Elementary cellular automaton/Random number generator: Difference between revisions

Added FreeBASIC
m (→‎{{header|Phix}}: added syntax colouring, marked p2js compatible)
(Added FreeBASIC)
 
(8 intermediate revisions by 6 users not shown)
Line 1:
{{task}}
[[wp:Rule 30|Rule 30]] is considered to be chaotic enough to generate good pseudo-random numbers. As a matter of fact, for a long time rule 30 iswas used by the [[wp:Mathematica|Mathematica]] software for its default random number generator.
 
Steven Wolfram's recommendation for random number generation from rule 30 consists in extracting successive bits in a fixed position in the array of cells, as the automaton changes state.
Line 12:
;Reference:
* [http://www.cs.indiana.edu/~dgerman/2005midwestNKSconference/dgelbm.pdf Cellular automata: Is Rule 30 random]? (PDF).
 
 
=={{header|11l}}==
{{trans|Nim}}
 
<langsyntaxhighlight lang="11l">V n = 64
 
F pow2(x)
Line 35 ⟶ 36:
print()
 
evolve(1, 30)</langsyntaxhighlight>
 
{{out}}
Line 44 ⟶ 45:
=={{header|C}}==
64-bits array size, cyclic borders.
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <limits.h>
 
Line 74 ⟶ 75:
evolve(1, 30);
return 0;
}</langsyntaxhighlight>
{{out}}
<pre> 220 197 147 174 117 97 149 171 100 151</pre>
Line 80 ⟶ 81:
=={{header|C++}}==
We'll re-write the code of the parent task here.
<langsyntaxhighlight lang="cpp">#include <bitset>
#include <stdio.h>
 
Line 117 ⟶ 118:
printf("%u%c", byte(state), i ? ' ' : '\n');
return 0;
}</langsyntaxhighlight>
{{out}}
<pre>220 197 147 174 117 97 149 171 240 241</pre>
Line 124 ⟶ 125:
{{trans|C}}
Adapted from the C version, with improvements and bug fixes. Optimized for performance as requested in the task description. This is a lazy range.
<langsyntaxhighlight lang="d">import std.stdio, std.range, std.typecons;
 
struct CellularRNG {
Line 175 ⟶ 176:
CellularRNG(1, 30).take(10).writeln;
CellularRNG(1, 30).drop(2_000_000).front.writeln;
}</langsyntaxhighlight>
{{out}}
<pre>[220, 197, 147, 174, 117, 97, 149, 171, 100, 151]
44</pre>
Run-time: less than two seconds with the ldc2 compiler.
 
=={{header|FreeBASIC}}==
{{trans|Go}}
<syntaxhighlight lang="vbnet">Const n As Uinteger = 64
 
#define pow2(x) Culng(1) Shl x
 
Sub Evolve(state As Integer, rule As Integer)
Dim As Integer i, p, q
Dim As Ulongint b, st, t1, t2, t3
For p = 0 To 9
b = 0
For q = 7 To 0 Step -1
st = state
b Or= (st And 1) Shl q
state = 0
For i = 0 To n - 1
t1 = Iif(i > 0, st Shr (i - 1), st Shr 63)
Select Case i
Case 0: t2 = st Shl 1
Case 1: t2 = st Shl 63
Case Else: t2 = st Shl (n + 1 - i)
End Select
t3 = 7 And (t1 Or t2)
If (rule And pow2(t3)) <> 0 Then state Or= pow2(i)
Next i
Next q
Print Using "####"; b;
Next p
Print
End Sub
 
Evolve(1, 30)
 
Sleep</syntaxhighlight>
{{out}}
<pre> 220 197 147 174 117 97 149 171 100 151</pre>
 
