Quaternion type

You are encouraged to solve this task according to the task description, using any language you may know.
Quaternions are an extension of the idea of complex numbers.
A complex number has a real and complex part written sometimes as a + bi
, where a and b stand for real numbers and i stands for the square root of minus 1. An example of a complex number might be -3 + 2i
, where the real part, a is -3.0 and the complex part, b is +2.0.
A quaternion has one real part and three imaginary parts, i, j, and k. A quaternion might be written as a + bi + cj + dk
. In this numbering system, ii = jj = kk = ijk = -1
. The order of multiplication is important, as, in general, for two quaternions q1 and q2; q1q2 != q2q1
.
An example of a quaternion might be 1 +2i +3j +4k
There is a list form of notation where just the numbers are shown and the imaginary multipliers i, j, and k are assumed by position. So the example above would be written as (1, 2, 3, 4)
Task Description
Given the three quaternions and their components:
q = (1, 2, 3, 4) = (a, b, c, d ) q1 = (2, 3, 4, 5) = (a1, b1, c1, d1) q2 = (3, 4, 5, 6) = (a2, b2, c2, d2)
And a wholly real number r = 7
.
Your task is to create functions or classes to perform simple maths with quaternions including computing:
- The norm of a quaternion:
- The negative of a quaternion:
=(-a, -b, -c, -d)
- The conjugate of a quaternion:
=( a, -b, -c, -d)
- Addition of a real number r and a quaternion q:
r + q = q + r = (a+r, b, c, d)
- Addition of two quaternions:
q1 + q2 = (a1+a2, b1+b2, c1+c2, d1+d2)
- Multiplication of a real number and a quaternion:
qr = rq = (ar, br, cr, dr)
- Multiplication of two quaternions q1 and q2 is given by:
( a1a2 − b1b2 − c1c2 − d1d2,
a1b2 + b1a2 + c1d2 − d1c2,
a1c2 − b1d2 + c1a2 + d1b2,
a1d2 + b1c2 − c1b2 + d1a2 )
- Show that, for the two quaternions q1 and q2:
q1q2 != q2q1
If your language has built-in support for quaternions then use it.
C.f.
- Vector products
- On Quaternions; or on a new System of Imaginaries in Algebra. By Sir William Rowan Hamilton LL.D, P.R.I.A., F.R.A.S., Hon. M. R. Soc. Ed. and Dub., Hon. or Corr. M. of the Royal or Imperial Academies of St. Petersburgh, Berlin, Turin and Paris, Member of the American Academy of Arts and Sciences, and of other Scientific Societies at Home and Abroad, Andrews' Prof. of Astronomy in the University of Dublin, and Royal Astronomer of Ireland.
Ada
The package specification (works with any floating-point type): <lang Ada>generic
type Real is digits <>;
package Quaternions is
type Quaternion is record A, B, C, D : Real; end record; function "abs" (Left : Quaternion) return Real; function Conj (Left : Quaternion) return Quaternion; function "-" (Left : Quaternion) return Quaternion; function "+" (Left, Right : Quaternion) return Quaternion; function "-" (Left, Right : Quaternion) return Quaternion; function "*" (Left : Quaternion; Right : Real) return Quaternion; function "*" (Left : Real; Right : Quaternion) return Quaternion; function "*" (Left, Right : Quaternion) return Quaternion; function Image (Left : Quaternion) return String;
end Quaternions;</lang> The package implementation: <lang Ada>with Ada.Numerics.Generic_Elementary_Functions; package body Quaternions is
package Elementary_Functions is new Ada.Numerics.Generic_Elementary_Functions (Real); use Elementary_Functions; function "abs" (Left : Quaternion) return Real is begin return Sqrt (Left.A**2 + Left.B**2 + Left.C**2 + Left.D**2); end "abs"; function Conj (Left : Quaternion) return Quaternion is begin return (A => Left.A, B => -Left.B, C => -Left.C, D => -Left.D); end Conj; function "-" (Left : Quaternion) return Quaternion is begin return (A => -Left.A, B => -Left.B, C => -Left.C, D => -Left.D); end "-"; function "+" (Left, Right : Quaternion) return Quaternion is begin return ( A => Left.A + Right.A, B => Left.B + Right.B, C => Left.C + Right.C, D => Left.D + Right.D ); end "+"; function "-" (Left, Right : Quaternion) return Quaternion is begin return ( A => Left.A - Right.A, B => Left.B - Right.B, C => Left.C - Right.C, D => Left.D - Right.D ); end "-"; function "*" (Left : Quaternion; Right : Real) return Quaternion is begin return ( A => Left.A * Right, B => Left.B * Right, C => Left.C * Right, D => Left.D * Right ); end "*"; function "*" (Left : Real; Right : Quaternion) return Quaternion is begin return Right * Left; end "*"; function "*" (Left, Right : Quaternion) return Quaternion is begin return ( A => Left.A * Right.A - Left.B * Right.B - Left.C * Right.C - Left.D * Right.D, B => Left.A * Right.B + Left.B * Right.A + Left.C * Right.D - Left.D * Right.C, C => Left.A * Right.C - Left.B * Right.D + Left.C * Right.A + Left.D * Right.B, D => Left.A * Right.D + Left.B * Right.C - Left.C * Right.B + Left.D * Right.A ); end "*"; function Image (Left : Quaternion) return String is begin return Real'Image (Left.A) & " +" & Real'Image (Left.B) & "i +" & Real'Image (Left.C) & "j +" & Real'Image (Left.D) & "k"; end Image;
end Quaternions;</lang> Test program: <lang Ada>with Ada.Text_IO; use Ada.Text_IO; with Quaternions; procedure Test_Quaternion is
package Float_Quaternion is new Quaternions (Float); use Float_Quaternion; q : Quaternion := (1.0, 2.0, 3.0, 4.0); q1 : Quaternion := (2.0, 3.0, 4.0, 5.0); q2 : Quaternion := (3.0, 4.0, 5.0, 6.0); r : Float := 7.0;
begin
Put_Line ("q = " & Image (q)); Put_Line ("q1 = " & Image (q1)); Put_Line ("q2 = " & Image (q2)); Put_Line ("r =" & Float'Image (r)); Put_Line ("abs q =" & Float'Image (abs q)); Put_Line ("abs q1 =" & Float' Image (abs q1)); Put_Line ("abs q2 =" & Float' Image (abs q2)); Put_Line ("-q = " & Image (-q)); Put_Line ("conj q = " & Image (Conj (q))); Put_Line ("q1 + q2 = " & Image (q1 + q2)); Put_Line ("q2 + q1 = " & Image (q2 + q1)); Put_Line ("q * r = " & Image (q * r)); Put_Line ("r * q = " & Image (r * q)); Put_Line ("q1 * q2 = " & Image (q1 * q2)); Put_Line ("q2 * q1 = " & Image (q2 * q1));
end Test_Quaternion;</lang>
- Output:
q = 1.00000E+00 + 2.00000E+00i + 3.00000E+00j + 4.00000E+00k q1 = 2.00000E+00 + 3.00000E+00i + 4.00000E+00j + 5.00000E+00k q2 = 3.00000E+00 + 4.00000E+00i + 5.00000E+00j + 6.00000E+00k r = 7.00000E+00 abs q = 5.47723E+00 abs q1 = 7.34847E+00 abs q2 = 9.27362E+00 -q = -1.00000E+00 +-2.00000E+00i +-3.00000E+00j +-4.00000E+00k conj q = 1.00000E+00 +-2.00000E+00i +-3.00000E+00j +-4.00000E+00k q1 + q2 = 5.00000E+00 + 7.00000E+00i + 9.00000E+00j + 1.10000E+01k q2 + q1 = 5.00000E+00 + 7.00000E+00i + 9.00000E+00j + 1.10000E+01k q * r = 7.00000E+00 + 1.40000E+01i + 2.10000E+01j + 2.80000E+01k r * q = 7.00000E+00 + 1.40000E+01i + 2.10000E+01j + 2.80000E+01k q1 * q2 = -5.60000E+01 + 1.60000E+01i + 2.40000E+01j + 2.60000E+01k q2 * q1 = -5.60000E+01 + 1.80000E+01i + 2.00000E+01j + 2.80000E+01k
ALGOL 68
Note: This specimen retains the original python coding style.
