Forest fire
You are encouraged to solve this task according to the task description, using any language you may know.
This page uses content from Wikipedia. The original article was at Forest-fire model. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) |
- Task
Implement the Drossel and Schwabl definition of the forest-fire model.
It is basically a 2D cellular automaton where each cell can be in three distinct states (empty, tree and burning) and evolves according to the following rules (as given by Wikipedia)
- A burning cell turns into an empty cell
- A tree will burn if at least one neighbor is burning
- A tree ignites with probability f even if no neighbor is burning
- An empty space fills with a tree with probability p
Neighborhood is the Moore neighborhood; boundary conditions are so that on the boundary the cells are always empty ("fixed" boundary condition).
At the beginning, populate the lattice with empty and tree cells according to a specific probability (e.g. a cell has the probability 0.5 to be a tree). Then, let the system evolve.
Task's requirements do not include graphical display or the ability to change parameters (probabilities p and f ) through a graphical or command line interface.
- Related tasks
- See Conway's Game of Life
- See Wireworld.
6502 Assembly
<lang asm> ORG $4357
- SYS 17239 or CALL 17239
EMPTY2 = $00 TREE2 = $44 FIRE2 = $99
- common available zero page
GBASL = $26
GBASH = $27
SEED2 = $28 SEED0 = $29 SEED1 = $2A
H2 = $2B V2 = $2C PLOTC = $2D COLOR = $2E PAGE = $2F TOPL = $30 TOPH = $31 MIDL = $32 MIDH = $33 BTML = $34 BTMH = $35 PLOTL = $36 PLOTH = $37 lastzp = $38
tablelo = $5000 tablehi = tablelo+25
JSR START STA V2 LDA #$4C ; JMP instruction STA SEED2 ; temporary JMP LDX #$00 ; y coord table: TXA JSR SEED2 ; temporary JMP GBASCALC LDA GBASL STA tablelo,X LDA GBASH STA tablehi,X LDY #$00 TYA clrline: STA (GBASL),Y INY CPY #40 BNE clrline
INX CPX V2 BNE table
JSR sseed0 JSR sseed2
LDX #$60 STX PAGE STX TOPH LDY #$00 STY TOPL TYA zero: STA (TOPL),Y INY BNE zero INX STX TOPH CPX #$80 BNE zero
loop3: LDX #0 STX TOPL LDA #41 STA MIDL STA PLOTL LDA #83 STA BTML LDA PAGE STA TOPH STA MIDH STA BTMH EOR #$10 STA PLOTH STA PAGE loop2: TXA STX V2 LSR ; F800 PLOT-like... ; PHP ; F801 TAY ; save A in Y without touching C LDA #$0F BCC over2 ADC #$E0 over2: STA PLOTC ; PLOT... LDA tablelo,Y ; lookup instead of GBASCALC STA GBASL LDA tablehi,Y STA GBASH ; PLP ; continue PLOT LDY #$01 ; x coord loop1: STY H2 LDA (MIDL),Y STA (PLOTL),Y BEQ empty BPL tree LDA #EMPTY2 doplot: LDY H2 STA (PLOTL),Y DEY EOR (GBASL),Y AND PLOTC EOR (GBASL),Y STA (GBASL),Y noplot: LDY H2 INY CPY #41 BNE loop1 LDA MIDL STA TOPL LDA MIDH STA TOPH LDA BTML STA MIDL STA PLOTL CLC ADC #42 STA BTML LDA BTMH EOR #$10 STA PLOTH EOR #$10 STA MIDH ADC #$00 STA BTMH LDX V2 INX CPX #48 BNE loop2 JSR QUIT JMP loop3 empty: DEC SEED2 BNE noplot JSR sseed2 ; probability f LDA #TREE2 BNE doplot ignite: LDA #FIRE2 BNE doplot tree: DEC SEED0 BNE check DEC SEED1 BNE check JSR sseed0 ; probability p BNE ignite check: LDA (TOPL),Y ; n ORA (BTML),Y ; s DEY ORA (TOPL),Y ; nw ORA (MIDL),Y ; w ORA (BTML),Y ; sw INY INY ORA (TOPL),Y ; ne ORA (MIDL),Y ; e ORA (BTML),Y ; se BMI ignite BPL noplot
sseed0: LDA #$17 ; 1 in 10007 (prime) STA SEED0 LDA #$27 STA SEED1 RTS sseed2: LDA #$65 ; 1 in 101 (prime) STA SEED2 RTS
default: LDA #<GBASCALC ; setup GBASCALC STA SEED0 LDA #>GBASCALC STA SEED1 LDA #25 ; screen rows RTS GBASCALC: LDY #$00 STY GBASH ASL ASL ASL STA GBASL ASL ROL GBASH ASL ROL GBASH ADC GBASL STA GBASL LDA GBASH ADC #$04 STA GBASH RTS
QUIT: LDA $E000
- APPLE II
CMP #$4C BNE c64quit
BIT $C000 ; apple ii keypress? BPL CONTINUE ; no keypressed then continue BIT $C010 ; clear keyboard strobe BIT $C051 ; text mode
- end APPLE II specific
ABORT: PLA PLA
LDX #GBASL restorzp: LDA $5100,X STA $00,X INX CPX #lastzp BNE restorzp
CONTINUE: RTS
START: LDX #GBASL savezp: LDA $00,X STA $5100,X INX CPX #lastzp BNE savezp
- machine ???
LDA $E000 ; terribly unreliable, oh well
- APPLE II
CMP #$4C ; apple ii? BNE c64start ; nope, try another
BIT $C056 ; low resolution BIT $C052 ; full screen BIT $C054 ; page one BIT $C050 ; graphics
- GBASCALC = $F847
LDA #$47 STA SEED0 LDA #$F8 STA SEED1 LDA #24 ; screen rows RTS
- end APPLE II specific
- COMMODORE 64 specific
c64quit:
- COMMODORE 64
CMP #$85 ; commodore 64? BNE CONTINUE ; nope, default to no keypress
LDA $C6 ; commodore keyboard buffer length BEQ CONTINUE ; no keypressed then continue
LDA #$00 STA $C6 LDA $D016 ; Screen control register #2 AND #$EF ; Bit #4: 0 = Multicolor mode off. STA $D016 LDA #21 ; default character set STA $D018 BNE ABORT
c64start:
CMP #$85 ; commodore 64? BEQ c64yes ; yes JMP default ; no, default to boringness c64yes: LDA #$00 ; black STA $D020 ; border LDA #$00 ; black STA $D021 ; background LDA #$05 ; dark green STA $D022 ; Extra background color #1 LDA #$08 ; orange STA $D023 ; Extra background color #2 LDA $D016 ; Screen control register #2 ORA #$10 ; Bit #4: 1 = Multicolor mode on. STA $D016
LDA #$30 ; 0011 0000 $3000 charset page STA PLOTH LSR LSR STA PLOTC ; 0000 1100 #$0C
- 53272 $D018
- POKE 53272,(PEEK(53272)AND240)+12
- REM SET CHAR POINTER TO MEM. 12288
- Bits #1-#3
- In text mode, pointer to character memory
- (bits #11-#13), relative to VIC bank, memory address $DD00
- %110, 6
- $3000-$37FF, 12288-14335.
LDA $D018 AND #$F0 ORA PLOTC STA $D018
- setup nine characters
- 00- 00 00
LDA #$00 ; chr(0) * 8 STA PLOTL ; --- LDA #$00 ; already zero TAX ; LDX #$00 JSR charset
- 04- 00 55
LDA #32 ; chr(4) * 8 STA PLOTL LDA #$55 ; LDX #$00 ; already zero JSR charset
- 09- 00 AA
LDA #72 ; chr(9) * 8 STA PLOTL LDA #$AA ; LDX #$00 ; already zero JSR charset
- 40- 55 00
LDA PLOTH ; 512 = chr(64) * 8 CLC ADC #$02 STA PLOTH LDX #$00 STX PLOTL LDA #$00 LDX #$55 JSR charset
- 44- 55 55
LDA #32 ; chr(68) * 8 STA PLOTL TXA ; LDA #$55 ; LDX #$55 ; already 55 JSR charset
- 49- 55 AA
LDA #72 ; chr(73) * 8 STA PLOTL LDA #$AA ; LDX #$55 ; already 55 JSR charset
- 90- AA 00
LDA PLOTH ; chr(144) * 8 CLC ADC #$02 STA PLOTH LDA #128 STA PLOTL LDA #$00 LDX #$AA JSR charset
- 94- AA 55
LDA #160 ; chr(148) * 8 STA PLOTL LDA #$55 ; LDX #$AA ; already AA JSR charset
- 99- AA AA
LDA #200 ; chr(153) * 8 STA PLOTL TXA ; LDA #$AA ; LDX #$AA ; already AA JSR charset JMP default charset: LDY #$00 chartop: STA (PLOTL),Y INY CPY #$04 BNE chartop TXA charbtm: STA (PLOTL),Y INY CPY #$08 BNE charbtm RTS
- end COMMODORE 64 specific
</lang>
8086 Assembly
This program expects to run on an IBM PC with a CGA-compatible video card. It uses a field size of 320x200 (the CGA screen) and runs at about one frame per second on a 20mhz 286.
<lang asm> ;;; Simulation settings (probabilities are P/65536) probF: equ 7 ; P(spontaneous combustion) ~= 0.0001 probP: equ 655 ; P(spontaneous growth) ~= 0.01 HSIZE: equ 320 ; Field width (320x200 fills CGA screen) VSIZE: equ 200 ; Field height FSIZE: equ HSIZE*VSIZE ; Field size FPARA: equ FSIZE/16+1 ; Field size in paragraphs ;;; Field values EMPTY: equ 0 ; Empty cell (also CGA black) TREE: equ 1 ; Tree cell (also CGA green) FIRE: equ 2 ; Burning cell (also CGA red) ;;; MS-DOS system calls and values TOPSEG: equ 2 ; First unavailable segment puts: equ 9 ; Print a string time: equ 2Ch ; Get system time exit: equ 4Ch ; Exit to DOS ;;; BIOS calls and values palet: equ 0Bh ; Set CGA color pallette vmode: equ 0Fh ; Get current video mode keyb: equ 1 ; Get keyboard status CGALO: equ 4 ; Low-res (4-color) CGA graphics mode MDA: equ 7 ; MDA monochrome text mode CGASEG: equ 0B800h ; CGA memory segment cpu 8086 org 100h section .text ;;; Program set-up (check memory size and set video mode) mov sp,stack.top ; Move stack inwards mov bp,sp ; Set BP to first available paragraph mov cl,4 shr bp,cl inc bp mov dx,cs add bp,dx mov bx,[TOPSEG] ; Get first unavailable segment sub bx,bp ; Get amount of available memory cmp bx,FPARA*2 ; Enough to fit two fields? ja mem_ok mov dx,errmem ; If not, print error message err: mov ah,puts int 21h mov ah,exit ; And stop int 21h mem_ok: mov ah,vmode ; Get current video mode int 10h push ax ; Keep on stack for later retrieval cmp al,MDA ; MDA card does not support CGA graphics, mov dx,errcga ; so print an error and quit. je err mov ax,CGALO ; Otherwise, switch to 320x200 CGA mode int 10h mov ah,palet ; And set the black/green/red/brown palette mov bx,0100h int 10h mov ah,time ; Get the system time int 21h mov [rnddat],cx ; Use it as the RNG seed mov [rnddat+2],dx ;;; Initialize the field (place trees randomly) mov es,bp ; ES = field segment xor di,di ; Start at first field mov cx,FSIZE ; CX = how many cells to initialize mov ah,TREE ptrees: call random ; Get random byte and al,ah ; Place a tree 50% of the time stosb loop ptrees mov ds,bp ; DS = field segment ;;; Write field to CGA display disp: xor si,si ; Start at beginning mov dx,CGASEG ; ES = CGA memory segment .scrn: mov es,dx xor di,di ; Start of segment .line: mov cx,HSIZE/8 ; 8 pixels per word .word: xor bx,bx ; BX will hold CGA word xor ah,ah ; Set high byte to zero %rep 7 ; Unroll this loop for speed lodsb ; Get cell or bx,ax ; Put it in low 2 bits of BX shl bx,1 ; Shift BX to make room for next field shl bx,1 %endrep lodsb ; No shift needed for final cell or ax,bx stosw ; Store word in CGA memory loop .word ; Do next byte of line add si,HSIZE ; Even and odd lines stored separately cmp si,FSIZE ; Done yet? jb .line ; If not, do next line add dx,200h ; Move to next segment cmp dx,CGASEG+200h ; If we still need to do the odd lines, mov si,HSIZE ; then do them jbe .scrn ;;; Stop the program if a key is pressed mov ah,1 ; Check if a key is pressed int 16h jz calc ; If not, calculate next field state pop ax ; Otherwise, restore the old video mode, cbw int 10h mov ah,exit ; and exit to DOS. int 21h ;;; Calculate next field state calc: mov ax,ds ; Set ES = new field segment add ax,FPARA mov es,ax xor di,di ; Start at beginning xor si,si .cell: lodsb ; Get cell dec al ; A=1 = tree jz .tree dec al ; A=2 = fire jz .fire call rand16 ; An empty space fills with a tree cmp ax,probP ; with probability P. jc .mtree ; Otherwise it stays empty .fire: xor al,al ; A burning tree turns into an empty cell stosb jmp .cnext .mtree: mov al,TREE stosb .cnext: cmp si,FSIZE ; Are we there yet? jne .cell ; If not, do next cell push es ; Done - set ES=old field, DS=new field, push ds pop es pop ds mov cx,FSIZE/2 xor si,si xor di,di rep movsw ; copy the new field to the old field, push es ; set DS to be the field to draw, pop ds xor di,di ; Instead of doing edge case handling in the xor ax,ax ; Moore neighbourhood calculation, just zero mov cx,HSIZE/2 ; out the borders for a slightly smaller image rep stosw ; Upper border, mov di,FSIZE-HSIZE mov cx,HSIZE/2 rep stosw ; lower border, mov di,HSIZE-5 ; right border. mov cx,VSIZE-1 .bordr: stosb add di,HSIZE-1 loop .bordr jmp disp ; and update the display. .tree: mov ax,[si-HSIZE-2] ; Load Moore neighbourhood or al,[si-HSIZE] or ax,[si-2] or al,[si] or ax,[si+HSIZE-2] or al,[si+HSIZE] or al,ah test al,FIRE ; Are any of the trees on fire? jnz .tburn ; Then set this tree on fire too call rand16 ; Otherwise, spontaneous combustion? cmp ax,probF jc .tburn mov al,TREE ; If not, the tree remains a tree stosb jmp .cnext .tburn: mov al,FIRE ; Set the tree on fire stosb jmp .cnext ;;; Get a random word in AX rand16: call random xchg al,ah ;;; Get a random byte in AL. BX and DX destroyed. random: mov bx,[cs:rnddat] ; BL=X BH=A mov dx,[cs:rnddat+2] ; DL=B DH=C inc bl ; X++ xor bh,dh ; A ^= C xor bh,bl ; A ^= X add dl,bh ; B += A mov al,dl ; C' = B shr al,1 ; C' >>= 1 add al,dh ; C' += C xor al,bh ; C' ^= A mov dh,al ; C = C' mov [cs:rnddat+2],dx ; Update RNG state mov [cs:rnddat],bx ret section .data errcga: db 'CGA mode not supported.$' errmem: db 'Not enough memory.$' section .bss rnddat: resb 4 ; RNG state stack: resw 128 ; Stack space .top: equ $</lang>
Ada
<lang Ada>with Ada.Numerics.Float_Random; use Ada.Numerics.Float_Random; with Ada.Text_IO; use Ada.Text_IO;
procedure Forest_Fire is
type Cell is (Empty, Tree, Fire); type Board is array (Positive range <>, Positive range <>) of Cell; procedure Step (S : in out Board; P, F : Float; Dice : Generator) is function "+" (Left : Boolean; Right : Cell) return Boolean is begin return Left or else Right = Fire; end "+"; function "+" (Left, Right : Cell) return Boolean is begin return Left = Fire or else Right = Fire; end "+"; Above : array (S'Range (2)) of Cell := (others => Empty); Left_Up, Up, Left : Cell; begin for Row in S'First (1) + 1..S'Last (1) - 1 loop Left_Up := Empty; Up := Empty; Left := Empty; for Column in S'First (2) + 1..S'Last (2) - 1 loop Left_Up := Up; Up := Above (Column); Above (Column) := S (Row, Column); case S (Row, Column) is when Empty => if Random (Dice) < P then S (Row, Column) := Tree; end if; when Tree => if Left_Up + Up + Above (Column + 1) + Left + S (Row, Column) + S (Row, Column + 1) + S (Row + 1, Column - 1) + S (Row + 1, Column) + S (Row + 1, Column + 1) or else Random (Dice) < F then S (Row, Column) := Fire; end if; when Fire => S (Row, Column) := Empty; end case; Left := Above (Column); end loop; end loop; end Step; procedure Put (S : Board) is begin for Row in S'First (1) + 1..S'Last (1) - 1 loop for Column in S'First (2) + 1..S'Last (2) - 1 loop case S (Row, Column) is when Empty => Put (' '); when Tree => Put ('Y'); when Fire => Put ('#'); end case; end loop; New_Line; end loop; end Put; Dice : Generator; Forest : Board := (1..10 => (1..40 => Empty));
begin
Reset (Dice); for I in 1..10 loop Step (Forest, 0.3, 0.1, Dice); Put_Line ("-------------" & Integer'Image (I) & " -------------"); Put (Forest); end loop;
end Forest_Fire;</lang> Sample output:
------------- 1 ------------- Y Y Y Y YY Y Y Y Y Y Y Y YYY YY Y Y Y Y Y Y YY Y Y Y Y Y Y Y Y YY Y Y Y Y YY Y YY YYY Y Y Y Y Y Y Y YY Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YYY Y Y Y Y Y ------------- 2 ------------- Y Y Y YYYYY# YYY Y Y Y YYY Y Y Y YY# YYY YY Y Y Y Y #Y Y YY Y YYY YY Y YY# Y YY Y Y Y Y YY Y Y YY Y Y YYYY Y Y YYY YY Y Y Y#Y YYY YYYY YYY Y Y Y Y Y Y Y YYY Y# Y Y Y Y Y Y Y Y# Y Y Y Y Y YYY Y YY YY Y Y YYY YYYYY Y Y YY Y ------------- 3 ------------- YY # Y YYYY# YY# Y Y # YYY Y# Y Y Y# Y YYYYY Y# # YYY YYY #YY Y YY Y Y## Y#Y Y Y# YY YY YY # Y Y YYY # Y Y## # YYYYYY YYY YYYYYY YY Y Y YY # # YY# #YYYYYY YYYYY YY# Y YYY YYY Y# #YYY# YYY Y YY Y Y YY Y # Y# Y YY YYY Y YYYYY YY #Y YYY Y ### YYYY# YY YYYYY YY ------------- 4 ------------- ## Y YY## Y ## Y YYY Y YYY # Y Y # Y# ###YYY# Y ### YYYY #Y Y Y## Y # # # # # #YYYY Y# Y# YYYYYYYY Y YY YY# YY Y ##YYYY ##Y YYYYY#Y#Y YY#YYY Y Y Y# Y #YYYYYY YYYYY Y# Y YY#YYY#Y# ### Y YY #YY Y YY # Y #Y ## # Y# YYY# ##Y Y YYYYY Y YYY #YYY# YYY YYY# YYYYY#YY YY ------------- 5 ------------- Y # Y# Y #YYYYY #Y#YYY Y# Y Y# Y ### Y Y###Y # Y # Y Y Y Y Y #### # # #YY##### # ## ## Y##Y# #Y##Y # YYYY# # # Y# #Y#YY#Y#Y # YY ####Y# ##YYYY # # Y# ### # Y # ##Y ##Y# YY Y Y Y # # Y## # Y ###Y# Y Y## ### YYY Y Y## #YYY# #Y YYY ------------- 6 ------------- Y# YY # Y Y #####Y # #Y#Y # Y # Y#Y Y YY YYY# #Y #Y Y # # # # # Y ## Y# # Y # # Y #### # Y # ## # #Y ## Y # Y #YYY Y # Y#YYYY # # Y ##YY# # Y # Y Y Y Y# Y # Y Y # Y Y YY# YY Y# #Y# Y #Y#YY ------------- 7 ------------- Y# Y YY Y Y # Y # #Y Y# # # YY # YY YY## Y #Y #Y #Y Y Y Y Y #Y Y YY Y Y Y Y # Y Y YY YYY Y YY # YY Y # ###Y # Y # ####YY YY # ## Y# Y Y # # Y # YY Y#Y # # Y # Y Y# YYYY# Y # YY # #Y ------------- 8 ------------- # # #Y Y Y YYYY Y Y Y # # YYY YY Y ## Y# Y Y Y # Y #Y #Y Y #Y Y#YY #Y # #Y Y YY #Y Y Y # YYYYYY Y##Y Y Y Y YYYY Y Y Y YYY Y Y Y Y # YY # YY YY Y ##Y YYY##Y YYY # Y Y Y #Y YY#Y # # Y YY #Y Y YYY# # YY### Y YYY # ------------- 9 ------------- Y # YY YY####Y# YYYYYY # Y ### ## # Y # # Y Y YY # # Y #Y # #Y Y Y # # Y# #Y Y # Y # # YYYY ######YY# # Y Y# YY ###Y YY YYY # ### YY# # YY YY YYY YY Y Y # Y ### # ### Y YY Y Y Y Y Y #Y Y# #Y Y Y# # Y YY# Y# # Y #Y# YY ------------- 10 ------------- YYYY ## Y# # ##YYYYY Y# Y Y Y Y# # YYY YY #Y # # # Y Y Y # Y # YYYY Y# Y Y###Y ## Y Y# Y# #Y # ## YYY Y## ## YY YY ##Y YY YYY# Y Y# #Y # Y # Y Y # # # # # # Y YYY# # YY Y # #Y
ALGOL 68
Textual version
Note: This specimen retains the original D coding style.
<lang algol68>LONG REAL tree prob = 0.55, # original tree probability #
f prob = 0.01, # new combustion probability # p prob = 0.01; # tree creation probability #
MODE CELL = CHAR; CELL empty=" ", tree="T", burning="#"; MODE WORLD = [6, 65]CELL;
PROC has burning neighbours = (WORLD world, INT r, c)BOOL:(
FOR row shift FROM -1 TO 1 DO FOR col shift FROM -1 TO 1 DO INT rs = r + row shift, cs = c + col shift; IF rs >= LWB world AND rs <= UPB world AND cs >= 2 LWB world AND cs <= 2 UPB world THEN IF world[rs, cs] = burning THEN true exit FI FI OD OD; FALSE EXIT true exit: TRUE
);
PROC next state = (REF WORLD world, REF WORLD next world)VOID:(
FOR r FROM LWB world TO UPB world DO REF[]CELL row = world[r, ]; FOR c FROM LWB row TO UPB row DO REF CELL elem = row[c]; next world[r, c] := IF elem = empty THEN IF random<p prob THEN tree ELSE empty FI ELIF elem = tree THEN IF has burning neighbours(world, r, c) THEN burning ELSE IF random<f prob THEN burning ELSE tree FI FI ELIF elem = burning THEN empty FI OD OD; world := next world
);
main:(
WORLD world; # create world # FOR r FROM LWB world TO UPB world DO REF []CELL row = world[r, ]; FOR i FROM LWB row TO UPB row DO REF CELL el = row[i]; el := IF random < tree prob THEN tree ELSE empty FI OD OD;
WORLD next world; FOR i FROM 0 TO 4 DO next state(world, next world); printf(($n(2 UPB world)(a)l$, world)); # show world # printf(($gl$, 2 UPB world * "-")) OD
)</lang> Output:
TTTT T TTTT TT T T TTT TT TTT TT TTT T TT T T TTT TT T TT TTT TTTTT T T T TTTT T T TTT TT T T TT T T T TTT T T T T T T TT T # T T TTT T T T TTTTT T TTT TTTT TTTT TT T TT TTTTTTTTT TT TT T T TT T TT TTT TTT TTTT TT TTT TT TTTTTT T T T T T T TT TT TT #T TTT TT #TTTTTTTT TT TTT TTTTTTTTTT TT TTTTTT TT T TT T TTT T TT T TT # T T ----------------------------------------------------------------- TTTT T TTTT TT T T TTT TT TTT TT TTT T TT T T TTT TT T TT TTT TTTTT T T T ##TT T T TTT TT T T TT T T T TTT T T T T T T TT T T T TTT T T T TTTTT T TTT TTTT TTTT TT T T# TTTTTTT## TT TT T T TT T T# #TT TTT T### TT TTT TT TTTTTT T T T T T T TT TT TTT # TTT TT #TTTTTTT TT TTT TTTTTTTTTT TT TTTTTT TT T TT T TTT # TT T TT T T ----------------------------------------------------------------- TTTT T TTTT TT T T ### TT TTT TT TTT T TT T T TTT TT T TT TTT TTTTT T T T #T T T TTT TT T T TT T T T TT# T T T T T T ## T T T TTT T T T ##### T TT# ##TT TTTT TT T # TTTTTT# TT TT T T TT TT # #T TTT # TT TTT TT T#T### T T # T T T TT TT TT# TTT T# #TTTTTT TT TTT TTTTTTTTTT TT TTTTTT TT T TT T TTT #T T TTT T T ----------------------------------------------------------------- TTTT T TTTT TT T T #T TTT TT TTT T TT T T TTT TT # TT TTT TTTT# # T # # T T TTT TT # # ## T # # ## T T T T T T T # T TTT T T T T T# ## TTTT TT # #TTTT# TT TT T T TT TT # TTT #T TTT TT # # T # T T T TT TT T# #TT # #TTTTT TT TTT ######TTTT T# #TTTTT TT T TT T T## # T ### # T ----------------------------------------------------------------- #TTT T T### ## T # # TTT TT TTT T ## # # ### ## TT TTT TTT# T T T TTT TT T T T T T # # T T TTT T T T T# # TTTT TT #TT# ## TT T T TT T# TT# # TTT TT T # T T TT TT # #T #TTTT TT TT# #TT# # #TTTT TT T TT T # T T -----------------------------------------------------------------
AutoHotkey
This implementation uses AutoHotkey's pseudo-arrays to contain each cell. The size of the (square) map, probabilities, and characters which correspond to burning, tree, or empty can be edited at the beginning of the script. <lang AutoHotkey>
- The array Frame1%x%_%y% holds the current frame. frame2%x%_%y%
- is then calculated from this, and printed. frame2 is then copied to frame1.
- Two arrays are necessary so that each cell advances at the same time
- T=Tree, #=Fire, O=Empty cell
- Size holds the width and height of the map and is used as the # of iterations in loops
- This will save the map as forest_fire.txt in its working directory
- ======================================================================================
Size := 10
Generation := 0
Tree := "T"
Fire := "#"
Cell := "O"
- --Define probabilities--
New_Tree := 5 ; 20 percent chance (1 in 5). A random number will be generated from 1 to New_tree. If this number is 1, ; A tree will be created in the current cell
Spontaneous := 10 ; 10 percent chance (1 in 10). A random number will be generated from 1 to Spontaneous. If this number is 1, ; and the current cell contains a tree, the tree in the current cell will become fire.
