Pseudo-random numbers/PCG32

From Rosetta Code
Task
Pseudo-random numbers/PCG32
You are encouraged to solve this task according to the task description, using any language you may know.
Some definitions to help in the explanation
Floor operation
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
Greatest integer less than or equal to a real number.
Bitwise Logical shift operators (c-inspired)
https://en.wikipedia.org/wiki/Bitwise_operation#Bit_shifts
Binary bits of value shifted left or right, with zero bits shifted in where appropriate.
Examples are shown for 8 bit binary numbers; most significant bit to the left.
<< Logical shift left by given number of bits.
E.g Binary 00110101 << 2 == Binary 11010100
>> Logical shift right by given number of bits.
E.g Binary 00110101 >> 2 == Binary 00001101
^ Bitwise exclusive-or operator
https://en.wikipedia.org/wiki/Exclusive_or
Bitwise comparison for if bits differ
E.g Binary 00110101 ^ Binary 00110011 == Binary 00000110
| Bitwise or operator
https://en.wikipedia.org/wiki/Bitwise_operation#OR
Bitwise comparison gives 1 if any of corresponding bits are 1
E.g Binary 00110101 | Binary 00110011 == Binary 00110111


PCG32 Generator (pseudo-code)

PCG32 has two unsigned 64-bit integers of internal state:

  1. state: All 2**64 values may be attained.
  2. sequence: Determines which of 2**63 sequences that state iterates through. (Once set together with state at time of seeding will stay constant for this generators lifetime).

Values of sequence allow 2**63 different sequences of random numbers from the same state.

The algorithm is given 2 U64 inputs called seed_state, and seed_sequence. The algorithm proceeds in accordance with the following pseudocode:-

const N<-U64 6364136223846793005
const inc<-U64 (seed_sequence << 1) | 1
state<-U64 ((inc+seed_state)*N+inc
do forever
  xs<-U32 (((state>>18)^state)>>27)
  rot<-INT (state>>59)
  OUTPUT U32 (xs>>rot)|(xs<<((-rot)&31))
  state<-state*N+inc
end do

Note that this an anamorphism – dual to catamorphism, and encoded in some languages as a general higher-order `unfold` function, dual to `fold` or `reduce`.

Task
  • Generate a class/set of functions that generates pseudo-random

numbers using the above.

  • Show that the first five integers generated with the seed 42, 54

are: 2707161783 2068313097 3122475824 2211639955 3215226955


  • Show that for an initial seed of 987654321, 1 the counts of 100_000 repetitions of
   floor(random_gen.next_float() * 5)
Is as follows:
   0: 20049, 1: 20022, 2: 20115, 3: 19809, 4: 20005
  • Show your output here, on this page.


11l

Translation of: Python
T PCG32
   UInt64 state, inc

   F next_int()
      V old = .state
      .state = (old * 6364136223846793005) + .inc
      V shifted = UInt32(((old >> 18) (+) old) >> 27)
      V rot = UInt32(old >> 59)
      R (shifted >> rot) [|] (shifted << ((~rot + 1) [&] 31))

   F seed(UInt64 seed_state, seed_sequence)
      .state = 0
      .inc = (seed_sequence << 1) [|] 1
      .next_int()
      .state += seed_state
      .next_int()

   F next_float()
      R Float(.next_int()) / (UInt64(1) << 32)

V random_gen = PCG32()
random_gen.seed(42, 54)
L 5
   print(random_gen.next_int())

random_gen.seed(987654321, 1)
V hist = Dict(0.<5, i -> (i, 0))
L 100'000
   hist[Int(random_gen.next_float() * 5)]++
print(hist)
Output:
2707161783
2068313097
3122475824
2211639955
3215226955
[0 = 20049, 1 = 20022, 2 = 20115, 3 = 19809, 4 = 20005]

Ada

Ada solution using a package to encapsulate the PCG32 algorithm.

with Interfaces; use Interfaces;

package random_pcg32 is
   function Next_Int return Unsigned_32;
   function Next_Float return Long_Float;
   procedure Seed (seed_state : Unsigned_64; seed_sequence : Unsigned_64);
end random_pcg32;
package body random_pcg32 is

   State : Unsigned_64 := 0;
   inc   : Unsigned_64 := 0;

   ----------------
   -- Next_State --
   ----------------

   procedure Next_State is
      N : constant Unsigned_64 := 6_364_136_223_846_793_005;
   begin
      State := State * N + inc;
   end Next_State;

   --------------
   -- Next_Int --
   --------------

   function Next_Int return Unsigned_32 is
      old     : Unsigned_64          := State;
      shifted : Unsigned_32;
      Rot     : Unsigned_64;
      answer  : Unsigned_32;
      Mask32  : constant Unsigned_64 := Unsigned_64 (Unsigned_32'Last);
   begin
      shifted := Unsigned_32((((old / 2**18) xor old) / 2**27) and Mask32);
      Rot     := old / 2**59;
      answer  :=
        Shift_Right (shifted, Integer (Rot)) or
        Shift_Left (shifted, Integer ((not Rot + 1) and 31));
      Next_State;
      return answer;
   end Next_Int;

   ----------------
   -- Next_Float --
   ----------------

   function Next_Float return Long_Float is
   begin
      return Long_Float (Next_Int) / (2.0**32);
   end Next_Float;

   ----------
   -- Seed --
   ----------

   procedure Seed (seed_state : Unsigned_64; seed_sequence : Unsigned_64) is
   begin
      State := 0;
      inc   := (2 * seed_sequence) or 1;
      Next_State;
      State := State + seed_state;
      Next_State;
   end Seed;

end random_pcg32;
with Ada.Text_Io; use ADa.Text_io;
with Interfaces; use Interfaces;
with random_pcg32; use random_pcg32;

procedure Main_P is
   counts : array (0..4) of Natural := (Others => 0);
   J : Natural;
begin
   seed(42, 54);
   for I in 1..5 loop
      Put_Line(Unsigned_32'Image(Next_Int));
   end loop;
   New_Line;
   
   seed(987654321, 1);
   for I in 1..100_000 loop
      J := Natural(Long_Float'Floor(Next_Float * 5.0));
      Counts(J) := Counts(J) + 1;
   end loop;
   
   for I in Counts'Range loop
      Put_Line(I'Image & " :" & Counts(I)'Image);
   end loop;
   
end Main_P;
Output:
 2707161783
 2068313097
 3122475824
 2211639955
 3215226955

 0 : 20049
 1 : 20022
 2 : 20115
 3 : 19809
 4 : 20005

ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32
BEGIN # generate some pseudo random numbers using PCG32 #
    # note that although LONG INT is 64 bits in Algol 68G, LONG BITS is longer than 64 bits #
    LONG BITS state     :=     LONG 16r853c49e6748fea9b;
    LONG INT  inc       := ABS LONG 16rda3e39cb94b95bdb;
    LONG BITS mask 64    =     LONG 16rffffffffffffffff;
    LONG BITS mask 32    =     LONG 16rffffffff;
    LONG BITS mask 31    =     LONG 16r7fffffff;
    LONG INT  one shl 32 = ABS ( LONG 16r1 SHL 32 );
    # XOR and assign convenience operator #
    PRIO XORAB = 1;
    OP   XORAB = ( REF LONG BITS x, LONG BITS v )REF LONG BITS: x := ( x XOR v ) AND mask 64;
    # initialises the state to the specified seed #
    PROC seed = ( LONG INT seed state, seed sequence )VOID:
         BEGIN
            state := 16r0;
            inc   := ABS ( ( ( BIN seed sequence SHL 1 ) OR 16r1 ) AND mask 64 );
            next int;
            state := SHORTEN ( BIN ( ABS state + seed state ) AND mask 64 );
            next int
         END # seed # ;
    # gets the next pseudo random integer #
    PROC next int = LONG INT:
         BEGIN
            LONG BITS old     = state;
            LONG INT const    = LONG 6364136223846793005;
            state            := SHORTEN ( mask 64 AND BIN ( ( ABS old * LENG const ) + inc ) );
            LONG BITS x      := old;
            x XORAB ( old SHR 18 );
            BITS  xor shifted = SHORTEN ( mask 32 AND ( x SHR 27 ) );
            INT   rot         = SHORTEN ABS ( mask 32 AND ( old SHR 59 ) );
            INT   rot 2       = IF rot = 0 THEN 0 ELSE 32 - rot FI;
            BITS  xor shr    := SHORTEN ( mask 32 AND LENG ( xor shifted SHR rot ) );
            BITS  xor shl    := xor shifted;
            TO rot 2 DO
                xor shl      := SHORTEN ( ( mask 31 AND LENG xor shl ) SHL 1 )
            OD;
            ABS ( LENG xor shr OR LENG xor shl )
         END # next int # ;
    # gets the next pseudo random real #
    PROC next float = LONG REAL: next int / one shl 32;
    BEGIN # task test cases #
        seed( 42, 54 );
        print( ( whole( next int, 0 ), newline ) ); # 2707161783 #
        print( ( whole( next int, 0 ), newline ) ); # 2068313097 #
        print( ( whole( next int, 0 ), newline ) ); # 3122475824 #
        print( ( whole( next int, 0 ), newline ) ); # 2211639955 #
        print( ( whole( next int, 0 ), newline ) ); # 3215226955 #
        # count the number of occurances of 0..4 in a sequence of pseudo random reals scaled to be in [0..5) #
        seed( 987654321, 1 );
        [ 0 : 4 ]INT counts; FOR i FROM LWB counts TO UPB counts DO counts[ i ] := 0 OD;
        TO 100 000 DO counts[ SHORTEN ENTIER ( next float * 5 ) ] +:= 1 OD;
        FOR i FROM LWB counts TO UPB counts DO
            print( ( whole( i, -2 ), ": ", whole( counts[ i ], -6 ) ) )
        OD;
        print( ( newline ) )
    END
END
Output:
2707161783
2068313097
3122475824
2211639955
3215226955
 0:  20049 1:  20022 2:  20115 3:  19809 4:  20005

