Price fraction: Difference between revisions

From Rosetta Code
Content added Content deleted
m (→‎version 2: make it a Procedure)
m (→‎version 2: x corrected to p)
Line 2,076: Line 2,076:
End
End
Parse Arg p
Parse Arg p
i=((100*x-1)%5+1)
i=((100*p-1)%5+1)
Return r.i</lang>
Return r.i</lang>



Revision as of 20:24, 20 April 2013

Task
Price fraction
You are encouraged to solve this task according to the task description, using any language you may know.

A friend of mine runs a pharmacy. He has a specialised function in his Dispensary application which receives a decimal value of currency and replaces it to a standard value. This value is regulated by a government department.

Task: Given a floating point value between 0.00 and 1.00, rescale according to the following table:

>=  0.00  <  0.06  :=  0.10
>=  0.06  <  0.11  :=  0.18
>=  0.11  <  0.16  :=  0.26
>=  0.16  <  0.21  :=  0.32
>=  0.21  <  0.26  :=  0.38
>=  0.26  <  0.31  :=  0.44
>=  0.31  <  0.36  :=  0.50
>=  0.36  <  0.41  :=  0.54
>=  0.41  <  0.46  :=  0.58
>=  0.46  <  0.51  :=  0.62
>=  0.51  <  0.56  :=  0.66
>=  0.56  <  0.61  :=  0.70
>=  0.61  <  0.66  :=  0.74
>=  0.66  <  0.71  :=  0.78
>=  0.71  <  0.76  :=  0.82
>=  0.76  <  0.81  :=  0.86
>=  0.81  <  0.86  :=  0.90
>=  0.86  <  0.91  :=  0.94
>=  0.91  <  0.96  :=  0.98
>=  0.96  <  1.01  :=  1.00

Ada

<lang Ada> type Price is delta 0.01 digits 3 range 0.0..1.0; function Scale (Value : Price) return Price is

  X : constant array (1..19) of Price :=
         (  0.06, 0.11, 0.16, 0.21, 0.26,  0.31, 0.36, 0.41, 0.46, 0.51,
            0.56, 0.61, 0.66, 0.71, 0.76,  0.81, 0.86, 0.91, 0.96
         );
  Y : constant array (1..20) of Price :=
         (  0.10, 0.18, 0.26, 0.32, 0.38,  0.44, 0.50, 0.54, 0.58, 0.62,
            0.66, 0.70, 0.74, 0.78, 0.82,  0.86, 0.90, 0.94, 0.98, 1.0
         );
  Low    : Natural := X'First;
  High   : Natural := X'Last;
  Middle : Natural;

begin

  loop
     Middle := (Low + High) / 2;
     if Value = X (Middle) then
        return Y (Middle + 1);
     elsif Value < X (Middle) then
        if Low = Middle then
           return Y (Low);
        end if;
        High := Middle - 1;
     else
        if High = Middle then
           return Y (High + 1);
        end if;
        Low := Middle + 1;
     end if;
  end loop;

end Scale; </lang> The solution uses fixed point type to prevent rounding and representation issues. With the above declarations a full coverage test: <lang Ada> with Ada.Text_IO; use Ada.Text_IO; procedure Test_Price_Fraction is

  -- Put the declarations here
  Value : Price := Price'First;

begin

  loop
     Put_Line (Price'Image (Value) & "->" & Price'Image (Scale (Value)));
     exit when Value = Price'Last;
     Value := Price'Succ (Value);
  end loop;

end Test_Price_Fraction; </lang> Sample output:

 0.00-> 0.10
 0.01-> 0.10
 0.02-> 0.10
 0.03-> 0.10
 0.04-> 0.10
 0.05-> 0.10
 0.06-> 0.18
 0.07-> 0.18
 0.08-> 0.18
 0.09-> 0.18
 0.10-> 0.18
 0.11-> 0.26
 0.12-> 0.26
 0.13-> 0.26
 0.14-> 0.26
 0.15-> 0.26
 0.16-> 0.32
 0.17-> 0.32
 0.18-> 0.32
 0.19-> 0.32
 0.20-> 0.32
 0.21-> 0.38
 0.22-> 0.38
 0.23-> 0.38
 0.24-> 0.38
 0.25-> 0.38
 0.26-> 0.44
 0.27-> 0.44
 0.28-> 0.44
 0.29-> 0.44
 0.30-> 0.44
 0.31-> 0.50
 0.32-> 0.50
 0.33-> 0.50
 0.34-> 0.50
 0.35-> 0.50
 0.36-> 0.54
 0.37-> 0.54
 0.38-> 0.54
 0.39-> 0.54
 0.40-> 0.54
 0.41-> 0.58
 0.42-> 0.58
 0.43-> 0.58
 0.44-> 0.58
 0.45-> 0.58
 0.46-> 0.62
 0.47-> 0.62
 0.48-> 0.62
 0.49-> 0.62
 0.50-> 0.62
 0.51-> 0.66
 0.52-> 0.66
 0.53-> 0.66
 0.54-> 0.66
 0.55-> 0.66
 0.56-> 0.70
 0.57-> 0.70
 0.58-> 0.70
 0.59-> 0.70
 0.60-> 0.70
 0.61-> 0.74
 0.62-> 0.74
 0.63-> 0.74
 0.64-> 0.74
 0.65-> 0.74
 0.66-> 0.78
 0.67-> 0.78
 0.68-> 0.78
 0.69-> 0.78
 0.70-> 0.78
 0.71-> 0.82
 0.72-> 0.82
 0.73-> 0.82
 0.74-> 0.82
 0.75-> 0.82
 0.76-> 0.86
 0.77-> 0.86
 0.78-> 0.86
 0.79-> 0.86
 0.80-> 0.86
 0.81-> 0.90
 0.82-> 0.90
 0.83-> 0.90
 0.84-> 0.90
 0.85-> 0.90
 0.86-> 0.94
 0.87-> 0.94
 0.88-> 0.94
 0.89-> 0.94
 0.90-> 0.94
 0.91-> 0.98
 0.92-> 0.98
 0.93-> 0.98
 0.94-> 0.98
 0.95-> 0.98
 0.96-> 1.00
 0.97-> 1.00
 0.98-> 1.00
 0.99-> 1.00
 1.00-> 1.00

AutoHotkey

<lang AutoHotkey>; Submitted by MasterFocus --- http://tiny.cc/iTunis

Loop {

 InputBox, OutputVar, Price Fraction Example, Insert the value to be rounded.`n* [ 0 < value < 1 ]`n* Press ESC or Cancel to exit, , 200, 150
 If ErrorLevel
   Break
 MsgBox % "Input: " OutputVar "`nResult: " PriceFraction( OutputVar )

}

-----------------------------------------

PriceFraction( p_Input ) {

 If p_Input is not float ; returns 0 if input is not a float
   Return 0
 If ( ( p_Input <= 0 ) OR ( p_Input >= 1 ) ) ; returns 0 is input is out of range
   Return 0
 ; declaring the table (arbitrary delimiters in use are '§' and '|')
 l_List := "0.06|0.10§0.11|0.18§0.16|0.26§0.21|0.32§0.26|0.38§0.31|0.44§0.36|0.50§0.41|0.54§0.46|0.58§0.51|0.62§0.56|0.66§0.61|0.70§0.66|0.74§0.71|0.78§0.76|0.82§0.81|0.86§0.86|0.90§0.91|0.94§0.96|0.98§1.01|1.00"
 Loop, Parse, l_List, § ; retrieves each field (delimited by '§')
 {
   StringSplit, l_Array, A_LoopField, | ; splits current field (using delimiter '|')
   If ( p_Input <= l_Array1 )
     Return l_Array2 ; returns the second value if input <= first value
 }
 Return 0 ; returns 0, indicating failure (shouldn't be reached though)

}</lang>

ALGOL 68

Translation of: C

- note: This specimen retains the original C coding style.

Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny

<lang algol68>main: (

   # Just get a random price between 0 and 1 #
   # srand(time(NIL)); #
   REAL price := random;
   REAL tops := 0.06;
   REAL std val := 0.10;
   # Conditionals are a little odd here "(price-0.001 < tops AND
   price+0.001 > tops)" is to check if they are equal. Stupid
   C floats, right?   :) #
   WHILE ( price>tops OR (price-0.001 < tops AND price+0.001 > tops) ) AND tops<=1.01
   DO
       tops+:=0.05;
       IF std val < 0.26 THEN
               std val +:= 0.08
       ELIF std val < 0.50 THEN
               std val +:= 0.06
       ELSE
               std val +:= 0.04
       FI;
       IF std val > 0.98 THEN
               std val := 1.0
       FI
   OD;
   printf(($"Value :   "z.2dl,"Converted to standard :   "z.2dl$, price, std val))

)</lang> Sample Output:

Value :   0.38
Converted to standard :   0.54

AWK

<lang AWK> BEGIN {

   O = ".06 .11 .16 .21 .26 .31 .36 .41 .46 .51 .56 .61 .66 .71 .76 .81 .86 .91 .96 1.01"
   N = ".10 .18 .26 .32 .38 .44 .50 .54 .58 .62 .66 .70 .74 .78 .82 .86 .90 .94 .98 1.00"
   fields = split(O,Oarr," ") # original values
   split(N,Narr," ") # replacement values
   for (i=-.01; i<=1.02; i+=.01) { # test
     printf("%5.2f = %4.2f\n",i,lookup(i))
   }

} function lookup(n, i) {

   if (n < 0 || n > 1.01) {
     return(0) # when input is out of range
   }
   for (i=1; i<=fields; i++) {
     # +10 is used because .11 returned .18 instead of .26
     # under AWK95, GAWK, and MAWK; Thompson Automation's TAWK worked correctly
     if (n+10 < Oarr[i]+10) {
       return(Narr[i])
     }
   }

} </lang>

BASIC

Works with: QBasic

This could also be done by building an array, but I felt that this was simpler.