GoSub, Generate
- ----------------------Main Loop------------------------------
loop {
Generation++ GoSub, Calculate GoSub, Copy GoSub, Display msgbox, 4, Forest Fire, At Generation %generation%. Continue? IfMsgbox, No ExitApp
} return
- -------------------------------------------------------------
Generate: ; Randomly initializes the map. loop % size ; % forces expression mode. { x := A_Index Loop % size { Y := A_Index Random, IsTree, 1, 2 ; -- Roughly half of the spaces will contain trees If ( IsTree = 1 ) Frame1%x%_%y% := Tree Else Frame1%x%_%y% := Cell } } return
Calculate: Loop % size { x := A_Index Loop % size { Y := A_Index If ( Frame1%x%_%y% = Cell ) { Random, tmp, 1, New_Tree If ( tmp = 1 ) Frame2%x%_%y% := tree Else Frame2%x%_%y% := Cell } Else If ( Frame1%x%_%y% = Tree ) { BoolCatch := PredictFire(x,y) If (BoolCatch) Frame2%x%_%y% := Fire Else Frame2%x%_%y% := Tree } Else If ( Frame1%x%_%y% = Fire ) Frame2%x%_%y% := Cell Else { contents := Frame1%x%_%y% Msgbox Error! Cell %x% , %y% contains %contents% ; This has never happened ExitApp } } } return
Copy: Loop % size { x := A_Index Loop % size { y := A_Index frame1%x%_%y% := Frame2%x%_%y% } } return
Display:
ToPrint := ""
ToPrint .= "=====Generation " . Generation . "=====`n"
Loop % size
{
x := A_Index
Loop % size
{
y := A_Index
ToPrint .= Frame1%x%_%y%
}
ToPrint .= "`n"
}
FileAppend, %ToPrint%, Forest_Fire.txt
Return
PredictFire(p_x,p_y){
Global ; allows access to all frame1*_* variables (the pseudo-array) A := p_x-1 B := p_y-1 C := p_x+1 D := p_y+1 If ( Frame1%A%_%p_Y% = fire ) return 1 If ( Frame1%p_X%_%B% = fire ) return 1 If ( Frame1%C%_%p_Y% = fire ) return 1 If ( Frame1%p_X%_%D% = fire ) return 1
If ( Frame1%A%_%B% = Fire ) return 1 If ( Frame1%A%_%D% = fire ) return 1 If ( Frame1%C%_%B% = fire ) return 1 If ( Frame1%C%_%D% = Fire ) return 1
Random, tmp, 1, spontaneous if ( tmp = 1 ) return 1 return 0
} </lang> Sample Output using the default settings:
=====Generation 1===== OTTTOOTOOT OTOOTTTTOT TTOOOTTTO# TOOTOTOOTT OTTOTOOTTO TOTTTTOOTO TOTTT#OOOT OT#OOTOOTT TTO#TOOTTT O#OOOTOTTT =====Generation 2===== OTTTOOTOOT OTTOTTT#O# TTOOOTTTOO TOOTTTOT## OTTOTTO##O TOTT##OTTO TO###OOOOT T#OOO#OOTT ##TO#OOTTT TOTOOTOTTT =====Generation 3===== OTT#OO#TO# OTTOTT#OTO TTOOOT##OO TOOTTTT#OO OTTO##OOOO TO##OOO##O #OOOOOOOOT #OOOOOOOTT OO#OOTOTTT #O#TT#OTTT =====Generation 4===== OT#OOOO#OO OT#O##OO#T T#TOT#OOOO TOO####OOT O##OOOOOOO #OOOOOOOOO OOOOOOOOO# OTOOOOOOTT OOOOO#TTTT OTO##OO#TT =====Generation 5===== O#OOOTOOOT O#OOOOOOO# #O#O#OOTOT #OOOOOOOOT OOOOOOOOOO OTOOOOOOOO TTOOOTOTTO TTOOOTOO## OOTTOO###T OTOOOOOO#T
BASIC
Applesoft BASIC
<lang gwbasic> 100 FOR I = 17239 TO 17493
110 READ B 120 NEXT 130 CALL 17239 140 END 150 DATA 162,23,138,32,71,248,165,38,157,60,3,165,39,157,84,3,202,16,239,162,96 160 DATA 134,249,134,1,160,0,132,0,152,145,0,200,208,251,232,134,1,224,128,208 170 DATA 244,44,86,192,44,82,192,44,84,192,44,80,192,32,50,248,162,0,134,0,169 180 DATA 41,133,2,133,254,169,83,133,4,165,249,133,1,133,3,133,5,73,16,133,255 190 DATA 133,249,138,134,45,74,168,169,15,144,2,105,224,133,46,185,60,3,133,38 200 DATA 185,84,3,133,39,160,1,132,44,177,2,145,254,240,79,16,93,169,0,164,44 210 DATA 145,254,136,81,38,37,46,81,38,145,38,164,44,200,192,41,208,224,165,2 220 DATA 133,0,165,3,133,1,165,4,133,2,133,254,24,105,42,133,4,165,5,73,16 230 DATA 133,255,73,16,133,3,105,0,133,5,166,45,232,224,48,208,159,44,0,192 240 DATA 48,3,76,144,67,44,16,192,44,81,192,96,198,8,208,190,169,101,133,8,169 250 DATA 68,208,169,169,153,208,165,198,6,208,14,198,7,208,10,169,23,133,6,169 260 DATA 39,133,7,208,234,177,0,17,4,136,17,0,17,2,17,4,200,200,17,0,17,2,17,4 270 DATA 48,213,16,137,41</lang>
BASIC256
<lang basic256>N = 150 : M = 150 : P = 0.03 : F = 0.00003
dim f(N+2,M+2) # 1 tree, 0 empty, 2 fire dim fn(N+2,M+2) graphsize N,M fastgraphics
for x = 1 to N for y = 1 to M if rand<0.5 then f[x,y] = 1 next y next x
while True for x = 1 to N for y = 1 to M if not f[x,y] and rand<P then fn[x,y]=1 if f[x,y]=2 then fn[x,y]=0 if f[x,y]=1 then fn[x,y] = 1 if f[x-1,y-1]=2 or f[x,y-1]=2 or f[x+1,y-1]=2 then fn[x,y]=2 if f[x-1,y]=2 or f[x+1,y]=2 or rand<F then fn[x,y]=2 if f[x-1,y+1]=2 or f[x,y+1]=2 or f[x+1,y+1]=2 then fn[x,y]=2 end if # Draw if fn[x,y]=0 then color black if fn[x,y]=1 then color green if fn[x,y]=2 then color yellow plot x-1,y-1 next y next x refresh for x = 1 to N for y = 1 to M f[x,y] = fn[x,y] next y next x end while</lang>
BBC BASIC
<lang bbcbasic> VDU 23,22,400;400;16,16,16,128
OFF DIM old&(200,200), new&(200,200) p = 0.01 f = 0.0001 REM 0 = empty, 1 = tree, 2 = burning REPEAT WAIT 10 FOR x% = 1 TO 199 FOR y% = 1 TO 199 CASE old&(x%,y%) OF WHEN 0: IF p > RND(1) THEN new&(x%,y%) = 1 GCOL 2 PLOT 4*x%,4*y% ENDIF WHEN 1: IF f > RND(1) OR old&(x%-1,y%)=2 OR old&(x%+1,y%)=2 OR \ \ old&(x%-1,y%-1)=2 OR old&(x%,y%-1)=2 OR old&(x%+1,y%-1)=2 OR \ \ old&(x%-1,y%+1)=2 OR old&(x%,y%+1)=2 OR old&(x%+1,y%+1)=2 THEN new&(x%,y%) = 2 GCOL 1 PLOT 4*x%,4*y% ENDIF WHEN 2: new&(x%,y%) = 0 GCOL 15 PLOT 4*x%,4*y% ENDCASE NEXT NEXT x% old&() = new&() UNTIL FALSE</lang>
Output:
FreeBASIC
<lang freebasic>'[RC] Forest Fire 'written for FreeBASIC 'Program code based on BASIC256 from Rosettacode website 'http://rosettacode.org/wiki/Forest_fire#BASIC256 '06-10-2016 updated/tweaked the code 'compile with fbc -s gui
- Define M 400
- Define N 640
Dim As Double p = 0.003 Dim As Double fire = 0.00003 'Dim As Double number1 Dim As Integer gen, x, y Dim As String press
'f0() and fn() use memory from the memory pool Dim As UByte f0(), fn() ReDim f0(-1 To N +2, -1 To M +2) ReDim fn(-1 To N +2, -1 To M +2)
Dim As UByte white = 15 'color 15 is white Dim As UByte yellow = 14 'color 14 is yellow Dim As UByte black = 0 'color 0 is black Dim As UByte green = 2 'color 2 is green Dim As UByte red = 4 'color 4 is red
Screen 18 'Resolution 640x480 with at least 256 colors Randomize Timer
Locate 28,1 Beep Print " Welcome to Forest Fire" Locate 29,1 Print " press any key to start" Sleep 'Locate 28,1 'Print " Welcome to Forest Fire" Locate 29,1 Print " "
' 1 tree, 0 empty, 2 fire Color green ' this is green color for trees For x = 1 To N
For y = 1 To M If Rnd < 0.5 Then 'populate original tree density f0(x,y) = 1 PSet (x,y) End If Next y
Next x
Color white Locate 29,1 Print " Press any key to continue " Sleep Locate 29,1 Print " Press 'space bar' to continue/pause, ESC to stop "
Do
press = InKey ScreenLock For x = 1 To N For y = 1 To M If Not f0(x,y) And Rnd<P Then fn(x,y)=1 If f0(x,y)=2 Then fn(x,y)=0 If f0(x,y)=1 Then fn(x,y) = 1 If f0(x-1,y-1)=2 OrElse f0(x,y-1)=2 OrElse f0(x+1,y-1)=2 Then fn(x,y)=2 If f0(x-1,y)=2 OrElse f0(x+1,y)=2 OrElse Rnd<fire Then fn(x,y)=2 If f0(x-1,y+1)=2 OrElse f0(x,y+1)=2 OrElse f0(x+1,y+1)=2 Then fn(x,y)=2 End If 'set up color and drawing '0 empty (black), 1 tree (green), 2 fire (white) If fn(x,y)=0 Then Color black 'empty If fn(x,y)=1 Then Color green 'tree If fn(x,y)=2 Then Color red 'fire 'plot x-1,y-1 PSet (x-1,y-1) Next y Next x 'print generation number gen = gen + 1 Locate 28,1 Color white 'this is white color Print " Generation number # ";gen 'transfer new generation to current generation For x = 1 To N For y = 1 To M f0(x,y) = fn(x,y) Next y Next x ScreenUnlock
' amount for sleep is in milliseconds, 1 = ignore key press Sleep 50, 1 ' slow down a little ... goes too fast otherwise If press = " " Then Sleep : press = InKey If press = "s" Then Sleep ' return to do loop up top until "esc" key is pressed. ' clicking close windows "X", closes the window immediately
Loop Until press = Chr(27) OrElse press = Chr(255)+"k" If press = Chr(255) + "k" Then End
Locate 28,1 Color white Print " You entered ESC - goodbye " Print " Press any key to exit " Sleep</lang>
GFA Basic
<lang basic> width%=80 height%=50 DIM world%(width%+2,height%+2,2) clock%=0 ' empty%=0 ! some mnemonic codes for the different states burning%=1 tree%=2 ' f=0.0003 p=0.03 max_clock%=100 ' @open_window @setup_world DO
clock%=clock%+1 EXIT IF clock%>max_clock% @display_world @update_world
LOOP @close_window ' ' Setup the world ' PROCEDURE setup_world
LOCAL i%,j% ' RANDOMIZE 0 ARRAYFILL world%(),empty% ' with Probability 0.5, create tree in cells FOR i%=1 TO width% FOR j%=1 TO height% IF RND>0.5 world%(i%,j%,0)=tree% ENDIF NEXT j% NEXT i% ' cur%=0 new%=1
RETURN ' ' Display world on window ' PROCEDURE display_world
LOCAL size%,i%,j%,offsetx%,offsety%,x%,y% ' size%=5 offsetx%=10 offsety%=20 ' VSETCOLOR 0,15,15,15 ! colour for empty VSETCOLOR 1,15,0,0 ! colour for burning VSETCOLOR 2,0,15,0 ! colour for tree VSETCOLOR 3,0,0,0 ! colour for text DEFTEXT 3 PRINT AT(1,1);"Clock: ";clock% ' FOR i%=1 TO width% FOR j%=1 TO height% x%=offsetx%+size%*i% y%=offsety%+size%*j% SELECT world%(i%,j%,cur%) CASE empty% DEFFILL 0 CASE tree% DEFFILL 2 CASE burning% DEFFILL 1 ENDSELECT PBOX x%,y%,x%+size%,y%+size% NEXT j% NEXT i%
RETURN ' ' Check if a neighbour is burning ' FUNCTION neighbour_burning(i%,j%)
LOCAL x% ' IF world%(i%,j%-1,cur%)=burning% RETURN TRUE ENDIF IF world%(i%,j%+1,cur%)=burning% RETURN TRUE ENDIF FOR x%=-1 TO 1 IF world%(i%-1,j%+x%,cur%)=burning% OR world%(i%+1,j%+x%,cur%)=burning% RETURN TRUE ENDIF NEXT x% RETURN FALSE
ENDFUNC ' ' Update the world state ' PROCEDURE update_world
LOCAL i%,j% ' FOR i%=1 TO width% FOR j%=1 TO height% world%(i%,j%,new%)=world%(i%,j%,cur%) SELECT world%(i%,j%,cur%) CASE empty% IF RND>1-p world%(i%,j%,new%)=tree% ENDIF CASE tree% IF @neighbour_burning(i%,j%) OR RND>1-f world%(i%,j%,new%)=burning% ENDIF CASE burning% world%(i%,j%,new%)=empty% ENDSELECT NEXT j% NEXT i% ' cur%=1-cur% new%=1-new%
RETURN ' ' open and clear window ' PROCEDURE open_window
OPENW 1 CLEARW 1 VSETCOLOR 4,8,8,0 DEFFILL 4 PBOX 0,0,500,400
RETURN ' ' close the window after keypress ' PROCEDURE close_window
~INP(2) CLOSEW 1
RETURN </lang>
PureBasic
<lang PureBasic>; Some systems reports high CPU-load while running this code.
- This may likely be due to the graphic driver used in the
- 2D-function Plot().
- If experiencing this problem, please reduce the #Width & #Height
- or activate the parameter #UnLoadCPU below with a parameter 1 or 2.
- This code should work with the demo version of PureBasic on both PC & Linux
- General parameters for the world
- f = 1e-6
- p = 1e-2
- SeedATree = 0.005
- Width = 400
- Height = 400
- Setting up colours
- Fire = $080CF7
- BackGround = $BFD5D3
- YoungTree = $00E300
- NormalTree = $00AC00
- MatureTree = $009500
- OldTree = $007600
- Black = $000000
- Depending on your hardware, use this to control the speed/CPU-load.
- 0 = No load reduction
- 1 = Only active about every second frame
- 2 = '1' & release the CPU after each horizontal line.
- UnLoadCPU = 0
Enumeration
#Empty =0 #Ignited #Burning #Tree #Old=#Tree+20
EndEnumeration
Global Dim Forest.i(#Width, #Height) Global Title$="Forest fire in PureBasic" Global Cnt
Macro Rnd()
(Random(2147483647)/2147483647.0)
EndMacro
Procedure Limit(n, min, max)
If n<min n=min ElseIf n>max n=max EndIf ProcedureReturn n
EndProcedure
Procedure SpreadFire(x,y)
Protected cnt=0, i, j For i=Limit(x-1, 0, #Width) To Limit(x+1, 0, #Width) For j=Limit(y-1, 0, #Height) To Limit(y+1, 0, #Height) If Forest(i,j)>=#Tree Forest(i,j)=#Ignited EndIf Next Next
EndProcedure
Procedure InitMap()
Protected x, y, type For y=1 To #Height For x=1 To #Width If Rnd()<=#SeedATree type=#Tree Else type=#Empty EndIf Forest(x,y)=type Next Next
EndProcedure
Procedure UpdateMap()
Protected x, y For y=1 To #Height For x=1 To #Width Select Forest(x,y) Case #Burning Forest(x,y)=#Empty SpreadFire(x,y) Case #Ignited Forest(x,y)=#Burning Case #Empty If Rnd()<=#p Forest(x,y)=#Tree EndIf Default If Rnd()<=#f Forest(x,y)=#Burning Else Forest(x,y)+1 EndIf EndSelect Next Next
EndProcedure
Procedure PresentMap()
Protected x, y, c cnt+1 SetWindowTitle(0,Title$+", time frame="+Str(cnt)) StartDrawing(ImageOutput(1)) For y=0 To OutputHeight()-1 For x=0 To OutputWidth()-1 Select Forest(x,y) Case #Empty c=#BackGround Case #Burning, #Ignited c=#Fire Default If Forest(x,y)<#Tree+#Old c=#YoungTree ElseIf Forest(x,y)<#Tree+2*#Old c=#NormalTree ElseIf Forest(x,y)<#Tree+3*#Old c=#MatureTree ElseIf Forest(x,y)<#Tree+4*#Old c=#OldTree Else ; Tree died of old age Forest(x,y)=#Empty c=#Black EndIf EndSelect Plot(x,y,c) Next CompilerIf #UnLoadCPU>1 Delay(1) CompilerEndIf Next StopDrawing() ImageGadget(1, 0, 0, #Width, #Height, ImageID(1))
EndProcedure
If OpenWindow(0, 10, 30, #Width, #Height, Title$, #PB_Window_MinimizeGadget)
SmartWindowRefresh(0, 1) If CreateImage(1, #Width, #Height) Define Event, freq If ExamineDesktops() And DesktopFrequency(0) freq=DesktopFrequency(0) Else freq=60 EndIf AddWindowTimer(0,0,5000/freq) InitMap() Repeat Event = WaitWindowEvent() Select Event Case #PB_Event_CloseWindow End Case #PB_Event_Timer CompilerIf #UnLoadCPU>0 Delay(25) CompilerEndIf UpdateMap() PresentMap() EndSelect ForEver EndIf
REALbasic
This example puts all of the forestry logic into a Thread class. This allows the UI to remain responsive while the Thread does all the work in the background. We create a Thread by subclassing the Thread object in the IDE, in this case creating forestfire as a subclass of the Thread object and put the following code in its Run() event: <lang realbasic> Sub Run()
//Handy named constants Const empty = 0 Const tree = 1 Const fire = 2 Const ablaze = &cFF0000 //Using the &c numeric operator to indicate a color in hex Const alive = &c00FF00 Const dead = &c804040 //Our forest Dim worldPic As New Picture(480, 480, 32) Dim newWorld(120, 120) As Integer Dim oldWorld(120, 120) As Integer //Initialize forest Dim rand As New Random For x as Integer = 0 to 119 For y as Integer = 0 to 119 if rand.InRange(0, 2) = 0 Or x = 119 or y = 119 or x = 0 or y = 0 Then newWorld(x, y) = empty worldPic.Graphics.ForeColor = dead worldPic.Graphics.FillRect(x*4, y*4, 4, 4) Else newWorld(x, y) = tree worldPic.Graphics.ForeColor = alive worldPic.Graphics.FillRect(x*4, y*4, 4, 4) end if Next Next oldWorld = newWorld //Burn, baby burn! While Window1.stop = False For x as Integer = 0 To 119 For y As Integer = 0 to 119 Dim willBurn As Integer = rand.InRange(0, Window1.burnProb.Value) Dim willGrow As Integer = rand.InRange(0, Window1.growProb.Value) if x = 119 or y = 119 or x = 0 or y = 0 Then Continue end if Select Case oldWorld(x, y) Case empty If willGrow = (Window1.growProb.Value) Then newWorld(x, y) = tree worldPic.Graphics.ForeColor = alive worldPic.Graphics.FillRect(x*4, y*4, 4, 4) end if Case tree if oldWorld(x - 1, y) = fire Or oldWorld(x, y - 1) = fire Or oldWorld(x + 1, y) = fire Or oldWorld(x, y + 1) = fire Or oldWorld(x + 1, y + 1) = fire Or oldWorld(x - 1, y - 1) = fire Or oldWorld(x - 1, y + 1) = fire Or oldWorld(x + 1, y - 1) = fire Or willBurn = (Window1.burnProb.Value) Then newWorld(x, y) = fire worldPic.Graphics.ForeColor = ablaze worldPic.Graphics.FillRect(x*4, y*4, 4, 4) end if Case fire newWorld(x, y) = empty worldPic.Graphics.ForeColor = dead worldPic.Graphics.FillRect(x*4, y*4, 4, 4) End Select Next Next Window1.Canvas1.Graphics.DrawPicture(worldPic, 0, 0) oldWorld = newWorld me.Sleep(Window1.speed.Value) Wend
End Sub </lang> As you can see, this Thread is expecting a Window object called Window1 with several other objects within it. The IDE will automatically create a Window object called Window1 when a new GUI application is created. Our Window1 has 5 objects (widgets) in it: a Canvas (for displaying graphics), three sliders, and a pushbutton. <lang realbasic> Sub Open()
//First method to run on the creation of a new Window. We instantiate an instance of our forestFire thread and run it. Dim fire As New forestFire fire.Run()
End Sub
stop As Boolean //a globally accessible property of Window1. Boolean properties default to False.
Sub Pushbutton1.Action()
stop = True
Run BASIC
<lang runbasic>graphic #g, 200,200 dim preGen(200,200) dim newGen(200,200)
for gen = 1 to 200
for x = 1 to 199 for y = 1 to 199 select case preGen(x,y) case 0 if rnd(0) > .99 then newGen(x,y) = 1 : #g "color green ; set "; x; " "; y case 2 newGen(x,y) = 0 : #g "color brown ; set "; x; " "; y case 1 if preGen(x-1,y-1) = 2 or preGen(x-1,y) = 2 or preGen(x-1,y+1) = 2 _ or preGen(x,y-1) = 2 or preGen(x,y+1) = 2 or preGen(x+1,y-1) = 2 _ or preGen(x+1,y) = 2 or preGen(x+1,y+1) = 2 or rnd(0) > .999 then #g "color red ; set "; x; " "; y newGen(x,y) = 2 end if end select preGen(x-1,y-1) = newGen(x-1,y-1) next y next x
Sinclair ZX81 BASIC
Requires 16k of RAM.
In essence this is an enhanced version of my ZX Spectrum implementation (see below). The main improvement is that this version shows the ages of the trees: the age is represented using 0
to 9
, then A
to Z
, followed theoretically by the special characters £$:?()><=+-*/;,.
(in that order) and only then cycling back to 0
. Realistically, no tree is likely to live that long.
The subroutine at line 1000 takes a number N
and returns its inverse-video string representation as I$
.
A couple of other notes on the listing:
(1) some characters need to be entered in G
raphics mode, which is accessed using SHIFT
9
. I have represented this using square brackets: so if the listing says [ROSETTA CODE]
, you need to go into G
mode and type ROSETTA CODE
(which will be displayed on the ZX81 screen in inverse video). As a special case, [a]
means for you to go into G
mode and then type SHIFT
A
. The ZX81 character set does not include either square brackets or lower-case letters, so I hope this convention will not lead to too much confusion.
(2) this program differs from most BASIC examples on Rosetta Code, but resembles most real BASIC programs of more than about 20 lines, in that the line numbers do not always go up smoothly in multiples of ten. <lang basic> 10 DIM F$(20,30)
20 DIM N$(20,30) 30 LET INIT=.5 40 LET F=.02 50 LET P=.05 60 PRINT AT 0,1;"[FOREST FIRE FOR ROSETTA CODE]" 70 FOR I=0 TO 21 80 PRINT AT I,0;"[ ]" 90 PRINT AT I,31;"[ ]" 100 NEXT I 110 FOR I=1 TO 30 120 PRINT AT 21,I;"[ ]" 130 NEXT I 140 LET G=0 150 LET T=0 160 PRINT AT 21,1;"[GENERATION 0]" 170 PRINT AT 21,20;"[COVER]" 180 FOR I=1 TO 20 190 FOR J=1 TO 30 200 IF RND>=INIT THEN GOTO 240 210 PRINT AT I,J;"0" 220 LET F$(I,J)="0" 230 LET T=T+1 240 NEXT J 250 NEXT I 300 PRINT AT 21,26;"[ ]" 310 LET N=INT (.5+T/6) 320 GOSUB 1000 330 PRINT AT 21,26;I$;"[ PC]" 340 FOR I=1 TO 20 350 PRINT AT I,0;"[>]" 360 FOR J=1 TO 30 380 IF F$(I,J)<>"[a]" THEN GOTO 410 390 LET N$(I,J)=" " 400 GOTO 530 410 IF F$(I,J)<>" " THEN GOTO 433 420 IF RND<=P THEN LET N$(I,J)="0" 430 GOTO 530 433 LET N$(I,J)=CHR$ (1+CODE F$(I,J)) 437 IF N$(I,J)>"Z" THEN LET N$(I,J)="£" 440 FOR K=I-1 TO I+1 450 FOR L=J-1 TO J+1 460 IF K=0 OR L=0 OR K=21 OR L=21 THEN GOTO 480 470 IF F$(K,L)="[a]" THEN GOTO 510 480 NEXT L 490 NEXT K 500 GOTO 520 510 LET N$(I,J)="[a]" 520 IF RND<=F THEN LET N$(I,J)="[a]" 530 NEXT J 540 PRINT AT I,0;"[ ]" 550 NEXT I 552 LET G=G+1 554 LET N=G 556 GOSUB 1000 558 PRINT AT 21,12;I$ 560 LET T=0 570 FOR I=1 TO 20 575 PRINT AT I,31;"[<]" 580 FOR J=1 TO 30 590 IF N$(I,J)<>"[a]" AND N$(I,J)<>" " THEN LET T=T+1 600 NEXT J 610 LET F$(I)=N$(I) 620 PRINT AT I,1;F$(I) 625 PRINT AT I,31;"[ ]" 630 GOTO 300
1000 LET S$=STR$ N 1010 LET I$="" 1020 FOR K=1 TO LEN S$ 1030 LET I$=I$+CHR$ (128+CODE S$(K)) 1040 NEXT K 1050 RETURN</lang>
- Output:
Screenshot here.
Visual Basic .NET
This program sits behind a Windows form with fixed borders, the only component of which is a timer (named Timer1, set to something like 50 or 100ms depending on the speed the user wants to see it). Other constant values (the probabilities and the window dimensions) can be set at the top of the code.
<lang vbnet>Public Class ForestFire
Private _forest(,) As ForestState Private _isBuilding As Boolean Private _bm As Bitmap Private _gen As Integer Private _sw As Stopwatch
Private Const _treeStart As Double = 0.5 Private Const _f As Double = 0.00001 Private Const _p As Double = 0.001
Private Const _winWidth As Integer = 300 Private Const _winHeight As Integer = 300
Private Enum ForestState Empty Burning Tree End Enum
Private Sub ForestFire_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load Me.ClientSize = New Size(_winWidth, _winHeight) ReDim _forest(_winWidth, _winHeight)
Dim rnd As New Random() For i As Integer = 0 To _winHeight - 1 For j As Integer = 0 To _winWidth - 1 _forest(j, i) = IIf(rnd.NextDouble <= _treeStart, ForestState.Tree, ForestState.Empty) Next Next
_sw = New Stopwatch _sw.Start() DrawForest() Timer1.Start() End Sub
Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Timer1.Tick If _isBuilding Then Exit Sub
_isBuilding = True GetNextGeneration()
DrawForest() _isBuilding = False End Sub
Private Sub GetNextGeneration() Dim forestCache(_winWidth, _winHeight) As ForestState Dim rnd As New Random()
For i As Integer = 0 To _winHeight - 1 For j As Integer = 0 To _winWidth - 1 Select Case _forest(j, i) Case ForestState.Tree If forestCache(j, i) <> ForestState.Burning Then forestCache(j, i) = IIf(rnd.NextDouble <= _f, ForestState.Burning, ForestState.Tree) End If
Case ForestState.Burning For i2 As Integer = i - 1 To i + 1 If i2 = -1 OrElse i2 >= _winHeight Then Continue For For j2 As Integer = j - 1 To j + 1 If j2 = -1 OrElse i2 >= _winWidth Then Continue For If _forest(j2, i2) = ForestState.Tree Then forestCache(j2, i2) = ForestState.Burning Next Next forestCache(j, i) = ForestState.Empty
Case Else forestCache(j, i) = IIf(rnd.NextDouble <= _p, ForestState.Tree, ForestState.Empty) End Select Next Next
_forest = forestCache _gen += 1 End Sub
Private Sub DrawForest() Dim bmCache As New Bitmap(_winWidth, _winHeight)
For i As Integer = 0 To _winHeight - 1 For j As Integer = 0 To _winWidth - 1 Select Case _forest(j, i) Case ForestState.Tree bmCache.SetPixel(j, i, Color.Green)
Case ForestState.Burning bmCache.SetPixel(j, i, Color.Red) End Select Next Next
_bm = bmCache Me.Refresh() End Sub
Private Sub ForestFire_Paint(ByVal sender As System.Object, ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint e.Graphics.DrawImage(_bm, 0, 0)
Me.Text = "Gen " & _gen.ToString() & " @ " & (_gen / (_sw.ElapsedMilliseconds / 1000)).ToString("F02") & " FPS: Forest Fire" End Sub
End Class</lang>
ZX Spectrum Basic
This isn't a graphical implementation, but it uses a bit of colour to make the display clearer. It runs very slowly. The variable init defines the initial likelihood that each square will hold a tree, and can take values between 0 (no trees) and 1 (a tree in every square) inclusive. This can be used to check that the program is running correctly, and using a value of 1 is probably the most dramatic: but it only makes a difference in the short term. After a few generations, any starting configuration using these values of and will end up fluctuating around 20% tree cover—sparse woodland, perhaps, rather than true forest.
A screenshot of the program running can be found here. <lang zxbasic> 10 PAPER 6: CLS
20 DIM n$(20,30) 30 LET init=.5 40 LET f=.02 50 LET p=.05 60 PAPER 0 70 FOR i=0 TO 31 80 PRINT AT 0,i;" " 90 PRINT AT 21,i;" "
100 NEXT i 110 FOR i=0 TO 21 120 PRINT AT i,0;" " 130 PRINT AT i,31;" " 140 NEXT i 150 INK 7 160 PRINT AT 0,1;"FOREST FIRE for Rosetta Code" 170 LET generation=0 180 PRINT AT 21,1;"Generation 0" 190 LET trees=0 200 PRINT AT 21,22;"Cover" 210 FOR i=1 TO 20 220 FOR j=1 TO 30 230 IF RND<init THEN PAPER 4: INK 7: PRINT AT i,j;"T": LET trees=trees+1 240 NEXT j 250 NEXT i 260 LET generation=generation+1 270 INK 7 280 PAPER 0 290 PRINT AT 21,12;generation 300 PRINT AT 21,28;" " 310 PRINT AT 21,28;INT (trees/6+.5);"%" 320 FOR i=1 TO 20 330 FOR j=1 TO 30 340 LET n$(i,j)=SCREEN$ (i,j) 350 IF SCREEN$ (i,j)="B" THEN LET n$(i,j)=" ": GO TO 450 360 IF SCREEN$ (i,j)="T" THEN GO TO 390 370 IF RND<=p THEN LET n$(i,j)="T" 380 GO TO 450 390 FOR k=i-1 TO i+1 400 FOR l=j-1 TO j+1 410 IF SCREEN$ (k,l)="B" THEN LET n$(i,j)="B": LET k=i+2: LET l=j+2 420 NEXT l 430 NEXT k 440 IF RND<=f THEN LET n$(i,j)="B" 450 NEXT j 460 NEXT i 470 LET trees=0 480 FOR i=1 TO 20 490 FOR j=1 TO 30 500 IF n$(i,j)="T" THEN INK 7: PAPER 4: PRINT AT i,j;"T": LET trees=trees+1: GO TO 540 510 IF n$(i,j)="B" THEN INK 6: PAPER 2: PRINT AT i,j;"B": GO TO 540 520 PAPER 6 530 PRINT AT i,j;" " 540 NEXT j 550 NEXT i 560 GO TO 260</lang>
Batch File
Accepts command line arguments in the form of m p f i
Where:
m - length and width of the array p - probability of a tree growing f - probability of a tree catching on fire i - iterations to output
Default is 10 50 5 5
<lang dos>
@echo off
setlocal enabledelayedexpansion
if "%1"=="" (
call:default
) else (
call:setargs %*
)
call:createarray call:fillarray call:display echo. echo ------------------- echo.
for /l %%i in (1,1,%i%) do (
echo. echo ------------------- echo. call:evolve call:display
) pause>nul
- default
set m=10 set n=11 set p=50 set f=5 set i=5 exit /b
- setargs
set m=%1 set n=%m%+1 set p=%2 set f=%3 set i=%4 exit /b
- createarray
for /l %%m in (0,1,%n%) do (
for /l %%n in (0,1,%n%) do ( set a%%m%%n=0 )
) exit /b
- fillarray
for /l %%m in (1,1,%m%) do (
for /l %%n in (1,1,%m%) do ( set /a treerandom=!random! %% 101 if !treerandom! leq %p% set a%%m%%n=T )
) exit /b
- display
for /l %%m in (1,1,%m%) do (
set "line%%m=" for /l %%n in (1,1,%m%) do ( set line%%m=!line%%m! !a%%m%%n! ) set line%%m=!line%%m:0= ! echo.!line%%m!
