Quaternion type

Quaternion type
You are encouraged to solve this task according to the task description, using any language you may know.

Quaternions are an extension of the idea of complex numbers.

A complex number has a real and complex part written sometimes as a + bi, where a and b stand for real numbers and i stands for the square root of minus 1. An example of a complex number might be -3 + 2i, where the real part, a is -3.0 and the complex part, b is +2.0.

A quaternion has one real part and three imaginary parts, i, j, and k. A quaternion might be written as a + bi + cj + dk. In this numbering system, ii = jj = kk = ijk = -1. The order of multiplication is important, as, in general, for two quaternions q1 and q2; q1q2 != q2q1.

An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position. So the example above would be written as (1, 2, 3, 4)

Given the three quaternions and their components:

   q  = (1, 2, 3, 4) = (a,  b,  c,  d )
q1 = (2, 3, 4, 5) = (a1, b1, c1, d1)
q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)


And a wholly real number r = 7.

Your task is to create functions or classes to perform simple maths with quaternions including computing:

1. The norm of a quaternion:
${\displaystyle ={\sqrt {a^{2}+b^{2}+c^{2}+d^{2}}}}$
2. The negative of a quaternion:
=(-a, -b, -c, -d)
3. The conjugate of a quaternion:
=( a, -b, -c, -d)
4. Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
5. Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
6. Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
7. Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
  a1b2 + b1a2 + c1d2 − d1c2,
  a1c2 − b1d2 + c1a2 + d1b2,
  a1d2 + b1c2 − c1b2 + d1a2 )
8. Show that, for the two quaternions q1 and q2:
q1q2 != q2q1

If your language has built-in support for quaternions then use it.

C.f.

• Vector products
• On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.

The package specification (works with any floating-point type): <lang Ada>generic

  type Real is digits <>;


package Quaternions is

  type Quaternion is record
A, B, C, D : Real;
end record;
function "abs" (Left : Quaternion) return Real;
function Conj (Left : Quaternion) return Quaternion;
function "-" (Left : Quaternion) return Quaternion;
function "+" (Left, Right : Quaternion) return Quaternion;
function "-" (Left, Right : Quaternion) return Quaternion;
function "*" (Left : Quaternion; Right : Real) return Quaternion;
function "*" (Left : Real; Right : Quaternion) return Quaternion;
function "*" (Left, Right : Quaternion) return Quaternion;
function Image (Left : Quaternion) return String;


end Quaternions;</lang> The package implementation: <lang Ada>with Ada.Numerics.Generic_Elementary_Functions; package body Quaternions is

  package Elementary_Functions is
use Elementary_Functions;
function "abs" (Left : Quaternion) return Real is
begin
return Sqrt (Left.A**2 + Left.B**2 + Left.C**2 + Left.D**2);
end "abs";
function Conj (Left : Quaternion) return Quaternion is
begin
return (A => Left.A, B => -Left.B, C => -Left.C, D => -Left.D);
end Conj;
function "-" (Left : Quaternion) return Quaternion is
begin
return (A => -Left.A, B => -Left.B, C => -Left.C, D => -Left.D);
end "-";
function "+" (Left, Right : Quaternion) return Quaternion is
begin
return
(  A => Left.A + Right.A, B => Left.B + Right.B,
C => Left.C + Right.C, D => Left.D + Right.D
);
end "+";
function "-" (Left, Right : Quaternion) return Quaternion is
begin
return
(  A => Left.A - Right.A, B => Left.B - Right.B,
C => Left.C - Right.C, D => Left.D - Right.D
);
end "-";
function "*" (Left : Quaternion; Right : Real) return Quaternion is
begin
return
(  A => Left.A * Right, B => Left.B * Right,
C => Left.C * Right, D => Left.D * Right
);
end "*";
function "*" (Left : Real; Right : Quaternion) return Quaternion is
begin
return Right * Left;
end "*";
function "*" (Left, Right : Quaternion) return Quaternion is
begin
return
(  A => Left.A * Right.A - Left.B * Right.B - Left.C * Right.C - Left.D * Right.D,
B => Left.A * Right.B + Left.B * Right.A + Left.C * Right.D - Left.D * Right.C,
C => Left.A * Right.C - Left.B * Right.D + Left.C * Right.A + Left.D * Right.B,
D => Left.A * Right.D + Left.B * Right.C - Left.C * Right.B + Left.D * Right.A
);
end "*";
function Image (Left : Quaternion) return String is
begin
return Real'Image (Left.A) & " +"  &
Real'Image (Left.B) & "i +" &
Real'Image (Left.C) & "j +" &
Real'Image (Left.D) & "k";
end Image;


end Quaternions;</lang> Test program: <lang Ada>with Ada.Text_IO; use Ada.Text_IO; with Quaternions; procedure Test_Quaternion is

  package Float_Quaternion is new Quaternions (Float);
use Float_Quaternion;
q  : Quaternion := (1.0, 2.0, 3.0, 4.0);
q1 : Quaternion := (2.0, 3.0, 4.0, 5.0);
q2 : Quaternion := (3.0, 4.0, 5.0, 6.0);
r  : Float      := 7.0;


begin

  Put_Line ("q = "       & Image (q));
Put_Line ("q1 = "      & Image (q1));
Put_Line ("q2 = "      & Image (q2));
Put_Line ("r ="        & Float'Image (r));
Put_Line ("abs q ="    & Float'Image (abs q));
Put_Line ("abs q1 ="   & Float' Image (abs q1));
Put_Line ("abs q2 ="   & Float' Image (abs q2));
Put_Line ("-q = "      & Image (-q));
Put_Line ("conj q = "  & Image (Conj (q)));
Put_Line ("q1 + q2 = " & Image (q1 + q2));
Put_Line ("q2 + q1 = " & Image (q2 + q1));
Put_Line ("q * r = "   & Image (q * r));
Put_Line ("r * q = "   & Image (r * q));
Put_Line ("q1 * q2 = " & Image (q1 * q2));
Put_Line ("q2 * q1 = " & Image (q2 * q1));


end Test_Quaternion;</lang>

Output:
q =  1.00000E+00 + 2.00000E+00i + 3.00000E+00j + 4.00000E+00k
q1 =  2.00000E+00 + 3.00000E+00i + 4.00000E+00j + 5.00000E+00k
q2 =  3.00000E+00 + 4.00000E+00i + 5.00000E+00j + 6.00000E+00k
r = 7.00000E+00
abs q = 5.47723E+00
abs q1 = 7.34847E+00
abs q2 = 9.27362E+00
-q = -1.00000E+00 +-2.00000E+00i +-3.00000E+00j +-4.00000E+00k
conj q =  1.00000E+00 +-2.00000E+00i +-3.00000E+00j +-4.00000E+00k
q1 + q2 =  5.00000E+00 + 7.00000E+00i + 9.00000E+00j + 1.10000E+01k
q2 + q1 =  5.00000E+00 + 7.00000E+00i + 9.00000E+00j + 1.10000E+01k
q * r =  7.00000E+00 + 1.40000E+01i + 2.10000E+01j + 2.80000E+01k
r * q =  7.00000E+00 + 1.40000E+01i + 2.10000E+01j + 2.80000E+01k
q1 * q2 = -5.60000E+01 + 1.60000E+01i + 2.40000E+01j + 2.60000E+01k
q2 * q1 = -5.60000E+01 + 1.80000E+01i + 2.00000E+01j + 2.80000E+01k


ALGOL 68

Translation of: python

Note: This specimen retains the original python coding style.

Works with: ALGOL 68 version Revision 1 - one minor extension to language used - PRAGMA READ, similar to C's #include directive.
Works with: ALGOL 68G version Any - tested with release algol68g-2.6.

File: prelude/Quaternion.a68<lang algol68># -*- coding: utf-8 -*- #

COMMENT REQUIRES:

 MODE QUATSCAL = REAL; # Scalar #
QUATSCAL quat small scal = small real;


END COMMENT

1. PROVIDES: #

FORMAT quat scal fmt := $g(-0, 4)$; FORMAT signed fmt = $b("+", "")f(quat scal fmt)$;

FORMAT quat fmt = $f(quat scal fmt)"+"f(quat scal fmt)"i+"f(quat scal fmt)"j+"f(quat scal fmt)"k"$; FORMAT squat fmt = $f(signed fmt)f(signed fmt)"i"f(signed fmt)"j"f(signed fmt)"k"$;

MODE QUAT = STRUCT(QUATSCAL r, i, j, k); QUAT i=(0, 1, 0, 0),

    j=(0, 0, 1, 0),
k=(0, 0, 0, 1);


MODE QUATCOSCAL = UNION(INT, SHORT REAL, SHORT INT); MODE QUATSUBSCAL = UNION(QUATCOSCAL, QUATSCAL);

MODE COMPLSCAL = STRUCT(QUATSCAL r, im);

1. compatable but not the same #

MODE ISOQUAT = UNION([]REAL, []INT, []SHORT REAL, []SHORT INT, []QUATSCAL); MODE COQUAT = UNION(COMPLSCAL, QUATCOSCAL, ISOQUAT); MODE SUBQUAT = UNION(COQUAT, QUAT); # subset is itself #

MODE QUATERNION = QUAT;

PROC quat fix type error = (QUAT quat, []STRING msg)BOOL: (

 putf(stand error, ($"Type error:"$,$" "g$, msg, quat fmt, quat, $l$));
stop


);

COMMENT For a list of coercions expected in A68 c.f.

Pre-Strong context: Deproceduring, dereferencing & uniting. e.g. OP arguments

 * soft(deproceduring for assignment),
* weak(dereferencing for slicing and OF selection),
* meek(dereferencing for indexing, enquiries and PROC calls),
* firm(uniting of OPerators),


Strong context only: widening (INT=>REAL=>COMPL), rowing (REAL=>[]REAL) & voiding

 * strong(widening,rowing,voiding for identities/initialisations, arguments and casts et al)


Key points:

 * arguments to OPerators do not widen or row!
* UNITING is permitted in OP/String ccontext.


There are 4 principle scenerios for most operators: +---------------+-------------------------------+-------------------------------+ | OP e.g. * | SCALar | QUATernion | +---------------+-------------------------------+-------------------------------+ | SCALar | SCAL * SCAL ... inherit | SCAL * QUAT | +---------------+-------------------------------+-------------------------------+ | QUATernion | QUAT * SCAL | QUAT * QUAT | +---------------+-------------------------------+-------------------------------+ However this is compounded with SUBtypes of the SCALar & isomorphs the QUATernion, e.g.

• SCAL may be a superset of SHORT REAL or INT - a widening coercion is required
• QUAT may be a superset eg of COMPL or [4]INT
• QUAT may be a structural isomorph eg of [4]REAL

+---------------+---------------+---------------+---------------+---------------+ | OP e.g. * | SUBSCAL | SCALar | COQUAT | QUATernion | +---------------+---------------+---------------+---------------+---------------+ | SUBSCAL | | inherit | SUBSCAT*QUAT | +---------------+ inherit +---------------+---------------+ | SCALar | | inherit | SCAL * QUAT | +---------------+---------------+---------------+---------------+---------------+ | COQUAT | inherit | inherit | inherit | COQUAT*QUAT | +---------------+---------------+---------------+---------------+---------------+ | QUATernion | QUAT*SUBSCAL | QUAT*SCAL | QUAT * COQUAT | QUAT * QUAT | +---------------+---------------+---------------+---------------+---------------+ Keypoint: if an EXPLICIT QUAT is not involved, then we can simple inherit, OR QUATINIT! END COMMENT

MODE CLASSQUAT = STRUCT(

   PROC (REF QUAT #new#, QUATSCAL #r#, QUATSCAL #i#, QUATSCAL #j#, QUATSCAL #k#)REF QUAT new,
PROC (REF QUAT #self#)QUAT conjugate,
PROC (REF QUAT #self#)QUATSCAL norm sq,
PROC (REF QUAT #self#)QUATSCAL norm,
PROC (REF QUAT #self#)QUAT reciprocal,
PROC (REF QUAT #self#)STRING repr,
PROC (REF QUAT #self#)QUAT neg,
PROC (REF QUAT #self#, SUBQUAT #other#)QUAT add,
PROC (REF QUAT #self#, SUBQUAT #other#)QUAT radd,
PROC (REF QUAT #self#, SUBQUAT #other#)QUAT sub,
PROC (REF QUAT #self#, SUBQUAT #other#)QUAT mul,
PROC (REF QUAT #self#, SUBQUAT #other#)QUAT rmul,
PROC (REF QUAT #self#, SUBQUAT #other#)QUAT div,
PROC (REF QUAT #self#, SUBQUAT #other#)QUAT rdiv,
PROC (REF QUAT #self#)QUAT exp


);

CLASSQUAT class quat = (

 # PROC new =#(REF QUAT new, QUATSCAL r, i, j, k)REF QUAT: (
# 'Defaults all parts of quaternion to zero' #
IF new ISNT REF QUAT(NIL) THEN new ELSE HEAP QUAT FI := (r, i, j, k)
),

 # PROC conjugate =#(REF QUAT self)QUAT:
(r OF self, -i OF self, -j OF self, -k OF self),

 # PROC norm sq =#(REF QUAT self)QUATSCAL:
r OF self**2 + i OF self**2 + j OF self**2 + k OF self**2,

 # PROC norm =#(REF QUAT self)QUATSCAL:
sqrt((norm sq OF class quat)(self)),

 # PROC reciprocal =#(REF QUAT self)QUAT:(
QUATSCAL n2 = (norm sq OF class quat)(self);
QUAT conj = (conjugate OF class quat)(self);
(r OF conj/n2, i OF conj/n2, j OF conj/n2, k OF conj/n2)
),

 # PROC repr =#(REF QUAT self)STRING: (
# 'Shorter form of Quaternion as string' #
FILE f; STRING s; associate(f, s);
putf(f, (squat fmt, r OF self>=0, r OF self,
i OF self>=0, i OF self, j OF self>=0, j OF self, k OF self>=0, k OF self));
close(f);
s
),

 # PROC neg =#(REF QUAT self)QUAT:
(-r OF self, -i OF self, -j OF self, -k OF self),

 # PROC add =#(REF QUAT self, SUBQUAT other)QUAT:
CASE other IN
(QUAT other): (r OF self + r OF other, i OF self + i OF other, j OF self + j OF other, k OF self + k OF other),
(QUATSUBSCAL other): (r OF self + QUATSCALINIT other, i OF self, j OF self, k OF self)
OUT IF quat fix type error(SKIP,"in add") THEN SKIP ELSE stop FI
ESAC,

 # PROC radd =#(REF QUAT self, SUBQUAT other)QUAT:
(add OF class quat)(self, other),

 # PROC sub =#(REF QUAT self, SUBQUAT other)QUAT:
CASE other IN
(QUAT other): (r OF self - r OF other, i OF self - i OF other, j OF self - j OF other, k OF self - k OF other),
(QUATSCAL other): (r OF self - other, i OF self, j OF self, k OF self)
OUT IF quat fix type error(self,"in sub") THEN SKIP ELSE stop FI
ESAC,

 # PROC mul =#(REF QUAT self, SUBQUAT other)QUAT:
CASE other IN
(QUAT other):(
r OF self*r OF other - i OF self*i  OF other - j OF self*j  OF other - k OF self*k  OF other,
r OF self*i  OF other + i OF self*r OF other + j OF self*k  OF other - k OF self*j  OF other,
r OF self*j  OF other - i OF self*k  OF other + j OF self*r OF other + k OF self*i  OF other,
r OF self*k  OF other + i OF self*j  OF other - j OF self*i  OF other + k OF self*r OF other
),
(QUATSCAL other): ( r OF self * other, i OF self * other, j OF self * other, k OF self * other)
OUT IF quat fix type error(self,"in mul") THEN SKIP ELSE stop FI
ESAC,

 # PROC rmul =#(REF QUAT self, SUBQUAT other)QUAT:
CASE other IN
(QUAT other): (mul OF class quat)(LOC QUAT := other, self),
(QUATSCAL other): (mul OF class quat)(self, other)
OUT IF quat fix type error(self,"in rmul") THEN SKIP ELSE stop FI
ESAC,

 # PROC div =#(REF QUAT self, SUBQUAT other)QUAT:
CASE other IN
(QUAT other): (mul OF class quat)(self, (reciprocal OF class quat)(LOC QUAT := other)),
(QUATSCAL other): (mul OF class quat)(self, 1/other)
OUT IF quat fix type error(self,"in div") THEN SKIP ELSE stop FI
ESAC,

 # PROC rdiv =#(REF QUAT self, SUBQUAT other)QUAT:
CASE other IN
(QUAT other): (div OF class quat)(LOC QUAT := other, self),
(QUATSCAL other): (div OF class quat)(LOC QUAT := (other, 0, 0, 0), self)
OUT IF quat fix type error(self,"in rdiv") THEN SKIP ELSE stop FI
ESAC,

 # PROC exp =#(REF QUAT self)QUAT: (
QUAT fac := self;
QUAT sum := 1.0 + fac;
FOR i FROM 2 TO bits width WHILE ABS(fac + quat small scal) /= quat small scal DO
VOID(sum +:= (fac *:= self / ##QUATSCAL(i)))
OD;
sum
)


);

PRIO INIT = 1; OP QUATSCALINIT = (QUATSUBSCAL scal)QUATSCAL:

 CASE scal IN
(INT scal): scal,
(SHORT INT scal): scal,
(SHORT REAL scal): scal
OUT IF quat fix type error(SKIP,"in QUATSCALINIT") THEN SKIP ELSE stop FI
ESAC;


OP INIT = (REF QUAT new, SUBQUAT from)REF QUAT:

 new :=
CASE from IN
(QUATSUBSCAL scal):(QUATSCALINIT scal, 0, 0, 0)
#(COQUAT rijk):(new OF class quat)(LOC QUAT := new, rijk[1], rijk[2], rijk[3], rijk[4]),#
OUT IF quat fix type error(SKIP,"in INIT") THEN SKIP ELSE stop FI
ESAC;


OP QUATINIT = (COQUAT lhs)REF QUAT: (HEAP QUAT)INIT lhs;

OP + = (QUAT q)QUAT: q,

  -    = (QUAT q)QUAT:   (neg  OF class quat)(LOC QUAT := q),
CONJ = (QUAT q)QUAT:   (conjugate OF class quat)(LOC QUAT := q),
ABS  = (QUAT q)QUATSCAL:   (norm OF class quat)(LOC QUAT := q),
REPR = (QUAT q)STRING: (repr OF class quat)(LOC QUAT := q);

1. missing: Diadic: I, J, K END #

OP +:= = (REF QUAT a, QUAT b)QUAT: a:=( add OF class quat)(a, b),

  +:= = (REF QUAT a, COQUAT b)QUAT: a:=( add OF class quat)(a, b),
+=: = (QUAT a, REF QUAT b)QUAT: b:=(radd OF class quat)(b, a),
+=: = (COQUAT a, REF QUAT b)QUAT: b:=(radd OF class quat)(b, a);

1. missing: Worthy PLUSAB, PLUSTO for SHORT/LONG INT QUATSCAL & COMPL #

OP -:= = (REF QUAT a, QUAT b)QUAT: a:=( sub OF class quat)(a, b),

  -:= = (REF QUAT a, COQUAT b)QUAT: a:=( sub OF class quat)(a, b);

1. missing: Worthy MINUSAB for SHORT/LONG INT ##COQUAT & COMPL #

PRIO *=: = 1, /=: = 1; OP *:= = (REF QUAT a, QUAT b)QUAT: a:=( mul OF class quat)(a, b),

  *:= = (REF QUAT a, COQUAT b)QUAT: a:=( mul OF class quat)(a, b),
*=: = (QUAT a, REF QUAT b)QUAT: b:=(rmul OF class quat)(b, a),
*=: = (COQUAT a, REF QUAT b)QUAT: b:=(rmul OF class quat)(b, a);

1. missing: Worthy TIMESAB, TIMESTO for SHORT/LONG INT ##COQUAT & COMPL #

OP /:= = (REF QUAT a, QUAT b)QUAT: a:=( div OF class quat)(a, b),

  /:= = (REF QUAT a, COQUAT b)QUAT: a:=( div OF class quat)(a, b),
/=: = (QUAT a, REF QUAT b)QUAT: b:=(rdiv OF class quat)(b, a),
/=: = (COQUAT a, REF QUAT b)QUAT: b:=(rdiv OF class quat)(b, a);

1. missing: Worthy OVERAB, OVERTO for SHORT/LONG INT ##COQUAT & COMPL #

OP + = (QUAT a, b)QUAT: ( add OF class quat)(LOC QUAT := a, b),

  + = (QUAT a, COQUAT b)QUAT: ( add OF class quat)(LOC QUAT := a, b),
+ = (COQUAT a, QUAT b)QUAT: (radd OF class quat)(LOC QUAT := b, a);



OP - = (QUAT a, b)QUAT: ( sub OF class quat)(LOC QUAT := a, b),

  - = (QUAT a, COQUAT b)QUAT: ( sub OF class quat)(LOC QUAT := a, b),
- = (COQUAT a, QUAT b)QUAT:-( sub OF class quat)(LOC QUAT := b, a);



OP * = (QUAT a, b)QUAT: ( mul OF class quat)(LOC QUAT := a, b),

  * = (QUAT a, COQUAT b)QUAT: ( mul OF class quat)(LOC QUAT := a, b),
* = (COQUAT a, QUAT b)QUAT: (rmul OF class quat)(LOC QUAT := b, a);



OP / = (QUAT a, b)QUAT: ( div OF class quat)(LOC QUAT := a, b),

  / = (QUAT a, COQUAT b)QUAT: ( div OF class quat)(LOC QUAT := a, b),
/ = (COQUAT a, QUAT b)QUAT:
( div OF class quat)(LOC QUAT := QUATINIT 1, a);


PROC quat exp = (QUAT q)QUAT: (exp OF class quat)(LOC QUAT := q);

SKIP # missing: quat arc{sin, cos, tan}h, log, exp, ln etc END #</lang>File: test/Quaternion.a68<lang algol68>#!/usr/bin/a68g --script #

1. -*- coding: utf-8 -*- #
1. REQUIRES: #
 MODE QUATSCAL = REAL; # Scalar #
QUATSCAL quat small scal = small real;


PR READ "prelude/Quaternion.a68" PR;

test:(

   REAL r = 7;
QUAT q  = (1, 2, 3, 4),
q1 = (2, 3, 4, 5),
q2 = (3, 4, 5, 6);

   printf((
$"r = " f(quat scal fmt)l$, r,
$"q = " f(quat fmt)l$, q,
$"q1 = " f(quat fmt)l$, q1,
$"q2 = " f(quat fmt)l$, q2,
$"ABS q = " f(quat scal fmt)", "$, ABS q,
$"ABS q1 = " f(quat scal fmt)", "$, ABS q1,
$"ABS q2 = " f(quat scal fmt)l$, ABS q2,
$"-q = " f(quat fmt)l$, -q,
$"CONJ q = " f(quat fmt)l$, CONJ q,
$"r + q = " f(quat fmt)l$, r + q,
$"q + r = " f(quat fmt)l$, q + r,
$"q1 + q2 = "f(quat fmt)l$, q1 + q2,
$"q2 + q1 = "f(quat fmt)l$, q2 + q1,
$"q * r = " f(quat fmt)l$, q * r,
$"r * q = " f(quat fmt)l$, r * q,
$"q1 * q2 = "f(quat fmt)l$, q1 * q2,
$"q2 * q1 = "f(quat fmt)l$, q2 * q1
));


CO

       $"ASSERT q1 * q2 != q2 * q1 = "f(quat fmt)l$, ASSERT q1 * q2 != q2 * q1, $l$;


END CO

   printf((
$"i*i = " f(quat fmt)l$, i*i,
$"j*j = " f(quat fmt)l$, j*j,
$"k*k = " f(quat fmt)l$, k*k,
$"i*j*k = " f(quat fmt)l$, i*j*k,
$"q1 / q2 = " f(quat fmt)l$, q1 / q2,
$"q1 / q2 * q2 = "f(quat fmt)l$, q1 / q2 * q2,
$"q2 * q1 / q2 = "f(quat fmt)l$, q2 * q1 / q2,
$"1/q1 * q1 = " f(quat fmt)l$, 1.0/q1 * q1,
$"q1 / q1 = " f(quat fmt)l$, q1 / q1,
$"quat exp(pi * i) = " f(quat fmt)l$, quat exp(pi * i),
$"quat exp(pi * j) = " f(quat fmt)l$, quat exp(pi * j),
$"quat exp(pi * k) = " f(quat fmt)l$, quat exp(pi * k)
));
print((REPR(-q1*q2), ", ", REPR(-q2*q1), new line))


)</lang>

Output:
r = 7.0000
q = 1.0000+2.0000i+3.0000j+4.0000k
q1 = 2.0000+3.0000i+4.0000j+5.0000k
q2 = 3.0000+4.0000i+5.0000j+6.0000k
ABS q = 5.4772, ABS q1 = 7.3485, ABS q2 = 9.2736
-q = -1.0000+-2.0000i+-3.0000j+-4.0000k
CONJ q = 1.0000+-2.0000i+-3.0000j+-4.0000k
r + q = 8.0000+2.0000i+3.0000j+4.0000k
q + r = 8.0000+2.0000i+3.0000j+4.0000k
q1 + q2 = 5.0000+7.0000i+9.0000j+11.0000k
q2 + q1 = 5.0000+7.0000i+9.0000j+11.0000k
q * r = 7.0000+14.0000i+21.0000j+28.0000k
r * q = 7.0000+14.0000i+21.0000j+28.0000k
q1 * q2 = -56.0000+16.0000i+24.0000j+26.0000k
q2 * q1 = -56.0000+18.0000i+20.0000j+28.0000k
i*i = -1.0000+.0000i+.0000j+.0000k
j*j = -1.0000+.0000i+.0000j+.0000k
k*k = -1.0000+.0000i+.0000j+.0000k
i*j*k = -1.0000+.0000i+.0000j+.0000k
q1 / q2 = .7907+.0233i+-.0000j+.0465k
q1 / q2 * q2 = 2.0000+3.0000i+4.0000j+5.0000k
q2 * q1 / q2 = 2.0000+3.4651i+3.9070j+4.7674k
1/q1 * q1 = 2.0000+3.0000i+4.0000j+5.0000k
q1 / q1 = 1.0000+.0000i+.0000j+.0000k
quat exp(pi * i) = -1.0000+.0000i+.0000j+.0000k
quat exp(pi * j) = -1.0000+.0000i+.0000j+.0000k
quat exp(pi * k) = -1.0000+.0000i+.0000j+.0000k
+56.0000-16.0000i-24.0000j-26.0000k, +56.0000-18.0000i-20.0000j-28.0000k


ALGOL W

<lang algolw>begin

   % Quaternion record type                                                 %
record Quaternion ( real a, b, c, d );

   % returns the norm of the specified quaternion                           %
real procedure normQ ( reference(Quaternion) value q ) ;
sqrt( (a(q) * a(q)) + (b(q) * b(q)) + (c(q) * c(q)) + (d(q) * d(q)) );

   % returns the negative of the specified quaternion                       %
reference(Quaternion) procedure negQ ( reference(Quaternion) value q ) ;
Quaternion( - a(q), - b(q), - c(q), - d(q) );

   % returns the conjugate of the specified quaternion                      %
reference(Quaternion) procedure conjQ ( reference(Quaternion) value q ) ;
Quaternion(   a(q), - b(q), - c(q), - d(q) );

   % returns the sum of a real and a quaternion                             %
reference(Quaternion) procedure addRQ ( real                  value r
; reference(Quaternion) value q
) ;
Quaternion( r + a(q), b(q), c(q), d(q) );

   % returns the sum of a quaternion and a real                             %
reference(Quaternion) procedure addQR ( reference(Quaternion) value q
; real                  value r
) ;
Quaternion( r + a(q), b(q), c(q), d(q) );