File: prelude/Quaternion.a68<lang algol68># -*- coding: utf-8 -*- #
COMMENT REQUIRES:
MODE QUATSCAL = REAL; # Scalar # QUATSCAL quat small scal = small real;
END COMMENT
- PROVIDES: #
FORMAT quat scal fmt := $g(-0, 4)$; FORMAT signed fmt = $b("+", "")f(quat scal fmt)$;
FORMAT quat fmt = $f(quat scal fmt)"+"f(quat scal fmt)"i+"f(quat scal fmt)"j+"f(quat scal fmt)"k"$; FORMAT squat fmt = $f(signed fmt)f(signed fmt)"i"f(signed fmt)"j"f(signed fmt)"k"$;
MODE QUAT = STRUCT(QUATSCAL r, i, j, k); QUAT i=(0, 1, 0, 0),
j=(0, 0, 1, 0), k=(0, 0, 0, 1);
MODE QUATCOSCAL = UNION(INT, SHORT REAL, SHORT INT); MODE QUATSUBSCAL = UNION(QUATCOSCAL, QUATSCAL);
MODE COMPLSCAL = STRUCT(QUATSCAL r, im);
- compatable but not the same #
MODE ISOQUAT = UNION([]REAL, []INT, []SHORT REAL, []SHORT INT, []QUATSCAL); MODE COQUAT = UNION(COMPLSCAL, QUATCOSCAL, ISOQUAT); MODE SUBQUAT = UNION(COQUAT, QUAT); # subset is itself #
MODE QUATERNION = QUAT;
PROC quat fix type error = (QUAT quat, []STRING msg)BOOL: (
putf(stand error, ($"Type error:"$,$" "g$, msg, quat fmt, quat, $l$)); stop
);
COMMENT For a list of coercions expected in A68 c.f.
Pre-Strong context: Deproceduring, dereferencing & uniting. e.g. OP arguments
* soft(deproceduring for assignment), * weak(dereferencing for slicing and OF selection), * meek(dereferencing for indexing, enquiries and PROC calls), * firm(uniting of OPerators),
Strong context only: widening (INT=>REAL=>COMPL), rowing (REAL=>[]REAL) & voiding
* strong(widening,rowing,voiding for identities/initialisations, arguments and casts et al)
Key points:
* arguments to OPerators do not widen or row! * UNITING is permitted in OP/String ccontext.
There are 4 principle scenerios for most operators: +---------------+-------------------------------+-------------------------------+ | OP e.g. * | SCALar | QUATernion | +---------------+-------------------------------+-------------------------------+ | SCALar | SCAL * SCAL ... inherit | SCAL * QUAT | +---------------+-------------------------------+-------------------------------+ | QUATernion | QUAT * SCAL | QUAT * QUAT | +---------------+-------------------------------+-------------------------------+ However this is compounded with SUBtypes of the SCALar & isomorphs the QUATernion, e.g.
- SCAL may be a superset of SHORT REAL or INT - a widening coercion is required
- QUAT may be a superset eg of COMPL or [4]INT
- QUAT may be a structural isomorph eg of [4]REAL
+---------------+---------------+---------------+---------------+---------------+ | OP e.g. * | SUBSCAL | SCALar | COQUAT | QUATernion | +---------------+---------------+---------------+---------------+---------------+ | SUBSCAL | | inherit | SUBSCAT*QUAT | +---------------+ inherit +---------------+---------------+ | SCALar | | inherit | SCAL * QUAT | +---------------+---------------+---------------+---------------+---------------+ | COQUAT | inherit | inherit | inherit | COQUAT*QUAT | +---------------+---------------+---------------+---------------+---------------+ | QUATernion | QUAT*SUBSCAL | QUAT*SCAL | QUAT * COQUAT | QUAT * QUAT | +---------------+---------------+---------------+---------------+---------------+ Keypoint: if an EXPLICIT QUAT is not involved, then we can simple inherit, OR QUATINIT! END COMMENT
MODE CLASSQUAT = STRUCT(
PROC (REF QUAT #new#, QUATSCAL #r#, QUATSCAL #i#, QUATSCAL #j#, QUATSCAL #k#)REF QUAT new, PROC (REF QUAT #self#)QUAT conjugate, PROC (REF QUAT #self#)QUATSCAL norm sq, PROC (REF QUAT #self#)QUATSCAL norm, PROC (REF QUAT #self#)QUAT reciprocal, PROC (REF QUAT #self#)STRING repr, PROC (REF QUAT #self#)QUAT neg, PROC (REF QUAT #self#, SUBQUAT #other#)QUAT add, PROC (REF QUAT #self#, SUBQUAT #other#)QUAT radd, PROC (REF QUAT #self#, SUBQUAT #other#)QUAT sub, PROC (REF QUAT #self#, SUBQUAT #other#)QUAT mul, PROC (REF QUAT #self#, SUBQUAT #other#)QUAT rmul, PROC (REF QUAT #self#, SUBQUAT #other#)QUAT div, PROC (REF QUAT #self#, SUBQUAT #other#)QUAT rdiv, PROC (REF QUAT #self#)QUAT exp
);
CLASSQUAT class quat = (
# PROC new =#(REF QUAT new, QUATSCAL r, i, j, k)REF QUAT: ( # 'Defaults all parts of quaternion to zero' # IF new ISNT REF QUAT(NIL) THEN new ELSE HEAP QUAT FI := (r, i, j, k) ),
# PROC conjugate =#(REF QUAT self)QUAT: (r OF self, -i OF self, -j OF self, -k OF self),
# PROC norm sq =#(REF QUAT self)QUATSCAL: r OF self**2 + i OF self**2 + j OF self**2 + k OF self**2,
# PROC norm =#(REF QUAT self)QUATSCAL: sqrt((norm sq OF class quat)(self)),
# PROC reciprocal =#(REF QUAT self)QUAT:( QUATSCAL n2 = (norm sq OF class quat)(self); QUAT conj = (conjugate OF class quat)(self); (r OF conj/n2, i OF conj/n2, j OF conj/n2, k OF conj/n2) ),
# PROC repr =#(REF QUAT self)STRING: ( # 'Shorter form of Quaternion as string' # FILE f; STRING s; associate(f, s); putf(f, (squat fmt, r OF self>=0, r OF self, i OF self>=0, i OF self, j OF self>=0, j OF self, k OF self>=0, k OF self)); close(f); s ),
# PROC neg =#(REF QUAT self)QUAT: (-r OF self, -i OF self, -j OF self, -k OF self),
# PROC add =#(REF QUAT self, SUBQUAT other)QUAT: CASE other IN (QUAT other): (r OF self + r OF other, i OF self + i OF other, j OF self + j OF other, k OF self + k OF other), (QUATSUBSCAL other): (r OF self + QUATSCALINIT other, i OF self, j OF self, k OF self) OUT IF quat fix type error(SKIP,"in add") THEN SKIP ELSE stop FI ESAC,
# PROC radd =#(REF QUAT self, SUBQUAT other)QUAT: (add OF class quat)(self, other),
# PROC sub =#(REF QUAT self, SUBQUAT other)QUAT: CASE other IN (QUAT other): (r OF self - r OF other, i OF self - i OF other, j OF self - j OF other, k OF self - k OF other), (QUATSCAL other): (r OF self - other, i OF self, j OF self, k OF self) OUT IF quat fix type error(self,"in sub") THEN SKIP ELSE stop FI ESAC,
# PROC mul =#(REF QUAT self, SUBQUAT other)QUAT: CASE other IN (QUAT other):( r OF self*r OF other - i OF self*i OF other - j OF self*j OF other - k OF self*k OF other, r