# Equal prime and composite sums

Equal prime and composite sums
You are encouraged to solve this task according to the task description, using any language you may know.

Suppose we have a sequence of prime sums, where each term Pn is the sum of the first n primes.

```P = (2), (2 + 3), (2 + 3 + 5), (2 + 3 + 5 + 7), (2 + 3 + 5 + 7 + 11), ...
```
```P = 2, 5, 10, 17, 28, etc.
```

Further; suppose we have a sequence of composite sums, where each term Cm is the sum of the first m composites.

```C = (4), (4 + 6), (4 + 6 + 8), (4 + 6 + 8 + 9), (4 + 6 + 8 + 9 + 10), ...
```
```C = 4, 10, 18, 27, 37, etc.
```

Notice that the third term of P; P3 (10) is equal to the second term of C; C2 (10);

• Find and display the indices (n, m) and value of at least the first 6 terms of the sequence of numbers that are both the sum of the first n primes and the first m composites.

## C++

Library: Primesieve
```#include <primesieve.hpp>

#include <chrono>
#include <iomanip>
#include <iostream>
#include <locale>

class composite_iterator {
public:
composite_iterator();
uint64_t next_composite();

private:
uint64_t composite;
uint64_t prime;
primesieve::iterator pi;
};

composite_iterator::composite_iterator() {
composite = prime = pi.next_prime();
for (; composite == prime; ++composite)
prime = pi.next_prime();
}

uint64_t composite_iterator::next_composite() {
uint64_t result = composite;
while (++composite == prime)
prime = pi.next_prime();
return result;
}

int main() {
std::cout.imbue(std::locale(""));
auto start = std::chrono::high_resolution_clock::now();
composite_iterator ci;
primesieve::iterator pi;
uint64_t prime_sum = pi.next_prime();
uint64_t composite_sum = ci.next_composite();
uint64_t prime_index = 1, composite_index = 1;
std::cout << "Sum                   | Prime Index  | Composite Index\n";
std::cout << "------------------------------------------------------\n";
for (int count = 0; count < 11;) {
if (prime_sum == composite_sum) {
std::cout << std::right << std::setw(21) << prime_sum << " | "
<< std::setw(12) << prime_index << " | " << std::setw(15)
<< composite_index << '\n';
composite_sum += ci.next_composite();
prime_sum += pi.next_prime();
++prime_index;
++composite_index;
++count;
} else if (prime_sum < composite_sum) {
prime_sum += pi.next_prime();
++prime_index;
} else {
composite_sum += ci.next_composite();
++composite_index;
}
}
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> duration(end - start);
std::cout << "\nElapsed time: " << duration.count() << " seconds\n";
}
```
Output:
```Sum                   | Prime Index  | Composite Index
------------------------------------------------------
10 |            3 |               2
1,988 |           33 |              51
14,697 |           80 |             147
83,292 |          175 |             361
1,503,397 |          660 |           1,582
18,859,052 |        2,143 |           5,699
93,952,013 |        4,556 |          12,821
89,171,409,882 |      118,785 |         403,341
9,646,383,703,961 |    1,131,142 |       4,229,425
209,456,854,921,713 |    5,012,372 |      19,786,181
3,950,430,820,867,201 |   20,840,220 |      86,192,660

Elapsed time: 0.330966 seconds
```

