Piprimes
From Rosetta Code
Piprimes is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
- Task
pi(n), the number of primes <= n, where pi(n) < 22
- Also see
-
- Prime-counting_function.
- Tables and hints by Tomás Oliveira e Silva.
- the OEIS entry: A0000720 pi(n), the number of primes <= n. Sometimes called PrimePi(n)....
Contents
ALGOL 68[edit]
BEGIN # Show some values of pi(n) - the number of priems <= n #
# reurns a sieve of primes up to n #
PROC prime sieve = ( INT n )[]BOOL:
BEGIN
[ 1 : n ]BOOL p;
p[ 1 ] := FALSE; p[ 2 ] := TRUE;
FOR i FROM 3 BY 2 TO n DO p[ i ] := TRUE OD;
FOR i FROM 4 BY 2 TO n DO p[ i ] := FALSE OD;
FOR i FROM 3 BY 2 TO ENTIER sqrt( n ) DO
IF p[ i ] THEN FOR s FROM i * i BY i + i TO n DO p[ s ] := FALSE OD FI
OD;
p
END # prime sieve # ;
# show pi(n) for n up to 21 #
INT max number = 100; # guess of how large the primes we need are #
INT max pi = 21;
[]BOOL prime = prime sieve( max number );
INT pi := 0;
FOR i TO max number
WHILE IF prime[ i ] THEN pi +:= 1 FI;
pi <= max pi
DO
print( ( " ", whole( pi, -2 ) ) );
IF i MOD 10 = 0 THEN print( ( newline ) ) FI
OD
END
- Output:
0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10 11 11 11 11 11 11 12 12 12 12 13 13 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 16 17 17 18 18 18 18 18 18 19 19 19 19 20 20 21 21 21 21 21 21
AWK[edit]
# syntax: GAWK -f PIPRIMES.AWK
# converted from FreeBASIC
BEGIN {
while (1) {
if (is_prime(++curr)) {
running++
}
if (running == 22) {
break
}
printf("%3d%1s",running,++count%10?"":"\n")
}
printf("\nPiPrimes 1-%d: %d\n",running-1,count)
exit(0)
}
function is_prime(x, i) {
if (x <= 1) {
return(0)
}
for (i=2; i<=int(sqrt(x)); i++) {
if (x % i == 0) {
return(0)
}
}
return(1)
}
- Output:
0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10 11 11 11 11 11 11 12 12 12 12 13 13 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 16 17 17 18 18 18 18 18 18 19 19 19 19 20 20 21 21 21 21 21 21 PiPrimes 1-21: 78
BASIC[edit]
FreeBASIC[edit]
#define UPTO 22
#include "isprime.bas"
dim as integer running = 0, curr=0
do
curr += 1
if isprime(curr) then running += 1
if running = UPTO then exit do
print running;" ";
loop
print : end
- Output:
0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10 11 11 11 11 11 11 12 12 12 12 13 13 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 16 17 17 18 18 18 18 18 18 19 19 19 19 20 20 21 21 21 21 21 21
Tiny BASIC[edit]
LET N = 0
LET P = 0
10 IF N = 22 THEN END
PRINT N
LET P = P + 1
GOSUB 100
20 IF Z = 1 THEN LET N = N + 1
GOTO 10
100 REM PRIMALITY BY TRIAL DIVISION
LET Z = 1
LET I = 2
110 IF (P/I)*I = P THEN LET Z = 0
IF Z = 0 THEN RETURN
LET I = I + 1
IF I*I <= P THEN GOTO 110
RETURN
C[edit]
#include <stdio.h>
#include <stdlib.h>
int isprime( int n ) {
int i;
if (n<2) return 0;
for(i=2; i*i<=n; i++) {
if (n % i == 0) {return 0;}
}
return 1;
}
int main(void) {
int n = 0, p = 1;
while (n<22) {
printf( "%d ", n );
p++;
if (isprime(p)) n+=1;
}
return 0;
}
- Output:
0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10 11 11 11 11 11 11 12 12 12 12 13 13 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 16 17 17 18 18 18 18 18 18 19 19 19 19 20 20 21 21 21 21 21 21
Cowgol[edit]
include "cowgol.coh";
sub isPrime(n: uint8): (r: uint8) is
var i: uint8 := 2;
r := 0;
if n>=2 then
while i*i <= n loop
if n%i == 0 then
return;
end if;
i := i + 1;
end loop;
r := 1;
end if;
end sub;
var count: uint8 := 0;
var n: uint8 := 1;
const MAX := 22;
while count < MAX loop
print_i8(count);
print_char('\t');
n := n + 1;
count := count + isPrime(n);
if n % 10 == 1 then
print_nl();
end if;
end loop;
print_nl();
- Output:
0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10 11 11 11 11 11 11 12 12 12 12 13 13 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 16 17 17 18 18 18 18 18 18 19 19 19 19 20 20 21 21 21 21 21 21
F#[edit]
This task uses [http://www.rosettacode.org/wiki/Extensible_prime_generator#The_functions Extensible Prime Generator (F#)]
// PiPrimes: Nigel Galloway. April 5th., 2021
let fN=let i=primes32() in Seq.unfold(fun(n,g,l)->Some(l,if n=g then (n+1,Seq.head i,l+1) else (n+1,g,l)))(1,Seq.head i,0)
fN|>Seq.takeWhile((>)22)|>Seq.chunkBySize 20|>Seq.iter(fun n->Array.iter(printf "%2d ") n; printfn "")
- Output:
0 0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10 11 11 11 11 11 11 12 12 12 12 13 13 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 16 17 17 18 18 18 18 18 18 19 19 19 19 20 20 21 21 21 21 21 21
Fermat[edit]
n:=0; p:=0
while n<22 do !n;!' ';p:=p+1;if Isprime(p)=1 then n:=n+1; fi; od
- Output:
0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10 11 11 11 11 11 11 12 12 12 12 13 13 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 16 17 17 18 18 18 18 18 18 19 19 19 19 20 20 21 21 21 21 21 21
FOCAL[edit]
01.10 S C=0
01.20 S N=1
01.30 T %3,C
01.40 S N=N+1
01.50 D 2;S C=C+A
01.60 I (C-22)1.3
01.70 T !
01.80 Q
02.10 S I=1
02.20 S I=I+1
02.30 I (I*I-N-1)2.4;S A=1;R
02.40 S A=N/I
02.50 I (FITR(A)-A)2.2;S A=0
- Output:
= 0= 1= 2= 2= 3= 3= 4= 4= 4= 4= 5= 5= 6= 6= 6= 6 = 7= 7= 8= 8= 8= 8= 9= 9= 9= 9= 9= 9= 10= 10= 11= 11 = 11= 11= 11= 11= 12= 12= 12= 12= 13= 13= 14= 14= 14= 14= 15= 15 = 15= 15= 15= 15= 16= 16= 16= 16= 16= 16= 17= 17= 18= 18= 18= 18 = 18= 18= 19= 19= 19= 19= 20= 20= 21= 21= 21= 21= 21= 21
J[edit]
}[email protected](>:@i.&.p:) 21
- Output:
0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10 11 11 11 11 11 11 12 12 12 12 13 13 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 16 17 17 18 18 18 18 18 18 19 19 19 19 20 20 21 21 21 21 21 21
Julia[edit]
using Primes
function listpiprimes(maxpi)
pmask = primesmask(1, maxpi * maxpi)
n = 0
for (i, isp) in enumerate(pmask)
isp == 1 && (n += 1) >= maxpi && break
print(rpad(n, 3), i % 10 == 0 ? "\n" : "")
end
end
listpiprimes(22)
- Output:
0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10 11 11 11 11 11 11 12 12 12 12 13 13 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 16 17 17 18 18 18 18 18 18 19 19 19 19 20 20 21 21 21 21 21 21
PARI/GP[edit]
n=0; p=0
while(n<22, print(n); if(isprime(p),n=n+1);p=p+1)
Phix[edit]
integer ix = 1, n = 1, count = 0 sequence pi = {} while true do if get_prime(ix)<=n then count += 1 if count>=22 then exit end if ix += 1 end if n += 1 pi = append(pi,sprintf("%2d",count)) end while printf(1,"pi[1..%d]:\n%s\n",{length(pi),join_by(pi,1,10)})
- Output:
pi[1..78]: 0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10 11 11 11 11 11 11 12 12 12 12 13 13 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 16 17 17 18 18 18 18 18 18 19 19 19 19 20 20 21 21 21 21 21 21
Raku[edit]
my @pi = (1..*).map: { state $pi = 0; $pi += .is-prime };
say @pi[^(@pi.first: * >= 22, :k)].batch(10)».fmt('%2d').join: "\n";
- Output:
0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10 11 11 11 11 11 11 12 12 12 12 13 13 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 16 17 17 18 18 18 18 18 18 19 19 19 19 20 20 21 21 21 21 21 21
REXX[edit]
/*REXX program finds and displays pi(n) for 0 < N ≤ prime(22) {the 22nd prime is 87},*/
/*────────────────────────── where the pi function returns the number of primes ≤ N.*/
parse arg hi cols . /*obtain optional argument from the CL.*/
if hi=='' | hi=="," then hi= 22 /* " " " " " " */
if cols=='' | cols=="," then cols= 10 /* " " " " " " */
call genP /*build array of semaphores for primes.*/
w= 10 /*width of a number in any column. */
@pips= ' number of primes that are (for all N) ≤ prime(22) which is ' commas(@.hi)
if cols>0 then say ' index │'center(@pips, 1 + cols*(w+1) )
if cols>0 then say '───────┼'center("" , 1 + cols*(w+1), '─')
idx= 1 /*initialize the index of output lines.*/
$=; pips= 0 /*a list of piPrimes numbers (so far). */
do j=1 for @.hi-1 /*gen list of piPrime numbers<prime(hi)*/
if !.j then pips= pips + 1 /*Is J prime? Then bump pips number.*/
if cols==0 then iterate /*Build the list (to be shown later)? */
c= commas(pips) /*maybe add commas to the number. */
$= $ right(c, max(w, length(c) ) ) /*add a Frobenius #──►list, allow big #*/
if j//cols\==0 then iterate /*have we populated a line of output? */
say center(idx, 7)'│' substr($, 2); $= /*display what we have so far (cols). */
idx= idx + cols /*bump the index count for the output*/
end /*j*/
if $\=='' then say center(idx, 7)"│" substr($, 2) /*possible display residual output.*/
say
say 'Found ' commas(j-1)", the" @pips
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?; do jc=length(?)-3 to 1 by -3; ?=insert(',', ?, jc); end; return ?