=={{header|F_Sharp|F#}}==
This task uses [[Elementary cellular automaton#The_Function]]
<langsyntaxhighlight lang="fsharp">
// Generate random numbers using Rule 30. Nigel Galloway: August 1st., 2019
eca 30 [|yield 1; yield! Array.zeroCreate 99|]|>Seq.chunkBySize 8|>Seq.map(fun n->n|>Array.mapi(fun n g->g.[0]<<<(7-n))|>Array.sum)|>Seq.take 10|>Seq.iter(printf "%d "); printfn ""
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 194 ⟶ 233:
=={{header|Go}}==
{{trans|C}}
<langsyntaxhighlight lang="go">package main
 
import "fmt"
Line 239 ⟶ 278:
func main() {
evolve(1, 30)
}</langsyntaxhighlight>
 
{{out}}
Line 250 ⟶ 289:
Assume the comonadic solution given at [[Elementary cellular automaton#Haskell]] is packed in a module <code>CellularAutomata</code>
 
<langsyntaxhighlight Haskelllang="haskell">import CellularAutomata (fromList, rule, runCA)
import Control.Comonad
import Data.List (unfoldr)
Line 263 ⟶ 302:
(fromList (1 : replicate size 0))
 
fromBits = foldl ((+) . (2 *)) 0</langsyntaxhighlight>
 
{{Out}}
Line 271 ⟶ 310:
Using the rule 30 CA it is possible to determine the <code>RandomGen</code> instance which could be utilized by the <code>Random</code> class:
 
<langsyntaxhighlight Haskelllang="haskell">import System.Random
 
instance RandomGen (Cycle Int) where
Line 277 ⟶ 316:
let x = c =>> step (rule 30)
in (fromBits (view x), x)
split = (,) <*> (fromList . reverse . view)</langsyntaxhighlight>
 
<pre>λ> let r30 = fromList [1,0,1,0,1,0,1,0,1,0,1,0,1] :: Cycle Int
Line 299 ⟶ 338:
=={{header|J}}==
ca is a cellular automata class. The rng class inherits ca and extends it with bit and byte verbs to sample the ca.
<syntaxhighlight lang="j">
<lang J>
coclass'ca'
DOC =: 'locale creation: (RULE ; INITIAL_STATE) conew ''ca'''
Line 311 ⟶ 350:
byte =: [: #. [: , [: bit"0 (i.8)"_
coclass'base'
</syntaxhighlight>
</lang>
Having installed these into a j session we create and use the mathematica prng.
<pre>
Line 317 ⟶ 356:
byte__m"0 i.10
220 197 147 174 117 97 149 171 100 151
</pre>
 
=={{header|Java}}==
<syntaxhighlight lang="java">
public class ElementaryCellularAutomatonRandomNumberGenerator {
 
public static void main(String[] aArgs) {
final int seed = 989898989;
evolve(seed, 30);
}
private static void evolve(int aState, int aRule) {
long state = aState;
for ( int i = 0; i <= 9; i++ ) {
int b = 0;
for ( int q = 7; q >= 0; q-- ) {
long stateCopy = state;
b |= ( stateCopy & 1 ) << q;
state = 0;
for ( int j = 0; j < BIT_COUNT; j++ ) {
long t = ( stateCopy >>> ( j - 1 ) ) | ( stateCopy << ( BIT_COUNT + 1 - j ) ) & 7;
if ( ( aRule & ( 1L << t ) ) != 0 ) {
state |= 1 << j;
}
}
}
System.out.print(" " + b);
}
System.out.println();
}
private static final int BIT_COUNT = 64;
 
}
</syntaxhighlight>
{{ out }}
<pre>
231 223 191 126 253 251 247 239 223 191
</pre>
 
=={{header|jq}}==
'''Works with jq and gojq, the C and Go implementations of jq'''
 
The following also works with jaq, the Rust implementation of jq, provided
the "include" directive is replaced with the set of definitions from
the parent task, and that a suitable alternative to 100*"0" is
presented.
 