<lang qbasic>DECLARE FUNCTION PriceFraction! (price AS SINGLE)

RANDOMIZE TIMER DIM x AS SINGLE x = RND PRINT x, PriceFraction(x)

FUNCTION PriceFraction! (price AS SINGLE)

   'returns price unchanged if invalid value
   SELECT CASE price
       CASE IS < 0!
           PriceFraction! = price
       CASE IS < .06
           PriceFraction! = .1
       CASE IS < .11
           PriceFraction! = .18
       CASE IS < .16
           PriceFraction! = .26
       CASE IS < .21
           PriceFraction! = .32
       CASE IS < .26
           PriceFraction! = .38
       CASE IS < .31
           PriceFraction! = .44
       CASE IS < .36
           PriceFraction! = .5
       CASE IS < .41
           PriceFraction! = .54
       CASE IS < .46
           PriceFraction! = .58
       CASE IS < .51
           PriceFraction! = .62
       CASE IS < .56
           PriceFraction! = .66
       CASE IS < .61
           PriceFraction! = .7
       CASE IS < .66
           PriceFraction! = .74
       CASE IS < .71
           PriceFraction! = .78
       CASE IS < .76
           PriceFraction! = .82
       CASE IS < .81
           PriceFraction! = .86
       CASE IS < .86
           PriceFraction! = .9
       CASE IS < .91
           PriceFraction! = .94
       CASE IS < .96
           PriceFraction! = .98
       CASE IS < 1.01
           PriceFraction! = 1!
       CASE ELSE
           PriceFraction! = price
   END SELECT

END FUNCTION</lang>

Sample outputs (run 5 times):

.7388727      .82
.8593103      .9
.826687       .9
.3444635      .5
.0491907      .1

BBC BASIC

<lang bbcbasic> PRINT FNpricefraction(0.5)

     END
     
     DEF FNpricefraction(p)
     IF p < 0.06 THEN = 0.10
     IF p < 0.11 THEN = 0.18
     IF p < 0.16 THEN = 0.26
     IF p < 0.21 THEN = 0.32
     IF p < 0.26 THEN = 0.38
     IF p < 0.31 THEN = 0.44
     IF p < 0.36 THEN = 0.50
     IF p < 0.41 THEN = 0.54
     IF p < 0.46 THEN = 0.58
     IF p < 0.51 THEN = 0.62
     IF p < 0.56 THEN = 0.66
     IF p < 0.61 THEN = 0.70
     IF p < 0.66 THEN = 0.74
     IF p < 0.71 THEN = 0.78
     IF p < 0.76 THEN = 0.82
     IF p < 0.81 THEN = 0.86
     IF p < 0.86 THEN = 0.90
     IF p < 0.91 THEN = 0.94
     IF p < 0.96 THEN = 0.98
     = 1.00</lang>

Bracmat

Bracmat has no native support for floating point variables nor for the fixed point values in the conversion table. Instead this solution just applies a string comparison. <lang bracmat>( ( convert

 =   
   .         ("0.06"."0.10")
             ("0.11"."0.18")
             ("0.16"."0.26")
             ("0.21"."0.32")
             ("0.26"."0.38")
             ("0.31"."0.44")
             ("0.36"."0.50")
             ("0.41"."0.54")
             ("0.46"."0.58")
             ("0.51"."0.62")
             ("0.56"."0.66")
             ("0.61"."0.70")
             ("0.66"."0.74")
             ("0.71"."0.78")
             ("0.76"."0.82")
             ("0.81"."0.86")
             ("0.86"."0.90")
             ("0.91"."0.94")
             ("0.96"."0.98")
             ("1.01"."1.00")
         : ? (>!arg.?arg) ?
       & !arg
     | "invalid input"
 )

& -1:?n & whl

 ' ( !n+1:?n:<103
   & ( @(!n:? [<2)&str$("0.0" !n):?a
     | @(!n:? [<3)&str$("0." !n):?a
     |   @(!n:?ones [-3 ?decimals)
       & str$(!ones "." !decimals):?a
     )
   & out$(!a "-->" convert$!a)
   )

)</lang> Output:

0.00 --> 0.10
0.01 --> 0.10
0.02 --> 0.10
0.03 --> 0.10
0.04 --> 0.10
0.05 --> 0.10
0.06 --> 0.18
0.07 --> 0.18
0.08 --> 0.18
0.09 --> 0.18
0.10 --> 0.18
0.11 --> 0.26
0.12 --> 0.26
0.13 --> 0.26
0.14 --> 0.26
0.15 --> 0.26
0.16 --> 0.32
0.17 --> 0.32
  ...
0.85 --> 0.90
0.86 --> 0.94
0.87 --> 0.94
0.88 --> 0.94
0.89 --> 0.94
0.90 --> 0.94
0.91 --> 0.98
0.92 --> 0.98
0.93 --> 0.98
0.94 --> 0.98
0.95 --> 0.98
0.96 --> 1.00
0.97 --> 1.00
0.98 --> 1.00
0.99 --> 1.00
1.00 --> 1.00
1.01 --> invalid input
1.02 --> invalid input

C

<lang c>#include<stdio.h>

double table[][2] = { {0.06, 0.10}, {0.11, 0.18}, {0.16, 0.26}, {0.21, 0.32}, {0.26, 0.38}, {0.31, 0.44}, {0.36, 0.50}, {0.41, 0.54}, {0.46, 0.58}, {0.51, 0.62}, {0.56, 0.66}, {0.61, 0.70}, {0.66, 0.74}, {0.71, 0.78}, {0.76, 0.82}, {0.81, 0.86}, {0.86, 0.90}, {0.91, 0.94}, {0.96, 0.98}, {1.01, 1.00}, {-1, 0}, /* guarding element */ };

double price_fix(double x) { int i; for (i = 0; table[i][0] > 0; i++) if (x < table[i][0]) return table[i][1];

abort(); /* what else to do? */ }

int main() { int i; for (i = 0; i <= 100; i++) printf("%.2f %.2f\n", i / 100., price_fix(i / 100.));

return 0; }</lang>

C#

<lang csharp>namespace ConsoleApplication1 {

   class Program
   {
       static void Main(string[] args)
       {
           for (int x = 0; x < 10; x++)
           {
               Console.WriteLine("In: {0:0.00}, Out: {1:0.00}", ((double)x) / 10, SpecialRound(((double)x) / 10));
           }
           Console.WriteLine();
           for (int x = 0; x < 10; x++)
           {
               Console.WriteLine("In: {0:0.00}, Out: {1:0.00}", ((double)x) / 10 + 0.05, SpecialRound(((double)x) / 10 + 0.05));
           }
           Console.WriteLine();
           Console.WriteLine("In: {0:0.00}, Out: {1:0.00}", 1.01, SpecialRound(1.01));
           Console.Read();
       }
       private static double SpecialRound(double inValue)
       {
           if (inValue > 1) return 1;
           double[] Splitters = new double[] { 
                  0.00 , 0.06 , 0.11 , 0.16 , 0.21 , 
                  0.26 , 0.31 , 0.36 , 0.41 , 0.46 , 
                  0.51 , 0.56 , 0.61 , 0.66 , 0.71 , 
                  0.76 , 0.81 , 0.86 , 0.91 , 0.96 };
           double[] replacements = new double[] { 
                   0.10 , 0.18 , 0.26 , 0.32 , 0.38 ,
                   0.44 , 0.50 , 0.54 , 0.58 , 0.62 , 
                   0.66 , 0.70 , 0.74 , 0.78 , 0.82 , 
                   0.86 , 0.90 , 0.94 , 0.98 , 1.00 };
           for (int x = 0; x < Splitters.Length - 1; x++)
           {
               if (inValue >= Splitters[x] &&
                   inValue < Splitters[x + 1])
               {
                   return replacements[x];
               }
           }
           return inValue;
       }
   }

}</lang>

C++

<lang cpp>#include <iostream>

  1. include <cmath>

int main( ) {

  double froms[ ] = { 0.00 , 0.06 , 0.11 , 0.16 , 0.21 , 0.26 , 
      0.31 , 0.36 , 0.41 , 0.46 , 0.51 , 0.56 , 0.61 , 0.66 ,
      0.71 , 0.76 , 0.81 , 0.86 , 0.91 , 0.96 } ;
  double tos[ ] = { 0.06 , 0.11 , 0.16 , 0.21 , 0.26 , 0.31 ,
     0.36 , 0.41 , 0.46 , 0.51 , 0.56 , 0.61 , 0.66 , 0.71 ,
     0.76 , 0.81 , 0.86 , 0.91 , 0.96 , 1.01 } ;
  double replacements [] = { 0.10 , 0.18 , 0.26 , 0.32 , 0.38 ,
     0.44 , 0.50 , 0.54 , 0.58 , 0.62 , 0.66 , 0.70 , 0.74 ,
     0.78 , 0.82 , 0.86 , 0.90 , 0.94 , 0.98 , 1.00 } ;
  double number = 0.1 ;
  std::cout << "Enter a fractional number between 0 and 1 ( 0 to end )!\n" ;
  std::cin >> number ;
  while ( number != 0 ) {
     if ( number < 0 || number > 1 ) {

std::cerr << "Error! Only positive values between 0 and 1 are allowed!\n" ; return 1 ;

     }
     int n = 0 ;
     while ( ! ( number >= froms[ n ] && number < tos[ n ] ) ) 

n++ ;

     std::cout << "-->" << replacements[ n ] << '\n' ;
     std::cout << "Enter a fractional number ( 0 to end )!\n" ;
     std::cin >> number ;
  }
  return 0 ;

} </lang>

Sample output:
Enter a fractional number between 0 and 1 ( 0 to end )!
0.7
-->0.78
Enter a fractional number ( 0 to end )!
0.32
-->0.5
Enter a fractional number ( 0 to end )!
0.12
-->0.26
Enter a fractional number ( 0 to end )!
0

Clipper

<lang dbase>FUNCTION PriceFraction( npQuantDispensed )

   LOCAL aPriceFraction := { {0,.06,.1},;
                           {.06,.11,.18}, ;
                           {.11,.16,.26}, ;
                           {.16,.21,.32}, ;
                           {.21,.26,.38}, ;
                           {.26,.31,.44}, ;
                           {.31,.36,.5}, ;
                           {.36,.41,.54}, ;
                           {.41,.46,.58}, ;
                           {.46,.51,.62}, ;
                           {.51,.56,.66}, ;
                           {.56,.61,.7}, ;
                           {.61,.66,.74}, ;
                           {.66,.71,.78}, ;
                           {.71,.76,.82}, ;
                           {.76,.81,.86}, ;
                           {.81,.86,.9}, ;
                           {.86,.91,.94}, ;
                           {.91,.96,.98} }
   LOCAL nResult
   LOCAL nScan
   IF npQuantDispensed = 0
           nResult = 0
   ELSEIF npQuantDispensed >= .96
           nResult = 1
   ELSE
           nScan := ASCAN( aPriceFraction, ;
                  { |aItem| npQuantDispensed >= aItem[ 1 ] .AND.;
                            npQuantDispensed <  aItem[ 2 ] } )
           nResult := aPriceFraction[ nScan ][ 3 ]
   END IF
   RETURN nResult</lang>

The function above crashes with an array access bound error if the value passed is negative. Also, the spec. indicates that 0.00 should be replaced with standard value 0.10, not 0. The following is a more concise solution:

<lang Clipper>Procedure Main()

  Local i
  For i := -0.02 to 1.02 STEP 0.03
     ? i, "->", PriceFraction(i), i+0.02, "->", PriceFraction(i+0.02)
  Next

Return


Static Function PriceFraction( nValue )

  Local nResult
  Local n
  // Function is only defined for values 0 to 1.00
  // Return NIL for anything else
  // Table of values {V1, V2} = {Threshhold, Standard value}
  #define TV_THRESHHOLD 1
  #define TV_STD_VALUE  2
  Local aTable := { {0,    NIL },;
                    {0.06, 0.10},;
                    {0.11, 0.18},;
                    {0.16, 0.26},;
                    {0.21, 0.32},;
                    {0.26, 0.38},;
                    {0.31, 0.44},;
                    {0.36, 0.50},;
                    {0.41, 0.54},;
                    {0.46, 0.58},;
                    {0.51, 0.62},;
                    {0.56, 0.66},;
                    {0.61, 0.70},;
                    {0.66, 0.74},;
                    {0.71, 0.78},;
                    {0.76, 0.82},;
                    {0.81, 0.86},;
                    {0.86, 0.90},;
                    {0.91, 0.94},;
                    {0.96, 0.98},;
                    {1.01, 1.00} }
  n := AScan( aTable, {|x| nValue < x[TV_THRESHHOLD] })
  If n > 0
     nResult := aTable[n][TV_STD_VALUE]
  Else
     nResult := NIL
  Endif