C

Translation of: Go
#include <math.h>
#include <stdint.h>
#include <stdio.h>

const uint64_t N = 6364136223846793005;

static uint64_t state = 0x853c49e6748fea9b;
static uint64_t inc = 0xda3e39cb94b95bdb;

uint32_t pcg32_int() {
    uint64_t old = state;
    state = old * N + inc;
    uint32_t shifted = (uint32_t)(((old >> 18) ^ old) >> 27);
    uint32_t rot = old >> 59;
    return (shifted >> rot) | (shifted << ((~rot + 1) & 31));
}

double pcg32_float() {
    return ((double)pcg32_int()) / (1LL << 32);
}

void pcg32_seed(uint64_t seed_state, uint64_t seed_sequence) {
    state = 0;
    inc = (seed_sequence << 1) | 1;
    pcg32_int();
    state = state + seed_state;
    pcg32_int();
}

int main() {
    int counts[5] = { 0, 0, 0, 0, 0 };
    int i;

    pcg32_seed(42, 54);
    printf("%u\n", pcg32_int());
    printf("%u\n", pcg32_int());
    printf("%u\n", pcg32_int());
    printf("%u\n", pcg32_int());
    printf("%u\n", pcg32_int());
    printf("\n");

    pcg32_seed(987654321, 1);
    for (i = 0; i < 100000; i++) {
        int j = (int)floor(pcg32_float() * 5.0);
        counts[j]++;
    }

    printf("The counts for 100,000 repetitions are:\n");
    for (i = 0; i < 5; i++) {
        printf("  %d : %d\n", i, counts[i]);
    }

    return 0;
}
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

The counts for 100,000 repetitions are:
  0 : 20049
  1 : 20022
  2 : 20115
  3 : 19809
  4 : 20005

C#

Translation of: C++
using System;

class PCG32
{
    private const ulong N = 6364136223846793005;
    private ulong state = 0x853c49e6748fea9b;
    private ulong inc = 0xda3e39cb94b95bdb;

    public uint NextInt()
    {
        ulong old = state;
        state = old * N + inc;
        uint shifted = (uint)(((old >> 18) ^ old) >> 27);
        uint rot = (uint)(old >> 59);
        return (shifted >> (int)rot) | (shifted << (int)((~rot + 1) & 31));
    }

    public double NextFloat()
    {
        return ((double)NextInt()) / (1UL << 32);
    }

    public void Seed(ulong seedState, ulong seedSequence)
    {
        state = 0;
        inc = (seedSequence << 1) | 1;
        NextInt();
        state += seedState;
        NextInt();
    }
}

class Program
{
    static void Main(string[] args)
    {
        var r = new PCG32();

        r.Seed(42, 54);
        Console.WriteLine(r.NextInt());
        Console.WriteLine(r.NextInt());
        Console.WriteLine(r.NextInt());
        Console.WriteLine(r.NextInt());
        Console.WriteLine(r.NextInt());
        Console.WriteLine();

        int[] counts = new int[5];
        r.Seed(987654321, 1);
        for (int i = 0; i < 100000; i++)
        {
            int j = (int)Math.Floor(r.NextFloat() * 5.0);
            counts[j]++;
        }

        Console.WriteLine("The counts for 100,000 repetitions are:");
        for (int i = 0; i < counts.Length; i++)
        {
            Console.WriteLine($"  {i} : {counts[i]}");
        }
    }
}
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

The counts for 100,000 repetitions are:
  0 : 20049
  1 : 20022
  2 : 20115
  3 : 19809
  4 : 20005


C++

Translation of: C
#include <array>
#include <iostream>
#include <math.h>

class PCG32 {
private:
    const uint64_t N = 6364136223846793005;
    uint64_t state = 0x853c49e6748fea9b;
    uint64_t inc = 0xda3e39cb94b95bdb;
public:
    uint32_t nextInt() {
        uint64_t old = state;
        state = old * N + inc;
        uint32_t shifted = (uint32_t)(((old >> 18) ^ old) >> 27);
        uint32_t rot = old >> 59;
        return (shifted >> rot) | (shifted << ((~rot + 1) & 31));
    }

    double nextFloat() {
        return ((double)nextInt()) / (1LL << 32);
    }

    void seed(uint64_t seed_state, uint64_t seed_sequence) {
        state = 0;
        inc = (seed_sequence << 1) | 1;
        nextInt();
        state = state + seed_state;
        nextInt();
    }
};

int main() {
    auto r = new PCG32();

    r->seed(42, 54);
    std::cout << r->nextInt() << '\n';
    std::cout << r->nextInt() << '\n';
    std::cout << r->nextInt() << '\n';
    std::cout << r->nextInt() << '\n';
    std::cout << r->nextInt() << '\n';
    std::cout << '\n';

    std::array<int, 5> counts{ 0, 0, 0, 0, 0 };
    r->seed(987654321, 1);
    for (size_t i = 0; i < 100000; i++) {
        int j = (int)floor(r->nextFloat() * 5.0);
        counts[j]++;
    }

    std::cout << "The counts for 100,000 repetitions are:\n";
    for (size_t i = 0; i < counts.size(); i++) {
        std::cout << "  " << i << " : " << counts[i] << '\n';
    }

    return 0;
}
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

The counts for 100,000 repetitions are:
  0 : 20049
  1 : 20022
  2 : 20115
  3 : 19809
  4 : 20005

D

Translation of: C++
import std.math;
import std.stdio;

struct PCG32 {
private:
    immutable ulong N = 6364136223846793005;
    ulong state = 0x853c49e6748fea9b;
    ulong inc = 0xda3e39cb94b95bdb;

public:
    void seed(ulong seed_state, ulong seed_sequence) {
        state = 0;
        inc = (seed_sequence << 1) | 1;
        nextInt();
        state = state + seed_state;
        nextInt();
    }

    uint nextInt() {
        ulong old = state;
        state = old * N + inc;
        uint shifted = cast(uint)(((old >> 18) ^ old) >> 27);
        uint rot = old >> 59;
        return (shifted >> rot) | (shifted << ((~rot + 1) & 31));
    }

    double nextFloat() {
        return (cast(double) nextInt()) / (1L << 32);
    }
}

void main() {
    auto r = PCG32();

    r.seed(42, 54);
    writeln(r.nextInt());
    writeln(r.nextInt());
    writeln(r.nextInt());
    writeln(r.nextInt());
    writeln(r.nextInt());
    writeln;

    auto counts = [0, 0, 0, 0, 0];
    r.seed(987654321, 1);
    foreach (_; 0..100_000) {
        int j = cast(int)floor(r.nextFloat() * 5.0);
        counts[j]++;
    }

    writeln("The counts for 100,000 repetitions are:");
    foreach (i,v; counts) {
        writeln("  ", i, " : ", v);
    }
}
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

The counts for 100,000 repetitions are:
  0 : 20049
  1 : 20022
  2 : 20115
  3 : 19809
  4 : 20005

Dart

Translation of: Python
import 'dart:math';

class PCG32 {
  BigInt fState = BigInt.zero;
  BigInt fInc = BigInt.zero;
  final BigInt mask64 = (BigInt.one << 64) - BigInt.one;
  final BigInt mask32 = (BigInt.one << 32) - BigInt.one;
  final BigInt k = BigInt.parse('6364136223846793005');

  PCG32(BigInt seedState, BigInt seedSequence) {
    seed(seedState, seedSequence);
  }

  PCG32.noSeed() {
    fState = BigInt.zero;
    fInc = BigInt.zero;
  }

  void seed(BigInt seedState, BigInt seedSequence) {
    fState = BigInt.zero;
    fInc = ((seedSequence << 1) | BigInt.one) & mask64;
    nextInt();
    fState += seedState;
    nextInt();
  }

  BigInt nextInt() {
    BigInt old = fState;
    fState = ((old * k) + fInc) & mask64;
    BigInt xorshifted = ( ((old >> 18) ^ old) >> 27) & mask32;
    BigInt rot = (old >> 59) & mask32;
    BigInt shifted = (xorshifted >> rot.toInt()) | (xorshifted << ((-rot) & BigInt.from(31)).toInt());
    return shifted & mask32;
  }

  double nextFloat() {
    return nextInt().toDouble() / (BigInt.one << 32).toDouble();
  }

  List<BigInt> nextIntRange(int size) {
    List<BigInt> result = [];
    for (int i = 0; i < size; i++) {
      result.add(nextInt());
    }
    return result;
  }
}

void main() {
  var pcg32 = PCG32(BigInt.from(42), BigInt.from(54));

  for (int i = 0; i < 5; i++) {
    print(pcg32.nextInt().toString());
  }

  pcg32.seed(BigInt.from(987654321), BigInt.one);

  var count = <int, int>{};

  for (int i = 0; i < 100000; i++) {
    int key = (pcg32.nextFloat() * 5).truncate();
    count[key] = (count[key] ?? 0) + 1;
  }

  print('\nThe counts for 100,000 repetitions are:');
  count.forEach((key, value) {
    print('$key : $value');
  });
}
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

The counts for 100,000 repetitions are:
2 : 20115
3 : 19809
0 : 20049
4 : 20005
1 : 20022

Delphi

Velthuis.BigIntegers[1] by Rudy Velthuis.