) exit /b
- evolve
for /l %%m in (1,1,%m%) do (
for /l %%n in (1,1,%m%) do ( call:nexttick !a%%m%%n! %%m %%n set newa%%m%%n=!errorlevel! )
) call:update exit /b
- nexttick
if %1==0 (
set /a treerandom=!random! %% 101 if !treerandom! leq %p% exit /b 1 exit /b 0
)
if %1==T (
set /a lowerm=%2-1 set /a upperm=%2+1 set /a lowern=%3-1 set /a uppern=%3+1 set burn=0 for /l %%m in (!lowerm!,1,!upperm!) do ( for /l %%n in (!lowern!,1,!uppern!) do ( if !a%%m%%n!==# set burn=1 ) ) if !burn!==1 exit /b 2 set /a burnrandom=!random! %% 101 if !burnrandom! leq %f% exit /b 2 exit /b 1
)
if %1==# exit /b 0
- update
for /l %%m in (1,1,%m%) do (
for /l %%n in (1,1,%m%) do ( if !newa%%m%%n!==1 set newa%%m%%n=T if !newa%%m%%n!==2 set newa%%m%%n=# set a%%m%%n=!newa%%m%%n! )
) exit /b </lang>
- Output:
Sample Default Output
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T ------------------- ------------------- T T # T T T # T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T # T T T T T T T ------------------- T # # # # T # # # T T T T # # T T T T T T T T T T T T T T T T T T T T T T T T T T T T # T T T T T T T T T T T T # T T T T T T # # T T T T # T T T # T T T T T # ------------------- # T T # # # # # T # # # T # # # T T T T T T T T T T T T T T # # T T T T T T T # # T # # T T T T # # # # # T T T # # # # # T # # T # T T T # # # T # T ------------------- T T T T T T T T # # T # # # # # # # # # T # T # # T # # T # T # # T T T # # # # T T # # # T T # # T ------------------- T T T T T T T T T T T T T T T T # # # T # # # T T # # # T T T # T # T T T T # # T T T #
C
<lang c>#include <stdio.h>
- include <stdlib.h>
- include <stdint.h>
- include <stdbool.h>
- include <string.h>
- include <pthread.h>
- include <SDL.h>
// defaults
- define PROB_TREE 0.55
- define PROB_F 0.00001
- define PROB_P 0.001
- define TIMERFREQ 100
- ifndef WIDTH
- define WIDTH 640
- endif
- ifndef HEIGHT
- define HEIGHT 480
- endif
- ifndef BPP
- define BPP 32
- endif
- if BPP != 32
#warning This program could not work with BPP different from 32
- endif
uint8_t *field[2], swapu; double prob_f = PROB_F, prob_p = PROB_P, prob_tree = PROB_TREE;
enum cell_state {
VOID, TREE, BURNING
};
// simplistic random func to give [0, 1) double prand() {
return (double)rand() / (RAND_MAX + 1.0);
}
// initialize the field void init_field(void) {
int i, j; swapu = 0; for(i = 0; i < WIDTH; i++) { for(j = 0; j < HEIGHT; j++) { *(field[0] + j*WIDTH + i) = prand() > prob_tree ? VOID : TREE; } }
}
// the "core" of the task: the "forest-fire CA" bool burning_neighbor(int, int); pthread_mutex_t synclock = PTHREAD_MUTEX_INITIALIZER; static uint32_t simulate(uint32_t iv, void *p) {
int i, j;
/* Since this is called by SDL, "likely"(*) in a separated thread, we try to avoid corrupted updating of the display (done by the show() func): show needs the "right" swapu i.e. the right complete field. (*) what if it is not so? The following is an attempt to avoid unpleasant updates. */ pthread_mutex_lock(&synclock);
for(i = 0; i < WIDTH; i++) { for(j = 0; j < HEIGHT; j++) { enum cell_state s = *(field[swapu] + j*WIDTH + i); switch(s) { case BURNING:
*(field[swapu^1] + j*WIDTH + i) = VOID; break;
case VOID:
*(field[swapu^1] + j*WIDTH + i) = prand() > prob_p ? VOID : TREE; break;
case TREE:
if (burning_neighbor(i, j)) *(field[swapu^1] + j*WIDTH + i) = BURNING; else *(field[swapu^1] + j*WIDTH + i) = prand() > prob_f ? TREE : BURNING; break;
default:
fprintf(stderr, "corrupted field\n"); break;
} } } swapu ^= 1; pthread_mutex_unlock(&synclock); return iv;
}
// the field is a "part" of an infinite "void" region
- define NB(I,J) (((I)<WIDTH)&&((I)>=0)&&((J)<HEIGHT)&&((J)>=0) \
? (*(field[swapu] + (J)*WIDTH + (I)) == BURNING) : false) bool burning_neighbor(int i, int j) {
return NB(i-1,j-1) || NB(i-1, j) || NB(i-1, j+1) || NB(i, j-1) || NB(i, j+1) || NB(i+1, j-1) || NB(i+1, j) || NB(i+1, j+1);
}
// "map" the field into gfx mem
// burning trees are red
// trees are green
// "voids" are black;
void show(SDL_Surface *s)
{
int i, j; uint8_t *pixels = (uint8_t *)s->pixels; uint32_t color; SDL_PixelFormat *f = s->format;
pthread_mutex_lock(&synclock); for(i = 0; i < WIDTH; i++) { for(j = 0; j < HEIGHT; j++) { switch(*(field[swapu] + j*WIDTH + i)) { case VOID:
color = SDL_MapRGBA(f, 0,0,0,255); break;
case TREE:
color = SDL_MapRGBA(f, 0,255,0,255); break;
case BURNING:
color = SDL_MapRGBA(f, 255,0,0,255); break;
} *(uint32_t*)(pixels + j*s->pitch + i*(BPP>>3)) = color; } } pthread_mutex_unlock(&synclock);
}
int main(int argc, char **argv) {
SDL_Surface *scr = NULL; SDL_Event event[1]; bool quit = false, running = false; SDL_TimerID tid;
// add variability to the simulation srand(time(NULL));
// we can change prob_f and prob_p // prob_f prob of spontaneous ignition // prob_p prob of birth of a tree double *p; for(argv++, argc--; argc > 0; argc--, argv++) { if ( strcmp(*argv, "prob_f") == 0 && argc > 1 ) { p = &prob_f; } else if ( strcmp(*argv, "prob_p") == 0 && argc > 1 ) { p = &prob_p; } else if ( strcmp(*argv, "prob_tree") == 0 && argc > 1 ) { p = &prob_tree; } else continue;
argv++; argc--; char *s = NULL; double t = strtod(*argv, &s); if (s != *argv) *p = t; }
printf("prob_f %lf\nprob_p %lf\nratio %lf\nprob_tree %lf\n",
prob_f, prob_p, prob_p/prob_f, prob_tree);
if ( SDL_Init(SDL_INIT_VIDEO|SDL_INIT_TIMER) != 0 ) return EXIT_FAILURE; atexit(SDL_Quit);
field[0] = malloc(WIDTH*HEIGHT); if (field[0] == NULL) exit(EXIT_FAILURE); field[1] = malloc(WIDTH*HEIGHT); if (field[1] == NULL) { free(field[0]); exit(EXIT_FAILURE); }
scr = SDL_SetVideoMode(WIDTH, HEIGHT, BPP, SDL_HWSURFACE|SDL_DOUBLEBUF); if (scr == NULL) { fprintf(stderr, "SDL_SetVideoMode: %s\n", SDL_GetError()); free(field[0]); free(field[1]); exit(EXIT_FAILURE); }
init_field();
tid = SDL_AddTimer(TIMERFREQ, simulate, NULL); // suppose success running = true;
event->type = SDL_VIDEOEXPOSE; SDL_PushEvent(event);
while(SDL_WaitEvent(event) && !quit) { switch(event->type) { case SDL_VIDEOEXPOSE: while(SDL_LockSurface(scr) != 0) SDL_Delay(1); show(scr); SDL_UnlockSurface(scr); SDL_Flip(scr); event->type = SDL_VIDEOEXPOSE; SDL_PushEvent(event); break; case SDL_KEYDOWN: switch(event->key.keysym.sym) { case SDLK_q:
quit = true; break;
case SDLK_p:
if (running) { running = false; pthread_mutex_lock(&synclock); SDL_RemoveTimer(tid); // ignore failure... pthread_mutex_unlock(&synclock); } else { running = true; tid = SDL_AddTimer(TIMERFREQ, simulate, NULL); // suppose success... } break;
} case SDL_QUIT: quit = true; break; } }
if (running) { pthread_mutex_lock(&synclock); SDL_RemoveTimer(tid); pthread_mutex_unlock(&synclock); } free(field[0]); free(field[1]); exit(EXIT_SUCCESS);
}</lang>
Console version
C99. Uncomment srand() for variaty, usleep() for slower speed. <lang C>#include <stdio.h>
- include <stdlib.h>
- include <unistd.h>
- include <time.h> // For time
enum { empty = 0, tree = 1, fire = 2 }; const char *disp[] = {" ", "\033[32m/\\\033[m", "\033[07;31m/\\\033[m"}; double tree_prob = 0.01, burn_prob = 0.0001;
- define for_x for (int x = 0; x < w; x++)
- define for_y for (int y = 0; y < h; y++)
- define for_yx for_y for_x
- define chance(x) (rand() < RAND_MAX * x)
void evolve(int w, int h) { unsigned univ[h][w], new[h][w]; for_yx new[y][x] = univ[y][x] = chance(tree_prob) ? tree : empty;
show: printf("\033[H"); for_y { for_x printf("%s",disp[univ[y][x]]); printf("\033[E"); } fflush(stdout);
for_yx { switch (univ[y][x]) { case fire: new[y][x] = empty; break; case empty: if (chance(tree_prob)) new[y][x] = tree; break; default: for (int y1 = y - 1; y1 <= y + 1; y1++) { if (y1 < 0 || y1 >= h) continue; for (int x1 = x - 1; x1 <= x + 1; x1++) { if (x1 < 0 || x1 >= w) continue; if (univ[y1][x1] != fire) continue;
new[y][x] = fire; goto burn; } }
burn: if (new[y][x] == tree && chance(burn_prob)) new[y][x] = fire; } }
for_yx { univ[y][x] = new[y][x]; } //usleep(100000); goto show; }
int main(int c, char **v) { //srand(time(0)); int w = 0, h = 0;
if (c > 1) w = atoi(v[1]); if (c > 2) h = atoi(v[2]); if (w <= 0) w = 30; if (h <= 0) h = 30;
evolve(w, h); }</lang>
C#
<lang csharp>using System; using System.Drawing; using System.Drawing.Drawing2D; using System.Threading; using System.Windows.Forms;
namespace ForestFire {
class Program : Form { private static readonly Random rand = new Random(); private Bitmap img;
public Program(int w, int h, int f, int p) { Size = new Size(w, h); StartPosition = FormStartPosition.CenterScreen;
Thread t = new Thread(() => fire(f, p)); t.Start();
FormClosing += (object sender, FormClosingEventArgs e) => { t.Abort(); t = null; }; }
private void fire(int f, int p) { int clientWidth = ClientRectangle.Width; int clientHeight = ClientRectangle.Height; int cellSize = 10;
img = new Bitmap(clientWidth, clientHeight); Graphics g = Graphics.FromImage(img);
CellState[,] state = InitializeForestFire(clientWidth, clientHeight);
uint generation = 0;
do { g.FillRectangle(Brushes.White, 0, 0, img.Width, img.Height); state = StepForestFire(state, f, p);
for (int y = 0; y < clientHeight - cellSize; y += cellSize) { for (int x = 0; x < clientWidth - cellSize; x += cellSize) { switch (state[y, x]) { case CellState.Empty: break; case CellState.Tree: g.FillRectangle(Brushes.DarkGreen, x, y, cellSize, cellSize); break; case CellState.Burning: g.FillRectangle(Brushes.DarkRed, x, y, cellSize, cellSize); break; } } }
Thread.Sleep(500);
Invoke((MethodInvoker)Refresh);
} while (generation < uint.MaxValue);
g.Dispose(); }
private CellState[,] InitializeForestFire(int width, int height) { // Create our state array, initialize all indices as Empty, and return it. var state = new CellState[height, width]; state.Initialize(); return state; }
private enum CellState : byte { Empty = 0, Tree = 1, Burning = 2 }
private CellState[,] StepForestFire(CellState[,] state, int f, int p) { /* Clone our old state, so we can write to our new state * without changing any values in the old state. */ var newState = (CellState[,])state.Clone();
int numRows = state.GetLength(0); int numCols = state.GetLength(1);
for (int r = 1; r < numRows - 1; r++) { for (int c = 1; c < numCols - 1; c++) { /* * Check the current cell. * * If it's empty, give it a 1/p chance of becoming a tree. * * If it's a tree, check to see if any neighbors are burning. * If so, set the cell's state to burning, otherwise give it * a 1/f chance of combusting. * * If it's burning, set it to empty. */ switch (state[r, c]) { case CellState.Empty: if (rand.Next(0, p) == 0) newState[r, c] = CellState.Tree; break;
case CellState.Tree: if (NeighborHasState(state, r, c, CellState.Burning) || rand.Next(0, f) == 0) newState[r, c] = CellState.Burning; break;
case CellState.Burning: newState[r, c] = CellState.Empty; break; } } }
return newState; }
private bool NeighborHasState(CellState[,] state, int x, int y, CellState value) { // Check each cell within a 1 cell radius for the specified value. for (int r = -1; r <= 1; r++) { for (int c = -1; c <= 1; c++) { if (r == 0 && c == 0) continue;
if (state[x + r, y + c] == value) return true; } }
return false; }
protected override void OnPaint(PaintEventArgs e) { base.OnPaint(e); e.Graphics.DrawImage(img, 0, 0); }
[STAThread] static void Main(string[] args) { Application.Run(new Program(w: 500, h: 500, f: 2, p: 5)); } }
}</lang>
C++
- include <windows.h>
- include <string>
//-------------------------------------------------------------------------------------------------- using namespace std;
//-------------------------------------------------------------------------------------------------- enum states { NONE, TREE, FIRE }; const int MAX_SIDE = 500;
//-------------------------------------------------------------------------------------------------- class myBitmap { public:
myBitmap() : pen( NULL ) {} ~myBitmap() {
DeleteObject( pen ); DeleteDC( hdc ); DeleteObject( bmp );
}
bool create( int w, int h ) {
BITMAPINFO bi; ZeroMemory( &bi, sizeof( bi ) );
bi.bmiHeader.biSize = sizeof( bi.bmiHeader ); bi.bmiHeader.biBitCount = sizeof( DWORD ) * 8; bi.bmiHeader.biCompression = BI_RGB; bi.bmiHeader.biPlanes = 1; bi.bmiHeader.biWidth = w; bi.bmiHeader.biHeight = -h;
HDC dc = GetDC( GetConsoleWindow() ); bmp = CreateDIBSection( dc, &bi, DIB_RGB_COLORS, &pBits, NULL, 0 ); if( !bmp ) return false;
hdc = CreateCompatibleDC( dc ); SelectObject( hdc, bmp ); ReleaseDC( GetConsoleWindow(), dc );
width = w; height = h;
return true;
}
void clear() {
ZeroMemory( pBits, width * height * sizeof( DWORD ) );
}
void setPenColor( DWORD clr ) {
if( pen ) DeleteObject( pen ); pen = CreatePen( PS_SOLID, 1, clr ); SelectObject( hdc, pen );
}
void saveBitmap( string path ) {
BITMAPFILEHEADER fileheader; BITMAPINFO infoheader; BITMAP bitmap; DWORD wb;
GetObject( bmp, sizeof( bitmap ), &bitmap );
DWORD* dwpBits = new DWORD[bitmap.bmWidth * bitmap.bmHeight]; ZeroMemory( dwpBits, bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD ) ); ZeroMemory( &infoheader, sizeof( BITMAPINFO ) ); ZeroMemory( &fileheader, sizeof( BITMAPFILEHEADER ) );
infoheader.bmiHeader.biBitCount = sizeof( DWORD ) * 8; infoheader.bmiHeader.biCompression = BI_RGB; infoheader.bmiHeader.biPlanes = 1; infoheader.bmiHeader.biSize = sizeof( infoheader.bmiHeader ); infoheader.bmiHeader.biHeight = bitmap.bmHeight; infoheader.bmiHeader.biWidth = bitmap.bmWidth; infoheader.bmiHeader.biSizeImage = bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD );
fileheader.bfType = 0x4D42; fileheader.bfOffBits = sizeof( infoheader.bmiHeader ) + sizeof( BITMAPFILEHEADER ); fileheader.bfSize = fileheader.bfOffBits + infoheader.bmiHeader.biSizeImage;
GetDIBits( hdc, bmp, 0, height, ( LPVOID )dwpBits, &infoheader, DIB_RGB_COLORS );
HANDLE file = CreateFile( path.c_str(), GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL ); WriteFile( file, &fileheader, sizeof( BITMAPFILEHEADER ), &wb, NULL ); WriteFile( file, &infoheader.bmiHeader, sizeof( infoheader.bmiHeader ), &wb, NULL ); WriteFile( file, dwpBits, bitmap.bmWidth * bitmap.bmHeight * 4, &wb, NULL ); CloseHandle( file );
delete [] dwpBits;
}
HDC getDC() const { return hdc; } int getWidth() const { return width; } int getHeight() const { return height; }
private:
HBITMAP bmp; HDC hdc; HPEN pen; void *pBits; int width, height;
}; //-------------------------------------------------------------------------------------------------- class forest { public:
forest() {
_bmp.create( MAX_SIDE, MAX_SIDE ); initForest( 0.05f, 0.005f );
}
void initForest( float p, float f ) {
_p = p; _f = f; seedForest();
}
void mainLoop() {
display(); simulate();
}
void setHWND( HWND hwnd ) { _hwnd = hwnd; }
private:
float probRand() { return ( float )rand() / 32768.0f; }
void display() {
HDC bdc = _bmp.getDC(); DWORD clr;
for( int y = 0; y < MAX_SIDE; y++ ) { for( int x = 0; x < MAX_SIDE; x++ ) { switch( _forest[x][y] ) { case FIRE: clr = 255; break; case TREE: clr = RGB( 0, 255, 0 ); break; default: clr = 0; }
SetPixel( bdc, x, y, clr ); } }
HDC dc = GetDC( _hwnd ); BitBlt( dc, 0, 0, MAX_SIDE, MAX_SIDE, _bmp.getDC(), 0, 0, SRCCOPY ); ReleaseDC( _hwnd, dc );
}
void seedForest() {
ZeroMemory( _forestT, sizeof( _forestT ) ); ZeroMemory( _forest, sizeof( _forest ) ); for( int y = 0; y < MAX_SIDE; y++ ) for( int x = 0; x < MAX_SIDE; x++ ) if( probRand() < _p ) _forest[x][y] = TREE;
}
bool getNeighbors( int x, int y ) {
int a, b; for( int yy = -1; yy < 2; yy++ ) for( int xx = -1; xx < 2; xx++ ) { if( !xx && !yy ) continue; a = x + xx; b = y + yy; if( a < MAX_SIDE && b < MAX_SIDE && a > -1 && b > -1 ) if( _forest[a][b] == FIRE ) return true; }
return false;
}
void simulate() {
for( int y = 0; y < MAX_SIDE; y++ ) { for( int x = 0; x < MAX_SIDE; x++ ) { switch( _forest[x][y] ) { case FIRE: _forestT[x][y] = NONE; break; case NONE: if( probRand() < _p ) _forestT[x][y] = TREE; break; case TREE: if( getNeighbors( x, y ) || probRand() < _f ) _forestT[x][y] = FIRE; } } }
for( int y = 0; y < MAX_SIDE; y++ ) for( int x = 0; x < MAX_SIDE; x++ ) _forest[x][y] = _forestT[x][y];
}
myBitmap _bmp; HWND _hwnd; BYTE _forest[MAX_SIDE][MAX_SIDE], _forestT[MAX_SIDE][MAX_SIDE]; float _p, _f;
}; //-------------------------------------------------------------------------------------------------- class wnd { public:
int wnd::Run( HINSTANCE hInst ) {
_hInst = hInst; _hwnd = InitAll();
_ff.setHWND( _hwnd ); _ff.initForest( 0.02f, 0.001f );
ShowWindow( _hwnd, SW_SHOW ); UpdateWindow( _hwnd );
MSG msg; ZeroMemory( &msg, sizeof( msg ) ); while( msg.message != WM_QUIT ) { if( PeekMessage( &msg, NULL, 0, 0, PM_REMOVE ) != 0 ) { TranslateMessage( &msg ); DispatchMessage( &msg ); } else { _ff.mainLoop(); } } return UnregisterClass( "_FOREST_FIRE_", _hInst );
}
private:
static int WINAPI wnd::WndProc( HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam ) {
switch( msg ) { case WM_DESTROY: PostQuitMessage( 0 ); break; default: return DefWindowProc( hWnd, msg, wParam, lParam ); } return 0;
}
HWND InitAll() {
WNDCLASSEX wcex; ZeroMemory( &wcex, sizeof( wcex ) ); wcex.cbSize = sizeof( WNDCLASSEX ); wcex.style = CS_HREDRAW | CS_VREDRAW; wcex.lpfnWndProc = ( WNDPROC )WndProc; wcex.hInstance = _hInst; wcex.hCursor = LoadCursor( NULL, IDC_ARROW ); wcex.hbrBackground = ( HBRUSH )( COLOR_WINDOW + 1 ); wcex.lpszClassName = "_FOREST_FIRE_";
RegisterClassEx( &wcex );
return CreateWindow( "_FOREST_FIRE_", ".: Forest Fire -- PJorente :.", WS_SYSMENU, CW_USEDEFAULT, 0, MAX_SIDE, MAX_SIDE, NULL, NULL, _hInst, NULL );
}
HINSTANCE _hInst; HWND _hwnd; forest _ff;
}; //-------------------------------------------------------------------------------------------------- int APIENTRY _tWinMain( HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow ) {
srand( GetTickCount() ); wnd myWnd; return myWnd.Run( hInstance );
} //-------------------------------------------------------------------------------------------------- </lang>
Ceylon
<lang ceylon>import ceylon.random { DefaultRandom }
abstract class Cell() of tree | dirt | burning {} object tree extends Cell() { string => "A"; } object dirt extends Cell() { string => " "; } object burning extends Cell() { string => "#"; }
class Forest(Integer width, Integer height, Float f, Float p) {
value random = DefaultRandom(); function chance(Float probability) => random.nextFloat() < probability; value sparked => chance(f); value sprouted => chance(p);
alias Point => Integer[2]; interface Row => {Cell*};
object doubleBufferedGrid satisfies Correspondence<Point, Cell> & KeyedCorrespondenceMutator<Point, Cell> {
value grids = [ Array { for (j in 0:height) Array { for (i in 0:width) chance(0.5) then tree else dirt } }, Array { for (j in 0:height) Array.ofSize(width, dirt) } ];
variable value showFirst = true; value currentState => showFirst then grids.first else grids.last; value nextState => showFirst then grids.last else grids.first;
shared void swapStates() => showFirst = !showFirst;
shared {Row*} rows => currentState;
shared actual Boolean defines(Point key) => let (x = key[0], y = key[1]) 0 <= x < width && 0 <= y < height; shared actual Cell? get(Point key) => let (x = key[0], y = key[1]) currentState.get(y)?.get(x);
shared actual void put(Point key, Cell cell) { value [x, y] = key; nextState.get(y)?.set(x, cell); } }
variable value evolutions = 0; shared Integer generation => evolutions + 1;
shared void evolve() {
evolutions++;
function firesNearby(Integer x, Integer y) => { for (j in y - 1 : 3) for (i in x - 1 : 3) doubleBufferedGridi, j }.coalesced.any(burning.equals);
for(j->row in doubleBufferedGrid.rows.indexed) { for(i->cell in row.indexed) { switch (cell) case (burning) { doubleBufferedGridi, j = dirt; } case (dirt) { doubleBufferedGridi, j = sprouted then tree else dirt; } case (tree) { doubleBufferedGridi, j = firesNearby(i, j) || sparked then burning else tree; } } }
doubleBufferedGrid.swapStates(); }
shared void display() {
void drawLine() => print("-".repeat(width + 2));
drawLine(); for (row in doubleBufferedGrid.rows) { process.write("|"); for (cell in row) { process.write(cell.string); } print("|"); } drawLine(); }
}
shared void run() {
value forest = Forest(78, 38, 0.02, 0.03);
while (true) {
forest.display();
print("Generation ``forest.generation``"); print("Press enter for next generation or q and then enter to quit");
value input = process.readLine(); if (exists input, input.trimmed.lowercased == "q") { return; }
forest.evolve(); }
}</lang>
Clojure
<lang Clojure> (def burn-prob 0.1) (def new-tree-prob 0.5)
(defn grow-new-tree? [] (> new-tree-prob (rand))) (defn burn-tree? [] (> burn-prob (rand))) (defn tree-maker [] (if (grow-new-tree?) :tree :grass))
(defn make-forest
([] (make-forest 5)) ([size] (take size (repeatedly #(take size (repeatedly tree-maker))))))
(defn tree-at [forest row col] (try (-> forest
(nth row) (nth col)) (catch Exception _ false)))
(defn neighbores-burning? [forest row col]
(letfn [(burnt? [row col] (= :burnt (tree-at forest row col)))] (or (burnt? (inc row) col) (burnt? (dec row) col) (burnt? row (inc col)) (burnt? row (dec col)))))
(defn lightning-strike [forest]
(map (fn [forest-row] (map #(if (and (= % :tree) (burn-tree?)) :fire! %) forest-row) ) forest))
(defn burn-out-trees [forest]
(map (fn [forest-row] (map #(case % :burnt :grass :fire! :burnt %) forest-row)) forest))
(defn burn-neighbores [forest]
(let [forest-size (count forest) indicies (partition forest-size (for [row (range forest-size) col (range forest-size)] (cons row (list col))))] (map (fn [forest-row indicies-row] (map #(if (and (= :tree %) (neighbores-burning? forest (first %2) (second %2))) :fire! %) forest-row indicies-row)) forest indicies)))
(defn grow-new-trees [forest] (map (fn [forest-row]
(map #(if (= % :grass) (tree-maker) %) forest-row)) forest))
(defn forest-fire
([] (forest-fire 5)) ([forest-size] (loop [forest (make-forest forest-size)] (pprint forest) (Thread/sleep 300) (-> forest (burn-out-trees) (lightning-strike) (burn-neighbores) (grow-new-trees) (recur)))))
(forest-fire)
</lang>
example output
((:tree :tree :grass :tree :tree) (:tree :grass :tree :tree :tree) (:fire! :tree :tree :grass :tree) (:fire! :fire! :tree :tree :tree) (:burnt :tree :tree :fire! :grass)) ((:tree :tree :grass :tree :tree) (:fire! :tree :tree :fire! :tree) (:burnt :fire! :tree :grass :tree) (:burnt :burnt :fire! :fire! :tree) (:grass :fire! :fire! :burnt :tree))
COBOL
<lang cobol> IDENTIFICATION DIVISION.
PROGRAM-ID. forest-fire.
DATA DIVISION. WORKING-STORAGE SECTION. *> Probability represents a fraction of 10000. *> For instance, IGNITE-PROB means a tree has a 1 in 10000 chance *> of igniting. 78 IGNITE-PROB VALUE 1. 78 NEW-TREE-PROB VALUE 100.
78 EMPTY-PROB VALUE 3333.
78 AREA-SIZE VALUE 40.
01 sim-table. 03 sim-row OCCURS AREA-SIZE TIMES INDEXED BY row-index. 05 sim-area OCCURS AREA-SIZE TIMES INDEXED BY col-index. 07 current-status PIC 9. *> The flags correspond to the colours they will *> be displayed as. 88 empty VALUE 0. *> Black 88 tree VALUE 2. *> Green 88 burning VALUE 4. *> Red 07 next-status PIC 9. 88 empty VALUE 0. 88 tree VALUE 2. 88 burning VALUE 4. 01 rand-num PIC 9999. 01 next-row PIC 9(4). 01 next-col PIC 9(4).
01 neighbours-row PIC 9(4). 01 neighbours-col PIC 9(4).
PROCEDURE DIVISION. main-line. *> Seed RANDOM with current time. MOVE FUNCTION RANDOM(FUNCTION CURRENT-DATE (9:8)) TO rand-num
PERFORM initialise-table PERFORM FOREVER PERFORM show-simulation PERFORM step-simulation END-PERFORM
GOBACK .
initialise-table. PERFORM VARYING row-index FROM 1 BY 1 UNTIL AREA-SIZE < row-index AFTER col-index FROM 1 BY 1 UNTIL AREA-SIZE < col-index PERFORM get-rand-num IF rand-num <= EMPTY-PROB SET empty OF current-status (row-index, col-index) TO TRUE SET empty OF next-status (row-index, col-index) TO TRUE ELSE SET tree OF current-status (row-index, col-index) TO TRUE SET tree OF next-status (row-index, col-index) TO TRUE END-IF END-PERFORM .
show-simulation. PERFORM VARYING row-index FROM 1 BY 1 UNTIL AREA-SIZE < row-index AFTER col-index FROM 1 BY 1 UNTIL AREA-SIZE < col-index DISPLAY SPACE AT LINE row-index COLUMN col-index WITH BACKGROUND-COLOR current-status (row-index, col-index) END-PERFORM .
*> Updates the simulation. step-simulation. PERFORM VARYING row-index FROM 1 BY 1 UNTIL AREA-SIZE < row-index AFTER col-index FROM 1 BY 1 UNTIL AREA-SIZE < col-index EVALUATE TRUE WHEN empty OF current-status (row-index, col-index) PERFORM get-rand-num IF rand-num <= NEW-TREE-PROB SET tree OF next-status (row-index, col-index) TO TRUE END-IF
WHEN tree OF current-status (row-index, col-index) PERFORM simulate-tree
WHEN burning OF current-status (row-index, col-index) SET empty OF next-status (row-index, col-index) TO TRUE END-EVALUATE END-PERFORM
PERFORM update-statuses. .
*> Updates a tree tile, assuming row-index and col-index are at *> a tree area. simulate-tree. *> Find the row and column of the bottom-right neighbour. COMPUTE next-row = FUNCTION MIN(row-index + 1, AREA-SIZE) COMPUTE next-col = FUNCTION MIN(col-index + 1, AREA-SIZE) COMPUTE neighbours-row = FUNCTION MAX(row-index - 1, 1) COMPUTE neighbours-col = FUNCTION MAX(col-index - 1, 1)
*> If a neighbour is burning, catch fire. PERFORM VARYING neighbours-row FROM neighbours-row BY 1 UNTIL next-row < neighbours-row *> Check if neighbours in a row are on fire. PERFORM VARYING neighbours-col FROM neighbours-col BY 1 UNTIL next-col < neighbours-col IF neighbours-row = row-index AND neighbours-col = col-index EXIT PERFORM CYCLE END-IF IF burning OF current-status (neighbours-row, neighbours-col) SET burning OF next-status (row-index, col-index) TO TRUE EXIT PARAGRAPH END-IF END-PERFORM
*> Move neighbours-col back to starting position COMPUTE neighbours-col = FUNCTION MAX(neighbours-col - 3, 1) END-PERFORM
*> Otherwise, there is a random chance of *> catching fire. PERFORM get-rand-num IF rand-num <= IGNITE-PROB SET burning OF next-status (row-index, col-index) TO TRUE END-IF .
update-statuses. PERFORM VARYING row-index FROM 1 BY 1 UNTIL AREA-SIZE < row-index AFTER col-index FROM 1 BY 1 UNTIL AREA-SIZE < col-index MOVE next-status (row-index, col-index) TO current-status (row-index, col-index) END-PERFORM .