Return nResult</lang>

Output:

        -0.02 -> NIL          0.00 ->          0.10
         0.01 ->          0.10          0.03 ->          0.10
         0.04 ->          0.10          0.06 ->          0.18
         0.07 ->          0.18          0.09 ->          0.18
         0.10 ->          0.18          0.12 ->          0.26
         0.13 ->          0.26          0.15 ->          0.26
         0.16 ->          0.32          0.18 ->          0.32
         0.19 ->          0.32          0.21 ->          0.38
         0.22 ->          0.38          0.24 ->          0.38
         0.25 ->          0.38          0.27 ->          0.44
         0.28 ->          0.44          0.30 ->          0.44
         0.31 ->          0.50          0.33 ->          0.50
         0.34 ->          0.50          0.36 ->          0.54
         0.37 ->          0.54          0.39 ->          0.54
         0.40 ->          0.54          0.42 ->          0.58
         0.43 ->          0.58          0.45 ->          0.58
         0.46 ->          0.62          0.48 ->          0.62
         0.49 ->          0.62          0.51 ->          0.66
         0.52 ->          0.66          0.54 ->          0.66
         0.55 ->          0.66          0.57 ->          0.70
         0.58 ->          0.70          0.60 ->          0.70
         0.61 ->          0.74          0.63 ->          0.74
         0.64 ->          0.74          0.66 ->          0.78
         0.67 ->          0.78          0.69 ->          0.78
         0.70 ->          0.78          0.72 ->          0.82
         0.73 ->          0.82          0.75 ->          0.82
         0.76 ->          0.86          0.78 ->          0.86
         0.79 ->          0.86          0.81 ->          0.90
         0.82 ->          0.90          0.84 ->          0.90
         0.85 ->          0.90          0.87 ->          0.94
         0.88 ->          0.94          0.90 ->          0.94
         0.91 ->          0.98          0.93 ->          0.98
         0.94 ->          0.98          0.96 ->          1.00
         0.97 ->          1.00          0.99 ->          1.00
         1.00 ->          1.00          1.02 -> NIL

D

<lang d>import std.stdio, std.range;

double priceRounder(in double price) pure nothrow in {

   assert(price >= 0 && price <= 1.0);

} body {

   static immutable cin  = [.06, .11, .16, .21, .26, .31, .36, .41,
                            .46, .51, .56, .61, .66, .71, .76, .81,
                            .86, .91, .96, 1.01],
                    cout = [.10, .18, .26, .32, .38, .44, .50, .54,
                            .58, .62, .66, .70, .74, .78, .82, .86,
                            .90, .94, .98, 1.00];
   return cout[cin.assumeSorted.lowerBound(price).length];

}

void main() {

   foreach (const price; [0.7388727, 0.8593103, 0.826687, 0.3444635])
       price.priceRounder.writeln;

}</lang>

Output:
0.82
0.9
0.9
0.5

Erlang

<lang erlang>priceFraction(N) when N < 0 orelse N > 1 ->

   erlang:error('Values must be between 0 and 1.');

priceFraction(N) when N < 0.06 -> 0.10; priceFraction(N) when N < 0.11 -> 0.18; priceFraction(N) when N < 0.16 -> 0.26; priceFraction(N) when N < 0.21 -> 0.32; priceFraction(N) when N < 0.26 -> 0.38; priceFraction(N) when N < 0.31 -> 0.44; priceFraction(N) when N < 0.36 -> 0.50; priceFraction(N) when N < 0.41 -> 0.54; priceFraction(N) when N < 0.46 -> 0.58; priceFraction(N) when N < 0.51 -> 0.62; priceFraction(N) when N < 0.56 -> 0.66; priceFraction(N) when N < 0.61 -> 0.70; priceFraction(N) when N < 0.66 -> 0.74; priceFraction(N) when N < 0.71 -> 0.78; priceFraction(N) when N < 0.76 -> 0.82; priceFraction(N) when N < 0.81 -> 0.86; priceFraction(N) when N < 0.86 -> 0.90; priceFraction(N) when N < 0.91 -> 0.94; priceFraction(N) when N < 0.96 -> 0.98; priceFraction(N) -> 1.00.</lang>

Euphoria

Translation of: C

<lang euphoria>constant table = {

   {0.06, 0.10}, {0.11, 0.18}, {0.16, 0.26}, {0.21, 0.32},
   {0.26, 0.38}, {0.31, 0.44}, {0.36, 0.50}, {0.41, 0.54},
   {0.46, 0.58}, {0.51, 0.62}, {0.56, 0.66}, {0.61, 0.70},
   {0.66, 0.74}, {0.71, 0.78}, {0.76, 0.82}, {0.81, 0.86},
   {0.86, 0.90}, {0.91, 0.94}, {0.96, 0.98}, {1.01, 1.00}

}

function price_fix(atom x)

   for i = 1 to length(table) do
       if x < table[i][1] then
           return table[i][2]
       end if
   end for
   return -1

end function

for i = 0 to 99 do

   printf(1, "%.2f %.2f\n", { i/100, price_fix(i/100) })

end for</lang>

Fantom

<lang fantom> class Defn // to hold the three numbers from a 'row' in the table {

 Float low
 Float high
 Float value
 new make (Float low, Float high, Float value)
 {
   this.low = low
   this.high = high
   this.value = value
 }

}

class PriceConverter {

 Defn[] defns := [,]
 new make (Str table) // process given table and store numbers from each row in a defn
 {
   table.split('\n').each |Str line|
   {
     data := line.split
     defns.add (Defn(Float.fromStr(data[1]), Float.fromStr(data[3]), Float.fromStr(data[5])))
   }
 }
 public Float convert (Float price) // convert by looking through list of defns
 {
   Float result := price
   defns.each |Defn defn|
   {
     if (price >= defn.low && price < defn.high) 
       result = defn.value
   }
   return result
 }

}

class Main {

 public static Void main ()
 {
   table := ">=  0.00  <  0.06  :=  0.10
             >=  0.06  <  0.11  :=  0.18
             >=  0.11  <  0.16  :=  0.26
             >=  0.16  <  0.21  :=  0.32
             >=  0.21  <  0.26  :=  0.38
             >=  0.26  <  0.31  :=  0.44
             >=  0.31  <  0.36  :=  0.50
             >=  0.36  <  0.41  :=  0.54
             >=  0.41  <  0.46  :=  0.58
             >=  0.46  <  0.51  :=  0.62
             >=  0.51  <  0.56  :=  0.66
             >=  0.56  <  0.61  :=  0.70
             >=  0.61  <  0.66  :=  0.74
             >=  0.66  <  0.71  :=  0.78
             >=  0.71  <  0.76  :=  0.82
             >=  0.76  <  0.81  :=  0.86
             >=  0.81  <  0.86  :=  0.90
             >=  0.86  <  0.91  :=  0.94
             >=  0.91  <  0.96  :=  0.98
             >=  0.96  <  1.01  :=  1.00"
   converter := PriceConverter (table)
   10.times  // simple test with random values
   { 
     price := (0..100).random.toFloat / 100
     echo ("$price -> ${converter.convert (price)}")
   }
 }

} </lang>

Forth

A floating-point version wouldn't be hard -- four words would change ( , @ @ cell+ -to- f, f@ f@ float+ ), EVALUATE would be replaced with a small word that forced a floating-point interpretation, and the return stack would not be used in ROUND -- but it would be strikingly unusual. See this page's discussion.

<lang forth>: as begin parse-word dup while evaluate , repeat 2drop ;

create bounds as 96 91 86 81 76 71 66 61 56 51 46 41 36 31 26 21 16 11 6 0 create official as 100 98 94 90 86 82 78 74 70 66 62 58 54 50 44 38 32 26 18 10

official@ ( a-bounds -- +n )
 \ (a+n) - a + b = (a+n) + (b - a) = (b+n)
 [ official bounds - ] literal + @ ;
round ( n-cents -- n-cents' )
 >r bounds begin dup @ r@ > while cell+ repeat
 r> drop official@ ;</lang>

Fortran

Works with: Fortran version 90 and later

<lang fortran>program price_fraction

 implicit none
 integer, parameter :: i_max = 10
 integer :: i
 real, dimension (20), parameter :: in =                           &
   & (/0.00, 0.06, 0.11, 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, &
   &   0.51, 0.56, 0.61, 0.66, 0.71, 0.76, 0.81, 0.86, 0.91, 0.96/)
 real, dimension (20), parameter :: out =                          &
   & (/0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62, &
   &   0.66, 0.70, 0.74, 0.78, 0.82, 0.86, 0.90, 0.94, 0.98, 1.00/)
 real :: r
 do i = 1, i_max
   call random_number (r)
   write (*, '(f8.6, 1x, f4.2)') r, out (maxloc (in, r >= in))
 end do

end program price_fraction</lang> Sample output: <lang>0.997560 1.00 0.566825 0.70 0.965915 1.00 0.747928 0.82 0.367391 0.54 0.480637 0.62 0.073754 0.18 0.005355 0.10 0.347081 0.50 0.342244 0.50</lang>

Go

<lang go>func pf(v float64) float64 {

   switch {
   case v < .06: return .10
   case v < .11: return .18
   case v < .16: return .26
   case v < .21: return .32
   case v < .26: return .38
   case v < .31: return .44
   case v < .36: return .50
   case v < .41: return .54
   case v < .46: return .58
   case v < .51: return .62
   case v < .56: return .66
   case v < .61: return .70
   case v < .66: return .74
   case v < .71: return .78
   case v < .76: return .82
   case v < .81: return .86
   case v < .86: return .90
   case v < .91: return .94
   case v < .96: return .98
   }
   return 1

}</lang>

Groovy

<lang groovy>def priceFraction(value) {

   assert value >= 0.0 && value <= 1.0
   def priceMappings = [(0.06): 0.10, (0.11): 0.18, (0.16): 0.26, (0.21): 0.32, (0.26): 0.38,
        (0.31): 0.44, (0.36): 0.50, (0.41): 0.54, (0.46): 0.58, (0.51): 0.62,
        (0.56): 0.66, (0.61): 0.70, (0.66): 0.74, (0.71): 0.78, (0.76): 0.82,
        (0.81): 0.86, (0.86): 0.90, (0.91): 0.94, (0.96): 0.98]
   for (price in priceMappings.keySet()) {
       if (value < price) return priceMappings[price]
   }
   1.00

}

for (def v = 0.00; v <= 1.00; v += 0.01) {

   println "$v --> ${priceFraction(v)}"

}</lang> Output:

0.00 --> 0.10
0.01 --> 0.10
0.02 --> 0.10
0.03 --> 0.10
0.04 --> 0.10
0.05 --> 0.10
0.06 --> 0.18
0.07 --> 0.18
0.08 --> 0.18
0.09 --> 0.18
0.10 --> 0.18
0.11 --> 0.26
0.12 --> 0.26
0.13 --> 0.26
0.14 --> 0.26
0.15 --> 0.26
0.16 --> 0.32
0.17 --> 0.32
0.18 --> 0.32
0.19 --> 0.32
0.20 --> 0.32
0.21 --> 0.38
0.22 --> 0.38
0.23 --> 0.38
0.24 --> 0.38
0.25 --> 0.38
0.26 --> 0.44
0.27 --> 0.44
0.28 --> 0.44
0.29 --> 0.44
0.30 --> 0.44
0.31 --> 0.50
0.32 --> 0.50
0.33 --> 0.50
0.34 --> 0.50
0.35 --> 0.50
0.36 --> 0.54
0.37 --> 0.54
0.38 --> 0.54
0.39 --> 0.54
0.40 --> 0.54
0.41 --> 0.58
0.42 --> 0.58
0.43 --> 0.58
0.44 --> 0.58
0.45 --> 0.58
0.46 --> 0.62
0.47 --> 0.62
0.48 --> 0.62
0.49 --> 0.62
0.50 --> 0.62
0.51 --> 0.66
0.52 --> 0.66
0.53 --> 0.66
0.54 --> 0.66
0.55 --> 0.66
0.56 --> 0.70
0.57 --> 0.70
0.58 --> 0.70
0.59 --> 0.70
0.60 --> 0.70
0.61 --> 0.74
0.62 --> 0.74
0.63 --> 0.74
0.64 --> 0.74
0.65 --> 0.74
0.66 --> 0.78
0.67 --> 0.78
0.68 --> 0.78
0.69 --> 0.78
0.70 --> 0.78
0.71 --> 0.82
0.72 --> 0.82
0.73 --> 0.82
0.74 --> 0.82
0.75 --> 0.82
0.76 --> 0.86
0.77 --> 0.86
0.78 --> 0.86
0.79 --> 0.86
0.80 --> 0.86
0.81 --> 0.90
0.82 --> 0.90
0.83 --> 0.90
0.84 --> 0.90
0.85 --> 0.90
0.86 --> 0.94
0.87 --> 0.94
0.88 --> 0.94
0.89 --> 0.94
0.90 --> 0.94
0.91 --> 0.98
0.92 --> 0.98
0.93 --> 0.98
0.94 --> 0.98
0.95 --> 0.98
0.96 --> 1.00
0.97 --> 1.00
0.98 --> 1.00
0.99 --> 1.00
1.00 --> 1.00

Haskell

<lang haskell>price_fraction n

 | n < 0 || n > 1 = error "Values must be between 0 and 1."
 | n < 0.06 = 0.10
 | n < 0.11 = 0.18
 | n < 0.16 = 0.26
 | n < 0.21 = 0.32
 | n < 0.26 = 0.38
 | n < 0.31 = 0.44
 | n < 0.36 = 0.50
 | n < 0.41 = 0.54
 | n < 0.46 = 0.58
 | n < 0.51 = 0.62
 | n < 0.56 = 0.66
 | n < 0.61 = 0.70
 | n < 0.66 = 0.74
 | n < 0.71 = 0.78
 | n < 0.76 = 0.82
 | n < 0.81 = 0.86
 | n < 0.86 = 0.90
 | n < 0.91 = 0.94
 | n < 0.96 = 0.98
 | otherwise = 1.00</lang>

Alternative

Translation of: OCaml

:

<lang haskell>table = [

   (0.06, 0.10),   (0.11, 0.18),   (0.16, 0.26),   (0.21, 0.32),   (0.26, 0.38),
   (0.31, 0.44),   (0.36, 0.50),   (0.41, 0.54),   (0.46, 0.58),   (0.51, 0.62),
   (0.56, 0.66),   (0.61, 0.70),   (0.66, 0.74),   (0.71, 0.78),   (0.76, 0.82),
   (0.81, 0.86),   (0.86, 0.90),   (0.91, 0.94),   (0.96, 0.98),   (1.01, 1.00),
 ]

price_fraction n

 | n < 0 || n > 1 = error "Values must be between 0 and 1."
 | otherwise = snd $ head $ dropWhile ((<= n) . fst) table</lang>

HicEst

<lang HicEst>DIMENSION upperbound(20), rescaleTo(20), temp(20) upperbound = (.06,.11,.16,.21,.26,.31,.36,.41,.46,.51,.56,.61,.66,.71,.76,.81,.86,.91,.96,1.01) rescaleTo = (.10,.18,.26,.32,.38,.44,.50,.54,.58,.62,.66,.70,.74,.78,.82,.86,.90,.94,.98,1.00)

DO test = 1, 10

 value = RAN(0.5, 0.5)
 temp = value > upperbound
 PriceFraction = rescaleTo( INDEX(temp, 0) )
 WRITE(Format="F8.6, F6.2") value, PriceFraction

ENDDO</lang>

0.589230  0.70
0.017623  0.10
0.314343  0.50
0.553303  0.66
0.676283  0.78
0.016883  0.10
0.265656  0.44
0.460880  0.62
0.837450  0.90
0.228953  0.38

Icon and Unicon

<lang Icon> record Bounds(low,high,new)

  1. rescale given value according to a list of bounds

procedure rescale (i, bounds)

 every bound := !bounds do 
   if bound.low <= i < bound.high
     then return bound.new
 return fail # could not find i in bounds

end

procedure main ()

 bounds := [
   Bounds(0.00, 0.06, 0.10),
   Bounds(0.06, 0.11, 0.18),
   Bounds(0.11, 0.16, 0.26),
   Bounds(0.16, 0.21, 0.32),
   Bounds(0.21, 0.26, 0.38),
   Bounds(0.26, 0.31, 0.44),
   Bounds(0.31, 0.36, 0.50),
   Bounds(0.36, 0.41, 0.54),
   Bounds(0.41, 0.46, 0.58),
   Bounds(0.46, 0.51, 0.62),
   Bounds(0.51, 0.56, 0.66),
   Bounds(0.56, 0.61, 0.70),
   Bounds(0.61, 0.66, 0.74),
   Bounds(0.66, 0.71, 0.78),
   Bounds(0.71, 0.76, 0.82),
   Bounds(0.76, 0.81, 0.86),
   Bounds(0.81, 0.86, 0.90),
   Bounds(0.86, 0.91, 0.94),
   Bounds(0.91, 0.96, 0.98),
   Bounds(0.96, 1.01, 1.00)
 ]
 # test the procedure
 every i := 0.00 to 1.00 by 0.1 do {
   write (i || " rescaled is " || rescale(i, bounds))
 }

end </lang>

Output:

0.0 rescaled is 0.1
0.1 rescaled is 0.18
0.2 rescaled is 0.32
0.3 rescaled is 0.44
0.4 rescaled is 0.54
0.5 rescaled is 0.62
0.6 rescaled is 0.7
0.7 rescaled is 0.78
0.8 rescaled is 0.86
0.9 rescaled is 0.94
1.0 rescaled is 1.0

Inform 7

Inform doesn't have native floating-point support; this version uses fixed point numbers with two decimal places.

<lang inform7>Home is a room.

Price is a kind of value. 0.99 specifies a price.

Table of Price Standardization upper bound replacement 0.06 0.10 0.11 0.18 0.16 0.26 0.21 0.32 0.26 0.38 0.31 0.44 0.36 0.50 0.41 0.54 0.46 0.58 0.51 0.62 0.56 0.66 0.61 0.70 0.66 0.74 0.71 0.78 0.76 0.82 0.81 0.86 0.86 0.90 0.91 0.94 0.96 0.98 1.01 1.00

To decide which price is the standardized value of (P - price): repeat with N running from 1 to the number of rows in the Table of Price Standardization: choose row N in the Table of Price Standardization; if P is less than the upper bound entry, decide on the replacement entry.

When play begins: repeat with N running from 1 to 5: let P be a random price between 0.00 and 1.00; say "[P] -> [standardized value of P]."; end the story.</lang>

J

Solution: <lang j>le =: -0.96 0.91 0.86 0.81 0.76 0.71 0.66 0.61 0.56 0.51 0.46 0.41 0.36 0.31 0.26 0.21 0.16 0.11 0.06 0.0 out =: 1.00 0.98 0.94 0.90 0.86 0.82 0.78 0.74 0.70 0.66 0.62 0.58 0.54 0.50 0.44 0.38 0.32 0.26 0.18 0.1

priceFraction =: out {~ le I. -</lang>

Example: <lang j> priceFraction 0.34 0.070145 0.06 0.05 0.50214 0.56 1 0.99 0 0.5 0.18 0.18 0.1 0.62 0.7 1 1 0.1</lang>

This implementation performs a binary search on the boundary values, and then uses the resulting index to select from the result values.

To prevent J's binary search from doing the wrong thing for values equal to a boundary, both the boundary values and the search value are negated.

Java

<lang java>import java.util.Random;

public class Main { private static float priceFraction(float f) { if (0.00f <= f && f < 0.06f) return 0.10f; else if (f < 0.11f) return 0.18f; else if (f < 0.16f) return 0.26f; else if (f < 0.21f) return 0.32f; else if (f < 0.26f) return 0.38f; else if (f < 0.31f) return 0.44f; else if (f < 0.36f) return 0.50f; else if (f < 0.41f) return 0.54f; else if (f < 0.46f) return 0.58f; else if (f < 0.51f) return 0.62f; else if (f < 0.56f) return 0.66f; else if (f < 0.61f) return 0.70f; else if (f < 0.66f) return 0.74f; else if (f < 0.71f) return 0.78f; else if (f < 0.76f) return 0.82f; else if (f < 0.81f) return 0.86f; else if (f < 0.86f) return 0.90f; else if (f < 0.91f) return 0.94f; else if (f < 0.96f) return 0.98f; else if (f < 1.01f) return 1.00f; else throw new IllegalArgumentException(); }

public static void main(String[] args) { Random rnd = new Random(); for (int i = 0; i < 5; i++) { float f = rnd.nextFloat(); System.out.format("%8.6f -> %4.2f%n", f, priceFraction(f)); } } }</lang> Output:

0.149969 -> 0.26
0.310605 -> 0.50
0.616683 -> 0.74
0.194047 -> 0.32
0.724852 -> 0.82


JavaScript

In the task definition, the first step is 0.06, the rest are 0.05 so a re-factoring can subtract 0.01 from the value and divide by 0.05 to get the step.

Working with decimal numbers in JavaScript has issues, e.g. 0.06 - 0.01 = 0.049999999999999996 due to using IEEE 754 double precision numbers that can't accurately represent all decimals. So values are multiplied by 100 and integer arithmetic is used.

Note that multiplying a string by a number produces a number, the bitwise OR (|) truncates floating point numbers to integer, making it a concise replacement for Math.floor.

Passing a value outside the range 0 <= x < 1.01 will return undefined.