Translation of: Python
program PCG32_test;

{$APPTYPE CONSOLE}
uses
  System.SysUtils,
  Velthuis.BigIntegers,
  System.Generics.Collections;

type
  TPCG32 = class
  public
    FState: BigInteger;
    FInc: BigInteger;
    mask64: BigInteger;
    mask32: BigInteger;
    k: BigInteger;
    constructor Create(seedState, seedSequence: BigInteger); overload;
    constructor Create(); overload;
    destructor Destroy; override;
    procedure Seed(seed_state, seed_sequence: BigInteger);
    function NextInt(): BigInteger;
    function NextIntRange(size: Integer): TArray<BigInteger>;
    function NextFloat(): Extended;
  end;

{ TPCG32 }

constructor TPCG32.Create(seedState, seedSequence: BigInteger);
begin
  Create();
  Seed(seedState, seedSequence);
end;

constructor TPCG32.Create;
begin
  k := '6364136223846793005';
  mask64 := (BigInteger(1) shl 64) - 1;
  mask32 := (BigInteger(1) shl 32) - 1;
  FState := 0;
  FInc := 0;
end;

destructor TPCG32.Destroy;
begin

  inherited;
end;

function TPCG32.NextFloat: Extended;
begin
  Result := (NextInt.AsExtended / (BigInteger(1) shl 32).AsExtended);
end;

function TPCG32.NextInt(): BigInteger;
var
  old, xorshifted, rot, answer: BigInteger;
begin
  old := FState;
  FState := ((old * k) + FInc) and mask64;
  xorshifted := (((old shr 18) xor old) shr 27) and mask32;
  rot := (old shr 59) and mask32;
  answer := (xorshifted shr rot.AsInteger) or (xorshifted shl ((-rot) and
    BigInteger(31)).AsInteger);
  Result := answer and mask32;
end;

function TPCG32.NextIntRange(size: Integer): TArray<BigInteger>;
var
  i: Integer;
begin
  SetLength(Result, size);
  if size = 0 then
    exit;

  for i := 0 to size - 1 do
    Result[i] := NextInt;
end;

procedure TPCG32.Seed(seed_state, seed_sequence: BigInteger);
begin
  FState := 0;
  FInc := ((seed_sequence shl 1) or 1) and mask64;
  nextint();
  Fstate := (Fstate + seed_state);
  nextint();
end;

var
  PCG32: TPCG32;
  i, key: Integer;
  count: TDictionary<Integer, Integer>;

begin
  PCG32 := TPCG32.Create(42, 54);

  for i := 0 to 4 do
    Writeln(PCG32.NextInt().ToString);

  PCG32.seed(987654321, 1);

  count := TDictionary<Integer, Integer>.Create();

  for i := 1 to 100000 do
  begin
    key := Trunc(PCG32.NextFloat * 5);
    if count.ContainsKey(key) then
      count[key] := count[key] + 1
    else
      count.Add(key, 1);
  end;

  Writeln(#10'The counts for 100,000 repetitions are:');

  for key in count.Keys do
    Writeln(key, ' : ', count[key]);

  count.free;
  PCG32.free;
  Readln;
end.
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

The counts for 100,000 repetitions are:
3 : 19809
0 : 20049
4 : 20005
2 : 20115
1 : 20022

F#

The Functions

// PCG32. Nigel Galloway: August 13th., 2020
let N=6364136223846793005UL
let seed n g=let g=g<<<1|||1UL in (g,(g+n)*N+g)
let pcg32=Seq.unfold(fun(n,g)->let rot,xs=uint32(g>>>59),uint32(((g>>>18)^^^g)>>>27) in Some(uint32((xs>>>(int rot))|||(xs<<<(-(int rot)&&&31))),(n,g*N+n)))
let pcgFloat n=pcg32 n|>Seq.map(fun n-> (float n)/4294967296.0)

The Tasks

pcg32(seed 42UL 54UL)|>Seq.take 5|>Seq.iter(printfn "%d")
Output:
2707161783
2068313097
3122475824
2211639955
3215226955
pcgFloat(seed 987654321UL 1UL)|>Seq.take 100000|>Seq.countBy(fun n->int(n*5.0))|>Seq.iter(printf "%A");printfn ""
(2, 20115)(3, 19809)(0, 20049)(4, 20005)(1, 20022)

Factor

Translation of: Python
Works with: Factor version 0.99 2020-08-14
USING: accessors kernel locals math math.bitwise math.statistics
prettyprint sequences ;

CONSTANT: const 6364136223846793005

TUPLE: pcg32 state inc ;

: <pcg32> ( -- pcg32 )
    0x853c49e6748fea9b 0xda3e39cb94b95bdb pcg32 boa ;

:: next-int ( pcg -- n )
    pcg state>> :> old
    old const * pcg inc>> + 64 bits pcg state<<
    old -18 shift old bitxor -27 shift 32 bits :> shifted
    old -59 shift 32 bits :> r
    shifted r neg shift
    shifted r neg 31 bitand shift bitor 32 bits ;

: next-float ( pcg -- x ) next-int 1 32 shift /f ;

:: seed ( pcg st seq -- )
    0x0 pcg state<<
    seq 0x1 shift 1 bitor 64 bits pcg inc<<
    pcg next-int drop
    pcg state>> st + pcg state<<
    pcg next-int drop ;

! Task
<pcg32> 42 54 [ seed ] keepdd 5 [ dup next-int . ] times
 
987654321 1 [ seed ] keepdd
100,000 [ dup next-float 5 * >integer ] replicate nip
histogram .
Output:
2707161783
2068313097
3122475824
2211639955
3215226955
H{ { 0 20049 } { 1 20022 } { 2 20115 } { 3 19809 } { 4 20005 } }

FreeBASIC

#define floor(x) ((x*2.0-0.5) Shr 1)

Const As Ulongint mask64 = &HFFFFFFFFFFFFFFFF
Const As Ulongint mask32 = &HFFFFFFFF
Const As Ulongint cte = 6364136223846793005

Dim Shared As Ulongint state, inc

Function next_int() As Ulongint
    ' return random 32 bit unsigned int
    Dim As Ulongint old = state
    state = ((old * cte) + inc) And mask64
    Dim As Ulongint xorshifted = (((old Shr 18) Xor old) Shr 27) And mask32
    Dim As Ulongint rot = (old Shr 59) And mask32
    Dim As Ulongint answer = (xorshifted Shr rot) Or (xorshifted Shl ((-rot) And 31))
    answer And= mask32
    Return answer
End Function

Function next_float() As Double
    ' return random float between 0 and 1
    Return next_int() / (2 ^ 32)
End Function

Sub seed(seed_state As Ulongint, seed_sequence As Ulongint)
    state = 0
    inc = ((seed_sequence Shl 1) Or 1) And mask64
    next_int()
    state = (state + seed_state) And mask64
    next_int()
End Sub

Dim As Integer i, hist(4)

seed(42, 54)
For i = 1 To 5
    Print next_int()
Next i

Print !"\nThe counts for 100,000 repetitions are:"
seed(987654321, 1)
For i = 1 To 100000
    hist(floor(next_float() * 5)) += 1   
Next i
For i = 0 To 4
    Print Using "hist(#) = #####"; i; hist(i)
Next i

Sleep
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

The counts for 100,000 repetitions are:
hist(0) = 20049
hist(1) = 20022
hist(2) = 20115
hist(3) = 19809
hist(4) = 20005

Go

Translation of: Python
package main

import (
    "fmt"
    "math"
)

const CONST = 6364136223846793005

type Pcg32 struct{ state, inc uint64 }

func Pcg32New() *Pcg32 { return &Pcg32{0x853c49e6748fea9b, 0xda3e39cb94b95bdb} }

func (pcg *Pcg32) seed(seedState, seedSequence uint64) {
    pcg.state = 0
    pcg.inc = (seedSequence << 1) | 1
    pcg.nextInt()
    pcg.state = pcg.state + seedState
    pcg.nextInt()
}

func (pcg *Pcg32) nextInt() uint32 {
    old := pcg.state
    pcg.state = old*CONST + pcg.inc
    pcgshifted := uint32(((old >> 18) ^ old) >> 27)
    rot := uint32(old >> 59)
    return (pcgshifted >> rot) | (pcgshifted << ((-rot) & 31))
}

func (pcg *Pcg32) nextFloat() float64 {
    return float64(pcg.nextInt()) / (1 << 32)
}

func main() {
    randomGen := Pcg32New()
    randomGen.seed(42, 54)
    for i := 0; i < 5; i++ {
        fmt.Println(randomGen.nextInt())
    }

    var counts [5]int
    randomGen.seed(987654321, 1)
    for i := 0; i < 1e5; i++ {
        j := int(math.Floor(randomGen.nextFloat() * 5))
        counts[j]++
    }
    fmt.Println("\nThe counts for 100,000 repetitions are:")
    for i := 0; i < 5; i++ {
        fmt.Printf("  %d : %d\n", i, counts[i])
    }
}
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

The counts for 100,000 repetitions are:
  0 : 20049
  1 : 20022
  2 : 20115
  3 : 19809
  4 : 20005

Haskell

Implement given algorithm as an instance of RandomGen class.

import Data.Bits
import Data.Word
import System.Random
import Data.List

data PCGen = PCGen !Word64 !Word64 

mkPCGen state sequence =
  let
    n = 6364136223846793005 :: Word64 
    inc = (sequence `shiftL` 1) .|. 1 :: Word64 
  in PCGen ((inc + state)*n + inc) inc 

instance RandomGen PCGen where
   next (PCGen state inc) =
     let
       n = 6364136223846793005 :: Word64
       xs = fromIntegral $ ((state `shiftR` 18) `xor` state) `shiftR` 27 :: Word32
       rot = fromIntegral $ state `shiftR` 59 :: Int
     in (fromIntegral $ (xs `shiftR` rot) .|. (xs `shiftL` ((-rot) .&. 31))
        , PCGen (state * n + inc) inc)

   split _ = error "PCG32 is not splittable"

randoms' :: RandomGen g => g -> [Int]
randoms' g = unfoldr (pure . next) g

toFloat n = fromIntegral n / (2^32 - 1)

Direct usage of generator:

*Main> take 5 $ randoms' (mkPCGen 42 54)
[2707161783,2068313097,3122475824,2211639955,3215226955]

*Main> let hist = map length . group . sort
*Main> hist . take 100000 $ (floor . (*5) . toFloat) <$> (randoms' (mkPCGen 987654321 1))
[20049,20022,20115,19809,20005]

Using Random class gives different results due to internal shuffling:

*Main> take 5 $ randoms (mkPCGen 42 54)
[2068313097,2211639955,3421331566,2167406445,4181216144]

*Main>let hist = map length . group . sort
*Main> hist . take 100000 $ (floor . (*5)) <$> (randoms (mkPCGen 987654321 1) :: [Float])
[20009,20065,20023,19876,20027]

J

Implementation:

PCG32GEN=: {{
  g=. cocreate''
  'state0__g seq__g'=. m
  init__g=: {{
    max=: 2^64x
    u64=: &.((64#2x)&#:) NB. binary domain operation
    U64=: max&|          NB. integer domain result
    U32=: (2^32)&(<.@|)
    and=: *. u64
    xor=: ~: u64
     or=:  +. u64
    lsl=: max <.@| ] * 2x^[
      N=: 6364136223846793005x
    inc=: U64 1 2x p. seq
  state=: U64 inc+N*inc+state0
  }}
  next__g=: g {{ m[y
    xs=. U32 _27 lsl state xor _18 lsl state
    rot=. -_59 lsl state
    state=: U64 inc+N*state
    U32 (rot lsl xs) or (31 and rot) lsl xs
  }}
  init__g''
  (;'next_';(;g);'_')~
}}

next_float=: %&(2^32)

Task examples:

   42 54 PCG32GEN ^:(1+i.5)''
2707161776 2068313120 3122475824 2211639955 3215226955
   (~.,. #/.~) <.5*next_float 987654321 1 PCG32GEN^:(1+i.1e5) ''
2 20115
3 19809
0 20049
4 20005
1 20022

Java

Translation of: C++
public class PCG32 {
    private static final long N = 6364136223846793005L;

    private long state = 0x853c49e6748fea9bL;
    private long inc = 0xda3e39cb94b95bdbL;

    public void seed(long seedState, long seedSequence) {
        state = 0;
        inc = (seedSequence << 1) | 1;
        nextInt();
        state = state + seedState;
        nextInt();
    }

    public int nextInt() {
        long old = state;
        state = old * N + inc;
        int shifted = (int) (((old >>> 18) ^ old) >>> 27);
        int rot = (int) (old >>> 59);
        return (shifted >>> rot) | (shifted << ((~rot + 1) & 31));
    }

    public double nextFloat() {
        var u = Integer.toUnsignedLong(nextInt());
        return (double) u / (1L << 32);
    }

    public static void main(String[] args) {
        var r = new PCG32();

        r.seed(42, 54);
        System.out.println(Integer.toUnsignedString(r.nextInt()));
        System.out.println(Integer.toUnsignedString(r.nextInt()));
        System.out.println(Integer.toUnsignedString(r.nextInt()));
        System.out.println(Integer.toUnsignedString(r.nextInt()));
        System.out.println(Integer.toUnsignedString(r.nextInt()));
        System.out.println();

        int[] counts = {0, 0, 0, 0, 0};
        r.seed(987654321, 1);
        for (int i = 0; i < 100_000; i++) {
            int j = (int) Math.floor(r.nextFloat() * 5.0);
            counts[j]++;
        }

        System.out.println("The counts for 100,000 repetitions are:");
        for (int i = 0; i < counts.length; i++) {
            System.out.printf("  %d : %d\n", i, counts[i]);
        }
    }
}
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

The counts for 100,000 repetitions are:
  0 : 20049
  1 : 20022
  2 : 20115
  3 : 19809
  4 : 20005

jq

Adapted from Wren

Works with gojq, the Go implementation of jq

The following uses some functions from the "bitwise" module. If, for example, your jq does not support modules, you could insert the relevant definitions therefrom in place of the "include" directive.

include "bitwise" {search: "."};  # see above

def Const: 6364136223846793005;
def Mask64: 18446744073709551615; # i.e. (1 | leftshift(64)) - 1
def Mask32: 4294967295;           # i.e. (1 | leftshift(32)) - 1

# An initialization function if you do not wish to use seed/2
def rcg32:
  {state:  9600629759793949339,   #  0x853c49e6748fea9b
   inc:   15726070495360670683    # 0xda3e39cb94b95bdb
  };

# Input: {state, inc}
# Output: {state, inc, nextInt}
def nextInt:
  .state as $old
  | .state = bitwise_and($old * Const + .inc; Mask64)
  | bitwise_and(( bitwise_xor($old | rightshift(18); $old) | rightshift(27)); Mask32) as $xorshifted
  | bitwise_and($old|rightshift(59) ; Mask32) as $rot
  | .nextInt = bitwise_and(
                 bitwise_or(
                   $xorshifted | rightshift($rot) ;
                   $xorshifted | leftshift( bitwise_and( 32 - $rot; 31) )) ;
                 Mask32) ;

def nextFloat:
  nextInt
  | .nextFloat = .nextInt / pow(2;32);

def seed($seedState; $seedSequence):
   {state: 0,
    inc:   bitwise_and( bitwise_xor($seedSequence|leftshift(1); 1); Mask64)
    }
   | nextInt
   | .state += $seedState
   | nextInt;

def task1($n):
  foreach range(0; $n) as $i (seed(42; 54); nextInt)
  | .nextInt;

def task2($n):
  reduce range(0; $n) as $i (seed(987654321; 1);
    nextFloat
    | .counts[((.nextFloat * 5)|floor)] += 1)
  | "\nThe counts for \($n) repetitions are:",
    (range(0; 5) as $i | "\($i) : \(.counts[$i])") ;

task1(5),
task2(100000)
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

The counts for 100000 repetitions are:
0 : 20049
1 : 20022
2 : 20115
3 : 19809
4 : 20005

Julia

Translation of: Python
const mask32, CONST = 0xffffffff, UInt(6364136223846793005)

mutable struct PCG32
    state::UInt64
    inc::UInt64
    PCG32(st=0x853c49e6748fea9b, i=0xda3e39cb94b95bdb) = new(st, i)
end

"""return random 32 bit unsigned int"""
function next_int!(x::PCG32)
    old = x.state
    x.state = (old * CONST) + x.inc
    xorshifted = (((old >> 18)  old) >> 27) & mask32
    rot = (old >> 59) & mask32
    return ((xorshifted >> rot) | (xorshifted << ((-rot) & 31))) & mask32
end

"""return random float between 0 and 1"""
next_float!(x::PCG32) = next_int!(x) / (1 << 32)

function seed!(x::PCG32, st, seq)
    x.state = 0x0
    x.inc = (UInt(seq) << 0x1) | 1
    next_int!(x)
    x.state = x.state + UInt(st)
    next_int!(x)
end

function testPCG32()
    random_gen = PCG32()
    seed!(random_gen, 42, 54)
    for _ in 1:5
        println(next_int!(random_gen))
    end
    seed!(random_gen, 987654321, 1)
    hist = fill(0, 5)
    for _ in 1:100_000
        hist[Int(floor(next_float!(random_gen) * 5)) + 1] += 1
    end
    println(hist)
    for n in 1:5
        print(n - 1, ": ", hist[n], "  ")
    end
end

testPCG32()
Output:
2707161783
2068313097
3122475824
2211639955
3215226955
[20049, 20022, 20115, 19809, 20005]
0: 20049  1: 20022  2: 20115  3: 19809  4: 20005

Kotlin

Translation of: C++

Requires the experimental unsigned feature for integer types

import kotlin.math.floor

class PCG32 {
    private var state = 0x853c49e6748fea9buL
    private var inc = 0xda3e39cb94b95bdbuL

    fun nextInt(): UInt {
        val old = state
        state = old * N + inc
        val shifted = old.shr(18).xor(old).shr(27).toUInt()
        val rot = old.shr(59)
        return (shifted shr rot.toInt()) or shifted.shl((rot.inv() + 1u).and(31u).toInt())
    }

    fun nextFloat(): Double {
        return nextInt().toDouble() / (1L shl 32)
    }

    fun seed(seedState: ULong, seedSequence: ULong) {
        state = 0u
        inc = (seedSequence shl 1).or(1uL)
        nextInt()
        state += seedState
        nextInt()
    }

    companion object {
        private const val N = 6364136223846793005uL
    }
}

fun main() {
    val r = PCG32()

    r.seed(42u, 54u)
    println(r.nextInt())
    println(r.nextInt())
    println(r.nextInt())
    println(r.nextInt())
    println(r.nextInt())
    println()

    val counts = Array(5) { 0 }
    r.seed(987654321u, 1u)
    for (i in 0 until 100000) {
        val j = floor(r.nextFloat() * 5.0).toInt()
        counts[j] += 1
    }

    println("The counts for 100,000 repetitions are:")
    for (iv in counts.withIndex()) {
        println("  %d : %d".format(iv.index, iv.value))
    }
}
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

The counts for 100,000 repetitions are:
  0 : 20049
  1 : 20022
  2 : 20115
  3 : 19809
  4 : 20005

Lua

Translation of: C
function uint32(n)
    return n & 0xffffffff
end
 
function uint64(n)
    return n & 0xffffffffffffffff
end
 
N = 6364136223846793005
state = 0x853c49e6748fea9b
inc = 0xda3e39cb94b95bdb
 
function pcg32_seed(seed_state, seed_sequence)
    state = 0
    inc = (seed_sequence << 1) | 1
    pcg32_int()
    state = state + seed_state
    pcg32_int()
end
 
function pcg32_int()
    local old = state
    state = uint64(old * N + inc)
    local shifted = uint32(((old >> 18) ~ old) >> 27)
    local rot = uint32(old >> 59)
    return uint32((shifted >> rot) | (shifted << ((~rot + 1) & 31)))
end
 
function pcg32_float()
    return 1.0 * pcg32_int() / (1 << 32)
end
 
-------------------------------------------------------------------
 
pcg32_seed(42, 54)
print(pcg32_int())
print(pcg32_int())
print(pcg32_int())
print(pcg32_int())
print(pcg32_int())
print()
 
counts = { 0, 0, 0, 0, 0 }
pcg32_seed(987654321, 1)
for i=1,100000 do
    local j = math.floor(pcg32_float() * 5.0) + 1
    counts[j] = counts[j] + 1
end
 
print("The counts for 100,000 repetitions are:")
for i=1,5 do
    print("  " .. (i - 1) .. ": " .. counts[i])
end
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

The counts for 100,000 repetitions are:
  0: 20049
  1: 20022
  2: 20115
  3: 19809
  4: 20005

Mathematica /Wolfram Language

Translation of: Julia
ClearAll["Global`*"];

(*Constants*)
mask32 = BitAnd[2^32 - 1];
CONST = 6364136223846793005;

(*Convert Hex String to Expression*)
Hex[x_?StringQ] := ToExpression["16^^" <> StringDrop[x, 2]];

