solutions")];
CrLf(0); ];
[FourSq(1, 7, true);
FourSq(3, 9, true); FourSq(0, 9, false);
]</lang>
- Output:
3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 2860 solutions
Yabasic
<lang Yabasic>fourSquare(1,7,true,true) fourSquare(3,9,true,true) fourSquare(0,9,false,false)
sub fourSquare(low, high, unique, prin)
local count, a, b, c, d, e, f, g, fp if (prin) print "a b c d e f g"
for a = low to high for b = low to high if (not valid(unique, a, b)) continue fp = a+b for c = low to high if (not valid(unique, c, a, b)) continue for d = low to high if (not valid(unique, d, a, b, c)) continue if (fp <> b+c+d) continue for e = low to high if (not valid(unique, e, a, b, c, d)) continue for f = low to high if (not valid(unique, f, a, b, c, d, e)) continue if (fp <> d+e+f) continue for g = low to high if (not valid(unique, g, a, b, c, d, e, f)) continue if (fp <> f+g) continue count = count + 1 if (prin) print a," ",b," ",c," ",d," ",e," ",f," ",g next next next next next next next if (unique) then print "There are ", count, " unique solutions in [",low,",",high,"]" else print "There are ", count, " non-unique solutions in [",low,",",high,"]" end if
end sub
sub valid(unique, needle, n1, n2, n3, n4, n5, n6)
local i if (unique) then for i = 1 to numparams - 2 switch i case 1: if needle = n1 return false : break case 2: if needle = n2 return false : break case 3: if needle = n3 return false : break case 4: if needle = n4 return false : break case 5: if needle = n5 return false : break case 6: if needle = n6 return false : break end switch next end if return true
end sub</lang>
- Output:
a b c d e f g 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 There are 8 unique solutions in [1,7] a b c d e f g 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 There are 4 unique solutions in [3,9] There are 2860 non-unique solutions in [0,9]
zkl
<lang zkl> // unique: No repeated numbers in solution fcn fourSquaresPuzzle(lo=1,hi=7,unique=True){ //-->list of solutions
_assert_(0<=lo and hi<36); notUnic:=fcn(a,b,c,etc){ abc:=vm.arglist; // use base 36, any repeated character? abc.apply("toString",36).concat().unique().len()!=abc.len() }; s:=List(); // solutions foreach a,b,c in ([lo..hi],[lo..hi],[lo..hi]){ // chunk to reduce unique if(unique and notUnic(a,b,c)) continue; // solution space. Slow VM foreach d,e in ([lo..hi],[lo..hi]){ // -->for d { for e {} } if(unique and notUnic(a,b,c,d,e)) continue;
foreach f,g in ([lo..hi],[lo..hi]){ if(unique and notUnic(a,b,c,d,e,f,g)) continue; sqr1,sqr2,sqr3,sqr4 := a+b,b+c+d,d+e+f,f+g; if((sqr1==sqr2==sqr3) and sqr1==sqr4) s.append(T(a,b,c,d,e,f,g)); }
} } s
}</lang> <lang zkl>fcn show(solutions,msg){
if(not solutions){ println("No solutions for",msg); return(); }
println(solutions.len(),msg," solutions found:"); w:=(1).max(solutions.pump(List,(0).max,"numDigits")); // max width of any number found fmt:=" " + "%%%ds ".fmt(w)*7; // eg " %1s %1s %1s %1s %1s %1s %1s" println(fmt.fmt(["a".."g"].walk().xplode())); println("-"*((w+1)*7 + 1)); // calculate the width of horizontal bar foreach s in (solutions){ println(fmt.fmt(s.xplode())) }
} fourSquaresPuzzle() : show(_," unique (1-7)"); println(); fourSquaresPuzzle(3,9) : show(_," unique (3-9)"); println(); fourSquaresPuzzle(5,12) : show(_," unique (5-12)"); println(); println(fourSquaresPuzzle(0,9,False).len(), // 10^7 possibilities
" non-unique (0-9) solutions found.");</lang>
- Output:
8 unique (1-7) solutions found: a b c d e f g --------------- 3 7 2 1 5 4 6 4 5 3 1 6 2 7 4 7 1 3 2 6 5 5 6 2 3 1 7 4 6 4 1 5 2 3 7 6 4 5 1 2 7 3 7 2 6 1 3 5 4 7 3 2 5 1 4 6 4 unique (3-9) solutions found: a b c d e f g --------------- 7 8 3 4 5 6 9 8 7 3 5 4 6 9 9 6 4 5 3 7 8 9 6 5 4 3 8 7 4 unique (5-12) solutions found: a b c d e f g ---------------------- 11 9 6 5 7 8 12 11 10 6 5 7 9 12 12 8 7 5 6 9 11 12 9 7 5 6 10 11 2860 non-unique (0-9) solutions found.
- Games
- Puzzles
- Programming Tasks
- Solutions by Programming Task
- AArch64 Assembly
- Ada
- ALGOL 68
- AppleScript
- ARM Assembly
- AWK
- Befunge
- C
- C sharp
- C++
- Clojure
- Common Lisp
- Crystal
- D
- Delphi
- F Sharp
- Factor
- Fortran
- FreeBASIC
- Go
- Groovy
- Haskell
- J
- Java
- JavaScript
- Julia
- Kotlin
- Lua
- Modula-2
- Nim
- Pascal
- Perl
- Ntheory
- Phix
- Picat
- PL/SQL
- Prolog
- Python
- R
- Racket
- Raku
- REXX
- Ruby
- Rust
- Scala
- Scheme
- Sidef
- Simula
- SQL PL
- Stata
- Tcl
- VBA
- Visual Basic .NET
- Wren
- Wren-fmt
- X86 Assembly
- XPL0
- Yabasic
- Zkl