OF self*i OF other + i OF self*r OF other + j OF self*k OF other - k OF self*j OF other, r OF self*j OF other - i OF self*k OF other + j OF self*r OF other + k OF self*i OF other, r OF self*k OF other + i OF self*j OF other - j OF self*i OF other + k OF self*r OF other ), (QUATSCAL other): ( r OF self * other, i OF self * other, j OF self * other, k OF self * other) OUT IF quat fix type error(self,"in mul") THEN SKIP ELSE stop FI ESAC,
# PROC rmul =#(REF QUAT self, SUBQUAT other)QUAT: CASE other IN (QUAT other): (mul OF class quat)(LOC QUAT := other, self), (QUATSCAL other): (mul OF class quat)(self, other) OUT IF quat fix type error(self,"in rmul") THEN SKIP ELSE stop FI ESAC,
# PROC div =#(REF QUAT self, SUBQUAT other)QUAT: CASE other IN (QUAT other): (mul OF class quat)(self, (reciprocal OF class quat)(LOC QUAT := other)), (QUATSCAL other): (mul OF class quat)(self, 1/other) OUT IF quat fix type error(self,"in div") THEN SKIP ELSE stop FI ESAC,
# PROC rdiv =#(REF QUAT self, SUBQUAT other)QUAT: CASE other IN (QUAT other): (div OF class quat)(LOC QUAT := other, self), (QUATSCAL other): (div OF class quat)(LOC QUAT := (other, 0, 0, 0), self) OUT IF quat fix type error(self,"in rdiv") THEN SKIP ELSE stop FI ESAC,
# PROC exp =#(REF QUAT self)QUAT: ( QUAT fac := self; QUAT sum := 1.0 + fac; FOR i FROM 2 TO bits width WHILE ABS(fac + quat small scal) /= quat small scal DO VOID(sum +:= (fac *:= self / ##QUATSCAL(i))) OD; sum )
);
PRIO INIT = 1; OP QUATSCALINIT = (QUATSUBSCAL scal)QUATSCAL:
CASE scal IN (INT scal): scal, (SHORT INT scal): scal, (SHORT REAL scal): scal OUT IF quat fix type error(SKIP,"in QUATSCALINIT") THEN SKIP ELSE stop FI ESAC;
OP INIT = (REF QUAT new, SUBQUAT from)REF QUAT:
new := CASE from IN (QUATSUBSCAL scal):(QUATSCALINIT scal, 0, 0, 0) #(COQUAT rijk):(new OF class quat)(LOC QUAT := new, rijk[1], rijk[2], rijk[3], rijk[4]),# OUT IF quat fix type error(SKIP,"in INIT") THEN SKIP ELSE stop FI ESAC;
OP QUATINIT = (COQUAT lhs)REF QUAT: (HEAP QUAT)INIT lhs;
OP + = (QUAT q)QUAT: q,
- = (QUAT q)QUAT: (neg OF class quat)(LOC QUAT := q), CONJ = (QUAT q)QUAT: (conjugate OF class quat)(LOC QUAT := q), ABS = (QUAT q)QUATSCAL: (norm OF class quat)(LOC QUAT := q), REPR = (QUAT q)STRING: (repr OF class quat)(LOC QUAT := q);
- missing: Diadic: I, J, K END #
OP +:= = (REF QUAT a, QUAT b)QUAT: a:=( add OF class quat)(a, b),
+:= = (REF QUAT a, COQUAT b)QUAT: a:=( add OF class quat)(a, b), +=: = (QUAT a, REF QUAT b)QUAT: b:=(radd OF class quat)(b, a), +=: = (COQUAT a, REF QUAT b)QUAT: b:=(radd OF class quat)(b, a);
- missing: Worthy PLUSAB, PLUSTO for SHORT/LONG INT QUATSCAL & COMPL #
OP -:= = (REF QUAT a, QUAT b)QUAT: a:=( sub OF class quat)(a, b),
-:= = (REF QUAT a, COQUAT b)QUAT: a:=( sub OF class quat)(a, b);
- missing: Worthy MINUSAB for SHORT/LONG INT ##COQUAT & COMPL #
PRIO *=: = 1, /=: = 1; OP *:= = (REF QUAT a, QUAT b)QUAT: a:=( mul OF class quat)(a, b),
*:= = (REF QUAT a, COQUAT b)QUAT: a:=( mul OF class quat)(a, b), *=: = (QUAT a, REF QUAT b)QUAT: b:=(rmul OF class quat)(b, a), *=: = (COQUAT a, REF QUAT b)QUAT: b:=(rmul OF class quat)(b, a);
- missing: Worthy TIMESAB, TIMESTO for SHORT/LONG INT ##COQUAT & COMPL #
OP /:= = (REF QUAT a, QUAT b)QUAT: a:=( div OF class quat)(a, b),
/:= = (REF QUAT a, COQUAT b)QUAT: a:=( div OF class quat)(a, b), /=: = (QUAT a, REF QUAT b)QUAT: b:=(rdiv OF class quat)(b, a), /=: = (COQUAT a, REF QUAT b)QUAT: b:=(rdiv OF class quat)(b, a);
- missing: Worthy OVERAB, OVERTO for SHORT/LONG INT ##COQUAT & COMPL #
OP + = (QUAT a, b)QUAT: ( add OF class quat)(LOC QUAT := a, b),
+ = (QUAT a, COQUAT b)QUAT: ( add OF class quat)(LOC QUAT := a, b), + = (COQUAT a, QUAT b)QUAT: (radd OF class quat)(LOC QUAT := b, a);
OP - = (QUAT a, b)QUAT: ( sub OF class quat)(LOC QUAT := a, b),
- = (QUAT a, COQUAT b)QUAT: ( sub OF class quat)(LOC QUAT := a, b), - = (COQUAT a, QUAT b)QUAT:-( sub OF class quat)(LOC QUAT := b, a);
OP * = (QUAT a, b)QUAT: ( mul OF class quat)(LOC QUAT := a, b),
* = (QUAT a, COQUAT b)QUAT: ( mul OF class quat)(LOC QUAT := a, b), * = (COQUAT a, QUAT b)QUAT: (rmul OF class quat)(LOC QUAT := b, a);
OP / = (QUAT a, b)QUAT: ( div OF class quat)(LOC QUAT := a, b),
/ = (QUAT a, COQUAT b)QUAT: ( div OF class quat)(LOC QUAT := a, b), / = (COQUAT a, QUAT b)QUAT: ( div OF class quat)(LOC QUAT := QUATINIT 1, a);
PROC quat exp = (QUAT q)QUAT: (exp OF class quat)(LOC QUAT := q);
SKIP # missing: quat arc{sin, cos, tan}h, log, exp, ln etc END #</lang>File: test/Quaternion.a68<lang algol68>#!/usr/bin/a68g --script #
- -*- coding: utf-8 -*- #
- REQUIRES: #
MODE QUATSCAL = REAL; # Scalar # QUATSCAL quat small scal = small real;
PR READ "prelude/Quaternion.a68" PR;
test:(
REAL r = 7; QUAT q = (1, 2, 3, 4), q1 = (2, 3, 4, 5), q2 = (3, 4, 5, 6);
printf(( $"r = " f(quat scal fmt)l$, r, $"q = " f(quat fmt)l$, q, $"q1 = " f(quat fmt)l$, q1, $"q2 = " f(quat fmt)l$, q2, $"ABS q = " f(quat scal fmt)", "$, ABS q, $"ABS q1 = " f(quat scal fmt)", "$, ABS q1, $"ABS q2 = " f(quat scal fmt)l$, ABS q2, $"-q = " f(quat fmt)l$, -q, $"CONJ q = " f(quat fmt)l$, CONJ q, $"r + q = " f(quat fmt)l$, r + q, $"q + r = " f(quat fmt)l$, q + r, $"q1 + q2 = "f(quat fmt)l$, q1 + q2, $"q2 + q1 = "f(quat fmt)l$, q2 + q1, $"q * r = " f(quat fmt)l$, q * r, $"r * q = " f(quat fmt)l$, r * q, $"q1 * q2 = "f(quat fmt)l$, q1 * q2, $"q2 * q1 = "f(quat fmt)l$, q2 * q1 ));
CO
$"ASSERT q1 * q2 != q2 * q1 = "f(quat fmt)l$, ASSERT q1 * q2 != q2 * q1, $l$;
END CO
printf(( $"i*i = " f(quat fmt)l$, i*i, $"j*j = " f(quat fmt)l$, j*j, $"k*k = " f(quat fmt)l$, k*k, $"i*j*k = " f(quat fmt)l$, i*j*k, $"q1 / q2 = " f(quat fmt)l$, q1 / q2, $"q1 / q2 * q2 = "f(quat fmt)l$, q1 / q2 * q2, $"q2 * q1 / q2 = "f(quat fmt)l$, q2 * q1 / q2, $"1/q1 * q1 = " f(quat fmt)l$, 1.0/q1 * q1, $"q1 / q1 = " f(quat fmt)l$, q1 / q1, $"quat exp(pi * i) = " f(quat fmt)l$, quat exp(pi * i), $"quat exp(pi * j) = " f(quat fmt)l$, quat exp(pi * j), $"quat exp(pi * k) = " f(quat fmt)l$, quat exp(pi * k) )); print((REPR(-q1*q2), ", ", REPR(-q2*q1), new line))