*> Puts a random value between 0 and 9999 in rand-num. get-rand-num. COMPUTE rand-num = FUNCTION MOD(FUNCTION RANDOM * 100000, 10000) .</lang>
Common Lisp
<lang lisp>(defvar *dims* '(10 10)) (defvar *prob-t* 0.5) (defvar *prob-f* 0.1) (defvar *prob-p* 0.01)
(defmacro with-gensyms (names &body body)
`(let ,(mapcar (lambda (n) (list n '(gensym))) names)
,@body))
(defmacro traverse-grid (grid rowvar colvar (&rest after-cols) &body body)
(with-gensyms (dims rows cols)
`(let* ((,dims (array-dimensions ,grid)) (,rows (car ,dims)) (,cols (cadr ,dims))) (dotimes (,rowvar ,rows ,grid) (dotimes (,colvar ,cols ,after-cols) ,@body)))))
(defun make-new-forest (&optional (dims *dims*))
(let ((forest (make-array dims :element-type 'symbol :initial-element 'void)))
(traverse-grid forest row col nil (if (<= (random 1.0) *prob-t*) (setf (aref forest row col) 'tree)))))
(defun print-forest (forest)
(traverse-grid forest row col (terpri)
(ecase (aref forest row col) ((void) (write-char #\space)) ((tree) (write-char #\T)) ((fire) (write-char #\#))))
(values))
(defvar *neighboring* '((-1 . -1) (-1 . 0) (-1 . 1) (0 . -1) (0 . 1) (1 . -1) (1 . 0) (1 . 1)))
(defun neighbors (forest row col)
(loop for n in *neighboring*
for nrow = (+ row (car n))
for ncol = (+ col (cdr n))
when (array-in-bounds-p forest nrow ncol) collect (aref forest nrow ncol)))
(defun evolve-tree (forest row col)
(let ((tree (aref forest row col)))
(cond ((eq tree 'fire) ;; if the tree was on fire, it's dead Jim 'void) ((and (eq tree 'tree) ;; if a neighbor is on fire, it's on fire too (find 'fire (neighbors forest row col) :test #'eq)) 'fire) ((and (eq tree 'tree) ;; random chance of fire happening (<= (random 1.0) *prob-f*)) 'fire) ((and (eq tree 'void) ;; random chance of empty space becoming a tree (<= (random 1.0) *prob-p*)) 'tree) (t tree))))
(defun evolve-forest (forest)
(let* ((dims (array-dimensions forest))
(new (make-array dims :element-type 'symbol :initial-element 'void))) (traverse-grid forest row col nil (setf (aref new row col) (evolve-tree forest row col))) new))
(defun simulate (forest n &optional (print-all t))
(format t "------ Initial forest ------~%") (print-forest forest) (dotimes (i n) (setf forest (evolve-forest forest)) (when print-all (progn (format t "~%------ Generation ~d ------~%" (1+ i)) (print-forest forest)))))
</lang> Example results: <lang lisp>CL-USER>(defparameter *forest* (make-new-forest)) CL-USER>(simulate *forest* 5)
Initial forest ------
TTTTT TT
TTT TT TT T T TTTT T TT
T TT T T
T TTT TTTT TTT T T T T T
TTT TTT T
Generation 1 ------
TTTTT TT
TTT TT TT T T TTTT T TT
T TT T T
T TTT TTTT TTT T T T T T
TTT TTT T
Generation 2 ------
TTTTT TT
TTT TT TT T T TTTT T TT
TTTT T T
T TTT TTT# TTT T T T T T
TTT TTT T
Generation 3 ------
TTTTT TT
TTT TT TT T T TTTT T TT
TTTT T T
# TTT TT# TTT T T T T T
TTT TTT T
Generation 4 ------
TTTTT TT
TTT TT TT T TT TTTT T TT
TTT# T T
TTT T# TTT T T T T T
TTT TTT T
Generation 5 ------
TTTTT TT
TTT TT TT T TT T### T TT
TT# T T
TTT # TTT T T T T T
TTT TTT T NIL </lang>
D
Textual Version
<lang d>import std.stdio, std.random, std.string, std.algorithm;
enum treeProb = 0.55; // Original tree probability. enum fProb = 0.01; // Auto combustion probability. enum cProb = 0.01; // Tree creation probability.
enum Cell : char { empty=' ', tree='T', fire='#' } alias World = Cell[][];
bool hasBurningNeighbours(in World world, in ulong r, in ulong c) pure nothrow @safe @nogc {
foreach (immutable rowShift; -1 .. 2) foreach (immutable colShift; -1 .. 2) if ((r + rowShift) >= 0 && (r + rowShift) < world.length && (c + colShift) >= 0 && (c + colShift) < world[0].length && world[r + rowShift][c + colShift] == Cell.fire) return true; return false;
}
void nextState(in World world, World nextWorld) /*nothrow*/ @safe /*@nogc*/ {
foreach (r, row; world) foreach (c, elem; row) final switch (elem) with (Cell) { case empty: nextWorld[r][c]= (uniform01 < cProb) ? tree : empty; break;
case tree: if (world.hasBurningNeighbours(r, c)) nextWorld[r][c] = fire; else nextWorld[r][c] = (uniform01 < fProb) ? fire : tree; break;
case fire: nextWorld[r][c] = empty; break; }
}
void main() @safe {
auto world = new World(8, 65); foreach (row; world) foreach (ref el; row) el = (uniform01 < treeProb) ? Cell.tree : Cell.empty; auto nextWorld = new World(world.length, world[0].length);
foreach (immutable i; 0 .. 4) { nextState(world, nextWorld); writefln("%(%(%c%)\n%)\n", nextWorld); world.swap(nextWorld); }
}</lang>
- Output:
T T T#TT T TT TT TTTT TT TTT T TT T# T T TT TT TTTTT T TT TT T TTTTTTTTTT T TTT T T T TT TTTTTTTT TTTT #T TT T TTTTTT TTTTT TTT TTTT TTTT TTT T T T T T TT T TT T TT T TT T TT T TTTT T T TT TTT T TT T T T TT T TTT T TTTT T# T T T TTT TT TTTTT T T TT T T TT T TT TTTT TTT TTTTT T T T T TT T TTT T T T TT TTT T T T TTT T TT T TTT#TT T TT TTTTTTTT TTTT TTTTT TTTT TTT TT TTTTT TTTTTT TT TT T TT T TT T TT T TT TT TTTT TTTTT T T # #T T TT TT TTTT TT TTT T TT # T T TT TT TT### T TT TT # TTTTTTTTTT T TTT T T T ## TTTTTTTT TTTT # TT T TTTTTT TTTTT TTT TTTT TTTT TTT # T T T T TT T T# T TT T TT T TT T #TTT T T TT TTT T TT T T T TTT T TTT T TTTT # T T T TTT TT TTTTT T T TT T T TT T TT TTTT TTT T#### # T T T TT T TTT T T T TT TTT T T T TTT T TT T TT# #T T TT TTTTTTTT TTTT TTTTT TTTT TTT TT TTTTT TTTTTT TT ## T TT T TT T TT T TT TT TTTT TTTTT T T # T TT TT TTTT TT TTT T TT T T TT TT T# T TT TT TTTTTTTTTT T TTT T T T TTTTTTTT TTT# TT T T###TT TTT## TTT TTTT TTTT TT# T T T T #T T # T TT T TT T TT # #TT T T TT TTT T T# T T T TTT # TTT T TTTT # # T TTT TT TTTTT T T TT T T TT T TT TTTT TTT # T T # TT T TTT T T T TT TTT T T T TTT T TT # ## # T TT TTTTTTTT TTTT TTTTT TTTT TTT TT TTTTT TT#TTT TT T TT T TT T TT T TT TT TTTT TTTTT T T T TT TT TTTT TT TTT T TT T T TT TT # T TT T# TT####TTTT T TTT T T T TTTTTT## TT# TT T # #T ### TTT TTTT TTTT T# T T T T # T T TT T ## # TT ## T T TT TTT T # T T # #TT TTT T TTTT T ### TT TTTTT # T TT T T T# # TT TTTT TTT # T TT T TTT T T T TT TTT T T T TTT T ## T ## TTTTTTTT TTTT TTTTT TTTT TTT TT TTTTT T# #T# ## # TT T TT T TT T TT TT TTTT TTTTT
Graphical Version
<lang d>import std.stdio, std.random, std.algorithm, std.typetuple,
simpledisplay;
enum double TREE_PROB = 0.55; // Original tree probability. enum double F_PROB = 0.01; // Auto combustion probability. enum double P_PROB = 0.01; // Tree creation probability. enum worldSide = 600;
enum Cell : ubyte { empty, tree, burning } alias World = Cell[worldSide][];
immutable white = Color(255, 255, 255),
red = Color(255, 0, 0), green = Color(0, 255, 0);
void nextState(ref World world, ref World nextWorld,
ref Xorshift rnd, Image img) { immutable nr = world.length; immutable nc = world[0].length; foreach (immutable r, const row; world) foreach (immutable c, immutable elem; row) START: final switch (elem) with (Cell) { case empty: img.putPixel(c, r, white); nextWorld[r][c] = rnd.uniform01 < P_PROB ? tree : empty; break;
case tree: img.putPixel(c, r, green);
foreach (immutable rowShift; TypeTuple!(-1, 0, 1)) foreach (immutable colShift; TypeTuple!(-1, 0, 1)) if ((r + rowShift) >= 0 && (r + rowShift) < nr && (c + colShift) >= 0 && (c + colShift) < nc && world[r + rowShift][c + colShift] == Cell.burning) { nextWorld[r][c] = Cell.burning; break START; }
nextWorld[r][c]= rnd.uniform01 < F_PROB ? burning : tree; break;
case burning: img.putPixel(c, r, red); nextWorld[r][c] = empty; break; }
swap(world, nextWorld);
}
void main() {
auto rnd = Xorshift(1); auto world = new World(worldSide); foreach (ref row; world) foreach (ref el; row) el = rnd.uniform01 < TREE_PROB ? Cell.tree : Cell.empty; auto nextWorld = new World(world[0].length);
auto w= new SimpleWindow(world.length,world[0].length,"ForestFire"); auto img = new Image(w.width, w.height);
w.eventLoop(1, { auto painter = w.draw; nextState(world, nextWorld, rnd, img); painter.drawImage(Point(0, 0), img); });
}</lang>
Déjà Vu
<lang dejavu>#chance of empty->tree set :p 0.004
- chance of spontaneous tree combustion
set :f 0.001
- chance of tree in initial state
set :s 0.5
- height of world
set :H 10
- width of world
set :W 20
has-burning-neigbour state pos: for i range -- swap ++ dup &< pos: for j range -- swap ++ dup &> pos: & i j try: state! catch value-error: :empty if = :burning: return true false
evolve state pos: state! pos if = :tree dup: if has-burning-neigbour state pos: :burning drop elseif chance f: :burning drop elseif = :burning: :empty else: if chance p: :tree else: :empty
step state: local :next {} for k in keys state: set-to next k evolve state k next
local :(c) { :tree "T" :burning "B" :empty "." } print-state state: for j range 0 H: for i range 0 W: !print\ (c)! state! & i j !print ""
init-state: local :first {} for j range 0 H: for i range 0 W: if chance s: :tree else: :empty set-to first & i j first
run: init-state while true: print-state dup !print "" step
run-slowly: init-state while true: print-state dup drop !prompt "Continue." step
run</lang>
- Output:
T.T.T...T..T..TT.T.T. .TT.T...T..T....TTTTT ......T.TTT.TTTTT.... ..TTT...T.T..T..TTT.. ....T.....TTT...TTTTT ..TTT..TTTTTTTTT....T T....T..TT.TT.T...T.. TTT.TT.T..TT.TTT.TT.. .TT.TT.T...T.T..T.TTT ..TTTTT...TTTTTT..T.T TT..T....T..T..TTTT.. TTT.T...T..T.TTT.T.T. .TT.T...T..T..T.TTTTT ......T.TTT.TTTTT.... ..TTT...T.T..T..TTT.. ....TT....TTB...TTTTT ..TTT..TTTTTTTTT...TT T....T.TTT.TT.T...T.. TTT.TT.T..TB.TTT.TT.. .TT.TT.T...T.T..T.TTT ..TTTTB...TTTTTT..T.T TT..T....T..T..TTTT.. TTT.T...T..T.TTT.T.T. .TTTT...T..T..T.TTTTT ......T.TTTTTTTTT.... ..TTT...T.T..B..TTT.. ....TT....TB....TTTTT ..TTT..TTTTBBBTT...TT T....T.TTT.BB.T...T.. TTT.TT.T..B..TTT.TT.. .TTTTB.B...B.T..T.TTT ..TTTB....TTTTTT..T.T TT..T....T..T..TTTT..
EasyLang
<lang>p_fire = 0.00002 p_tree = 0.002
len f[] 102 * 102 len p[] len f[] background 100 clear for r range 100
for c range 100 i = r * 102 + c + 103 if randomf < 0.5 f[i] = 1 . .
. timer 0
subr show
for r range 100 for c range 100 i = r * 102 + c + 103 h = f[i] if h <> p[i] move c + 0.5 r + 0.5 if h = 0 color 100 circle 0.6 elif h = 1 color 151 circle 0.5 else color 9 * 100 + (18 - 2 * h) * 10 circle 0.5 . . . .
. subr update
swap f[] p[] for r range 100 for c range 100 i = r * 102 + c + 103 if p[i] = 0 f[i] = 0 if randomf < p_tree f[i] = 1 . elif p[i] = 1 f[i] = 1 s = p[i - 103] + p[i - 102] + p[i - 101] s += p[i - 1] + p[i + 1] s += p[i + 101] + p[i + 102] + p[i + 103] if s >= 9 or randomf < p_fire f[i] = 9 . elif p[i] = 4 f[i] = 0 else f[i] = p[i] - 1 . . .
. on timer
call show call update timer 0.2
.</lang>
Emacs Lisp
<lang lisp>#!/usr/bin/env emacs -script
- -*- lexical-binding
- t -*-
- run
- ./forest-fire forest-fire.config
(require 'cl-lib)
- (setq debug-on-error t)
(defmacro swap (a b)
`(setq ,b (prog1 ,a (setq ,a ,b))))
(defconst burning ?B) (defconst tree ?t)
(cl-defstruct world rows cols data)
(defun new-world (rows cols)
;; When allocating the vector add padding so the border will always be empty. (make-world :rows rows :cols cols :data (make-vector (* (1+ rows) (1+ cols)) nil)))
(defmacro world--rows (w)
`(1+ (world-rows ,w)))
(defmacro world--cols (w)
`(1+ (world-cols ,w)))
(defmacro world-pt (w r c)
`(+ (* (mod ,r (world--rows ,w)) (world--cols ,w)) (mod ,c (world--cols ,w))))
(defmacro world-ref (w r c)
`(aref (world-data ,w) (world-pt ,w ,r ,c)))
(defun print-world (world)
(dotimes (r (world-rows world)) (dotimes (c (world-cols world)) (let ((cell (world-ref world r c))) (princ (format "%c" (if (not (null cell)) cell ?.))))) (terpri)))
(defun random-probability ()
(/ (float (random 1000000)) 1000000))
(defun initialize-world (world p)
(dotimes (r (world-rows world)) (dotimes (c (world-cols world)) (setf (world-ref world r c) (if (<= (random-probability) p) tree nil)))))
(defun neighbors-burning (world row col)
(let ((n 0)) (dolist (offset '((1 . 1) (1 . 0) (1 . -1) (0 . 1) (0 . -1) (-1 . 1) (-1 . 0) (-1 . -1))) (when (eq (world-ref world (+ row (car offset)) (+ col (cdr offset))) burning) (setq n (1+ n)))) (> n 0)))
(defun advance (old new p f)
(dotimes (r (world-rows old)) (dotimes (c (world-cols old)) (cond ((eq (world-ref old r c) burning) (setf (world-ref new r c) nil)) ((null (world-ref old r c)) (setf (world-ref new r c) (if (<= (random-probability) p) tree nil))) ((eq (world-ref old r c) tree) (setf (world-ref new r c) (if (or (neighbors-burning old r c) (<= (random-probability) f)) burning tree)))))))
(defun read-config (file-name)
(with-temp-buffer (insert-file-contents-literally file-name) (read (current-buffer))))
(defun get-config (key config)
(let ((val (assoc key config))) (if (null val) (error (format "missing value for %s" key)) (cdr val))))
(defun simulate-forest (file-name)
(let* ((config (read-config file-name)) (rows (get-config 'rows config)) (cols (get-config 'cols config)) (skip (get-config 'skip config)) (a (new-world rows cols)) (b (new-world rows cols))) (initialize-world a (get-config 'tree config)) (dotimes (time (get-config 'time config)) (when (or (and (> skip 0) (= (mod time skip) 0)) (<= skip 0)) (princ (format "* time %d\n" time)) (print-world a)) (advance a b (get-config 'p config) (get-config 'f config)) (swap a b))))
(simulate-forest (elt command-line-args-left 0)) </lang>
The configuration file controls the simulation. <lang lisp>((rows . 10)
(cols . 45) (time . 100) (skip . 10) (f . 0.001) ;; probability tree ignites (p . 0.01) ;; probability empty space fills with a tree (tree . 0.5)) ;; initial probability of tree in a new world</lang>
- Output:
* time 0 .t...t..t.t.t...ttt...tttt..tt...t.t.t.t.t..t .t.t.t..t.ttt.tt.tttt.tt....t.t.tt.t.t.tt.ttt t..t.tttt..t..tt..tt.t.t.tt.....t..t..tt.tt.t .tt.t.ttt.t...t...tt..t....tttttt.t..tt.tt.tt .t..t..t.tt.t...tt...t.t.tt.t.t..ttttt.t..ttt .tt.ttttt..t.t....tttt.t.t..tttttt.tt.t.t.t.t ttt.....t.tttttttt.tt....ttt.t.....t.ttt..ttt .tt..tt.tt.ttt...tt.t..ttt.t.tt.tt....tttt... t.tt...tttt...t.t.tt.tt..ttt...t.tt.t.tttttt. ...t......t.t...tttt...ttttt.tttt..t..t.tttt. * time 10 ......................tttt..tt...t.B........B ....................B.tt...tt.t.tt..........B .....................t.t.tt.....B...........B ...........t..........t...tttttB............B .............t..tB...t.t.tt.t.tB.........t..B .........t.......ttttt.t.tt.tttB............. ................Btttt....ttttt...........t... t....B...t.......tt.t..ttt.t.tt.BB........... .....B..........t.ttttt..ttt..tt.tt.t...t.... ................tttt...ttttt.tttt..t......... * time 20 ..........t.....t.t................t........t .....t...........t.t......................... .........................t..............t.... ..........tttt..........................t.... .t.........t.t...........................t... ....t....t......................t............ ..t.tt.....t..............t........t.t...t... tt.......t................................... ..t...t.........................t....t..t.t.. .....t....................................... * time 30 ......t...t.....t.t......t.........t.......tt .....t.........t.t.t...............t...t..... ...........tt.........t..t..t......t....t.... ..........tttt.......t.....t.........t..t.... .t.........t.t...t.tt..........t.........t... ....t....t......t.tt.t..........t.......t.... ..t.tt.....t..t.....t.t...t..tB....t.t...t... tt..t....t.......t..................t........ ..t...t....t...........t........t....t..t.t.. .....t...t....t..t....tt.t.....t...........t. * time 40 ......t...t.....t.t......t......t..t.......tt .....t.........t.t.tt..............tt..t..... ...........tt............t..t......t....tt... t...t.....tttt.............tt.t.t....t..t.... .t.........t.t......t..........t.........t... ....t....t...t........t.t.......t.t..t..t.... ..t.tt.....t..B....t......t....t...t.t...t... tt..t....t.t.....tt.................t........ ..t...t....t..t........tt.t.....t....t..t.t.. ..t..t...t....t..t....tt.t.....t......t....t. * time 50 ......t...t.....t.t......t.....tt.t...t....tt ..t.tt.........t.t.tt.t......t.t...t...t..... .........................t..t..t..t.....tt... t...t......................tt.t.t....t..t...t .t..................t.........tt.........t..t ....t....t..........t.t.t.......t.t..t..t.... ..tttt...t.t.......t......t....t...ttt...tt.t tt..t.t..t.t.....tt.................t........ ..t...t....t..t....t...tt.t.....t....tt.t.t.. ..t..t...t....t..t....tt.t.t...t....t.t....t. * time 60 ......t...t.t...t.t.t....t.....tt.t...t....tt ..t.tt.......t.t.t.tt.t......t.t...t...t..t.t ......t.t...............tt.tt..t..t.....tt... t...t.t.............t......tt.t.t....t..t...t tt...............tttt.........tt.........t..t ....tt.ttt..t.......t.t.t.t.....t.t..t..t.... ..tttt...ttt.......t......t....t...ttt..ttt.t tt..t.t.tt.t...t.tt.................t....t... ..tt..t....t..t..t.t...B........t....tt.t.t.. ..t..t...t....t..t..t.tB...Bt..t...tt.t....t. * time 70 ......tt..t.t...t.t.t.t..t.....tt.t...t....tt t.t.tt.......t.t.t.tt.t.....tttt...t...t..t.t .t....t.t............t..tt.tt..t..t....ttt... t...t.tt..t.....t...t...t..tt.t.tt...t..t.t.t tt.....t.........tttt.........tt..t......tt.t ....ttttttt.t...t...t.t.t.t.....t.t..t..t.t.. ..tttt...ttt..t....t......t...tt...ttt..ttt.t ttt.t.t.tttt...t.tt....t.......t....tt..tt... ..tt..ttt.tt..t..ttt.....t......t...ttt.t.t.. ..t..tt..t....t.tt..t..........t.t.tt.t...tt. * time 80 ....t.tt.tt.t...t.t.t.t..t....ttt.t.........B t.t.tt.......t.t.t.tt.t.....ttttt..t........B .t....t.t............t..tt.tt..t..t.......... t...t.ttt.t.....t...t...t..tt.tttt...t......t tt.....t.......tttttt....t....ttt.ttt.......t ....ttttttt.t..tt..tt.t.t.t.....t.t..t....... ..tttt...ttt..tt...t......t...tt...ttt......t ttt.t.t.tttt...t.tt....t......ttt...tt..BB... ..ttt.ttt.tt..t..tttt....tt.....t...ttt.t.t.. ..t..tt..t....tttt.tt..........t.t.tt.t...tt. * time 90 ....t.tt.tt.t...t.t.t.t..t........B.......... t.t.tt.......t.ttt.tt.t.............B........ tt....t.t.t.......t..t..tt................... t...t.ttt.t.....t.t.t.t.t............t..t...t tt.tt.tt.......tttttt....t..........B...t...t ....ttttttt.t..ttt.tt.ttt.t..........t.....t. ..tttt...ttt..tt.t.t......t........Btt..t.t.t ttt.t.t.tttt...t.tt..t.t...........ttt....... ..ttt.ttt.tt..t..tttt.t..tt.....BB..ttt...... ..t..tt..t....tttt.tt.......t..t.t.tt.t......
Erlang
Not even text graphics. Notice the use of random:seed/1 when creating a tree. Without it all calls to random:uniform/1 gave the same result for each tree.
<lang Erlang> -module( forest_fire ).
-export( [task/0] ).
-record( state, {neighbours=[], position, probability_burn, probability_grow, tree} ).
task() ->
erlang:spawn( fun() -> Pid_positions = forest_create( 5, 5, 0.5, 0.3, 0.2 ), Pids = [X || {X, _} <- Pid_positions], [X ! {tree_pid_positions, Pid_positions} || X <- Pids], Start = forest_status( Pids ), Histories = [Start | [forest_step( Pids ) || _X <- lists:seq(1, 2)]], [io:fwrite("~p~n~n", [X]) || X <- Histories] end ).
forest_create( X_max, Y_max, Init, Grow, Burn ) ->
[{tree_create(tree_init(Init, random:uniform()), X, Y, Grow, Burn), {X,Y}} || X <- lists:seq(1, X_max), Y<- lists:seq(1, Y_ma\
x)].
forest_status( Pids ) ->
[X ! {status_request, erlang:self()} || X <- Pids], [receive {status, Tree, Position, X} -> {Tree, Position} end || X <- Pids].
forest_step( Pids ) ->
[X ! {step} || X <- Pids], forest_status( Pids ).
is_neighbour({X, Y}, {X, Y} ) -> false; % Myself is_neighbour({Xn, Yn}, {X, Y} ) when abs(Xn - X) =< 1, abs(Yn - Y) =< 1 -> true; is_neighbour( _Position_neighbour, _Position ) -> false.
loop( State ) ->
receive {tree_pid_positions, Pid_positions} -> loop( loop_neighbour(Pid_positions, State) ); {step} -> [X ! {tree, State#state.tree, erlang:self()} || X <- State#state.neighbours], loop( loop_step(State) ); {status_request, Pid} -> Pid ! {status, State#state.tree, State#state.position, erlang:self()}, loop( State ) end.
loop_neighbour( Pid_positions, State ) -> My_position = State#state.position,
State#state{neighbours=[Pid || {Pid, Position} <- Pid_positions, is_neighbour( Position, My_position)]}.
loop_step( State ) ->
Is_burning = lists:any( fun loop_step_burning/1, [loop_step_receive(X) || X <- State#state.neighbours] ), Tree = loop_step_next( Is_burning, random:uniform(), State ), State#state{tree=Tree}.
loop_step_burning( Tree ) -> Tree =:= burning.
loop_step_next( _Is_burning, Probablility, #state{tree=empty, probability_grow=Grow} ) when Grow > Probablility -> tree; loop_step_next( _Is_burning, _Probablility, #state{tree=empty} ) -> empty; loop_step_next( _Is_burning, _Probablility, #state{tree=burning} ) -> empty; loop_step_next( true, _Probablility, #state{tree=tree} ) -> burning; loop_step_next( false, Probablility, #state{tree=tree, probability_burn=Burn} ) when Burn > Probablility -> burning; loop_step_next( false, _Probablility, #state{tree=tree} ) -> tree.
loop_step_receive( Pid ) -> receive {tree, Tree, Pid} -> Tree end.
tree_create( Tree, X, Y, Grow, Burn ) ->
State = #state{position={X, Y}, probability_burn=Burn, probability_grow=Grow, tree=Tree}, erlang:spawn_link( fun() -> random:seed( X, Y, 0 ), loop( State ) end ).
tree_init( Tree_probalility, Random ) when Tree_probalility > Random -> tree; tree_init( _Tree_probalility, _Random ) -> empty. </lang>
- Output:
29> forest_fire:task().
[{tree,{1,1}}, {empty,{1,2}}, {empty,{1,3}}, {empty,{1,4}}, {tree,{1,5}}, {empty,{2,1}}, {empty,{2,2}}, {empty,{2,3}}, {tree,{2,4}}, {empty,{2,5}}, {tree,{3,1}}, {tree,{3,2}}, {empty,{3,3}}, {tree,{3,4}}, {empty,{3,5}}, {tree,{4,1}}, {tree,{4,2}}, {tree,{4,3}}, {tree,{4,4}}, {empty,{4,5}}, {tree,{5,1}}, {tree,{5,2}}, {tree,{5,3}}, {tree,{5,4}}, {empty,{5,5}}] [{burning,{1,1}}, {tree,{1,2}}, {tree,{1,3}}, {tree,{1,4}}, {burning,{1,5}}, {tree,{2,1}}, {tree,{2,2}}, {tree,{2,3}}, {burning,{2,4}}, {tree,{2,5}}, {burning,{3,1}}, {burning,{3,2}}, {tree,{3,3}}, {burning,{3,4}}, {tree,{3,5}}, {burning,{4,1}}, {burning,{4,2}}, {burning,{4,3}}, {burning,{4,4}}, {tree,{4,5}}, {burning,{5,1}}, {burning,{5,2}}, {burning,{5,3}}, {burning,{5,4}}, {tree,{5,5}}] [{empty,{1,1}}, {burning,{1,2}}, {burning,{1,3}}, {burning,{1,4}}, {empty,{1,5}}, {burning,{2,1}}, {burning,{2,2}}, {burning,{2,3}}, {empty,{2,4}}, {burning,{2,5}}, {empty,{3,1}}, {empty,{3,2}}, {burning,{3,3}}, {empty,{3,4}}, {burning,{3,5}}, {empty,{4,1}}, {empty,{4,2}}, {empty,{4,3}}, {empty,{4,4}}, {burning,{4,5}}, {empty,{5,1}}, {empty,{5,2}}, {empty,{5,3}}, {empty,{5,4}}, {burning,{5,5}}]
F#
This implementation can be compiled or run in the interactive F# shell. <lang fsharp>open System open System.Diagnostics open System.Drawing open System.Drawing.Imaging open System.Runtime.InteropServices open System.Windows.Forms
module ForestFire =
type Cell = Empty | Tree | Fire
let rnd = new System.Random() let initial_factor = 0.35 let ignition_factor = 1e-5 // rate of lightning strikes (f) let growth_factor = 2e-3 // rate of regrowth (p) let width = 640 // width of the forest region let height = 480 // height of the forest region
let make_forest = Array2D.init height width (fun _ _ -> if rnd.NextDouble() < initial_factor then Tree else Empty) let count (forest:Cell[,]) row col = let mutable n = 0 let h,w = forest.GetLength 0, forest.GetLength 1 for r in row-1 .. row+1 do for c in col-1 .. col+1 do if r >= 0 && r < h && c >= 0 && c < w && forest.[r,c] = Fire then n <- n + 1 if forest.[row,col] = Fire then n-1 else n
let burn (forest:Cell[,]) r c = match forest.[r,c] with | Fire -> Empty | Tree -> if rnd.NextDouble() < ignition_factor then Fire else if (count forest r c) > 0 then Fire else Tree | Empty -> if rnd.NextDouble() < growth_factor then Tree else Empty
// All the functions below this point are drawing the generated images to screen. let make_image (pixels:int[]) = let bmp = new Bitmap(width, height) let bits = bmp.LockBits(Rectangle(0,0,width,height), ImageLockMode.WriteOnly, PixelFormat.Format32bppArgb) Marshal.Copy(pixels, 0, bits.Scan0, bits.Height*bits.Width) |> ignore bmp.UnlockBits(bits) bmp
// This function is run asynchronously to avoid blocking the main GUI thread. let run (box:PictureBox) (label:Label) = async { let timer = new Stopwatch() let forest = make_forest |> ref let pixel = Array.create (height*width) (Color.Black.ToArgb()) let rec update gen = timer.Start() forest := burn !forest |> Array2D.init height width for y in 0..height-1 do for x in 0..width-1 do pixel.[x+y*width] <- match (!forest).[y,x] with | Empty -> Color.Gray.ToArgb() | Tree -> Color.Green.ToArgb() | Fire -> Color.Red.ToArgb() let img = make_image pixel box.Invoke(MethodInvoker(fun () -> box.Image <- img)) |> ignore let msg = sprintf "generation %d @ %.1f fps" gen (1000./timer.Elapsed.TotalMilliseconds) label.Invoke(MethodInvoker(fun () -> label.Text <- msg )) |> ignore timer.Reset() update (gen + 1) update 0 }
let main args = let form = new Form(AutoSize=true, Size=new Size(800,600), Text="Forest fire cellular automata") let box = new PictureBox(Dock=DockStyle.Fill,Location=new Point(0,0),SizeMode=PictureBoxSizeMode.StretchImage) let label = new Label(Dock=DockStyle.Bottom, Text="Ready") form.FormClosed.Add(fun eventArgs -> Async.CancelDefaultToken() Application.Exit()) form.Controls.Add(box) form.Controls.Add(label) run box label |> Async.Start form.Show() Application.Run() 0
- if INTERACTIVE
ForestFire.main [|""|]
- else
[<System.STAThread>] [<EntryPoint>] let main args = ForestFire.main args
- endif</lang>
Factor
<lang factor>USING: combinators grouping kernel literals math math.matrices math.vectors prettyprint random raylib.ffi sequences ; IN: rosetta-code.forest-fire
! The following private vocab builds up to a useful combinator, ! matrix-map-neighbors, which takes a matrix, a quotation, and ! inside the quotation makes available each element of the ! matrix as well as its neighbors, mapping the result of the ! quotation to a new matrix.