(*Definition of PCG32 Structure*)
PCG32[state_: Hex["0x853c49e6748fea9b"], 
   inc_: Hex["0xda3e39cb94b95bdb"]] := <|"state" -> state, 
   "inc" -> inc|>;

(*Function to generate next integer*)
nextInt[pcg_Association] := 
  Module[{old, xorshifted, rot, newState}, old = pcg["state"];
   newState = BitAnd[(old*CONST + pcg["inc"]), 2^64 - 1];
   xorshifted = 
    BitAnd[BitShiftRight[BitXor[BitShiftRight[old, 18], old], 27], 
     mask32];
   rot = BitAnd[BitShiftRight[old, 59], mask32];
   <|"state" -> newState, "inc" -> pcg["inc"], 
    "nextInt" -> 
     BitAnd[BitOr[BitShiftRight[xorshifted, rot], 
       BitShiftLeft[xorshifted, BitAnd[-rot, 31]]], mask32]|>];

(*Function to generate next float*)
nextFloat[pcg_Association] := nextInt[pcg]["nextInt"]/2^32;

(*Function to seed the generator*)
seed[pcg_Association, st_, seq_] := 
  Module[{newPcg}, 
   newPcg = <|"state" -> 0, 
     "inc" -> BitOr[BitShiftLeft[seq, 1], 1]|>;
   newPcg = nextInt[newPcg];
   <|"state" -> newPcg["state"] + st, "inc" -> newPcg["inc"]|>];

(*Test function*)
testPCG32[] := 
  Module[{randomGen, hist, n, nextGen}, randomGen = PCG32[];
   randomGen = seed[randomGen, 42, 54];
   Do[
    nextGen = nextInt[randomGen];
    randNumber = nextGen["nextInt"];
              If[randNumber != 0, Print[randNumber]];
               randomGen = nextGen
    , {6}];
   randomGen = seed[randomGen, 987654321, 1];
   hist = ConstantArray[0, 5];
   Do[nextGen = nextInt[randomGen];
    hist[[Floor[nextFloat[nextGen]*5] + 1]] += 1;
    randomGen = nextGen, {100000}];
   Print[hist];
   Do[Print[n - 1, ": ", hist[[n]], "  "], {n, 1, 5}];];

(*Run the test*)
testPCG32[];
Output:
2707161783
2068313097
3122475824
2211639955
3215226955
{20049, 20022, 20115, 19809, 20005}
0: 20049  
1: 20022  
2: 20115  
3: 19809  
4: 20005  

Nim

import algorithm, sequtils, strutils, tables

const N = 6364136223846793005u64

type PCG32 = object
  inc: uint64
  state: uint64

func seed(gen: var PCG32; seedState, seedSequence: uint64) =
  gen.inc = seedSequence shl 1 or 1
  gen.state = (gen.inc + seedState) * N + gen.inc

func nextInt(gen: var PCG32): uint32 =
  let xs = uint32((gen.state shr 18 xor gen.state) shr 27)
  let rot = int32(gen.state shr 59)
  result = uint32(xs shr rot or xs shl (-rot and 31))
  gen.state = gen.state * N + gen.inc

func nextFloat(gen: var PCG32): float =
  gen.nextInt().float / float(0xFFFFFFFFu32)


when isMainModule:

  var gen: PCG32

  gen.seed(42, 54)
  for _ in 1..5:
    echo gen.nextInt()

  echo ""
  gen.seed(987654321, 1)
  var counts: CountTable[int]
  for _ in 1..100_000:
    counts.inc int(gen.nextFloat() * 5)
  echo sorted(toSeq(counts.pairs)).mapIt($it[0] & ": " & $it[1]).join(", ")
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

0: 20049, 1: 20022, 2: 20115, 3: 19809, 4: 20005

OCaml

let (>>) = Int64.shift_right_logical

let int32_bound n x =
  Int64.(to_int ((mul (logand (of_int32 x) 0xffffffffL) (of_int n)) >> 32))

let int32_rotate_right x n =
  Int32.(logor (shift_left x (-n land 31)) (shift_right_logical x n))

let pcg32_next inc st =
  Int64.(add (mul st 0x5851f42d4c957f2dL) inc)

let pcg32_output st =
  int32_rotate_right
    (Int32.logxor (Int64.to_int32 (st >> 27)) (Int64.to_int32 (st >> 45)))
    (Int64.to_int (st >> 59))

let seq_pcg32 (st, f) =
  let rec repeat st () = Seq.Cons (pcg32_output st, repeat (f st)) in
  repeat (f st)

let pcg32 seed_st seed_sq =
  let inc = Int64.(add (succ seed_sq) seed_sq) in
  Int64.add seed_st inc, pcg32_next inc
Test:
let () =
  pcg32 42L 54L |> seq_pcg32 |> Seq.take 5
  |> Seq.iter (Printf.printf " %lu") |> print_newline

let () =
  pcg32 987654321L 1L |> seq_pcg32 |> Seq.map (int32_bound 5) |> Seq.take 100000
  |> Seq.fold_left (fun a n -> a.(n) <- succ a.(n); a) (Array.make 5 0)
  |> Array.iteri (Printf.printf "%u: %u\n")
Output:
 2707161783 2068313097 3122475824 2211639955 3215226955
0: 20049
1: 20022
2: 20115
3: 19809
4: 20005

Perl

use strict;
use warnings;
use feature 'say';
use Math::AnyNum qw(:overload);

package PCG32 {

    use constant {
        mask32 => 2**32 - 1,
        mask64 => 2**64 - 1,
        const  => 6364136223846793005,
    };

    sub new {
        my ($class, %opt) = @_;
        my $seed = $opt{seed} // 1;
        my $incr = $opt{incr} // 2;
        $incr = $incr << 1 | 1 & mask64;
        my $state = (($incr + $seed) * const + $incr) & mask64;
        bless {incr => $incr, state => $state}, $class;
    }

    sub next_int {
        my ($self) = @_;
        my $state  = $self->{state};
        my $shift  = ($state >> 18 ^ $state) >> 27 & mask32;
        my $rotate = $state >> 59 & mask32;
        $self->{state} = ($state * const + $self->{incr}) & mask64;
        ($shift >> $rotate) | $shift << (32 - $rotate) & mask32;
    }

    sub next_float {
        my ($self) = @_;
        $self->next_int / 2**32;
    }
}

say "Seed: 42, Increment: 54, first 5 values:";
my $rng = PCG32->new(seed => 42, incr => 54);
say $rng->next_int for 1 .. 5;

say "\nSeed: 987654321, Increment: 1, values histogram:";
my %h;
$rng = PCG32->new(seed => 987654321, incr => 1);
$h{int 5 * $rng->next_float}++ for 1 .. 100_000;
say "$_ $h{$_}" for sort keys %h;
Output:
Seed: 42, Increment: 54, first 5 values:
2707161783
2068313097
3122475824
2211639955
3215226955

Seed: 987654321, Increment: 1, values histogram:
0 20049
1 20022
2 20115
3 19809
4 20005

Phix

Phix proudly does not support the kind of "maths" whereby 255 plus 1 is 0 (or 127+1 is -128).
You can however achieve that with and_bits() in most cases, albeit limited to at most 32 bits.
Phix atoms are limited to 53/64 bits of precision, however (given the above) this task would need 128 bits.
First, for comparison only, this is the usual recommended native approach for this genre of task (different output)

puts(1,"NB: These are not expected to match the task spec!\n")
set_rand(42)
for i=1 to 5 do
    printf(1,"%d\n",rand(-1))
end for
set_rand(987654321)
sequence s = repeat(0,5)
for i=1 to 100000 do
    s[floor(rnd()*5)+1] += 1
end for
?s
Output:
NB: These are not expected to match the task spec!
13007222
848581373
2714853861
808614160
2634828316
{20080,19802,19910,20039,20169}

To meet the spec, similar to the Delphi and Wren entries, we resort to using mpfr/gmp, but it is a fair bit longer than the above, and almost certainly slower, not that there is anywhere near enough work being done here to make that measureable.

with javascript_semantics
include mpfr.e
mpz cmult = mpz_init("6364136223846793005"),
    state = mpz_init("0x853c49e6748fea9b"),
      inc = mpz_init("0xda3e39cb94b95bdb"),  /* Always odd */
      b64 = mpz_init("0x10000000000000000"),  -- (truncate to 64 bits)
      b32 = mpz_init("0x100000000"),          -- (truncate to 32 bits)
      old = mpz_init(),
    xorsh = mpz_init()
 
procedure seed(integer seed_state, seed_sequence)
    mpz_set_si(inc,seed_sequence*2+1)
    -- as per the talk page:
    -- state := remainder((inc+seed_state)*cmult+inc,b64)
    mpz_add_ui(state,inc,seed_state)
    mpz_mul(state,state,cmult)
    mpz_add(state,state,inc)
    mpz_fdiv_r(state, state, b64) -- state := remainder(state,b64) 
end procedure
 
function next_int()
    mpz_set(old,state)                      -- old := state
    mpz_set(state,inc)                      -- state := inc
    mpz_addmul(state,old,cmult)             -- state += old*cmult
    mpz_fdiv_r(state, state, b64)           -- state := remainder(state,b64) 
    mpz_tdiv_q_2exp(xorsh, old, 18)         -- xorsh := trunc(old/2^18)
    mpz_xor(xorsh, xorsh, old)              -- xorsh := xor_bits(xorsh,old)
    mpz_tdiv_q_2exp(xorsh, xorsh, 27)       -- xorsh := trunc(xorsh/2^27)
    mpz_fdiv_r(xorsh, xorsh, b32)           -- xorsh := remainder(xorsh,b32) 
    atom xorshifted = mpz_get_atom(xorsh)
    mpz_tdiv_q_2exp(old, old, 59)           -- old := trunc(old/2^59)
    integer rot = mpz_get_integer(old)
    atom l = and_bitsu(xorshifted << 32-rot, #FFFFFFFF),
         r = xorshifted >> rot,
         answer = xor_bitsu(l,r)
    return answer
end function
 
function next_float()
    return next_int() / (1 << 32)
end function
 
seed(42, 54)
for i=1 to 5 do
    printf(1,"%d\n",next_int())
end for
seed(987654321,1)
sequence r = repeat(0,5)
for i=1 to 100000 do
    integer idx = floor(next_float()*5)+1
    r[idx] += 1
end for
?r
Output:
2707161783
2068313097
3122475824
2211639955
3215226955
{20049,20022,20115,19809,20005}