)</lang>
- Output:
r = 7.0000 q = 1.0000+2.0000i+3.0000j+4.0000k q1 = 2.0000+3.0000i+4.0000j+5.0000k q2 = 3.0000+4.0000i+5.0000j+6.0000k ABS q = 5.4772, ABS q1 = 7.3485, ABS q2 = 9.2736 -q = -1.0000+-2.0000i+-3.0000j+-4.0000k CONJ q = 1.0000+-2.0000i+-3.0000j+-4.0000k r + q = 8.0000+2.0000i+3.0000j+4.0000k q + r = 8.0000+2.0000i+3.0000j+4.0000k q1 + q2 = 5.0000+7.0000i+9.0000j+11.0000k q2 + q1 = 5.0000+7.0000i+9.0000j+11.0000k q * r = 7.0000+14.0000i+21.0000j+28.0000k r * q = 7.0000+14.0000i+21.0000j+28.0000k q1 * q2 = -56.0000+16.0000i+24.0000j+26.0000k q2 * q1 = -56.0000+18.0000i+20.0000j+28.0000k i*i = -1.0000+.0000i+.0000j+.0000k j*j = -1.0000+.0000i+.0000j+.0000k k*k = -1.0000+.0000i+.0000j+.0000k i*j*k = -1.0000+.0000i+.0000j+.0000k q1 / q2 = .7907+.0233i+-.0000j+.0465k q1 / q2 * q2 = 2.0000+3.0000i+4.0000j+5.0000k q2 * q1 / q2 = 2.0000+3.4651i+3.9070j+4.7674k 1/q1 * q1 = 2.0000+3.0000i+4.0000j+5.0000k q1 / q1 = 1.0000+.0000i+.0000j+.0000k quat exp(pi * i) = -1.0000+.0000i+.0000j+.0000k quat exp(pi * j) = -1.0000+.0000i+.0000j+.0000k quat exp(pi * k) = -1.0000+.0000i+.0000j+.0000k +56.0000-16.0000i-24.0000j-26.0000k, +56.0000-18.0000i-20.0000j-28.0000k
ALGOL W
<lang algolw>begin
% Quaternion record type % record Quaternion ( real a, b, c, d );
% returns the norm of the specified quaternion % real procedure normQ ( reference(Quaternion) value q ) ; sqrt( (a(q) * a(q)) + (b(q) * b(q)) + (c(q) * c(q)) + (d(q) * d(q)) );
% returns the negative of the specified quaternion % reference(Quaternion) procedure negQ ( reference(Quaternion) value q ) ; Quaternion( - a(q), - b(q), - c(q), - d(q) );
% returns the conjugate of the specified quaternion % reference(Quaternion) procedure conjQ ( reference(Quaternion) value q ) ; Quaternion( a(q), - b(q), - c(q), - d(q) );
% returns the sum of a real and a quaternion % reference(Quaternion) procedure addRQ ( real value r ; reference(Quaternion) value q ) ; Quaternion( r + a(q), b(q), c(q), d(q) );
% returns the sum of a quaternion and a real % reference(Quaternion) procedure addQR ( reference(Quaternion) value q ; real value r ) ; Quaternion( r + a(q), b(q), c(q), d(q) );
% returns the sum of the specified quaternions % reference(Quaternion) procedure addQQ ( reference(Quaternion) value q1 ; reference(Quaternion) value q2 ) ; Quaternion( a(q1) + a(q2), b(q1) + b(q2), c(q1) + c(q2), d(q1) + d(q2) );
% returns the specified quaternion multiplied by a real % reference(Quaternion) procedure mulQR ( reference(Quaternion) value q ; real value r ) ; Quaternion( r * a(q), r * b(q), r * c(q), r * d(q) );
% returns a real multiplied by the specified quaternion % reference(Quaternion) procedure mulRQ ( real value r ; reference(Quaternion) value q ) ; mulQR( q, r );
% returns the Quaternion product of the specified quaternions % reference(Quaternion) procedure mulQQ( reference(Quaternion) value q1 ; reference(Quaternion) value q2 ) ; Quaternion( (a(q1) * a(q2)) - (b(q1) * b(q2)) - (c(q1) * c(q2)) - (d(q1) * d(q2)) , (a(q1) * b(q2)) + (b(q1) * a(q2)) + (c(q1) * d(q2)) - (d(q1) * c(q2)) , (a(q1) * c(q2)) - (b(q1) * d(q2)) + (c(q1) * a(q2)) + (d(q1) * b(q2)) , (a(q1) * d(q2)) + (b(q1) * c(q2)) - (c(q1) * b(q2)) + (d(q1) * a(q2)) );
% returns true if the two quaternions are equal, false otherwise % logical procedure equalQ( reference(Quaternion) value q1 ; reference(Quaternion) value q2 ) ; a(q1) = a(q2) and b(q1) = b(q2) and c(q1) = c(q2) and d(q1) = d(q2);
% writes a quaternion % procedure writeonQ( reference(Quaternion) value q ) ; writeon( "(", a(q), ", ", b(q), ", ", c(q), ", ", d(q), ")" );
% test q1q2 = q2q1 % reference(Quaternion) q, q1, q2;
q := Quaternion( 1, 2, 3, 4 ); q1 := Quaternion( 2, 3, 4, 5 ); q2 := Quaternion( 3, 4, 5, 6 );
% set output format % s_w := 0; r_format := "A"; r_w := 5; r_d := 1;
write( " q:" );writeonQ( q ); write( " q1:" );writeonQ( q1 ); write( " q2:" );writeonQ( q2 ); write( "norm q:" );writeon( normQ( q ) ); write( "norm q1:" );writeon( normQ( q1 ) ); write( "norm q2:" );writeon( normQ( q2 ) );
write( " conj q:" );writeonQ( conjQ( q ) ); write( " - q:" );writeonQ( negQ( q ) ); write( " 7 + q:" );writeonQ( addRQ( 7, q ) ); write( " q + 9:" );writeonQ( addQR( q, 9 ) ); write( " q + q1:" );writeonQ( addQQ( q, q1 ) ); write( " 3 * q:" );writeonQ( mulRQ( 3, q ) ); write( " q * 4:" );writeonQ( mulQR( q, 4 ) );
% check that q1q2 not = q2q1 % if equalQ( mulQQ( q1, q2 ), mulQQ( q2, q1 ) ) then write( "q1q2 = q2q1 ??" ) else write( "q1q2 <> q2q1" );
write( " q1q2:" );writeonQ( mulQQ( q1, q2 ) ); write( " q2q1:" );writeonQ( mulQQ( q2, q1 ) );
end. </lang>
- Output:
q:( 1.0, 2.0, 3.0, 4.0) q1:( 2.0, 3.0, 4.0, 5.0) q2:( 3.0, 4.0, 5.0, 6.0) norm q: 5.4 norm q1: 7.3 norm q2: 9.2 conj q:( 1.0, -2.0, -3.0, -4.0) - q:( -1.0, -2.0, -3.0, -4.0) 7 + q:( 8.0, 2.0, 3.0, 4.0) q + 9:( 10.0, 2.0, 3.0, 4.0) q + q1:( 3.0, 5.0, 7.0, 9.0) 3 * q:( 3.0, 6.0, 9.0, 12.0) q * 4:( 4.0, 8.0, 12.0, 16.0) q1q2 <> q2q1 q1q2:(-56.0, 16.0, 24.0, 26.0) q2q1:(-56.0, 18.0, 20.0, 28.0)
AutoHotkey
(AutoHotkey1.1+)
<lang AutoHotkey>q := [1, 2, 3, 4] q1 := [2, 3, 4, 5] q2 := [3, 4, 5, 6] r := 7
MsgBox, % "q = " PrintQ(q) . "`nq1 = " PrintQ(q1) . "`nq2 = " PrintQ(q2) . "`nr = " r . "`nNorm(q) = " Norm(q) . "`nNegative(q) = " PrintQ(Negative(q)) . "`nConjugate(q) = " PrintQ(Conjugate(q)) . "`nq + r = " PrintQ(AddR(q, r)) . "`nq1 + q2 = " PrintQ(AddQ(q1, q2)) . "`nq2 + q1 = " PrintQ(AddQ(q2, q1)) . "`nqr = " PrintQ(MulR(q, r)) . "`nq1q2 = " PrintQ(MulQ(q1, q2)) . "`nq2q1 = " PrintQ(MulQ(q2, q1))
Norm(q) { return sqrt(q[1]**2 + q[2]**2 + q[3]**2 + q[4]**2) }
Negative(q) { a := [] for k, v in q a[A_Index] := v * -1 return a }
Conjugate(q) { a := [] for k, v in q a[A_Index] := v * (A_Index = 1 ? 1 : -1) return a }