<PRIVATE
CONSTANT: neighbors {
{ -1 -1 } { -1 0 } { -1 1 } { 0 -1 } { 0 1 } { 1 -1 } { 1 0 } { 1 1 }
}
- ?i,j ( i j matrix -- elt/f ) swapd ?nth ?nth ;
- ?i,jths ( seq matrix -- newseq )
[ [ first2 ] dip ?i,j ] curry map ;
- neighbor-coords ( loc -- seq )
[ neighbors ] dip [ v+ ] curry map ;
- get-neighbors ( loc matrix -- seq )
[ neighbor-coords ] dip ?i,jths ;
- matrix>neighbors ( matrix -- seq )
dup dim matrix-coordinates concat [ swap get-neighbors sift ] with map ;
- matrix-map-neighbors ( ... matrix quot: ( ... neighbors elt -- ... newelt ) -- ... newmatrix )
[ [ dim first ] [ matrix>neighbors ] [ concat ] tri ] dip 2map swap group ; inline
PRIVATE>
! ##### Simulation code #####
! In our forest, ! 0 = empty ! 1 = tree ! 2 = fire
CONSTANT: ignite-probability 1/12000 CONSTANT: grow-probability 1/100
- make-forest ( m n probability -- matrix )
[ random-unit > 1 0 ? ] curry make-matrix ;
- ?ignite ( -- 1/2 ) ignite-probability random-unit > 2 1 ? ;
- ?grow ( -- 0/1 ) grow-probability random-unit > 1 0 ? ;
- next-plot ( neighbors elt -- n )
{ { [ dup 2 = ] [ 2drop 0 ] } { [ 2dup [ [ 2 = ] any? ] [ 1 = ] bi* and ] [ 2drop 2 ] } { [ 1 = ] [ drop ?ignite ] } [ drop ?grow ] } cond ;
- next-forest ( forest -- newforest )
[ next-plot ] matrix-map-neighbors ;
! ##### Display code #####
CONSTANT: colors ${ GRAY GREEN RED }
- draw-forest ( matrix -- )
dup dim matrix-coordinates [ concat ] bi@ swap [ [ first2 [ 5 * ] bi@ 5 5 ] dip colors nth draw-rectangle ] 2each ;
500 500 "Forest Fire" init-window 100 100 1/2 make-forest 60 set-target-fps [ window-should-close ] [
begin-drawing BLACK clear-background dup draw-forest end-drawing next-forest
] until drop close-window</lang>
- Output:
Forth
<lang forth>30 CONSTANT WIDTH 30 CONSTANT HEIGHT WIDTH HEIGHT * CONSTANT SIZE
1 VALUE SEED
- (RAND) ( -- u) \ xorshift generator
SEED DUP 13 LSHIFT XOR DUP 17 RSHIFT XOR DUP 5 LSHIFT XOR DUP TO SEED ;
10000 CONSTANT RANGE 100 CONSTANT GROW 1 CONSTANT BURN
- RAND ( -- u) (RAND) RANGE MOD ;
\ Create buffers for world state CREATE A SIZE ALLOT A SIZE ERASE CREATE B SIZE ALLOT B SIZE ERASE
0 CONSTANT NONE 1 CONSTANT TREE 2 CONSTANT FIRE
- NEARBY-FIRE? ( addr u -- t|f)
2 -1 DO 2 -1 DO J WIDTH * I + OVER + \ calculate an offset DUP 0> OVER SIZE < AND IF >R OVER R> + C@ \ fetch state of the offset cell FIRE = IF UNLOOP UNLOOP DROP DROP TRUE EXIT THEN ELSE DROP THEN LOOP LOOP DROP DROP FALSE ;
- GROW? RAND GROW <= ; \ spontaneously sprout?
- BURN? RAND BURN <= ; \ spontaneously combust?
- STEP ( prev next --) \ Given state in PREV, put next in NEXT
>R 0 BEGIN DUP SIZE < WHILE 2DUP + C@ CASE FIRE OF NONE ENDOF TREE OF 2DUP NEARBY-FIRE? BURN? OR IF FIRE ELSE TREE THEN ENDOF NONE OF GROW? IF TREE ELSE NONE THEN ENDOF ENDCASE ( i next-cell-state) OVER R@ + C! \ commit to next 1+ REPEAT R> DROP DROP DROP ;
- (ESCAPE) 27 EMIT [CHAR] [ EMIT ;
- ESCAPE" POSTPONE (ESCAPE) POSTPONE S" POSTPONE TYPE ; IMMEDIATE
- CLEAR ESCAPE" H" ;
- RETURN ESCAPE" E" ;
- RESET ESCAPE" m" ;
- .FOREST ( addr --) CLEAR
HEIGHT 0 DO WIDTH 0 DO DUP C@ CASE NONE OF SPACE ENDOF TREE OF ESCAPE" 32m" [CHAR] T EMIT RESET ENDOF FIRE OF ESCAPE" 31m" [CHAR] # EMIT RESET ENDOF ENDCASE 1+ LOOP RETURN LOOP RESET DROP ;
- (GO) ( buffer buffer' -- buffer' buffer)
2DUP STEP \ step the simulation DUP .FOREST \ print the current state SWAP ; \ prepare for next iteration
- GO A B BEGIN (GO) AGAIN ;</lang>
Fortran
<lang fortran>module ForestFireModel
implicit none
type :: forestfire integer, dimension(:,:,:), allocatable :: field integer :: width, height integer :: swapu real :: prob_tree, prob_f, prob_p end type forestfire
integer, parameter :: & empty = 0, & tree = 1, & burning = 2
private :: bcheck, set, oget, burning_neighbor ! cset, get
contains
! create and initialize the field(s) function forestfire_new(w, h, pt, pf, pp) result(res) type(forestfire) :: res integer, intent(in) :: w, h real, intent(in), optional :: pt, pf, pp
integer :: i, j real :: r
allocate(res%field(2,w,h)) ! no error check res%prob_tree = 0.5 res%prob_f = 0.00001 res%prob_p = 0.001 if ( present(pt) ) res%prob_tree = pt if ( present(pf) ) res%prob_f = pf if ( present(pp) ) res%prob_p = pp
res%width = w res%height = h res%swapu = 0
res%field = empty
do i = 1,w do j = 1,h call random_number(r) if ( r <= res%prob_tree ) call cset(res, i, j, tree) end do end do end function forestfire_new ! destroy the field(s) subroutine forestfire_destroy(f) type(forestfire), intent(inout) :: f
if ( allocated(f%field) ) deallocate(f%field) end subroutine forestfire_destroy
! evolution subroutine forestfire_evolve(f) type(forestfire), intent(inout) :: f
integer :: i, j real :: r
do i = 1, f%width do j = 1, f%height select case ( get(f, i, j) ) case (burning) call set(f, i, j, empty) case (empty) call random_number(r) if ( r > f%prob_p ) then call set(f, i, j, empty) else call set(f, i, j, tree) end if case (tree) if ( burning_neighbor(f, i, j) ) then call set(f, i, j, burning) else call random_number(r) if ( r > f%prob_f ) then call set(f, i, j, tree) else call set(f, i, j, burning) end if end if end select end do end do f%swapu = ieor(f%swapu, 1) end subroutine forestfire_evolve
! helper funcs/subs subroutine set(f, i, j, t) type(forestfire), intent(inout) :: f integer, intent(in) :: i, j, t
if ( bcheck(f, i, j) ) then f%field(ieor(f%swapu,1), i, j) = t end if end subroutine set
subroutine cset(f, i, j, t) type(forestfire), intent(inout) :: f integer, intent(in) :: i, j, t
if ( bcheck(f, i, j) ) then f%field(f%swapu, i, j) = t end if end subroutine cset
function bcheck(f, i, j) logical :: bcheck type(forestfire), intent(in) :: f integer, intent(in) :: i, j bcheck = .false. if ( (i >= 1) .and. (i <= f%width) .and. & (j >= 1) .and. (j <= f%height) ) bcheck = .true. end function bcheck
function get(f, i, j) result(r) integer :: r type(forestfire), intent(in) :: f integer, intent(in) :: i, j if ( .not. bcheck(f, i, j) ) then r = empty else r = f%field(f%swapu, i, j) end if end function get
function oget(f, i, j) result(r) integer :: r type(forestfire), intent(in) :: f integer, intent(in) :: i, j if ( .not. bcheck(f, i, j) ) then r = empty else r = f%field(ieor(f%swapu,1), i, j) end if end function oget
function burning_neighbor(f, i, j) result(r) logical :: r type(forestfire), intent(in) :: f integer, intent(in) :: i, j
integer, dimension(3,3) :: s s = f%field(f%swapu, i-1:i+1, j-1:j+1) s(2,2) = empty r = any(s == burning) end function burning_neighbor
subroutine forestfire_print(f) type(forestfire), intent(in) :: f
integer :: i, j
do j = 1, f%height do i = 1, f%width select case(get(f, i, j)) case (empty) write(*,'(A)', advance='no') '.' case (tree) write(*,'(A)', advance='no') 'Y' case (burning) write(*,'(A)', advance='no') '*' end select end do write(*,*) end do end subroutine forestfire_print
end module ForestFireModel</lang>
<lang fortran>program ForestFireTest
use ForestFireModel implicit none
type(forestfire) :: f integer :: i
f = forestfire_new(74, 40)
do i = 1, 1001 write(*,'(A)', advance='no') achar(z'1b') // '[H' // achar(z'1b') // '[2J' call forestfire_print(f) call forestfire_evolve(f) end do call forestfire_destroy(f)
end program ForestFireTest</lang>
Go
Text. The program prints the configuration, waits for the Enter key, and prints the next. It makes a pretty good animation to just hold down the Enter key. <lang go>package main
import (
"fmt" "math/rand" "strings"
)
const (
rows = 20 cols = 30 p = .01 f = .001
)
const rx = rows + 2 const cx = cols + 2
func main() {
odd := make([]byte, rx*cx) even := make([]byte, rx*cx) for r := 1; r <= rows; r++ { for c := 1; c <= cols; c++ { if rand.Intn(2) == 1 { odd[r*cx+c] = 'T' } } } for { print(odd) step(even, odd) fmt.Scanln()
print(even) step(odd, even) fmt.Scanln() }
}
func print(model []byte) {
fmt.Println(strings.Repeat("__", cols)) fmt.Println() for r := 1; r <= rows; r++ { for c := 1; c <= cols; c++ { if model[r*cx+c] == 0 { fmt.Print(" ") } else { fmt.Printf(" %c", model[r*cx+c]) } } fmt.Println() }
}
func step(dst, src []byte) {
for r := 1; r <= rows; r++ { for c := 1; c <= cols; c++ { x := r*cx + c dst[x] = src[x] switch dst[x] { case '#': // rule 1. A burning cell turns into an empty cell dst[x] = 0 case 'T': // rule 2. A tree will burn if at least one neighbor is burning if src[x-cx-1]=='#' || src[x-cx]=='#' || src[x-cx+1]=='#' || src[x-1] == '#' || src[x+1] == '#' || src[x+cx-1]=='#' || src[x+cx]=='#' || src[x+cx+1] == '#' { dst[x] = '#'
// rule 3. A tree ignites with probability f // even if no neighbor is burning } else if rand.Float64() < f { dst[x] = '#' } default: // rule 4. An empty space fills with a tree with probability p if rand.Float64() < p { dst[x] = 'T' } } } }
}</lang>
Haskell
<lang haskell>import Control.Monad (replicateM, unless) import Data.List (tails, transpose) import System.Random (randomRIO)
data Cell
= Empty | Tree | Fire deriving (Eq)
instance Show Cell where
show Empty = " " show Tree = "T" show Fire = "$"
randomCell :: IO Cell randomCell = fmap ([Empty, Tree] !!) (randomRIO (0, 1) :: IO Int)
randomChance :: IO Double randomChance = randomRIO (0, 1.0) :: IO Double
rim :: a -> a -> a rim b = fmap (fb b) . (fb =<< rb)
where fb = (.) <$> (:) <*> (flip (++) . return) rb = fst . unzip . zip (repeat b) . head
take3x3 :: a -> [[[a]]] take3x3 = concatMap (transpose . fmap take3) . take3
where take3 = init . init . takeWhile (not . null) . fmap (take 3) . tails
list2Mat :: Int -> [a] -> a list2Mat n = takeWhile (not . null) . fmap (take n) . iterate (drop n)
evolveForest :: Int -> Int -> Int -> IO () evolveForest m n k = do
let s = m * n fs <- replicateM s randomCell let nextState xs = do ts <- replicateM s randomChance vs <- replicateM s randomChance let rv [r1, [l, c, r], r3] newTree fire | c == Fire = Empty | c == Tree && Fire `elem` concat [r1, [l, r], r3] = Fire | c == Tree && 0.01 >= fire = Fire | c == Empty && 0.1 >= newTree = Tree | otherwise = c return $ zipWith3 rv xs ts vs evolve i xs = unless (i > k) $ do let nfs = nextState $ take3x3 $ rim Empty $ list2Mat n xs putStrLn ("\n>>>>>> " ++ show i ++ ":") mapM_ (putStrLn . concatMap show) $ list2Mat n xs nfs >>= evolve (i + 1) evolve 1 fs
main :: IO () main = evolveForest 6 50 3</lang>
- Output:
Sample
>>>>>> 1: TTT TT TT TTT T TTT T TT T TT TTTT TTTT T T TT T T TTTTTTT T T TT T TT TT TTTT TT T TTTT T TT T TTTT T TT TT TT T T TTT T TT TTTT TTT TTT TT TT TTTTTT TTTT T TTT TTT T T TTT T T T TT T TT TT TT T TTT TT T T TTT TT TT T TT TTTTT TT TT T >>>>>> 2: TTT TT TT TTT T TTT T T TT T T$ TTTT TTTT T T TTTT T T TTTTTTT T TT TT T TTT TT TTTT TT T TTTT T TT T TTTT TTT$ TT TT TT T TTT T TTTTTTT TTT TTTTTT TT TTTTTTT TTTT TTTTT TTT TTT TTTT TT T T TT T TT TT TT T TTT TT T T T TTT TT TT T TT TTTTT TT TTT T >>>>>> 3: TTT TT TT TTT T TTT T T TT T $ TTTTTT TTTT T T TTTT T TT TTTTTTTTT T $T T$T$ TTT TT TTTT TT T TTTT T TT T TTTT TT$ TT TT TT T TTT T TTTTTTTT TTT TTTTTT TT TTTTTT$ $TTT TTTTT TTT TTT TTTT TT T T TT TT T TT TT TT T TTT TT T T T TTT TT TT T T TT TTTTTT TT TTT T
Icon and Unicon
<lang Icon>link graphics,printf
$define EDGE 0 $define EMPTY 1 $define TREE 2 $define FIRE 3
global Colours,Width,Height,ProbTree,ProbFire,ProbInitialTree,Forest,oldForest
procedure main() # forest fire
Height := 400 # Window height Width := 400 # Window width ProbInitialTree := .10 # intial probability of trees ProbTree := .01 # ongoing probability of trees ProbFire := ProbTree/50. # probability of fire Rounds := 500 # rounds to evolve setup_forest() every 1 to Rounds do { show_forest() evolve_forest() } printf("Forest fire %d x %d rounds=%d p.initial=%r p/f=%r/%r fps=%r\n", Width,Height,Rounds,ProbInitialTree,ProbTree,ProbFire, Rounds/(&time/1000.)) # stats WDone()
end
procedure setup_forest() #: setup the forest
Colours := table() # define colours Colours[EDGE] := "black" Colours[EMPTY] := "grey" Colours[TREE] := "green" Colours[FIRE] := "red" WOpen("label=Forest Fire", "bg=black", "size=" || Width+2 || "," || Height+2) | # add for border stop("Unable to open Window") every !(Forest := list(Height)) := list(Width,EMPTY) # default every ( Forest[1,1 to Width] | Forest[Height,1 to Width] | Forest[1 to Height,1] | Forest[1 to Height,Width] ) := EDGE every r := 2 to Height-1 & c := 2 to Width-1 do if probability(ProbInitialTree) then Forest[r,c] := TREE
end
procedure show_forest() #: show Forest - drawn changes only
every r := 2 to *Forest-1 & c := 2 to *Forest[r]-1 do if /oldForest | oldForest[r,c] ~= Forest[r,c] then { WAttrib("fg=" || Colours[Forest[r,c]]) DrawPoint(r,c) }
end
procedure evolve_forest() #: evolve forest
old := oldForest := list(*Forest) # freeze copy every old[i := 1 to *Forest] := copy(Forest[i]) # deep copy
every r := 2 to *Forest-1 & c := 2 to *Forest[r]-1 do Forest[r,c] := case old[r,c] of { # apply rules FIRE : EMPTY TREE : if probability(ProbFire) | ( old[r-1, c-1 to c+1] | old[r,c-1|c+1] | old[r+1,c-1 to c+1] ) = FIRE then FIRE EMPTY: if probability(ProbTree) then TREE }
end
procedure probability(P) #: succeed with probability P if ?0 <= P then return end</lang>
printf.icn provides printf graphics.icn provides graphics
J
<lang j>NB. states: 0 empty, 1 tree, _1 fire dims =:10 10
tessellate=: 0,0,~0,.0,.~ 3 3 >./@,;._3 ] mask=: tessellate dims$1 chance=: 1 :'(> ? bind (dims$0)) bind (mask*m)'
start=: 0.5 chance grow =: 0.01 chance fire =: 0.001 chance
spread=: [: tessellate 0&>
step=: grow [`]@.(|@])"0 >.&0 * _1 ^ fire +. spread
run=:3 :0 forest=. start for.i.y do. smoutput ' #o' {~ forest=. step forest end. )</lang>
Example use:
<lang j> run 2
##### # # # ### #### # # # # ##### # ## # # # # o## # ##### # # # ### #### # # # # ##### # ## # # o # o# # </lang>
Note that I have used an artificially small grid here, and that I ran this several times until I could find one that had a fire from the start. Also, the current revision of this code does not show the starting state, though that would be easily changed.
Also, currently the parameters defining the size of the forest, and the probabilities are hard coded into the program and you need to rerun the program's script when they change.
Finally note that the grid size includes the one cell "border" which are blank. If the border cells are meant to be outside of the represented dimensions, you can add 2 to them (or change the code to do so).
JAMES II/Rule-based Cellular Automata
<lang j2carules>@caversion 1;
dimensions 2;
state EMPTY, TREE, BURNING;
// an empty cell grows a tree with a chance of p = 5 % rule{EMPTY} [0.05] : -> TREE;
// a burning cell turns to a burned cell rule{BURNING}: -> EMPTY;
// a tree starts burning if there is at least one neighbor burning rule{TREE} : BURNING{1,} -> BURNING;
// a tree is hit by lightning with a change of f = 0.006 % rule{TREE} [0.00006] : -> BURNING;</lang> The starting configuration cannot be given in the modeling language since the concepts of the model and its parameters (which includes the starting configuration) are separate in JAMES II.
Java
Text
<lang java5>import java.util.Arrays; import java.util.LinkedList; import java.util.List;
public class Fire { private static final char BURNING = 'w'; //w looks like fire, right? private static final char TREE = 'T'; private static final char EMPTY = '.'; private static final double F = 0.2; private static final double P = 0.4; private static final double TREE_PROB = 0.5;
private static List<String> process(List<String> land){ List<String> newLand = new LinkedList<String>(); for(int i = 0; i < land.size(); i++){ String rowAbove, thisRow = land.get(i), rowBelow; if(i == 0){//first row rowAbove = null; rowBelow = land.get(i + 1); }else if(i == land.size() - 1){//last row rowBelow = null; rowAbove = land.get(i - 1); }else{//middle rowBelow = land.get(i + 1); rowAbove = land.get(i - 1); } newLand.add(processRows(rowAbove, thisRow, rowBelow)); } return newLand; }
private static String processRows(String rowAbove, String thisRow, String rowBelow){ String newRow = ""; for(int i = 0; i < thisRow.length();i++){ switch(thisRow.charAt(i)){ case BURNING: newRow+= EMPTY; break; case EMPTY: newRow+= Math.random() < P ? TREE : EMPTY; break; case TREE: String neighbors = ""; if(i == 0){//first char neighbors+= rowAbove == null ? "" : rowAbove.substring(i, i + 2); neighbors+= thisRow.charAt(i + 1); neighbors+= rowBelow == null ? "" : rowBelow.substring(i, i + 2); if(neighbors.contains(Character.toString(BURNING))){ newRow+= BURNING; break; } }else if(i == thisRow.length() - 1){//last char neighbors+= rowAbove == null ? "" : rowAbove.substring(i - 1, i + 1); neighbors+= thisRow.charAt(i - 1); neighbors+= rowBelow == null ? "" : rowBelow.substring(i - 1, i + 1); if(neighbors.contains(Character.toString(BURNING))){ newRow+= BURNING; break; } }else{//middle neighbors+= rowAbove == null ? "" : rowAbove.substring(i - 1, i + 2); neighbors+= thisRow.charAt(i + 1); neighbors+= thisRow.charAt(i - 1); neighbors+= rowBelow == null ? "" : rowBelow.substring(i - 1, i + 2); if(neighbors.contains(Character.toString(BURNING))){ newRow+= BURNING; break; } } newRow+= Math.random() < F ? BURNING : TREE; } } return newRow; }
public static List<String> populate(int width, int height){ List<String> land = new LinkedList<String>(); for(;height > 0; height--){//height is just a copy anyway StringBuilder line = new StringBuilder(width); for(int i = width; i > 0; i--){ line.append((Math.random() < TREE_PROB) ? TREE : EMPTY); } land.add(line.toString()); } return land; }
//process the land n times public static void processN(List<String> land, int n){ for(int i = 0;i < n; i++){ land = process(land); } }
//process the land n times and print each step along the way public static void processNPrint(List<String> land, int n){ for(int i = 0;i < n; i++){ land = process(land); print(land); } }
//print the land public static void print(List<String> land){ for(String row: land){ System.out.println(row); } System.out.println(); }
public static void main(String[] args){ List<String> land = Arrays.asList(".TTT.T.T.TTTT.T", "T.T.T.TT..T.T..", "TT.TTTT...T.TT.", "TTT..TTTTT.T..T", ".T.TTT....TT.TT", "...T..TTT.TT.T.", ".TT.TT...TT..TT", ".TT.T.T..T.T.T.", "..TTT.TT.T..T..", ".T....T.....TTT", "T..TTT..T..T...", "TTT....TTTTTT.T", "......TwTTT...T", "..T....TTTTTTTT", ".T.T.T....TT..."); print(land); processNPrint(land, 10);
System.out.println("Random land test:");
land = populate(10, 10); print(land); processNPrint(land, 10); } }</lang>
Graphics
See: Forest fire/Java/Graphics
JavaScript
JavaScript Node
Functional approach using lodash
<lang javascript>"use strict"
const _ = require('lodash');
const WIDTH_ARGUMENT_POSITION = 2; const HEIGHT_ARGUMENT_POSITION = 3; const TREE_PROBABILITY = 0.5; const NEW_TREE_PROBABILITY = 0.01; const BURN_PROBABILITY = 0.0001; const CONSOLE_RED = '\x1b[31m'; const CONSOLE_GREEN = '\x1b[32m'; const CONSOLE_COLOR_CLOSE = '\x1b[91m'; const CONSOLE_CLEAR = '\u001B[2J\u001B[0;0f'; const NEIGHBOURS = [
[-1, -1], [-1, 0], [-1, 1], [ 0, -1], [ 0, 1], [ 1, -1], [ 1, 0], [ 1, 1]
]; const PRINT_DECODE = {
' ': ' ', 'T': `${CONSOLE_GREEN}T${CONSOLE_COLOR_CLOSE}`, 'B': `${CONSOLE_RED}T${CONSOLE_COLOR_CLOSE}`,
}; const CONDITIONS = {
'T': (forest, y, x) => Math.random() < BURN_PROBABILITY || burningNeighbour(forest, y, x) ? 'B' : 'T', ' ': () => Math.random() < NEW_TREE_PROBABILITY ? 'T' : ' ', 'B': () => ' '
};
const WIDTH = process.argv[WIDTH_ARGUMENT_POSITION] || 20; const HEIGHT = process.argv[HEIGHT_ARGUMENT_POSITION] || 10;
const update = forest => {
return _.map(forest, (c, ci) => { return _.map(c, (r, ri) => { return CONDITIONS[r](forest, ci, ri); }); });
}
const printForest = forest => {
process.stdout.write(CONSOLE_CLEAR); _.each(forest, c => { _.each(c, r => { process.stdout.write(PRINT_DECODE[r]); }); process.stdout.write('\n'); })
}
const burningNeighbour = (forest, y, x) => {
return _(NEIGHBOURS) .map(n => _.isUndefined(forest[y + n[0]]) ? null : forest[y + n[0]][x + n[1]]) .any(_.partial(_.isEqual, 'B'));
};
let forest = _.times(HEIGHT, () => _.times(WIDTH, () => Math.random() < TREE_PROBABILITY ? 'T' : ' '));
setInterval(() => {
forest = update(forest); printForest(forest)
}, 20);
</lang>
JavaScript
<lang javascript>var forest = {
X: 50, Y: 50, propTree: 0.5, propTree2: 0.01, propBurn: 0.0001, t: [], c: ['rgb(255,255,255)', 'rgb(0,255,0)', 'rgb(255,0,0)']
};
for(var i = 0; i < forest.Y; i++) {
forest.t[i] = []; for(var j = 0; j < forest.Y; j++) { forest.t[i][j] = Math.random() < forest.propTree ? 1 : 0; }
}
function afterLoad(forest) {
var canvas = document.getElementById('canvas'); var c = canvas.getContext('2d'); for(var i = 0; i < forest.X; i++) { for(var j = 0; j < forest.Y; j++) { c.fillStyle = forest.c[forest.t[i][j]]; c.fillRect(10*j, 10*i, 10*j+9, 10*i+9); } }
}
function doStep(forest) {
var to = []; for(var i = 0; i < forest.Y; i++) { to[i] = forest.t[i].slice(0); }
//indices outside the array are undefined; which converts to 0=empty on forced typecast for(var i = 0; i < forest.Y; i++) { for(var j = 0; j < forest.Y; j++) { if(0 == to[i][j]) { forest.t[i][j] = Math.random() < forest.propTree2 ? 1 : 0; } else if(1 == to[i][j]) { if( ((i>0) && (2 == to[i-1][j])) || ((i<forest.Y-1) && (2 == to[i+1][j])) || ((j>0) && (2 == to[i][j-1])) || ((j<forest.X-1) && (2 == to[i][j+1])) ) { forest.t[i][j] = 2; } else { forest.t[i][j] = Math.random() < forest.propBurn ? 2 : 1; } } else if(2 == to[i][j]) { //If it burns, it gets empty ... forest.t[i][j] = 0; } } }
}
window.setInterval(function(){
doStep(forest); afterLoad(forest);
}, 100); </lang>
To actually see it work we need a small demo page with HTML5 compliant code:
<lang html5><!DOCTYPE html> <html> <head> <title>Forest Fire</title> </head> <body> <canvas id="canvas" width="500" height="500"> Your browser doesn't support HTML5 Canvas. </canvas> <script language="JavaScript">//<![CDATA[ HERE COMES THE SCRIPT FROM ABOVE <-- //-->]]></script> </body> </html> </lang>
The output is a (mostly fluent) animation of the area.