<syntaxhighlight lang=jq>
include "elementary-cellular-automaton" {search : "."};
 
# If using jq, the def of _nwise can be omitted.
def _nwise($n):
def n: if length <= $n then . else .[0:$n] , (.[$n:] | n) end;
n;
 
# Input: an array of bits represented by 0s, 1s, "0"s, or "1"s
# Output: the corresponding decimal on the assumption that the leading bits are least significant,
# e.g. [0,1] => 2
def binary2number:
reduce (.[]|tonumber) as $x ({p:1}; .n += .p * $x | .p *= 2) | .n;
("1" + 100 * "0" ) | [automaton(30; 80) | .[0:1]] | [_nwise(8) | reverse | binary2number]
</syntaxhighlight>
{{output}}
<pre>
[220,197,147,174,117,97,149,171,240,241]
</pre>
 
=={{header|Julia}}==
{{trans|C, Go}}
<langsyntaxhighlight lang="julia">function evolve(state, rule, N=64)
B(x) = UInt64(1) << x
for p in 0:9
Line 343 ⟶ 449:
 
evolve(1, 30)
</langsyntaxhighlight>{{out}}
<pre>
220 197 147 174 117 97 149 171 100 151
Line 350 ⟶ 456:
=={{header|Kotlin}}==
{{trans|C}}
<langsyntaxhighlight lang="scala">// version 1.1.51
 
const val N = 64
Line 376 ⟶ 482:
fun main(args: Array<String>) {
evolve(1, 30)
}</langsyntaxhighlight>
 
{{out}}
Line 384 ⟶ 490:
 
=={{header|Mathematica}} / {{header|Wolfram Language}}==
<langsyntaxhighlight Mathematicalang="mathematica">FromDigits[#, 2] & /@ Partition[Flatten[CellularAutomaton[30, {{1}, 0}, {200, 0}]], 8]</langsyntaxhighlight>
{{out}}
<pre>{220, 197, 147, 174, 117, 97, 149, 171, 240, 241, 92, 18, 199, 27, 104, 8, 251, 167, 29, 112, 100, 103, 159, 129, 253}</pre>
Line 390 ⟶ 496:
=={{header|Nim}}==
{{trans|Kotlin}}
<langsyntaxhighlight Nimlang="nim">const N = 64
 
template pow2(x: uint): uint = 1u shl x
Line 408 ⟶ 514:
echo ""
 