AddR(q, r) { a := [] for k, v in q a[A_Index] := v + (A_Index = 1 ? r : 0) return a }
AddQ(q1, q2) { a := [] for k, v in q1 a[A_Index] := v + q2[A_Index] return a }
MulR(q, r) { a := [] for k, v in q a[A_Index] := v * r return a }
MulQ(q, u) { a := [] , a[1] := q[1]*u[1] - q[2]*u[2] - q[3]*u[3] - q[4]*u[4] , a[2] := q[1]*u[2] + q[2]*u[1] + q[3]*u[4] - q[4]*u[3] , a[3] := q[1]*u[3] - q[2]*u[4] + q[3]*u[1] + q[4]*u[2] , a[4] := q[1]*u[4] + q[2]*u[3] - q[3]*u[2] + q[4]*u[1] return a }
PrintQ(q, b="(") { for k, v in q b .= v (A_Index = q.MaxIndex() ? ")" : ", ") return b }</lang>
- Output:
q = (1, 2, 3, 4) q1 = (2, 3, 4, 5) q2 = (3, 4, 5, 6) r = 7 Norm(q) = 5.477226 Negative(q) = (-1, -2, -3, -4) Conjugate(q) = (1, -2, -3, -4) q + r = (8, 2, 3, 4) q1 + q2 = (5, 7, 9, 11) q2 + q1 = (5, 7, 9, 11) qr = (7, 14, 21, 28) q1q2 = (-56, 16, 24, 26) q2q1 = (-56, 18, 20, 28)
Axiom
Axiom has built-in support for quaternions. <lang Axiom>qi := quatern$Quaternion(Integer);
Type: ((Integer,Integer,Integer,Integer) -> Quaternion(Integer))
q := qi(1,2,3,4);
Type: Quaternion(Integer)
q1 := qi(2,3,4,5);
Type: Quaternion(Integer)
q2 := qi(3,4,5,6);
Type: Quaternion(Integer)
r : Integer := 7;
Type: Integer
sqrt norm q
+--+ (6) \|30 Type: AlgebraicNumber
-q
(7) - 1 - 2i - 3j - 4k Type: Quaternion(Integer)
conjugate q
(8) 1 - 2i - 3j - 4k Type: Quaternion(Integer)
r + q
(9) 8 + 2i + 3j + 4k Type: Quaternion(Integer)
q1 + q2
(10) 5 + 7i + 9j + 11k Type: Quaternion(Integer)
q*r
(11) 7 + 14i + 21j + 28k Type: Quaternion(Integer)
r*q
(12) 7 + 14i + 21j + 28k Type: Quaternion(Integer)
q1*q2 ~= q2*q1
(13) true Type: Boolean</lang>
BBC BASIC
Although BBC BASIC doesn't have native support for quaternions its array arithmetic provides all of the required operations either directly or very straightforwardly. <lang bbcbasic> DIM q(3), q1(3), q2(3), t(3)
q() = 1, 2, 3, 4 q1() = 2, 3, 4, 5 q2() = 3, 4, 5, 6 r = 7 PRINT "q = " FNq_show(q()) PRINT "q1 = " FNq_show(q1()) PRINT "q2 = " FNq_show(q2()) PRINT "r = "; r PRINT "norm(q) = "; FNq_norm(q()) t() = q() : PROCq_neg(t()) : PRINT "neg(q) = " FNq_show(t()) t() = q() : PROCq_conj(t()) : PRINT "conjugate(q) = " FNq_show(t()) t() = q() : PROCq_addreal(t(),r) : PRINT "q + r = " FNq_show(t()) t() = q1() : PROCq_add(t(),q2()) : PRINT "q1 + q2 = " FNq_show(t()) t() = q2() : PROCq_add(t(),q1()) : PRINT "q2 + q1 = " FNq_show(t()) t() = q() : PROCq_mulreal(t(),r) : PRINT "qr = " FNq_show(t()) t() = q1() : PROCq_mul(t(),q2()) : PRINT "q1q2 = " FNq_show(t()) t() = q2() : PROCq_mul(t(),q1()) : PRINT "q2q1 = " FNq_show(t()) END DEF FNq_norm(q()) = MOD(q()) DEF PROCq_neg(q()) : q() *= -1 : ENDPROC DEF PROCq_conj(q()) : q() *= -1 : q(0) *= -1 : ENDPROC DEF PROCq_addreal(q(), r) : q(0) += r : ENDPROC DEF PROCq_add(q(), r()) : q() += r() : ENDPROC DEF PROCq_mulreal(q(), r) : q() *= r : ENDPROC DEF PROCq_mul(q(), r()) : LOCAL s() : DIM s(3,3) s() = r(0), -r(1), -r(2), -r(3), r(1), r(0), r(3), -r(2), \ \ r(2), -r(3), r(0), r(1), r(3), r(2), -r(1), r(0) q() = s() . q() ENDPROC DEF FNq_show(q()) : LOCAL i%, a$ : a$ = "(" FOR i% = 0 TO 3 : a$ += STR$(q(i%)) + ", " : NEXT = LEFT$(LEFT$(a$)) + ")"</lang>
- Output:
q = (1, 2, 3, 4) q1 = (2, 3, 4, 5) q2 = (3, 4, 5, 6) r = 7 norm(q) = 5.47722558 neg(q) = (-1, -2, -3, -4) conjugate(q) = (1, -2, -3, -4) q + r = (8, 2, 3, 4) q1 + q2 = (5, 7, 9, 11) q2 + q1 = (5, 7, 9, 11) qr = (7, 14, 21, 28) q1q2 = (-56, 16, 24, 26) q2q1 = (-56, 18, 20, 28)
C
<lang c>#include <stdio.h>
- include <stdlib.h>
- include <stdbool.h>
- include <math.h>
typedef struct quaternion {
double q[4];
} quaternion_t;
quaternion_t *quaternion_new(void)
{
return malloc(sizeof(quaternion_t));
}
quaternion_t *quaternion_new_set(double q1, double q2, double q3, double q4) {
quaternion_t *q = malloc(sizeof(quaternion_t)); if (q != NULL) { q->q[0] = q1; q->q[1] = q2; q->q[2] = q3; q->q[3] = q4; } return q;
}
void quaternion_copy(quaternion_t *r, quaternion_t *q)
{
size_t i;
if (r == NULL || q == NULL) return; for(i = 0; i < 4; i++) r->q[i] = q->q[i];
}
double quaternion_norm(quaternion_t *q)
{
size_t i; double r = 0.0; if (q == NULL) { fprintf(stderr, "NULL quaternion in norm\n"); return 0.0; }
for(i = 0; i < 4; i++) r += q->q[i] * q->q[i]; return sqrt(r);
}
void quaternion_neg(quaternion_t *r, quaternion_t *q)
{
size_t i;
if (q == NULL || r == NULL) return; for(i = 0; i < 4; i++) r->q[i] = -q->q[i];
}
void quaternion_conj(quaternion_t *r, quaternion_t *q)
{
size_t i;
if (q == NULL || r == NULL) return; r->q[0] = q->q[0]; for(i = 1; i < 4; i++) r->q[i] = -q->q[i];
}
void quaternion_add_d(quaternion_t *r, quaternion_t *q, double d)
{
if (q == NULL || r == NULL) return; quaternion_copy(r, q); r->q[0] += d;
}
void quaternion_add(quaternion_t *r, quaternion_t *a, quaternion_t *b)
{
size_t i;
if (r == NULL || a == NULL || b == NULL) return; for(i = 0; i < 4; i++) r->q[i] = a->q[i] + b->q[i];
}
void quaternion_mul_d(quaternion_t *r, quaternion_t *q, double d)
{
size_t i;
if (r == NULL || q == NULL) return; for(i = 0; i < 4; i++) r->q[i] = q->q[i] * d;
}
bool quaternion_equal(quaternion_t *a, quaternion_t *b) {
size_t i; for(i = 0; i < 4; i++) if (a->q[i] != b->q[i]) return false; return true;
}
- define A(N) (a->q[(N)])
- define B(N) (b->q[(N)])
- define R(N) (r->q[(N)])
void quaternion_mul(quaternion_t *r, quaternion_t *a, quaternion_t *b) {
size_t i; double ri = 0.0;
if (r == NULL || a == NULL || b == NULL) return; R(0) = A(0)*B(0) - A(1)*B(1) - A(2)*B(2) - A(3)*B(3); R(1) = A(0)*B(1) + A(1)*B(0) + A(2)*B(3) - A(3)*B(2); R(2) = A(0)*B(2) - A(1)*B(3) + A(2)*B(0) + A(3)*B(1); R(3) = A(0)*B(3) + A(1)*B(2) - A(2)*B(1) + A(3)*B(0);
}
- undef A
- undef B
- undef R
void quaternion_print(quaternion_t *q)
{
if (q == NULL) return; printf("(%lf, %lf, %lf, %lf)\n",
q->q[0], q->q[1], q->q[2], q->q[3]); }</lang>
<lang c>int main() {
size_t i; double d = 7.0; quaternion_t *q[3]; quaternion_t *r = quaternion_new();