Julia
<lang julia>using Printf
@enum State empty tree fire
function evolution(nepoch::Int=100, init::Matrix{State}=fill(tree, 30, 50))
# Single evolution function evolve!(forest::Matrix{State}; f::Float64=0.12, p::Float64=0.5) dir = [-1 -1; -1 0; -1 1; 0 -1; 0 1; 1 -1; 1 0; 1 1] # A tree will burn if at least one neighbor is burning for i in 1:size(forest, 1), j in 1:size(forest, 2) for k in 1:size(dir, 1) if checkbounds(Bool, forest, i + dir[k, 1], j + dir[k, 2]) && get(forest, i + dir[k, 1], j + dir[k, 2]) == fire forest[i, j] = fire break end end end for i in LinearIndices(forest) # A burning cell turns into an empty cell if forest[i] == fire forest[i] = empty end # A tree ignites with probability f even if no neighbor is burning if forest[i] == tree && rand() < f forest[i] = fire end # An empty space fills with a tree with probability p if forest[i] == empty && rand() < p forest[i] = tree end end end
# Print functions function printforest(f::Matrix{State}) for i in 1:size(f, 1) for j in 1:size(f, 2) print(f[i, j] == empty ? ' ' : f[i, j] == tree ? '🌲' : '🔥') end println() end end function printstats(f::Matrix{State}) tot = length(f) nt = count(x -> x in (tree, fire), f) nb = count(x -> x == fire, f) @printf("\n%6i cell(s), %6i tree(s), %6i currently burning (%6.2f%%, %6.2f%%)\n", tot, nt, nb, nt / tot * 100, nb / nt * 100) end
# Main printforest(init) printstats(init) for i in 1:nepoch # println("\33[2J") evolve!(init) # printforest(init) # printstats(init) # sleep(1) end printforest(init) printstats(init)
end
evolution()</lang>
- Output:
Final output (epoch 100):
🌲🌲🔥🌲 🌲🌲🌲🌲 🔥🌲🌲🔥🌲🌲🌲🌲🌲🔥🌲🌲🌲 🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲 🌲 🌲🌲🌲🔥 🌲🌲🌲🌲🔥🌲🌲 🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲 🌲🌲🌲🌲 🔥🌲🌲 🌲🌲🔥🔥🌲🌲 🌲🌲🌲 🌲🌲🌲🌲 🌲🌲🌲🌲🌲🔥🔥🌲 🌲🌲🌲 🔥🔥🌲🌲🌲 🌲 🌲🌲🌲🌲🌲🌲🌲🌲🔥🌲 🌲🌲 🌲🌲🌲 🌲🌲🌲🌲🌲🌲🌲 🌲🔥🌲 🌲🌲 🌲 🌲🌲🌲🌲 🌲🌲 🌲 🌲🌲🌲 🌲🌲 🌲 🌲🔥🌲🌲🌲🔥🔥🔥🌲🌲🌲🌲🌲🌲🌲🌲🌲🔥🌲🌲 🌲🌲🌲 🔥🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🔥🌲🌲🌲🌲🌲 🌲🌲🌲🌲🌲🌲🌲🌲🌲🔥🌲🌲🌲🌲🌲🌲 🌲🌲🌲 🌲🌲 🌲 🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲 🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲 🌲 🌲🌲🌲🌲🌲🌲🌲🔥🌲🌲🌲🌲🌲🌲🌲🌲 🌲🌲 🌲🌲 🌲🌲🌲 🌲🌲🌲🌲 🌲🌲 🌲🌲 🌲🌲🌲🌲🌲🌲 🌲🌲🌲🌲🌲🌲🔥🌲 🌲🌲🌲🌲🌲🌲 🌲🌲🌲 🌲 🔥🌲🌲🌲🌲🌲 🌲🌲🔥🔥🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲 🌲🌲🌲🌲 🌲🌲🌲 🌲🌲 🌲🌲🌲 🌲🌲🌲🌲🌲🌲🌲🌲 🌲🌲🌲🌲🌲🔥🌲🌲🌲🌲 🌲🌲🌲🌲🌲🌲🌲🌲 🌲🌲🌲🌲🌲🌲🌲🔥 🌲🌲🌲🌲 🌲🌲🌲🌲🌲 🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲 🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲 🌲🌲 🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🔥 🔥🌲🔥🌲🌲 🌲🌲🌲🌲🌲🌲🌲 🌲🌲🌲 🌲 🔥 🌲🌲🌲🌲🌲🌲🌲🌲 🌲🌲 🌲🌲🌲🌲🌲🔥🌲 🌲 🌲🌲🌲 🌲🔥 🔥🔥🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲 🌲🌲🌲🔥🌲🌲🌲🌲🌲🌲🌲🔥🌲🌲🌲🌲🌲🌲🌲🌲🌲 🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🔥🌲🌲🔥🌲🌲 🌲 🌲🌲🌲🌲🌲🌲 🌲🌲🔥🌲🌲🌲 🌲 🔥🌲 🌲 🌲 🌲🌲🌲🔥🌲🌲🔥🌲🌲🌲🌲🔥🌲🌲🌲🌲🌲🌲🌲🌲 🌲🌲🌲🌲 🌲🌲🌲🌲🌲🌲 🌲 🌲🌲 🌲🌲🌲🌲 🌲 🔥🔥🌲🌲🌲🔥 🌲🌲 🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🔥 🌲🌲 🌲🌲🌲🔥 🌲🌲🌲🌲🔥🌲🔥🌲 🌲🌲🌲🌲🌲🌲🌲🔥🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲 🌲🌲🌲🌲🌲🌲🔥🌲🌲 🌲🌲🌲🌲🌲 🌲🌲🌲🌲🌲🌲 🌲🌲🌲 🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🔥🌲🔥 🌲🌲🌲🌲🌲🌲🔥 🌲🌲🌲 🔥🔥 🌲 🌲🌲🌲🌲🌲🌲🌲🔥 🌲🌲🌲🌲 🌲🌲 🌲🌲🔥🌲🌲 🌲 🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🔥🌲 🔥🌲🔥🌲 🌲🌲🌲 🌲🌲🔥 🌲🌲🌲🌲🌲🌲🌲🌲🔥🌲🌲 🌲🔥 🌲🌲 🌲🌲🌲🔥🌲🌲🔥🌲 🔥🌲 🌲🌲🌲🌲🌲🌲🌲🌲 🌲 🌲🌲🌲 🔥🌲🌲🌲🌲 🌲🌲 🌲 🌲🌲🌲 🌲🌲🌲🌲🌲 🌲🌲 🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲 🌲 🌲🌲🌲🌲🌲🌲🌲 🌲 🌲 🌲🌲 🌲🌲 🌲🌲 🌲 🌲🌲🌲🌲🌲🌲🌲 🌲 🌲 🌲🌲🌲 🌲🌲 🌲🌲🌲🌲 🌲 🌲 🌲🌲 🌲 🌲🌲🌲 🌲🌲 🌲 🌲🌲🌲🌲🌲 🌲🌲 🌲🌲 🌲🌲 🌲🌲 🌲🌲 🌲 🌲🌲🌲 🌲🌲 🌲🌲 🌲🌲 🌲🌲 🌲🌲 🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲 🌲 🌲 🌲🌲🌲 🌲 🌲🌲🌲 🌲🌲🌲🌲 🌲 🌲 🌲 🌲🌲🌲🌲🌲 🌲🌲 🌲 🌲 🌲🌲 🌲🌲 🌲 🌲🌲 🌲🌲 🌲🌲 🌲🌲🌲 🌲🌲🌲 🌲 🌲 🌲 🌲 🌲🌲 🌲 🌲🌲 🌲 🌲 🌲 🌲🌲 🌲🌲 🌲 🌲🌲🌲🌲 🌲 🌲🌲 🌲🌲🌲🌲 🌲 🌲🌲🌲🌲 🌲 🌲🌲🌲🌲 🌲🌲 🌲🌲 🌲🌲🌲🌲🌲 🌲 🌲🌲 🌲🌲🌲🌲🌲 🌲 🌲 🌲🌲🌲 🌲🌲🌲 🌲 🌲🌲 🌲 🌲 🌲 🌲🌲 🌲🌲 🌲 🌲🌲🌲🌲 🌲🌲 🌲 🌲🌲🌲 🌲🌲 🌲🌲🌲 🌲 🌲🌲 🌲🌲 🌲 🌲 🌲🌲🌲🌲🌲 🌲🌲 🌲 🌲 🌲 🌲🌲 🌲 🌲🌲🌲🌲🌲🌲 🌲🌲 🌲 🌲 🌲🌲 🌲🌲 🌲 🌲🌲 🌲🌲🌲 🌲 🌲 🌲 🌲 🌲🌲🌲🌲 🌲 🌲🌲🌲🌲🌲 🌲 🌲🌲 🌲 🌲 🌲🌲🌲 🌲🌲🌲 🌲 🌲🌲 🌲🌲 🌲 🌲🌲🌲🌲 1500 cell(s), 1089 tree(s), 73 currently burning ( 72.60%, 6.70%)
Lua
This program uses the Lua Curses library for graphics, although changing the code to avoid such dependency is easy. <lang Lua> -- ForestFire automaton implementation -- Rules: at each step: -- 1) a burning tree disappears -- 2) a non-burning tree starts burning if any of its neighbours is -- 3) an empty spot may generate a tree with prob P -- 4) a non-burning tree may ignite with prob F
local socket = require 'socket' -- needed for socket.sleep local curses = require 'curses'
local p_spawn, p_ignite = 0.005, 0.0002 local naptime = 0.03 -- seconds local forest_x, forest_y = 60, 30
local forest = (function (x, y) local wrl = {} for i = 1, y do wrl[i] = {} for j = 1, x do local rand = math.random() wrl[i][j] = (rand < 0.5) and 1 or 0 end end return wrl end)(forest_x, forest_y)
math.randomseed(os.time())
forest.step = function (self) for i = 1, #self do for j = 1, #self[i] do if self[i][j] == 0 then if math.random() < p_spawn then self[i][j] = 1 end elseif self[i][j] == 1 then if self:ignite(i, j) or math.random() < p_ignite then self[i][j] = 2 end elseif self[i][j] == 2 then self[i][j] = 0 else error("Error: forest[" .. i .. "][" .. j .. "] is " .. self[i][j] .. "!") end end end end
forest.draw = function (self) for i = 1, #self do for j = 1, #self[i] do if self[i][j] == 0 then win:mvaddch(i,j," ") elseif self[i][j] == 1 then win:attron(curses.color_pair(1)) win:mvaddch(i,j,"Y") win:attroff(curses.color_pair(1)) elseif self[i][j] == 2 then win:attron(curses.color_pair(2)) win:mvaddch(i,j,"#") win:attroff(curses.color_pair(2)) else error("self[" .. i .. "][" .. j .. "] is " .. self[i][j] .. "!") end end end end
forest.ignite = function (self, i, j) for k = i - 1, i + 1 do if k < 1 or k > #self then goto continue1 end for l = j - 1, j + 1 do if l < 1 or l > #self[i] or math.abs((k - i) + (l - j)) ~= 1 then goto continue2 end if self[k][l] == 2 then return true end ::continue2:: end ::continue1:: end return false end
local it = 1 curses.initscr() curses.start_color() curses.echo(false) curses.init_pair(1, curses.COLOR_GREEN, curses.COLOR_BLACK) curses.init_pair(2, curses.COLOR_RED, curses.COLOR_BLACK) win = curses.newwin(forest_y + 2, forest_x, 0, 0) win:clear() win:mvaddstr(forest_y + 1, 0, "p_spawn = " .. p_spawn .. ", p_ignite = " .. p_ignite) repeat forest:draw() win:move(forest_y, 0) win:clrtoeol() win:addstr("Iteration: " .. it .. ", nap = " .. naptime*1000 .. "ms") win:refresh() forest:step() it = it + 1 socket.sleep(naptime) until false </lang>
Mathematica / Wolfram Language
Mathematica is good at working with cellular automata -- especially 2-color 1-dimensional cellular automata. The automaton function is awkward yet very powerful. This code implements a 3-color 2-dimensional cellular automaton with 9-cell neighbourhoods using a custom cell evolution function. There is probably a rule number specification that can replace the custom evolution function and make this simpler and faster. But this works well enough. The last line of code plots the state of the forest after the 300th step.
<lang Mathematica>evolve[nbhd_List, k_] := 0 /; nbhd2, 2 == 2 (*burning->empty*) evolve[nbhd_List, k_] := 2 /; nbhd2, 2 == 1 && Max@nbhd == 2 (*near_burning&nonempty->burning*) evolve[nbhd_List, k_] := RandomChoice[{f, 1 - f} -> {2, nbhd2, 2}] /; nbhd2, 2 == 1 && Max@nbhd < 2 (*spontaneously combusting tree*) evolve[nbhd_List, k_] := RandomChoice[{p, 1 - p} -> {1, nbhd2, 2}] /; nbhd2, 2 == 0 (*random tree growth*)
r = 100; c = 100; p = 10^-2; f = 10^-4; init = RandomInteger[BernoulliDistribution[0.05], {r, c}]; MatrixPlot[CellularAutomaton[{evolve, {}, {1, 1}}, {init, 0}, {{{300}}}], ColorRules -> {0 -> White, 1 -> Green, 2 -> Red}, Frame -> False]</lang>
MATLAB / Octave
<lang MATLAB>function forest_fire(f,p,N,M) % Forest fire if nargin<4; M=200; end if nargin<3; N=200; end if nargin<2; p=.03; end if nargin<1; f=p*.0001; end
% initialize; F = (rand(M,N) < p)+1; % tree with probability p S = ones(3); S(2,2)=0; % surrounding
textmap = ' T#'; colormap([.5,.5,.5;0,1,0;1,0,0]); while(1) image(F); pause(.1) % uncomment for graphical output % disp(textmap(F)); pause; % uncomment for textual output G = ((F==1).*((rand(M,N)<p)+1)); % grow tree G = G + (F==2) .* ((filter2(S,F==3)>0) + (rand(M,N)<f) + 2); % burn tree if neighbor is burning or by chance f G = G + (F==3); % empty after burn F = G; end; </lang>
Nim
<lang nim>import random, os, sequtils, strutils
randomize()
type State {.pure.} = enum Empty, Tree, Fire
const
Disp: array[State, string] = [" ", "\e[32m/\\\e[m", "\e[07;31m/\\\e[m"] TreeProb = 0.01 BurnProb = 0.001
proc chance(prob: float): bool {.inline.} = rand(1.0) < prob
- Set the size
var w, h: int if paramCount() >= 2:
w = paramStr(1).parseInt h = paramStr(2).parseInt
if w <= 0: w = 30 if h <= 0: h = 30
iterator fields(a = (0, 0), b = (h-1, w-1)): tuple[y, x: int] =
## Iterate over fields in the universe for y in max(a[0], 0) .. min(b[0], h-1): for x in max(a[1], 0) .. min(b[1], w-1): yield (y, x)
- Initialize
var univ, univNew = newSeqWith(h, newSeq[State](w))
while true:
# Show. stdout.write "\e[H" for y, x in fields(): stdout.write Disp[univ[y][x]] if x == 0: stdout.write "\e[E" stdout.flushFile
# Evolve. for y, x in fields(): case univ[y][x] of Fire: univNew[y][x] = Empty of Empty: if chance(TreeProb): univNew[y][x] = Tree of Tree: for y1, x1 in fields((y-1, x-1), (y+1, x+1)): if univ[y1][x1] == Fire: univNew[y][x] = Fire break if chance(BurnProb): univNew[y][x] = Fire univ = univNew sleep 200</lang>
OCaml
This example uses a curses display (with the ocaml-curses bindings).
<lang ocaml>open Curses
let ignite_prob = 0.02 let sprout_prob = 0.01
type cell = Empty | Burning | Tree
let get w x y =
try w.(x).(y) with Invalid_argument _ -> Empty
let neighborhood_burning w x y =
try for _x = pred x to succ x do for _y = pred y to succ y do if get w _x _y = Burning then raise Exit done done ; false with Exit -> true
let evolves w x y =
match w.(x).(y) with | Burning -> Empty | Tree -> if neighborhood_burning w x y then Burning else begin if (Random.float 1.0) < ignite_prob then Burning else Tree end | Empty -> if (Random.float 1.0) < sprout_prob then Tree else Empty
let step width height w =
for x = 0 to pred width do for y = 0 to pred height do w.(x).(y) <- evolves w x y done done
let i = int_of_char let repr = function
| Empty -> i ' ' | Burning -> i '#' | Tree -> i 't'
let draw width height w =
for x = 0 to pred width do for y = 0 to pred height do ignore(move y x); ignore(delch ()); ignore(insch (repr w.(x).(y))); done; done; ignore(refresh ())
let () =
Random.self_init (); let wnd = initscr () in ignore(cbreak ()); ignore(noecho ()); let height, width = getmaxyx wnd in let w = Array.make_matrix width height Empty in clear (); ignore(refresh ()); while true do draw width height w; step width height w; Unix.sleep 1; done; endwin()</lang>
You can execute this script with:
$ ocaml unix.cma -I +curses curses.cma forest.ml
Ol
<lang scheme> (import (lib gl)) (import (otus random!))
(define WIDTH 170) (define HEIGHT 96)
- probabilities
(define p 20) (define f 1000)
(gl:set-window-title "Drossel and Schwabl 'forest-fire'") (import (OpenGL version-1-0))
(glShadeModel GL_SMOOTH) (glClearColor 0.11 0.11 0.11 1) (glOrtho 0 WIDTH 0 HEIGHT 0 1)
(gl:set-userdata (make-vector (map (lambda (-) (make-vector (map (lambda (-) (rand! 2)) (iota WIDTH)))) (iota HEIGHT))))
(gl:set-renderer (lambda (mouse)
(let ((forest (gl:get-userdata)) (step (make-vector (map (lambda (-) (make-vector (repeat 0 WIDTH))) (iota HEIGHT))))) (glClear GL_COLOR_BUFFER_BIT)
(glPointSize (/ 854 WIDTH)) (glBegin GL_POINTS) (for-each (lambda (y) (for-each (lambda (x) (case (ref (ref forest y) x) (0 ; An empty space fills with a tree with probability "p" (if (zero? (rand! p)) (set-ref! (ref step y) x 1))) (1 (glColor3f 0.2 0.7 0.2) (glVertex2f x y) ; A tree will burn if at least one neighbor is burning ; A tree ignites with probability "f" even if no neighbor is burning (if (or (eq? (ref (ref forest (- y 1)) (- x 1)) 2) (eq? (ref (ref forest (- y 1)) x) 2) (eq? (ref (ref forest (- y 1)) (+ x 1)) 2) (eq? (ref (ref forest y ) (- x 1)) 2) (eq? (ref (ref forest y ) (+ x 1)) 2) (eq? (ref (ref forest (+ y 1)) (- x 1)) 2) (eq? (ref (ref forest (+ y 1)) x) 2) (eq? (ref (ref forest (+ y 1)) (+ x 1)) 2) (zero? (rand! f))) (set-ref! (ref step y) x 2) (set-ref! (ref step y) x 1))) (2 (glColor3f 0.7 0.7 0.1) (glVertex2f x y)) ; A burning cell turns into an empty cell (set-ref! (ref step y) x 0))) (iota WIDTH))) (iota HEIGHT)) (glEnd) (gl:set-userdata step))))
</lang>
PARI/GP
<lang parigp>step(M,p,f)={ my(m=matsize(M)[1],n=matsize(M)[2]); matrix(m,n,i,j, if(M[i,j]=="*", " " , if(M[i,j]=="t", my(nbr="t"); for(x=max(1,i-1),min(m,i+1), for(y=max(1,j-1),min(n,j+1), if(M[x,y]=="*",nbr="*";break(2)) ) ); if(random(1.)<f,"*",nbr) , if(random(1.)<p,"t"," ") ) ) ) }; burn(n,p,f)={ my(M=matrix(n,n,i,j,if(random(2)," ","t")),N); while(1,print(M=step(M,p,f))) }; burn(5,.1,.03)</lang>
Perl
Requires terminal that understands ANSI escape sequences:<lang Perl> use 5.10.0;
my $w = `tput cols` - 1; my $h = `tput lines` - 1; my $r = "\033[H";
my ($green, $red, $yellow, $norm) = ("\033[32m", "\033[31m", "\033[33m", "\033[m");
my $tree_prob = .05; my $burn_prob = .0002;
my @forest = map([ map((rand(1) < $tree_prob) ? 1 : 0, 1 .. $w) ], 1 .. $h);
sub iterate { my @new = map([ map(0, 1 .. $w) ], 1 .. $h); for my $i (0 .. $h - 1) { for my $j (0 .. $w - 1) { $new[$i][$j] = $forest[$i][$j]; if ($forest[$i][$j] == 2) { $new[$i][$j] = 3; next; } elsif ($forest[$i][$j] == 1) { if (rand() < $burn_prob) { $new[$i][$j] = 2; next; } for ( [-1, -1], [-1, 0], [-1, 1], [ 0, -1], [ 0, 1], [ 1, -1], [ 1, 0], [ 1, 1] ) { my $y = $_->[0] + $i; next if $y < 0 || $y >= $h; my $x = $_->[1] + $j; next if $x < 0 || $x >= $w; if ($forest[$y][$x] == 2) { $new[$i][$j] = 2; last; } } } elsif (rand() < $tree_prob) { $new[$i][$j] = 1; } elsif ($forest[$i][$j] == 3) { $new[$i][$j] = 0; } }} @forest = @new; }
sub forest { print $r; for (@forest) { for (@$_) { when(0) { print " "; } when(1) { print "${green}*"} when(2) { print "${red}&" } when(3) { print "${yellow}&" } } print "\033[E\033[1G"; } iterate; }
forest while (1);</lang>
Alternate Perl Solution
<lang Perl>#!/usr/bin/perl
use strict; # http://www.rosettacode.org/wiki/Forest_fire use warnings;
my $p = 0.01; # probability of empty -> tree my $f = 0.0001; # probability of tree -> burning
my ($high, $wide) = split ' ', qx(stty size); # 135 174 tiny font in xterm my $mask = 0 x $wide . (0 . 7 x ($wide - 2) . 0) x ($high - 5) . 0 x $wide; my $forest = $mask =~ s/7/ rand() < 0.5 ? 2 : 1 /ger;
for( 1 .. 1e3 )
{ # 0=border 1=empty 2=tree 3=burning print "\e[H", $forest =~ tr/0123/ ^#/r, "\n"; # ^=tree #=burning tree my $n = $forest =~ tr/123/004/r; # 4=a neighbor is burning $forest |= 0 x $_ . $n | substr $n, $_ for 1, $wide - 1 .. $wide + 1; $forest &= $mask; # clear borders and trim $forest =~ tr/1-7/et10e31/; # step to next generation $forest =~ s/t/ rand() < $f ? 3 : 2 /ge; # rule 3) tree cell to burning $forest =~ s/e/ rand() < $p ? 2 : 1 /ge; # rule 4) empty cell to tree select undef, undef, undef, 0.1; # comment out for full speed }</lang>
Phix
-- -- demo\rosetta\Forest_fire.exw -- ============================ -- -- A burning cell turns into an empty cell -- A tree will burn if at least one neighbor is burning -- A tree ignites with probability F even if no neighbor is burning -- An empty space fills with a tree with probability P -- -- Draws bigger "pixels" when it feels the need to. -- with javascript_semantics include pGUI.e Ihandle dlg, canvas, hTimer cdCanvas cddbuffer, cdcanvas constant TITLE = "Forest Fire", P = 0.03, -- probability of new tree growing F = 0.00003 -- probability of new fire starting enum EMPTY,TREE,FIRE -- (1,2,3) constant colours = {CD_BLACK,CD_GREEN,CD_YELLOW} sequence f = {} -- the forest function randomf() return rand(1000000)/1000000 -- returns 0.000001..1.000000 end function function redraw_cb(Ihandle /*ih*/) integer {width, height} = IupGetIntInt(canvas, "DRAWSIZE"), -- limit to 40K cells, otherwise it gets too slow. -- n here is the cell size in pixels (min of 1x1) -- Note you still get some setTimeout violations -- in js even with the limit reduced to just 5K.. n = ceil(sqrt(width*height/40000)), w = floor(width/n)+2, -- (see cx below) h = floor(height/n)+2 cdCanvasActivate(cddbuffer) if length(f)!=w or length(f[1])!=h then f = sq_rand(repeat(repeat(2,h),w)) -- (EMPTY or TREE) end if sequence fn = deep_copy(f) -- -- There is a "dead border" of 1 cell all around the edge of f (& fn) which -- we never display or update. If we have got this right/an exact fit, then -- w*n should be exactly 2n too wide, whereas in the worst case there is an -- (2n-1) pixel border, which we split between left and right, ditto cy. -- integer cx = n+floor((width-w*n)/2) for x=2 to w-1 do integer cy = n+floor((height-h*n)/2) for y=2 to h-1 do integer fnxy switch f[x,y] do case EMPTY: fnxy = EMPTY+(randomf()<P) -- (EMPTY or TREE) case TREE: fnxy = TREE if f[x-1,y-1]=FIRE or f[x,y-1]=FIRE or f[x+1,y-1]=FIRE or f[x-1,y ]=FIRE or (randomf()<F) or f[x+1,y ]=FIRE or f[x-1,y+1]=FIRE or f[x,y+1]=FIRE or f[x+1,y+1]=FIRE then fnxy = FIRE end if case FIRE: fnxy = EMPTY end switch fn[x,y] = fnxy cdCanvasSetForeground(cddbuffer,colours[fnxy]) cdCanvasBox(cddbuffer, cx, cx+n-1, cy, cy+n-1) cy += n end for cx += n end for f = fn cdCanvasFlush(cddbuffer) return IUP_DEFAULT end function function map_cb(Ihandle ih) cdcanvas = cdCreateCanvas(CD_IUP, ih) cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas) return IUP_DEFAULT end function function timer_cb(Ihandle /*ih*/) IupUpdate(canvas) return IUP_IGNORE end function procedure main() IupOpen() canvas = IupCanvas("RASTERSIZE=225x100") IupSetCallbacks(canvas, {"MAP_CB", Icallback("map_cb"), "ACTION", Icallback("redraw_cb")}) dlg = IupDialog(canvas, `TITLE="%s", MINSIZE=245x140`, {TITLE}) -- (above MINSIZE prevents the title from getting squished) IupShow(dlg) hTimer = IupTimer(Icallback("timer_cb"), 100) -- (10 fps) if platform()!=JS then IupMainLoop() IupClose() end if end procedure main()
PHP
<lang PHP><?php
define('WIDTH', 10); define('HEIGHT', 10);
define('GEN_CNT', 10); define('PAUSE', 250000);
define('TREE_PROB', 50); define('GROW_PROB', 5); define('FIRE_PROB', 1);
define('BARE', ' '); define('TREE', 'A'); define('BURN', '/');
$forest = makeNewForest();
for ($i = 0; $i < GEN_CNT; $i++) {
displayForest($forest, $i); $forest = getNextForest($forest);
}
displayForest($forest, 'done'); exit;
function makeNewForest() {
return mapForest([ 'func' => function(){ return isProb(TREE_PROB) ? TREE : BARE; } ]);
}
function displayForest($forest, $generationNum) {
system("clear"); echo PHP_EOL . "Generation: $generationNum" . PHP_EOL; mapForest(['forest' => $forest, 'func' => function($f, $x, $y){ echo $f[$y][$x] . ($x == WIDTH - 1 ? PHP_EOL : ); } ]); echo PHP_EOL; usleep(PAUSE);
}
function getNextForest($oldForest) {
return mapForest(['forest' => $oldForest, 'func' => function($f, $x, $y){ switch ($f[$y][$x]) { case BURN: return BARE; case BARE: return isProb(GROW_PROB) ? TREE : BARE; case TREE: $caughtFire = isProb(FIRE_PROB); $ablaze = $caughtFire ? true : getNumBurningNeighbors($f, $x, $y) > 0; return $ablaze ? BURN : TREE; } } ]);
}
function getNumBurningNeighbors($forest, $x, $y) {
$burningNeighbors = mapForest([ 'forest' => $forest, 'x1' => $x - 1, 'x2' => $x + 2, 'y1' => $y - 1, 'y2' => $y + 2, 'default' => 0, 'func' => function($f, $x, $y){ return $f[$y][$x] == BURN ? 1 : 0; } ]); $numOnFire = 0; foreach ($burningNeighbors as $row) { $numOnFire += array_sum($row); } return $numOnFire;
}
function mapForest($params) {
$p = array_merge([ 'forest' => [], 'func' => function(){echo "default\n";}, 'x1' => 0, 'x2' => WIDTH, 'y1' => 0, 'y2' => HEIGHT, 'default' => BARE ], $params); $newForest = []; for ($y = $p['y1']; $y < $p['y2']; $y++) { $newRow = []; for ($x = $p['x1']; $x < $p['x2']; $x++) { $inBounds = ($x >= 0 && $x < WIDTH && $y >= 0 && $y < HEIGHT); $newRow[] = ($inBounds ? $p['func']($p['forest'], $x, $y) : $p['default']); } $newForest[] = $newRow; } return $newForest;
}
function isProb($prob) {
return rand(0, 100) < $prob;
} </lang>
PicoLisp
<lang PicoLisp>(load "@lib/simul.l")
(scl 3)
(de forestFire (Dim ProbT ProbP ProbF)
(let Grid (grid Dim Dim) (for Col Grid (for This Col (=: tree (> ProbT (rand 0 1.0))) ) ) (loop (disp Grid NIL '((This) (cond ((: burn) "# ") ((: tree) "T ") (T ". ") ) ) ) (wait 1000) (for Col Grid (for This Col (=: next (cond ((: burn) NIL) ((: tree) (if (or (find # Neighbor burning? '((Dir) (get (Dir This) 'burn)) (quote west east south north ((X) (south (west X))) ((X) (north (west X))) ((X) (south (east X))) ((X) (north (east X))) ) ) (> ProbF (rand 0 1.0)) ) 'burn 'tree ) ) (T (and (> ProbP (rand 0 1.0)) 'tree)) ) ) ) ) (for Col Grid (for This Col (if (: next) (put This @ T) (=: burn) (=: tree) ) ) ) ) ) )</lang>
Use:
(forestFire 26 0.5 0.01 0.001)
PostScript
<lang PostScript>%!PS-Adobe-3.0 %%BoundingBox: 0 0 400 400
/size 400 def
/rand1 { rand 2147483647 div } def
/m { moveto } bind def /l { rlineto} bind def /drawforest {
0 1 n 1 sub { /y exch def 0 1 n 1 sub { /x exch def forest x get y get dup 0 eq { pop } { 1 eq { 0 1 0 } { 1 0 0 } ifelse setrgbcolor x c mul y c mul m c 0 l 0 c l c neg 0 l closepath fill } ifelse } for } for
} def
/r1n { dup 0 ge exch n lt and } def
/neighbors { /y exch def /x exch def /cnt 0 def
[ y 1 sub 1 y 1 add { /y1 exch def y1 r1n { x 1 sub 1 x 1 add { /x1 exch def x1 r1n { forest x1 get y1 get } if } for } if } for]
} def
/iter {
/nf [ n {[ n {0} repeat]} repeat ] def 0 1 n 1 sub { /x exch def 0 1 n 1 sub { /y exch def nf x get y forest x get y get dup 0 eq { pop rand1 treeprob le {1}{0} ifelse } { 1 eq { /fire false def x y neighbors { -1 eq { /fire true def } if } forall fire {-1}{ rand1 burnprob lt {-1}{1} ifelse } ifelse }{0} ifelse } ifelse put } for } for /forest nf def
} def
/n 200 def /treeprob .05 def /burnprob .0001 def /c size n div def /forest [ n {[ n { rand1 treeprob le {1}{0} ifelse } repeat]} repeat ] def
1000 { drawforest showpage iter } repeat %%EOF</lang>
Python
Just hit return to advance the simulation, or enter an integer to advance that integer amount of 'frames'. Entering 'p' will print the grid, and 'q' will quit. A summary of the grids status is printed before each prompt for input. <lang python> Forest-Fire Cellular automation
See: http://en.wikipedia.org/wiki/Forest-fire_model
L = 15
- d = 2 # Fixed
initial_trees = 0.55 p = 0.01 f = 0.001
try:
raw_input
except:
raw_input = input
import random
tree, burning, space = 'TB.'
hood = ((-1,-1), (-1,0), (-1,1),
(0,-1), (0, 1), (1,-1), (1,0), (1,1))
def initialise():
grid = {(x,y): (tree if random.random()<= initial_trees else space) for x in range(L) for y in range(L) } return grid
def gprint(grid):
txt = '\n'.join(.join(grid[(x,y)] for x in range(L)) for y in range(L)) print(txt)
def quickprint(grid):
t = b = 0 ll = L * L for x in range(L): for y in range(L): if grid[(x,y)] in (tree, burning): t += 1 if grid[(x,y)] == burning: b += 1 print(('Of %6i cells, %6i are trees of which %6i are currently burning.' + ' (%6.3f%%, %6.3f%%)') % (ll, t, b, 100. * t / ll, 100. * b / ll))
def gnew(grid):
newgrid = {} for x in range(L): for y in range(L): if grid[(x,y)] == burning: newgrid[(x,y)] = space elif grid[(x,y)] == space: newgrid[(x,y)] = tree if random.random()<= p else space elif grid[(x,y)] == tree: newgrid[(x,y)] = (burning if any(grid.get((x+dx,y+dy),space) == burning for dx,dy in hood) or random.random()<= f else tree) return newgrid
if __name__ == '__main__':
grid = initialise() iter = 0 while True: quickprint(grid) inp = raw_input('Print/Quit/<int>/<return> %6i: ' % iter).lower().strip() if inp: if inp[0] == 'p': gprint(grid) elif inp.isdigit(): for i in range(int(inp)): iter +=1 grid = gnew(grid) quickprint(grid) elif inp[0] == 'q': break grid = gnew(grid) iter +=1</lang>
Sample output
Of 225 cells, 108 are trees of which 0 are currently burning. (48.000%, 0.000%) Print/Quit/<int>/<return> 0: Of 225 cells, 114 are trees of which 1 are currently burning. (50.667%, 0.444%) Print/Quit/<int>/<return> 1: p .TTT.T.T.TTTT.T T.T.T.TT..T.T.. TT.TTTT...T.TT. TTT..TTTTT.T..T .T.TTT....TT.TT ...T..TTT.TT.T. .TT.TT...TT..TT .TT.T.T..T.T.T. ..TTT.TT.T..T.. .T....T.....TTT T..TTT..T..T... TTT....TTTTTT.T ......TBTTT...T ..T....TTTTTTTT .T.T.T....TT... Of 225 cells, 115 are trees of which 6 are currently burning. (51.111%, 2.667%) Print/Quit/<int>/<return> 2: p .TTT.TTT.TTTT.T T.T.T.TT..T.T.. TT.TTTT...T.TT. TTT..TTTTT.T..T .T.TTT....TT.TT ...T..TTT.TT.T. .TT.TT...TT..TT .TT.T.T..T.T.T. ..TTT.TT.T..T.. .T....T.....TTT T..TTT..T..T... TTT....BBTTTT.T ....T.B.BTT...T ..T....BBTTTTTT .T.T.T....TT... Of 225 cells, 113 are trees of which 4 are currently burning. (50.222%, 1.778%) Print/Quit/<int>/<return> 3: p .TTT.TTT.TTTT.T T.T.T.TT..T.T.. TT.TTTT...T.TT. TTT..TTTTT.T..T .T.TTT...TTT.TT ...T..TTT.TTTTT .TT.TT...TT..TT .TT.T.T..T.T.T. ..TTT.TT.T..T.. .T.T..T.....TTT T..TTT..B..T... TTT......BTTT.T ....T....BT...T ..T......BTTTTT .T.T.T....TT... Of 225 cells, 110 are trees of which 4 are currently burning. (48.889%, 1.778%) Print/Quit/<int>/<return> 4:
Racket
<lang racket>#lang racket (require 2htdp/universe) (require 2htdp/image)
(define (initial-forest w p-tree)
(for/vector #:length w ((rw w)) (for/vector #:length w ((cl w)) (if (< (random) p-tree) #\T #\_))))
(define (has-burning-neighbour? forest r# c# w)
;; note, this will check r# c#, too but it's not ;; worth checking that r=r# and c=c# each time in ;; this case (for*/first ((r (in-range (- r# 1) (+ r# 2))) #:when (< 0 r w) (c (in-range (- c# 1) (+ c# 2))) #:when (< 0 c w) #:when (equal? #\* (vector-ref (vector-ref forest r) c))) #t))
(define (fire-tick forest p-sprout f-combust w)
(for/vector #:length w ((rw forest) (r# (in-naturals))) (for/vector #:length w ((cl rw) (c# (in-naturals))) (case cl ((#\_) (if (< (random) p-sprout) #\T #\_)) ((#\*) #\_) ((#\T) (cond [(has-burning-neighbour? forest r# c# w) #\*] [(< (random) f-combust) #\*] [else #\T]))))))
(define (render-forest state)
(for/fold ((scn (empty-scene (* (vector-length state) 8) (* (vector-length (vector-ref state 0)) 8) 'black))) ((rw state) (r# (in-naturals))) (for/fold ((scn scn)) ((cl rw) (c# (in-naturals))) (place-image (circle 4 'solid (case cl ((#\_) 'brown) ((#\T) 'green) ((#\*) 'red))) (+ 4 (* c# 8)) (+ 4 (* r# 8)) scn))))
(define (forest-fire p-tree p-sprout f-combust w)
(big-bang (initial-forest w p-tree) ;; initial state [on-tick (lambda (state) ;(displayln state) (fire-tick state p-sprout f-combust w))] [to-draw render-forest]))
(forest-fire 0 1/8 1/1024 50)</lang>
I'll tweak with the parameters for a bit, and when I have some nice photos I'll post them!