<lang javascript>function getScaleFactor(v) {

 var values = ['0.10','0.18','0.26','0.32','0.38','0.44','0.50','0.54',
               '0.58','0.62','0.66','0.70','0.74','0.78','0.82','0.86',
               '0.90','0.94','0.98','1.00'];
 return values[(v * 100 - 1) / 5 | 0];

}</lang>

K

Translation of the J solution:

<lang K> le:- 0.96 0.91 0.86 0.81 0.76 0.71 0.66 0.61 0.56 0.51 0.46 0.41 0.36 0.31 0.26 0.21 0.16 0.11 0.06 0.0 out: 1.00 0.98 0.94 0.90 0.86 0.82 0.78 0.74 0.70 0.66 0.62 0.58 0.54 0.50 0.44 0.38 0.32 0.26 0.18 0.1

pf:{out@_bin[le;-x]}' </lang> Output <lang K>

  pf 0.6094701 0.5003597 0.8512954 0.08951883 0.6868076

0.7 0.62 0.9 0.18 0.78 </lang>

Liberty BASIC

<lang lb> dim DR(38) 'decimal range dim PF(38) 'corresponding price fraction range$="0.06 0.11 0.16 0.21 0.26 0.31 0.36 0.41 0.46 0.51 0.56 0.61 0.66 0.71 0.76 0.81 0.86 0.91 0.96 0.01" frac$="0.10 0.18 0.26 0.32 0.38 0.44 0.50 0.54 0.58 0.62 0.66 0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.98 1.00" for i = 1 to 38

 DR(i)=val(word$(range$,i))
 PF(i)=val(word$(frac$,i))

next

for i = 0 to .99 step 0.03

 print i;" -> ";PriceFraction(i)

next end

Function PriceFraction(n)

   PriceFraction=n  'return original if outside test bounds
   for i = 1 to 38
   if n<=DR(i) then
       PriceFraction=PF(i)
       exit for
   end if
   next
   end function

</lang>

Mathematica

<lang Mathematica>PriceFraction[x_]:=Piecewise[{{.1, 0 <= x < 0.06}, {.18, x < .11}, {.26,x < 0.16}, {.32, x < .21}, {.38, x < .26}, {.44, x < 0.31}, {.5, x < .36}, {.54, x < .41}, {.58, x < .46}, {.62, x < .51}, {.66, x < .56}, {.70, x < .61}, {.74, x < .66}, {.78, x < .71}, {.82, x < .76}, {.86, x < .81}, {.90, x < .86}, {.94, x < .91}, {.98, x < .96}}, 1]</lang>


MATLAB / Octave

<lang Matlab> function y = rescale(x)

    L = [0,.06:.05:1.02];
    V = [.1,.18,.26,.32,.38,.44,.50,.54,.58,.62,.66,.70,.74,.78,.82,.86,.9,.94,.98,1];
    y = x; 
    for k=1:numel(x); 
       y(k) = V(sum(L<=x(k)));
    end;
 end;
  t=0:0.001:1;
  plot(t,rescale(t)); </lang>

Mercury

<lang Mercury>:- module price.

- interface.
- import_module int.
- type price == int.
- func standard(price) = price.
- implementation.
- import_module require, list.

standard(P) = SP :-

       require(P >= 0, "P must be positive"),
       Cents = P `mod` 100,
       P + adjust(Cents) = SP.
- func adjust(int) = int.

adjust(Cents) = adjust(Cents, rules).

- func adjust(int, list(price_rule)) = int.

adjust(_, []) = unexpected("price", "adjust/2", "exhausted rules"). adjust(N, [rule(Low, High, To)|T]) = R :-

       ( N >= Low, N < High -> To - N = R ; adjust(N, T) = R ).
- type price_rule ---> rule(int, int, int).
- func rules = list(price_rule).

rules = [rule(00, 06, 10),

       rule(06, 11, 18),
       rule(11, 16, 26),
       rule(16, 21, 32),
       rule(21, 26, 38),
       rule(26, 31, 44),
       rule(31, 36, 50),
       rule(36, 41, 54),
       rule(41, 46, 58),
       rule(46, 51, 62),
       rule(51, 56, 66),
       rule(56, 61, 70),
       rule(61, 66, 74),
       rule(66, 71, 78),
       rule(71, 76, 82),
       rule(76, 81, 86),
       rule(81, 86, 90),
       rule(86, 91, 94),
       rule(91, 96, 98),
       rule(96, 101, 100)].</lang>

A build system might turn the text of the table into the definition of a hundred-element array of adjustments. In that case,

<lang Mercury>adjust(Cents) = array.lookup(price_table, Cents).</lang>

MUMPS

<lang MUMPS>PRICFRAC(X)

;Outputs a specified value dependent upon the input value
;The non-inclusive upper limits are encoded in the PFMAX string, and the values
;to convert to are encoded in the PFRES string.
NEW PFMAX,PFRES,I,RESULT
SET PFMAX=".06^.11^.16^.21^.26^.31^.36^.41^.46^.51^.56^.61^.66^.71^.76^.81^.86^.91^.96^1.01"
SET PFRES=".10^.18^.26^.32^.38^.44^.50^.54^.58^.62^.66^.70^.74^.78^.82^.86^.90^.94^.98^1.00"
Q:(X<0)!(X>1.01) ""
FOR I=1:1:$LENGTH(PFMAX,"^") Q:($DATA(RESULT)'=0)  SET:X<$P(PFMAX,"^",I) RESULT=$P(PFRES,"^",I)
KILL PFMAX,PFRES,I
QUIT RESULT</lang>

Output:

USER>W $$PRICFRAC^ROSETTA(.04)
.10
USER>W $$PRICFRAC^ROSETTA(.06)
.18
USER>W $$PRICFRAC^ROSETTA(.40)
.54
USER>W $$PRICFRAC^ROSETTA(1.40)
 
USER>W $$PRICFRAC^ROSETTA(.81)
.90

OCaml

<lang ocaml>let price_fraction v =

 if v < 0.0 || v >= 1.01 then
   invalid_arg "price_fraction";
 let rec aux = function
 | (x,r)::tl ->
     if v < x then r
     else aux tl
 | [] -> assert false
 in
 aux [
   0.06, 0.10;   0.11, 0.18;   0.16, 0.26;   0.21, 0.32;   0.26, 0.38;
   0.31, 0.44;   0.36, 0.50;   0.41, 0.54;   0.46, 0.58;   0.51, 0.62;
   0.56, 0.66;   0.61, 0.70;   0.66, 0.74;   0.71, 0.78;   0.76, 0.82;
   0.81, 0.86;   0.86, 0.90;   0.91, 0.94;   0.96, 0.98;   1.01, 1.00;
 ]</lang>

<lang ocaml>let () =

 let ok_tests = [
   (0.3793, 0.54);
   (0.4425, 0.58);
   (0.0746, 0.18);
   (0.6918, 0.78);
   (0.2993, 0.44);
   (0.5486, 0.66);
   (0.7848, 0.86);
   (0.9383, 0.98);
   (0.2292, 0.38);
 ] in
 Printf.printf " input   res   ok\n";
 List.iter (fun (v,ok) ->
   let r = price_fraction v in
   Printf.printf " %6g  %g  %b\n" v r (r = ok);
 ) ok_tests;
</lang>


Oz

Using a for-loop with return and a default value for values >= 1.01. For out-of-range input, a "failed value" is returned, i.e. a value that throws an exception when it is accessed.

<lang oz>fun {PriceFraction X}

  OutOfRange = {Value.failed outOfRange(X)}

in

  for Limit#Result in
     [0.00#OutOfRange
      0.06#0.10 0.11#0.18 0.16#0.26 0.21#0.32 0.26#0.38 0.31#0.44 0.36#0.5
      0.41#0.54 0.46#0.58 0.51#0.62 0.56#0.66 0.61#0.70 0.66#0.74 0.71#0.78
      0.76#0.82 0.81#0.86 0.86#0.90 0.91#0.94 0.96#0.98 1.01#1.00
     ]
     return:Return
     default:OutOfRange
  do
     if X < Limit then {Return Result} end 
  end

end</lang>

PARI/GP

<lang parigp>priceLookup=[6,11,16,21,26,31,41,46,51,56,61,66,71,76,81,86,91,96,101]; priceReplace=[10,18,26,32,38,44,50,54,58,62,66,70,74,78,82,86,90,94,98,100]; pf(x)={

 x*=100;
 for(i=1,19,
   if(x<priceLookup[i], return(priceReplace[i]))
 );
 "nasal demons"

};</lang>

Pascal

<lang pascal>Program PriceFraction(output);

const

 limit: array [1..20] of real = 
          (0.06, 0.11, 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, 0.51,
           0.56, 0.61, 0.66, 0.71, 0.76, 0.81, 0.86, 0.91, 0.96, 1.01);
 price: array [1..20] of real = 
          (0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62,
           0.66, 0.70, 0.74, 0.78, 0.81, 0.86, 0.90, 0.94, 0.98, 1.00);

var

 cost: real;
 i, j: integer;

begin

 randomize;
 for i := 1 to 10 do
 begin
   cost := random;
   j := high(limit);
   while cost < limit[j] do
     dec(j);
   writeln (cost:6:4, ' -> ', price[j+1]:4:2);
 end;

end.</lang> Output:

% ./PriceFraction
0.8145 -> 0.90
0.6347 -> 0.74
0.0464 -> 0.10
0.9603 -> 1.00
0.3629 -> 0.54
0.5074 -> 0.62
0.4516 -> 0.58
0.2340 -> 0.38
0.4142 -> 0.58
0.8327 -> 0.90

Perl

<lang Perl>my @table = map [ /([\d\.]+)/g ], split "\n", <<'TBL'; >= 0.00 < 0.06  := 0.10 >= 0.06 < 0.11  := 0.18 >= 0.11 < 0.16  := 0.26 >= 0.16 < 0.21  := 0.32 >= 0.21 < 0.26  := 0.38 >= 0.26 < 0.31  := 0.44 >= 0.31 < 0.36  := 0.50 >= 0.36 < 0.41  := 0.54 >= 0.41 < 0.46  := 0.58 >= 0.46 < 0.51  := 0.62 >= 0.51 < 0.56  := 0.66 >= 0.56 < 0.61  := 0.70 >= 0.61 < 0.66  := 0.74 >= 0.66 < 0.71  := 0.78 >= 0.71 < 0.76  := 0.82 >= 0.76 < 0.81  := 0.86 >= 0.81 < 0.86  := 0.90 >= 0.86 < 0.91  := 0.94 >= 0.91 < 0.96  := 0.98 >= 0.96 < 1.01  := 1.00 TBL

sub convert {

       my $money = shift;
       for (@table) {
               return $_->[2] if $_->[0] <= $money and $_->[1] > $money
       }
       die "Can't find currency conversion for $money. Counterfeit?"

}

  1. try it out

for (1 .. 10) {

       my $m = rand(1);
       printf "%.3f -> %g\n", $m, convert($m);

} </lang>

Perl 6

<lang perl6>my $table = " >= 0.00 < 0.06  := 0.10 >= 0.06 < 0.11  := 0.18 >= 0.11 < 0.16  := 0.26 >= 0.16 < 0.21  := 0.32 >= 0.21 < 0.26  := 0.38 >= 0.26 < 0.31  := 0.44 >= 0.31 < 0.36  := 0.50 >= 0.36 < 0.41  := 0.54 >= 0.41 < 0.46  := 0.58 >= 0.46 < 0.51  := 0.62 >= 0.51 < 0.56  := 0.66 >= 0.56 < 0.61  := 0.70 >= 0.61 < 0.66  := 0.74 >= 0.66 < 0.71  := 0.78 >= 0.71 < 0.76  := 0.82 >= 0.76 < 0.81  := 0.86 >= 0.81 < 0.86  := 0.90 >= 0.86 < 0.91  := 0.94 >= 0.91 < 0.96  := 0.98 >= 0.96 < 1.01  := 1.00 ";

my $value = 0.44;

say price($value);

sub price($value) { for $table.lines -> $line { $line ~~ / '>=' \s+ (\S+) \s+ '<' \s+ (\S+) \s+ ':=' \s+ (\S+)/; return $2 if $0 <= $value < $1; } fail "Out of range"; }</lang> Perhaps a better approach is just to build an array of 101 entries. Memory is cheap, and array lookup is blazing fast, especially important if used in a loop as below. Moreover, in Perl 6 we don't have to worry about floating point misrepresentations of decimals because decimal fractions are stored as rationals.