   % returns the sum of the specified quaternions                           %
reference(Quaternion) procedure addQQ ( reference(Quaternion) value q1
; reference(Quaternion) value q2
) ;
Quaternion( a(q1) + a(q2), b(q1) + b(q2), c(q1) + c(q2), d(q1) + d(q2) );

   % returns the specified quaternion multiplied by a real                  %
reference(Quaternion) procedure mulQR ( reference(Quaternion) value q
; real                  value r
) ;
Quaternion( r * a(q), r * b(q), r * c(q), r * d(q) );

   % returns a real multiplied by the specified quaternion                  %
reference(Quaternion) procedure mulRQ ( real                  value r
; reference(Quaternion) value q
) ;
mulQR( q, r );

   % returns the Quaternion product of the specified quaternions            %
reference(Quaternion) procedure mulQQ( reference(Quaternion) value q1
; reference(Quaternion) value q2
) ;
Quaternion( (a(q1) * a(q2)) - (b(q1) * b(q2)) - (c(q1) * c(q2)) - (d(q1) * d(q2))
, (a(q1) * b(q2)) + (b(q1) * a(q2)) + (c(q1) * d(q2)) - (d(q1) * c(q2))
, (a(q1) * c(q2)) - (b(q1) * d(q2)) + (c(q1) * a(q2)) + (d(q1) * b(q2))
, (a(q1) * d(q2)) + (b(q1) * c(q2)) - (c(q1) * b(q2)) + (d(q1) * a(q2))
);

   % returns true if the two quaternions are equal, false otherwise         %
logical procedure equalQ( reference(Quaternion) value q1
; reference(Quaternion) value q2
) ;
a(q1) = a(q2) and b(q1) = b(q2) and c(q1) = c(q2) and d(q1) = d(q2);

   % writes a quaternion                                                    %
procedure writeonQ( reference(Quaternion) value q ) ;
writeon( "(", a(q), ", ", b(q), ", ", c(q), ", ", d(q), ")" );


   % test q1q2 = q2q1                                                       %
reference(Quaternion) q, q1, q2;

   q  := Quaternion( 1, 2, 3, 4 );
q1 := Quaternion( 2, 3, 4, 5 );
q2 := Quaternion( 3, 4, 5, 6 );

   % set output format                                                      %
s_w := 0; r_format := "A"; r_w := 5; r_d := 1;

   write( "      q:" );writeonQ( q );
write( "     q1:" );writeonQ( q1 );
write( "     q2:" );writeonQ( q2 );
write( "norm  q:" );writeon( normQ( q ) );
write( "norm q1:" );writeon( normQ( q1 ) );
write( "norm q2:" );writeon( normQ( q2 ) );

   write( " conj q:" );writeonQ( conjQ( q ) );
write( "    - q:" );writeonQ( negQ( q ) );
write( "  7 + q:" );writeonQ( addRQ( 7, q ) );
write( "  q + 9:" );writeonQ( addQR( q, 9 ) );
write( " q + q1:" );writeonQ( addQQ( q, q1 ) );
write( "  3 * q:" );writeonQ( mulRQ( 3, q ) );
write( "  q * 4:" );writeonQ( mulQR( q, 4 ) );

   % check that q1q2 not = q2q1                                             %
if equalQ( mulQQ( q1, q2 ), mulQQ( q2, q1 ) )
then write( "q1q2 = q2q1 ??" )
else write( "q1q2 <> q2q1" );

   write( "   q1q2:" );writeonQ( mulQQ( q1, q2 ) );
write( "   q2q1:" );writeonQ( mulQQ( q2, q1 ) );


end. </lang>

Output:
      q:(  1.0,   2.0,   3.0,   4.0)
q1:(  2.0,   3.0,   4.0,   5.0)
q2:(  3.0,   4.0,   5.0,   6.0)
norm  q:  5.4
norm q1:  7.3
norm q2:  9.2
conj q:(  1.0,  -2.0,  -3.0,  -4.0)
- q:( -1.0,  -2.0,  -3.0,  -4.0)
7 + q:(  8.0,   2.0,   3.0,   4.0)
q + 9:( 10.0,   2.0,   3.0,   4.0)
q + q1:(  3.0,   5.0,   7.0,   9.0)
3 * q:(  3.0,   6.0,   9.0,  12.0)
q * 4:(  4.0,   8.0,  12.0,  16.0)
q1q2 <> q2q1
q1q2:(-56.0,  16.0,  24.0,  26.0)
q2q1:(-56.0,  18.0,  20.0,  28.0)


AutoHotkey

Works with: AutoHotkey_L

(AutoHotkey1.1+)

<lang AutoHotkey>q  := [1, 2, 3, 4] q1 := [2, 3, 4, 5] q2 := [3, 4, 5, 6] r := 7

MsgBox, % "q = " PrintQ(q) . "nq1 = " PrintQ(q1) . "nq2 = " PrintQ(q2) . "nr = " r . "nNorm(q) = " Norm(q) . "nNegative(q) = " PrintQ(Negative(q)) . "nConjugate(q) = " PrintQ(Conjugate(q)) . "nq + r = " PrintQ(AddR(q, r)) . "nq1 + q2 = " PrintQ(AddQ(q1, q2)) . "nq2 + q1 = " PrintQ(AddQ(q2, q1)) . "nqr = " PrintQ(MulR(q, r)) . "nq1q2 = " PrintQ(MulQ(q1, q2)) . "nq2q1 = " PrintQ(MulQ(q2, q1))

Norm(q) { return sqrt(q[1]**2 + q[2]**2 + q[3]**2 + q[4]**2) }

Negative(q) { a := [] for k, v in q a[A_Index] := v * -1 return a }

Conjugate(q) { a := [] for k, v in q a[A_Index] := v * (A_Index = 1 ? 1 : -1) return a }

AddR(q, r) { a := [] for k, v in q a[A_Index] := v + (A_Index = 1 ? r : 0) return a }

AddQ(q1, q2) { a := [] for k, v in q1 a[A_Index] := v + q2[A_Index] return a }

MulR(q, r) { a := [] for k, v in q a[A_Index] := v * r return a }

MulQ(q, u) { a := [] , a[1] := q[1]*u[1] - q[2]*u[2] - q[3]*u[3] - q[4]*u[4] , a[2] := q[1]*u[2] + q[2]*u[1] + q[3]*u[4] - q[4]*u[3] , a[3] := q[1]*u[3] - q[2]*u[4] + q[3]*u[1] + q[4]*u[2] , a[4] := q[1]*u[4] + q[2]*u[3] - q[3]*u[2] + q[4]*u[1] return a }

PrintQ(q, b="(") { for k, v in q b .= v (A_Index = q.MaxIndex() ? ")" : ", ") return b }</lang>

Output:
q = (1, 2, 3, 4)
q1 = (2, 3, 4, 5)
q2 = (3, 4, 5, 6)
r = 7
Norm(q) = 5.477226
Negative(q) = (-1, -2, -3, -4)
Conjugate(q) = (1, -2, -3, -4)
q + r = (8, 2, 3, 4)
q1 + q2 = (5, 7, 9, 11)
q2 + q1 = (5, 7, 9, 11)
qr = (7, 14, 21, 28)
q1q2 = (-56, 16, 24, 26)
q2q1 = (-56, 18, 20, 28)

Axiom has built-in support for quaternions. <lang Axiom>qi := quatern$Quaternion(Integer);  Type: ((Integer,Integer,Integer,Integer) -> Quaternion(Integer))  q := qi(1,2,3,4);  Type: Quaternion(Integer)  q1 := qi(2,3,4,5);  Type: Quaternion(Integer)  q2 := qi(3,4,5,6);  Type: Quaternion(Integer)  r : Integer := 7;  Type: Integer  sqrt norm q  +--+ (6) \|30 Type: AlgebraicNumber  -q  (7) - 1 - 2i - 3j - 4k Type: Quaternion(Integer)  conjugate q  (8) 1 - 2i - 3j - 4k Type: Quaternion(Integer)  r + q  (9) 8 + 2i + 3j + 4k Type: Quaternion(Integer)  q1 + q2  (10) 5 + 7i + 9j + 11k Type: Quaternion(Integer)  q*r  (11) 7 + 14i + 21j + 28k Type: Quaternion(Integer)  r*q  (12) 7 + 14i + 21j + 28k Type: Quaternion(Integer)  q1*q2 ~= q2*q1  (13) true Type: Boolean</lang>  BBC BASIC Although BBC BASIC doesn't have native support for quaternions its array arithmetic provides all of the required operations either directly or very straightforwardly. <lang bbcbasic> DIM q(3), q1(3), q2(3), t(3)  q() = 1, 2, 3, 4 q1() = 2, 3, 4, 5 q2() = 3, 4, 5, 6 r = 7 PRINT "q = " FNq_show(q()) PRINT "q1 = " FNq_show(q1()) PRINT "q2 = " FNq_show(q2()) PRINT "r = "; r PRINT "norm(q) = "; FNq_norm(q()) t() = q() : PROCq_neg(t()) : PRINT "neg(q) = " FNq_show(t()) t() = q() : PROCq_conj(t()) : PRINT "conjugate(q) = " FNq_show(t()) t() = q() : PROCq_addreal(t(),r) : PRINT "q + r = " FNq_show(t()) t() = q1() : PROCq_add(t(),q2()) : PRINT "q1 + q2 = " FNq_show(t()) t() = q2() : PROCq_add(t(),q1()) : PRINT "q2 + q1 = " FNq_show(t()) t() = q() : PROCq_mulreal(t(),r) : PRINT "qr = " FNq_show(t()) t() = q1() : PROCq_mul(t(),q2()) : PRINT "q1q2 = " FNq_show(t()) t() = q2() : PROCq_mul(t(),q1()) : PRINT "q2q1 = " FNq_show(t()) END DEF FNq_norm(q()) = MOD(q()) DEF PROCq_neg(q()) : q() *= -1 : ENDPROC DEF PROCq_conj(q()) : q() *= -1 : q(0) *= -1 : ENDPROC DEF PROCq_addreal(q(), r) : q(0) += r : ENDPROC DEF PROCq_add(q(), r()) : q() += r() : ENDPROC DEF PROCq_mulreal(q(), r) : q() *= r : ENDPROC DEF PROCq_mul(q(), r()) : LOCAL s() : DIM s(3,3) s() = r(0), -r(1), -r(2), -r(3), r(1), r(0), r(3), -r(2), \ \ r(2), -r(3), r(0), r(1), r(3), r(2), -r(1), r(0) q() = s() . q() ENDPROC DEF FNq_show(q()) : LOCAL i%, a$ : a$= "(" FOR i% = 0 TO 3 : a$ += STR$(q(i%)) + ", " : NEXT = LEFT$(LEFT$(a$)) + ")"</lang>

Output:
q = (1, 2, 3, 4)
q1 = (2, 3, 4, 5)
q2 = (3, 4, 5, 6)
r = 7
norm(q) = 5.47722558
neg(q) = (-1, -2, -3, -4)
conjugate(q) = (1, -2, -3, -4)
q + r = (8, 2, 3, 4)
q1 + q2 = (5, 7, 9, 11)
q2 + q1 = (5, 7, 9, 11)
qr = (7, 14, 21, 28)
q1q2 = (-56, 16, 24, 26)
q2q1 = (-56, 18, 20, 28)


C

<lang c>#include <stdio.h>

1. include <stdlib.h>
2. include <stdbool.h>
3. include <math.h>

typedef struct quaternion {

 double q[4];


} quaternion_t;

quaternion_t *quaternion_new(void) {

 return malloc(sizeof(quaternion_t));


}

quaternion_t *quaternion_new_set(double q1, double q2, double q3, double q4) {

 quaternion_t *q = malloc(sizeof(quaternion_t));
if (q != NULL) {
q->q[0] = q1; q->q[1] = q2; q->q[2] = q3; q->q[3] = q4;
}
return q;


}

void quaternion_copy(quaternion_t *r, quaternion_t *q) {

 size_t i;

 if (r == NULL || q == NULL) return;
for(i = 0; i < 4; i++) r->q[i] = q->q[i];


}

double quaternion_norm(quaternion_t *q) {

 size_t i;
double r = 0.0;

if (q == NULL) {
fprintf(stderr, "NULL quaternion in norm\n");
return 0.0;
}

 for(i = 0; i < 4; i++) r += q->q[i] * q->q[i];
return sqrt(r);


}

void quaternion_neg(quaternion_t *r, quaternion_t *q) {

 size_t i;

 if (q == NULL || r == NULL) return;
for(i = 0; i < 4; i++) r->q[i] = -q->q[i];


}

void quaternion_conj(quaternion_t *r, quaternion_t *q) {

 size_t i;

 if (q == NULL || r == NULL) return;
r->q[0] = q->q[0];
for(i = 1; i < 4; i++) r->q[i] = -q->q[i];


}

void quaternion_add_d(quaternion_t *r, quaternion_t *q, double d) {

 if (q == NULL || r == NULL) return;
quaternion_copy(r, q);
r->q[0] += d;


}

void quaternion_add(quaternion_t *r, quaternion_t *a, quaternion_t *b) {

 size_t i;

 if (r == NULL || a == NULL || b == NULL) return;
for(i = 0; i < 4; i++) r->q[i] = a->q[i] + b->q[i];


}

void quaternion_mul_d(quaternion_t *r, quaternion_t *q, double d) {

 size_t i;

 if (r == NULL || q == NULL) return;
for(i = 0; i < 4; i++) r->q[i] = q->q[i] * d;


}

bool quaternion_equal(quaternion_t *a, quaternion_t *b) {

 size_t i;

for(i = 0; i < 4; i++) if (a->q[i] != b->q[i]) return false;
return true;


}

1. define A(N) (a->q[(N)])
2. define B(N) (b->q[(N)])
3. define R(N) (r->q[(N)])

void quaternion_mul(quaternion_t *r, quaternion_t *a, quaternion_t *b) {

 size_t i;
double ri = 0.0;

 if (r == NULL || a == NULL || b == NULL) return;
R(0) = A(0)*B(0) - A(1)*B(1) - A(2)*B(2) - A(3)*B(3);
R(1) = A(0)*B(1) + A(1)*B(0) + A(2)*B(3) - A(3)*B(2);
R(2) = A(0)*B(2) - A(1)*B(3) + A(2)*B(0) + A(3)*B(1);
R(3) = A(0)*B(3) + A(1)*B(2) - A(2)*B(1) + A(3)*B(0);


}

1. undef A
2. undef B
3. undef R

void quaternion_print(quaternion_t *q) {

 if (q == NULL) return;
printf("(%lf, %lf, %lf, %lf)\n",


q->q[0], q->q[1], q->q[2], q->q[3]); }</lang>

<lang c>int main() {

 size_t i;
double d = 7.0;
quaternion_t *q[3];
quaternion_t *r  = quaternion_new();

 quaternion_t *qd = quaternion_new_set(7.0, 0.0, 0.0, 0.0);
q[0] = quaternion_new_set(1.0, 2.0, 3.0, 4.0);
q[1] = quaternion_new_set(2.0, 3.0, 4.0, 5.0);
q[2] = quaternion_new_set(3.0, 4.0, 5.0, 6.0);

 printf("r = %lf\n", d);

for(i = 0; i < 3; i++) {
printf("q[%u] = ", i);
quaternion_print(q[i]);
printf("abs q[%u] = %lf\n", i, quaternion_norm(q[i]));
}

 printf("-q[0] = ");
quaternion_neg(r, q[0]);
quaternion_print(r);

 printf("conj q[0] = ");
quaternion_conj(r, q[0]);
quaternion_print(r);

 printf("q[1] + q[2] = ");
quaternion_print(r);

 printf("q[2] + q[1] = ");
quaternion_print(r);


 printf("q[0] * r = ");
quaternion_mul_d(r, q[0], d);
quaternion_print(r);

 printf("q[0] * (r, 0, 0, 0) = ");
quaternion_mul(r, q[0], qd);
quaternion_print(r);


 printf("q[1] * q[2] = ");
quaternion_mul(r, q[1], q[2]);
quaternion_print(r);

 printf("q[2] * q[1] = ");
quaternion_mul(r, q[2], q[1]);
quaternion_print(r);


 free(q[0]); free(q[1]); free(q[2]); free(r);
return EXIT_SUCCESS;


}</lang>

C++

This example uses templates to provide the underlying data-type, and includes several extra functions and constructors that often come up when using quaternions.

<lang cpp>#include <iostream> using namespace std;

template<class T = double> class Quaternion { public:

 T w, x, y, z;

 // Numerical constructor
Quaternion(const T &w, const T &x, const T &y, const T &z): w(w), x(x), y(y), z(z) {};
Quaternion(const T &x, const T &y, const T &z): w(T()), x(x), y(y), z(z) {}; // For 3-rotations
Quaternion(const T &r): w(r), x(T()), y(T()), z(T()) {};
Quaternion(): w(T()), x(T()), y(T()), z(T()) {};

 // Copy constructor and assignment
Quaternion(const Quaternion &q): w(q.w), x(q.x), y(q.y), z(q.z) {};
Quaternion& operator=(const Quaternion &q) { w=q.w; x=q.x; y=q.y; z=q.z; return *this; }

 // Unary operators
Quaternion operator-() const { return Quaternion(-w, -x, -y, -z); }
Quaternion operator~() const { return Quaternion(w, -x, -y, -z); } // Conjugate

 // Norm-squared. SQRT would have to be made generic to be used here
T normSquared() const { return w*w + x*x + y*y + z*z; }

 // In-place operators
Quaternion& operator+=(const T &r)
{ w += r; return *this; }
Quaternion& operator+=(const Quaternion &q)
{ w += q.w; x += q.x; y += q.y; z += q.z; return *this; }

 Quaternion& operator-=(const T &r)
{ w -= r; return *this; }
Quaternion& operator-=(const Quaternion &q)
{ w -= q.w; x -= q.x; y -= q.y; z -= q.z; return *this; }

 Quaternion& operator*=(const T &r)
{ w *= r; x *= r; y *= r; z *= r; return *this; }
Quaternion& operator*=(const Quaternion &q)
{
T oldW(w), oldX(x), oldY(y), oldZ(z);
w = oldW*q.w - oldX*q.x - oldY*q.y - oldZ*q.z;
x = oldW*q.x + oldX*q.w + oldY*q.z - oldZ*q.y;
y = oldW*q.y + oldY*q.w + oldZ*q.x - oldX*q.z;
z = oldW*q.z + oldZ*q.w + oldX*q.y - oldY*q.x;
return *this;
}

Quaternion& operator/=(const T &r)
{ w /= r; x /= r; y /= r; z /= r; return *this; }
Quaternion& operator/=(const Quaternion &q)
{
T oldW(w), oldX(x), oldY(y), oldZ(z), n(q.normSquared());
w = (oldW*q.w + oldX*q.x + oldY*q.y + oldZ*q.z) / n;
x = (oldX*q.w - oldW*q.x + oldY*q.z - oldZ*q.y) / n;
y = (oldY*q.w - oldW*q.y + oldZ*q.x - oldX*q.z) / n;
z = (oldZ*q.w - oldW*q.z + oldX*q.y - oldY*q.x) / n;
return *this;
}

 // Binary operators based on in-place operators
Quaternion operator+(const T &r) const { return Quaternion(*this) += r; }
Quaternion operator+(const Quaternion &q) const { return Quaternion(*this) += q; }
Quaternion operator-(const T &r) const { return Quaternion(*this) -= r; }
Quaternion operator-(const Quaternion &q) const { return Quaternion(*this) -= q; }
Quaternion operator*(const T &r) const { return Quaternion(*this) *= r; }
Quaternion operator*(const Quaternion &q) const { return Quaternion(*this) *= q; }
Quaternion operator/(const T &r) const { return Quaternion(*this) /= r; }
Quaternion operator/(const Quaternion &q) const { return Quaternion(*this) /= q; }

 // Comparison operators, as much as they make sense
bool operator==(const Quaternion &q) const
{ return (w == q.w) && (x == q.x) && (y == q.y) && (z == q.z); }
bool operator!=(const Quaternion &q) const { return !operator==(q); }

 // The operators above allow quaternion op real. These allow real op quaternion.
// Uses the above where appropriate.
template<class T> friend Quaternion<T> operator+(const T &r, const Quaternion<T> &q);
template<class T> friend Quaternion<T> operator-(const T &r, const Quaternion<T> &q);
template<class T> friend Quaternion<T> operator*(const T &r, const Quaternion<T> &q);
template<class T> friend Quaternion<T> operator/(const T &r, const Quaternion<T> &q);

// Allows cout << q
template<class T> friend ostream& operator<<(ostream &io, const Quaternion<T> &q);


};

// Friend functions need to be outside the actual class definition template<class T> Quaternion<T> operator+(const T &r, const Quaternion<T> &q)

 { return q+r; }


template<class T> Quaternion<T> operator-(const T &r, const Quaternion<T> &q)

 { return Quaternion<T>(r-q.w, q.x, q.y, q.z); }


template<class T> Quaternion<T> operator*(const T &r, const Quaternion<T> &q)

 { return q*r; }


template<class T> Quaternion<T> operator/(const T &r, const Quaternion<T> &q) {

 T n(q.normSquared());
return Quaternion(r*q.w/n, -r*q.x/n, -r*q.y/n, -r*q.z/n);


}

template<class T> ostream& operator<<(ostream &io, const Quaternion<T> &q) {

 io << q.w;
(q.x < T()) ? (io << " - " << (-q.x) << "i") : (io << " + " << q.x << "i");
(q.y < T()) ? (io << " - " << (-q.y) << "j") : (io << " + " << q.y << "j");
(q.z < T()) ? (io << " - " << (-q.z) << "k") : (io << " + " << q.z << "k");
return io;


}</lang>

Test program: <lang cpp>int main() {

 Quaternion<> q0(1, 2, 3, 4);
Quaternion<> q1(2, 3, 4, 5);
Quaternion<> q2(3, 4, 5, 6);
double r = 7;

 cout << "q0:      " << q0 << endl;
cout << "q1:      " << q1 << endl;
cout << "q2:      " << q2 << endl;
cout << "r:       " << r << endl;
cout << endl;
cout << "-q0:     " << -q0 << endl;
cout << "~q0:     " << ~q0 << endl;
cout << endl;
cout << "r * q0:  " << r*q0 << endl;
cout << "r + q0:  " << r+q0 << endl;
cout << "q0 / r:  " << q0/r << endl;
cout << "q0 - r:  " << q0-r << endl;
cout << endl;
cout << "q0 + q1: " << q0+q1 << endl;
cout << "q0 - q1: " << q0-q1 << endl;
cout << "q0 * q1: " << q0*q1 << endl;
cout << "q0 / q1: " << q0/q1 << endl;
cout << endl;
cout << "q0 * ~q0:     " << q0*~q0 << endl;
cout << "q0 + q1*q2:   " << q0+q1*q2 << endl;
cout << "(q0 + q1)*q2: " << (q0+q1)*q2 << endl;
cout << "q0*q1*q2:     " << q0*q1*q2 << endl;
cout << "(q0*q1)*q2:   " << (q0*q1)*q2 << endl;
cout << "q0*(q1*q2):   " << q0*(q1*q2) << endl;
cout << endl;
cout << "||q0||:  " << sqrt(q0.normSquared()) << endl;
cout << endl;
cout << "q0*q1 - q1*q0: " << (q0*q1 - q1*q0) << endl;

 // Other base types
Quaternion<int> q5(2), q6(3);
cout << endl << q5*q6 << endl;


}</lang>

Output:
q0:      1 + 2i + 3j + 4k
q1:      2 + 3i + 4j + 5k
q2:      3 + 4i + 5j + 6k
r:       7

-q0:     -1 - 2i - 3j - 4k
~q0:     1 - 2i - 3j - 4k

r * q0:  7 + 14i + 21j + 28k
r + q0:  8 + 2i + 3j + 4k
q0 / r:  0.142857 + 0.285714i + 0.428571j + 0.571429k
q0 - r:  -6 + 2i + 3j + 4k

q0 + q1: 3 + 5i + 7j + 9k
q0 - q1: -1 - 1i - 1j - 1k
q0 * q1: -36 + 6i + 12j + 12k
q0 / q1: 0.740741 + 0i + 0.0740741j + 0.037037k

q0 * ~q0:     30 + 0i + 0j + 0k
q0 + q1*q2:   -55 + 18i + 27j + 30k
(q0 + q1)*q2: -100 + 24i + 42j + 42k
q0*q1*q2:     -264 - 114i - 132j - 198k
(q0*q1)*q2:   -264 - 114i - 132j - 198k
q0*(q1*q2):   -264 - 114i - 132j - 198k

||q0||:  5.47723

q0*q1 - q1*q0: 0 - 2i + 4j - 2k

6 + 0i + 0j + 0k


C#

<lang csharp>using System;

struct Quaternion : IEquatable<Quaternion> {

   public readonly double A, B, C, D;

   public Quaternion(double a, double b, double c, double d)
{
this.A = a;
this.B = b;
this.C = c;
this.D = d;
}

   public double Norm()
{
return Math.Sqrt(A * A + B * B + C * C + D * D);
}

   public static Quaternion operator -(Quaternion q)
{
return new Quaternion(-q.A, -q.B, -q.C, -q.D);
}

   public Quaternion Conjugate()
{
return new Quaternion(A, -B, -C, -D);
}

   // implicit conversion takes care of real*quaternion and real+quaternion
public static implicit operator Quaternion(double d)
{
return new Quaternion(d, 0, 0, 0);
}

   public static Quaternion operator +(Quaternion q1, Quaternion q2)
{
return new Quaternion(q1.A + q2.A, q1.B + q2.B, q1.C + q2.C, q1.D + q2.D);
}

   public static Quaternion operator *(Quaternion q1, Quaternion q2)
{
return new Quaternion(
q1.A * q2.A - q1.B * q2.B - q1.C * q2.C - q1.D * q2.D,
q1.A * q2.B + q1.B * q2.A + q1.C * q2.D - q1.D * q2.C,
q1.A * q2.C - q1.B * q2.D + q1.C * q2.A + q1.D * q2.B,
q1.A * q2.D + q1.B * q2.C - q1.C * q2.B + q1.D * q2.A);
}

   public static bool operator ==(Quaternion q1, Quaternion q2)
{
return q1.A == q2.A && q1.B == q2.B && q1.C == q2.C && q1.D == q2.D;
}

   public static bool operator !=(Quaternion q1, Quaternion q2)
{
return !(q1 == q2);
}

   #region Object Members

   public override bool Equals(object obj)
{
if (obj is Quaternion)
return Equals((Quaternion)obj);

       return false;
}

   public override int GetHashCode()
{
return A.GetHashCode() ^ B.GetHashCode() ^ C.GetHashCode() ^ D.GetHashCode();
}

   public override string ToString()
{
return string.Format("Q({0}, {1}, {2}, {3})", A, B, C, D);
}

   #endregion

   #region IEquatable<Quaternion> Members

   public bool Equals(Quaternion other)
{
return other == this;
}

   #endregion


}</lang>

Demonstration: <lang csharp>using System;

static class Program {

   static void Main(string[] args)
{
Quaternion q = new Quaternion(1, 2, 3, 4);
Quaternion q1 = new Quaternion(2, 3, 4, 5);
Quaternion q2 = new Quaternion(3, 4, 5, 6);
double r = 7;

       Console.WriteLine("q = {0}", q);
Console.WriteLine("q1 = {0}", q1);
Console.WriteLine("q2 = {0}", q2);
Console.WriteLine("r = {0}", r);

       Console.WriteLine("q.Norm() = {0}", q.Norm());
Console.WriteLine("q1.Norm() = {0}", q1.Norm());
Console.WriteLine("q2.Norm() = {0}", q2.Norm());

       Console.WriteLine("-q = {0}", -q);
Console.WriteLine("q.Conjugate() = {0}", q.Conjugate());

       Console.WriteLine("q + r = {0}", q + r);
Console.WriteLine("q1 + q2 = {0}", q1 + q2);
Console.WriteLine("q2 + q1 = {0}", q2 + q1);

       Console.WriteLine("q * r = {0}", q * r);
Console.WriteLine("q1 * q2 = {0}", q1 * q2);
Console.WriteLine("q2 * q1 = {0}", q2 * q1);