evolve(1, 30)</langsyntaxhighlight>
 
{{out}}
Line 416 ⟶ 522:
{{Works with|Free Pascal}}
Using ROR and ROL is as fast as assembler and more portable.<BR>[https://tio.run/##7VZdb@pGEH33r5iHSEAvYJsQ0kBTifBxawmwC6a9bVVFjr3AKmZtrZdwaZS/Xjq7iwPckOThvvQhSHx45szMmbPD7qZBFgZxZZaG263HkzkPljBexeTcahmmuRAibZomYdU1vacpiWhQTfjclE/miHwVtxMRCHIrI26PQpaBWKwTHkfVdRLPMGs1TJamzlxdiGVsPJ45/W6vD32v82QAPJ4Nk4hAl8Tpgj49nrUnw6Hb7YEz8nsDDXA93xk6f7Z9xx2BOyq3B@gwTenqILQ9cD6PIOVJeG0/YfreYNLTgW3P8//wetBxRxN30FPOUdfpPxmrjGQImWyyqaBx1jLChGUCLcvg6zhZsSiDa6j9YFuWpT5a6OLajq9rsNFiPAQczbo3LQg0YUqZaNTRO1uxUNCEwWciOt701qdL0oSdV2xSgrF@J11hNk7ChEcGHLx@oegqH5kGiUQ3oYv6Rq29izB80lwQIBAh07aMOzKnDI1BtpQ0u/6kI6OG7m86BXiCw18I9asq9d/lXvvLKwBFBwFdCVAFAdZULHTFKFFsOMlWMda/1l0WMcibliBbxHBeg0@6gZahwg25XiRacQIOo@JQxBZlMWVk38ChE5PbL1OcGMk8iRaGr1gZR4Q8lBlC96uUl0A/SOJHPNDuYYiyu@NfpSRFmcguSZdMpF2Db11HIyExRQV2x7JOCb7gD8kl7@N5UmQbOvZmg62OAkEfiMOE/H816pUbx4cwYIDDi3PKNij4nGaC8OydLnGsNy5T0@loy807fe@X0tqHgxYfwDSnjCcxCjyHgEWgtJYPL9cB7jawQMxRzqL@@Ul/laQwUj1oj7q61HsCv7EseUevSf5B5IPIB5H/LZHj0/S9nXN/AkxSQiJBMpHv@L5d9i3c8ZzRbgukTTjYUPMNcM2pIDErFp4TwCzhkMn6Gf2HQDKDQrlRLxfgjoqsUNL73@8BX8IqlTguQCSwDu6JNOCJh4A@pqBqu9zdH9RHxcaTcs0QbeVH5qm7lCRvyeCDi4Os@uKc3BXSlZ4vLq9U2Z8rLaXOiQK5Fsfw0qGrEG7CmGSQEg7SiQIXykXfrgirZD5TaFrN2mHYy@Xyg@w@XymqbkVkTviJZfEXBASCQSv/tga2XIndNW3Xukr0TUfN@ilyeWk1CL6aJNjxzNMU4KceXkvHP0s2nATRLrqK5zNec1MakwjkQU2F8cY8Nepqlox63XgpJ16Try4MI@/bgFrNAvvqEuw6vi/rYNuXAOr5Cp9tOWJgX9hGzs04JHNe@y4ydu3H6kXju9hst/@GsziYZ9uKe76tTB7@Aw Try it online!] counting CPU-Cycles 32 vs 31 on Ryzen Zen1 per Byte -> 100Mb/s
<langsyntaxhighlight lang="pascal">Program Rule30;
//http://en.wikipedia.org/wiki/Next_State_Rule_30;
//http://mathworld.wolfram.com/Rule30.html
Line 555 ⟶ 661:
Task;
write(' <ENTER> ');readln;
end.</langsyntaxhighlight>
{{out}}
<pre>//compiled 64-Bit
Line 577 ⟶ 683:
=={{header|Perl}}==
{{trans|Raku}}
<langsyntaxhighlight lang="perl">package Automaton {
sub new {
my $class = shift;
Line 613 ⟶ 719:
}
print $sum, $n == 10 ? "\n" : " ";
}</langsyntaxhighlight>
{{out}}
<pre>220 197 147 174 117 97 149 171 240 241</pre>
Line 621 ⟶ 727:
and with the changes marked [2] C++, Haskell, Perl, Python, Ruby, Scheme, and Sidef, but completely different to Rust and Tcl.
No attempt to optimise.
<!--<langsyntaxhighlight Phixlang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #000080;font-style:italic;">--string s = ".........#.........", --(original)</span>
Line 647 ⟶ 753:
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #7060A8;">pp</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">)</span>
<!--</langsyntaxhighlight>-->
{{out}}
<pre>
Line 660 ⟶ 766:
=={{header|Python}}==
===Python: With zero padded ends===
<langsyntaxhighlight lang="python">from elementary_cellular_automaton import eca, eca_wrap
 
def rule30bytes(lencells=100):
Line 669 ⟶ 775:
 
if __name__ == '__main__':
print([b for i,b in zip(range(10), rule30bytes())])</langsyntaxhighlight>
 
{{out}}
Line 676 ⟶ 782:
 
===Python: With wrapping of end cells===
<langsyntaxhighlight lang="python">def rule30bytes(lencells=100):
cells = '1' + '0' * (lencells - 1)
gen = eca_wrap(cells, 30)
while True:
yield int(''.join(next(gen)[0] for i in range(8)), 2))</langsyntaxhighlight>
 
{{out}}
Line 689 ⟶ 795:
Implementation of [[Elementary cellular automaton]] is saved in "Elementary_cellular_automata.rkt"
 