## F#

This task uses Extensible Prime Generator (F#)

```// Equal prime and composite sums. Nigel Galloway: March 3rd., 2022
let fN(g:seq<int64>)=let g=(g|>Seq.scan(fun(_,n,i) g->(g,n+g,i+1))(0,0L,0)|>Seq.skip 1).GetEnumerator() in (fun()->g.MoveNext()|>ignore; g.Current)
let fG n g=let rec fG a b=seq{match a,b with ((_,p,_),(_,c,_)) when p<c->yield! fG(n()) b |((_,p,_),(_,c,_)) when p>c->yield! fG a (g()) |_->yield(a,b); yield! fG(n())(g())} in fG(n())(g())
fG(fN(primes64()))(fN(primes64()|>Seq.pairwise|>Seq.collect(fun(n,g)->[1L+n..g-1L])))|>Seq.take 11|>Seq.iter(fun((n,i,g),(e,_,l))->printfn \$"Primes up to %d{n} at position %d{g} and composites up to %d{e} at position %d{l} sum to %d{i}.")
```
Output:
```Primes up to 5 at position 3 and composites up to 6 at position 2 sum to 10.
Primes up to 137 at position 33 and composites up to 72 at position 51 sum to 1988.
Primes up to 409 at position 80 and composites up to 190 at position 147 sum to 14697.
Primes up to 1039 at position 175 and composites up to 448 at position 361 sum to 83292.
Primes up to 4937 at position 660 and composites up to 1868 at position 1582 sum to 1503397.
Primes up to 18787 at position 2143 and composites up to 6544 at position 5699 sum to 18859052.
Primes up to 43753 at position 4556 and composites up to 14522 at position 12821 sum to 93952013.
Primes up to 1565929 at position 118785 and composites up to 440305 at position 403341 sum to 89171409882.
Primes up to 17662763 at position 1131142 and composites up to 4548502 at position 4229425 sum to 9646383703961.
Primes up to 86254457 at position 5012372 and composites up to 21123471 at position 19786181 sum to 209456854921713.
Primes up to 390180569 at position 20840220 and composites up to 91491160 at position 86192660 sum to 3950430820867201.
```

## FreeBASIC

Translation of: XPL0
```#include "isprime.bas"

Dim As Integer i = 0
Dim As Integer IndN = 1, IndM = 1
Dim As Integer NumP = 2, NumC = 4
Dim As Integer SumP = 2, SumC = 4
Print "               sum    prime sum     composite sum"
Do
If SumC > SumP Then
Do
NumP += 1
Loop Until isPrime(NumP)
SumP += NumP
IndN += 1
End If
If SumP > SumC Then
Do
NumC += 1
Loop Until Not isPrime(NumC)
SumC += NumC
IndM += 1
End If
If SumP = SumC Then
Print Using "##,###,###,###,### - ##,###,###  - ##,###,###"; SumP; IndN; IndM
i += 1
If i >= 9 Then Exit Do
Do
NumC += 1
Loop Until Not isPrime(NumC)
SumC += NumC
IndM += 1
End If
Loop
```
Output:
```               sum    prime sum     composite sum
10 -          3  -          2
1,988 -         33  -         51
14,697 -         80  -        147
83,292 -        175  -        361
1,503,397 -        660  -      1,582
18,859,052 -      2,143  -      5,699
93,952,013 -      4,556  -     12,821
89,171,409,882 -    118,785  -    403,341
9,646,383,703,961 -  1,131,142  -  4,229,425```

## Go

Translation of: Wren
Library: Go-rcu
```package main

import (
"fmt"
"log"
"rcu"
"sort"
)

func ord(n int) string {
if n < 0 {
log.Fatal("Argument must be a non-negative integer.")
}
m := n % 100
if m >= 4 && m <= 20 {
return fmt.Sprintf("%sth", rcu.Commatize(n))
}
m %= 10
suffix := "th"
if m == 1 {
suffix = "st"
} else if m == 2 {
suffix = "nd"
} else if m == 3 {
suffix = "rd"
}
return fmt.Sprintf("%s%s", rcu.Commatize(n), suffix)
}

func main() {
limit := int(4 * 1e8)
c := rcu.PrimeSieve(limit-1, true)
var compSums []int
var primeSums []int
csum := 0
psum := 0
for i := 2; i < limit; i++ {
if c[i] {
csum += i
compSums = append(compSums, csum)
} else {
psum += i
primeSums = append(primeSums, psum)
}
}