       Console.WriteLine("q1*q2 {0} q2*q1", (q1 * q2) == (q2 * q1) ? "==" : "!=");
}


}</lang>

Output:
q = Q(1, 2, 3, 4)
q1 = Q(2, 3, 4, 5)
q2 = Q(3, 4, 5, 6)
r = 7
q.Norm() = 5.47722557505166
q1.Norm() = 7.34846922834953
q2.Norm() = 9.2736184954957
-q = Q(-1, -2, -3, -4)
q.Conjugate() = Q(1, -2, -3, -4)
q + r = Q(8, 2, 3, 4)
q1 + q2 = Q(5, 7, 9, 11)
q2 + q1 = Q(5, 7, 9, 11)
q * r = Q(7, 14, 21, 28)
q1 * q2 = Q(-56, 16, 24, 26)
q2 * q1 = Q(-56, 18, 20, 28)
q1*q2 != q2*q1

Common Lisp

<lang lisp> (defclass quaternion () ((a :accessor q-a :initarg :a :type real)

                        (b :accessor q-b :initarg :b :type real)
(c :accessor q-c :initarg :c :type real)
(d :accessor q-d :initarg :d :type real))
(:default-initargs :a 0 :b 0 :c 0 :d 0))


(defun make-q (&optional (a 0) (b 0) (c 0) (d 0))

 (make-instance 'quaternion :a a :b b :c c :d d))


(defgeneric sum (x y))

(defmethod sum ((x quaternion) (y quaternion))

 (make-q  (+ (q-a x) (q-a y))
(+ (q-b x) (q-b y))
(+ (q-c x) (q-c y))
(+ (q-d x) (q-d y))))


(defmethod sum ((x quaternion) (y real))

 (make-q  (+ (q-a x) y) (q-b x) (q-c x) (q-d x)))


(defmethod sum ((x real) (y quaternion))

 (make-q  (+ (q-a y) x) (q-b y) (q-c y) (q-d y)))


(defgeneric sub (x y))

(defmethod sub ((x quaternion) (y quaternion))

 (make-q  (- (q-a x) (q-a y))
(- (q-b x) (q-b y))
(- (q-c x) (q-c y))
(- (q-d x) (q-d y))))


(defmethod sub ((x quaternion) (y real))

 (make-q  (- (q-a x) y)
(q-b x)
(q-c x)
(q-d x)))


(defmethod sub ((x real) (y quaternion))

 (make-q  (- (q-a y) x)
(q-b y)
(q-c y)
(q-d y)))


(defgeneric mul (x y))

(defmethod mul ((x quaternion) (y real))

 (make-q  (* (q-a x) y)
(* (q-b x) y)
(* (q-c x) y)
(* (q-d x) y)))


(defmethod mul ((x real) (y quaternion))

 (make-q  (* (q-a y) x)
(* (q-b y) x)
(* (q-c y) x)
(* (q-d y) x)))


(defmethod mul ((x quaternion) (y quaternion))

 (make-q  (- (* (q-a x) (q-a y)) (* (q-b x) (q-b y)) (* (q-c x) (q-c y)) (* (q-d x) (q-d y)))
(- (+ (* (q-a x) (q-b y)) (* (q-b x) (q-a y)) (* (q-c x) (q-d y))) (* (q-d x) (q-c y)))
(- (+ (* (q-a x) (q-c y)) (* (q-c x) (q-a y)) (* (q-d x) (q-b y))) (* (q-b x) (q-d y)))
(- (+ (* (q-a x) (q-d y)) (* (q-b x) (q-c y)) (* (q-d x) (q-a y))) (* (q-c x) (q-b y)))))


(defmethod norm ((x quaternion))

 (+ (sqrt (q-a x)) (sqrt (q-b x)) (sqrt (q-c x)) (sqrt (q-d x))))


(defmethod print-object ((x quaternion) stream)

 (format stream "~@f~@fi~@fj~@fk" (q-a x) (q-b x) (q-c x) (q-d x)))


(defvar q (make-q 0 1 0 0)) (defvar q1 (make-q 0 0 1 0)) (defvar q2 (make-q 0 0 0 1)) (defvar r 7) (format t "q+q1+q2 = ~a~&" (reduce #'sum (list q q1 q2))) (format t "r*(q+q1+q2) = ~a~&" (mul r (reduce #'sum (list q q1 q2)))) (format t "q*q1*q2 = ~a~&" (reduce #'mul (list q q1 q2))) (format t "q-q1-q2 = ~a~&" (reduce #'sub (list q q1 q2))) </lang>

Output:
q+q1+q2 = +0.0+1.0i+1.0j+1.0k
r*(q+q1+q2) = +0.0+7.0i+7.0j+7.0k
q*q1*q2 = -1.0+0.0i+0.0j+0.0k
q-q1-q2 = +0.0+1.0i-1.0j-1.0k


D

<lang d>import std.math, std.numeric, std.traits, std.conv, std.complex;

struct Quat(T) if (isFloatingPoint!T) {

   alias CT = Complex!T;

   union {
struct { T re, i, j, k; } // Default init to NaN.
struct { CT x, y; }
struct { T[4] vector; }
}

   string toString() const pure /*nothrow*/ @safe {
return vector.text;
}

   @property T norm2() const pure nothrow @safe @nogc { /// Norm squared.
return re ^^ 2 + i ^^ 2 + j ^^ 2 + k ^^ 2;
}

   @property T abs() const pure nothrow @safe @nogc { /// Norm.
return sqrt(norm2);
}

   @property T arg() const pure nothrow @safe @nogc { /// Theta.
return acos(re / abs); // this may be incorrect...
}

   @property Quat!T conj() const pure nothrow @safe @nogc { /// Conjugate.
return Quat!T(re, -i, -j, -k);
}

   @property Quat!T recip() const pure nothrow @safe @nogc {  /// Reciprocal.
return Quat!T(re / norm2, -i / norm2, -j / norm2, -k / norm2);
}

   @property Quat!T pureim() const pure nothrow @safe @nogc { /// Pure imagery.
return Quat!T(0, i, j, k);
}

   @property Quat!T versor() const pure nothrow @safe @nogc { /// Unit versor.
return this / abs;
}

   /// Unit versor of imagery part.
@property Quat!T iversor() const pure nothrow @safe @nogc {
return pureim / pureim.abs;
}

   /// Assignment.
Quat!T opAssign(U : T)(Quat!U z) pure nothrow @safe @nogc {
x = z.x;  y = z.y;
return this;
}

   Quat!T opAssign(U : T)(Complex!U c) pure nothrow @safe @nogc {
x = c;  y = 0;
return this;
}

   Quat!T opAssign(U : T)(U r) pure nothrow @safe @nogc
if (isNumeric!U) {
re = r; i = 0; y = 0;
return this;
}

   /// Test for equal, not ordered so no opCmp.
bool opEquals(U : T)(Quat!U z) const pure nothrow @safe @nogc {
return re == z.re && i == z.i && j == z.j && k == z.k;
}

   bool opEquals(U : T)(Complex!U c) const pure nothrow @safe @nogc {
return re == c.re && i == c.im && j == 0 && k == 0;
}

   bool opEquals(U : T)(U r) const pure nothrow @safe @nogc
if (isNumeric!U) {
return re == r && i == 0 && j == 0 && k == 0;
}

   /// Unary op.
Quat!T opUnary(string op)() const pure nothrow @safe @nogc
if (op == "+") {
return this;
}

   Quat!T opUnary(string op)() const pure nothrow @safe @nogc
if (op == "-") {
return Quat!T(-re, -i, -j, -k);
}

   /// Binary op, Quaternion on left of op.
Quat!(CommonType!(T,U)) opBinary(string op, U)(Quat!U z)
const pure nothrow @safe @nogc {
alias typeof(return) C;

       static if (op == "+" ) {
return C(re + z.re, i + z.i, j + z.j, k + z.k);
} else static if (op == "-") {
return C(re - z.re, i - z.i, j - z.j, k - z.k);
} else static if (op == "*") {
return C(re * z.re - i * z.i  - j * z.j  - k * z.k,
re * z.i  + i * z.re + j * z.k  - k * z.j,
re * z.j  - i * z.k  + j * z.re + k * z.i,
re * z.k  + i * z.j  - j * z.i  + k * z.re);
} else static if (op == "/") {
return this * z.recip;
}
}

   /// Extend complex to quaternion.
Quat!(CommonType!(T,U)) opBinary(string op, U)(Complex!U c)
const pure nothrow @safe @nogc {
return opBinary!op(typeof(return)(c.re, c.im, 0, 0));
}

   /// For scalar.
Quat!(CommonType!(T,U)) opBinary(string op, U)(U r)
const pure nothrow @safe @nogc
if (isNumeric!U) {
alias typeof(return) C;

       static if (op == "+" ) {
return C(re + r, i, j, k);
} else static if (op == "-") {
return C(re - r, i, j, k);
} else static if (op == "*") {
return C(re * r, i * r, j * r, k * r);
} else static if (op == "/") {
return C(re / r, i / r, j / r, k / r);
} else static if (op == "^^") {
return pow(r);
}
}

   /// Power function.
Quat!(CommonType!(T,U)) pow(U)(U r)
const pure nothrow @safe @nogc
if (isNumeric!U) {
return (abs^^r) * exp(r * iversor * arg);
}

   /// Handle binary op if Quaternion on right of op and left is
/// not quaternion.
Quat!(CommonType!(T,U)) opBinaryRight(string op, U)(Complex!U c)
const pure nothrow @safe @nogc {
alias typeof(return) C;
auto w = C(c.re, c.im, 0, 0);
return w.opBinary!(op)(this);
}

   Quat!(CommonType!(T,U)) opBinaryRight(string op, U)(U r)
const pure nothrow @safe @nogc
if (isNumeric!U) {
alias typeof(return) C;

       static if (op == "+" || op == "*") {
return opBinary!op(r);
} else static if (op == "-") {
return C(r - re , -i, -j, -k);
} else static if (op == "/") {
auto w = C(re, i, j, k);
return w.recip * r;
}
}


}

HT exp(HT)(HT z) pure nothrow @safe @nogc if (is(HT T == Quat!T)) {

   immutable inorm = z.pureim.abs;
return std.math.exp(z.re) * (cos(inorm) + z.iversor * sin(inorm));


}

HT log(HT)(HT z) pure nothrow @safe @nogc if (is(HT T == Quat!T)) {

   return std.math.log(z.abs) + z.iversor * acos(z.re / z.abs);


}

void main() @safe { // Demo code.

   import std.stdio;

   alias QR = Quat!real;
enum real r = 7.0;

   immutable QR q  = QR(2, 3, 4, 5),
q1 = QR(2, 3, 4, 5),
q2 = QR(3, 4, 5, 6);

   writeln("1.             q - norm: ", q.abs);
writeln("2.         q - negative: ", -q);
writeln("3.        q - conjugate: ", q.conj);
writeln("4.                r + q: ", r + q);
writeln("                  q + r: ", q + r);
writeln("5.              q1 + q2: ", q1 + q2);
writeln("6.                r * q: ", r * q);
writeln("                  q * r: ", q * r);
writeln("7.              q1 * q2: ", q1 * q2);
writeln("                q2 * q1: ", q2 * q1);
writeln("8.  q1 * q2 != q2 * Q1 ? ", q1 * q2 != q2 * q1);

   immutable QR i = QR(0, 1, 0, 0),
j = QR(0, 0, 1, 0),
k = QR(0, 0, 0, 1);
writeln("9.1               i * i: ", i * i);
writeln("                  J * j: ", j * j);
writeln("                  k * k: ", k * k);
writeln("              i * j * k: ", i * j * k);
writeln("9.2             q1 / q2: ", q1 / q2);
writeln("9.3        q1 / q2 * q2: ", q1 / q2 * q2);
writeln("           q2 * q1 / q2: ", q2 * q1 / q2);
writeln("9.4         exp(pi * i): ", exp(PI * i));
writeln("            exp(pi * j): ", exp(PI * j));
writeln("            exp(pi * k): ", exp(PI * k));
writeln("                 exp(q): ", exp(q));
writeln("                 log(q): ", log(q));
writeln("            exp(log(q)): ", exp(log(q)));
writeln("            log(exp(q)): ", log(exp(q)));
immutable s = q.exp.log;
writeln("9.5 let s = log(exp(q)): ", s);
writeln("                 exp(s): ", exp(s));
writeln("                 log(s): ", log(s));
writeln("            exp(log(s)): ", exp(log(s)));
writeln("            log(exp(s)): ", log(exp(s)));


}</lang>

Output:
1.             q - norm: 7.34847
2.         q - negative: [-2, -3, -4, -5]
3.        q - conjugate: [2, -3, -4, -5]
4.                r + q: [9, 3, 4, 5]
q + r: [9, 3, 4, 5]
5.              q1 + q2: [5, 7, 9, 11]
6.                r * q: [14, 21, 28, 35]
q * r: [14, 21, 28, 35]
7.              q1 * q2: [-56, 16, 24, 26]
q2 * q1: [-56, 18, 20, 28]
8.  q1 * q2 != q2 * Q1 ? true
9.1               i * i: [-1, 0, 0, 0]
J * j: [-1, 0, 0, 0]
k * k: [-1, 0, 0, 0]
i * j * k: [-1, 0, 0, 0]
9.2             q1 / q2: [0.790698, 0.0232558, -1.35525e-20, 0.0465116]
9.3        q1 / q2 * q2: [2, 3, 4, 5]
q2 * q1 / q2: [2, 3.46512, 3.90698, 4.76744]
9.4         exp(pi * i): [-1, -5.42101e-20, -0, -0]
exp(pi * j): [-1, -0, -5.42101e-20, -0]
exp(pi * k): [-1, -0, -0, -5.42101e-20]
exp(q): [5.21186, 2.22222, 2.96296, 3.7037]
log(q): [1.99449, 0.549487, 0.732649, 0.915812]
exp(log(q)): [2, 3, 4, 5]
log(exp(q)): [2, 0.33427, 0.445694, 0.557117]
9.5 let s = log(exp(q)): [2, 0.33427, 0.445694, 0.557117]
exp(s): [5.21186, 2.22222, 2.96296, 3.7037]
log(s): [0.765279, 0.159215, 0.212286, 0.265358]
exp(log(s)): [2, 0.33427, 0.445694, 0.557117]
log(exp(s)): [2, 0.33427, 0.445694, 0.557117]

Delphi

<lang Delphi>unit Quaternions;

interface

type

 TQuaternion = record
A, B, C, D: double;

   function  Init          (aA, aB, aC, aD : double): TQuaternion;
function  Norm          : double;
function  Conjugate     : TQuaternion;
function  ToString      : string;

   class operator Negative (Left : TQuaternion): TQuaternion;
class operator Positive (Left : TQuaternion): TQuaternion;
class operator Add      (Left, Right : TQuaternion): TQuaternion;
class operator Add      (Left : TQuaternion; Right : double): TQuaternion; overload;
class operator Add      (Left : double; Right : TQuaternion): TQuaternion; overload;
class operator Subtract (Left, Right : TQuaternion): TQuaternion;
class operator Multiply (Left, Right : TQuaternion): TQuaternion;
class operator Multiply (Left : TQuaternion; Right : double): TQuaternion; overload;
class operator Multiply (Left : double; Right : TQuaternion): TQuaternion; overload;
end;


implementation

uses

 SysUtils;


{ TQuaternion }

function TQuaternion.Init(aA, aB, aC, aD: double): TQuaternion; begin

 A := aA;
B := aB;
C := aC;

 result := Self;


end;

function TQuaternion.Norm: double; begin

 result := sqrt(sqr(A) + sqr(B) + sqr(C) + sqr(D));


end;

function TQuaternion.Conjugate: TQuaternion; begin

 result.B := -B;
result.C := -C;
result.D := -D;


end;

class operator TQuaternion.Negative(Left: TQuaternion): TQuaternion; begin

 result.A := -Left.A;
result.B := -Left.B;
result.C := -Left.C;
result.D := -Left.D;


end;

class operator TQuaternion.Positive(Left: TQuaternion): TQuaternion; begin

 result := Left;


end;

class operator TQuaternion.Add(Left, Right: TQuaternion): TQuaternion; begin

 result.A := Left.A + Right.A;
result.B := Left.B + Right.B;
result.C := Left.C + Right.C;
result.D := Left.D + Right.D;


end;

class operator TQuaternion.Add(Left: TQuaternion; Right: double): TQuaternion; begin

 result.A := Left.A + Right;
result.B := Left.B;
result.C := Left.C;
result.D := Left.D;


end;

class operator TQuaternion.Add(Left: double; Right: TQuaternion): TQuaternion; begin

 result.A := Left + Right.A;
result.B := Right.B;
result.C := Right.C;
result.D := Right.D;


end;

class operator TQuaternion.Subtract(Left, Right: TQuaternion): TQuaternion; begin

 result.A := Left.A - Right.A;
result.B := Left.B - Right.B;
result.C := Left.C - Right.C;
result.D := Left.D - Right.D;


end;

class operator TQuaternion.Multiply(Left, Right: TQuaternion): TQuaternion; begin

 result.A := Left.A * Right.A - Left.B * Right.B - Left.C * Right.C - Left.D * Right.D;
result.B := Left.A * Right.B + Left.B * Right.A + Left.C * Right.D - Left.D * Right.C;
result.C := Left.A * Right.C - Left.B * Right.D + Left.C * Right.A + Left.D * Right.B;
result.D := Left.A * Right.D + Left.B * Right.C - Left.C * Right.B + Left.D * Right.A;


end;

class operator TQuaternion.Multiply(Left: double; Right: TQuaternion): TQuaternion; begin

 result.A := Left * Right.A;
result.B := Left * Right.B;
result.C := Left * Right.C;
result.D := Left * Right.D;


end;

class operator TQuaternion.Multiply(Left: TQuaternion; Right: double): TQuaternion; begin

 result.A := Left.A * Right;
result.B := Left.B * Right;
result.C := Left.C * Right;
result.D := Left.D * Right;


end;

function TQuaternion.ToString: string; begin

 result := Format('%f + %fi + %fj + %fk', [A, B, C, D]);


end;

end.</lang>

Test program <lang Delphi>program QuaternionTest;

{$APPTYPE CONSOLE} uses  Quaternions in 'Quaternions.pas';  var  r : double; q, q1, q2 : TQuaternion;  begin  r := 7; q := q .Init(1, 2, 3, 4); q1 := q1.Init(2, 3, 4, 5); q2 := q2.Init(3, 4, 5, 6);   writeln('q = ', q.ToString); writeln('q1 = ', q1.ToString); writeln('q2 = ', q2.ToString); writeln('r = ', r); writeln('Norm(q ) = ', q.Norm); writeln('Norm(q1) = ', q1.Norm); writeln('Norm(q2) = ', q2.Norm); writeln('-q = ', (-q).ToString); writeln('Conjugate q = ', q.Conjugate.ToString); writeln('q1 + q2 = ', (q1 + q2).ToString); writeln('q2 + q1 = ', (q2 + q1).ToString); writeln('q * r = ', (q * r).ToString); writeln('r * q = ', (r * q).ToString); writeln('q1 * q2 = ', (q1 * q2).ToString); writeln('q2 * q1 = ', (q2 * q1).ToString);  end.</lang> Output: q = 1.00 + 2.00i + 3.00j + 4.00k q1 = 2.00 + 3.00i + 4.00j + 5.00k q2 = 3.00 + 4.00i + 5.00j + 6.00k r = 7.00000000000000E+0000 Norm(q ) = 5.47722557505166E+0000 Norm(q1) = 7.34846922834953E+0000 Norm(q2) = 9.27361849549570E+0000 -q = -1.00 + -2.00i + -3.00j + -4.00k Conjugate q = -1.00 + -2.00i + -3.00j + -4.00k q1 + q2 = 5.00 + 7.00i + 9.00j + 11.00k q2 + q1 = 5.00 + 7.00i + 9.00j + 11.00k q * r = 7.00 + 14.00i + 21.00j + 28.00k r * q = 7.00 + 14.00i + 21.00j + 28.00k q1 * q2 = -56.00 + 16.00i + 24.00j + 26.00k q2 * q1 = -56.00 + 18.00i + 20.00j + 28.00k  --DavidIzadaR 20:33, 7 August 2011 (UTC) E <lang e>interface Quaternion guards QS {} def makeQuaternion(a, b, c, d) {  return def quaternion implements QS { to __printOn(out) { out.print("(", a, " + ", b, "i + ") out.print(c, "j + ", d, "k)") }   # Task requirement 1 to norm() { return (a**2 + b**2 + c**2 + d**2).sqrt() }   # Task requirement 2 to negate() { return makeQuaternion(-a, -b, -c, -d) } # Task requirement 3 to conjugate() { return makeQuaternion(a, -b, -c, -d) }   # Task requirement 4, 5 # This implements q + r; r + q is deliberately prohibited by E to add(other :any[Quaternion, int, float64]) { switch (other) { match q :Quaternion { return makeQuaternion( a+q.a(), b+q.b(), c+q.c(), d+q.d()) } match real { return makeQuaternion(a+real, b, c, d) } } }   # Task requirement 6, 7 # This implements q * r; r * q is deliberately prohibited by E to multiply(other :any[Quaternion, int, float64]) { switch (other) { match q :Quaternion { return makeQuaternion( a*q.a() - b*q.b() - c*q.c() - d*q.d(), a*q.b() + b*q.a() + c*q.d() - d*q.c(), a*q.c() - b*q.d() + c*q.a() + d*q.b(), a*q.d() + b*q.c() - c*q.b() + d*q.a()) } match real { return makeQuaternion(real*a, real*b, real*c, real*d) } } } to a() { return a } to b() { return b } to c() { return c } to d() { return d } }  }</lang> <lang e>? def q1 := makeQuaternion(2,3,4,5) 1. value: (2 + 3i + 4j + 5k) ? def q2 := makeQuaternion(3,4,5,6) 1. value: (3 + 4i + 5j + 6k) ? q1+q2 1. value: (5 + 7i + 9j + 11k) ? q1*q2 1. value: (-56 + 16i + 24j + 26k) ? q2*q1 1. value: (-56 + 18i + 20j + 28k) ? q1+(-2) 1. value: (0 + 3i + 4j + 5k)</lang> Eero <lang objc>#import <Foundation/Foundation.h> interface Quaternion : Number  // Properties -- note that this is an immutable class. double real, i, j, k {readonly}  end implementation Quaternion  initWithReal: double, i: double, j: double, k: double, return instancetype self = super.init if self _real = real; _i = i; _j = j; _k = k return self   +new: double real, ..., return instancetype va_list args va_start(args, real) object := Quaternion.alloc.initWithReal: real, i: va_arg(args, double), j: va_arg(args, double), k: va_arg(args, double) va_end(args) return object   descriptionWithLocale: id, return String = String.stringWithFormat: '(%.1f, %.1f, %.1f, %.1f)', self.real, self.i, self.j, self.k   norm, return double = sqrt(self.real * self.real + self.i * self.i + self.j * self.j + self.k * self.k)   negative, return Quaternion = Quaternion.new: -self.real, -self.i, -self.j, -self.k   conjugate, return Quaternion = Quaternion.new: self.real, -self.i, -self.j, -self.k   // Overload "+" operator (left operand is Quaternion) plus: Number operand, return Quaternion real := self.real, i = self.i, j = self.j, k = self.k if operand.isKindOfClass: Quaternion.class q := (Quaternion)operand real += q.real; i += q.i; j += q.j; k += q.k else real += (double)operand return Quaternion.new: real, i, j, k   // Overload "*" operator (left operand is Quaternion) multipliedBy: Number operand, return Quaternion real := self.real, i = self.i, j = self.j, k = self.k if operand.isKindOfClass: Quaternion.class q := (Quaternion)operand real = self.real * q.real - self.i* q.i - self.j * q.j - self.k * q.k i = self.real * q.i + self.i * q.real + self.j * q.k - self.k * q.j j = self.real * q.j - self.i * q.k + self.j * q.real + self.k * q.i k = self.real * q.k + self.i * q.j - self.j * q.i + self.k * q.real else real *= (double)operand i *= (double)operand; j *= (double)operand; k *= (double)operand return Quaternion.new: real, i, j, k  end implementation Number (QuaternionOperators)  // Overload "+" operator (left operand is Number) plus: Quaternion operand, return Quaternion real := (double)self + operand.real return Quaternion.new: real, operand.i, operand.j, operand.k   // Overload "*" operator (left operand is Number) multipliedBy: Quaternion operand, return Quaternion r := (double)self return Quaternion.new: r * operand.real, r * operand.i, r * operand.j, r * operand.k  end int main()  autoreleasepool   q := Quaternion.new: 1.0, 2.0, 3.0, 4.0 q1 := Quaternion.new: 2.0, 3.0, 4.0, 5.0 q2 := Quaternion.new: 3.0, 4.0, 5.0, 6.0   Log( 'q = %@', q ) Log( 'q1 = %@', q1 ) Log( 'q2 = %@\n\n', q2 )   Log( 'q norm = %.3f', q.norm ) Log( 'q negative = %@', q.negative ) Log( 'q conjugate = %@', q.conjugate ) Log( '7 + q = %@', 7.0 + q ) Log( 'q + 7 = %@', q + 7.0 ) Log( 'q1 + q2 = %@', q1 + q2 ) Log( '7 * q = %@', 7 * q) Log( 'q * 7 = %@', q * 7.0 ) Log( 'q1 * q2 = %@', q1 * q2 ) Log( 'q2 * q1 = %@', q2 * q1 )   return 0</lang>  Output: 2013-09-04 16:40:29.818 a.out[2170:507] q = (1.0, 2.0, 3.0, 4.0) 2013-09-04 16:40:29.819 a.out[2170:507] q1 = (2.0, 3.0, 4.0, 5.0) 2013-09-04 16:40:29.820 a.out[2170:507] q2 = (3.0, 4.0, 5.0, 6.0) 2013-09-04 16:40:29.820 a.out[2170:507] q norm = 5.477 2013-09-04 16:40:29.820 a.out[2170:507] q negative = (-1.0, -2.0, -3.0, -4.0) 2013-09-04 16:40:29.820 a.out[2170:507] q conjugate = (1.0, -2.0, -3.0, -4.0) 2013-09-04 16:40:29.821 a.out[2170:507] 7 + q = (8.0, 2.0, 3.0, 4.0) 2013-09-04 16:40:29.821 a.out[2170:507] q + 7 = (8.0, 2.0, 3.0, 4.0) 2013-09-04 16:40:29.821 a.out[2170:507] q1 + q2 = (5.0, 7.0, 9.0, 11.0) 2013-09-04 16:40:29.821 a.out[2170:507] 7 * q = (7.0, 14.0, 21.0, 28.0) 2013-09-04 16:40:29.821 a.out[2170:507] q * 7 = (7.0, 14.0, 21.0, 28.0) 2013-09-04 16:40:29.822 a.out[2170:507] q1 * q2 = (-56.0, 16.0, 24.0, 26.0) 2013-09-04 16:40:29.822 a.out[2170:507] q2 * q1 = (-56.0, 18.0, 20.0, 28.0) ERRE <lang ERRE> PROGRAM QUATERNION !$DOUBLE

TYPE QUATERNION=(A,B,C,D)

DIM Q:QUATERNION,Q1:QUATERNION,Q2:QUATERNION

DIM R:QUATERNION,S:QUATERNION,T:QUATERNION

PROCEDURE NORM(T.->NORM)

  NORM=SQR(T.A*T.A+T.B*T.B+T.C*T.C+T.D*T.D)


END PROCEDURE

PROCEDURE NEGATIVE(T.->T.)

   T.A=-T.A
T.B=-T.B
T.C=-T.C
T.D=-T.D


END PROCEDURE

PROCEDURE CONJUGATE(T.->T.)