<langsyntaxhighlight lang="racket">#lang racket
;; below is the code from the parent task
(require "Elementary_cellular_automata.rkt")
Line 728 ⟶ 834:
(number->string (C30-rand-64 256) 16)
(number->string (C30-rand-64 256) 16)
(number->string (C30-rand-64 256) 16))</langsyntaxhighlight>
 
{{out}}
Line 740 ⟶ 846:
=={{header|Raku}}==
(formerly Perl 6)
<syntaxhighlight lang="raku" perl6line>class Automaton {
has $.rule;
has @.cells handles <AT-POS>;
has @.code = $!rule.fmt('%08b').flip.comb».Int;
Line 760 ⟶ 866:
my Automaton $a .= new: :rule(30), :cells( flat 1, 0 xx 100 );
 
say :2[$a++.cells[0] xx 8] xx 10;</langsyntaxhighlight>
{{out}}
<pre>220 197 147 174 117 97 149 171 240 241</pre>
 
=={{header|Ruby}}==
<langsyntaxhighlight lang="ruby">size = 100
eca = ElemCellAutomat.new("1"+"0"*(size-1), 30)
eca.take(80).map{|line| line[0]}.each_slice(8){|bin| p bin.join.to_i(2)}</langsyntaxhighlight>
{{out}}
<pre>
Line 783 ⟶ 889:
 
=={{header|Rust}}==
<langsyntaxhighlight lang="rust">
//Assuming the code from the Elementary cellular automaton task is in the namespace.
fn main() {
Line 805 ⟶ 911:
}
}
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 812 ⟶ 918:
 
=={{header|Scheme}}==
<langsyntaxhighlight lang="scheme">
; uses SRFI-1 library http://srfi.schemers.org/srfi-1/srfi-1.html
 
Line 832 ⟶ 938:
 
(random-r30 10)
</syntaxhighlight>
</lang>
 
{{out}}
Line 841 ⟶ 947:
 
=={{header|Sidef}}==
<langsyntaxhighlight lang="ruby">var auto = Automaton(30, [1] + 100.of(0));
 
10.times {
Line 850 ⟶ 956:
};
say sum;
};</langsyntaxhighlight>
{{out}}
<pre>
Line 867 ⟶ 973:
=={{header|Tcl}}==
{{works with|Tcl|8.6}}
<langsyntaxhighlight lang="tcl">oo::class create RandomGenerator {
superclass ElementaryAutomaton
variable s
Line 883 ⟶ 989:
return [scan [join $bits ""] %b]
}
}</langsyntaxhighlight>
Demonstrating:
<langsyntaxhighlight lang="tcl">set rng [RandomGenerator new 31]
for {set r {}} {[llength $r]<10} {} {
lappend r [$rng rand]
}
puts [join $r ,]</langsyntaxhighlight>
{{out}}
220,197,147,174,241,126,135,130,143,234
Line 898 ⟶ 1,004:
{{libheader|Wren-big}}
As Wren cannot deal accurately with 64-bit unsigned integers and bit-wise operations thereon, we need to use BigInt here.
<langsyntaxhighlight ecmascriptlang="wren">import "./big" for BigInt
 
var n = 64
Line 923 ⟶ 1,029:
}
 
evolve.call(BigInt.one, 30)</langsyntaxhighlight>
 
{{out}}
Line 932 ⟶ 1,038:
=={{header|zkl}}==
No attempts at extra credit and not fast.
<langsyntaxhighlight lang="zkl">fcn rule(n){ n=n.toString(2); "00000000"[n.len() - 8,*] + n }
fcn applyRule(rule,cells){
cells=String(cells[-1],cells,cells[0]); // wrap edges
Line 945 ⟶ 1,051:
}
n
}</langsyntaxhighlight>
Note that "var" in a function is "static" in C, ie function local variables, initialized once.
<langsyntaxhighlight lang="zkl">do(10){ rand30().print(","); }</langsyntaxhighlight>
{{out}}
<pre>220,197,147,174,117,97,149,171,100,151,</pre>
2,148

edits