quaternion_t *qd = quaternion_new_set(7.0, 0.0, 0.0, 0.0); q[0] = quaternion_new_set(1.0, 2.0, 3.0, 4.0); q[1] = quaternion_new_set(2.0, 3.0, 4.0, 5.0); q[2] = quaternion_new_set(3.0, 4.0, 5.0, 6.0);
printf("r = %lf\n", d); for(i = 0; i < 3; i++) { printf("q[%u] = ", i); quaternion_print(q[i]); printf("abs q[%u] = %lf\n", i, quaternion_norm(q[i])); }
printf("-q[0] = "); quaternion_neg(r, q[0]); quaternion_print(r);
printf("conj q[0] = "); quaternion_conj(r, q[0]); quaternion_print(r);
printf("q[1] + q[2] = "); quaternion_add(r, q[1], q[2]); quaternion_print(r);
printf("q[2] + q[1] = "); quaternion_add(r, q[2], q[1]); quaternion_print(r);
printf("q[0] * r = "); quaternion_mul_d(r, q[0], d); quaternion_print(r);
printf("q[0] * (r, 0, 0, 0) = "); quaternion_mul(r, q[0], qd); quaternion_print(r);
printf("q[1] * q[2] = "); quaternion_mul(r, q[1], q[2]); quaternion_print(r);
printf("q[2] * q[1] = "); quaternion_mul(r, q[2], q[1]); quaternion_print(r);
free(q[0]); free(q[1]); free(q[2]); free(r); return EXIT_SUCCESS;
}</lang>
C++
This example uses templates to provide the underlying data-type, and includes several extra functions and constructors that often come up when using quaternions.
<lang cpp>#include <iostream> using namespace std;
template<class T = double> class Quaternion { public:
T w, x, y, z;
// Numerical constructor Quaternion(const T &w, const T &x, const T &y, const T &z): w(w), x(x), y(y), z(z) {}; Quaternion(const T &x, const T &y, const T &z): w(T()), x(x), y(y), z(z) {}; // For 3-rotations Quaternion(const T &r): w(r), x(T()), y(T()), z(T()) {}; Quaternion(): w(T()), x(T()), y(T()), z(T()) {};
// Copy constructor and assignment Quaternion(const Quaternion &q): w(q.w), x(q.x), y(q.y), z(q.z) {}; Quaternion& operator=(const Quaternion &q) { w=q.w; x=q.x; y=q.y; z=q.z; return *this; }
// Unary operators Quaternion operator-() const { return Quaternion(-w, -x, -y, -z); } Quaternion operator~() const { return Quaternion(w, -x, -y, -z); } // Conjugate
// Norm-squared. SQRT would have to be made generic to be used here T normSquared() const { return w*w + x*x + y*y + z*z; }
// In-place operators Quaternion& operator+=(const T &r) { w += r; return *this; } Quaternion& operator+=(const Quaternion &q) { w += q.w; x += q.x; y += q.y; z += q.z; return *this; }
Quaternion& operator-=(const T &r) { w -= r; return *this; } Quaternion& operator-=(const Quaternion &q) { w -= q.w; x -= q.x; y -= q.y; z -= q.z; return *this; }
Quaternion& operator*=(const T &r) { w *= r; x *= r; y *= r; z *= r; return *this; } Quaternion& operator*=(const Quaternion &q) { T oldW(w), oldX(x), oldY(y), oldZ(z); w = oldW*q.w - oldX*q.x - oldY*q.y - oldZ*q.z; x = oldW*q.x + oldX*q.w + oldY*q.z - oldZ*q.y; y = oldW*q.y + oldY*q.w + oldZ*q.x - oldX*q.z; z = oldW*q.z + oldZ*q.w + oldX*q.y - oldY*q.x; return *this; } Quaternion& operator/=(const T &r) { w /= r; x /= r; y /= r; z /= r; return *this; } Quaternion& operator/=(const Quaternion &q) { T oldW(w), oldX(x), oldY(y), oldZ(z), n(q.normSquared()); w = (oldW*q.w + oldX*q.x + oldY*q.y + oldZ*q.z) / n; x = (oldX*q.w - oldW*q.x + oldY*q.z - oldZ*q.y) / n; y = (oldY*q.w - oldW*q.y + oldZ*q.x - oldX*q.z) / n; z = (oldZ*q.w - oldW*q.z + oldX*q.y - oldY*q.x) / n; return *this; }
// Binary operators based on in-place operators Quaternion operator+(const T &r) const { return Quaternion(*this) += r; } Quaternion operator+(const Quaternion &q) const { return Quaternion(*this) += q; } Quaternion operator-(const T &r) const { return Quaternion(*this) -= r; } Quaternion operator-(const Quaternion &q) const { return Quaternion(*this) -= q; } Quaternion operator*(const T &r) const { return Quaternion(*this) *= r; } Quaternion operator*(const Quaternion &q) const { return Quaternion(*this) *= q; } Quaternion operator/(const T &r) const { return Quaternion(*this) /= r; } Quaternion operator/(const Quaternion &q) const { return Quaternion(*this) /= q; }
// Comparison operators, as much as they make sense bool operator==(const Quaternion &q) const { return (w == q.w) && (x == q.x) && (y == q.y) && (z == q.z); } bool operator!=(const Quaternion &q) const { return !operator==(q); }
// The operators above allow quaternion op real. These allow real op quaternion. // Uses the above where appropriate. template<class T> friend Quaternion<T> operator+(const T &r, const Quaternion<T> &q); template<class T> friend Quaternion<T> operator-(const T &r, const Quaternion<T> &q); template<class T> friend Quaternion<T> operator*(const T &r, const Quaternion<T> &q); template<class T> friend Quaternion<T> operator/(const T &r, const Quaternion<T> &q); // Allows cout << q template<class T> friend ostream& operator<<(ostream &io, const Quaternion<T> &q);
};
// Friend functions need to be outside the actual class definition template<class T> Quaternion<T> operator+(const T &r, const Quaternion<T> &q)
{ return q+r; }
template<class T> Quaternion<T> operator-(const T &r, const Quaternion<T> &q)
{ return Quaternion<T>(r-q.w, q.x, q.y, q.z); }
template<class T> Quaternion<T> operator*(const T &r, const Quaternion<T> &q)
{ return q*r; }
template<class T> Quaternion<T> operator/(const T &r, const Quaternion<T> &q) {
T n(q.normSquared()); return Quaternion(r*q.w/n, -r*q.x/n, -r*q.y/n, -r*q.z/n);
}
template<class T> ostream& operator<<(ostream &io, const Quaternion<T> &q) {
io << q.w; (q.x < T()) ? (io << " - " << (-q.x) << "i") : (io << " + " << q.x << "i"); (q.y < T()) ? (io << " - " << (-q.y) << "j") : (io << " + " << q.y << "j"); (q.z < T()) ? (io << " - " << (-q.z) << "k") : (io << " + " << q.z << "k"); return io;
}</lang>
Test program: <lang cpp>int main() {
Quaternion<> q0(1, 2, 3, 4); Quaternion<> q1(2, 3, 4, 5); Quaternion<> q2(3, 4, 5, 6); double r = 7;