   T.A=T.A
T.B=-T.B
T.C=-T.C
T.D=-T.D


END PROCEDURE

   T.A=T.A+REAL
T.B=T.B
T.C=T.C
T.D=T.D


END PROCEDURE

   T.A=T.A+S.A
T.B=T.B+S.B
T.C=T.C+S.C
T.D=T.D+S.D


END PROCEDURE

PROCEDURE MULT_REAL(T.,REAL->T.)

   T.A=T.A*REAL
T.B=T.B*REAL
T.C=T.C*REAL
T.D=T.D*REAL


END PROCEDURE

PROCEDURE MULT(T.,S.->R.)

   R.A=T.A*S.A-T.B*S.B-T.C*S.C-T.D*S.D
R.B=T.A*S.B+T.B*S.A+T.C*S.D-T.D*S.C
R.C=T.A*S.C-T.B*S.D+T.C*S.A+T.D*S.B
R.D=T.A*S.D+T.B*S.C-T.C*S.B+T.D*S.A


END PROCEDURE

PROCEDURE PRINTQ(T.)

   PRINT("(";T.A;",";T.B;",";T.C;",";T.D;")")


END PROCEDURE

BEGIN

   Q.A=1  Q.B=2  Q.C=3  Q.D=4
Q1.A=2 Q1.B=3 Q1.C=4 Q1.D=5
Q2.A=3 Q2.B=4 Q2.C=5 Q2.D=6
REAL=7

   NORM(Q.->NORM)
PRINT("Norm(q)=";NORM)

   NEGATIVE(Q.->T.)
PRINT("Negative(q) =";)
PRINTQ(T.)

   CONJUGATE(Q.->T.)
PRINT("Conjugate(q) =";)
PRINTQ(T.)

   ADD_REAL(Q.,REAL->T.)
PRINT("q + real =";)
PRINTQ(T.)


! addition is commutative

   ADD(Q1.,Q2.->T.)
PRINT("q1 + q2 =";)
PRINTQ(T.)

   ADD(Q2.,Q1.->T.)
PRINT("q2 + q1 = ";)
PRINTQ(T.)

   MULT_REAL(Q.,REAL->T.)
PRINT("q * real =";)
PRINTQ(T.)


! multiplication is not commutative

   MULT(Q1.,Q2.->R.)
PRINT("q1 * q2=";)
PRINTQ(R.)

   MULT(Q2.,Q1.->R.)
PRINT("q2 * q1=";)
PRINTQ(R.)


END PROGRAM </lang>

Euphoria

<lang euphoria>function norm(sequence q)

   return sqrt(power(q[1],2)+power(q[2],2)+power(q[3],2)+power(q[4],2))


end function

function conj(sequence q)

   q[2..4] = -q[2..4]
return q


end function

function add(object q1, object q2)

   if atom(q1) != atom(q2) then
if atom(q1) then
q1 = {q1,0,0,0}
else
q2 = {q2,0,0,0}
end if
end if
return q1+q2


end function

function mul(object q1, object q2)

   if sequence(q1) and sequence(q2) then
return { q1[1]*q2[1] - q1[2]*q2[2] - q1[3]*q2[3] - q1[4]*q2[4],
q1[1]*q2[2] + q1[2]*q2[1] + q1[3]*q2[4] - q1[4]*q2[3],
q1[1]*q2[3] - q1[2]*q2[4] + q1[3]*q2[1] + q1[4]*q2[2],
q1[1]*q2[4] + q1[2]*q2[3] - q1[3]*q2[2] + q1[4]*q2[1] }
else
return q1*q2
end if


end function

function quats(sequence q)

   return sprintf("%g + %gi + %gj + %gk",q)


end function

constant

   q  = {1, 2, 3, 4},
q1 = {2, 3, 4, 5},
q2 = {5, 6, 7, 8},
r  = 7


printf(1, "norm(q) = %g\n", norm(q)) printf(1, "-q = %s\n", {quats(-q)}) printf(1, "conj(q) = %s\n", {quats(conj(q))}) printf(1, "q + r = %s\n", {quats(add(q,r))}) printf(1, "q1 + q2 = %s\n", {quats(add(q1,q2))}) printf(1, "q1 * q2 = %s\n", {quats(mul(q1,q2))}) printf(1, "q2 * q1 = %s\n", {quats(mul(q2,q1))})</lang>

Output:
norm(q) = 5.47723
-q = -1 + -2i + -3j + -4k
conj(q) = 1 + -2i + -3j + -4k
q + r = 8 + 2i + 3j + 4k
q1 + q2 = 7 + 9i + 11j + 13k
q1 * q2 = -76 + 24i + 40j + 38k
q2 * q1 = -76 + 30i + 28j + 44k

F#

Mainly a

Translation of: C#

On the minus side we have no way to define a conversion to Quaternion from any suitable (numeric) type.

On the plus side we can avoid the stuff to make the equality structual (from the referential equality default) by just declaring it as an attribute to the type and let the compiler handle the details. <lang fsharp>open System

[<Struct; StructuralEquality; NoComparison>] type Quaternion(r : float, i : float, j : float, k : float) =

   member this.A = r
member this.B = i
member this.C = j
member this.D = k

   new (f : float) = Quaternion(f, 0., 0., 0.)

   static member (~-) (q : Quaternion) = Quaternion(-q.A, -q.B, -q.C, -q.D)

static member (+) (q1 : Quaternion, q2 : Quaternion) =
Quaternion(q1.A + q2.A, q1.B + q2.B, q1.C + q2.C, q1.D + q2.D)
static member (+) (q : Quaternion, r : float) = q + Quaternion(r)
static member (+) (r : float, q: Quaternion) = Quaternion(r) + q

static member (*) (q1 : Quaternion, q2 : Quaternion) =
Quaternion(
q1.A * q2.A - q1.B * q2.B - q1.C * q2.C - q1.D * q2.D,
q1.A * q2.B + q1.B * q2.A + q1.C * q2.D - q1.D * q2.C,
q1.A * q2.C - q1.B * q2.D + q1.C * q2.A + q1.D * q2.B,
q1.A * q2.D + q1.B * q2.C - q1.C * q2.B + q1.D * q2.A)
static member (*) (q : Quaternion, r : float) = q * Quaternion(r)
static member (*) (r : float, q: Quaternion) = Quaternion(r) * q

member this.Norm = Math.Sqrt(r * r + i * i + j * j + k * k)

member this.Conjugate = Quaternion(r, -i, -j, -k)

override this.ToString() = sprintf "Q(%f, %f, %f, %f)" r i j k


[<EntryPoint>] let main argv =

   let q = Quaternion(1., 2., 3., 4.)
let q1 = Quaternion(2., 3., 4., 5.)
let q2 = Quaternion(3., 4., 5., 6.)
let r = 7.

printfn "q = %A" q
printfn "q1 = %A" q1
printfn "q2 = %A" q2
printfn "r = %A" r

printfn "q.Norm = %A" q.Norm
printfn "q1.Norm = %A" q1.Norm
printfn "q2.Norm = %A" q2.Norm

printfn "-q = %A" -q
printfn "q.Conjugate = %A" q.Conjugate

printfn "q + r = %A" (q + (Quaternion r))
printfn "q1 + q2 = %A" (q1 + q2)
printfn "q2 + q1 = %A" (q2 + q1)

printfn "q * r = %A" (q * r)
printfn "q1 * q2 = %A" (q1 * q2)
printfn "q2 * q1 = %A" (q2 * q1)

printfn "q1*q2 %s q2*q1" (if (q1 * q2) = (q2 * q1) then "=" else "<>")
printfn "q %s Q(1.,2.,3.,4.)" (if q = Quaternion(1., 2., 3., 4.) then "=" else "<>")
0</lang>

Output:
q = Q(1.000000, 2.000000, 3.000000, 4.000000)
q1 = Q(2.000000, 3.000000, 4.000000, 5.000000)
q2 = Q(3.000000, 4.000000, 5.000000, 6.000000)
r = 7.0
q.Norm = 5.477225575
q1.Norm = 7.348469228
q2.Norm = 9.273618495
-q = Q(-1.000000, -2.000000, -3.000000, -4.000000)
q.Conjugate = Q(1.000000, -2.000000, -3.000000, -4.000000)
q + r = Q(8.000000, 2.000000, 3.000000, 4.000000)
q1 + q2 = Q(5.000000, 7.000000, 9.000000, 11.000000)
q2 + q1 = Q(5.000000, 7.000000, 9.000000, 11.000000)
q * r = Q(7.000000, 14.000000, 21.000000, 28.000000)
q1 * q2 = Q(-56.000000, 16.000000, 24.000000, 26.000000)
q2 * q1 = Q(-56.000000, 18.000000, 20.000000, 28.000000)
q1*q2 <> q2*q1
q = Q(1.,2.,3.,4.)

Forth

<lang forth>: quaternions 4 * floats ;

qvariable create 1 quaternions allot ;
q! ( a b c d q -- )
 dup 3 floats + f!  dup 2 floats + f!  dup float+ f!  f! ;

qcopy ( src dest -- ) 1 quaternions move ;
qnorm ( q -- f )
 0e 4 0 do  dup f@ fdup f* f+  float+ loop drop fsqrt ;

qf* ( q f -- )
 4 0 do dup f@ fover f* dup f!  float+ loop fdrop drop ;

qnegate ( q -- ) -1e qf* ;
qconj ( q -- )
 float+ 3 0 do dup f@ fnegate dup f!  float+ loop drop ;

qf+ ( q f -- ) dup f@ f+ f! ;
q+ ( q1 q2 -- )
 4 0 do over f@ dup f@ f+ dup f!  float+ swap float+ swap loop 2drop ;


\ access

q.a f@ ;
q.b float+ f@ ;
q.c 2 floats + f@ ;
q.d 3 floats + f@ ;
q* ( dest q1 q2 -- )
 over q.a dup q.d f*  over q.b dup q.c f* f+  over q.c dup q.b f* f-  over q.d dup q.a f* f+
over q.a dup q.c f*  over q.b dup q.d f* f-  over q.c dup q.a f* f+  over q.d dup q.b f* f+
over q.a dup q.b f*  over q.b dup q.a f* f+  over q.c dup q.d f* f+  over q.d dup q.c f* f-
over q.a dup q.a f*  over q.b dup q.b f* f-  over q.c dup q.c f* f-  over q.d dup q.d f* f-
2drop  4 0 do dup f!  float+ loop  drop ;

q= ( q1 q2 -- ? )
 4 0 do
over f@ dup f@ f<> if 2drop false unloop exit then
float+ swap float+
loop
2drop true ;


\ testing

q. ( q -- )
 [char] ( emit space
4 0 do dup f@ f.  float+ loop drop
[char] ) emit space ;


qvariable q 1e 2e 3e 4e q q! qvariable q1 2e 3e 4e 5e q1 q! create q2 3e f, 4e f, 5e f, 6e f, \ by hand

qvariable tmp qvariable m1 qvariable m2

q qnorm f. \ 5.47722557505166 q tmp qcopy tmp qnegate tmp q. \ ( -1. -2. -3. -4. ) q tmp qcopy tmp qconj tmp q. \ ( 1. -2. -3. -4. )

q m1 qcopy m1 7e qf+ m1 q. \ ( 8. 2. 3. 4. ) q m2 qcopy 7e m2 qf+ m2 q. \ ( 8. 2. 3. 4. ) m1 m2 q= . \ -1 (true)

q2 tmp qcopy q1 tmp q+ tmp q. \ ( 5. 7. 9. 11. )

q m1 qcopy m1 7e qf* m1 q. \ ( 7. 14. 21. 28. ) q m2 qcopy 7e m2 qf* m2 q. \ ( 7. 14. 21. 28. ) m1 m2 q= . \ -1 (true)

m1 q1 q2 q* m1 q. \ ( -56. 16. 24. 26. ) m2 q2 q1 q* m2 q. \ ( -56. 18. 20. 28. ) m1 m2 q= . \ 0 (false)</lang>

Fortran

Works with: Fortran version 90 and later

<lang fortran>module Q_mod

 implicit none

 type quaternion
real :: a, b, c, d
end type

 public :: norm, neg, conj
public :: operator (+)
public :: operator (*)

private ::  q_plus_q, q_plus_r, r_plus_q, &
q_mult_q, q_mult_r, r_mult_q, &
norm_q, neg_q, conj_q

 interface norm
module procedure norm_q
end interface

 interface neg
module procedure neg_q
end interface

 interface conj
module procedure conj_q
end interface

 interface operator (+)
module procedure q_plus_q, q_plus_r, r_plus_q
end interface

 interface operator (*)
module procedure q_mult_q, q_mult_r, r_mult_q
end interface


contains

function norm_q(x) result(res)

 real :: res
type (quaternion), intent (in) :: x

 res = sqrt(x%a*x%a + x%b*x%b + x%c*x%c + x%d*x%d)



end function norm_q

function neg_q(x) result(res)

 type (quaternion) :: res
type (quaternion), intent (in) :: x

 res%a = -x%a
res%b = -x%b
res%c = -x%c
res%d = -x%d



end function neg_q

function conj_q(x) result(res)

 type (quaternion) :: res
type (quaternion), intent (in) :: x

 res%a = x%a
res%b = -x%b
res%c = -x%c
res%d = -x%d



end function conj_q

function q_plus_q(x, y) result (res)

 type (quaternion) :: res
type (quaternion), intent (in) :: x, y

res%a = x%a + y%a
res%b = x%b + y%b
res%c = x%c + y%c
res%d = x%d + y%d



end function q_plus_q

function q_plus_r(x, r) result (res)

 type (quaternion) :: res
type (quaternion), intent (in) :: x
real, intent(in) :: r

res = x
res%a = x%a + r



end function q_plus_r

function r_plus_q(r, x) result (res)

 type (quaternion) :: res
type (quaternion), intent (in) :: x
real, intent(in) :: r

res = x
res%a = x%a + r



end function r_plus_q

function q_mult_q(x, y) result (res)

 type (quaternion) :: res
type (quaternion), intent (in) :: x, y

res%a = x%a*y%a - x%b*y%b - x%c*y%c - x%d*y%d
res%b = x%a*y%b + x%b*y%a + x%c*y%d - x%d*y%c
res%c = x%a*y%c - x%b*y%d + x%c*y%a + x%d*y%b
res%d = x%a*y%d + x%b*y%c - x%c*y%b + x%d*y%a



end function q_mult_q

function q_mult_r(x, r) result (res)

 type (quaternion) :: res
type (quaternion), intent (in) :: x
real, intent(in) ::  r

res%a = x%a*r
res%b = x%b*r
res%c = x%c*r
res%d = x%d*r



end function q_mult_r

function r_mult_q(r, x) result (res)

 type (quaternion) :: res
type (quaternion), intent (in) :: x
real, intent(in) ::  r

res%a = x%a*r
res%b = x%b*r
res%c = x%c*r
res%d = x%d*r



end function r_mult_q end module Q_mod

program Quaternions

 use Q_mod
implicit none

 real :: r = 7.0
type(quaternion) :: q, q1, q2

 q  = quaternion(1, 2, 3, 4)
q1 = quaternion(2, 3, 4, 5)
q2 = quaternion(3, 4, 5, 6)

 write(*, "(a, 4f8.3)") "             q = ", q
write(*, "(a, 4f8.3)") "            q1 = ", q1
write(*, "(a, 4f8.3)") "            q2 = ", q2
write(*, "(a, f8.3)")  "             r = ", r
write(*, "(a, f8.3)")  "     Norm of q = ", norm(q)
write(*, "(a, 4f8.3)") " Negative of q = ", neg(q)
write(*, "(a, 4f8.3)") "Conjugate of q = ", conj(q)
write(*, "(a, 4f8.3)") "         q + r = ", q + r
write(*, "(a, 4f8.3)") "         r + q = ", r + q
write(*, "(a, 4f8.3)") "       q1 + q2 = ", q1 + q2
write(*, "(a, 4f8.3)") "         q * r = ", q * r
write(*, "(a, 4f8.3)") "         r * q = ", r * q
write(*, "(a, 4f8.3)") "       q1 * q2 = ", q1 * q2
write(*, "(a, 4f8.3)") "       q2 * q1 = ", q2 * q1


end program</lang>

Output:
             q =    1.000   2.000   3.000   4.000
q1 =    2.000   3.000   4.000   5.000
q2 =    3.000   4.000   5.000   6.000
r =    7.000
Norm of q =    5.477
Negative of q =   -1.000  -2.000  -3.000  -4.000
Conjugate of q =    1.000  -2.000  -3.000  -4.000
q + r =    8.000   2.000   3.000   4.000
r + q =    8.000   2.000   3.000   4.000
q1 + q2 =    5.000   7.000   9.000  11.000
q * r =    7.000  14.000  21.000  28.000
r * q =    7.000  14.000  21.000  28.000
q1 * q2 =  -56.000  16.000  24.000  26.000
q2 * q1 =  -56.000  18.000  20.000  28.000

GAP

<lang gap># GAP has built-in support for quaternions

A := QuaternionAlgebra(Rationals);

1. <algebra-with-one of dimension 4 over Rationals>

b := BasisVectors(Basis(A));

1. [ e, i, j, k ]

q := [1, 2, 3, 4]*b;

1. e+(2)*i+(3)*j+(4)*k
1. Conjugate

ComplexConjugate(q);

1. e+(-2)*i+(-3)*j+(-4)*k
1. Division

1/q;

1. (1/30)*e+(-1/15)*i+(-1/10)*j+(-2/15)*k
1. Computing norm may be difficult, since the result would be in a quadratic field.
2. Sqrt exists in GAP, but it is quite unusual: see ?E in GAP documentation, and the following example

Sqrt(5/3);

1. 1/3*E(60)^7+1/3*E(60)^11-1/3*E(60)^19-1/3*E(60)^23-1/3*E(60)^31+1/3*E(60)^43-1/3*E(60)^47+1/3*E(60)^59
1. However, the square of the norm is easy to compute

q*ComplexConjugate(q);

1. (30)*e

q1 := [2, 3, 4, 5]*b;

1. (2)*e+(3)*i+(4)*j+(5)*k

q2 := [3, 4, 5, 6]*b;

1. (3)*e+(4)*i+(5)*j+(6)*k

q1*q2 - q2*q1;

1. (-2)*i+(4)*j+(-2)*k
1. Can't add directly to a rational, one must make a quaternion of it

r := 5/3*b[1];

1. (5/3)*e

r + q;

1. (8/3)*e+(2)*i+(3)*j+(4)*k
1. For multiplication, no problem (we are in an algebra over rationals !)

r*q;

1. (5/3)*e+(10/3)*i+(5)*j+(20/3)*k

5/3*q;

1. (5/3)*e+(10/3)*i+(5)*j+(20/3)*k
1. Negative

-q; (-1)*e+(-2)*i+(-3)*j+(-4)*k

1. While quaternions are built-in, you can define an algebra in GAP by specifying it's multiplication table.
2. See tutorial, p. 60, and reference of the functions used below.
1. A multiplication table of dimension 4.

T := EmptySCTable(4, 0); SetEntrySCTable(T, 1, 1, [1, 1]); SetEntrySCTable(T, 1, 2, [1, 2]); SetEntrySCTable(T, 1, 3, [1, 3]); SetEntrySCTable(T, 1, 4, [1, 4]); SetEntrySCTable(T, 2, 1, [1, 2]); SetEntrySCTable(T, 2, 2, [-1, 1]); SetEntrySCTable(T, 2, 3, [1, 4]); SetEntrySCTable(T, 2, 4, [-1, 3]); SetEntrySCTable(T, 3, 1, [1, 3]); SetEntrySCTable(T, 3, 2, [-1, 4]); SetEntrySCTable(T, 3, 3, [-1, 1]); SetEntrySCTable(T, 3, 4, [1, 2]); SetEntrySCTable(T, 4, 1, [1, 4]); SetEntrySCTable(T, 4, 2, [1, 3]); SetEntrySCTable(T, 4, 3, [-1, 2]); SetEntrySCTable(T, 4, 4, [-1, 1]);

A := AlgebraByStructureConstants(Rationals, T, ["e", "i", "j", "k"]); b := GeneratorsOfAlgebra(A);

IsAssociative(A);

1. true

IsCommutative(A);

1. false
1. Then, like above

q := [1, 2, 3, 4]*b;

1. e+(2)*i+(3)*j+(4)*k
1. However, as is, GAP does not know division or conjugate on this algebra.
2. QuaternionAlgebra is useful as well for extensions of rationals,
3. and this one _has_ conjugate and division, as seen previously.
1. Try this on Q[z] where z is the square root of 5 (in GAP it's ER(5))

F := FieldByGenerators([ER(5)]); A := QuaternionAlgebra(F); b := GeneratorsOfAlgebra(A);

q := [1, 2, 3, 4]*b;

1. e+(2)*i+(3)*j+(4)*k
1. Conjugate and division

ComplexConjugate(q);

1. e+(-2)*i+(-3)*j+(-4)*k

1/q;

1. (1/30)*e+(-1/15)*i+(-1/10)*j+(-2/15)*k</lang>

Go

Conventions for method receiver, parameter, and return values modeled after Go's big number package. It provides flexibility without requiring unnecessary object creation. The test program creates only four quaternion objects, the three inputs and one more for an output. The three inputs are reused repeatedly without being modified. The output is also reused repeatedly, being overwritten for each operation. <lang go>package main

import (

   "fmt"
"math"


)

type qtn struct {

   r, i, j, k float64


}

var (

   q  = &qtn{1, 2, 3, 4}
q1 = &qtn{2, 3, 4, 5}
q2 = &qtn{3, 4, 5, 6}

   r  float64 = 7


)

func main() {

   fmt.Println("Inputs")
fmt.Println("q:", q)
fmt.Println("q1:", q1)
fmt.Println("q2:", q2)
fmt.Println("r:", r)

   var qr qtn
fmt.Println("\nFunctions")
fmt.Println("q.norm():", q.norm())
fmt.Println("neg(q):", qr.neg(q))
fmt.Println("conj(q):", qr.conj(q))
fmt.Println("mulF(q, r):", qr.mulF(q, r))
fmt.Println("mulQ(q1, q2):", qr.mulQ(q1, q2))
fmt.Println("mulQ(q2, q1):", qr.mulQ(q2, q1))


}

func (q *qtn) String() string {

   return fmt.Sprintf("(%g, %g, %g, %g)", q.r, q.i, q.j, q.k)


}

func (q *qtn) norm() float64 {

   return math.Sqrt(q.r*q.r + q.i*q.i + q.j*q.j + q.k*q.k)


}

func (z *qtn) neg(q *qtn) *qtn {

   z.r, z.i, z.j, z.k = -q.r, -q.i, -q.j, -q.k
return z


}

func (z *qtn) conj(q *qtn) *qtn {

   z.r, z.i, z.j, z.k = q.r, -q.i, -q.j, -q.k
return z


}

func (z *qtn) addF(q *qtn, r float64) *qtn {

   z.r, z.i, z.j, z.k = q.r+r, q.i, q.j, q.k
return z


}

func (z *qtn) addQ(q1, q2 *qtn) *qtn {

   z.r, z.i, z.j, z.k = q1.r+q2.r, q1.i+q2.i, q1.j+q2.j, q1.k+q2.k
return z


}

func (z *qtn) mulF(q *qtn, r float64) *qtn {

   z.r, z.i, z.j, z.k = q.r*r, q.i*r, q.j*r, q.k*r
return z


}

func (z *qtn) mulQ(q1, q2 *qtn) *qtn {

   z.r, z.i, z.j, z.k =
q1.r*q2.r-q1.i*q2.i-q1.j*q2.j-q1.k*q2.k,
q1.r*q2.i+q1.i*q2.r+q1.j*q2.k-q1.k*q2.j,
q1.r*q2.j-q1.i*q2.k+q1.j*q2.r+q1.k*q2.i,
q1.r*q2.k+q1.i*q2.j-q1.j*q2.i+q1.k*q2.r
return z


}</lang>

Output:
Inputs
q: (1, 2, 3, 4)
q1: (2, 3, 4, 5)
q2: (3, 4, 5, 6)
r: 7

Functions
q.norm(): 5.477225575051661
neg(q): (-1, -2, -3, -4)
conj(q): (1, -2, -3, -4)
addF(q, r): (8, 2, 3, 4)
addQ(q1, q2): (5, 7, 9, 11)
mulF(q, r): (7, 14, 21, 28)
mulQ(q1, q2): (-56, 16, 24, 26)
mulQ(q2, q1): (-56, 18, 20, 28)


<lang haskell>import Control.Monad import Control.Arrow import Data.List

data Quaternion = Q Double Double Double Double

 deriving (Show, Ord, Eq)


realQ :: Quaternion -> Double realQ (Q r _ _ _) = r

imagQ :: Quaternion -> [Double] imagQ (Q _ i j k) = [i, j, k]

quaternionFromScalar s = Q s 0 0 0

listFromQ (Q a b c d) = [a,b,c,d] quaternionFromList [a, b, c, d] = Q a b c d

addQ, subQ, mulQ :: Quaternion -> Quaternion -> Quaternion addQ (Q a b c d) (Q p q r s) = Q (a+p) (b+q) (c+r) (d+s)

subQ (Q a b c d) (Q p q r s) = Q (a-p) (b-q) (c-r) (d-s)

mulQ (Q a b c d) (Q p q r s) =

 Q  (a*p - b*q - c*r - d*s)
(a*q + b*p + c*s - d*r)
(a*r - b*s + c*p + d*q)
(a*s + b*r - c*q + d*p)



normQ = sqrt. sum. join (zipWith (*)). listFromQ

conjQ, negQ :: Quaternion -> Quaternion conjQ (Q a b c d) = Q a (-b) (-c) (-d)

negQ (Q a b c d) = Q (-a) (-b) (-c) (-d)</lang> To use with the Examples: <lang haskell>[q,q1,q2] = map quaternionFromList [[1..4],[2..5],[3..6]] -- a*b == b*a test :: Quaternion -> Quaternion -> Bool test a b = a mulQ b == b mulQ a</lang> Examples:

*Main> mulQ (Q 0 1 0 0) $mulQ (Q 0 0 1 0) (Q 0 0 0 1) -- i*j*k Q (-1.0) 0.0 0.0 0.0 *Main> test q1 q2 False *Main> mulQ q1 q2 Q (-56.0) 16.0 24.0 26.0 *Main> flip mulQ q1 q2 Q (-56.0) 18.0 20.0 28.0 *Main> imagQ q [2.0,3.0,4.0] Icon and Unicon Using Unicon's class system. <lang Unicon> class Quaternion(a, b, c, d)  method norm () return sqrt (a*a + b*b + c*c + d*d) end   method negative () return Quaternion(-a, -b, -c, -d) end   method conjugate () return Quaternion(a, -b, -c, -d) end   method add (n) if type(n) == "Quaternion__state" then return Quaternion(a+n.a, b+n.b, c+n.c, d+n.d) else return Quaternion(a+n, b, c, d) end   method multiply (n) if type(n) == "Quaternion__state" then return Quaternion(a*n.a - b*n.b - c*n.c - d*n.d, a*n.b + b*n.a + c*n.d - d*n.c, a*n.c - b*n.d + c*n.a + d*n.b, a*n.d + b*n.c - c*n.b + d*n.a) else return Quaternion(a*n, b*n, c*n, d*n) end   method sign (n) return if n >= 0 then "+" else "-" end   method string () return ("" || a || sign(b) || abs(b) || "i" || sign(c) || abs(c) || "j" || sign(d) || abs(d) || "k"); end   initially(a, b, c, d) self.a := if /a then 0 else a self.b := if /b then 0 else b self.c := if /c then 0 else c self.d := if /d then 0 else d  end </lang> To test the above: <lang Unicon> procedure main ()  q := Quaternion (1,2,3,4) q1 := Quaternion (2,3,4,5) q2 := Quaternion (3,4,5,6) r := 7   write ("The norm of " || q.string() || " is " || q.norm ()) write ("The negative of " || q.string() || " is " || q.negative().string ()) write ("The conjugate of " || q.string() || " is " || q.conjugate().string ()) write ("Sum of " || q.string() || " and " || r || " is " || q.add(r).string ()) write ("Sum of " || q.string() || " and " || q1.string() || " is " || q.add(q1).string ()) write ("Product of " || q.string() || " and " || r || " is " || q.multiply(r).string ()) write ("Product of " || q.string() || " and " || q1.string() || " is " || q.multiply(q1).string ()) write ("q1*q2 = " || q1.multiply(q2).string ()) write ("q2*q1 = " || q2.multiply(q1).string ())  end </lang> Output: The norm of 1+2i+3j+4k is 5.477225575 The negative of 1+2i+3j+4k is -1-2i-3j-4k The conjugate of 1+2i+3j+4k is 1-2i-3j-4k Sum of 1+2i+3j+4k and 7 is 8+2i+3j+4k Sum of 1+2i+3j+4k and 2+3i+4j+5k is 3+5i+7j+9k Product of 1+2i+3j+4k and 7 is 7+14i+21j+28k Product of 1+2i+3j+4k and 2+3i+4j+5k is -36+6i+12j+12k q1*q2 = -56+16i+24j+26k q2*q1 = -56+18i+20j+28k  J Derived from the j wiki: <lang j> NB. utilities  ip=: +/ .* NB. inner product T=. (_1^#:0 10 9 12)*0 7 16 23 A.=i.4 toQ=: 4&{."1 :[: NB. real scalars -> quaternion   NB. task norm=: %:@ip~@toQ NB. | y neg=: -&toQ NB. - y and x - y conj=: 1 _1 _1 _1 * toQ NB. + y add=: +&toQ NB. x + y mul=: (ip T ip ])&toQ NB. x * y</lang>  T is a rank 3 tensor which allows us to express quaternion product ab as the inner product ATB if A and B are 4 element vectors representing the quaternions a and b. (Note also that once we have defined mul we no longer need to retain the definition of T, so we define T using =. instead of =:). The value of T is probably more interesting than its definition, so: <lang J> T 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 _1 0 0 1 0 0 0 0 0 0 _1 0 0 1 0 0 0 _1 0 0 0 0 1 1 0 0 0 0 _1 0 0 0 0 0 _1 0 0 _1 0 0 1 0 0 1 0 0 0</lang> In other words, the last dimension of T corresponds to the structure of the right argument (columns, in the display of T), the first dimension of T corresponds to the structure of the left argument (tables, in the display of T) and the middle dimension of T corresponds to the structure of the result (rows, in the display of T). Example use: <lang> q=: 1 2 3 4  q1=: 2 3 4 5 q2=: 3 4 5 6 r=: 7 norm q  5.47723  neg q  _1 _2 _3 _4  conj q  1 _2 _3 _4  r add q  8 2 3 4  q1 add q2  5 7 9 11  r mul q  7 14 21 28  q1 mul q2  _56 16 24 26  q2 mul q1  _56 18 20 28</lang> Finally, note that when quaternions are used to represent orientation or rotation, we are typically only interested in unit length quaternions. As this is the typical application for quaternions, you will sometimes see quaternion multiplication expressed using "simplifications" which are only valid for unit length quaternions. But note also that in many of those contexts you also need to normalize the quaternion length after multiplication. (An exception to this need to normalize unit length quaternions after multiplication might be when quaternions are represented as an index into a geodesic grid. For example, a grid with 16x20 faces would have a total of 15 vertices for each face (5+4+3+2+1), 3 of those vertices would be from the original 20 vertices of the icosahedron, and 9 of those vertices (5+4+3-3) would be on the edge of the original face (and, thus, used for two faces), the remaining 3 vertices would be interior. This means we would have 170 vertices (20+(20*9%2)+20*3, which would allow a quaternion to be represented in a single byte index into a list of 170 quaternions, and would allow quaternion multiplication to be represented as a 29kbyte lookup table. In some contexts - where quaternion multiplication is needed in high volume for secondary or tertiary issues (where precision isn't vital), such low accuracy quaternions might be adequate or even an advantage...) Java <lang java>public class Quaternion {  private final double a, b, c, d;   public Quaternion(double a, double b, double c, double d) { this.a = a; this.b = b; this.c = c; this.d = d; } public Quaternion(double r) { this(r, 0.0, 0.0, 0.0); }   public double norm() { return Math.sqrt(a * a + b * b + c * c + d * d); }   public Quaternion negative() { return new Quaternion(-a, -b, -c, -d); }   public Quaternion conjugate() { return new Quaternion(a, -b, -c, -d); }   public Quaternion add(double r) { return new Quaternion(a + r, b, c, d); } public static Quaternion add(Quaternion q, double r) { return q.add(r); } public static Quaternion add(double r, Quaternion q) { return q.add(r); } public Quaternion add(Quaternion q) { return new Quaternion(a + q.a, b + q.b, c + q.c, d + q.d); } public static Quaternion add(Quaternion q1, Quaternion q2) { return q1.add(q2); }   public Quaternion times(double r) { return new Quaternion(a * r, b * r, c * r, d * r); } public static Quaternion times(Quaternion q, double r) { return q.times(r); } public static Quaternion times(double r, Quaternion q) { return q.times(r); } public Quaternion times(Quaternion q) { return new Quaternion( a * q.a - b * q.b - c * q.c - d * q.d, a * q.b + b * q.a + c * q.d - d * q.c, a * q.c - b * q.d + c * q.a + d * q.b, a * q.d + b * q.c - c * q.b + d * q.a ); } public static Quaternion times(Quaternion q1, Quaternion q2) { return q1.times(q2); }   @Override public boolean equals(Object obj) { if (!(obj instanceof Quaternion)) return false; final Quaternion other = (Quaternion) obj; if (Double.doubleToLongBits(this.a) != Double.doubleToLongBits(other.a)) return false; if (Double.doubleToLongBits(this.b) != Double.doubleToLongBits(other.b)) return false; if (Double.doubleToLongBits(this.c) != Double.doubleToLongBits(other.c)) return false; if (Double.doubleToLongBits(this.d) != Double.doubleToLongBits(other.d)) return false; return true; } @Override public String toString() { return String.format("%.2f + %.2fi + %.2fj + %.2fk", a, b, c, d).replaceAll("\\+ -", "- "); }   public String toQuadruple() { return String.format("(%.2f, %.2f, %.2f, %.2f)", a, b, c, d); }   public static void main(String[] args) { Quaternion q = new Quaternion(1.0, 2.0, 3.0, 4.0); Quaternion q1 = new Quaternion(2.0, 3.0, 4.0, 5.0); Quaternion q2 = new Quaternion(3.0, 4.0, 5.0, 6.0); double r = 7.0; System.out.format("q = %s%n", q); System.out.format("q1 = %s%n", q1); System.out.format("q2 = %s%n", q2); System.out.format("r = %.2f%n%n", r); System.out.format("\u2016q\u2016 = %.2f%n", q.norm()); System.out.format("-q = %s%n", q.negative()); System.out.format("q* = %s%n", q.conjugate()); System.out.format("q + r = %s%n", q.add(r)); System.out.format("q1 + q2 = %s%n", q1.add(q2)); System.out.format("q \u00d7 r = %s%n", q.times(r)); Quaternion q1q2 = q1.times(q2); Quaternion q2q1 = q2.times(q1); System.out.format("q1 \u00d7 q2 = %s%n", q1q2); System.out.format("q2 \u00d7 q1 = %s%n", q2q1); System.out.format("q1 \u00d7 q2 %s q2 \u00d7 q1%n", (q1q2.equals(q2q1) ? "=" : "\u2260")); }  }</lang> Output: q = 1.00 + 2.00i + 3.00j + 4.00k q1 = 2.00 + 3.00i + 4.00j + 5.00k q2 = 3.00 + 4.00i + 5.00j + 6.00k r = 7.00 ‖q‖ = 5.48 -q = -1.00 - 2.00i - 3.00j - 4.00k q* = 1.00 - 2.00i - 3.00j - 4.00k q + r = 8.00 + 2.00i + 3.00j + 4.00k q1 + q2 = 5.00 + 7.00i + 9.00j + 11.00k q × r = 7.00 + 14.00i + 21.00j + 28.00k q1 × q2 = -56.00 + 16.00i + 24.00j + 26.00k q2 × q1 = -56.00 + 18.00i + 20.00j + 28.00k q1 × q2 ≠ q2 × q1 JavaScript Runs on Firefox 3+, limited support in other JS engines. More compatible JavaScript deserves its own entry. <lang javascript>var Quaternion = (function() {  // The Q() function takes an array argument and changes it // prototype so that it becomes a Quaternion instance. This is // scoped only for prototype member access. function Q(a) {  a.__proto__ = proto; return a;  }   // Actual constructor. This constructor converts its arguments to // an array, then that array to a Quaternion instance, then // returns that instance. (using "new" with this constructor is // optional) function Quaternion() {  return Q(Array.prototype.slice.call(arguments, 0, 4));  }   // Prototype for all Quaternions const proto = {  // Inherits from a 4-element Array __proto__ : [0,0,0,0], // Properties -- In addition to Array[0..3] access, we // also define matching a, b, c, and d properties get a() this[0], get b() this[1], get c() this[2], get d() this[3], // Methods norm : function() Math.sqrt(this.map(function(x) x*x).reduce(function(x,y) x+y)), negate : function() Q(this.map(function(x) -x)), conjugate : function() Q([ this[0] ].concat(this.slice(1).map(function(x) -x))), add : function(x) { if ("number" === typeof x) { return Q([ this[0] + x ].concat(this.slice(1))); } else { return Q(this.map(function(v,i) v+x[i])); } }, mul : function(r) { var q = this; if ("number" === typeof r) { return Q(q.map(function(e) e*r)); } else { return Q([ q[0] * r[0] - q[1] * r[1] - q[2] * r[2] - q[3] * r[3], q[0] * r[1] + q[1] * r[0] + q[2] * r[3] - q[3] * r[2], q[0] * r[2] - q[1] * r[3] + q[2] * r[0] + q[3] * r[1], q[0] * r[3] + q[1] * r[2] - q[2] * r[1] + q[3] * r[0] ]); } }, equals : function(q) this.every(function(v,i) v === q[i]), toString : function() (this[0] + " + " + this[1] + "i + "+this[2] + "j + " + this[3] + "k").replace(/\+ -/g, '- ')  };   Quaternion.prototype = proto; return Quaternion;  })();</lang> Task/Example Usage: <lang javascript>var q = Quaternion(1,2,3,4); var q1 = Quaternion(2,3,4,5); var q2 = Quaternion(3,4,5,6); var r = 7; console.log("q = "+q); console.log("q1 = "+q1); console.log("q2 = "+q2); console.log("r = "+r); console.log("1. q.norm() = "+q.norm()); console.log("2. q.negate() = "+q.negate()); console.log("3. q.conjugate() = "+q.conjugate()); console.log("4. q.add(r) = "+q.add(r)); console.log("5. q1.add(q2) = "+q1.add(q2)); console.log("6. q.mul(r) = "+q.mul(r)); console.log("7.a. q1.mul(q2) = "+q1.mul(q2)); console.log("7.b. q2.mul(q1) = "+q2.mul(q1)); console.log("8. q1.mul(q2) " + (q1.mul(q2).equals(q2.mul(q1)) ? "==" : "!=") + " q2.mul(q1)");</lang> Output: q = 1 + 2i + 3j + 4k q1 = 2 + 3i + 4j + 5k q2 = 3 + 4i + 5j + 6k r = 7 1. q.norm() = 5.477225575051661 2. q.negate() = -1 - 2i - 3j - 4k 3. q.conjugate() = 1 - 2i - 3j - 4k 4. q.add(r) = 8 + 2i + 3j + 4k 5. q1.add(q2) = 5 + 7i + 9j + 11k 6. q.mul(r) = 7 + 14i + 21j + 28k 7.a. q1.mul(q2) = -56 + 16i + 24j + 26k 7.b. q2.mul(q1) = -56 + 18i + 20j + 28k 8. q1.mul(q2) != q2.mul(q1) jq Program file: quaternion.jq<lang jq>def Quaternion(q0;q1;q2;q3): { "q0": q0, "q1": q1, "q2": q2, "q3": q3, "type": "Quaternion" }; 1. promotion of a real number to a quaternion def Quaternion(r): if (r|type) == "number" then Quaternion(r;0;0;0) else r end; 1. thoroughly recursive pretty-print def pp:  def signage: if . >= 0 then "+ \(.)" else "- \(-.)" end;   if type == "object" then if .type == "Quaternion" then "\(.q0) \(.q1|signage)i \(.q2|signage)j \(.q3|signage)k" else with_entries( {key, "value" : (.value|pp)} ) end elif type == "array" then map(pp) else . end ;  def real(z): Quaternion(z).q0; 1. Note: imag(z) returns the "i" component only, 2. reflecting the embedding of the complex numbers within the quaternions: def imag(z): Quaternion(z).q1; def conj(z): Quaternion(z) | Quaternion(.q0; -(.q1); -(.q2); -(.q3)); def abs2(z): Quaternion(z) | .q0 * .q0 + .q1*.q1 + .q2*.q2 + .q3*.q3; def abs(z): abs2(z) | sqrt; def negate(z): Quaternion(z) | Quaternion(-.q0; -.q1; -.q2; -.q3); 1. z + w def plus(z; w):  def plusq(z;w): Quaternion(z.q0 + w.q0; z.q1 + w.q1; z.q2 + w.q2; z.q3 + w.q3); plusq( Quaternion(z); Quaternion(w) );  1. z - w def minus(z; w):  def minusq(z;w): Quaternion(z.q0 - w.q0; z.q1 - w.q1; z.q2 - w.q2; z.q3 - w.q3); minusq( Quaternion(z); Quaternion(w) );  1. * def times(z; w):  def timesq(z; w): Quaternion(z.q0*w.q0 - z.q1*w.q1 - z.q2*w.q2 - z.q3*w.q3; z.q0*w.q1 + z.q1*w.q0 + z.q2*w.q3 - z.q3*w.q2; z.q0*w.q2 - z.q1*w.q3 + z.q2*w.q0 + z.q3*w.q1; z.q0*w.q3 + z.q1*w.q2 - z.q2*w.q1 + z.q3*w.q0); timesq( Quaternion(z); Quaternion(w) );  1. (z/w) def div(z; w):  if (w|type) == "number" then Quaternion(z.q0/w; z.q1/w; z.q2/w; z.q3/w) else times(z; inv(w)) end;  def inv(z): div(conj(z); abs2(z)); 1. Example usage and output: def say(msg; e): "\(msg) => \(e|pp)"; def demo:  say( "Quaternion(1;0;0;0)"; Quaternion(1;0;0;0)), (Quaternion (1; 2; 3; 4) as$q
| Quaternion(2; 3; 4; 5) as $q1 | Quaternion(3; 4; 5; 6) as$q2
| 7 as $r | say( "abs($q)";        abs($q) ), # norm say( "negate($q)";     negate($q) ), say( "conj($q)";       conj($q) ), "", say( "plus($r; $q)"; plus($r; $q)), say( "plus($q; $r)"; plus($q; $r)), "", say( "plus($q1; $q2 )"; plus($q1; $q2)), "", say( "times($r;$q)"; times($r;$q)), say( "times($q;$r)"; times($q;$r)), "", say( "times($q1;$q2)"; times($q1;$q2)), say( "times($q2; $q1)"; times($q2; $q1)), say( "times($q1; $q2) != times($q2; $q1)"; times($q1; $q2) != times($q2; $q1) ) ) ;  demo</lang> Example usage and output: <lang sh># jq -c -n -R -f quaternion.jq Quaternion(1;0;0;0) => 1 + 0i + 0j + 0k abs($q) => 5.477225575051661 negate($q) => -1 - 2i - 3j + -4k conj($q) => 1 - 2i - 3j - 4k

plus($r;$q) => 8 + 2i + 3j + 4k plus($q;$r) => 8 + 2i + 3j + 4k

plus($q1;$q2 ) => 5 + 7i + 9j + 11k

times($r;$q) => 7 + 14i + 21j + 28k times($q;$r) => 7 + 14i + 21j + 28k

times($q1;$q2) => -56 + 16i + 24j + 26k times($q2;$q1) => -56 + 18i + 20j + 28k times($q1;$q2) != times($q2;$q1) => true</lang>

Julia

https://github.com/andrioni/Quaternions.jl/blob/master/src/Quaternions.jl has a more complete implementation. This is derived from the quaternion example file included with Julia 0.2, which implements a quaternion type complete with arithmetic, type conversions / promotion rules, polymorphism over arbitrary real numeric types, and pretty-printing. <lang julia>import Base: convert, promote_rule, show, conj, abs, +, -, *

immutable Quaternion{T<:Real} <: Number

   q0::T
q1::T
q2::T
q3::T


end

Quaternion(q0::Real,q1::Real,q2::Real,q3::Real) = Quaternion(promote(q0,q1,q2,q3)...)

convert{T}(::Type{Quaternion{T}}, x::Real) =

   Quaternion(convert(T,x), zero(T), zero(T), zero(T))


convert{T}(::Type{Quaternion{T}}, z::Complex) =

   Quaternion(convert(T,real(z)), convert(T,imag(z)), zero(T), zero(T))


convert{T}(::Type{Quaternion{T}}, z::Quaternion) =

   Quaternion(convert(T,z.q0), convert(T,z.q1), convert(T,z.q2), convert(T,z.q3))


promote_rule{T,S}(::Type{Complex{T}}, ::Type{Quaternion{S}}) = Quaternion{promote_type(T,S)} promote_rule{T<:Real,S}(::Type{T}, ::Type{Quaternion{S}}) = Quaternion{promote_type(T,S)} promote_rule{T,S}(::Type{Quaternion{T}}, ::Type{Quaternion{S}}) = Quaternion{promote_type(T,S)}

function show(io::IO, z::Quaternion)

   pm(x) = x <	0 ? " - $(-x)" : " +$x"
print(io, z.q0, pm(z.q1), "i", pm(z.q2), "j", pm(z.q3), "k")


end

conj(z::Quaternion) = Quaternion(z.q0, -z.q1, -z.q2, -z.q3) abs(z::Quaternion) = sqrt(z.q0*z.q0 + z.q1*z.q1 + z.q2*z.q2 + z.q3*z.q3)

(-)(z::Quaternion) = Quaternion(-z.q0, -z.q1, -z.q2, -z.q3)

(+)(z::Quaternion, w::Quaternion) = Quaternion(z.q0 + w.q0, z.q1 + w.q1,

                                              z.q2 + w.q2, z.q3 + w.q3)


(-)(z::Quaternion, w::Quaternion) = Quaternion(z.q0 - w.q0, z.q1 - w.q1,

                                              z.q2 - w.q2, z.q3 - w.q3)


(*)(z::Quaternion, w::Quaternion) = Quaternion(z.q0*w.q0 - z.q1*w.q1 - z.q2*w.q2 - z.q3*w.q3,

                                              z.q0*w.q1 + z.q1*w.q0 + z.q2*w.q3 - z.q3*w.q2,
z.q0*w.q2 - z.q1*w.q3 + z.q2*w.q0 + z.q3*w.q1,
z.q0*w.q3 + z.q1*w.q2 - z.q2*w.q1 + z.q3*w.q0)


</lang>

Example usage and output: <lang julia>julia> q = Quaternion(1,0,0,0) julia> q = Quaternion (1, 2, 3, 4)

      q1 = Quaternion(2, 3, 4, 5)
q2 = Quaternion(3, 4, 5, 6)
r = 7.


julia> norm(q) 5.477225575051661

julia> -q -1 - 2i - 3j - 4k

julia> conj(q) 1 - 2i - 3j - 4k

julia> r + q, q + r (8.0 + 2.0i + 3.0j + 4.0k,8.0 + 2.0i + 3.0j + 4.0k)

julia> q1 + q2 5 + 7i + 9j + 11k

julia> r*q, q*r (7.0 + 14.0i + 21.0j + 28.0k,7.0 + 14.0i + 21.0j + 28.0k)

julia> q1*q2, q2*q1, q1*q2 != q2*q1 (-56 + 16i + 24j + 26k,-56 + 18i + 20j + 28k,true)</lang>

Liberty BASIC

Quaternions saved as a space-separated string of four numbers. <lang lb>

q$= q$( 1 , 2 , 3 , 4 )


q1$= q$( 2 , 3 , 4 , 5 ) q2$= q$( 3 , 4 , 5 , 6 )

real = 7

print "q = "  ; q$print "q1 = " ; q1$ print "q2 = " ; q2$print "real = " ; real print "length /norm q = " ; length( q$ ) ' =norm norm of q print "negative (-q1) = " ; negative$( q1$ ) ' =negative negated q1 print "conjugate q = " ; conjugate$( q$ ) ' conjugate conjugate q print "real + q = " ; add1$( q$ , real ) ' real +quaternion real +q print "q + q2 = " ; add2$( q$ , q2$) ' sum two quaternions q +q2 print "real * q = " ; multiply1$( q$, real ) ' real *quaternion real *q print "q1 * q2 = " ; multiply2$( q1$, q2$ ) ' product of two quaternions q1 & q2 print "q2 * q1 = " ; multiply2$( q2$ , q1$) ' show q1 *q2 <> q2 *q1 end function q$( r , i , j , k )

 q$= str$( r); " "; str$( i); " "; str$( j); " "; str$( k)  end function function length( q$ )

 r = val( word$( q$ , 1 ) )
i = val( word$( q$ , 2 ) )
j = val( word$( q$ , 3 ) )
k = val( word$( q$ , 4 ) )
length =sqr( r^2 +i^2 +j^2 +k^2)


end function

function multiply1$( q$ , d )

 r = val( word$( q$ , 1 ) )
i = val( word$( q$ , 2 ) )
j = val( word$( q$ , 3 ) )
k = val( word$( q$ , 4 ) )
multiply1$=q$( r*d, i*d, j*d, k*d)


end function

function multiply2$( q$ , b$)  ar = val( word$( q$, 1 ) ) 'a1 ai = val( word$( q$, 2 ) ) 'b1 aj = val( word$( q$, 3 ) ) 'c1 ak = val( word$( q$, 4 ) ) 'd1   br = val( word$( b$, 1 ) ) 'a2 bi = val( word$( b$, 2 ) ) 'b2 bj = val( word$( b$, 3 ) ) 'c2 bk = val( word$( b$, 4 ) ) 'd2   multiply2$ =q$( _ ar *br_ +( 0 -ai) *bi_ +( 0 -aj) *bj_ +( 0 -ak) *bk _ ,_ ar *bi_ +ai *br_ +aj *bk_ +( 0 -ak) *bj_ ,_ ar *bj_ +( 0 -ai) *bk_ +aj *br_ +ak *bi_ ,_ ar *bk_ +ai *bj_ +( 0 -aj) *bi_ +ak *br )  end function function negative$( q$)  r = val( word$( q$, 1 ) ) i = val( word$( q$, 2 ) ) j = val( word$( q$, 3 ) ) k = val( word$( q$, 4 ) ) negative$ =q$( 0-r, 0-i, 0-j, 0-k)  end function function conjugate$( q$)  r = val( word$( q$, 1 ) ) i = val( word$( q$, 2 ) ) j = val( word$( q$, 3 ) ) k = val( word$( q$, 4 ) ) conjugate$ =q$( r, 0-i, 0-j, 0-k)  end function function add1$( q$, real )  r = val( word$( q$, 1 ) ) i = val( word$( q$, 2 ) ) j = val( word$( q$, 3 ) ) k = val( word$( q$, 4 ) ) add1$ =q$( r +real, i, j, k)  end function function add2$( q$, b$ )

 ar = val( word$( q$ , 1 ) )
ai = val( word$( q$ , 2 ) )
aj = val( word$( q$ , 3 ) )
ak = val( word$( q$ , 4 ) )
br = val( word$( b$ , 1 ) )
bi = val( word$( b$ , 2 ) )
bj = val( word$( b$ , 3 ) )
bk = val( word$( b$ , 4 ) )
add2$=q$( ar +br, ai +bi, aj +bj, ak +bk)


end function

</lang>


Lua

<lang lua>Quaternion = {}

function Quaternion.new( a, b, c, d )

   local q = { a = a or 1, b = b or 0, c = c or 0, d = d or 0 }

   local metatab = {}
setmetatable( q, metatab )
metatab.__sub = Quaternion.sub
metatab.__unm = Quaternion.unm
metatab.__mul = Quaternion.mul

   return q


end

function Quaternion.add( p, q )

   if type( p ) == "number" then


return Quaternion.new( p+q.a, q.b, q.c, q.d )

   elseif type( q ) == "number" then


return Quaternion.new( p.a+q, p.b, p.c, p.d )

   else


return Quaternion.new( p.a+q.a, p.b+q.b, p.c+q.c, p.d+q.d )

   end


end

function Quaternion.sub( p, q )

   if type( p ) == "number" then


return Quaternion.new( p-q.a, q.b, q.c, q.d )

   elseif type( q ) == "number" then


return Quaternion.new( p.a-q, p.b, p.c, p.d )

   else


return Quaternion.new( p.a-q.a, p.b-q.b, p.c-q.c, p.d-q.d )

   end


end

function Quaternion.unm( p )

   return Quaternion.new( -p.a, -p.b, -p.c, -p.d )


end

function Quaternion.mul( p, q )

   if type( p ) == "number" then


return Quaternion.new( p*q.a, p*q.b, p*q.c, p*q.d )

   elseif type( q ) == "number" then


return Quaternion.new( p.a*q, p.b*q, p.c*q, p.d*q )

   else


return Quaternion.new( p.a*q.a - p.b*q.b - p.c*q.c - p.d*q.d,

                              p.a*q.b + p.b*q.a + p.c*q.d - p.d*q.c,
p.a*q.c - p.b*q.d + p.c*q.a + p.d*q.b,


p.a*q.d + p.b*q.c - p.c*q.b + p.d*q.a )

   end


end

function Quaternion.conj( p )

   return Quaternion.new( p.a, -p.b, -p.c, -p.d )


end

function Quaternion.norm( p )

   return math.sqrt( p.a^2 + p.b^2 + p.c^2 + p.d^2 )


end

function Quaternion.print( p )

   print( string.format( "%f + %fi + %fj + %fk\n", p.a, p.b, p.c, p.d ) )


end</lang> Examples: <lang lua>q1 = Quaternion.new( 1, 2, 3, 4 ) q2 = Quaternion.new( 5, 6, 7, 8 ) r = 12

print( "norm(q1) = ", Quaternion.norm( q1 ) ) io.write( "-q1 = " ); Quaternion.print( -q1 ) io.write( "conj(q1) = " ); Quaternion.print( Quaternion.conj( q1 ) ) io.write( "r+q1 = " ); Quaternion.print( r+q1 ) io.write( "q1+r = " ); Quaternion.print( q1+r ) io.write( "r*q1 = " ); Quaternion.print( r*q1 ) io.write( "q1*r = " ); Quaternion.print( q1*r ) io.write( "q1*q2 = " ); Quaternion.print( q1*q2 ) io.write( "q2*q1 = " ); Quaternion.print( q2*q1 )

Output:

norm(q1) = 5.4772255750517 -q1 = -1.000000 -2.000000i -3.000000j -4.000000k conj(q1) = 1.000000 -2.000000i -3.000000j -4.000000k r+q1 = 13.000000 + 2.000000i + 3.000000j + 4.000000k q1+r = 13.000000 + 2.000000i + 3.000000j + 4.000000k r*q1 = 12.000000 + 24.000000i + 36.000000j + 48.000000k q1*r = 12.000000 + 24.000000i + 36.000000j + 48.000000k q1*q2 = -60.000000 + 12.000000i + 30.000000j + 24.000000k q2*q1 = -60.000000 + 20.000000i + 14.000000j + 32.000000k</lang>

Mathematica

<lang Mathematica><<Quaternions q=Quaternion[1,2,3,4] q1=Quaternion[2,3,4,5] q2=Quaternion[3,4,5,6] r=7 ->Quaternion[1,2,3,4] ->Quaternion[2,3,4,5] ->Quaternion[3,4,5,6] ->7

Abs[q] ->√30 -q ->Quaternion[-1,-2,-3,-4] Conjugate[q] ->Quaternion[1,-2,-3,-4] r+q ->Quaternion[8,2,3,4] q+r ->Quaternion[8,2,3,4] q1+q2 ->Quaternion[5,7,9,11] q*r ->Quaternion[7,14,21,28] r*q ->Quaternion[7,14,21,28] q1**q2 ->Quaternion[-56,16,24,26] q2**q1 ->Quaternion[-56,18,20,28] </lang>

Mercury

A possible implementation of quaternions in Mercury (the simplest representation) would look like this. Note that this is a full module implementation, complete with boilerplate, and that it works by giving an explicit conversion function for floats, converting a float into a quaternion representation of that float. Thus the float value 7.0 gets turned into the quaternion representation q(7.0, 0.0, 0.0, 0.0) through the function call r(7.0).