/*──────────────────────────────────────────────────────────────────────────────────────*/
genP: !.= 0 /*placeholders for primes (semaphores).*/
@.1=2; @.2=3; @.3=5; @.4=7; @.5=11 /*define some low primes. */
!.2=1; !.3=1; !.5=1; !.7=1; !.11=1 /* " " " " flags. */
#=5; s.#= @.# **2 /*number of primes so far; prime². */
/* [↓] generate more primes ≤ high.*/
do [email protected].#+2 by 2 until #>hi /*find odd primes from here on. */
parse var j '' -1 _; if _==5 then iterate /*J divisible by 5? (right dig)*/
if j// 3==0 then iterate /*" " " 3? */
if j// 7==0 then iterate /*" " " 7? */
/* [↑] the above 3 lines saves time.*/
do k=5 while s.k<=j /* [↓] divide by the known odd primes.*/
if j // @.k == 0 then iterate j /*Is J ÷ X? Then not prime. ___ */
end /*k*/ /* [↑] only process numbers ≤ √ J */
#= #+1; @.#= j; s.#= j*j; !.j= 1 /*bump # of Ps; assign next P; P²; P# */
end /*j*/; return
- output when using the default inputs:
index │ number of primes that are (for all N) ≤ prime(22) which is 79 ───────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────────── 1 │ 0 1 2 2 3 3 4 4 4 4 11 │ 5 5 6 6 6 6 7 7 8 8 21 │ 8 8 9 9 9 9 9 9 10 10 31 │ 11 11 11 11 11 11 12 12 12 12 41 │ 13 13 14 14 14 14 15 15 15 15 51 │ 15 15 16 16 16 16 16 16 17 17 61 │ 18 18 18 18 18 18 19 19 19 19 71 │ 20 20 21 21 21 21 21 21 Found 78, the number of primes that are (for all N) ≤ prime(22) which is 79
Ring[edit]
load "stdlib.ring"
decimals(0)
see "working..." + nl
see "Piprimes are:" + nl
row = 0
limit1 = 400
Prim = []
for n = 1 to limit1
if isprime(n)
add(Prim,n)
ok
next
for n = 1 to len(Prim)
for m = 1 to len(Prim)
if Prim[m] > n
ind = m - 1
exit
ok
next
row = row + 1
see "" + ind + " "
if row%10 = 0
see nl
ok
next
see nl + "Found " + row + " Piprimes." + nl
see "done..." + nl
- Output:
working... Piprimes are: 0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10 11 11 11 11 11 11 12 12 12 12 13 13 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 16 17 17 18 18 18 18 18 18 19 19 19 19 20 20 21 21 21 21 21 21 Found 78 Piprimes. done...
Wren[edit]
import "/math" for Int
import "/seq" for Lst
import "/fmt" for Fmt
var primes = Int.primeSieve(79) // go up to the 22nd
var ix = 0
var n = 1
var count = 0
var pi = []
while (true) {
if (primes[ix] <= n) {
count = count + 1
if (count == 22) break
ix = ix + 1
}
n = n + 1
pi.add(count)
}
System.print("pi(n), the number of primes <= n, where n >= 1 and pi(n) < 22:")
for (chunk in Lst.chunks(pi, 10)) Fmt.print("$2d", chunk)
System.print("\nHighest n for this range = %(pi.count).")
- Output:
pi(n), the number of primes <= n, where n >= 1 and pi(n) < 22: 0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10 11 11 11 11 11 11 12 12 12 12 13 13 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 16 17 17 18 18 18 18 18 18 19 19 19 19 20 20 21 21 21 21 21 21 Highest n for this range = 78.