<lang perl6>my @price = map *.value,

   ( 0 ..^ 6  X=> 0.10),
   ( 6 ..^ 11 X=> 0.18),
   (11 ..^ 16 X=> 0.26),
   (16 ..^ 21 X=> 0.32),
   (21 ..^ 26 X=> 0.38),
   (26 ..^ 31 X=> 0.44),
   (31 ..^ 36 X=> 0.50),
   (36 ..^ 41 X=> 0.54),
   (41 ..^ 46 X=> 0.58),
   (46 ..^ 51 X=> 0.62),
   (51 ..^ 56 X=> 0.66),
   (56 ..^ 61 X=> 0.70),
   (61 ..^ 66 X=> 0.74),
   (66 ..^ 71 X=> 0.78),
   (71 ..^ 76 X=> 0.82),
   (76 ..^ 81 X=> 0.86),
   (81 ..^ 86 X=> 0.90),
   (86 ..^ 91 X=> 0.94),
   (91 ..^ 96 X=> 0.98),
   (96 ..^101 X=> 1.00),

while prompt("value: ") -> $value {

   say @price[ $value * 100 ] // note "Out of range";

}</lang>

Yet another approach is to use the conditional operator to encode the table. This allows each endpoint to be written once, avoiding duplication. <lang perl6>sub price_fraction ( Num $n where { $^n >= 0 and $^n <= 1 } ) {

      ( $n <  0.06 ) ?? 0.10
   !! ( $n <  0.11 ) ?? 0.18
   !! ( $n <  0.16 ) ?? 0.26
   !! ( $n <  0.21 ) ?? 0.32
   !! ( $n <  0.26 ) ?? 0.38
   !! ( $n <  0.31 ) ?? 0.44
   !! ( $n <  0.36 ) ?? 0.50
   !! ( $n <  0.41 ) ?? 0.54
   !! ( $n <  0.46 ) ?? 0.58
   !! ( $n <  0.51 ) ?? 0.62
   !! ( $n <  0.56 ) ?? 0.66
   !! ( $n <  0.61 ) ?? 0.70
   !! ( $n <  0.66 ) ?? 0.74
   !! ( $n <  0.71 ) ?? 0.78
   !! ( $n <  0.76 ) ?? 0.82
   !! ( $n <  0.81 ) ?? 0.86
   !! ( $n <  0.86 ) ?? 0.90
   !! ( $n <  0.91 ) ?? 0.94
   !! ( $n <  0.96 ) ?? 0.98
   !!                   1.00
   ;

}

while prompt("value: ") -> $value {

   last if $value ~~ /exit|quit/;
   say price_fraction(+$value);

}</lang>

PL/I

<lang PL/I> declare t(20) fixed decimal (3,2) static initial (

  .06, .11, .16, .21, .26, .31, .36, .41, .46,  .51,
  .56, .61, .66, .71, .76, .81, .86, .91, .96, 1.01);

declare r(20) fixed decimal (3,2) static initial (

  .10, .18, .26, .32, .38, .44, .50, .54, .58, .62,
  .66, .70, .74, .78, .82, .86, .90, .94, .98, 1);

declare x float, d fixed decimal (3,2); declare i fixed binary;

loop:

  do i = 1 to 20;
     if x < t(i) then
        do; d = r(i); leave loop; end;
  end;

</lang>

PicoLisp

<lang PicoLisp>(scl 2)

(de price (Pr)

  (format
     (cdr
        (rank Pr
           (quote
              (0.00 . 0.10)
              (0.06 . 0.18)
              (0.11 . 0.26)
              (0.16 . 0.32)
              (0.21 . 0.38)
              (0.26 . 0.44)
              (0.31 . 0.50)
              (0.36 . 0.54)
              (0.41 . 0.58)
              (0.46 . 0.62)
              (0.51 . 0.66)
              (0.56 . 0.70)
              (0.61 . 0.74)
              (0.66 . 0.78)
              (0.71 . 0.82)
              (0.76 . 0.86)
              (0.81 . 0.90)
              (0.86 . 0.94)
              (0.91 . 0.98)
              (0.96 . 1.00) ) ) )
     *Scl ) )

(for N (0.3793 0.4425 0.0746 0.6918 0.2993 0.5486 0.7848 0.9383 0.2292)

  (prinl (price N)) )</lang>

Output:

0.54
0.58
0.18
0.78
0.44
0.66
0.86
0.98
0.38

PureBasic

<lang PureBasic>Procedure.f PriceFraction(price.f)

 ;returns price unchanged if value is invalid 
 Protected fraction
 Select price * 100
   Case 0 To 5
     fraction = 10
   Case 06 To 10
     fraction = 18
   Case 11 To 15
     fraction = 26
   Case 16 To 20
     fraction = 32
   Case 21 To 25
     fraction = 38
   Case 26 To 30
     fraction = 44
   Case 31 To 35
     fraction = 5
   Case 36 To 40
     fraction = 54
   Case 41 To 45
     fraction = 58
   Case 46 To 50
     fraction = 62
   Case 51 To 55
     fraction = 66
   Case 56 To 60
     fraction = 7
   Case 61 To 65
     fraction = 74
   Case 66 To 70
     fraction = 78
   Case 71 To 75
     fraction = 82
   Case 76 To 80
     fraction = 86
   Case 81 To 85
     fraction = 9
   Case 86 To 90
     fraction = 94
   Case 91 To 95
     fraction = 98
   Case 96 To 100
     fraction = 100
   Default
     ProcedureReturn price
 EndSelect
 
 ProcedureReturn fraction / 100

EndProcedure

If OpenConsole()

 Define x.f, i
 
 For i = 1 To 10
   x = Random(10000)/10000
   PrintN(StrF(x, 4) + " -> " + StrF(PriceFraction(x), 2))
 Next
 
 Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")
 Input()
 CloseConsole()

EndIf</lang> Sample output:

0.3793 -> 0.54
0.4425 -> 0.58
0.0746 -> 0.18
0.6918 -> 0.78
0.2993 -> 0.44
0.5486 -> 0.66
0.7848 -> 0.86
0.9383 -> 0.98
0.2292 -> 0.38
0.9560 -> 1.00

Python

Using the bisect standard module to reduce the comparisons with members of the cin array.

<lang python>>>> import bisect >>> _cin = [.06, .11, .16, .21, .26, .31, .36, .41, .46, .51, .56, .61, .66, .71, .76, .81, .86, .91, .96, 1.01] >>> _cout = [.10, .18, .26, .32, .38, .44, .50, .54, .58, .62, .66, .70, .74, .78, .82, .86, .90, .94, .98, 1.00] >>> def pricerounder(pricein): return _cout[ bisect.bisect_right(_cin, pricein) ]</lang>

When dealing with money it is good to think about possible loss of precision. If we change the units to be integer cents we could use the following exact routine: <lang python>>>> import bisect >>> _cin = [ 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101] >>> _cout = [10, 18, 26, 32, 38, 44, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 100] >>> def centsrounder(centsin): return _cout[ bisect.bisect_right(_cin, centsin) ]</lang> Other options are to use the fractions or decimals modules for calculating money to a known precision.


Bisection library code

The bisect Python standard library function uses the following code that improves on a simple linear scan through a sorted list:
<lang python>def bisect_right(a, x, lo=0, hi=None):
   """Return the index where to insert item x in list a, assuming a is sorted.
   The return value i is such that all e in a[:i] have e <= x, and all e in
   a[i:] have e > x.  So if x already appears in the list, a.insert(x) will
   insert just after the rightmost x already there.
   Optional args lo (default 0) and hi (default len(a)) bound the
   slice of a to be searched.
   """
   if lo < 0:
       raise ValueError('lo must be non-negative')
   if hi is None:
       hi = len(a)
   while lo < hi:
       mid = (lo+hi)//2
       if x < a[mid]: hi = mid
       else: lo = mid+1
   return lo</lang>

R

<lang r> price_fraction <- function(x) {

 stopifnot(all(x >= 0 & x <= 1))
 breaks <- seq(0.06, 1.01, 0.05)
 values <- c(.1, .18, .26, .32, .38, .44, .5, .54, .58, .62, .66, .7, .74, .78, .82, .86, .9, .94, .98, 1)
 indices <- sapply(x, function(x) which(x < breaks)[1])
 values[indices]

}

  1. Example usage:

price_fraction(c(0, .01, 0.06, 0.25, 1)) # 0.10 0.10 0.18 0.38 1.00 </lang>

You can extract the contents of the table as follows:

<lang r> dfr <- read.table(tc <- textConnection( ">= 0.00 < 0.06  := 0.10 >= 0.06 < 0.11  := 0.18 >= 0.11 < 0.16  := 0.26 >= 0.16 < 0.21  := 0.32 >= 0.21 < 0.26  := 0.38 >= 0.26 < 0.31  := 0.44 >= 0.31 < 0.36  := 0.50 >= 0.36 < 0.41  := 0.54 >= 0.41 < 0.46  := 0.58 >= 0.46 < 0.51  := 0.62 >= 0.51 < 0.56  := 0.66 >= 0.56 < 0.61  := 0.70 >= 0.61 < 0.66  := 0.74 >= 0.66 < 0.71  := 0.78 >= 0.71 < 0.76  := 0.82 >= 0.76 < 0.81  := 0.86 >= 0.81 < 0.86  := 0.90 >= 0.86 < 0.91  := 0.94 >= 0.91 < 0.96  := 0.98 >= 0.96 < 1.01  := 1.00")); close(tc) breaks <- dfr$V4 values <- dfr$V6 </lang>

Raven

Translation of: JavaScript

<lang Raven>define getScaleFactor use $v

  [ 0.1 0.18 0.26 0.32 0.38 0.44 0.50 0.54 0.58 0.62 0.66 0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.98 1.0 ] as $vals
  $v 100 * 1 - 5 /    20 min  0 max  1 prefer dup $v "val: %g  indx: %d\n" print   $vals swap get

0 100 9 range each

   100.0 / dup getScaleFactor swap "%.2g -> %.2g\n" print</lang>
Output:
0 -> 0.1
0.09 -> 0.18
0.18 -> 0.32
0.27 -> 0.44
0.36 -> 0.54
0.45 -> 0.58
0.54 -> 0.66
0.63 -> 0.74
0.72 -> 0.82
0.81 -> 0.9
0.9 -> 0.94
0.99 -> 1

REXX

version 1

<lang rexx>/*REXX program to rescale a (decimal fraction) price (0.99 ──► 1.00).*/ pad=' ' /*for inserting spaces into msg. */

     do j=0  to 1  by .01;        if j==0 then j=0.00   /*special case.*/
     say pad 'original price ──►' j pad adjPrice(j) " ◄── adjusted price"
     end   /*j*/

exit /*stick a fork in it, we're done.*/ /*──────────────────────────────────ADJPRICE subroutine─────────────────*/ adjPrice: procedure; parse arg ?