<lang Mercury>:- module quaternion.

- interface.
- import_module float.
- type quaternion
   --->    q(  w   :: float,
i   :: float,
j   :: float,
k   :: float    ).


% conversion

- func r(float) = quaternion is det.

% operations

- func norm(quaternion) = float is det.
- func -quaternion = quaternion is det.
- func conjugate(quaternion) = quaternion is det.
- func quaternion + quaternion = quaternion is det.
- func quaternion * quaternion = quaternion is det.
- implementation.
- import_module math.

% conversion r(W) = q(W, 0.0, 0.0, 0.0).

% operations norm(q(W, I, J, K)) = math.sqrt(W*W + I*I + J*J + K*K). -q(W, I, J, K) = q(-W, -I, -J, -K). conjugate(q(W, I, J, K)) = q(W, -I, -J, -K). q(W0, I0, J0, K0) + q(W1, I1, J1, K1) = q(W0+W1, I0+I1, J0+J1, K0+K1). q(W0, I0, J0, K0) * q(W1, I1, J1, K1) = q(W0*W1 - I0*I1 - J0*J1 - K0*K1,

                                         W0*I1 + I0*W1 + J0*K1 - K0*J1,
W0*J1 - I0*K1 + J0*W1 + K0*I1,
W0*K1 + I0*J1 - J0*I1 + K0*W1 ).</lang>


The following test module puts the module through its paces.

<lang Mercury>:- module test_quaternion.

- interface.
- import_module io.
- pred main(io::di, io::uo) is det.
- implementation.
- import_module quaternion.
- import_module exception.
- import_module float.
- import_module list.
- import_module string.
- func to_string(quaternion) = string is det.

main(!IO) :-

   Q  = q(1.0, 2.0, 3.0, 4.0),
Q1 = q(2.0, 3.0, 4.0, 5.0),
Q2 = q(3.0, 4.0, 5.0, 6.0),
R = 7.0,
QR = r(R),

   io.print("Q = ", !IO), io.print(to_string(Q), !IO), io.nl(!IO),
io.print("Q1 = ", !IO), io.print(to_string(Q1), !IO), io.nl(!IO),
io.print("Q2 = ", !IO), io.print(to_string(Q2), !IO), io.nl(!IO),
io.print("R = ", !IO), io.print(R, !IO), io.nl(!IO),
io.nl(!IO),

   io.print("1. The norm of a quaternion.\n", !IO),
io.print("norm(Q) = ", !IO), io.print(norm(Q), !IO), io.nl(!IO),
io.nl(!IO),

   io.print("2. The negative of a quaternion.\n", !IO),
io.print("-Q = ", !IO), io.print(to_string(-Q), !IO), io.nl(!IO),
io.nl(!IO),

   io.print("3. The conjugate of a quaternion.\n", !IO),
io.print("conjugate(Q) = ", !IO), io.print(to_string(conjugate(Q)), !IO),
io.nl(!IO),
io.nl(!IO),

   io.print("4. Addition of a real number and a quaternion.\n", !IO),
( Q + QR = QR + Q ->    io.print("Addition is commutative.\n", !IO)
;                       io.print("Addition is not commutative.\n", !IO) ),
io.print("Q + R = ", !IO), io.print(to_string(Q + QR), !IO), io.nl(!IO),
io.print("R + Q = ", !IO), io.print(to_string(QR + Q), !IO), io.nl(!IO),
io.nl(!IO),

   io.print("5. Addition of two quaternions.\n", !IO),
( Q1 + Q2 = Q2 + Q1 ->  io.print("Addition is commutative.\n", !IO)
;                       io.print("Addition is not commutative.\n", !IO) ),
io.print("Q1 + Q2 = ", !IO), io.print(to_string(Q1 + Q2), !IO), io.nl(!IO),
io.print("Q2 + Q1 = ", !IO), io.print(to_string(Q2 + Q1), !IO), io.nl(!IO),
io.nl(!IO),

   io.print("6. Multiplication of a real number and a quaternion.\n", !IO),
( Q * QR = QR * Q ->    io.print("Multiplication is commutative.\n", !IO)
;                       io.print("Multiplication is not commutative.\n", !IO) ),
io.print("Q * R = ", !IO), io.print(to_string(Q * QR), !IO), io.nl(!IO),
io.print("R * Q = ", !IO), io.print(to_string(QR * Q), !IO), io.nl(!IO),
io.nl(!IO),

   io.print("7. Multiplication of two quaternions.\n", !IO),
( Q1 * Q2 = Q2 * Q1 ->  io.print("Multiplication is commutative.\n", !IO)
;                       io.print("Multiplication is not commutative.\n", !IO) ),
io.print("Q1 * Q2 = ", !IO), io.print(to_string(Q1 * Q2), !IO), io.nl(!IO),
io.print("Q2 * Q1 = ", !IO), io.print(to_string(Q2 * Q1), !IO), io.nl(!IO),
io.nl(!IO).


to_string(q(I, J, K, W)) = string.format("q(%f, %f, %f, %f)",

                          [f(I), f(J), f(K), f(W)]).

- end_module test_quaternion.</lang>

The output of the above code follows:

% ./test_quaternion
Q = q(1.000000, 2.000000, 3.000000, 4.000000)
Q1 = q(2.000000, 3.000000, 4.000000, 5.000000)
Q2 = q(3.000000, 4.000000, 5.000000, 6.000000)
R = 7.0

1. The norm of a quaternion.
norm(Q) = 5.477225575051661

2. The negative of a quaternion.
-Q = q(-1.000000, -2.000000, -3.000000, -4.000000)

3. The conjugate of a quaternion.
conjugate(Q) = q(1.000000, -2.000000, -3.000000, -4.000000)

4. Addition of a real number and a quaternion.
Q + R = q(8.000000, 2.000000, 3.000000, 4.000000)
R + Q = q(8.000000, 2.000000, 3.000000, 4.000000)

5. Addition of two quaternions.
Q1 + Q2 = q(5.000000, 7.000000, 9.000000, 11.000000)
Q2 + Q1 = q(5.000000, 7.000000, 9.000000, 11.000000)

6. Multiplication of a real number and a quaternion.
Multiplication is commutative.
Q * R = q(7.000000, 14.000000, 21.000000, 28.000000)
R * Q = q(7.000000, 14.000000, 21.000000, 28.000000)

7. Multiplication of two quaternions.
Multiplication is not commutative.
Q1 * Q2 = q(-56.000000, 16.000000, 24.000000, 26.000000)
Q2 * Q1 = q(-56.000000, 18.000000, 20.000000, 28.000000)


OCaml

This implementation was build strictly to the specs without looking (too much) at other implementations. The implementation as a record type with only floats is said (on the ocaml mailing list) to be especially efficient. Put this into a file quaternion.ml: <lang ocaml> type quaternion = {a: float; b: float; c: float; d: float}

let norm q = sqrt (q.a**2.0 +.

                  q.b**2.0 +.
q.c**2.0 +.
q.d**2.0 )


let floatneg r = ~-. r (* readability *)

let negative q =

 {a = floatneg q.a;
b = floatneg q.b;
c = floatneg q.c;
d = floatneg q.d }


let conjugate q =

 {a = q.a;
b = floatneg q.b;
c = floatneg q.c;
d = floatneg q.d }


let addrq r q = {q with a = q.a +. r}

let addq q1 q2 =

 {a = q1.a +. q2.a;
b = q1.b +. q2.b;
c = q1.c +. q2.c;
d = q1.d +. q2.d  }


let multrq r q =

 {a = q.a *. r;
b = q.b *. r;
c = q.c *. r;
d = q.d *. r  }



let multq q1 q2 =

       {a = q1.a*.q2.a -. q1.b*.q2.b -. q1.c*.q2.c -. q1.d*.q2.d;
b = q1.a*.q2.b +. q1.b*.q2.a +. q1.c*.q2.d -. q1.d*.q2.c;
c = q1.a*.q2.c -. q1.b*.q2.d +. q1.c*.q2.a +. q1.d*.q2.b;
d = q1.a*.q2.d +. q1.b*.q2.c -. q1.c*.q2.b +. q1.d*.q2.a  }



let qmake a b c d = {a;b;c;d} (* readability omitting a= b=... *)

let qstring q =

 Printf.sprintf "(%g, %g, %g, %g)" q.a q.b q.c q.d ;;


(* test data *) let q = qmake 1.0 2.0 3.0 4.0 let q1 = qmake 2.0 3.0 4.0 5.0 let q2 = qmake 3.0 4.0 5.0 6.0 let r = 7.0

let () = (* written strictly to spec *)

 let pf = Printf.printf in
pf "starting with data q=%s, q1=%s,  q2=%s, r=%g\n" (qstring q) (qstring q1) (qstring q2) r;
pf "1. norm of      q     = %g \n" (norm q) ;
pf "2. negative of  q     = %s \n" (qstring (negative q));
pf "3. conjugate of q     = %s \n" (qstring (conjugate q));
pf "4. adding r to q      = %s \n" (qstring (addrq r q));
pf "5. adding q1 and q2   = %s \n" (qstring (addq q1 q2));
pf "6. multiply r and q   = %s \n" (qstring (multrq r q));
pf "7. multiply q1 and q2 = %s \n" (qstring (multq q1 q2));
pf "8. instead q2 * q1    = %s \n" (qstring (multq q2 q1));
pf "\n";


</lang>

using this file on the command line will produce:

$ocaml quaternion.ml starting with data q=(1, 2, 3, 4), q1=(2, 3, 4, 5), q2=(3, 4, 5, 6), r=7 1. norm of q = 5.47723 2. negative of q = (-1, -2, -3, -4) 3. conjugate of q = (1, -2, -3, -4) 4. adding r to q = (8, 2, 3, 4) 5. adding q1 and q2 = (5, 7, 9, 11) 6. multiply r and q = (7, 14, 21, 28) 7. multiply q1 and q2 = (-56, 16, 24, 26) 8. instead q2 * q1 = (-56, 18, 20, 28)  For completeness, and since data types are of utmost importance in OCaml, here the types produced by pasting the code into the toplevel (ocaml is the toplevel): <lang ocaml> type quaternion = { a : float; b : float; c : float; d : float; } val norm : quaternion -> float = <fun> val floatneg : float -> float = <fun> val negative : quaternion -> quaternion = <fun> val conjugate : quaternion -> quaternion = <fun> val addrq : float -> quaternion -> quaternion = <fun> val addq : quaternion -> quaternion -> quaternion = <fun> val multrq : float -> quaternion -> quaternion = <fun> val multq : quaternion -> quaternion -> quaternion = <fun> val qmake : float -> float -> float -> float -> quaternion = <fun> val qstring : quaternion -> string = <fun> </lang> Octave There is an add-on package (toolbox) to Octave available from http://octave.sourceforge.net/quaternion/ Such a package can be install with the command: <lang>pkg install -forge quaternion</lang> Here is a sample interactive session solving the task: <lang>> q = quaternion (1, 2, 3, 4) q = 1 + 2i + 3j + 4k > q1 = quaternion (2, 3, 4, 5) q1 = 2 + 3i + 4j + 5k > q2 = quaternion (3, 4, 5, 6) q2 = 3 + 4i + 5j + 6k > r = 7 r = 7 > norm(q) ans = 5.4772 > -q ans = -1 - 2i - 3j - 4k > conj(q) ans = 1 - 2i - 3j - 4k > q + r ans = 8 + 2i + 3j + 4k > q1 + q2 ans = 5 + 7i + 9j + 11k > q * r ans = 7 + 14i + 21j + 28k > q1 * q2 ans = -56 + 16i + 24j + 26k > q1 == q2 ans = 0</lang> Oforth Setting a priority (here 160) to Quaternion class and defining #asQuaternion, integers and floats can be fully mixed with quaternions. neg is defined as "0 self -" into Number class, so no need to define it (if #- is defined). <lang Oforth>160 Number Class newPriority: Quaternion(a, b, c, d) Quaternion method: _a { @a } Quaternion method: _b { @b } Quaternion method: _c { @c } Quaternion method: _d { @d } Quaternion method: initialize { := a := b := c := d } Quaternion method: << { '(' <<c @a << ',' <<c @b << ',' <<c @c << ',' <<c @d << ')' <<c } Integer method: asQuaternion { Quaternion new(self, 0, 0, 0) } Float method: asQuaternion { Quaternion new(self, 0, 0, 0) } Quaternion method: ==(q) { q _a @a == q _b @b == and q _c @c == and q _d @d == and } Quaternion method: norm { @a sq @b sq + @c sq + @d sq + sqrt } Quaternion method: conj { Quaternion new(@a, @b neg, @c neg, @d neg) } Quaternion method: +(q) { Quaternion new(q _a @a +, q _b @b +, q _c @c +, q _d @d +) } Quaternion method: -(q) { Quaternion new(q _a @a -, q _b @b -, q _c @c -, q _d @d -) } Quaternion method: *(q) {  Quaternion new(q _a @a * q _b @b * - q _c @c * - q _d @d * -, q _a @b * q _b @a * + q _c @d * + q _d @c * -, q _a @c * q _b @d * - q _c @a * + q _d @b * +, q _a @d * q _b @c * + q _c @b * - q _d @a * + )  }</lang> Usage : <lang Oforth>func: test { | q q1 q2 r |  Quaternion new(1, 2, 3, 4) ->q Quaternion new(2, 3, 4, 5) ->q1 Quaternion new(3, 4, 5, 6) ->q2 7.0 -> r   System.Out "q = " << q << cr System.Out "q1 = " << q1 << cr System.Out "q2 = " << q2 << cr   System.Out "norm q = " << q norm << cr System.Out "neg q = " << q neg << cr System.Out "conj q = " << q conj << cr System.Out "q +r = " << q r + << cr System.Out "q1 + q2 = " << q1 q2 + << cr System.Out "q * r = " << q r * << cr System.Out "q1 * q2 = " << q1 q2 * << cr q1 q2 * q2 q1 * == ifFalse: [ "q1q2 and q2q1 are different quaternions" println ]  }</lang> Output: q = (1,2,3,4) q1 = (2,3,4,5) q2 = (3,4,5,6) norm q = 5.47722557505166 neg q = (-1,-2,-3,-4) conj q = (1,-2,-3,-4) q +r = (8,2,3,4) q1 + q2 = (5,7,9,11) q * r = (7,14,21,28) q1 * q2 = (-56,16,24,26) q1q2 and q2q1 are different quaternions  ooRexx Note, this example uses operator overloads to perform the math operation. The operator overloads only work if the left-hand-side of the operation is a quaterion instance. Thus something like "7 + q1" would not work because this would get passed to the "+" of the string class. For those situations, the best solution would be an addition method on the .Quaternion class itself that took the appropriate action. I've chosen not to implement those to keep the example shorter. <lang ooRexx> q = .quaternion~new(1, 2, 3, 4) q1 = .quaternion~new(2, 3, 4, 5) q2 = .quaternion~new(3, 4, 5, 6) r = 7 say "q =" q say "q1 =" q1 say "q2 =" q2 say "r =" r say "norm(q) =" q~norm say "-q =" (-q) say "q* =" q~conjugate say "q + r =" q + r say "q1 + q2 =" q1 + q2 say "q * r =" q * r q1q2 = q1 * q2 q2q1 = q2 * q1 say "q1 * q2 =" q1q2 say "q2 * q1 =" q2q1 say "q1 == q1 =" (q1 == q1) say "q1q2 == q2q1 =" (q1q2 == q2q1) class quaternion method init  expose r i j k use strict arg r, i = 0, j = 0, k = 0  -- quaternion instances are immutable, so these are -- read only attributes attribute r GET attribute i GET attribute j GET attribute k GET method norm  expose r i j k return rxcalcsqrt(r * r + i * i + j * j + k * k)  method invert  expose r i j k norm = self~norm return self~class~new(r / norm, i / norm, j / norm, k / norm)  method negative  expose r i j k return self~class~new(-r, -i, -j, -k)  method conjugate  expose r i j k return self~class~new(r, -i, -j, -k)  method add  expose r i j k use strict arg other if other~isa(.quaternion) then return self~class~new(r + other~r, i + other~i, j + other~j, k + other~k) else return self~class~new(r + other, i, j, k)  method subtract  expose r i j k use strict arg other if other~isa(.quaternion) then return self~class~new(r - other~r, i - other~i, j - other~j, k - other~k) else return self~class~new(r - other, i, j, k)  method times  expose r i j k use strict arg other if other~isa(.quaternion) then return self~class~new(r * other~r - i * other~i - j * other~j - k * other~k, - r * other~i + i * other~r + j * other~k - k * other~j, - r * other~j - i * other~k + j * other~r + k * other~i, - r * other~k + i * other~j - j * other~i + k * other~r) else return self~class~new(r * other, i * other, j * other, k * other)  method divide  use strict arg other -- this is easier if everything is a quaternion if \other~isA(.quaternion) then other = .quaternion~new(other) -- division is multiplication with the inversion return self * other~invert  method "=="  expose r i j k use strict arg other   if \other~isa(.quaternion) then return .false -- Note: these are numeric comparisons, so we're using the "=" -- method so those are handled correctly return r = other~r & i = other~i & j = other~j & k = other~k  method "\=="  use strict arg other return \self~"\=="(other)  method "="  -- this is equivalent of "==" forward message("==")  method "\="  -- this is equivalent of "\==" forward message("\==")  method "<>"  -- this is equivalent of "\==" forward message("\==")  method "><"  -- this is equivalent of "\==" forward message("\==")  -- some operator overrides -- these only work if the left-hand-side of the -- subexpression is a quaternion method "*"  forward message("TIMES")  method "/"  forward message("DIVIDE")  method "-"  -- need to check if this is a prefix minus or a subtract if arg() == 0 then forward message("NEGATIVE") else forward message("SUBTRACT")  method "+"  -- need to check if this is a prefix plus or an addition if arg() == 0 then return self -- we can return this copy since it is immutable else forward message("ADD")  method string  expose r i j k return r self~formatnumber(i)"i" self~formatnumber(j)"j" self~formatnumber(k)"k"  method formatnumber private  use arg value if value > 0 then return "+" value else return "-" value~abs  -- override hashcode for collection class hash uses method hashCode  expose r i j k return r~hashcode~bitxor(i~hashcode)~bitxor(j~hashcode)~bitxor(k~hashcode)  requires rxmath LIBRARY </lang> q = 1 + 2i + 3j + 4k q1 = 2 + 3i + 4j + 5k q2 = 3 + 4i + 5j + 6k r = 7 norm(q) = 5.47722558 -q = -1 - 2i - 3j - 4k q* = 1 - 2i - 3j - 4k q + r = 8 + 2i + 3j + 4k q1 + q2 = 5 + 7i + 9j + 11k q * r = 7 + 14i + 21j + 28k q1 * q2 = -56 + 16i + 24j + 26k q2 * q1 = -56 + 18i + 20j + 28k q1 == q1 = 1 q1q2 == q2q1 = 0  PARI/GP Works with: PARI/GP version version 2.4.2 and above Here is a simple solution in GP. I think it's possible to implement this type directly in Pari by abusing t_COMPLEX, but I haven't attempted this. <lang parigp>q.norm={ if(type(q) != "t_VEC" || #q != 4, error("incorrect type")); sqrt(q[1]^2+q[2]^2+q[3]^2+q[4]^2) }; q.conj={ if(type(q) != "t_VEC" || #q != 4, error("incorrect type")); -[-q[1],q[2],q[3],q[4]] }; q.add={ if(type(q) != "t_VEC" || #q != 4, error("incorrect type")); x->if(type(x) == "t_INT" || type(x) == t_REAL, [q[1]+x,q[2],q[3],q[4]] , if(type(x) == "t_VEC" && #x == 4, q+x , error("incorrect type") ) ) }; q.mult={ if(type(q) != "t_VEC" || #q != 4, error("incorrect type")); x->if(type(x) == "t_INT" || type(x) == t_REAL, x*q , if(type(x) == "t_VEC" && #x == 4, [q[1]*x[1] - q[2]*x[2] - q[3]*x[3] - q[4]*x[4], q[1]*x[2] + q[2]*x[1] + q[3]*x[4] - q[4]*x[3], q[1]*x[3] - q[2]*x[4] + q[3]*x[1] + q[4]*x[2], q[1]*x[4] + q[2]*x[3] - q[3]*x[2] + q[4]*x[1]] , error("incorrect type") ) ) };</lang> Usage: <lang parigp>r=7;q=[1,2,3,4];q1=[2,3,4,5];q2=[3,4,5,6]; q.norm -q q.conj q.add(r) q1.add(q2) q1.add(q2) \\ or q1+q2 q.mult(r) \\ or r*q or q*r q1.mult(q2) q1.mult(q2) != q2.mult(q1)</lang> Pascal The Delphi example also works with FreePascal. Perl <lang Perl>package Quaternion; use List::Util 'reduce'; use List::MoreUtils 'pairwise'; sub make {  my$cls = shift;
if (@_ == 1)    { return bless [ @_, 0, 0, 0 ] }
elsif (@_ == 4) { return bless [ @_ ] }
else            { die "Bad number of components: @_" }


}

sub _abs { sqrt reduce { $a +$b * $b } @{ +shift } } sub _neg { bless [ map(-$_, @{+shift}) ] } sub _str { "(@{+shift})" }

       my ($x,$y) = @_;
$y = [$y, 0, 0, 0 ] unless ref $y; bless [ pairwise {$a + $b } @$x, @$y ]  } sub _sub {  my ($x, $y,$swap) = @_;
$y = [$y, 0, 0, 0 ] unless ref $y; my @x = pairwise {$a - $b } @$x, @$y; if ($swap) { $_ = -$_ for @x }
bless \@x;


}

sub _mul {

       my ($x,$y) = @_;
if (!ref $y) { return bless [ map($_ * $y, @$x) ] }
my ($a1,$b1, $c1,$d1) = @$x; my ($a2, $b2,$c2, $d2) = @$y;
bless [ $a1 *$a2 - $b1 *$b2 - $c1 *$c2 - $d1 *$d2,
$a1 *$b2 + $b1 *$a2 + $c1 *$d2 - $d1 *$c2,
$a1 *$c2 - $b1 *$d2 + $c1 *$a2 + $d1 *$b2,
$a1 *$d2 + $b1 *$c2 - $c1 *$b2 + $d1 *$a2]


}

sub conjugate {

       my @a = map { -$_ } @{$_[0]};
$a[0] =$_[0][0];
bless \@a


}

       '""'    => \&_str,
'-'     => \&_sub,
'*'     => \&_mul,
'neg'   => \&_neg,
'abs'   => \&_abs,


);

package main;

my $a = Quaternion->make(1, 2, 3, 4); my$b = Quaternion->make(1, 1, 1, 1);

print "a = $a\n"; print "b =$b\n"; print "|a| = ", abs($a), "\n"; print "-a = ", -$a, "\n"; print "a + 1 = ", $a + 1, "\n"; print "a + b = ",$a + $b, "\n"; print "a - b = ",$a - $b, "\n"; print "a conjugate is ",$a->conjugate, "\n"; print "a * b = ", $a *$b, "\n"; print "b * a = ", $b *$a, "\n";</lang>

Perl 6

<lang perl6>class Quaternion {

   has Real ( $.r,$.i, $.j,$.k );

multi method new ( Real $r, Real$i, Real $j, Real$k ) {
self.bless: :$r, :$i, :$j, :$k;
}
multi qu(*@r) is export { Quaternion.new: |@r }
sub postfix:<j>(Real $x) is export { qu 0, 0,$x, 0 }
sub postfix:<k>(Real $x) is export { qu 0, 0, 0,$x }

method Str   () { "$.r + {$.i}i + {$.j}j + {$.k}k" }
method reals () { $.r,$.i, $.j,$.k }
method conj  () { qu $.r, -$.i, -$.j, -$.k }
method norm  () { sqrt [+] self.reals X** 2 }

multi infix:<eqv> ( Quaternion $a, Quaternion$b ) is export { $a.reals eqv$b.reals }

multi infix:<+> ( Quaternion $a, Real$b ) is export { qu $b+$a.r, $a.i,$a.j, $a.k } multi infix:<+> ( Real$a, Quaternion $b ) is export { qu$a+$b.r,$b.i, $b.j,$b.k }
multi infix:<+> ( Quaternion $a, Complex$b ) is export { qu $b.re +$a.r, $b.im +$a.i, $a.j,$a.k }
multi infix:<+> (    Complex $a, Quaternion$b ) is export { qu $a.re +$b.r, $a.im +$b.i, $b.j,$b.k }
multi infix:<+> ( Quaternion $a, Quaternion$b ) is export { qu $a.reals Z+$b.reals }

multi prefix:<-> ( Quaternion $a ) is export { qu$a.reals X* -1 }

multi infix:<*> ( Quaternion $a, Real$b ) is export { qu $a.reals X*$b }
multi infix:<*> (       Real $a, Quaternion$b ) is export { qu $b.reals X*$a }
multi infix:<*> ( Quaternion $a, Complex$b ) is export { $a * qu$b.reals, 0, 0 }
multi infix:<*> ( Complex $a, Quaternion$b ) is export { $b R* qu$a.reals, 0, 0 }

multi infix:<*> ( Quaternion $a, Quaternion$b ) is export {


my @a_rijk = $a.reals; my ($r, $i,$j, $k ) =$b.reals; return qu [+]( @a_rijk Z* $r, -$i, -$j, -$k ), # real [+]( @a_rijk Z* $i,$r, $k, -$j ), # i [+]( @a_rijk Z* $j, -$k, $r,$i ), # j [+]( @a_rijk Z* $k,$j, -$i,$r ); # k