Python

Python: As class

mask64 = (1 << 64) - 1
mask32 = (1 << 32) - 1
CONST = 6364136223846793005


class PCG32():
    
    def __init__(self, seed_state=None, seed_sequence=None):
        if all(type(x) == int for x in (seed_state, seed_sequence)):
            self.seed(seed_state, seed_sequence)
        else:
            self.state = self.inc = 0
    
    def seed(self, seed_state, seed_sequence):
        self.state = 0
        self.inc = ((seed_sequence << 1) | 1) & mask64
        self.next_int()
        self.state = (self.state + seed_state)
        self.next_int()
        
    def next_int(self):
        "return random 32 bit unsigned int"
        old = self.state
        self.state = ((old * CONST) + self.inc) & mask64
        xorshifted = (((old >> 18) ^ old) >> 27) & mask32
        rot = (old >> 59) & mask32
        answer = (xorshifted >> rot) | (xorshifted << ((-rot) & 31))
        answer = answer &mask32
        
        return answer
    
    def  next_float(self):
        "return random float between 0 and 1"
        return self.next_int() / (1 << 32)
    

if __name__ == '__main__':
    random_gen = PCG32()
    random_gen.seed(42, 54)
    for i in range(5):
        print(random_gen.next_int())
        
    random_gen.seed(987654321, 1)
    hist = {i:0 for i in range(5)}
    for i in range(100_000):
        hist[int(random_gen.next_float() *5)] += 1
    print(hist)
Output:
2707161783
2068313097
3122475824
2211639955
3215226955
{0: 20049, 1: 20022, 2: 20115, 3: 19809, 4: 20005}

Python: As generator

def pcg32(seed_state=None, seed_sequence=None, as_int=True):
    def next_int():
        "return random 32 bit unsigned int"
        nonlocal state, inc

        state, xorshifted, rot = (((state * CONST) + inc) & mask64,
                                  (((state >> 18) ^ state) >> 27) & mask32,
                                  (state >> 59) & mask32)
        answer = (((xorshifted >> rot) | (xorshifted << ((-rot) & 31)))
                  & mask32)
        return answer

    # Seed
    state = inc = 0
    if all(type(x) == int for x in (seed_state, seed_sequence)):
        inc = ((seed_sequence << 1) | 1) & mask64
        next_int()
        state += seed_state
        next_int()

    while True:
        yield next_int() if as_int else next_int() / (1 << 32)


if  __name__ == '__main__':
    from itertools import islice

    for i in islice(pcg32(42, 54), 5):
        print(i)
    hist = {i:0 for i in range(5)}
    for i in islice(pcg32(987654321, 1, as_int=False), 100_000):
        hist[int(i * 5)] += 1
    print(hist)
Output:
2707161783
2068313097
3122475824
2211639955
3215226955
{0: 20049, 1: 20022, 2: 20115, 3: 19809, 4: 20005}

Raku

Works with: Rakudo version 2020.07
Translation of: Python

Or... at least, it started out that way.

Raku does not have unsigned Integers at this time (Integers are arbitrary sized) so use explicit bit masks during bitwise operations.

class PCG32 {
    has $!state;
    has $!incr;
    constant mask32 = 2³² - 1;
    constant mask64 = 2⁶⁴ - 1;
    constant const = 6364136223846793005;

    submethod BUILD (
        Int :$seed = 0x853c49e6748fea9b, # default seed
        Int :$incr = 0xda3e39cb94b95bdb  # default increment
      ) {
        $!incr  = $incr +< 1 +| 1 +& mask64;
        $!state = (($!incr + $seed) * const + $!incr) +& mask64;
    }

    method next-int {
        my $shift  = ($!state +> 18 +^ $!state) +> 27 +& mask32;
        my $rotate =  $!state +> 59 +& 31;
        $!state    = ($!state * const + $!incr) +& mask64;
        ($shift +> $rotate) +| ($shift +< (32 - $rotate) +& mask32)
    }

    method next-rat { self.next-int / 2³² }
}


# Test next-int with custom seed and increment
say 'Seed: 42, Increment: 54; first five Int values:';
my $rng = PCG32.new( :seed(42), :incr(54) );
.say for $rng.next-int xx 5;


# Test next-rat (since these are rational numbers by default)
say "\nSeed: 987654321, Increment: 1; first 1e5 Rat values histogram:";
$rng = PCG32.new( :seed(987654321), :incr(1) );
say ( ($rng.next-rat * 5).floor xx 100_000 ).Bag;


# Test next-int with default seed and increment
say "\nSeed: default, Increment: default; first five Int values:";
$rng = PCG32.new;
.say for $rng.next-int xx 5;
Output:
Seed: 42, Increment: 54; first five Int values:
2707161783
2068313097
3122475824
2211639955
3215226955

Seed: 987654321, Increment: 1; first 1e5 Rat values histogram:
Bag(0(20049), 1(20022), 2(20115), 3(19809), 4(20005))

Seed: default, Increment: default; first five Int values:
465482994
3895364073
1746730475
3759121132
2984354868

REXX

Translation of: Java

It was a challenge to understand how some Java constructs work and to end up with the identical output. DON'T use Rexx, however, for this type of problem unless you take the time spent for some Java coffees!

Numeric Digits 40
N     = 6364136223846793005
state = x2d('853c49e6748fea9b',16)
inc   = x2d('da3e39cb94b95bdb',16)
Call seed 42,54
Do zz=1 To 5
  res=nextint()
  Say int2str(res)
  End
Call seed 987654321,1
cnt.=0
Do i=1 To 100000
  z=nextfloat()
  cnt.z=cnt.z+1
  End
Say ''
Say 'The counts for 100,000 repetitions are:'
Do z=0 To 4
  Say format(z,2) ':' format(cnt.z,5)
  End
Exit

int2str: Procedure
int=arg(1)
intx=d2x(int,8)
res=x2d(copies(0,8)intx,16)
Return res

seed:
Parse Arg seedState,seedSequence
state=0
inc=dshift(seedSequence,-1)
inc=x2d(or(d2x(inc,16),d2x(1,16)),16)
z=nextint()
state=javaadd(state,seedState)
z=nextint()
Return

nextInt:
old = state
oldxN = javamult(old,n)
statex= javaadd(oldxN,inc)
state=statex
oldx=d2x(old,16)
oldb=x2b(oldx)
oldb18=copies(0,18)left(oldb,64-18)
oldb18o=bxor(oldb18,oldb)
rb=copies(0,27)left(oldb18o,64-27)
rx=b2x(rb)
shifted=x2d(substr(rx,9),8)
oldx=d2x(old,16)
oldb=x2b(oldx)
oldb2=copies(0,59)left(oldb,length(oldb)-59)
oldx2=b2x(oldb2)
rotx=x2d(substr(oldx2,9),8)
t1=ishift(shifted,rotx,'L')
t2=x2d(xneg(d2x(rotx,8)),8)
t3=t2+1
t4=x2d(xand(d2x(t3,8),d2x(31,8)),8)
t5=dshift(shifted,-t4)
t5x=d2x(t5,16)
t5y=substr(t5x,9)
t5z=x2d(t5y,16)
t7=x2d(or(d2x(t1,16),d2x(t5z,16)),16)
t8=long2int(t7)
Return t8

nextfloat:
ni=nextint()
nix=d2x(ni,8)
niz=copies(0,8)nix
u=x2d(niz,16)
uu=u/(2**32)
z=uu*5%1
Return z

javaadd: Procedure
/**********************************************************************
* Add two long integers and ignore the possible overflow
**********************************************************************/
Numeric Digits 40
Parse Arg a,b
r=a+b
rx=d2x(r,18)
res=right(rx,16)
return x2d(res,16)

javamult: Procedure
/**********************************************************************
* Multiply java style
**********************************************************************/
Numeric Digits 40
Parse Arg a,b
m=d2x(a*b,16)
res=x2d(m,16)
Return res

bxor: Procedure
/**********************************************************************
* Exclusive Or two bit strings
**********************************************************************/
Parse arg a,b
res=''
Do i=1 To length(a)
  res=res||(substr(a,i,1)<>substr(b,i,1))
  End
Return res

xxor: Procedure
/**********************************************************************
* Exclusive Or two hex strings
**********************************************************************/
Parse Arg u,v
ub=x2b(u)
vb=x2b(v)
res=''
Do i=1 To 64
  res=res||(substr(ub,i,1)<>substr(vb,i,1))
  End
res=b2x(res)
Return res

xand: Procedure
/**********************************************************************
* And two hex strings
**********************************************************************/
Parse Arg u,v
ub=x2b(u)
vb=x2b(v)
res=''
Do i=1 To length(ub)
  res=res||(substr(ub,i,1)&substr(vb,i,1))
  End
res=b2x(res)
Return res

or: Procedure
/**********************************************************************
* Or two hex strings
**********************************************************************/
Parse Arg u,v
ub=x2b(u)
vb=x2b(v)
res=''
Do i=1 To length(ub)
  res=res||(substr(ub,i,1)|substr(vb,i,1))
  End
res=b2x(res)
Return res

long2int: Procedure
/**********************************************************************
* Cast long to int
**********************************************************************/
Parse Arg long
longx=d2x(long,16)
int=x2d(substr(longx,9),8)
Return int

xneg: Procedure
/**********************************************************************
* Negate a hex string
**********************************************************************/
Parse Arg s
sb=x2b(s)
res=''
Do i=1 To length(sb)
  res=res||\substr(sb,i,1)
  End
res=b2x(res)
Return res