for i := 0; i < len(primeSums); i++ {
ix := sort.SearchInts(compSums, primeSums[i])
if ix < len(compSums) && compSums[ix] == primeSums[i] {
cps := rcu.Commatize(primeSums[i])
fmt.Printf("%21s - %12s prime sum, %12s composite sum\n", cps, ord(i+1), ord(ix+1))
}
}
}
```
Output:
```                   10 -          3rd prime sum,          2nd composite sum
1,988 -         33rd prime sum,         51st composite sum
14,697 -         80th prime sum,        147th composite sum
83,292 -        175th prime sum,        361st composite sum
1,503,397 -        660th prime sum,      1,582nd composite sum
18,859,052 -      2,143rd prime sum,      5,699th composite sum
93,952,013 -      4,556th prime sum,     12,821st composite sum
89,171,409,882 -    118,785th prime sum,    403,341st composite sum
9,646,383,703,961 -  1,131,142nd prime sum,  4,229,425th composite sum
209,456,854,921,713 -  5,012,372nd prime sum, 19,786,181st composite sum
3,950,430,820,867,201 - 20,840,220th prime sum, 86,192,660th composite sum
```

## J

Brute force seems fast enough for this task

```Pn=: +/\ pn=: p: i.1e6 NB. first million primes pn and their running sum Pn
Cn=: +/\(4+i.{:pn)-.pn NB. running sum of composites starting at 4 and excluding those primes
both=: Pn(e.#[)Cn NB. numbers in both sequences

both,.(Pn i.both),.Cn i.both NB. values, Pn index m, Cn index n
10      2      1
1988     32     50
14697     79    146
83292    174    360
1503397    659   1581
18859052   2142   5698
93952013   4555  12820
89171409882 118784 403340
```

## jq

Works with: jq

Works with gojq, the Go implementation of jq

See Erdős-primes#jq for a suitable definition of `is_prime` as used here.

The program given in this entry requires foreknowledge of the appropriate size of the (virtual) Eratosthenes sieve.

```def lpad(\$len): tostring | (\$len - length) as \$l | (" " * \$l)[:\$l] +.;

{compSums:[],
primeSums:[],
csum:0,
psum:0 }
| reduce range(2; \$sievesize) as \$i (.;
if \$i|is_prime
then .psum += \$i
| .primeSums += [.psum]
else .csum += \$i
| .compSums += [ .csum ]
end)
| range(0; .primeSums|length) as \$i
| .primeSums[\$i] as \$ps
| (.compSums | index( \$ps )) as \$ix
| select(\$ix >= 0)
;

Output:
```                   10 -                     3 prime sum,            2 composite sum
1988 -                    33 prime sum,           51 composite sum
14697 -                    80 prime sum,          147 composite sum
83292 -                   175 prime sum,          361 composite sum
1503397 -                   660 prime sum,         1582 composite sum
18859052 -                  2143 prime sum,         5699 composite sum
93952013 -                  4556 prime sum,        12821 composite sum
```

## Julia

```using Primes

function getsequencematches(N, masksize = 1_000_000_000)
found, psum, csum, pindex, cindex, pcount, ccount = 0, 2, 4, 2, 4, 1, 1
incrementpsum() = (pindex += 1; if pmask[pindex] psum += pindex; pcount += 1 end)
incrementcsum() = (cindex += 1; if !pmask[cindex] csum += cindex; ccount += 1 end)
while found < N
while psum < csum
pindex >= masksize && return
incrementpsum()
end
if psum == csum
println("Primes up to \$pindex at position \$pcount and composites up to \$cindex at position \$ccount sum to \$psum.")
found += 1
while psum == csum
incrementpsum()
incrementcsum()
end
end
while csum < psum
incrementcsum()
end
end
end

@time getsequencematches(11)
```
Output:
```Primes up to 5 at position 3 and composites up to 6 at position 2 sum to 10.
Primes up to 137 at position 33 and composites up to 72 at position 51 sum to 1988.
Primes up to 409 at position 80 and composites up to 190 at position 147 sum to 14697.
Primes up to 1039 at position 175 and composites up to 448 at position 361 sum to 83292.
Primes up to 4937 at position 660 and composites up to 1868 at position 1582 sum to 1503397.
Primes up to 18787 at position 2143 and composites up to 6544 at position 5699 sum to 18859052.
Primes up to 43753 at position 4556 and composites up to 14522 at position 12821 sum to 93952013.
Primes up to 1565929 at position 118785 and composites up to 440305 at position 403341 sum to 89171409882.
Primes up to 17662763 at position 1131142 and composites up to 4548502 at position 4229425 sum to 9646383703961.
Primes up to 86254457 at position 5012372 and composites up to 21123471 at position 19786181 sum to 209456854921713.
Primes up to 390180569 at position 20840220 and composites up to 91491160 at position 86192660 sum to 3950430820867201.
44.526876 seconds (1.09 G allocations: 16.546 GiB, 3.13% gc time)
```