   }


} import Quaternion;

my $q = 1 + 2i + 3j + 4k; my$q1 = 2 + 3i + 4j + 5k; my $q2 = 3 + 4i + 5j + 6k; my$r = 7;

say "1) q norm = {$q.norm}"; say "2) -q = {-$q}"; say "3) q conj = {$q.conj}"; say "4) q + r = {$q + $r}"; say "5) q1 + q2 = {$q1 + $q2}"; say "6) q * r = {$q * $r}"; say "7) q1 * q2 = {$q1 * $q2}"; say "8) q1q2 {$q1 * $q2 eqv$q2 * $q1 ?? '==' !! '!=' } q2q1";</lang> Output: 1) q norm = 5.47722557505166 2) -q = -1 + -2i + -3j + -4k 3) q conj = 1 + -2i + -3j + -4k 4) q + r = 8 + 2i + 3j + 4k 5) q1 + q2 = 5 + 7i + 9j + 11k 6) q * r = 7 + 14i + 21j + 28k 7) q1 * q2 = -56 + 16i + 24j + 26k 8) q1q2 != q2q1 Phix Translation of: Euphoria <lang Phix>function norm(sequence q)  return sqrt(sum(sq_power(q,2)))  end function function conj(sequence q)  q[2..4] = sq_uminus(q[2..4]) return q  end function function add(object q1, object q2)  if atom(q1)!=atom(q2) then if atom(q1) then q1 = {q1,0,0,0} else q2 = {q2,0,0,0} end if end if return sq_add(q1,q2)  end function function mul(object q1, object q2)  if sequence(q1) and sequence(q2) then return { q1[1]*q2[1] - q1[2]*q2[2] - q1[3]*q2[3] - q1[4]*q2[4], q1[1]*q2[2] + q1[2]*q2[1] + q1[3]*q2[4] - q1[4]*q2[3], q1[1]*q2[3] - q1[2]*q2[4] + q1[3]*q2[1] + q1[4]*q2[2], q1[1]*q2[4] + q1[2]*q2[3] - q1[3]*q2[2] + q1[4]*q2[1] } else return sq_mul(q1,q2) end if  end function function quats(sequence q)  return sprintf("%g + %gi + %gj + %gk",q)  end function constant  q = {1, 2, 3, 4}, q1 = {2, 3, 4, 5}, q2 = {3, 4, 5, 6}, r = 7  printf(1, "q = %s\n", {quats(q)}) printf(1, "r = %g\n", r) printf(1, "norm(q) = %g\n", norm(q)) printf(1, "-q = %s\n", {quats(-q)}) printf(1, "conj(q) = %s\n", {quats(conj(q))}) printf(1, "q + r = %s\n", {quats(add(q,r))}) printf(1, "q * r = %s\n", {quats(mul(q,r))}) printf(1, "q1 = %s\n", {quats(q1)}) printf(1, "q2 = %s\n", {quats(q2)}) printf(1, "q1 + q2 = %s\n", {quats(add(q1,q2))}) printf(1, "q2 + q1 = %s\n", {quats(add(q2,q1))}) printf(1, "q1 * q2 = %s\n", {quats(mul(q1,q2))}) printf(1, "q2 * q1 = %s\n", {quats(mul(q2,q1))})</lang> Output: q = 1 + 2i + 3j + 4k r = 7 norm(q) = 5.47723 -q = -1 + -2i + -3j + -4k conj(q) = 1 + -2i + -3j + -4k q + r = 8 + 2i + 3j + 4k q * r = 7 + 14i + 21j + 28k q1 = 2 + 3i + 4j + 5k q2 = 3 + 4i + 5j + 6k q1 + q2 = 5 + 7i + 9j + 11k q2 + q1 = 5 + 7i + 9j + 11k q1 * q2 = -56 + 16i + 24j + 26k q2 * q1 = -56 + 18i + 20j + 28k  PicoLisp <lang PicoLisp>(scl 6) (def 'quatCopy copy) (de quatNorm (Q)  (sqrt (sum * Q Q)) )  (de quatNeg (Q)  (mapcar - Q) )  (de quatConj (Q)  (cons (car Q) (mapcar - (cdr Q))) )  (de quatAddR (Q R)  (cons (+ R (car Q)) (cdr Q)) )  (de quatAdd (Q1 Q2)  (mapcar + Q1 Q2) )  (de quatMulR (Q R)  (mapcar */ (mapcar * Q (circ R)) (1.0 .)) )  (de quatMul (Q1 Q2)  (mapcar '((Ops I) (sum '((Op R I) (Op (*/ R (get Q2 I) 1.0))) Ops Q1 I) ) '((+ - - -) (+ + + -) (+ - + +) (+ + - +)) '((1 2 3 4) (2 1 4 3) (3 4 1 2) (4 3 2 1)) ) )  (de quatFmt (Q)  (mapcar '((R S) (pack (format R *Scl) S)) Q '(" + " "i + " "j + " "k") ) )</lang>  Test: <lang PicoLisp>(setq  Q (1.0 2.0 3.0 4.0) Q1 (2.0 3.0 4.0 5.0) Q2 (3.0 4.0 5.0 6.0) R 7.0 )  (prinl "R = " (format R *Scl)) (prinl "Q = " (quatFmt Q)) (prinl "Q1 = " (quatFmt Q1)) (prinl "Q2 = " (quatFmt Q2)) (prinl) (prinl "norm(Q) = " (format (quatNorm Q) *Scl)) (prinl "norm(Q1) = " (format (quatNorm Q1) *Scl)) (prinl "norm(Q2) = " (format (quatNorm Q2) *Scl)) (prinl "neg(Q) = " (quatFmt (quatNeg Q))) (prinl "conj(Q) = " (quatFmt (quatConj Q))) (prinl "Q + R = " (quatFmt (quatAddR Q R))) (prinl "Q1 + Q2 = " (quatFmt (quatAdd Q1 Q2))) (prinl "Q * R = " (quatFmt (quatMulR Q R))) (prinl "Q1 * Q2 = " (quatFmt (quatMul Q1 Q2))) (prinl "Q2 * Q1 = " (quatFmt (quatMul Q2 Q1))) (prinl (if (= (quatMul Q1 Q2) (quatMul Q2 Q1)) "Equal" "Not equal"))</lang> Output: R = 7.000000 Q = 1.000000 + 2.000000i + 3.000000j + 4.000000k Q1 = 2.000000 + 3.000000i + 4.000000j + 5.000000k Q2 = 3.000000 + 4.000000i + 5.000000j + 6.000000k norm(Q) = 5.477225 norm(Q1) = 7.348469 norm(Q2) = 9.273618 neg(Q) = -1.000000 + -2.000000i + -3.000000j + -4.000000k conj(Q) = 1.000000 + -2.000000i + -3.000000j + -4.000000k Q + R = 8.000000 + 2.000000i + 3.000000j + 4.000000k Q1 + Q2 = 5.000000 + 7.000000i + 9.000000j + 11.000000k Q * R = 7.000000 + 14.000000i + 21.000000j + 28.000000k Q1 * Q2 = -56.000000 + 16.000000i + 24.000000j + 26.000000k Q2 * Q1 = -56.000000 + 18.000000i + 20.000000j + 28.000000k Not equal PL/I <lang pli>*process source attributes xref or(!); qu: Proc Options(main); /********************************************************************** * 06.09.2013 Walter Pachl translated from REXX * added tasks 9 and A **********************************************************************/ dcl v(4) Char(1) Var Init(,'i','j','k'); define structure 1 quat, 2 x(4) Dec Float(15); Dcl q type quat; Call quat_init(q, 1,2,3,4); Dcl q1 type quat; Call quat_init(q1,2,3,4,5); Dcl q2 type quat; Call quat_init(q2,3,4,5,6); Dcl q3 type quat; Call quat_init(q3,-2,3,-4,-5); Dcl r Dec Float(15)Init(7);  call showq(' ','q' ,q); call showq(' ','q1' ,q1); call showq(' ','q2' ,q2); call showq(' ','q3' ,q3); call shows(' ','r' ,r); Call shows('task 1:','norm q' ,norm(q)); Call showq('task 2:','quatneg q' ,quatneg(q)); Call showq('task 3:','conjugate q' ,quatConj(q)); Call showq('task 4:','addition r+q' ,quatAddsq(r,q)); Call showq('task 5:','addition q1+q2' ,quatAdd(q1,q2)); Call showq('task 6:','multiplication q*r' ,quatMulqs(q,r)); Call showq('task 7:','multiplication q1*q2' ,quatMul(q1,q2)); Call showq('task 8:','multiplication q2*q1' ,quatMul(q2,q1)); Call showq('task 9:','quatsub q1-q1' ,quatAdd(q1,quatneg(q1))); Call showq('task A:','addition q1+q3' ,quatAdd(q1,q3)); Call showt('task B:','equal' ,quatEqual(quatMul(q1,q2), quatMul(q2,q1))); Call showt('task C:','q1=q1' ,quatEqual(q1,q1));  quatNeg: procedure(qp) Returns(type quat); Dcl (qp,qr) type quat; qr.x(*)=-qp.x(*); Return (qr); End;  quatAdd: procedure(qp,qq) Returns(type quat); Dcl (qp,qq,qr) type quat; qr.x(*)=qp.x(*)+qq.x(*); Return (qr); End;  quatAddsq: procedure(v,qp) Returns(type quat); Dcl v Dec Float(15); Dcl (qp,qr) type quat; qr.x(*)=qp.x(*); qr.x(1)=qp.x(1)+v; Return (qr); End;  quatConj: procedure(qp) Returns(type quat); Dcl (qp,qr) type quat; qr.x(*)=-qp.x(*); qr.x(1)= qp.x(1); Return (qr); End;  quatMul: procedure(qp,qq) Returns(type quat); Dcl (qp,qq,qr) type quat; qr.x(1)= qp.x(1)*qq.x(1)-qp.x(2)*qq.x(2)-qp.x(3)*qq.x(3)-qp.x(4)*qq.x(4); qr.x(2)= qp.x(1)*qq.x(2)+qp.x(2)*qq.x(1)+qp.x(3)*qq.x(4)-qp.x(4)*qq.x(3); qr.x(3)= qp.x(1)*qq.x(3)-qp.x(2)*qq.x(4)+qp.x(3)*qq.x(1)+qp.x(4)*qq.x(2); qr.x(4)= qp.x(1)*qq.x(4)+qp.x(2)*qq.x(3)-qp.x(3)*qq.x(2)+qp.x(4)*qq.x(1); Return (qr); End;  quatMulqs: procedure(qp,v) Returns(type quat); Dcl (qp,qr) type quat; Dcl v Dec Float(15); qr.x(*)=qp.x(*)*v; Return (qr); End;  shows: Procedure(t1,t2,v); Dcl (t1,t2) Char(*); Dcl v Dec Float(15); Put Edit(t1,right(t2,24),' --> ',v)(Skip,a,a,a,f(15,13)); End;  showt: Procedure(t1,t2,v); Dcl (t1,t2) Char(*); Dcl v Char(*) Var); Put Edit(t1,right(t2,24),' --> ',v)(Skip,a,a,a,a); End;  showq: Procedure(t1,t2,qp); Dcl qp type quat; Dcl (t1,t2) Char(*); Dcl (s,s2,p) Char(100) Var Init(); Dcl i Bin Fixed(31); Put String(s) Edit(t1,right(t2,24),' --> ')(a,a,a); Do i=1 To 4; Put String(p) Edit(abs(qp.x(i)))(p'ZZZ9'); p=trim(p); Select; When(qp.x(i)<0) p='-'!!p!!v(i); When(p=0) p=; Otherwise Do If s2^= Then p='+'!!p; If i>1 Then p=p!!v(i); End; End; s2=s2!!p End; If s2= Then s2='0'; Put Edit(s!!s2)(Skip,a); End;  norm: Procedure(qp) Returns(Dec Float(15)); Dcl qp type quat; Dcl r Dec Float(15) Init(0); Dcl i Bin Fixed(31); Do i=1 To 4; r=r+qp.x(i)**2; End; Return (sqrt(r)); End;  quat_init: Proc(qp,x,y,z,u); Dcl qp type quat; Dcl (x,y,z,u) Dec Float(15); qp.x(1)=x; qp.x(2)=y; qp.x(3)=z; qp.x(4)=u; End;  End;</lang>  Output:  q --> 1+2i+3j+4k q1 --> 2+3i+4j+5k q2 --> 3+4i+5j+6k q3 --> -2+3i-4j-5k r --> 7.0000000000000 task 1: norm q --> 5.4772255750517 task 2: quatneg q --> -1-2i-3j-4k task 3: conjugate q --> 1-2i-3j-4k task 4: addition r+q --> 8+2i+3j+4k task 5: addition q1+q2 --> 5+7i+9j+11k task 6: multiplication q*r --> 7+14i+21j+28k task 7: multiplication q1*q2 --> -56+16i+24j+26k task 8: multiplication q2*q1 --> -56+18i+20j+28k task 9: quatsub q1-q1 --> 0 task A: addition q1+q3 --> 6i task B: equal --> not equal task C: q1=q1 --> equal  PowerShell Works with: PowerShell version 5 <lang PowerShell> class Quaternion {  [Double]$a
[Double]$b [Double]$c
[Double]$d Quaternion() {$this.a = 0
$this.b = 0$this.c = 0
$this.d = 0 } Quaternion([Double]$a, [Double]$b, [Double]$c, [Double]$d) {$this.a = $a$this.b = $b$this.c = $c$this.d = $d } [Double]abs2() {return$this.a*$this.a +$this.b*$this.b +$this.c*$this.c +$this.d*$this.d} [Double]abs() {return [math]::sqrt($this.abs2())}
static [Quaternion]real([Double]$r) {return [Quaternion]::new($r, 0, 0, 0)}
static [Quaternion]add([Quaternion]$m,[Quaternion]$n) {return [Quaternion]::new($m.a+$n.a, $m.b+$n.b, $m.c+$n.c, $m.d+$n.d)}
[Quaternion]addreal([Double]$r) {return [Quaternion]::add($this,[Quaternion]::real($r))} static [Quaternion]mul([Quaternion]$m,[Quaternion]$n) { return [Quaternion]::new( ($m.a*$n.a) - ($m.b*$n.b) - ($m.c*$n.c) - ($m.d*$n.d), ($m.a*$n.b) + ($m.b*$n.a) + ($m.c*$n.d) - ($m.d*$n.c), ($m.a*$n.c) - ($m.b*$n.d) + ($m.c*$n.a) + ($m.d*$n.b), ($m.a*$n.d) + ($m.b*$n.c) - ($m.c*$n.b) + ($m.d*$n.a)) }   [Quaternion]mul([Double]$r) {return [Quaternion]::new($r*$this.a, $r*$this.b, $r*$this.c, $r*$this.d)}
[Quaternion]negate() {return $this.mul(-1)} [Quaternion]conjugate() {return [Quaternion]::new($this.a, -$this.b, -$this.c, -$this.d)} static [String]st([Double]$r) {
if(0 -le $r) {return "+$r"} else {return "$r"} } [String]show() {return "$($this.a)$([Quaternion]::st($this.b))i$([Quaternion]::st($this.c))j$([Quaternion]::st($this.d))k"} static [String]show([Quaternion]$other) {return $other.show()}  }$q = [Quaternion]::new(1, 2, 3, 4) $q1 = [Quaternion]::new(2, 3, 4, 5)$q2 = [Quaternion]::new(3, 4, 5, 6) $r = 7 "$q: $($q.show())" "$q1:$($q1.show())" "$q2: $($q2.show())" "$r:$r" "" "norm $q:$($q.abs())" "negate $q: $($q.negate().show())" "conjugate $q:$($q.conjugate().show())" "$q + $r:$($q.addreal($r).show())" "$q1 + $q2: $([Quaternion]::show([Quaternion]::add($q1,$q2)))" "$q * $r:$($q.mul($r).show())" "$q1 * $q2: $([Quaternion]::show([Quaternion]::mul($q1,$q2)))" "$q2 * $q1:$([Quaternion]::show([Quaternion]::mul($q2,$q1)))" </lang> Output:

$q: 1+2i+3j+4k$q1: 2+3i+4j+5k
$q2: 3+4i+5j+6k$r: 7

norm $q: 5.47722557505166 negate$q: -1-2i-3j-4k
conjugate $q: 1-2i-3j-4k$q + $r: 8+2i+3j+4k$q1 + $q2: 5+7i+9j+11k$q * $r: 7+14i+21j+28k$q1 * $q2: -56+16i+24j+26k$q2 * $q1: -56+18i+20j+28k  Prolog <lang Prolog>% A quaternion is represented as a complex term qx/4 add(qx(R0,I0,J0,K0), qx(R1,I1,J1,K1), qx(R,I,J,K)) :- !, R is R0+R1, I is I0+I1, J is J0+J1, K is K0+K1. add(qx(R0,I,J,K), F, qx(R,I,J,K)) :- number(F), !, R is R0 + F. add(F, qx(R0,I,J,K), Qx) :- add(qx(R0,I,J,K), F, Qx). mul(qx(R0,I0,J0,K0), qx(R1,I1,J1,K1), qx(R,I,J,K)) :- !, R is R0*R1 - I0*I1 - J0*J1 - K0*K1, I is R0*I1 + I0*R1 + J0*K1 - K0*J1, J is R0*J1 - I0*K1 + J0*R1 + K0*I1, K is R0*K1 + I0*J1 - J0*I1 + K0*R1. mul(qx(R0,I0,J0,K0), F, qx(R,I,J,K)) :- number(F), !, R is R0*F, I is I0*F, J is J0*F, K is K0*F. mul(F, qx(R0,I0,J0,K0), Qx) :- mul(qx(R0,I0,J0,K0),F,Qx). abs(qx(R,I,J,K), Norm) :- Norm is sqrt(R*R+I*I+J*J+K*K). negate(qx(Ri,Ii,Ji,Ki),qx(R,I,J,K)) :- R is -Ri, I is -Ii, J is -Ji, K is -Ki. conjugate(qx(R,Ii,Ji,Ki),qx(R,I,J,K)) :- I is -Ii, J is -Ji, K is -Ki.</lang> Test: <lang Prolog>data(q, qx(1,2,3,4)). data(q1, qx(2,3,4,5)). data(q2, qx(3,4,5,6)). data(r, 7). test :- data(Name, qx(A,B,C,D)), abs(qx(A,B,C,D), Norm), writef('abs(%w) is %w\n', [Name, Norm]), fail. test :- data(q, Qx), negate(Qx, Nqx), writef('negate(%w) is %w\n', [q, Nqx]), fail. test :- data(q, Qx), conjugate(Qx, Nqx), writef('conjugate(%w) is %w\n', [q, Nqx]), fail. test :- data(q1, Q1), data(q2, Q2), add(Q1, Q2, Qx), writef('q1+q2 is %w\n', [Qx]), fail. test :- data(q1, Q1), data(q2, Q2), add(Q2, Q1, Qx), writef('q2+q1 is %w\n', [Qx]), fail. test :- data(q, Qx), data(r, R), mul(Qx, R, Nqx), writef('q*r is %w\n', [Nqx]), fail. test :- data(q, Qx), data(r, R), mul(R, Qx, Nqx), writef('r*q is %w\n', [Nqx]), fail. test :- data(q1, Q1), data(q2, Q2), mul(Q1, Q2, Qx), writef('q1*q2 is %w\n', [Qx]), fail. test :- data(q1, Q1), data(q2, Q2), mul(Q2, Q1, Qx), writef('q2*q1 is %w\n', [Qx]), fail. test.</lang> Output:  ?- test. abs(q) is 5.477225575051661 abs(q1) is 7.3484692283495345 abs(q2) is 9.273618495495704 negate(q) is qx(-1,-2,-3,-4) conjugate(q) is qx(1,-2,-3,-4) q1+q2 is qx(5,7,9,11) q2+q1 is qx(5,7,9,11) q*r is qx(7,14,21,28) r*q is qx(7,14,21,28) q1*q2 is qx(-56,16,24,26) q2*q1 is qx(-56,18,20,28) PureBasic <lang PureBasic>Structure Quaternion  a.f b.f c.f d.f  EndStructure Procedure.f QNorm(*x.Quaternion)  ProcedureReturn Sqr(Pow(*x\a, 2) + Pow(*x\b, 2) + Pow(*x\c, 2) + Pow(*x\d, 2))  EndProcedure If supplied, the result is returned in the quaternion structure *res, otherwise a new quaternion is created. A pointer to the result is returned. Procedure QNeg(*x.Quaternion, *res.Quaternion = 0)  If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf If *res *res\a = -*x\a *res\b = -*x\b *res\c = -*x\c *res\d = -*x\d EndIf ProcedureReturn *res  EndProcedure Procedure QConj(*x.Quaternion, *res.Quaternion = 0)  If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf If *res *res\a = *x\a *res\b = -*x\b *res\c = -*x\c *res\d = -*x\d EndIf ProcedureReturn *res  EndProcedure Procedure QAddReal(r.f, *x.Quaternion, *res.Quaternion = 0)  If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf If *res *res\a = *x\a + r *res\b = *x\b *res\c = *x\c *res\d = *x\d EndIf ProcedureReturn *res  EndProcedure Procedure QAddQuaternion(*x.Quaternion, *y.Quaternion, *res.Quaternion = 0)  If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf If *res *res\a = *x\a + *y\a *res\b = *x\b + *y\b *res\c = *x\c + *y\c *res\d = *x\d + *y\d EndIf ProcedureReturn *res  EndProcedure Procedure QMulReal_and_Quaternion(r.f, *x.Quaternion, *res.Quaternion = 0)  If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf If *res *res\a = *x\a * r *res\b = *x\b * r *res\c = *x\c * r *res\d = *x\d * r EndIf ProcedureReturn *res  EndProcedure Procedure QMulQuaternion(*x.Quaternion, *y.Quaternion, *res.Quaternion = 0)  If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf If *res *res\a = *x\a * *y\a - *x\b * *y\b - *x\c * *y\c - *x\d * *y\d *res\b = *x\a * *y\b + *x\b * *y\a + *x\c * *y\d - *x\d * *y\c *res\c = *x\a * *y\c - *x\b * *y\d + *x\c * *y\a + *x\d * *y\b *res\d = *x\a * *y\d + *x\b * *y\c - *x\c * *y\b + *x\d * *y\a EndIf ProcedureReturn *res  EndProcedure Procedure Q_areEqual(*x.Quaternion, *y.Quaternion)  If (*x\a <> *y\a) Or (*x\b <> *y\b) Or (*x\c <> *y\c) Or (*x\d <> *y\d) ProcedureReturn 0 ;false EndIf ProcedureReturn 1 ;true  EndProcedure</lang> Implementation & test <lang PureBasic>Procedure.s ShowQ(*x.Quaternion, NN = 0)  ProcedureReturn "{" + StrF(*x\a, NN) + "," + StrF(*x\b, NN) + "," + StrF(*x\c, NN) + "," + StrF(*x\d, NN) + "}"  EndProcedure If OpenConsole()  Define.Quaternion Q0, Q1, Q2, res, res2 Define.f r = 7 Q0\a = 1: Q0\b = 2: Q0\c = 3: Q0\d = 4 Q1\a = 2: Q1\b = 3: Q1\c = 4: Q1\d = 5 Q2\a = 3: Q2\b = 4: Q2\c = 5: Q2\d = 6 PrintN("Q0 = " + ShowQ(Q0, 0)) PrintN("Q1 = " + ShowQ(Q1, 0)) PrintN("Q2 = " + ShowQ(Q2, 0)) PrintN("Normal of Q0 = " + StrF(QNorm(Q0))) PrintN("Neg(Q0) = " + ShowQ(QNeg(Q0, res))) PrintN("Conj(Q0) = " + ShowQ(QConj(Q0, res))) PrintN("r + Q0 = " + ShowQ(QAddReal(r, Q0, res))) PrintN("Q0 + Q1 = " + ShowQ(QAddQuaternion(Q0, Q1, res))) PrintN("Q1 + Q2 = " + ShowQ(QAddQuaternion(Q1, Q2, res))) PrintN("Q1 * Q2 = " + ShowQ(QMulQuaternion(Q1, Q2, res))) PrintN("Q2 * Q1 = " + ShowQ(QMulQuaternion(Q2, Q1, res2))) Print( "Q1 * Q2"): If Q_areEqual(res, res2): Print(" = "): Else: Print(" <> "): EndIf: Print( "Q2 * Q1") Print(#CRLF$ + #CRLF$+ "Press ENTER to exit"): Input() CloseConsole()  EndIf</lang> Result Q0 = {1,2,3,4} Q1 = {2,3,4,5} Q2 = {3,4,5,6} Normal of Q0 = 5.4772257805 Neg(Q0) = {-1,-2,-3,-4} Conj(Q0) = {1,-2,-3,-4} r + Q0 = {8,2,3,4} Q0 + Q1 = {3,5,7,9} Q1 + Q2 = {5,7,9,11} Q1 * Q2 = {-56,16,24,26} Q2 * Q1 = {-56,18,20,28} Q1 * Q2 <> Q2 * Q1 Python This example extends Pythons namedtuples to add extra functionality. <lang python>from collections import namedtuple import math class Q(namedtuple('Quaternion', 'real, i, j, k')):  'Quaternion type: Q(real=0.0, i=0.0, j=0.0, k=0.0)'   __slots__ = ()   def __new__(_cls, real=0.0, i=0.0, j=0.0, k=0.0): 'Defaults all parts of quaternion to zero' return super().__new__(_cls, float(real), float(i), float(j), float(k))   def conjugate(self): return Q(self.real, -self.i, -self.j, -self.k)   def _norm2(self): return sum( x*x for x in self)   def norm(self): return math.sqrt(self._norm2())   def reciprocal(self): n2 = self._norm2() return Q(*(x / n2 for x in self.conjugate()))   def __str__(self): 'Shorter form of Quaternion as string' return 'Q(%g, %g, %g, %g)' % self   def __neg__(self): return Q(-self.real, -self.i, -self.j, -self.k)   def __add__(self, other): if type(other) == Q: return Q( *(s+o for s,o in zip(self, other)) ) try: f = float(other) except: return NotImplemented return Q(self.real + f, self.i, self.j, self.k)   def __radd__(self, other): return Q.__add__(self, other)   def __mul__(self, other): if type(other) == Q: a1,b1,c1,d1 = self a2,b2,c2,d2 = other return Q( a1*a2 - b1*b2 - c1*c2 - d1*d2, a1*b2 + b1*a2 + c1*d2 - d1*c2, a1*c2 - b1*d2 + c1*a2 + d1*b2, a1*d2 + b1*c2 - c1*b2 + d1*a2 ) try: f = float(other) except: return NotImplemented return Q(self.real * f, self.i * f, self.j * f, self.k * f)   def __rmul__(self, other): return Q.__mul__(self, other)   def __truediv__(self, other): if type(other) == Q: return self.__mul__(other.reciprocal()) try: f = float(other) except: return NotImplemented return Q(self.real / f, self.i / f, self.j / f, self.k / f)   def __rtruediv__(self, other): return other * self.reciprocal()   __div__, __rdiv__ = __truediv__, __rtruediv__  Quaternion = Q q = Q(1, 2, 3, 4) q1 = Q(2, 3, 4, 5) q2 = Q(3, 4, 5, 6) r = 7</lang> Continued shell session Run the above with the -i flag to python on the command line, or run with idle then continue in the shell as follows: <lang python>>>> q Quaternion(real=1.0, i=2.0, j=3.0, k=4.0) >>> q1 Quaternion(real=2.0, i=3.0, j=4.0, k=5.0) >>> q2 Quaternion(real=3.0, i=4.0, j=5.0, k=6.0) >>> r 7 >>> q.norm() 5.477225575051661 >>> q1.norm() 7.3484692283495345 >>> q2.norm() 9.273618495495704 >>> -q Quaternion(real=-1.0, i=-2.0, j=-3.0, k=-4.0) >>> q.conjugate() Quaternion(real=1.0, i=-2.0, j=-3.0, k=-4.0) >>> r + q Quaternion(real=8.0, i=2.0, j=3.0, k=4.0) >>> q + r Quaternion(real=8.0, i=2.0, j=3.0, k=4.0) >>> q1 + q2 Quaternion(real=5.0, i=7.0, j=9.0, k=11.0) >>> q2 + q1 Quaternion(real=5.0, i=7.0, j=9.0, k=11.0) >>> q * r Quaternion(real=7.0, i=14.0, j=21.0, k=28.0) >>> r * q Quaternion(real=7.0, i=14.0, j=21.0, k=28.0) >>> q1 * q2 Quaternion(real=-56.0, i=16.0, j=24.0, k=26.0) >>> q2 * q1 Quaternion(real=-56.0, i=18.0, j=20.0, k=28.0) >>> assert q1 * q2 != q2 * q1 >>> >>> i, j, k = Q(0,1,0,0), Q(0,0,1,0), Q(0,0,0,1) >>> i*i Quaternion(real=-1.0, i=0.0, j=0.0, k=0.0) >>> j*j Quaternion(real=-1.0, i=0.0, j=0.0, k=0.0) >>> k*k Quaternion(real=-1.0, i=0.0, j=0.0, k=0.0) >>> i*j*k Quaternion(real=-1.0, i=0.0, j=0.0, k=0.0) >>> q1 / q2 Quaternion(real=0.7906976744186047, i=0.023255813953488358, j=-2.7755575615628914e-17, k=0.046511627906976744) >>> q1 / q2 * q2 Quaternion(real=2.0000000000000004, i=3.0000000000000004, j=4.000000000000001, k=5.000000000000001) >>> q2 * q1 / q2 Quaternion(real=2.0, i=3.465116279069768, j=3.906976744186047, k=4.767441860465116) >>> q1.reciprocal() * q1 Quaternion(real=0.9999999999999999, i=0.0, j=0.0, k=0.0) >>> q1 * q1.reciprocal() Quaternion(real=0.9999999999999999, i=0.0, j=0.0, k=0.0) >>> </lang> R Using the quaternions package. <lang R> library(quaternions) q <- Q(1, 2, 3, 4) q1 <- Q(2, 3, 4, 5) q2 <- Q(3, 4, 5, 6) r <- 7.0 display <- function(x){  e <- deparse(substitute(x)) res <- if(class(x) == "Q") paste(x$r, "+", x$i, "i+", x$j, "j+", x$k, "k", sep = "") else x cat(noquote(paste(c(e, " = ", res, "\n"), collapse=""))) invisible(res)  } display(norm(q)) display(-q) display(Conj(q)) display(r + q) display(q1 + q2) display(r*q) display(q*r) if(display(q1*q2) == display(q2*q1)) cat("q1*q2 == q2*q1\n") else cat("q1*q2 != q2*q1\n") 1. norm(q) = 5.47722557505166 2. -q = -1+-2i+-3j+-4k 3. Conj(q) = 1+-2i+-3j+-4k 4. r + q = 8+2i+3j+4k 5. q1 + q2 = 5+7i+9j+11k 6. r * q = 7+14i+21j+28k 7. q * r = 7+14i+21j+28k 8. q1 * q2 = -56+16i+24j+26k 9. q2 * q1 = -56+18i+20j+28k 10. q1*q2 != q2*q1 </lang> Racket <lang Racket>#lang racket (struct quaternion (a b c d)  #:transparent)  (define-match-expander quaternion:  (λ (stx) (syntax-case stx () [(_ a b c d) #'(or (quaternion a b c d) (and a (app (λ(_) 0) b) (app (λ(_) 0) c) (app (λ(_) 0) d)))])))  (define (norm q)  (match q [(quaternion: a b c d) (sqrt (+ (sqr a) (sqr b) (sqr c) (sqr d)))]))  (define (negate q)  (match q [(quaternion: a b c d) (quaternion (- a) (- b) (- c) (- d))]))  (define (conjugate q)  (match q [(quaternion: a b c d) (quaternion a (- b) (- c) (- d))]))  (define (add q1 q2 . q-rest)  (let ((ans (match* (q1 q2) [((quaternion: a1 b1 c1 d1) (quaternion: a2 b2 c2 d2)) (quaternion (+ a1 a2) (+ b1 b2) (+ c1 c2) (+ d1 d2))]))) (if (empty? q-rest) ans (apply add (cons ans q-rest)))))  (define (multiply q1 q2 . q-rest)  (let ((ans (match* (q1 q2) [((quaternion: a1 b1 c1 d1) (quaternion: a2 b2 c2 d2)) (quaternion (- (* a1 a2) (* b1 b2) (* c1 c2) (* d1 d2)) (+ (* a1 b2) (* b1 a2) (* c1 d2) (- (* d1 c2))) (+ (* a1 c2) (- (* b1 d2)) (* c1 a2) (* d1 b2)) (+ (* a1 d2) (* b1 c2) (- (* c1 b2)) (* d1 a2)))]))) (if (empty? q-rest) ans (apply multiply (cons ans q-rest)))))  Tests (module+ main  (define i (quaternion 0 1 0 0)) (define j (quaternion 0 0 1 0)) (define k (quaternion 0 0 0 1)) (displayln (multiply i j k)) (newline) (define q (quaternion 1 2 3 4)) (define q1 (quaternion 2 3 4 5)) (define q2 (quaternion 3 4 5 6)) (define r 7) (for ([quat (list q q1 q2)]) (displayln quat) (displayln (norm quat)) (displayln (negate quat)) (displayln (conjugate quat)) (newline)) (add r q) (add q1 q2) (multiply r q) (newline) (multiply q1 q2) (multiply q2 q1) (equal? (multiply q1 q2) (multiply q2 q1)))</lang>  Output: #(struct:quaternion -1 0 0 0) #(struct:quaternion 1 2 3 4) 5.477225575051661 #(struct:quaternion -1 -2 -3 -4) #(struct:quaternion 1 -2 -3 -4) #(struct:quaternion 2 3 4 5) 7.3484692283495345 #(struct:quaternion -2 -3 -4 -5) #(struct:quaternion 2 -3 -4 -5) #(struct:quaternion 3 4 5 6) 9.273618495495704 #(struct:quaternion -3 -4 -5 -6) #(struct:quaternion 3 -4 -5 -6) (quaternion 8 2 3 4) (quaternion 5 7 9 11) (quaternion 7 14 21 28) (quaternion -56 16 24 26) (quaternion -56 18 20 28) #f  REXX The REXX language has no native quaternion support, but subroutines can be easily written. <lang rexx>/*REXX pgm performs some operations on quaternion type numbers and shows results*/  q = 1 2 3 4 ; q1 = 2 3 4 5 r = 7 ; q2 = 3 4 5 6  call qShow q , 'q' call qShow q1 , 'q1' call qShow q2 , 'q2' call qShow r , 'r' call qShow qNorm(q) , 'norm q' , "task 1:" call qShow qNeg(q) , 'negative q' , "task 2:" call qShow qConj(q) , 'conjugate q' , "task 3:" call qShow qAdd( r, q ) , 'addition r+q' , "task 4:" call qShow qAdd(q1, q2 ) , 'addition q1+q2' , "task 5:" call qShow qMul( q, r ) , 'multiplication q*r' , "task 6:" call qShow qMul(q1, q2 ) , 'multiplication q1*q2' , "task 7:" call qShow qMul(q2, q1 ) , 'multiplication q2*q1' , "task 8:" exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────*/ qConj: procedure; parse arg x; call qXY; return x.1 (-x.2) (-x.3) (-x.4) qNeg: procedure; parse arg x; call qXY; return -x.1 (-x.2) (-x.3) (-x.4) /*──────────────────────────────────────────────────────────────────────────────*/ qAdd: procedure; parse arg x,y; call qXY 2; return x.1+y.1 x.2+y.2 x.3+y.3 x.4+y.4 /*──────────────────────────────────────────────────────────────────────────────*/ qMul: procedure; parse arg x,y; call qXY y  return x.1*y.1-x.2*y.2-x.3*y.3-x.4*y.4 x.1*y.2+x.2*y.1+x.3*y.4-x.4*y.3, x.1*y.3-x.2*y.4+x.3*y.1+x.4*y.2 x.1*y.4+x.2*y.3-x.3*y.2+x.4*y.1  /*──────────────────────────────────────────────────────────────────────────────*/ qNorm: procedure; parse arg x; call qXY; return sqrt(x.1**2+x.2**2+x.3**2+x.4**2) /*──────────────────────────────────────────────────────────────────────────────*/ qShow: procedure; parse arg x; call qXY;$=