cout << "q0: " << q0 << endl; cout << "q1: " << q1 << endl; cout << "q2: " << q2 << endl; cout << "r: " << r << endl; cout << endl; cout << "-q0: " << -q0 << endl; cout << "~q0: " << ~q0 << endl; cout << endl; cout << "r * q0: " << r*q0 << endl; cout << "r + q0: " << r+q0 << endl; cout << "q0 / r: " << q0/r << endl; cout << "q0 - r: " << q0-r << endl; cout << endl; cout << "q0 + q1: " << q0+q1 << endl; cout << "q0 - q1: " << q0-q1 << endl; cout << "q0 * q1: " << q0*q1 << endl; cout << "q0 / q1: " << q0/q1 << endl; cout << endl; cout << "q0 * ~q0: " << q0*~q0 << endl; cout << "q0 + q1*q2: " << q0+q1*q2 << endl; cout << "(q0 + q1)*q2: " << (q0+q1)*q2 << endl; cout << "q0*q1*q2: " << q0*q1*q2 << endl; cout << "(q0*q1)*q2: " << (q0*q1)*q2 << endl; cout << "q0*(q1*q2): " << q0*(q1*q2) << endl; cout << endl; cout << "||q0||: " << sqrt(q0.normSquared()) << endl; cout << endl; cout << "q0*q1 - q1*q0: " << (q0*q1 - q1*q0) << endl;
// Other base types Quaternion<int> q5(2), q6(3); cout << endl << q5*q6 << endl;
}</lang>
- Output:
q0: 1 + 2i + 3j + 4k q1: 2 + 3i + 4j + 5k q2: 3 + 4i + 5j + 6k r: 7 -q0: -1 - 2i - 3j - 4k ~q0: 1 - 2i - 3j - 4k r * q0: 7 + 14i + 21j + 28k r + q0: 8 + 2i + 3j + 4k q0 / r: 0.142857 + 0.285714i + 0.428571j + 0.571429k q0 - r: -6 + 2i + 3j + 4k q0 + q1: 3 + 5i + 7j + 9k q0 - q1: -1 - 1i - 1j - 1k q0 * q1: -36 + 6i + 12j + 12k q0 / q1: 0.740741 + 0i + 0.0740741j + 0.037037k q0 * ~q0: 30 + 0i + 0j + 0k q0 + q1*q2: -55 + 18i + 27j + 30k (q0 + q1)*q2: -100 + 24i + 42j + 42k q0*q1*q2: -264 - 114i - 132j - 198k (q0*q1)*q2: -264 - 114i - 132j - 198k q0*(q1*q2): -264 - 114i - 132j - 198k ||q0||: 5.47723 q0*q1 - q1*q0: 0 - 2i + 4j - 2k 6 + 0i + 0j + 0k
C#
<lang csharp>using System;
struct Quaternion : IEquatable<Quaternion> {
public readonly double A, B, C, D;
public Quaternion(double a, double b, double c, double d) { this.A = a; this.B = b; this.C = c; this.D = d; }
public double Norm() { return Math.Sqrt(A * A + B * B + C * C + D * D); }
public static Quaternion operator -(Quaternion q) { return new Quaternion(-q.A, -q.B, -q.C, -q.D); }
public Quaternion Conjugate() { return new Quaternion(A, -B, -C, -D); }
// implicit conversion takes care of real*quaternion and real+quaternion public static implicit operator Quaternion(double d) { return new Quaternion(d, 0, 0, 0); }
public static Quaternion operator +(Quaternion q1, Quaternion q2) { return new Quaternion(q1.A + q2.A, q1.B + q2.B, q1.C + q2.C, q1.D + q2.D); }
public static Quaternion operator *(Quaternion q1, Quaternion q2) { return new Quaternion( q1.A * q2.A - q1.B * q2.B - q1.C * q2.C - q1.D * q2.D, q1.A * q2.B + q1.B * q2.A + q1.C * q2.D - q1.D * q2.C, q1.A * q2.C - q1.B * q2.D + q1.C * q2.A + q1.D * q2.B, q1.A * q2.D + q1.B * q2.C - q1.C * q2.B + q1.D * q2.A); }
public static bool operator ==(Quaternion q1, Quaternion q2) { return q1.A == q2.A && q1.B == q2.B && q1.C == q2.C && q1.D == q2.D; }
public static bool operator !=(Quaternion q1, Quaternion q2) { return !(q1 == q2); }
#region Object Members
public override bool Equals(object obj) { if (obj is Quaternion) return Equals((Quaternion)obj);
return false; }
public override int GetHashCode() { return A.GetHashCode() ^ B.GetHashCode() ^ C.GetHashCode() ^ D.GetHashCode(); }
public override string ToString() { return string.Format("Q({0}, {1}, {2}, {3})", A, B, C, D); }
#endregion
#region IEquatable<Quaternion> Members
public bool Equals(Quaternion other) { return other == this; }
#endregion
}</lang>
Demonstration: <lang csharp>using System;
static class Program {
static void Main(string[] args) { Quaternion q = new Quaternion(1, 2, 3, 4); Quaternion q1 = new Quaternion(2, 3, 4, 5); Quaternion q2 = new Quaternion(3, 4, 5, 6); double r = 7;
Console.WriteLine("q = {0}", q); Console.WriteLine("q1 = {0}", q1); Console.WriteLine("q2 = {0}", q2); Console.WriteLine("r = {0}", r);
Console.WriteLine("q.Norm() = {0}", q.Norm()); Console.WriteLine("q1.Norm() = {0}", q1.Norm()); Console.WriteLine("q2.Norm() = {0}", q2.Norm());
Console.WriteLine("-q = {0}", -q); Console.WriteLine("q.Conjugate() = {0}", q.Conjugate());
Console.WriteLine("q + r = {0}", q + r); Console.WriteLine("q1 + q2 = {0}", q1 + q2); Console.WriteLine("q2 + q1 = {0}", q2 + q1);
Console.WriteLine("q * r = {0}", q * r); Console.WriteLine("q1 * q2 = {0}", q1 * q2); Console.WriteLine("q2 * q1 = {0}", q2 * q1);
Console.WriteLine("q1*q2 {0} q2*q1", (q1 * q2) == (q2 * q1) ? "==" : "!="); }
}</lang>
- Output:
q = Q(1, 2, 3, 4) q1 = Q(2, 3, 4, 5) q2 = Q(3, 4, 5, 6) r = 7 q.Norm() = 5.47722557505166 q1.Norm() = 7.34846922834953 q2.Norm() = 9.2736184954957 -q = Q(-1, -2, -3, -4) q.Conjugate() = Q(1, -2, -3, -4) q + r = Q(8, 2, 3, 4) q1 + q2 = Q(5, 7, 9, 11) q2 + q1 = Q(5, 7, 9, 11) q * r = Q(7, 14, 21, 28) q1 * q2 = Q(-56, 16, 24, 26) q2 * q1 = Q(-56, 18, 20, 28) q1*q2 != q2*q1
Common Lisp
<lang lisp> (defclass quaternion () ((a :accessor q-a :initarg :a :type real)
(b :accessor q-b :initarg :b :type real) (c :accessor q-c :initarg :c :type real) (d :accessor q-d :initarg :d :type real)) (:default-initargs :a 0 :b 0 :c 0 :d 0))
(defun make-q (&optional (a 0) (b 0) (c 0) (d 0))
(make-instance 'quaternion :a a :b b :c c :d d))
(defgeneric sum (x y))
(defmethod sum ((x quaternion) (y quaternion))
(make-q (+ (q-a x) (q-a y)) (+ (q-b x) (q-b y)) (+ (q-c x) (q-c y)) (+ (q-d x) (q-d y))))
(defmethod sum ((x quaternion) (y real))
(make-q (+ (q-a x) y) (q-b x) (q-c x) (q-d x)))
(defmethod sum ((x real) (y quaternion))
(make-q (+ (q-a y) x) (q-b y) (q-c y) (q-d y)))
(defgeneric sub (x y))
(defmethod sub ((x quaternion) (y quaternion))
(make-q (- (q-a x) (q-a y)) (- (q-b x) (q-b y)) (- (q-c x) (q-c y)) (- (q-d x) (q-d y))))
(defmethod sub ((x quaternion) (y real))
(make-q (- (q-a x) y) (q-b x) (q-c x) (q-d x)))
(defmethod sub ((x real) (y quaternion))
(make-q (- (q-a y) x) (q-b y) (q-c y) (q-d y)))
(defgeneric mul (x y))
(defmethod mul ((x quaternion) (y real))
(make-q (* (q-a x) y) (* (q-b x) y) (* (q-c x) y) (* (q-d x) y)))
(defmethod mul ((x real) (y quaternion))