               select
               when ?<0.06  then ?=0.10
               when ?<0.11  then ?=0.18
               when ?<0.16  then ?=0.26
               when ?<0.21  then ?=0.32
               when ?<0.26  then ?=0.38
               when ?<0.31  then ?=0.44
               when ?<0.36  then ?=0.50
               when ?<0.41  then ?=0.54
               when ?<0.46  then ?=0.58
               when ?<0.51  then ?=0.62
               when ?<0.56  then ?=0.66
               when ?<0.61  then ?=0.70
               when ?<0.66  then ?=0.74
               when ?<0.71  then ?=0.78
               when ?<0.76  then ?=0.82
               when ?<0.81  then ?=0.86
               when ?<0.86  then ?=0.90
               when ?<0.91  then ?=0.94
               when ?<0.96  then ?=0.98
               when ?<1.01  then ?=1.00
               otherwise    nop
               end   /*select*/

return ?</lang> output

      original price ──► 0.00       0.10  ◄── adjusted price
      original price ──► 0.01       0.10  ◄── adjusted price
      original price ──► 0.02       0.10  ◄── adjusted price
      original price ──► 0.03       0.10  ◄── adjusted price
      original price ──► 0.04       0.10  ◄── adjusted price
      original price ──► 0.05       0.10  ◄── adjusted price
      original price ──► 0.06       0.18  ◄── adjusted price
      original price ──► 0.07       0.18  ◄── adjusted price
      original price ──► 0.08       0.18  ◄── adjusted price
      original price ──► 0.09       0.18  ◄── adjusted price
      original price ──► 0.10       0.18  ◄── adjusted price
      original price ──► 0.11       0.26  ◄── adjusted price
      original price ──► 0.12       0.26  ◄── adjusted price
      original price ──► 0.13       0.26  ◄── adjusted price
      original price ──► 0.14       0.26  ◄── adjusted price
      original price ──► 0.15       0.26  ◄── adjusted price
      original price ──► 0.16       0.32  ◄── adjusted price
      original price ──► 0.17       0.32  ◄── adjusted price
      original price ──► 0.18       0.32  ◄── adjusted price
      original price ──► 0.19       0.32  ◄── adjusted price
      original price ──► 0.20       0.32  ◄── adjusted price
      original price ──► 0.21       0.38  ◄── adjusted price
      original price ──► 0.22       0.38  ◄── adjusted price
      original price ──► 0.23       0.38  ◄── adjusted price
      original price ──► 0.24       0.38  ◄── adjusted price
      original price ──► 0.25       0.38  ◄── adjusted price
      original price ──► 0.26       0.44  ◄── adjusted price
      original price ──► 0.27       0.44  ◄── adjusted price
      original price ──► 0.28       0.44  ◄── adjusted price
      original price ──► 0.29       0.44  ◄── adjusted price
      original price ──► 0.30       0.44  ◄── adjusted price
      original price ──► 0.31       0.50  ◄── adjusted price
      original price ──► 0.32       0.50  ◄── adjusted price
      original price ──► 0.33       0.50  ◄── adjusted price
      original price ──► 0.34       0.50  ◄── adjusted price
      original price ──► 0.35       0.50  ◄── adjusted price
      original price ──► 0.36       0.54  ◄── adjusted price
      original price ──► 0.37       0.54  ◄── adjusted price
      original price ──► 0.38       0.54  ◄── adjusted price
      original price ──► 0.39       0.54  ◄── adjusted price
      original price ──► 0.40       0.54  ◄── adjusted price
      original price ──► 0.41       0.58  ◄── adjusted price
      original price ──► 0.42       0.58  ◄── adjusted price
      original price ──► 0.43       0.58  ◄── adjusted price
      original price ──► 0.44       0.58  ◄── adjusted price
      original price ──► 0.45       0.58  ◄── adjusted price
      original price ──► 0.46       0.62  ◄── adjusted price
      original price ──► 0.47       0.62  ◄── adjusted price
      original price ──► 0.48       0.62  ◄── adjusted price
      original price ──► 0.49       0.62  ◄── adjusted price
      original price ──► 0.50       0.62  ◄── adjusted price
      original price ──► 0.51       0.66  ◄── adjusted price
      original price ──► 0.52       0.66  ◄── adjusted price
      original price ──► 0.53       0.66  ◄── adjusted price
      original price ──► 0.54       0.66  ◄── adjusted price
      original price ──► 0.55       0.66  ◄── adjusted price
      original price ──► 0.56       0.70  ◄── adjusted price
      original price ──► 0.57       0.70  ◄── adjusted price
      original price ──► 0.58       0.70  ◄── adjusted price
      original price ──► 0.59       0.70  ◄── adjusted price
      original price ──► 0.60       0.70  ◄── adjusted price
      original price ──► 0.61       0.74  ◄── adjusted price
      original price ──► 0.62       0.74  ◄── adjusted price
      original price ──► 0.63       0.74  ◄── adjusted price
      original price ──► 0.64       0.74  ◄── adjusted price
      original price ──► 0.65       0.74  ◄── adjusted price
      original price ──► 0.66       0.78  ◄── adjusted price
      original price ──► 0.67       0.78  ◄── adjusted price
      original price ──► 0.68       0.78  ◄── adjusted price
      original price ──► 0.69       0.78  ◄── adjusted price
      original price ──► 0.70       0.78  ◄── adjusted price
      original price ──► 0.71       0.82  ◄── adjusted price
      original price ──► 0.72       0.82  ◄── adjusted price
      original price ──► 0.73       0.82  ◄── adjusted price
      original price ──► 0.74       0.82  ◄── adjusted price
      original price ──► 0.75       0.82  ◄── adjusted price
      original price ──► 0.76       0.86  ◄── adjusted price
      original price ──► 0.77       0.86  ◄── adjusted price
      original price ──► 0.78       0.86  ◄── adjusted price
      original price ──► 0.79       0.86  ◄── adjusted price
      original price ──► 0.80       0.86  ◄── adjusted price
      original price ──► 0.81       0.90  ◄── adjusted price
      original price ──► 0.82       0.90  ◄── adjusted price
      original price ──► 0.83       0.90  ◄── adjusted price
      original price ──► 0.84       0.90  ◄── adjusted price
      original price ──► 0.85       0.90  ◄── adjusted price
      original price ──► 0.86       0.94  ◄── adjusted price
      original price ──► 0.87       0.94  ◄── adjusted price
      original price ──► 0.88       0.94  ◄── adjusted price
      original price ──► 0.89       0.94  ◄── adjusted price
      original price ──► 0.90       0.94  ◄── adjusted price
      original price ──► 0.91       0.98  ◄── adjusted price
      original price ──► 0.92       0.98  ◄── adjusted price
      original price ──► 0.93       0.98  ◄── adjusted price
      original price ──► 0.94       0.98  ◄── adjusted price
      original price ──► 0.95       0.98  ◄── adjusted price
      original price ──► 0.96       1.00  ◄── adjusted price
      original price ──► 0.97       1.00  ◄── adjusted price
      original price ──► 0.98       1.00  ◄── adjusted price
      original price ──► 0.99       1.00  ◄── adjusted price
      original price ──► 1.00       1.00  ◄── adjusted price

version 2

<lang rexx>/* REXX ***************************************************************

  • Inspired by some other solutions tested with version 1 (above)
  • 20.04.2013 Walter Pachl
                                                                                                                                            • /

Do x=0 To 1 By 0.01

 old=adjprice(x)
 new=adjprice2(x)
 If old<>new Then tag='??'
 else tag=
 Say x old new  tag
 End

Exit

adjprice2: Procedure

 rl='0.10 0.18 0.26 0.32 0.38 0.44 0.50 0.54 0.58 0.62',
    '0.66 0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.98 1.00'
 Do i=1 To 20
   Parse Var rl r.i rl
   End
 Parse Arg p
 i=((100*p-1)%5+1)
 Return r.i</lang>

Ruby

A simple function with hardcoded values. <lang ruby>def rescale_price_fraction(value)

 raise ArgumentError, "value=#{value}, must have: 0 <= value < 1.01" if value < 0 || value >= 1.01
 if     value < 0.06  then  0.10
 elsif  value < 0.11  then  0.18
 elsif  value < 0.16  then  0.26
 elsif  value < 0.21  then  0.32
 elsif  value < 0.26  then  0.38
 elsif  value < 0.31  then  0.44
 elsif  value < 0.36  then  0.50
 elsif  value < 0.41  then  0.54
 elsif  value < 0.46  then  0.58
 elsif  value < 0.51  then  0.62
 elsif  value < 0.56  then  0.66
 elsif  value < 0.61  then  0.70
 elsif  value < 0.66  then  0.74
 elsif  value < 0.71  then  0.78
 elsif  value < 0.76  then  0.82
 elsif  value < 0.81  then  0.86
 elsif  value < 0.86  then  0.90
 elsif  value < 0.91  then  0.94
 elsif  value < 0.96  then  0.98
 elsif  value < 1.01  then  1.00
 end

end</lang>

Or, where we can cut and paste the textual table in one place

Works with: Ruby version 1.8.7+

for the String#lines method.

For Ruby 1.8.6, use String#each_line

<lang ruby>class Price

 ConversionTable = <<-END_OF_TABLE
   >=  0.00  <  0.06  :=  0.10
   >=  0.06  <  0.11  :=  0.18
   >=  0.11  <  0.16  :=  0.26
   >=  0.16  <  0.21  :=  0.32
   >=  0.21  <  0.26  :=  0.38
   >=  0.26  <  0.31  :=  0.44
   >=  0.31  <  0.36  :=  0.50
   >=  0.36  <  0.41  :=  0.54
   >=  0.41  <  0.46  :=  0.58
   >=  0.46  <  0.51  :=  0.62
   >=  0.51  <  0.56  :=  0.66
   >=  0.56  <  0.61  :=  0.70
   >=  0.61  <  0.66  :=  0.74
   >=  0.66  <  0.71  :=  0.78
   >=  0.71  <  0.76  :=  0.82
   >=  0.76  <  0.81  :=  0.86
   >=  0.81  <  0.86  :=  0.90
   >=  0.86  <  0.91  :=  0.94
   >=  0.91  <  0.96  :=  0.98
   >=  0.96  <  1.01  :=  1.00
 END_OF_TABLE
 RE = %r{ ([<>=]+) \s* (\d\.\d\d) \s* ([<>=]+) \s* (\d\.\d\d) \D+ (\d\.\d\d) }x
 # extract the comparison operators and numbers from the table
 CONVERSION_TABLE = ConversionTable.lines.inject([]) do |table, line| 
   m = line.match(RE) 
   if not m.nil? and m.length == 6
     table << [m[1], m[2].to_f, m[3], m[4].to_f, m[5].to_f] 
   end
   table
 end
 MIN_COMP, MIN = CONVERSION_TABLE[0][0..1] 
 MAX_COMP, MAX = CONVERSION_TABLE[-1][2..3]
 def initialize(value)
   if (not value.send(MIN_COMP, MIN)) or (not value.send(MAX_COMP, MAX))
     raise ArgumentError, "value=#{value}, must have: #{MIN} #{MIN_COMP} value #{MAX_COMP} #{MAX}"
   end
   @standard_value = CONVERSION_TABLE.find do |comp1, lower, comp2, upper, standard|
     value.send(comp1, lower) and value.send(comp2, upper)
   end.last
 end
 attr_reader :standard_value

end</lang>

And a test suite <lang ruby>require 'test/unit'

class PriceFractionTests < Test::Unit::TestCase

 @@ok_tests = [
   [0.3793, 0.54],
   [0.4425, 0.58],
   [0.0746, 0.18],
   [0.6918, 0.78],
   [0.2993, 0.44],
   [0.5486, 0.66],
   [0.7848, 0.86],
   [0.9383, 0.98],
   [0.2292, 0.38],
 ]
 @@bad_tests = [1.02, -3]
 def test_ok
   @@ok_tests.each do |val, exp| 
     assert_equal(exp, rescale_price_fraction(val))
     assert_equal(exp, Price.new(val).standard_value)
   end
   @@bad_tests.each do |val| 
     assert_raise(ArgumentError) {rescale_price_fraction(val)}
     assert_raise(ArgumentError) {Price.new(val).standard_value}
   end
 end

end</lang>

output

Loaded suite price_fraction
Started
.
Finished in 0.001000 seconds.