            do m=1  for 4; _=x.m;  if _==0  then iterate;    if _>=0  then _='+'_
if m\==1  then _=_ || substr('~ijk',m,1);        $=strip($ || _,,'+')
end   /*m*/
say left(arg(3),9)   right(arg(2),20)        ' ──► '           $return$


/*──────────────────────────────────────────────────────────────────────────────*/ qXY: do n=1 for 4; x.n=word(word(x,n) 0,1)/1; end /*n*/

      if arg()==1  then  do m=1  for 4;  y.m=word(word(y,m) 0,1)/1;  end /*m*/
return


/*──────────────────────────────────────────────────────────────────────────────*/ sqrt: procedure; parse arg x; if x=0 then return 0; d=digits(); i=; m.=9

      numeric digits 9; numeric form;  h=d+6;  if x<0  then  do; x=-x; i='i'; end
parse value format(x,2,1,,0) 'E0'  with  g 'E' _ .;        g=g*.5'e'_%2
do j=0  while h>9;      m.j=h;                h=h%2+1;        end  /*j*/
do k=j+5  to 0  by -1;  numeric digits m.k;   g=(g+x/g)*.5;   end  /*k*/
numeric digits d;     return (g/1)i            /*make complex if  X < 0. */</lang>


output   when using the default input:

                             q  ──►  1+2i+3j+4k
q1  ──►  2+3i+4j+5k
q2  ──►  3+4i+5j+6k
r  ──►  7
task 1:                 norm q  ──►  5.47722558
task 2:             negative q  ──►  -1-2i-3j-4k
task 3:            conjugate q  ──►  1-2i-3j-4k
task 6:     multiplication q*r  ──►  7+14i+21j+28k
task 7:   multiplication q1*q2  ──►  -56+16i+24j+26k
task 8:   multiplication q2*q1  ──►  -56+18i+20j+28k


Ruby

Works with: Ruby version 1.9

<lang ruby>class Quaternion

 def initialize(*parts)
raise ArgumentError, "wrong number of arguments (#{parts.size} for 4)" unless parts.size == 4
raise ArgumentError, "invalid value of quaternion parts #{parts}" unless parts.all? {|x| x.is_a?(Numeric)}
@parts = parts
end

def to_a;          @parts;                                       end
def to_s;          "Quaternion#{@parts.to_s}"                    end
alias inspect to_s
def complex_parts; [Complex(*to_a[0..1]), Complex(*to_a[2..3])]; end

def real;          @parts.first;                                 end
def imag;          @parts[1..3];                                 end
def conj;          Quaternion.new(real, *imag.map(&:-@));        end
def norm;          Math.sqrt(to_a.reduce(0){|sum,e| sum + e**2}) end # In Rails: Math.sqrt(to_a.sum { e**2 })

def ==(other)
case other
when Quaternion; to_a == other.to_a
when Numeric;    to_a == [other, 0, 0, 0]
else             false
end
end
def -@;            Quaternion.new(*to_a.map(&:-@));              end
def -(other);      self + -other;                                end

def +(other)
case other
when Numeric
Quaternion.new(real + other, *imag)
when Quaternion
Quaternion.new(*to_a.zip(other.to_a).map { |x,y| x + y }) # In Rails: zip(other).map(&:sum)
end
end

def *(other)
case other
when Numeric
Quaternion.new(*to_a.map { |x| x * other })
when Quaternion
# Multiplication of quaternions in C x C space. See "Cayley-Dickson construction".
a, b, c, d = *complex_parts, *other.complex_parts
x, y = a*c - d.conj*b, a*d + b*c.conj
Quaternion.new(x.real, x.imag, y.real, y.imag)
end
end

# Coerce is called by Ruby to return a compatible type/receiver when the called method/operation does not accept a Quaternion
def coerce(other)
case other
when Numeric then [Scalar.new(other), self]
else raise TypeError, "#{other.class} can't be coerced into #{self.class}"
end
end

class Scalar
def initialize(val); @val = val;                            end
def +(other);        other + @val;                          end
def *(other);        other * @val;                          end
def -(other);        Quaternion.new(@val, 0, 0, 0) - other; end
end


end

if __FILE__ == $0  q = Quaternion.new(1,2,3,4) q1 = Quaternion.new(2,3,4,5) q2 = Quaternion.new(3,4,5,6) r = 7 expressions = ["q", "q1", "q2", "q.norm", "-q", "q.conj", "q + r", "r + q","q1 + q2", "q2 + q1", "q * r", "r * q", "q1 * q2", "q2 * q1", "(q1 * q2 != q2 * q1)", "q - r", "r - q"] expressions.each do |exp| puts "%20s = %s" % [exp, eval(exp)] end  end</lang> Output:  q = Quaternion[1, 2, 3, 4] q1 = Quaternion[2, 3, 4, 5] q2 = Quaternion[3, 4, 5, 6] q.norm = 5.477225575051661 -q = Quaternion[-1, -2, -3, -4] q.conj = Quaternion[1, -2, -3, -4] q + r = Quaternion[8, 2, 3, 4] r + q = Quaternion[8, 2, 3, 4] q1 + q2 = Quaternion[5, 7, 9, 11] q2 + q1 = Quaternion[5, 7, 9, 11] q * r = Quaternion[7, 14, 21, 28] r * q = Quaternion[7, 14, 21, 28] q1 * q2 = Quaternion[-56, 16, 24, 26] q2 * q1 = Quaternion[-56, 18, 20, 28] (q1 * q2 != q2 * q1) = true q - r = Quaternion[-6, 2, 3, 4] r - q = Quaternion[6, -2, -3, -4]  Scala <lang scala>case class Quaternion(re:Double =0.0, i:Double =0.0, j:Double =0.0, k:Double =0.0) {  lazy val im=(i, j, k) private lazy val norm2=re*re + i*i + j*j + k*k lazy val norm=math.sqrt(norm2) def negative=new Quaternion(-re, -i, -j, -k) def conjugate=new Quaternion(re, -i, -j, -k) def reciprocal=new Quaternion(re/norm2, -i/norm2, -j/norm2, -k/norm2) def +(q:Quaternion)=new Quaternion(re+q.re, i+q.i, j+q.j, k+q.k) def -(q:Quaternion)=new Quaternion(re-q.re, i-q.i, j-q.j, k-q.k) def *(q:Quaternion)=new Quaternion(  re*q.re - i*q.i - j*q.j - k*q.k, re*q.i + i*q.re + j*q.k - k*q.j, re*q.j - i*q.k + j*q.re + k*q.i, re*q.k + i*q.j - j*q.i + k*q.re  ) def /(q:Quaternion)=this*q.reciprocal def unary_- = negative def unary_~ = conjugate override def equals(x:Any):Boolean=x match {  case Quaternion(re, i, j, k) => (Double.doubleToLongBits(this.re)==Double.doubleToLongBits(re)) && Double.doubleToLongBits(this.i)==Double.doubleToLongBits(i) && Double.doubleToLongBits(this.j)==Double.doubleToLongBits(j) && Double.doubleToLongBits(this.k)==Double.doubleToLongBits(k) case _ => false }  override def toString()="Q(%.2f, %.2fi, %.2fj, %.2fk)".formatLocal(Locale.ENGLISH, re,i,j,k)  } object Quaternion {  implicit def number2Quaternion[T <% Number](n:T):Quaternion = apply(n.doubleValue)  }</lang> Demonstration: <lang scala>val q0=Quaternion(1.0, 2.0, 3.0, 4.0); val q1=Quaternion(2.0, 3.0, 4.0, 5.0); val q2=Quaternion(3.0, 4.0, 5.0, 6.0); val r=7; println("q0 = "+ q0) println("q1 = "+ q1) println("q2 = "+ q2) println("r = "+ r) println() println("q0.re = "+ q0.re) println("q0.im = "+ q0.im) println("q0.norm = "+ q0.norm) println("q0.negative = "+ q0.negative) println("-q0 = "+ -q0) println("q0.conjugate = "+ q0.conjugate) println("~q0 = "+ ~q0) println("q1+q2 = "+ (q1+q2)) println("q2+q1 = "+ (q2+q1)) println("q1+r = "+ (q1+r)) println("r+q1 = "+ (r+q1)) println("q1-q2 = "+ (q1-q2)) println("q2-q1 = "+ (q2-q1)) println("q1-r = "+ (q1-r)) println("r-q1 = "+ (r-q1)) println("q1*q2 = "+ q1*q2) println("q2*q1 = "+ q2*q1) println("q1*r = "+ q1*r) println("r*q1 = "+ r*q1) println("(q1*q2)!=(q2*q1) = "+ ((q1*q2)!=(q2*q1))) println("q1/q2 = "+ q1/q2) println("q2/q1 = "+ q2/q1) println("q1/r = "+ q1/r) println("r/q1 = "+ r/q1)</lang> Output: q0 = Q(1.00, 2.00i, 3.00j, 4.00k) q1 = Q(2.00, 3.00i, 4.00j, 5.00k) q2 = Q(3.00, 4.00i, 5.00j, 6.00k) r = 7 q0.re = 1.0 q0.im = (2.0,3.0,4.0) q0.norm = 5.477225575051661 q0.negative = Q(-1.00, -2.00i, -3.00j, -4.00k) -q0 = Q(-1.00, -2.00i, -3.00j, -4.00k) q0.conjugate = Q(1.00, -2.00i, -3.00j, -4.00k) ~q0 = Q(1.00, -2.00i, -3.00j, -4.00k) q1+q2 = Q(5.00, 7.00i, 9.00j, 11.00k) q2+q1 = Q(5.00, 7.00i, 9.00j, 11.00k) q1+r = Q(9.00, 3.00i, 4.00j, 5.00k) r+q1 = Q(9.00, 3.00i, 4.00j, 5.00k) q1-q2 = Q(-1.00, -1.00i, -1.00j, -1.00k) q2-q1 = Q(1.00, 1.00i, 1.00j, 1.00k) q1-r = Q(-5.00, 3.00i, 4.00j, 5.00k) r-q1 = Q(5.00, -3.00i, -4.00j, -5.00k) q1*q2 = Q(-56.00, 16.00i, 24.00j, 26.00k) q2*q1 = Q(-56.00, 18.00i, 20.00j, 28.00k) q1*r = Q(14.00, 21.00i, 28.00j, 35.00k) r*q1 = Q(14.00, 21.00i, 28.00j, 35.00k) (q1*q2)!=(q2*q1) = true q1/q2 = Q(0.79, 0.02i, -0.00j, 0.05k) q2/q1 = Q(1.26, -0.04i, 0.00j, -0.07k) q1/r = Q(0.29, 0.43i, 0.57j, 0.71k) r/q1 = Q(0.26, -0.39i, -0.52j, -0.65k) Tcl Works with: Tcl version 8.6 or Library: TclOO <lang tcl>package require TclOO 1. Support class that provides C++-like RAII lifetimes oo::class create RAII-support {  constructor {} {  upvar 1 { end } end lappend end [self] trace add variable end unset [namespace code {my destroy}]  } destructor {  catch { upvar 1 { end } end trace remove variable end unset [namespace code {my destroy}] }  } method return Template:Level 1 {  incr level upvar 1 { end } end upvar$level { end } parent trace remove variable end unset [namespace code {my destroy}] lappend parent [self] trace add variable parent unset [namespace code {my destroy}] return -level $level [self]  }  } 1. Class of quaternions oo::class create Q {  superclass RAII-support variable R I J K constructor {{real 0} {i 0} {j 0} {k 0}} {  next namespace import ::tcl::mathfunc::* ::tcl::mathop::* variable R [double$real] I [double $i] J [double$j] K [double $k]  } self method return args {  [my new {*}$args] return 2

   }

   method p {} {


return "Q($R,$I,$J,$K)"

   }
method values {} {


list $R$I $J$K

   }

   method Norm {} {


+ [* $R$R] [* $I$I] [* $J$J] [* $K$K]

   }

   method conjugate {} {


Q return $R [-$I] [- $J] [-$K]

   }
method norm {} {


sqrt [my Norm]

   }
method unit {} {


set n [my norm] Q return [/ $R$n] [/ $I$n] [/ $J$n] [/ $K$n]

   }
method reciprocal {} {


set n2 [my Norm] Q return [/ $R$n2] [/ $I$n2] [/ $J$n2] [/ $K$n2]

   }
method - Template:Q "" {


if {[llength [info level 0]] == 2} { Q return [- $R] [-$I] [- $J] [-$K] } [my + [$q -]] return  } method + q {  if {[info object isa object$q]} { lassign [$q values] real i j k Q return [+$R $real] [+$I $i] [+$J $j] [+$K $k] } Q return [+$R [double $q]]$I $J$K

   }
method * q {


if {[info object isa object $q]} { lassign [my values] a1 b1 c1 d1 lassign [$q values] a2 b2 c2 d2 Q return [expr {$a1*$a2 - $b1*$b2 - $c1*$c2 - $d1*$d2}] \ [expr {$a1*$b2 + $b1*$a2 + $c1*$d2 - $d1*$c2}] \ [expr {$a1*$c2 - $b1*$d2 + $c1*$a2 + $d1*$b2}] \ [expr {$a1*$d2 + $b1*$c2 - $c1*$b2 + $d1*$a2}] } set f [double $q] Q return [*$R $f] [*$I $f] [*$J $f] [*$K $f]  } method == q {  expr { [info object isa object$q] && [info object isa typeof $q [self class]] && [my values] eq [$q values] }

   }

   export - + * ==


}</lang> Demonstration code: <lang tcl>set q [Q new 1 2 3 4] set q1 [Q new 2 3 4 5] set q2 [Q new 3 4 5 6] set r 7

puts "q = [$q p]" puts "q1 = [$q1 p]" puts "q2 = [$q2 p]" puts "r =$r" puts "q norm = [$q norm]" puts "q1 norm = [$q1 norm]" puts "q2 norm = [$q2 norm]" puts "-q = [[$q -] p]" puts "q conj = [[$q conjugate] p]" puts "q + r = [[$q + $r] p]" 1. Real numbers are not objects, so no extending operations for them puts "q1 + q2 = [[$q1 + $q2] p]" puts "q2 + q1 = [[$q2 + $q1] p]" puts "q * r = [[$q * $r] p]" puts "q1 * q2 = [[$q1 * $q2] p]" puts "q2 * q1 = [[$q2 * $q1] p]" puts "equal(q1*q2, q2*q1) = [[$q1 * $q2] == [$q2 * \$q1]]"</lang>

Output:
q = Q(1.0,2.0,3.0,4.0)
q1 = Q(2.0,3.0,4.0,5.0)
q2 = Q(3.0,4.0,5.0,6.0)
r = 7
q norm = 5.477225575051661
q1 norm = 7.3484692283495345
q2 norm = 9.273618495495704
-q = Q(-1.0,-2.0,-3.0,-4.0)
q conj = Q(1.0,-2.0,-3.0,-4.0)
q + r = Q(8.0,2.0,3.0,4.0)
q1 + q2 = Q(5.0,7.0,9.0,11.0)
q2 + q1 = Q(5.0,7.0,9.0,11.0)
q * r = Q(7.0,14.0,21.0,28.0)
q1 * q2 = Q(-56.0,16.0,24.0,26.0)
q2 * q1 = Q(-56.0,18.0,20.0,28.0)
equal(q1*q2, q2*q1) = 0


zkl

Translation of: D

<lang zkl>class Quat{

  fcn init(real=0,i1=0,i2=0,i3=0){
var [const] vector= // Quat(r,i,j,k) or Quat( (r,i,j,k) )
(if(List.isType(real)) real else vm.arglist).apply("toFloat");
var r,i,j,k; r,i,j,k=vector; // duplicate data for ease of coding
var [const]	// properties: This is one way to do it
norm2=vector.apply("pow",2).sum(0.0), // Norm squared


abs=norm2.sqrt(), // Norm arg=(r/abs()).acos(), // Theta !!!this may be incorrect...

     ;
}
fcn toString { String("[",vector.concat(","),"]") }
var [const proxy]	// properties that need calculation (or are recursive)
conj   =fcn{ Quat(r,-i,-j,-k) },		// Conjugate
recip  =fcn{ n2:=norm2; Quat(r/n2,-i/n2,-j/n2,-k/n2) },// Reciprocal
pureim =fcn{ Quat(0, i, j, k) },   	// Pure imagery
versor =fcn{ self / abs; }, 		// Unit versor
iversor=fcn{ pureim / pureim.abs; },	// Unit versor of imagery part
;

fcn __opEQ(z) { r == z.r and i == z.i and j == z.j and k == z.k }
fcn __opNEQ(z){ (not (self==z)) }

  fcn __opNegate{ Quat(-r, -i, -j, -k) }
if (Quat.isInstanceOf(z)) Quat(vector.zipWith('+,z.vector));
else			Quat(r+z,i,j,k);
}
fcn __opSub(z){
if (Quat.isInstanceOf(z)) Quat(vector.zipWith('-,z.vector));
else			Quat(r-z,vector.xplode(1)); // same as above
}
fcn __opMul(z){
if (Quat.isInstanceOf(z)){


Quat(r*z.r - i*z.i - j*z.j - k*z.k, r*z.i + i*z.r + j*z.k - k*z.j, r*z.j - i*z.k + j*z.r + k*z.i, r*z.k + i*z.j - j*z.i + k*z.r);

     }
else Quat(vector.apply('*(z)));
}
fcn __opDiv(z){
if (Quat.isInstanceOf(z)) self*z.recip;
else			Quat(r/z,i/z,j/z,k/z);
}

fcn pow(r){ exp(r*iversor*arg)*abs.pow(r) }	// Power function
fcn log{ iversor*(r / abs).acos() + abs.log() }
fcn exp{					// e^q
inorm:=pureim.abs;
(iversor*inorm.sin() + inorm.cos()) * r.exp();
}


}</lang> <lang zkl> // Demo code r:=7; q:=Quat(2,3,4,5); q1:=Quat(2,3,4,5); q2:=Quat(3,4,5,6);

println("1. norm: q.abs: ", q.abs); println("2. -q: ", -q); println("3. conjugate: q.conj: ", q.conj); println("4. Quat(r) + q: ", Quat(r) + q); println(" q + r: ", q + r); println("5. q1 + q2: ", q1 + q2); println("6. Quat(r) * q: ", Quat(r) * q); println(" q * r: ", q * r); println("7. q1 * q2: ", q1 * q2); println(" q2 * q1: ", q2 * q1); println("8. q1 * q2 == q2 * q1 ? ", q1 * q2 == q2 * q1);

i:=Quat(0,1); j:=Quat(0,0,1); k:=Quat(0,0,0,1); println("9.1 i * i: ", i * i); println(" J * j: ", j * j); println(" k * k: ", k * k); println(" i * j * k: ", i * j * k);

println("9.2 q1 / q2: ", q1 / q2); println("9.3 q1 / q2 * q2: ", q1 / q2 * q2); println(" q2 * q1 / q2: ", q2 * q1 / q2); println("9.4 (i * pi).exp(): ", (i * (0.0).pi).exp()); println(" exp(j * pi): ", (j * (0.0).pi).exp()); println(" exp(k * pi): ", (k * (0.0).pi).exp()); println(" q.exp(): ", q.exp()); println(" q.log(): ", q.log()); println(" q.log().exp(): ", q.log().exp()); println(" q.exp().log(): ", q.exp().log());

s:=q.exp().log(); println("9.5 let s=q.exp().log(): ", s); println(" s.exp(): ", s.exp()); println(" s.log(): ", s.log()); println(" s.log().exp(): ", s.log().exp()); println(" s.exp().log(): ", s.exp().log());</lang>

Output:
1.          norm: q.abs: 7.34847
2.                   -q: [-2,-3,-4,-5]
3.    conjugate: q.conj: [2,-3,-4,-5]
4.          Quat(r) + q: [9,3,4,5]
q + r: [9,3,4,5]
5.              q1 + q2: [5,7,9,11]
6.          Quat(r) * q: [14,21,28,35]
q * r: [14,21,28,35]
7.              q1 * q2: [-56,16,24,26]
q2 * q1: [-56,18,20,28]
8.  q1 * q2 == q2 * q1 ? False
9.1               i * i: [-1,0,0,0]
J * j: [-1,0,0,0]
k * k: [-1,0,0,0]
i * j * k: [-1,0,0,0]
9.2             q1 / q2: [0.790698,0.0232558,-2.77556e-17,0.0465116]
9.3        q1 / q2 * q2: [2,3,4,5]
q2 * q1 / q2: [2,3.46512,3.90698,4.76744]
9.4      (i * pi).exp(): [-1,1.22465e-16,0,0]
exp(j * pi): [-1,0,1.22465e-16,0]
exp(k * pi): [-1,0,0,1.22465e-16]
q.exp(): [5.21186,2.22222,2.96296,3.7037]
q.log(): [1.99449,0.549487,0.732649,0.915812]
q.log().exp(): [2,3,4,5]
q.exp().log(): [2,0.33427,0.445694,0.557117]
9.5 let s=q.exp().log(): [2,0.33427,0.445694,0.557117]
s.exp(): [5.21186,2.22222,2.96296,3.7037]
s.log(): [0.765279,0.159215,0.212286,0.265358]
s.log().exp(): [2,0.33427,0.445694,0.557117]
s.exp().log(): [2,0.33427,0.445694,0.557117]