Raku
(formerly Perl 6)
ANSI graphics
This version saves a lot of looking around by using four states instead of three; the Heating state does a lookahead to track trees that are being heated up by burning trees, so we only ever have to traverse the neighbors of burning trees, not all trees. Also, by only checking the list of burning trees, we can avoid copying the entire forest each iteration, since real forests are mutable. <lang perl6>my $RED = "\e[1;31m"; my $YELLOW = "\e[1;33m"; my $GREEN = "\e[1;32m"; my $CLEAR = "\e[0m";
enum Cell-State <Empty Tree Heating Burning>; my @pix = ' ', $GREEN ~ '木', $YELLOW ~ '木', $RED ~ '木';
class Forest {
has Rat $.p = 0.01; has Rat $.f = 0.001; has Int $!height; has Int $!width; has @!coords; has @!spot; has @!neighbors;
method BUILD (Int :$!height, Int :$!width) {
@!coords = ^$!height X ^$!width; @!spot = [ (Bool.pick ?? Tree !! Empty) xx $!width ] xx $!height;
self!init-neighbors; } method !init-neighbors { for @!coords -> ($i, $j) { @!neighbors[$i][$j] = eager gather for [-1,-1],[+0,-1],[+1,-1], [-1,+0], [+1,+0], [-1,+1],[+0,+1],[+1,+1]
{ take-rw @!spot[$i + .[0]][$j + .[1]] // next; } }
} method step {
my @heat;
for @!coords -> ($i, $j) { given @!spot[$i][$j] { when Empty { $_ = Tree if rand < $!p } when Tree { $_ = Heating if rand < $!f } when Heating { $_ = Burning; push @heat, ($i, $j); } when Burning { $_ = Empty } } }
for @heat -> ($i,$j) { $_ = Heating for @!neighbors[$i][$j].grep(Tree); }
} method show { for ^$!height -> $i { say @pix[@!spot[$i].list].join; } }
}
my ($ROWS, $COLS) = qx/stty size/.words;
signal(SIGINT).act: { print "\e[H\e[2J"; exit }
sub MAIN (Int $height = $ROWS - 2, Int $width = +$COLS div 2 - 1) {
my Forest $forest .= new(:$height, :$width); print "\e[2J"; # ANSI clear screen loop {
print "\e[H"; # ANSI home say $++; $forest.show; $forest.step;
}
}</lang>
SDL2 Animation
An alternate version implemented in SDL2.
<lang perl6>use NativeCall; use SDL2::Raw;
my ($width, $height) = 900, 900;
SDL_Init(VIDEO); my SDL_Window $window = SDL_CreateWindow(
"Forest Fire - Raku", SDL_WINDOWPOS_CENTERED_MASK, SDL_WINDOWPOS_CENTERED_MASK, $width, $height, RESIZABLE
); my SDL_Renderer $renderer = SDL_CreateRenderer( $window, -1, ACCELERATED +| PRESENTVSYNC );
SDL_ClearError();
my int ($w, $h) = 200, 200;
my $forest_texture = SDL_CreateTexture($renderer, %PIXELFORMAT<RGB332>, STREAMING, $w, $h);
my $pixdatabuf = CArray[int64].new(0, $w, $h, $w); my $work-buffer = CArray[int64].new(0, $w, $h, $w);
my int $bare = 0; # Black my int $tree = 8; # Green my int $heating = -120; # Orange ( 132 but it's being passed into an int8 ) my int $burning = 128; # Red my int $buf = $w * $h; my $humidity = .7; # Chance that a tree next to a burning tree will resist catching fire my $tree-spawn = .75; # Initial probability that a space will contain a tree. Probability
# will be adjusted (way down) once rendering starts.
sub render {
# work-around to pass the pointer-pointer. my $pixdata = nativecast(Pointer[int64], $pixdatabuf); SDL_LockTexture($forest_texture, SDL_Rect, $pixdata, my int $pitch);
$pixdata = nativecast(CArray[int8], Pointer.new($pixdatabuf[0]));
loop (my int $row; $row < $h; $row = $row + 1) { my int $rs = $row * $w; # row start my int $re = $rs + $w; # row end loop (my int $idx = $rs; $idx < $re; $idx = $idx + 1) { # Skip it if it is a tree next if $pixdata[$idx] == $tree; if $pixdata[$idx] == $bare { # Maybe spawn a tree on bare ground $work-buffer[$idx] = rand < $tree-spawn ?? $tree !! $bare; } elsif $pixdata[$idx] == $heating { # Check if there are trees around a hot spot and light them if humidity is low enough $work-buffer[$idx - $w - 1] = $heating if rand > $humidity && $pixdata[$idx - $w - 1] && $row > 0; $work-buffer[$idx - $w ] = $heating if rand > $humidity && $pixdata[$idx - $w ] && $row > 0; $work-buffer[$idx - $w + 1] = $heating if rand > $humidity && $pixdata[$idx - $w + 1] && $row > 0; $work-buffer[$idx - 1 ] = $heating if rand > $humidity && $pixdata[$idx - 1 ]; $work-buffer[$idx + $w - 1] = $heating if rand > $humidity && $pixdata[$idx + $w - 1]; $work-buffer[$idx + $w ] = $heating if rand > $humidity && $pixdata[$idx + $w ]; $work-buffer[$idx + $w + 1] = $heating if rand > $humidity && $pixdata[$idx + $w + 1]; $work-buffer[$idx + 1 ] = $heating if rand > $humidity && $pixdata[$idx + 1 ];
# Hotspot becomes a flame $work-buffer[$idx] = $burning } else { # Extinguish a flame after fuel is gone $work-buffer[$idx] = $bare; } } } # copy working buffer to main texture buffer loop (my int $i; $i < $buf; $i = $i + 1) { $pixdata[$i] = $work-buffer[$i] }
# start a fire maybe $pixdata[$buf.rand] = $heating if rand < .1;
SDL_UnlockTexture($forest_texture);
SDL_RenderCopy($renderer, $forest_texture, SDL_Rect, SDL_Rect.new(:x(0), :y(0), :w($width), :h($height))); SDL_RenderPresent($renderer); once $tree-spawn = .005;
}
my $event = SDL_Event.new;
enum KEY_CODES ( K_Q => 20 );
main: loop {
while SDL_PollEvent($event) { my $casted_event = SDL_CastEvent($event);
given $casted_event { when *.type == QUIT { last main; } when *.type == KEYDOWN { if KEY_CODES(.scancode) -> $comm { given $comm { when 'K_Q' { last main } } } } when *.type == WINDOWEVENT { if .event == RESIZED { $width = .data1; $height = .data2; } } } } render(); print fps;
} say ;
sub fps {
state $fps-frames = 0; state $fps-now = now; state $fps = ; $fps-frames++; if now - $fps-now >= 1 { $fps = [~] "\b" x 40, ' ' x 20, "\b" x 20 , sprintf "FPS: %5.2f ", ($fps-frames / (now - $fps-now)).round(.01); $fps-frames = 0; $fps-now = now; } $fps
}</lang>
REXX
This version has been elided, otherwise the size of the program (with all it's options and optional formatting) would
probably be on the big side for general viewing, and maybe a wee bit complex to demonstrate how to program for this task.
If repeatable results are desired, the randSeed variable can be set to a non-negative integer.
Glyphs were chosen in an attempt to pictorialize a tree (↑) and also a fire (▒).
The choice of glyphs within the code page 437 (DOS and/or under Windows) is rather limited.
There is one (OS) dependency: use of the CLS (DOS) command which is used to clear the screen (the original
version examined the host environment and used the correct command to clear the terminal screen).
┌───────────────────────────elided version──────────────────────────┐ ├─── original version has many more options & enhanced displays. ───┤ └───────────────────────────────────────────────────────────────────┘
<lang rexx>/*REXX program grows and displays a forest (with growth and fires caused by lightning).*/ parse value scrSize() with sd sw . /*the size of the terminal display. */ parse arg generations birth lightning rSeed . /*obtain the optional arguments from CL*/ if datatype(rSeed,'W') then call random ,,rSeed /*do we want RANDOM BIF repeatability?*/ generations = p(generations 100) /*maybe use one hundred generations. */
birth = p(strip(birth , ,'%') 50 ) *100 /*calculate the percentage for births. */ lightning = p(strip(lightning, ,'%') 1/8) *100 /* " " " " lightning*/ bare! = ' ' /*the glyph used to show a bare place. */ fire! = '▒' /*glyph is close to a conflagration. */ tree! = '↑' /*this is an up─arrow [↑] glyph (tree).*/ rows = max(12, sd-2) /*shrink the usable screen rows by two.*/ cols = max(79, sw-1) /* " " " " cols " one.*/ every = 999999999 /*shows a snapshot every Nth generation*/ field = min(100000, rows*cols) /*the size of the forest area (field). */
$.=bare! /*forest: it is now a treeless field. */ @.=$. /*ditto, for the "shadow" forest. */ gens=abs(generations) /*use this for convenience. */ signal on halt /*handle any forest life interruptus. */
/*▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒observe the forest grow and/or burn. */ do life=1 for gens /*simulate a forest's life cycle. */ do r=1 for rows; rank=bare! /*start a forest rank as being bare. */ do c=2 for cols; ?=substr($.r, c, 1); ??=? select /*select the most likeliest choice 1st.*/ when ?==tree! then if ignite?() then ??=fire! /*on fire ? */ when ?==bare! then if random(1, field)<=birth then ??=tree! /*new growth.*/ otherwise ??=bare! /*it's barren*/ end /*select*/ /* [↑] when (↑) if ≡ short circuit.*/ rank=rank || ?? /*build rank: 1 forest "row" at a time*/ end /*c*/ /*ignore column one, start with col two*/ @.r=rank /*and assign rank to alternate forest. */ end /*r*/ /* [↓] ··· and, later, yet back again.*/
do r=1 for rows; $.r=@.r; end /*r*/ /*assign alternate cells ──► real cells*/ if \(life//every==0 | generations>0 | life==gens) then iterate 'CLS' /* ◄─── change this command for your OS*/ do r=rows by -1 for rows; say strip(substr($.r, 2), 'T') /*a row of trees*/ end /*r*/ /* [↑] display forest to the terminal.*/ say right(copies('▒', cols)life, cols) /*show and tell for a stand of trees. */ end /*life*/ /*▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒stop observing the forest evolve. */
halt: if life-1\==gens then say 'Forest simulation interrupted.' /*was this pgm HALTed?*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ ignite?: if substr($.r, c+1, 1) == fire! then return 1 /*is east on fire? */
cm=c-1; if substr($.r, cm , 1) == fire! then return 1 /* " west " " */ rm=r-1; rp=r+1 /*test north & south*/ if pos(fire!, substr($.rm, cm, 3)substr($.rp, cm, 3)) \== 0 then return 1 return random(1, field) <= lightning /*lightning ignition*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
p: return word(arg(1), 1) /*pick─a─word: first or second word.*/</lang>
This REXX program makes use of scrSize REXX program (or BIF) which is used to determine the screen size of the terminal (console).
The SCRSIZE.REX REXX program is included here ──► SCRSIZE.REX.
output when using the defaults of:
- generations = 100
- rows = 48
- lightning rate = 12.5%
- new growth rate = 50%
- bare character = (a true blank)
- fire character = ▒
- tree character = ↑
Shown below is the 10th generation (out of 100).
↑↑↑↑↑↑↑↑▒▒▒▒▒▒▒▒▒ ↑↑↑↑↑↑ ▒↑↑↑↑▒ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑▒▒▒↑↑↑ ↑↑↑↑↑↑↑↑▒ ↑↑↑↑↑↑↑ ▒↑↑↑↑▒ ↑↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ ↑↑↑↑↑↑↑↑▒ ↑ ↑ ↑↑↑↑↑↑ ▒↑↑↑↑▒ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑↑↑ ▒↑↑▒▒▒▒▒▒▒▒▒▒▒▒▒▒↑↑↑ ↑↑↑↑↑↑↑↑▒ ↑↑↑↑ ↑↑ ↑↑↑↑ ▒↑↑↑↑▒ ↑↑↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑ ▒▒▒▒ ▒↑↑↑ ↑↑↑↑↑↑↑↑▒ ↑↑↑↑↑↑ ↑ ▒↑↑↑↑▒ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑↑ ↑ ▒↑↑↑ ↑↑↑↑↑↑↑↑▒ ↑↑↑↑↑↑↑↑↑ ▒▒▒▒▒▒▒↑↑↑↑▒▒▒▒▒▒▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒▒ ↑↑ ↑↑ ↑↑↑↑▒ ↑ ▒▒↑↑ ↑↑↑↑↑↑↑↑▒ ↑↑↑↑↑↑↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒▒▒▒▒▒▒▒▒▒▒▒ ↑↑↑↑↑↑↑ ↑▒ ▒↑↑↑ ▒↑↑ ↑↑↑↑↑↑↑↑▒ ↑↑↑↑↑↑↑↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑↑↑↑↑↑ ↑ ↑ ↑▒ ▒↑↑↑ ▒↑↑ ↑↑↑↑↑↑↑↑▒ ↑↑↑↑↑↑↑↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑ ↑↑↑↑↑↑ ↑↑↑↑↑↑ ↑↑▒▒▒ ↑ ↑↑ ▒↑↑ ↑↑↑↑↑↑↑↑▒ ↑↑▒▒▒↑↑↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑↑↑↑↑ ↑ ↑↑ ↑↑↑↑↑ ↑↑▒ ▒▒▒ ↑ ▒▒▒ ↑↑▒↑↑↑↑↑▒ ▒▒▒ ▒ ↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑ ▒▒▒↑▒↑▒↑ ↑↑ ↑ ↑ ▒ ↑ ↑ ↑ ↑↑↑↑↑↑↑↑▒ ▒↑↑ ▒↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑↑▒ ↑ ▒ ↑ ↑↑ ↑↑▒ ▒↑ ↑ ▒▒▒▒▒▒▒▒▒ ↑▒▒ ▒↑↑ ▒▒▒▒▒▒▒▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ▒↑ ↑ ▒↑ ↑ ↑ ↑↑↑↑ ↑↑ ↑ ▒▒▒▒↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ▒ ↑↑ ▒▒ ▒ ▒▒ ▒▒ ↑ ↑↑↑↑↑ ↑ ↑↑ ↑ ↑↑▒ ↑↑↑↑↑↑↑↑↑↑↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ▒▒ ▒↑ ▒ ↑↑ ▒▒ ▒ ▒ ▒▒↑▒▒↑↑↑ ↑↑↑ ↑↑↑↑↑↑ ↑↑ ↑↑ ↑↑ ↑ ↑ ▒↑↑↑↑↑↑↑↑ ↑↑↑↑↑↑▒ ↑↑ ↑↑ ▒↑↑↑ ▒▒ ▒▒ ↑▒↑↑ ↑↑↑↑↑↑↑↑ ↑ ↑↑↑▒ ▒ ↑↑▒▒▒ ▒↑↑↑↑↑↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑▒ ▒▒▒▒↑↑↑ ▒▒ ↑↑ ▒↑↑↑ ↑↑↑↑↑↑↑ ↑▒▒ ↑ ↑↑ ▒ ↑▒ ▒▒▒↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑▒▒▒↑▒↑↑ ↑↑ ▒▒ ↑↑▒▒↑↑↑ ↑↑↑↑↑↑↑ ↑ ▒ ↑▒ ▒↑↑ ▒ ↑ ▒ ▒↑↑ ▒▒▒▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑↑ ↑↑↑↑↑↑↑↑↑ ▒▒▒ ↑↑ ▒↑↑↑↑↑↑↑↑↑↑ ▒ ↑ ▒↑↑↑↑ ↑↑↑ ▒ ↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑↑↑↑↑ ↑ ↑↑↑ ▒↑▒ ↑▒ ↑↑↑↑↑↑↑ ↑↑↑▒ ▒↑↑↑▒▒ ▒▒ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑↑↑ ↑↑↑ ↑↑↑ ▒↑▒ ↑↑↑↑↑↑↑↑↑ ↑↑↑▒▒▒▒↑↑ ↑▒ ↑↑ ▒↑ ↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ▒▒↑▒ ↑ ↑↑ ↑↑↑↑ ▒▒▒▒ ↑↑↑↑↑↑↑↑ ↑↑↑ ↑↑ ↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒↑↑▒ ↑↑↑↑↑↑↑↑↑↑ ▒↑↑↑ ↑↑↑↑↑↑ ↑ ↑↑↑▒▒▒ ▒↑ ▒ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑ ↑↑↑ ↑↑↑ ▒↑↑↑ ↑↑↑↑↑↑↑↑↑ ↑↑↑▒ ↑ ↑▒ ↑ ▒▒▒▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑↑ ↑ ▒↑↑↑ ↑↑↑↑↑↑ ↑ ↑↑↑▒ ▒ ↑↑ ↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒▒ ▒↑↑↑ ↑↑↑↑↑ ↑ ↑ ↑ ▒↑↑▒▒▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒▒▒▒▒▒▒▒▒▒▒▒▒▒↑↑↑ ↑↑↑↑ ↑ ↑↑↑ ▒ ▒↑↑▒ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ ↑↑ ↑↑↑ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒↑↑▒▒▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ ↑ ↑↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ ▒▒▒▒▒▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒▒▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ ▒▒▒▒▒▒▒▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒↑↑↑↑↑▒▒▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒▒▒▒▒▒▒↑↑↑↑↑↑↑↑↑↑ ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ▒▒↑↑↑↑↑↑↑↑↑↑↑▒▒▒▒▒▒▒↑↑↑↑↑↑▒ ▒↑↑↑↑↑↑↑↑↑↑ ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑↑↑ ↑↑↑↑ ↑↑ ↑ ▒↑↑↑↑↑↑↑↑↑↑↑▒ ▒▒▒▒▒▒▒▒ ↑ ▒↑↑↑↑↑↑↑↑↑↑ ▒▒▒▒▒▒▒▒↑↑↑↑↑↑↑▒ ↑↑↑↑↑ ↑ ↑↑ ↑↑↑▒ ▒↑↑↑↑↑↑↑↑↑↑↑▒ ↑ ↑↑ ▒↑↑↑↑↑↑↑↑↑↑ ▒↑↑↑↑↑↑↑▒ ↑↑↑ ↑↑↑↑ ↑↑▒↑ ▒↑↑↑↑↑↑↑↑↑↑↑▒ ↑↑↑ ↑ ↑ ↑↑ ▒↑▒▒▒▒▒▒▒↑↑ ↑↑ ↑ ▒↑↑↑↑↑↑↑▒ ↑↑↑↑↑↑↑↑↑ ↑↑↑↑↑ ▒↑↑↑↑↑↑↑↑↑↑↑▒ ↑ ↑ ↑↑↑ ↑ ↑↑↑ ▒↑▒ ▒↑↑ ↑ ↑↑ ▒↑↑↑↑↑↑↑▒ ↑↑ ↑ ↑ ↑ ↑↑↑↑↑↑ ▒↑↑↑↑↑↑↑↑↑↑↑▒ ↑ ↑↑↑↑↑↑↑ ▒▒▒↑▒↑ ↑ ▒↑↑ ↑ ↑ ▒▒▒▒↑↑↑↑▒ ↑↑↑ ↑↑ ↑↑↑ ↑↑ ▒↑↑↑↑↑↑↑↑↑↑↑▒▒▒▒ ↑↑ ↑↑↑↑↑ ▒↑↑↑▒ ↑↑↑ ▒↑↑ ↑↑↑↑ ▒↑↑↑↑▒ ↑↑↑ ↑ ▒▒▒ ↑ ↑↑↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑ ↑↑↑↑↑↑ ▒↑↑↑▒ ↑ ▒↑↑ ↑↑↑ ▒↑↑↑↑▒ ▒↑▒ ▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒▒▒ ↑↑↑↑↑↑↑ ▒↑↑↑▒ ▒↑↑ ▒↑↑↑↑▒▒▒▒▒▒▒▒▒▒▒↑▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒↑↑↑↑↑↑↑↑↑▒ ↑ ↑↑↑↑ ↑ ▒↑↑↑▒▒▒▒▒▒▒↑↑ ▒▒▒▒▒▒▒▒▒▒▒↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ▒↑▒▒▒↑↑↑↑↑▒ ↑ ↑↑↑↑ ▒↑↑↑↑↑↑↑↑↑↑↑↑ ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑ ▒↑▒ ▒↑↑↑↑↑▒ ↑↑ ↑ ↑ ▒↑↑↑ ↑↑↑↑↑↑↑↑ ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑▒ ↑ ▒↑▒▒▒↑↑↑↑↑▒ ▒↑↑↑↑↑↑↑↑↑↑↑↑ ═════════════════════════════════════════════════════════════════════════════10
Ring
<lang ring>
- Project : Forest fire
load "guilib.ring" load "stdlib.ring"
paint = null
new qapp
{ win1 = new qwidget() { setwindowtitle("Forest fire") setgeometry(100,100,500,600) label1 = new qlabel(win1) { setgeometry(10,10,400,400) settext("") } new qpushbutton(win1) { setgeometry(150,500,100,30) settext("draw") setclickevent("draw()") } show() } exec() }
func draw
p1 = new qpicture() color = new qcolor() { setrgb(0,0,255,255) } pen = new qpen() { setcolor(color) setwidth(1) } paint = new qpainter() { begin(p1) setpen(pen)
pregen = newlist(200,200) newgen = newlist(200,200)
for gen = 1 to 20 see "gen = " + gen + nl for x = 1 to 199 for y = 1 to 199 switch pregen[x][y] on 0 if random(9)/10 > 0.099 newgen[x][y] = 1 color = new qcolor() color.setrgb(0,128,0,255) pen.setcolor(color) setpen(pen) drawpoint(x,y) ok on 2 newgen[x][y] = 0 color = new qcolor() color.setrgb(165,42,42,255) pen.setcolor(color) setpen(pen) drawpoint(x,y) on 1 if pregen[x][y] = 2 or pregen[x][y] = 2 or pregen[x][y+1] = 2 or pregen[x][y] = 2 or pregen[x][y+1] = 2 or pregen[x+1][y] = 2 or pregen[x+1][y] = 2 or pregen[x+1][y+1] = 2 or random(9)/10 > 0.0999 color = new qcolor() color.setrgb(255,0,0,255) pen.setcolor(color) setpen(pen) drawpoint(x,y) newgen[x][y] = 2 ok off pregen[x][y] = newgen[x][y] next next
next
endpaint() } label1 { setpicture(p1) show() } return
</lang> Output:
https://www.dropbox.com/s/6rjho62odzyqaqc/ForestFire.jpg?dl=0
Ruby
<lang ruby>class Forest_Fire
Neighborhood = [-1,0,1].product([-1,0,1]) - [0,0] States = {empty:" ", tree:"T", fire:"#"} def initialize(xsize, ysize=xsize, p=0.5, f=0.01) @xsize, @ysize, @p, @f = xsize, ysize, p, f @field = Array.new(xsize+1) {|i| Array.new(ysize+1, :empty)} @generation = 0 end def evolve @generation += 1 work = @field.map{|row| row.map{|cell| cell}} for i in 0...@xsize for j in 0...@ysize case cell=@field[i][j] when :empty cell = :tree if rand < @p when :tree cell = :fire if fire?(i,j) else cell = :empty end work[i][j] = cell end end @field = work end def fire?(i,j) rand < @f or Neighborhood.any? {|di,dj| @field[i+di][j+dj] == :fire} end def display puts "Generation : #@generation" puts @xsize.times.map{|i| @ysize.times.map{|j| States[@field[i][j]]}.join} end
end
forest = Forest_Fire.new(10,30) 10.times do |i|
forest.evolve forest.display
end</lang> Sample Output:
Generation : 1 TT TTTT TT TT T T T TTT T TTT T TTT T T T T T TT T TTT T T T T TTT T T TT T T TT TTT T T TTTT TTTTTTT TT T T T T TT T TTT TT TT TT TTT TT TTT T T T TTTTT TT TT T TTT TT T TTT T T T T T TT T TTTTT T TT TTT TT T T T Generation : 2 TTTTTTTT TTTT TTTTTTTTT TTTTT T# TTTTTTTTT TTTTTT T T T TT TT # TTTTT T T TTTTTTTTTT TT T TTTTT T TT TTTTTT TTT TTT TTTTTTT TTTTTTTT T TTT TTT TTTT T TTT TTT TT TTTTTTT TT TT TTTT TTT TTTT TTTT TT T T T TTTTTT TTTTTTT T TTTTTTTTT TTTTT TTTTTT T T T TT TTTT TT TTTTTTT TTTTT TTTTTT T T TT Generation : 3 ###TTTTT TTTT TTTTTTTTTTTTTTTT # T####TTTTT TTTTTT TTTTTT TT ##TT TTTTTTT TTTTTTTTTTTT TT TT T###T T TTTTTTTTTTTTTTTTT TTTTTTTTTTTTTTTTTTTT TTTTTTTTT TTTTT T TTTTTTT TTTT TTTTTTT TT TTTTTTT TTT TTTT TTTTTTT T TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TTTTT TTTTTT T TTTTTTTT#TTTTT TTTTTTTT TTTTTT#TTTTT TTTT TT Generation : 4 ##### TTTT TTTTTTTTTTTTTTTT T # #TTTT TTTTTTTTTTTTT TT ## ##TTTTTTTTTTTTTTTTTTTTT ## # # T TTTTTTTTTTTTTTTTTTT TTT#####TTTTTTTTTTTT TTTTTTTTT TTTTTTT TTTTTTTTTTTTT TTTTTTTT TTTTTTTTTTTTTTTTTTT TTTTTTTTT TTTTTTTTTTTTTTTTTTTTTTT###TTTT TTTTTTTTTTTTTTTT##TTTTT# #TTTT TTTTTTTT TTTTT# #TTTT ###TTTT Generation : 5 T#TTTTTTTTTTTTTTTTTTTT #T TTTT #TTT TTTTTTTTTTTTT TT T T #TTTTTTTTTTTTTTTTTTTT T #TTTTT#TTTTTT#TTTTTTT ### #TTTTTTTTTTT TTTTTTTTT TT##### #TTTTTTTTTTTTTTTTTTTTT TTTTTTTTTTTTTTTTTTTTTT#####TTT TTTTTTTTTTTTTTT####TTT# #TTT TTTTTTTTTTTTTT## #TTT# T #TTT TTTTTTTT TTTT# T #TTT #TTT Generation : 6 T T # ##TTTTTTTTTTTTTTTTTT T #TTTTT #TT TTTTTTTTTTTTT TT T#TT TTT #TTT###TTTT###TTTTTT TTTTTT T #TTT# #TTTT# #TTTTTT TTT ##TTT###TTTT###TTTTTT ## #TTTTTTTTTTT#######TT T#########TTT#######T# #TT TTTTTTTTTTTTT## #T# T #TT TTTTTTTTTTTTT# TT #T# TTT #TT TTTTTTTT TTT# #T #T#T #TT Generation : 7 TT # T T #TTTTTTTTTTTTTTTTT #T #TTT# T ## ####TT#####TTTTT # ##TTTTTT #T# #TT# #TTTTT ###TTTTT# #T# T #TT# T #TTTTT TTTT T #T# #TT# #####T T TTT T ########### #T # #T# # T TTT #T ###########T# TT # T #T TTTTTTTTTTTT# TT##T # TTT #T TTTTTT#T TTT# #T # #T TT #T Generation : 8 ## TT T #############TTTT # #T# TT T ## #TTTT T #T#### # T ## T #TTTT ##TT# T # TT ## TTT ##### T#TTTT#TT # TT ## TT # T T TTTTT TTT T # TT TTTT # TTT T T TTT # # ##T TTTT T # ############ T# #T #TTTT # TTTTT# #TTT# TT #T T # TT # Generation : 9 TT##T TTT #TTT T TT # ##TTT#T TTT #TTT #T # T TTT TTT #### T ## T#T TTTT TTTT TT# #### #T TT TTT T T T T # #TT## T TTT T TTT TT T TTT TTTTT T T## #T T TTT TT T TT #TTT###TTT T# T #TT #TTTT ##### ### T#T # TT TTT Generation : 10 T# # T##T TTTT TTT #TT #T##T #T# #TTTTT TTT ### T # T TTTT#T TTTT TTTTTTT # T T # #T TTTT TTTTT T# T T #TT TTT TT# TTT T T ## #TT ###T#TTTTTTTTTT T### #####TTTT# T #T # ##T TT TTTTTTTTTT#TTT ### #TT TTTT TTTT T # TT T ## T #TTT T # # TT TT ##TTT
Rust
Inspired by the Raku implementation, this runs in the terminal, printing a colored ASCII rendition of the forest (and it's fires!). You can configure the size of the forest, frame delay, and various probabilities.