1 tests, 22 assertions, 0 failures, 0 errors, 0 skips

Run BASIC

<lang runbasic>data .06, .1,.11,.18,.16,.26,.21,.32,.26,.38,.31,.44,.36,.50,.41,.54,.46,.58,.51,.62 data .56,.66,.61,.70,.66,.74,.71,.78,.76,.82,.81,.86,.86,.90,.91,.94,.96,.98

dim od(100) dim nd(100) for i = 1 to 19 read oldDec read newDec j = j + 1 for j = j to oldDec * 100

  nd(j) = newDec

next j next i

[loop] input "Gimme a number";numb decm = val(using("##",(numb mod 1) * 100)) print numb;" -->";nd(decm)

goto [loop]</lang>

Gimme a number?12.676
12.676 -->0.78
Gimme a number?4.876
4.876 -->0.94
Gimme a number?34.12
34.12 -->0.26

Scala

<lang scala>def priceFraction(x:Double)=x match {

  case n if n>=0 && n<0.06 => 0.10
  case n if n<0.11 => 0.18
  case n if n<0.36 => ((((n*100).toInt-11)/5)*6+26)/100.toDouble
  case n if n<0.96 => ((((n*100).toInt-31)/5)*4+50)/100.toDouble
  case _ => 1.00

}

def testPriceFraction()=

  for(n <- 0.00 to (1.00, 0.01)) println("%.2f  %.2f".format(n, priceFraction(n)))</lang>

Output

0,00  0,10
0,01  0,10
0,02  0,10
0,03  0,10
0,04  0,10
0,05  0,10
0,06  0,18
...
0,25  0,38
0,26  0,44
0,27  0,44
0,28  0,44
0,29  0,44
0,30  0,44
0,31  0,50
0,32  0,50
0,33  0,50
0,34  0,50
0,35  0,50
0,36  0,54
0,37  0,54
...
0,88  0,94
0,89  0,94
0,90  0,94
0,91  0,98
0,92  0,98
0,93  0,98
0,94  0,98
0,95  0,98
0,96  1,00
0,97  1,00
0,98  1,00
0,99  1,00
1,00  1,00

Seed7

<lang seed7>$ include "seed7_05.s7i";

 include "float.s7i";

const func float: computePrice (in float: x) is func

 result
   var float: price is 0.0;
 begin
   if x >= 0.0 and x < 0.06 then
     price := 0.10;
   elsif x < 0.11 then
     price := 0.18;
   elsif x < 0.36 then
     price := flt(((trunc(x * 100.0) - 11) div 5) * 6 + 26) / 100.0;
   elsif x < 0.96 then
     price := flt(((trunc(x * 100.0) - 31) div 5) * 4 + 50) / 100.0;
   else
     price := 1.0;
   end if;
 end func;

const proc: main is func

 local
   var integer: i is 0;
 begin
   for i range 0 to 100 do
     writeln(flt(i) / 100.0 digits 2 <& " " <& computePrice(flt(i) / 100.0) digits 2);
   end for;
 end func;</lang>

The following variant of computePrice works with a table and raises RANGE_ERROR when x < 0.0 or x >= 1.01 holds: <lang seed7>const array array float: table is [] (

   [] (0.06, 0.10), [] (0.11, 0.18), [] (0.16, 0.26), [] (0.21, 0.32), [] (0.26, 0.38),
   [] (0.31, 0.44), [] (0.36, 0.50), [] (0.41, 0.54), [] (0.46, 0.58), [] (0.51, 0.62),
   [] (0.56, 0.66), [] (0.61, 0.70), [] (0.66, 0.74), [] (0.71, 0.78), [] (0.76, 0.82),
   [] (0.81, 0.86), [] (0.86, 0.90), [] (0.91, 0.94), [] (0.96, 0.98), [] (1.01, 1.00));

const func float: computePrice (in float: x) is func

 result
   var float: price is 0.0;
 local
   var integer: index is 1;
 begin
   if x >= 0.0 then
     while x >= table[index][1] do
       incr(index);
     end while;
     price := table[index][2];
   else
     raise RANGE_ERROR;
   end if;
 end func;</lang>

Smalltalk

Works with: GNU Smalltalk

<lang smalltalk>"Table driven rescale" Object subclass: PriceRescale [

 |table|
 PriceRescale class  >> new: theTable [
   ^ self basicNew initialize: theTable
 ]
 initialize: theTable [
    table := theTable asOrderedCollection.
    ^self
 ]
 rescale: aPrice [ |v1 v2|
   1 to: (table size - 1) do: [:i|
     v1 := table at: i.
     v2 := table at: (i+1).
     ((aPrice >= (v1 x)) & (aPrice < (v2 x)))
       ifTrue: [ ^ v1 y ]
   ].
   (aPrice < ((v1:=(table first)) x)) ifTrue: [ ^ v1 y ]. 
   (aPrice >= ((v1:=(table last)) x)) ifTrue: [ ^ v1 y ]
 ]

].

|pr| pr := PriceRescale

        new: {  0.00@0.10 .
                0.06@0.18 .
                0.11@0.26 .
                0.16@0.32 .
                0.21@0.38 .
                0.26@0.44 .
                0.31@0.50 .
                0.36@0.54 .
                0.41@0.58 .
                0.46@0.62 .
                0.51@0.66 .
                0.56@0.70 .
                0.61@0.74 .
                0.66@0.78 .
                0.71@0.82 .
                0.76@0.86 .
                0.81@0.90 .
                0.86@0.94 .
                0.91@0.98 .
                0.96@1.00 .
                1.01@1.00
              }.

"get a price" (pr rescale: ( (Random between: 0 and: 100)/100 )) displayNl.</lang>

Tcl

Structured as two functions, one to parse the input data as described in the problem into a form which Tcl can work with easily, and the other to perform the mapping. <lang tcl># Used once to turn the table into a "nice" form proc parseTable table {

   set map {}
   set LINE_RE {^ *>= *([0-9.]+) *< *([0-9.]+) *:= *([0-9.]+) *$}
   foreach line [split $table \n] {

if {[string trim $line] eq ""} continue if {[regexp $LINE_RE $line -> min max target]} { lappend map $min $max $target } else { error "invalid table format: $line" }

   }
   return $map

}

  1. How to apply the "nice" table to a particular value

proc priceFraction {map value} {

   foreach {minimum maximum target} $map {

if {$value >= $minimum && $value < $maximum} {return $target}

   }
   # Failed to map; return the input
   return $value

}</lang> How it is used: <lang tcl># Make the mapping set inputTable {

   >=  0.00  <  0.06  :=  0.10
   >=  0.06  <  0.11  :=  0.18
   >=  0.11  <  0.16  :=  0.26
   >=  0.16  <  0.21  :=  0.32
   >=  0.21  <  0.26  :=  0.38
   >=  0.26  <  0.31  :=  0.44
   >=  0.31  <  0.36  :=  0.50
   >=  0.36  <  0.41  :=  0.54
   >=  0.41  <  0.46  :=  0.58
   >=  0.46  <  0.51  :=  0.62
   >=  0.51  <  0.56  :=  0.66
   >=  0.56  <  0.61  :=  0.70
   >=  0.61  <  0.66  :=  0.74
   >=  0.66  <  0.71  :=  0.78
   >=  0.71  <  0.76  :=  0.82
   >=  0.76  <  0.81  :=  0.86
   >=  0.81  <  0.86  :=  0.90
   >=  0.86  <  0.91  :=  0.94
   >=  0.91  <  0.96  :=  0.98
   >=  0.96  <  1.01  :=  1.00

} set map [parseTable $inputTable]

  1. Apply the mapping to some inputs (from the Oz example)

foreach example {.7388727 .8593103 .826687 .3444635 .0491907} {

   puts "$example -> [priceFraction $map $example]"

}</lang> Output:

.7388727 -> 0.82
.8593103 -> 0.90
.826687 -> 0.90
.3444635 -> 0.50
.0491907 -> 0.10

Ursala

<lang Ursala>#import flo

le = <0.06,.11,.16,.21,.26,.31,.36,.41,.46,.51,.56,.61,.66,.71,.76,.81,.86,.91,.96,1.01> out = <0.10,.18,.26,.32,.38,.44,.50,.54,.58,.62,.66,.70,.74,.78,.82,.86,.90,.94,.98,1.>

price_fraction = fleq@rlPlX*|rhr\~&p(le,out)</lang> main points:

  • ~&p(le,out) zips the pair of lists le and out into a list of pairs
  • A function of the form f\y applied to an argument x evaluates to f(x,y)
  • A function of the form f*| applied to a pair (x,y) where y is a list, makes a list of pairs with x on the left of each item and an item of y on the right. Then it applies f to each pair, makes a list of the right sides of those for which f returned true, and makes a separate list of the right sides of those for which f returned false.
  • The suffix rhr after the *| operator extracts the right side of the head of the right list from the result.
  • The operand to the *| operator, fleq@rlPlX is the less-or-equal predicate on floating point numbers, composed with the function ~&rlPlX which transforms a triple (u,(v,w)) to (v,u)

test program: <lang Ursala>#cast %eL

test = price_fraction* <0.34,0.070145,0.06,0.05,0.50214,0.56,1.,0.99,0.> </lang> output:

<
   5.000000e-01,
   1.800000e-01,
   1.800000e-01,
   1.000000e-01,
   6.200000e-01,
   7.000000e-01,
   1.000000e+00,
   1.000000e+00,
   1.000000e-01>

XPL0

<lang XPL0>include c:\cxpl\codes; \intrinsic 'code' declarations

func real Price(V); \Convert to standard value real V; [V:= V + 0.001; \avoids possible rounding error i.e. 0.059999999 case of

 V < 0.06: ret 0.10;
 V < 0.11: ret 0.18;
 V < 0.16: ret 0.26;
 V < 0.21: ret 0.32;
 V < 0.26: ret 0.38;
 V < 0.31: ret 0.44;
 V < 0.36: ret 0.50;
 V < 0.41: ret 0.54;
 V < 0.46: ret 0.58;
 V < 0.51: ret 0.62;
 V < 0.56: ret 0.66;
 V < 0.61: ret 0.70;
 V < 0.66: ret 0.74;
 V < 0.71: ret 0.78;
 V < 0.76: ret 0.82;
 V < 0.81: ret 0.86;
 V < 0.86: ret 0.90;
 V < 0.91: ret 0.94;
 V < 0.96: ret 0.98

other ret 1.00; ];

[Format(1,2); RlOut(0, Price(0.0599)); CrLf(0); RlOut(0, Price(0.10)); CrLf(0); RlOut(0, Price(1.0)); CrLf(0); ]</lang>

Output:

0.18
0.18
1.00