dshift: Procedure
/**********************************************************************
* Implement the shift operations for a long variable
* r = dshift(long,shift[,mode])  >>  Mode='L' logical right shift
*                                >>> Mode='A' arithmetic right shift
*                                <<  xhift<0  left shift
********************************************`*************************/
Parse Upper Arg n,s,o
Numeric Digits 40
If o='' Then o='L'
nx=d2x(n,16)
nb=x2b(nx)
If s<0 Then Do
  s=abs(s)
  rb=substr(nb,s+1)||copies('0',s)
  rx=b2x(rb)
  r=x2d(rx,16)
  End
Else Do
  If o='L' Then Do
    rb=left(copies('0',s)nb,length(nb))
    rx=b2x(rb)
    r=x2d(rx,16)
    End
  Else Do
    rb=left(copies(left(nb,1),s)nb,length(nb))
    rx=b2x(rb)
    r=x2d(rx,16)
    End
  End
Return r

ishift: Procedure
/**********************************************************************
* Implement the shift operations for an int variable
* r = dshift(int,shift[,mode])   >>  Mode='L' logical right shift
*                                >>> Mode='A' arithmetic right shift
*                                <<  xhift<0  left shift
********************************************`*************************/
Parse Upper Arg n,s,o
Numeric Digits 40
If o='' Then o='L'
nx=d2x(n,8)
nb=x2b(nx)
If s<0 Then Do
  s=abs(s)
  rb=substr(nb,s+1)||copies('0',s)
  rx=b2x(rb)
  r=x2d(rx,8)
  End
Else Do
  If o='L' Then Do
    rb=left(copies('0',s)nb,length(nb))
    rx=b2x(rb)
    r=x2d(rx,8)
    End
  Else Do
    rb=left(copies(left(nb,1),s)nb,length(nb))
    rx=b2x(rb)
    r=x2d(rx,8)
    End
  End
Return r

b2x: Procedure Expose x.
/**********************************************************************
* Convert a Bit string to a Hex stríng
**********************************************************************/
Parse Arg b
z='0'; bits.z='0000'; y=bits.z; x.y=z
z='1'; bits.z='0001'; y=bits.z; x.y=z
z='2'; bits.z='0010'; y=bits.z; x.y=z
z='3'; bits.z='0011'; y=bits.z; x.y=z
z='4'; bits.z='0100'; y=bits.z; x.y=z
z='5'; bits.z='0101'; y=bits.z; x.y=z
z='6'; bits.z='0110'; y=bits.z; x.y=z
z='7'; bits.z='0111'; y=bits.z; x.y=z
z='8'; bits.z='1000'; y=bits.z; x.y=z
z='9'; bits.z='1001'; y=bits.z; x.y=z
z='A'; bits.z='1010'; y=bits.z; x.y=z
z='B'; bits.z='1011'; y=bits.z; x.y=z
z='C'; bits.z='1100'; y=bits.z; x.y=z
z='D'; bits.z='1101'; y=bits.z; x.y=z
z='E'; bits.z='1110'; y=bits.z; x.y=z
z='F'; bits.z='1111'; y=bits.z; x.y=z
x=''
Do While b<>''
  Parse Var b b4 +4 b
  x=x||x.b4
  End
Return x

x2b: Procedure Expose bits.
/***********************************************************************
* Convert a Hex string to a Bit stríng
***********************************************************************/
Parse Arg x
z='0'; bits.z='0000'; y=bits.z; x.y=z
z='1'; bits.z='0001'; y=bits.z; x.y=z
z='2'; bits.z='0010'; y=bits.z; x.y=z
z='3'; bits.z='0011'; y=bits.z; x.y=z
z='4'; bits.z='0100'; y=bits.z; x.y=z
z='5'; bits.z='0101'; y=bits.z; x.y=z
z='6'; bits.z='0110'; y=bits.z; x.y=z
z='7'; bits.z='0111'; y=bits.z; x.y=z
z='8'; bits.z='1000'; y=bits.z; x.y=z
z='9'; bits.z='1001'; y=bits.z; x.y=z
z='A'; bits.z='1010'; y=bits.z; x.y=z
z='B'; bits.z='1011'; y=bits.z; x.y=z
z='C'; bits.z='1100'; y=bits.z; x.y=z
z='D'; bits.z='1101'; y=bits.z; x.y=z
z='E'; bits.z='1110'; y=bits.z; x.y=z
z='F'; bits.z='1111'; y=bits.z; x.y=z
b=''
Do While x<>''
  Parse Var x c +1 x
  b=b||bits.c
  End
Return b
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

The counts for 100,000 repetitions are:
 0 : 20049
 1 : 20022
 2 : 20115
 3 : 19809
 4 : 20005

Ruby

Translation of: Python
class PCG32
  MASK64 = (1 << 64) - 1
  MASK32 = (1 << 32) - 1
  CONST  = 6364136223846793005

  def seed(seed_state, seed_sequence)
    @state = 0
    @inc = ((seed_sequence << 1) | 1) & MASK64
    next_int
    @state = @state + seed_state
    next_int
  end
  
  def next_int
    old = @state
    @state = ((old * CONST) + @inc) & MASK64
    xorshifted = (((old >> 18) ^ old) >> 27) & MASK32
    rot = (old >> 59) & MASK32
    answer = (xorshifted >> rot) | (xorshifted << ((-rot) & 31))
    answer & MASK32
  end
  
  def next_float
    next_int.fdiv(1 << 32)
  end
  
end

random_gen = PCG32.new
random_gen.seed(42, 54)
5.times{puts random_gen.next_int}

random_gen.seed(987654321, 1)
p 100_000.times.each{(random_gen.next_float * 5).floor}.tally.sort.to_h
Output:
2707161783
2068313097
3122475824
2211639955
3215226955
{0=>20049, 1=>20022, 2=>20115, 3=>19809, 4=>20005}

Rust

Translation of: C++
struct PCG32 {
    multiplier: u64,
    state: u64,
    inc: u64,
}

impl PCG32 {
    fn new() -> Self {
        PCG32 {
            multiplier: 6364136223846793005,
            state: 0x853c49e6748fea9b,
            inc: 0xda3e39cb94b95bdb,
        }
    }

    fn next_int(&mut self) -> u32 {
        let old = self.state;
        self.state = old.wrapping_mul(self.multiplier).wrapping_add(self.inc);
        let xorshifted = (((old >> 18) ^ old) >> 27) as u32;
        let rot = (old >> 59) as u32;
        (xorshifted >> rot) | (xorshifted << ((!rot).wrapping_add(1) & 31))
    }

    fn next_float(&mut self) -> f64 {
        (self.next_int() as f64) / ((1u64 << 32) as f64)
    }

    fn seed(&mut self, seed_state: u64, seed_sequence: u64) {
        self.state = 0;
        self.inc = (seed_sequence << 1) | 1;
        self.next_int();
        self.state = self.state.wrapping_add(seed_state);
        self.next_int();
    }
}

fn main() {
    let mut rng = PCG32::new();

    rng.seed(42, 54);
    for _ in 0..5 {
        println!("{}", rng.next_int());
    }

    println!();

    let mut counts = [0; 5];
    rng.seed(987654321, 1);
    for _ in 0..100000 {
        let j = (rng.next_float() * 5.0).floor() as usize;
        counts[j] += 1;
    }

    println!("The counts for 100,000 repetitions are:");
    for (i, count) in counts.iter().enumerate() {
        println!("  {} : {}", i, count);
    }
}
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

The counts for 100,000 repetitions are:
  0 : 20049
  1 : 20022
  2 : 20115
  3 : 19809
  4 : 20005

Scala

Translation of: Java
object PCG32 {
  private val N = 6364136223846793005L

  private var state = 0x853c49e6748fea9bL
  private var inc = 0xda3e39cb94b95bdbL

  def seed(seedState: Long, seedSequence: Long): Unit = {
    state = 0
    inc = (seedSequence << 1) | 1
    nextInt()
    state += seedState
    nextInt()
  }

  def nextInt(): Int = {
    val old = state
    state = old * N + inc
    val shifted = (((old >>> 18) ^ old) >>> 27).toInt
    val rot = (old >>> 59).toInt
    (shifted >>> rot) | (shifted << ((~rot + 1) & 31))
  }

  def nextFloat(): Double = {
    val u = nextInt() & 0xffffffffL
    u.toDouble / (1L << 32)
  }
}

object Main extends App {
  val r = PCG32

  r.seed(42, 54)
  println(Integer.toUnsignedString(r.nextInt()))
  println(Integer.toUnsignedString(r.nextInt()))
  println(Integer.toUnsignedString(r.nextInt()))
  println(Integer.toUnsignedString(r.nextInt()))
  println(Integer.toUnsignedString(r.nextInt()))
  println()

  val counts = Array(0, 0, 0, 0, 0)
  r.seed(987654321, 1)
  for (_ <- 1 to 100000) {
    val j = Math.floor(r.nextFloat() * 5.0).toInt
    counts(j) += 1
  }

  println("The counts for 100,000 repetitions are:")
  for (i <- counts.indices) {
    println(s"  $i : ${counts(i)}")
  }
}
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

The counts for 100,000 repetitions are:
  0 : 20049
  1 : 20022
  2 : 20115
  3 : 19809
  4 : 20005

Scheme

Translation of: Ruby
(import (scheme small) (srfi 33))

(define PCG-DEFAULT-MULTIPLIER 6364136223846793005)
(define MASK64 (- (arithmetic-shift 1 64) 1))
(define MASK32 (- (arithmetic-shift 1 32) 1))

(define-record-type <pcg32-random> (make-pcg32-random-record) pcg32?
  (state pcg32-state pcg32-state!)
  (inc   pcg32-inc   pcg32-inc!))