<lang rust>extern crate rand; extern crate ansi_term;
- [derive(Copy, Clone, PartialEq)]
enum Tile {
Empty, Tree, Burning, Heating,
}
impl fmt::Display for Tile {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let output = match *self { Empty => Black.paint(" "), Tree => Green.bold().paint("T"), Burning => Red.bold().paint("B"), Heating => Yellow.bold().paint("T"), }; write!(f, "{}", output) }
}
// This has been added to the nightly rust build as of March 24, 2016 // Remove when in stable branch! trait Contains<T> {
fn contains(&self, T) -> bool;
}
impl<T: PartialOrd> Contains<T> for std::ops::Range<T> {
fn contains(&self, elt: T) -> bool { self.start <= elt && elt < self.end }
}
const NEW_TREE_PROB: f32 = 0.01; const INITIAL_TREE_PROB: f32 = 0.5; const FIRE_PROB: f32 = 0.001;
const FOREST_WIDTH: usize = 60; const FOREST_HEIGHT: usize = 30;
const SLEEP_MILLIS: u64 = 25;
use std::fmt; use std::io; use std::io::prelude::*; use std::io::BufWriter; use std::io::Stdout; use std::process::Command; use std::time::Duration; use rand::Rng; use ansi_term::Colour::*;
use Tile::{Empty, Tree, Burning, Heating};
fn main() {
let sleep_duration = Duration::from_millis(SLEEP_MILLIS); let mut forest = [[Tile::Empty; FOREST_WIDTH]; FOREST_HEIGHT];
prepopulate_forest(&mut forest); print_forest(forest, 0);
std::thread::sleep(sleep_duration);
for generation in 1.. {
for row in forest.iter_mut() { for tile in row.iter_mut() { update_tile(tile); } }
for y in 0..FOREST_HEIGHT { for x in 0..FOREST_WIDTH { if forest[y][x] == Burning { heat_neighbors(&mut forest, y, x); } } }
print_forest(forest, generation);
std::thread::sleep(sleep_duration); }
}
fn prepopulate_forest(forest: &mut [[Tile; FOREST_WIDTH]; FOREST_HEIGHT]) {
for row in forest.iter_mut() { for tile in row.iter_mut() { *tile = if prob_check(INITIAL_TREE_PROB) { Tree } else { Empty }; } }
}
fn update_tile(tile: &mut Tile) {
*tile = match *tile { Empty => { if prob_check(NEW_TREE_PROB) == true { Tree } else { Empty } } Tree => { if prob_check(FIRE_PROB) == true { Burning } else { Tree } } Burning => Empty, Heating => Burning, }
}
fn heat_neighbors(forest: &mut [[Tile; FOREST_WIDTH]; FOREST_HEIGHT], y: usize, x: usize) {
let neighbors = [(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)];
for &(xoff, yoff) in neighbors.iter() { let nx: i32 = (x as i32) + xoff; let ny: i32 = (y as i32) + yoff; if (0..FOREST_WIDTH as i32).contains(nx) && (0..FOREST_HEIGHT as i32).contains(ny) && forest[ny as usize][nx as usize] == Tree { forest[ny as usize][nx as usize] = Heating } }
}
fn prob_check(chance: f32) -> bool {
let roll = rand::thread_rng().gen::<f32>(); if chance - roll > 0.0 { true } else { false }
}
fn print_forest(forest: [[Tile; FOREST_WIDTH]; FOREST_HEIGHT], generation: u32) {
let mut writer = BufWriter::new(io::stdout()); clear_screen(&mut writer); writeln!(writer, "Generation: {}", generation + 1).unwrap(); for row in forest.iter() { for tree in row.iter() { write!(writer, "{}", tree).unwrap(); } writer.write(b"\n").unwrap(); }
}
fn clear_screen(writer: &mut BufWriter<Stdout>) {
let output = Command::new("clear").output().unwrap(); write!(writer, "{}", String::from_utf8_lossy(&output.stdout)).unwrap();
} </lang>
Sather
<lang sather>class FORESTFIRE is
private attr fields:ARRAY{ARRAY{INT}}; private attr swapu:INT; private attr rnd:RND; private attr verbose:BOOL; private attr generation:INT; readonly attr width, height:INT; const empty:INT := 0; const tree:INT := 1; const burning:INT := 2;
attr prob_tree, prob_p, prob_f :FLT;
create(w, h:INT, v:BOOL):SAME is res:FORESTFIRE := new; res.fields := #(2); res.fields[0] := #(w*h); res.fields[1] := #(w*h); res.width := w; res.height := h; res.swapu := 0; res.prob_tree := 0.55; res.prob_p := 0.001; res.prob_f := 0.00001; res.rnd := #RND; res.verbose := v; res.generation := 0; res.initfield; return res; end;
-- to give variability seed(i:INT) is rnd.seed(i); end;
create(w, h:INT):SAME is res ::= create(w, h, false); return res; end;
initfield is n ::= 0; swapu := 0; if verbose and generation > 0 then #ERR + "Previous generation " + generation + "\n"; end; generation := 0; loop i ::= 0.upto!(width-1); loop j ::= 0.upto!(height-1); if rnd.uniform > prob_tree.fltd then cset(i, j, empty); else
n := n + 1;
cset(i, j, tree); end; end; end; if verbose then #ERR + #FMT("Field size is %dx%d (%d)", width, height, size) + "\n"; #ERR + "There are " + n + " trees (" + (100.0*n.flt/size.flt) + "%)\n"; #ERR + "prob_tree = " + prob_tree + "\n"; #ERR + "prob_f = " + prob_f + "\n"; #ERR + "prob_p = " + prob_p + "\n"; #ERR + "ratio = " + prob_p/prob_f + "\n"; end; end;
field:ARRAY{INT} is return fields[swapu]; end;
ofield:ARRAY{INT} is return fields[swapu.bxor(1)]; end; size:INT is return width*height; end;
set(i, j, t:INT) pre bcheck(i, j) is ofield[j*width + i] := t; end;
cset(i, j, t:INT) pre bcheck(i, j) is field[j*width + i] := t; end;
private bcheck(i, j:INT):BOOL is if i.is_between(0, width-1) and j.is_between(0, height-1) then return true; -- is inside else return false; -- is outside end; end;
get(i, j:INT):INT is if ~bcheck(i, j) then return empty; end; return field[j*width + i]; end;
oget(i, j:INT):INT is if ~bcheck(i, j) then return empty; end; return ofield[j*width + i]; end;
burning_neighbor(i, j:INT):BOOL is loop x ::= (-1).upto!(1); loop y ::= (-1).upto!(1); if x /= y then if get(i+x, j+y) = burning then return true; end; end; end; end; return false; end;
evolve is bp ::= 0; loop i ::= 0.upto!(width-1); loop j ::= 0.upto!(height-1);
case get(i, j)
when burning then set(i, j, empty); bp := bp + 1; when empty then if rnd.uniform > prob_p.fltd then set(i, j, empty); else set(i, j, tree); end; when tree then if burning_neighbor(i, j) then set(i, j, burning); else if rnd.uniform > prob_f.fltd then set(i, j, tree); else set(i, j, burning); end; end; else #ERR + "corrupted field\n"; end; end; end; generation := generation + 1; if verbose then if bp > 0 then #ERR + #FMT("Burning at gen %d: %d\n", generation-1, bp); end; end; swapu := swapu.bxor(1); end;
str:STR is s ::= ""; loop j ::= 0.upto!(height -1); loop i ::= 0.upto!(width -1); case get(i, j) when empty then s := s + "."; when tree then s := s + "Y"; when burning then s := s + "*"; end; end; s := s + "\n"; end; s := s + "\n"; return s; end;
end;
class MAIN is
main is forestfire ::= #FORESTFIRE(74, 40); -- #FORESTFIRE(74, 40, true) to have some extra info -- (redirecting stderr to a file is a good idea!)
#OUT + forestfire.str; -- evolve 1000 times loop i ::= 1000.times!; forestfire.evolve; -- ANSI clear screen sequence #OUT + 0x1b.char + "[H" + 0x1b.char + "[2J"; #OUT + forestfire.str; end; end;
end;</lang>
Scala
<lang scala>import scala.util.Random
class Forest(matrix:Array[Array[Char]]){
import Forest._ val f=0.01; // auto combustion probability val p=0.1; // tree creation probability val rows=matrix.size val cols=matrix(0).size
def evolve():Forest=new Forest(Array.tabulate(rows, cols){(y,x)=> matrix(y)(x) match { case EMPTY => if (Random.nextDouble<p) TREE else EMPTY case BURNING => EMPTY case TREE => if (neighbours(x, y).exists(_==BURNING)) BURNING else if (Random.nextDouble<f) BURNING else TREE } }) def neighbours(x:Int, y:Int)=matrix slice(y-1, y+2) map(_.slice(x-1, x+2)) flatten override def toString()=matrix map (_.mkString("")) mkString "\n"
}
object Forest{
val TREE='T' val BURNING='#' val EMPTY='.' def apply(x:Int=30, y:Int=15)=new Forest(Array.tabulate(y, x)((y,x)=> if (Random.nextDouble<0.5) TREE else EMPTY))
}</lang>
<lang scala>object ForestFire{
def main(args: Array[String]): Unit = { var l=Forest() for(i <- 0 until 20){ println(l+"\n-----------------------") l=l.evolve } }
}</lang> Sample output:
.T..TTT.TT .T..TTT.TT TT..TTT.TT TT..TTTTTT TT..TTTTTT TTT.TTTT.. TTT.TTTTT. TTT.TTTTT. TTT.TTTTT. TTT.TTTTT. .T...T..T. .TT..T..T. .TT..T.TT. .TT.TT.TTT .TT.##.TTT T...TT.T.T T...TT.T.T T...TT.T.T T.TT##.T.T T.T#...T.T .T..TTTTTT .T..TTTTTT .T..#TTTTT .T...#TTTT .T....#TTT TTT..TTTT. TTT..TTTT. TTT..TTTT. TTT..#TTT. ###...##T. TT.TTTTTTT TT.TTTTTTT TT.TTTTTTT ##.TTT#TTT ...###.#TT ......TT.. T.....TT.. #.T.TTTT.. .T#.TTTT.. .#..####.. .TTT.TTTTT .#TT.TTTTT ..#T.TTTTT ...#.TTTTT .....TTTTT T.T.TTT.T. TTT.TTT.T. ###.TTT.T. ...TTTT.T. T..##TT.T.
Sidef
<lang ruby>define w = `tput cols`.to_i-1 define h = `tput lines`.to_i-1 define r = "\033[H"
define red = "\033[31m" define green = "\033[32m" define yellow = "\033[33m"
define chars = [' ', green+'*', yellow+'&', red+'&']
define tree_prob = 0.05 define burn_prob = 0.0002
enum |Empty, Tree, Heating, Burning|
define dirs = [
%n(-1 -1), %n(-1 0), %n(-1 1), %n(0 -1), %n(0 1), %n(1 -1), %n(1 0), %n(1 1),
]
var forest = h.of { w.of { 1.rand < tree_prob ? Tree : Empty } }
var range_h = h.range var range_w = w.range
func iterate {
var new = h.of{ w.of(0) } for i in range_h { for j in range_w { given (new[i][j] = forest[i][j]) { when (Tree) { 1.rand < burn_prob && (new[i][j] = Heating; next) dirs.each { |pair| var y = pair[0]+i range_h.contains(y) || next var x = pair[1]+j range_w.contains(x) || next forest[y][x] == Heating && (new[i][j] = Heating; break) } } when (Heating) { new[i][j] = Burning } when (Burning) { new[i][j] = Empty } case (1.rand < tree_prob) { new[i][j] = Tree } } } } forest = new
}
STDOUT.autoflush(true)
func init_forest {
print r forest.each { |row| print chars[row] print "\033[E\033[1G" } iterate()
}
loop { init_forest() }</lang>
OO approach: <lang ruby>define RED = "\e[1;31m" define YELLOW = "\e[1;33m" define GREEN = "\e[1;32m" define DIRS = [
[-1, -1], [0, -1], [1, -1], [-1, 0], [1, 0], [-1, 1], [0, 1], [1, 1],
] enum (Empty, Tree, Heating, Burning) define pix = [' ', GREEN + "*", YELLOW + "*", RED + "*"] class Forest(p=0.01, f=0.001, height, width) {
has coords = [] has spot = [] has neighbors = []
method init { coords = (0..height ~X 0..width) spot = height.of { width.of { [true, false].pick ? Tree : Empty } } self.init_neighbors }
method init_neighbors { for i,j in coords { neighbors[i][j] = gather { for dir in DIRS { take(\(spot[i + dir[0]][j + dir[1]] \\ next)) } } } }
method step { var heat = []
for i,j in coords { given (spot[i][j]) { when Empty { spot[i][j] = Tree if (1.rand < p) } when Tree { spot[i][j] = Heating if (1.rand < f) } when Heating { spot[i][j] = Burning; heat << [i, j] } when Burning { spot[i][j] = Empty } } }
for i,j in heat { neighbors[i][j].each { |ref| *ref = Heating if (*ref == Tree) } } }
method show { for i in ^height { say pix[spot[i]] } }
}
STDOUT.autoflush(true) var(height, width) = `stty size`.nums.map{.dec}... var forest = Forest(height: height, width: width) print "\e[2J"
loop {
print "\e[H" forest.show forest.step
}</lang>
Tcl
<lang tcl>package require Tcl 8.5
- Build a grid
proc makeGrid {w h {treeProbability 0.5}} {
global grid gridW gridH set gridW $w set gridH $h set grid [lrepeat $h [lrepeat $w " "]] for {set x 0} {$x < $w} {incr x} {
for {set y 0} {$y < $h} {incr y} { if {rand() < $treeProbability} { lset grid $y $x "#" } }
}
}
- Evolve the grid (builds a copy, then overwrites)
proc evolveGrid {{fireProbability 0.01} {plantProbability 0.05}} {
global grid gridW gridH set newGrid {} for {set y 0} {$y < $gridH} {incr y} {
set row {} for {set x 0} {$x < $gridW} {incr x} { switch -exact -- [set s [lindex $grid $y $x]] { " " { if {rand() < $plantProbability} { set s "#" } } "#" { if {[burningNeighbour? $x $y] || rand() < $fireProbability} { set s "o" } } "o" { set s " " } } lappend row $s } lappend newGrid $row
} set grid $newGrid
}
- We supply the neighbourhood model as an optional parameter (not used...)
proc burningNeighbour? {
x y {neighbourhoodModel {-1 -1 -1 0 -1 1 0 -1 0 1 1 -1 1 0 1 1}}
} {
global grid gridW gridH foreach {dx dy} $neighbourhoodModel {
set i [expr {$x + $dx}] if {$i < 0 || $i >= $gridW} continue set j [expr {$y + $dy}] if {$j < 0 || $j >= $gridH} continue if {[lindex $grid $j $i] eq "o"} { return 1 }
} return 0
}
proc printGrid {} {
global grid foreach row $grid {
puts [join $row ""]
}
}
- Simple main loop; press Return for the next step or send an EOF to stop
makeGrid 70 8 while 1 {
evolveGrid printGrid if {[gets stdin line] < 0} break
}</lang> Sample output:
### # ####### ## # ## ##### # # # ### ## # # # ## # ##### # ## # # ## o ### # # #### # # #### # # ####### ### ##### ### #### ####### ### ## ## #### # ## # ### ## #### # ## # # #### # ### # # ## ##### # # ## # ##### ### # ## # ## ###### # #### ## # # ### ### # ##### # ### ## # ### # ####### #### # # # # # # # # # # # #### ### # ## ## ### # ## # # # # # ## # ## ## ##### ## ## # # # # ## # ## ### # # # ### ## ## # ### # # ### # ### ##### # # ####### ## # #o o#### # # # ### ## # # # # #o # ##### # ## ## # ## ### # # #### # # #### # # ####### ### ##### ### #### #####oo ### ### ## #### # ## # ### ## #### # ## # # #### # ### # # ## ##### # # ## # ##### ### # ## # ## ###### # #o## ## # # ### ### # ###### # ### ## # ### # ####### #### # # # # # # # # # # # #### ### # ## ## ### # ## # # # # # ## # ## ## o#### ## ## # # # # ## # ## ### # # # ### ## # ## # ### # # ### # #oo o#### # # ######## ## # o o### ## # # #o# ## # # # # o # ##### # ## ## # ## o## # # #### # # ##o# # # ######o ### ##### #### #### ####o ### # ### ## #### ## ## ##### ## #### # ## # # o o### # ### o # ## ##### # # ## ## ##### ### # ## # ## ###### # o o# ## # # ### ##### ###### # ### ## # ### # ####### #### o o # # # o # o # # # # #### ##### ## ### ### # ## # # # # # ## # ## ## o### ## ## # # # # ## # ## ### # ### ### ## # ## # #o# # # ### # o o### # # ######## ## # o## ## # # o o oo## # # # # # # ##### # ## ## # ## o# # # #### o o #o o # # #####o ### ##### #### #### ###o o## ####o o# #### #o o# ##### #o o### # ### # # o## # ##o # ## ###### # # ## ## ##### ### # ## # ## oooo## # o oo # # ### ##### ###### ##### ## # ### # ####### #### # # o # # # # # #### ##### ## ### ### # ## # # # # o### # oo ## o## ## ## # # # # ## # o# ### # ### ###### # ## # o o # # #### # o## # # ######## ## # o# ## # # # o# # # # o # o ##### # ## ## # #o o # o ooo# o # # # ####o ### ##### o### #### ##o # o# ##oo o oooo#o o# ###### o o## # # ### # # oo # #o o ## ooooo# # # oo o# # ##### ### # ## # ## o# #o # # # ### ##### ###### ##### ## # ### # oooooo# #### o # # o o # # # #### ##### ## ### o## # ## # # # # o## o# #o# o# ## ## # # # # ## ## o ### # ### # #####o # ## # #
uBasic/4tH
It's a small forest, since it's a small interpreter. <lang>B = 1 ' A burning tree E = 16 ' An empty space T = 256 ' A living tree
Input "%Chance a tree will burn: ";F ' Enter chance of combustion Input "%Chance a tree will grow: ";P ' Enter chance of a new tree
Proc _CreateForest ' Now create a new forest
Do
Proc _PrintForest ' Print the current forest Input "Press '1' to continue, '0' to quit: ";A Proc _BurnForest ' See what happens Proc _UpdateForest ' Update from buffer While A ' Until the user has enough
Loop ' and answers with zero
End
_CreateForest ' Create an entire new forest
Local(1)
For a@ = 0 to 120 ' For each main cell determine If RND(100) < P Then ' if a tree will grow here @(a@) = T ' Ok, we got a tree Else ' Otherwise it remains empty @(a@) = E EndIf Next
Return
_BurnForest ' Now the forest starts to burn
Local(2)
For a@ = 0 To 10 ' Loop vertical For b@ = 0 To 10 ' Loop horizontal If @((a@ * 11) + b@) = B Then @((a@ * 11) + b@ + 121) = E ' A tree has been burned flat If @((a@ * 11) + b@) = E Then ' For each open space determine If RND(100) < P Then ' if a tree will grow here @((a@ * 11) + b@ + 121) = T Else ' Otherwise it remains an empty space @((a@ * 11) + b@ + 121) = E EndIf EndIf
If @((a@ * 11) + b@) = T Then ' A tree grows here If RND(100) < F Then ' See if it will spontaneously combust @((a@ * 11) + b@ + 121) = B Else ' No, then see if it got any burning @((a@ * 11) + b@ + 121) = FUNC(_BurningTrees(a@, b@)) EndIf ' neighbors that will set it ablaze EndIf
Next Next
Return
_UpdateForest ' Update the main buffer
Local(1)
For a@ = 0 To 120 ' Move from temporary buffer to main @(a@) = @(a@+121) Next
Return
_PrintForest ' Print the forest on screen
Local(2) Print ' Let's make a little space
For a@ = 0 To 10 ' Loop vertical For b@ = 0 To 10 ' Loop horizontal If @((a@ * 11) + b@) = B Then ' This is a burning tree Print " *"; Else ' Otherwise.. If @((a@ * 11) + b@) = E Then ' It may be an empty space Print " "; Else ' Otherwise Print " @"; ' It has to be a tree EndIf EndIf Next Print ' Terminate row Next
Print ' Terminate map
Return
_BurningTrees Param(2) ' Check the trees environment
Local(2)
For c@ = a@-1 To a@+1 ' Loop vertical -1/+1 If c@ < 0 Then Continue ' Skip top edge Until c@ > 10 ' End at bottom edge For d@ = b@-1 To b@+1 ' Loop horizontal -1/+1 If d@ < 0 Then Continue ' Skip left edge Until d@ > 10 ' End at right edge If @((c@ * 11) + d@) = B Then Unloop : Unloop : Return (B) Next ' We found a burning tree, exit! Next ' Try next row
Return (T) ' No burning trees found</lang>
- Output:
@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ * * * * @ @ Press '1' to continue, '0' to quit: 1 @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ * * * @ @ @ @ @ @ Press '1' to continue, '0' to quit: 0 0 OK, 0:1236
Vedit macro language
This macro shows an example of using search in columnar block. Instead of checking all the 8 neighboring cells separately, a search in 3x3 character block is performed to check if there is fire.
Note: In order to display the graphics characters correctly, use DOS (OEM) font such as "Terminal". <lang vedit>#1 = 25 // height of the grid
- 2 = 60 // width of the grid
- 3 = 2 // probability of random fire, per 1000
- 4 = 40 // probability of new tree, per 1000
- 5 = #2+2+Newline_Chars // total length of a line
- 90 = Time_Tick // seed for random number generator
- 91 = 1000 // get random numbers in range 0 to 999
// Fill the grid and draw border Buf_Switch(Buf_Free) Ins_Char('-', COUNT, #2+2) Ins_Newline for (#11=0; #11<#1; #11++) {
Ins_Char('|') for (#12=0; #12<#2; #12++) { Call("RANDOM") if (Return_Value < 500) { // 50% propability for a tree Ins_Char('♠') } else { Ins_Char(' ') } } Ins_Char('|') Ins_Newline
} Ins_Char('-', COUNT, #2+2)
- 8=1
Repeat(10) {
BOF Update() // calculate one generation for (#11=1; #11<#1+2; #11++) { Goto_Line(#11) for (#12=1; #12<#2+2; #12++) { Goto_Col(#12) #14=Cur_Pos Call("RANDOM") #10 = Return_Value if (Cur_Char == '♠') { // tree? if (#10 < #3) { Ins_Char('*', OVERWRITE) // random combustion } else { if (Search_Block("░", CP-#5-1, CP+#5+2, COLUMN+BEGIN+NOERR)) { Goto_Pos(#14) Ins_Char('*', OVERWRITE) // combustion } } } else { if (Cur_Char == ' ') { // empty space? if (#10 < #4) { Ins_Char('+', OVERWRITE) // new tree } } } } } // convert tmp symbols Replace("░"," ", BEGIN+ALL+NOERR) // old fire goes out Replace("*","░", BEGIN+ALL+NOERR) // new fire Replace("+","♠", BEGIN+ALL+NOERR) // new tree
} Return
//-------------------------------------------------------------- // Generate random numbers in range 0 <= Return_Value < #91 // #90 = Seed (0 to 0x7fffffff) // #91 = Scaling (0 to 0xffff)
- RANDOM:
- 92 = 0x7fffffff / 48271
- 93 = 0x7fffffff % 48271
- 90 = (48271 * (#90 % #92) - #93 * (#90 / #92)) & 0x7fffffff
return ((#90 & 0xffff) * #91 / 0x10000)</lang>
Sample output, 10th generation:
-------------------------------------------------------------- | ♠♠♠♠ ♠♠ ♠ ♠♠♠♠ ♠ ♠♠♠♠♠♠ ♠♠♠♠♠ ♠♠♠♠ ♠♠♠♠ ♠♠♠| | ░♠♠♠ ♠ ♠♠ ♠ ░♠♠♠♠ ♠ ♠ ♠ ♠♠♠ ♠ ♠♠░♠| |♠ ♠ ░ ♠ ♠♠ ♠ ♠♠ ♠ ♠♠♠ ♠ ♠ ♠♠♠ ♠♠♠♠♠♠♠♠ ♠| | ♠ ░♠♠♠ ♠ ♠ ♠░ ♠ ░░♠♠♠♠♠ ♠♠♠♠ ♠ ♠♠♠♠♠ ♠♠♠♠♠| | ♠ ░♠♠♠ ♠♠ ♠ ♠ ░ ░♠ ♠ ♠░░░░░░░░ ♠ ♠♠♠♠♠♠♠♠♠♠ | | ♠♠ ♠ ♠♠♠ ♠♠♠ ░ ♠ ♠♠ ░ ♠♠ ♠ ♠♠♠♠♠♠♠♠| |♠ ░♠♠♠♠♠♠♠♠ ♠♠ ♠♠♠░ ░░░ ░░░░ ♠ ░ ░ ░░ ░ ♠| | ♠ ░ ♠ ♠ ♠ ♠♠♠♠░ ░ | | ░♠ ♠♠♠♠♠♠♠♠♠ ♠ ♠♠♠ ♠ ♠ ♠ | | ♠ ♠ ░♠ ♠♠ ♠♠♠♠♠♠♠♠♠♠ ░░ ░ | | ♠ ░♠♠♠ ♠♠ ░░░ ♠░ ░ ♠♠♠ ░░░░ ♠ | | ░░♠♠♠ ♠ ♠░ ♠ ♠ ♠ ♠ ♠ ♠ ░ | | ♠ ♠♠♠♠♠♠ ♠♠ ♠♠♠░ ♠ ░ ♠ | |░ ░ ♠ ♠♠ ♠ ♠ ♠ ♠♠♠ ♠ ♠♠ | | ♠ ♠♠ ░░░░♠ ♠♠ ♠♠♠░♠ ♠ ♠ ♠ ░ ░| |♠♠♠ ♠ ░ ♠♠♠♠ ♠ ♠ ♠♠ ░♠░ ♠| |♠ ♠♠♠♠░ ♠♠ ♠♠♠ ░ ♠ ♠ ♠ ░ ░ | |♠ ♠♠♠♠♠░ ♠♠ ♠ ♠ ♠♠ ♠ ♠ ♠ ░♠♠♠ ♠| |♠♠♠♠♠ ♠ ░░░░♠♠♠♠♠ ♠♠░ ♠ ♠ ♠♠ ♠ ♠| | ♠♠♠♠♠♠♠ ♠ ♠♠ ♠░ ♠ ♠ ♠ ░♠♠♠ ♠ | | ♠ ♠♠♠♠♠ ♠♠ ♠ ♠ ♠♠ ♠ ♠ ░♠♠ ♠ | |♠♠♠ ♠♠♠♠♠♠ ♠ ♠♠♠ ♠░ ░ ░♠♠ ♠♠♠| | ♠♠♠♠♠ ♠♠♠♠♠ ♠♠♠ ♠♠ ♠░ ♠ ♠ ░♠ ░ ♠ ░♠ ♠ ♠♠| | ♠ ♠♠ ♠ ♠♠ ♠♠♠♠ ♠♠♠♠♠░ ░♠♠ ♠♠♠♠♠♠░ ♠ ♠♠ | | ♠ ♠ ♠♠♠♠♠♠♠ ♠♠♠ ♠░░ ░░ ♠░ ░░░♠♠♠ ♠ ♠♠ ♠♠ ♠ ♠♠ ♠ | --------------------------------------------------------------
Vlang
Text. The program prints the configuration, waits for enter key, and prints the next. It makes a pretty good animation to just hold down the enter key.
<lang vlang>import rand import strings import os
const (
rows = 20 cols = 30 p = .01 f = .001
)
const rx = rows + 2 const cx = cols + 2
fn main() {
mut odd := []string{len: rx*cx} mut even := []string{len: rx*cx} for r := 1; r <= rows; r++ { for c := 1; c <= cols; c++ { if rand.intn(2) or {1} == 1 { odd[r*cx+c] = 'T' } } } mut _ := for { print_row(odd) step(mut even, odd) _ = os.input() print_row(even) step(mut odd, even) _ = os.input() }
}
fn print_row(model []string) {
println(strings.repeat_string("__", cols)) println() for r := 1; r <= rows; r++ { for c := 1; c <= cols; c++ { if model[r*cx+c] == '0' { print(" ") } else { print(" ${model[r*cx+c]}") } } println() }
}
fn step(mut dst []string, src []string) {
for r := 1; r <= rows; r++ { for c := 1; c <= cols; c++ { x := r*cx + c dst[x] = src[x] match dst[x] { '#' { // rule 1. A burning cell turns into an empty cell dst[x] = '0' } 'T' { // rule 2. A tree will burn if at least one neighbor is burning if src[x-cx-1]=='#' || src[x-cx]=='#' || src[x-cx+1]=='#' || src[x-1] == '#' || src[x+1] == '#' || src[x+cx-1]=='#' || src[x+cx]=='#' || src[x+cx+1] == '#' { dst[x] = '#'
// rule 3. A tree ignites with probability f // even if no neighbor is burning } else if rand.f64() < f { dst[x] = '#' } } else { // rule 4. An empty space fills with a tree with probability p if rand.f64() < p { dst[x] = 'T' } } } } }
}</lang>
Wren
<lang ecmascript>import "random" for Random import "io" for Stdin
var rand = Random.new() var rows = 20 var cols = 30 var p = 0.01 var f = 0.001 var rx = rows + 2 var cx = cols + 2
var step = Fn.new { |dst, src|
for (r in 1..rows) { for (c in 1..cols) { var x = r*cx + c dst[x] = src[x] if (dst[x] == "#") { // rule 1. A burning cell turns into an empty cell dst[x] = " " } else if(dst[x] == "T") { // rule 2. A tree will burn if at least one neighbor is burning if (src[x-cx-1] == "#" || src[x-cx] == "#" || src[x-cx+1] == "#" || src[x-1] == "#" || src[x+1] == "#" || src[x+cx-1] == "#" || src[x+cx] == "#" || src[x+cx+1] == "#") { dst[x] = "#" // rule 3. A tree ignites with probability f // even if no neighbor is burning } else if (rand.float() < f) { dst[x] = "#" } } else { // rule 4. An empty space fills with a tree with probability p if (rand.float() < p) dst[x] = "T" } } }
}
var print = Fn.new { |model|
System.print("__" * cols) System.print() for (r in 1..rows) { for (c in 1..cols) System.write(" %(model[r*cx+c])") System.print() }
}
var odd = List.filled(rx*cx, " ") var even = List.filled(rx*cx, " ") for (r in 1 ..rows) {
for (c in 1..cols) { if (rand.int(2) == 1) odd[r*cx+c] = "T" }
} while (true) {
print.call(odd) step.call(even, odd) Stdin.readLine()
print.call(even) step.call(odd, even) Stdin.readLine()
}</lang>
- Programming Tasks
- Games
- WikipediaSourced
- Cellular automata
- 6502 Assembly
- 8086 Assembly
- Ada
- ALGOL 68
- AutoHotkey
- BASIC
- Applesoft BASIC
- BASIC256
- BBC BASIC
- FreeBASIC
- GFA Basic
- PureBasic
- REALbasic
- Run BASIC
- Sinclair ZX81 BASIC
- Visual Basic .NET
- ZX Spectrum Basic
- Batch File
- C
- SDL
- C sharp
- C++
- Ceylon
- Clojure
- COBOL
- Common Lisp
- D
- Simpledisplay
- Déjà Vu
- EasyLang
- Emacs Lisp
- Erlang
- F Sharp
- Factor
- Forth
- Fortran
- Go
- Haskell
- Icon
- Unicon
- Icon Programming Library
- J
- JAMES II/Rule-based Cellular Automata
- Java
- JavaScript
- Julia
- Lua
- Mathematica
- Wolfram Language
- MATLAB
- Octave
- Nim
- OCaml
- Curses
- Ol
- PARI/GP
- Perl
- Phix
- Phix/pGUI
- PHP
- PicoLisp
- PostScript
- Python
- Racket
- Raku
- REXX
- Ring
- Ruby
- Rust
- Rand
- Ansi term
- Sather
- Scala
- Sidef
- Tcl
- UBasic/4tH
- Vedit macro language
- Vlang
- Wren