## Mathematica/Wolfram Language

```\$HistoryLength = 1;
ub = 10^8;
ps = Prime[Range[PrimePi[ub]]];
cs = Complement[Range[2, ub], ps];
cps = Accumulate[ps];
ccs = Accumulate[cs];
indices = Intersection[cps, ccs];
poss = {FirstPosition[cps, #], FirstPosition[ccs, #]} & /@ indices;
TableForm[MapThread[Prepend, {Flatten /@ poss, indices}],
TableHeadings -> {None, {"Sum", "Prime Index", "Composite Index"}},
TableAlignments -> Right]
```
Output:
```Sum	Prime Index	Composite Index
10		3		2
1988		33		51
14697		80		147
83292		175		361
1503397		660		1582
18859052	2143		5699
93952013	4556		12821
89171409882	118785		403341
9646383703961	1131142		4229425
209456854921713	5012372		19786181```

## Perl

Not especially fast, but minimal memory usage.

Library: ntheory
```use strict;
use warnings;
use feature <say state>;
use ntheory <is_prime next_prime>;

sub comma  { reverse ((reverse shift) =~ s/(.{3})/\$1,/gr) =~ s/^,//r }
sub suffix { my(\$d) = \$_ =~ /(.)\$/; \$d == 1 ? 'st' : \$d == 2 ? 'nd' : \$d == 3 ? 'rd' : 'th' }

sub prime_sum {
state \$s = state \$p = 2; state \$i = 1;
if (\$i < (my \$n = shift) ) { do { \$s += \$p = next_prime(\$p) } until ++\$i == \$n }
\$s
}

sub composite_sum {
state \$s = state \$c = 4; state \$i = 1;
if (\$i < (my \$n = shift) ) { do { 1 until ! is_prime(++\$c); \$s += \$c } until ++\$i == \$n }
\$s
}

my \$ci++;
for my \$pi (1 .. 5_012_372) {
next if prime_sum(\$pi) < composite_sum(\$ci);
printf( "%20s - %11s prime sum, %12s composite sum\n",
comma(prime_sum \$pi), comma(\$pi).suffix(\$pi), comma(\$ci).suffix(\$ci))
and next if prime_sum(\$pi) == composite_sum(\$ci);
\$ci++;
redo
}
```
Output:
```                  10 -         3rd prime sum,          2nd composite sum
1,988 -        33rd prime sum,         51st composite sum
14,697 -        80th prime sum,        147th composite sum
83,292 -       175th prime sum,        361st composite sum
1,503,397 -       660th prime sum,      1,582nd composite sum
18,859,052 -     2,143rd prime sum,      5,699th composite sum
93,952,013 -     4,556th prime sum,     12,821st composite sum
89,171,409,882 -   118,785th prime sum,    403,341st composite sum
9,646,383,703,961 - 1,131,142nd prime sum,  4,229,425th composite sum
209,456,854,921,713 - 5,012,372nd prime sum, 19,786,181st composite sum```