(define (make-pcg32)
  (define rng (make-pcg32-random-record))
  (pcg32-seed rng 31415926 535897932)
  rng)

(define (pcg32-seed rng init-state init-seq)
  (pcg32-state! rng 0)
  (pcg32-inc!   rng 
    (bitwise-and 
      (bitwise-ior (arithmetic-shift init-seq 1) 1) 
      MASK64))
  (pcg32-next-int rng)
  (pcg32-state! rng (bitwise-and (+ (pcg32-state rng) init-state) MASK64))
  (pcg32-next-int rng))

(define (pcg32-next-int rng)
  (define xorshifted 0)
  (define rot        0)
  (define answer     0) 
  (define oldstate (pcg32-state rng))
  (pcg32-state! rng 
    (bitwise-and 
      (+ (* oldstate PCG-DEFAULT-MULTIPLIER) (pcg32-inc rng)) 
      MASK64))
  (set! xorshifted  (bitwise-xor (arithmetic-shift oldstate -18) oldstate))
  (set! xorshifted  (arithmetic-shift xorshifted -27))
  (set! xorshifted  (bitwise-and xorshifted MASK32))
  (set! rot (bitwise-and (arithmetic-shift oldstate -59) MASK32))
  (set! answer (bitwise-ior
    (arithmetic-shift xorshifted (- rot))
    (arithmetic-shift xorshifted (bitwise-and (- rot) 31))))
  (set! answer (bitwise-and answer MASK32))
  answer)

(define (pcg32-next-float rng)
  (inexact (/ (pcg32-next-int rng) (arithmetic-shift 1 32))))

;; task

(define rng (make-pcg32))
(pcg32-seed rng 42 54)
(let lp ((i 0)) (when (< i 5) 
  (display (pcg32-next-int rng))(newline) 
  (lp (+ i 1))))
(newline)

(pcg32-seed rng 987654321 1)
(define vec (make-vector 5 0))
(let lp ((i 0)) (when (< i 100000)
  (let ((j (exact (floor (* (pcg32-next-float rng) 5)))))
    (vector-set! vec j (+ (vector-ref vec j) 1)))
  (lp (+ i 1))))
(let lp ((i 0)) (when (< i 5)
  (display i)
  (display " : ")
  (display (vector-ref vec i))
  (newline)
  (lp (+ i 1))))
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

0 : 20049
1 : 20022
2 : 20115
3 : 19809
4 : 20005

Sidef

Translation of: Perl
class PCG32(seed, incr) {

    has state

    define (
        mask32 = (2**32 - 1),
        mask64 = (2**64 - 1),
        N      = 6364136223846793005,
    )

    method init {
        seed := 1
        incr := 2
        incr  = (((incr << 1) | 1) & mask64)
        state = (((incr + seed)*N + incr) & mask64)
    }

    method next_int {
        var shift  = ((((state >> 18) ^ state) >> 27) & mask32)
        var rotate = ((state >> 59) & mask32)
            state  = ((state*N + incr) & mask64)
        ((shift >> rotate) | (shift << (32-rotate))) & mask32
    }

    method next_float {
        self.next_int / (mask32+1)
    }
}

say "Seed: 42, Increment: 54, first 5 values:";
var rng = PCG32(seed: 42, incr: 54)
say 5.of { rng.next_int }

say "\nSeed: 987654321, Increment: 1, values histogram:";
var rng = PCG32(seed: 987654321, incr: 1)
var histogram = Bag(1e5.of { floor(5*rng.next_float) }...)
histogram.pairs.sort.each { .join(": ").say }
Output:
Seed: 42, Increment: 54, first 5 values:
[2707161783, 2068313097, 3122475824, 2211639955, 3215226955]

Seed: 987654321, Increment: 1, values histogram:
0: 20049
1: 20022
2: 20115
3: 19809
4: 20005

Standard ML

type pcg32 = LargeWord.word * LargeWord.word

local
  infix 5 >>
  val op >> = LargeWord.>>
  and m = 0w6364136223846793005 : LargeWord.word
  and rotate32 = fn a as (x, n) =>
    Word32.orb (Word32.>> a, Word32.<< (x, Word.andb (~ n, 0w31)))
in
  fun pcg32Init (seed, seq) : pcg32 =
    let
      val inc = LargeWord.<< (LargeWord.fromInt seq, 0w1) + 0w1
    in
      ((LargeWord.fromInt seed + inc) * m + inc, inc)
    end
  fun pcg32Random ((state, inc) : pcg32) : Word32.word * pcg32 = (
    rotate32 (
      Word32.xorb (
        Word32.fromLarge (state >> 0w27),
        Word32.fromLarge (state >> 0w45)),
      Word.fromLarge (state >> 0w59)),
    (state * m + inc, inc))
end
Test code:
fun test1 (rand, state) =
  (print (Word32.fmt StringCvt.DEC rand ^ "\n"); state)

local
  val prependFormatted =
    fn (i, v, lst) => Int.toString i ^ ": " ^ Int.toString v :: lst
  and counts = IntArray.array (5, 0)
in
  fun test2 (rand, state) =
    let
      val i = LargeWord.toInt (LargeWord.>> (0w5 * Word32.toLarge rand, 0w32))
    in
      IntArray.update (counts, i, IntArray.sub (counts, i) + 1); state
    end
  fun test2res () =
    IntArray.foldri prependFormatted [] counts
end

fun doTimes (_, 0, state) = state
  | doTimes (f, n, state) = doTimes (f, n - 1, f state)

val _ = doTimes (test1 o pcg32Random, 5, pcg32Init (42, 54))

val _ = doTimes (test2 o pcg32Random, 100000, pcg32Init (987654321, 1))
val () = print ("\n" ^ ((String.concatWith ", " o test2res) ()) ^ "\n")
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

0: 20049, 1: 20022, 2: 20115, 3: 19809, 4: 20005

Tcl

Translation of: C
proc uint32 {n} {
    return [expr {$n & 0xffffffff}]
}

proc uint64 {n} {
    return [expr {$n & 0xffffffffffffffff}]
}

set N 6364136223846793005
set state 0x853c49e6748fea9b
set inc 0xda3e39cb94b95bdb

proc pcg32_seed {seed_state seed_sequence} {
    global state inc
    set state 0
    set inc [expr {($seed_sequence << 1) | 1}]
    pcg32_int
    set state [expr {$state + $seed_state}]
    pcg32_int
}

proc pcg32_int {} {
    global state N inc
    set old $state
    set state [uint64 [expr {$old * $N + $inc}]]
    set shifted [uint32 [expr {(($old >> 18) ^ $old) >> 27}]]
    set rot [uint32 [expr {$old >> 59}]]
    return [uint32 [expr {($shifted >> $rot) | ($shifted << ((~$rot + 1) & 31))}]]
}

proc pcg32_float {} {
    return [expr {1.0 * [pcg32_int] / (1 << 32)}]
}

# -------------------------------------------------------------------

pcg32_seed 42 54
puts [pcg32_int]
puts [pcg32_int]
puts [pcg32_int]
puts [pcg32_int]
puts [pcg32_int]
puts ""

set counts {0 0 0 0 0}
pcg32_seed 987654321 1
for {set i 1} {$i <= 100000} {incr i} {
    set j [expr {int([pcg32_float] * 5.0) + 1}]
    lset counts [expr {$j - 1}] [expr {[lindex $counts [expr {$j - 1}]] + 1}]
}

puts "The counts for 100,000 repetitions are:"
foreach idx {0 1 2 3 4} {
    puts "  $idx: [lindex $counts $idx]"
}
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

The counts for 100,000 repetitions are:
  0: 20049
  1: 20022
  2: 20115
  3: 19809
  4: 20005


uBasic/4tH

Translation of: C

uBasic/4tH only supports signed integers - so floating point is out of the question. It also requires clipping some integers to 32 bits in order to make this work.

' ** NOTE: this requires a 64-bit uBasic. **

If Info("wordsize") < 64 Then Print "This program requires a 64-bit uBasic" : End

n = 6364136223846793005
s = 377257722939173531 + 9223372036854775807 + 1
i = 6502698458505894875 + 9223372036854775807 + 1

Proc _PCG32Seed(42, 54);
Print FUNC(_PCG32Int)
Print FUNC(_PCG32Int)
Print FUNC(_PCG32Int)
Print FUNC(_PCG32Int)
Print FUNC(_PCG32Int)
End
 
_PCG32Int
  Local (3)
  
  a@ = s
  s = (a@ * n) + i
  b@ = And(Shl(Xor(Shl(a@, -18), a@), -27), 4294967295)
  c@ = And(Shl(a@, -59), 4294967295)
Return (And(Or(Shl(b@, -c@), Shl(b@, And((Not(c@) + 1), 31))), 4294967295))
 
_PCG32Seed
  Param (2)
  
  s = 0
  i = Or(Shl(b@, 1), 1)
  Proc _PCG32Int
  s = s + a@
  Proc _PCG32Int
Return
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

0 OK, 0:391

Wren

Translation of: Python
Library: Wren-big

As Wren doesn't have a 64-bit integer type, we use BigInt instead.

import "./big" for BigInt

var Const  = BigInt.new("6364136223846793005")
var Mask64 = (BigInt.one << 64) - BigInt.one
var Mask32 = (BigInt.one << 32) - BigInt.one

class Pcg32 {
    construct new() {
        _state  = BigInt.fromBaseString("853c49e6748fea9b", 16)
        _inc    = BigInt.fromBaseString("da3e39cb94b95bdb", 16)
    }

    seed(seedState, seedSequence) {
        _state = BigInt.zero
        _inc = ((seedSequence << BigInt.one) | BigInt.one) & Mask64
        nextInt
        _state = _state + seedState
        nextInt
    }

    nextInt {
        var old = _state
        _state = (old*Const + _inc) & Mask64
        var xorshifted = (((old >> 18) ^ old) >> 27) & Mask32
        var rot = (old >> 59) & Mask32
        return ((xorshifted >> rot) | (xorshifted << ((-rot) & 31))) & Mask32
    }

    nextFloat { nextInt.toNum / 2.pow(32) }
}

var randomGen = Pcg32.new()
randomGen.seed(BigInt.new(42), BigInt.new(54))
for (i in 0..4) System.print(randomGen.nextInt)

var counts = List.filled(5, 0)
randomGen.seed(BigInt.new(987654321), BigInt.one)
for (i in 1..1e5) {
    var i = (randomGen.nextFloat * 5).floor
    counts[i] = counts[i] + 1
}
System.print("\nThe counts for 100,000 repetitions are:")
for (i in 0..4) System.print("  %(i) : %(counts[i])")
Output:
2707161783
2068313097
3122475824
2211639955
3215226955

The counts for 100,000 repetitions are:
  0 : 20049
  1 : 20022
  2 : 20115
  3 : 19809
  4 : 20005