## Phix

```with javascript_semantics
atom t0 = time()
atom ps = 2,  -- current prime sum
cs = 4   -- current composite sum
integer psn = 1, npi = 1,  -- (see below)
csn = 1, nci = 3, nc = 4, ncp = 5,
found = 0
constant limit = iff(platform()=JS?10:11)
while found<limit do
integer c = compare(ps,cs) -- {-1,0,+1}
if c=0 then
printf(1,"%,21d - %,10d%s prime sum, %,10d%s composite sum   (%s)\n",
{ps, psn, ord(psn), csn, ord(csn), elapsed(time()-t0)})
found += 1
end if
if c<=0 then
psn += 1    -- prime sum number
npi += 1    -- next prime index
ps += get_prime(npi)
end if
if c>=0 then
csn += 1    -- composite sum number
nc += 1     -- next composite?
if nc=ncp then  -- "", erm no
nci += 1    -- next prime index
ncp = get_prime(nci)
nc += 1 -- next composite (even!)
end if
cs += nc
end if
end while
```
Output:
```                   10 -          3rd prime sum,          2nd composite sum   (0s)
1,988 -         33rd prime sum,         51st composite sum   (0.2s)
14,697 -         80th prime sum,        147th composite sum   (0.2s)
83,292 -        175th prime sum,        361st composite sum   (0.2s)
1,503,397 -        660th prime sum,      1,582nd composite sum   (0.2s)
18,859,052 -      2,143rd prime sum,      5,699th composite sum   (0.2s)
93,952,013 -      4,556th prime sum,     12,821st composite sum   (0.2s)
89,171,409,882 -    118,785th prime sum,    403,341st composite sum   (0.3s)
9,646,383,703,961 -  1,131,142nd prime sum,  4,229,425th composite sum   (1.3s)
209,456,854,921,713 -  5,012,372nd prime sum, 19,786,181st composite sum   (5.2s)
3,950,430,820,867,201 - 20,840,220th prime sum, 86,192,660th composite sum   (22.4s)
```

The next value in the series is beyond an 80 bit float, and I suspect this is one of those sort of tasks where gmp, or perhaps I should rather say over a billion invocations of the Phix interface to it, might not shine quite so brightly.

## Raku

Let it run until I got bored and killed it. Time is total accumulated seconds since program start.

```use Lingua::EN::Numbers:ver<2.8.2+>;

my \$prime-sum =     [\+] (2..*).grep:  *.is-prime;
my \$composite-sum = [\+] (2..*).grep: !*.is-prime;

my \$c-index = 0;

for ^∞ -> \$p-index {
next if \$prime-sum[\$p-index] < \$composite-sum[\$c-index];
printf( "%20s - %11s prime sum, %12s composite sum   %5.2f seconds\n",
\$prime-sum[\$p-index].&comma, ordinal-digit(\$p-index + 1, :u, :c),
ordinal-digit(\$c-index + 1, :u, :c), now - INIT now )
and next if \$prime-sum[\$p-index] == \$composite-sum[\$c-index];
++\$c-index;
redo;
};
```
Output:
```                  10 -         3ʳᵈ prime sum,          2ⁿᵈ composite sum    0.01 seconds
1,988 -        33ʳᵈ prime sum,         51ˢᵗ composite sum    0.01 seconds
14,697 -        80ᵗʰ prime sum,        147ᵗʰ composite sum    0.02 seconds
83,292 -       175ᵗʰ prime sum,        361ˢᵗ composite sum    0.03 seconds
1,503,397 -       660ᵗʰ prime sum,      1,582ⁿᵈ composite sum    0.04 seconds
18,859,052 -     2,143ʳᵈ prime sum,      5,699ᵗʰ composite sum    0.08 seconds
93,952,013 -     4,556ᵗʰ prime sum,     12,821ˢᵗ composite sum    0.14 seconds
89,171,409,882 -   118,785ᵗʰ prime sum,    403,341ˢᵗ composite sum    4.23 seconds
9,646,383,703,961 - 1,131,142ⁿᵈ prime sum,  4,229,425ᵗʰ composite sum   76.23 seconds
209,456,854,921,713 - 5,012,372ⁿᵈ prime sum, 19,786,181ˢᵗ composite sum  968.26 seconds
^C```

## Sidef

```func f(n) {

var (
p = 2, sp = p,
c = 4, sc = c,
)

var res = []

while (res.len < n) {
if (sc == sp) {
res << [sp, c.composite_count, p.prime_count]
sc += c.next_composite!
}
while (sp < sc) {
sp += p.next_prime!
}
while (sc < sp) {
sc += c.next_composite!
}
}

return res
}

f(8).each_2d {|n, ci, pi|
printf("%12s = %-9s = %s\n", n, "P(#{pi})", "C(#{ci})")
}
```
Output:
```          10 = P(3)      = C(2)
1988 = P(33)     = C(51)
14697 = P(80)     = C(147)
83292 = P(175)    = C(361)
1503397 = P(660)    = C(1582)
18859052 = P(2143)   = C(5699)
93952013 = P(4556)   = C(12821)
89171409882 = P(118785) = C(403341)
```

(takes ~6 seconds)

## Wren

Takes around 2 minutes, which is respectable for Wren, but uses a lot of memory.

```import "./math" for Int
import "./sort" for Find
import "/fmt" for Fmt

var limit = 4 * 1e8
var c = Int.primeSieve(limit - 1, false)
var compSums = []
var primeSums = []
var csum = 0
var psum = 0
for (i in 2...limit) {
if (c[i]) {
csum = csum + i
} else {
psum = psum + i
}
}

for (i in 0...primeSums.count) {
var ix
if ((ix = Find.first(compSums, primeSums[i])) >= 0) {
Fmt.print("\$,21d - \$,12r prime sum, \$,12r composite sum", primeSums[i], i+1, ix+1)
}
}
```
Output:
```                   10 -          3rd prime sum,          2nd composite sum
1,988 -         33rd prime sum,         51st composite sum
14,697 -         80th prime sum,        147th composite sum
83,292 -        175th prime sum,        361st composite sum
1,503,397 -        660th prime sum,      1,582nd composite sum
18,859,052 -      2,143rd prime sum,      5,699th composite sum
93,952,013 -      4,556th prime sum,     12,821st composite sum
89,171,409,882 -    118,785th prime sum,    403,341st composite sum
9,646,383,703,961 -  1,131,142nd prime sum,  4,229,425th composite sum
209,456,854,921,713 -  5,012,372nd prime sum, 19,786,181st composite sum
3,950,430,820,867,201 - 20,840,220th prime sum, 86,192,660th composite sum
```

## XPL0

```func IsPrime(N);        \Return 'true' if N is prime
int  N, I;
[if N <= 2 then return N = 2;
if (N&1) = 0 then \even >2\ return false;
for I:= 3 to sqrt(N) do
[if rem(N/I) = 0 then return false;
I:= I+1;
];
return true;
];

int Cnt, N, M, SumP, SumC, NumP, NumC;
[Cnt:= 0;
N:= 1;  M:= 1;
NumP:= 2;  NumC:= 4;
SumP:= 2;  SumC:= 4;
Format(8, 0);
Text(0, "     sum     prime  composit
");
loop    [if SumC > SumP then
[repeat NumP:= NumP+1 until IsPrime(NumP);
SumP:= SumP + NumP;
N:= N+1;
];
if SumP > SumC then
[repeat NumC:= NumC+1 until not IsPrime(NumC);
SumC:= SumC + NumC;
M:= M+1;
];
if SumP = SumC then
[RlOut(0, float(SumP));
RlOut(0, float(N));
RlOut(0, float(M));  CrLf(0);
Cnt:= Cnt+1;
if Cnt >= 6 then quit;
repeat NumC:= NumC+1 until not IsPrime(NumC);
SumC:= SumC + NumC;
M:= M+1;
];
];
]```
Output:
```     sum     prime  composit
10       3       2
1988      33      51
14697      80     147
83292     175     361
1503397     660    1582
18859052    2143    5699
```