(make-q (* (q-a y) x) (* (q-b y) x) (* (q-c y) x) (* (q-d y) x)))
(defmethod mul ((x quaternion) (y quaternion))
(make-q (- (* (q-a x) (q-a y)) (* (q-b x) (q-b y)) (* (q-c x) (q-c y)) (* (q-d x) (q-d y))) (- (+ (* (q-a x) (q-b y)) (* (q-b x) (q-a y)) (* (q-c x) (q-d y))) (* (q-d x) (q-c y))) (- (+ (* (q-a x) (q-c y)) (* (q-c x) (q-a y)) (* (q-d x) (q-b y))) (* (q-b x) (q-d y))) (- (+ (* (q-a x) (q-d y)) (* (q-b x) (q-c y)) (* (q-d x) (q-a y))) (* (q-c x) (q-b y)))))
(defmethod norm ((x quaternion))
(+ (sqrt (q-a x)) (sqrt (q-b x)) (sqrt (q-c x)) (sqrt (q-d x))))
(defmethod print-object ((x quaternion) stream)
(format stream "~@f~@fi~@fj~@fk" (q-a x) (q-b x) (q-c x) (q-d x)))
(defvar q (make-q 0 1 0 0)) (defvar q1 (make-q 0 0 1 0)) (defvar q2 (make-q 0 0 0 1)) (defvar r 7) (format t "q+q1+q2 = ~a~&" (reduce #'sum (list q q1 q2))) (format t "r*(q+q1+q2) = ~a~&" (mul r (reduce #'sum (list q q1 q2)))) (format t "q*q1*q2 = ~a~&" (reduce #'mul (list q q1 q2))) (format t "q-q1-q2 = ~a~&" (reduce #'sub (list q q1 q2))) </lang>
- Output:
q+q1+q2 = +0.0+1.0i+1.0j+1.0k r*(q+q1+q2) = +0.0+7.0i+7.0j+7.0k q*q1*q2 = -1.0+0.0i+0.0j+0.0k q-q1-q2 = +0.0+1.0i-1.0j-1.0k
D
<lang d>import std.math, std.numeric, std.traits, std.conv, std.complex;
struct Quat(T) if (isFloatingPoint!T) {
alias CT = Complex!T;
union { struct { T re, i, j, k; } // Default init to NaN. struct { CT x, y; } struct { T[4] vector; } }
string toString() const pure /*nothrow*/ @safe { return vector.text; }
@property T norm2() const pure nothrow @safe @nogc { /// Norm squared. return re ^^ 2 + i ^^ 2 + j ^^ 2 + k ^^ 2; }
@property T abs() const pure nothrow @safe @nogc { /// Norm. return sqrt(norm2); }
@property T arg() const pure nothrow @safe @nogc { /// Theta. return acos(re / abs); // this may be incorrect... }
@property Quat!T conj() const pure nothrow @safe @nogc { /// Conjugate. return Quat!T(re, -i, -j, -k); }
@property Quat!T recip() const pure nothrow @safe @nogc { /// Reciprocal. return Quat!T(re / norm2, -i / norm2, -j / norm2, -k / norm2); }
@property Quat!T pureim() const pure nothrow @safe @nogc { /// Pure imagery. return Quat!T(0, i, j, k); }
@property Quat!T versor() const pure nothrow @safe @nogc { /// Unit versor. return this / abs; }
/// Unit versor of imagery part. @property Quat!T iversor() const pure nothrow @safe @nogc { return pureim / pureim.abs; }
/// Assignment. Quat!T opAssign(U : T)(Quat!U z) pure nothrow @safe @nogc { x = z.x; y = z.y; return this; }
Quat!T opAssign(U : T)(Complex!U c) pure nothrow @safe @nogc { x = c; y = 0; return this; }
Quat!T opAssign(U : T)(U r) pure nothrow @safe @nogc if (isNumeric!U) { re = r; i = 0; y = 0; return this; }
/// Test for equal, not ordered so no opCmp. bool opEquals(U : T)(Quat!U z) const pure nothrow @safe @nogc { return re == z.re && i == z.i && j == z.j && k == z.k; }
bool opEquals(U : T)(Complex!U c) const pure nothrow @safe @nogc { return re == c.re && i == c.im && j == 0 && k == 0; }
bool opEquals(U : T)(U r) const pure nothrow @safe @nogc if (isNumeric!U) { return re == r && i == 0 && j == 0 && k == 0; }
/// Unary op. Quat!T opUnary(string op)() const pure nothrow @safe @nogc if (op == "+") { return this; }
Quat!T opUnary(string op)() const pure nothrow @safe @nogc if (op == "-") { return Quat!T(-re, -i, -j, -k); }
/// Binary op, Quaternion on left of op. Quat!(CommonType!(T,U)) opBinary(string op, U)(Quat!U z) const pure nothrow @safe @nogc { alias typeof(return) C;
static if (op == "+" ) { return C(re + z.re, i + z.i, j + z.j, k + z.k); } else static if (op == "-") { return C(re - z.re, i - z.i, j - z.j, k - z.k); } else static if (op == "*") { return C(re * z.re - i * z.i - j * z.j - k * z.k, re * z.i + i * z.re + j * z.k - k * z.j, re * z.j - i * z.k + j * z.re + k * z.i, re * z.k + i * z.j - j * z.i + k * z.re); } else static if (op == "/") { return this * z.recip; } }
/// Extend complex to quaternion. Quat!(CommonType!(T,U)) opBinary(string op, U)(Complex!U c) const pure nothrow @safe @nogc { return opBinary!op(typeof(return)(c.re, c.im, 0, 0)); }
/// For scalar. Quat!(CommonType!(T,U)) opBinary(string op, U)(U r) const pure nothrow @safe @nogc if (isNumeric!U) { alias typeof(return) C;
static if (op == "+" ) { return C(re + r, i, j, k); } else static if (op == "-") { return C(re - r, i, j, k); } else static if (op == "*") { return C(re * r, i * r, j * r, k * r); } else static if (op == "/") { return C(re / r, i / r, j / r, k / r); } else static if (op == "^^") { return pow(r); } }
/// Power function. Quat!(CommonType!(T,U)) pow(U)(U r) const pure nothrow @safe @nogc if (isNumeric!U) { return (abs^^r) * exp(r * iversor * arg); }
/// Handle binary op if Quaternion on right of op and left is /// not quaternion. Quat!(CommonType!(T,U)) opBinaryRight(string op, U)(Complex!U c) const pure nothrow @safe @nogc { alias typeof(return) C; auto w = C(c.re, c.im, 0, 0); return w.opBinary!(op)(this); }
Quat!(CommonType!(T,U)) opBinaryRight(string op, U)(U r) const pure nothrow @safe @nogc if (isNumeric!U) { alias typeof(return) C;
static if (op == "+" || op == "*") { return opBinary!op(r); } else static if (op == "-") { return C(r - re , -i, -j, -k); } else static if (op == "/") { auto w = C(re, i, j, k); return w.recip * r; } }
}
HT exp(HT)(HT z) pure nothrow @safe @nogc
if (is(HT T == Quat!T)) {
immutable inorm = z.pureim.abs; return std.math.exp(z.re) * (cos(inorm) + z.iversor * sin(inorm));
}
HT log(HT)(HT z) pure nothrow @safe @nogc if (is(HT T == Quat!T)) {
return std.math.log(z.abs) + z.iversor * acos(z.re / z.abs);
}
void main() @safe { // Demo code.
import std.stdio;
alias QR = Quat!real; enum real r = 7.0;
immutable QR q = QR(2, 3, 4, 5), q1 = QR(2, 3, 4, 5), q2 = QR(3, 4, 5, 6);
writeln("1. q - norm: ", q.abs); writeln("2. q - negative: ", -q); writeln("3. q - conjugate: ", q.conj); writeln("4. r + q: ", r + q); writeln(" q + r: ", q + r); writeln("5. q1 + q2: ", q1 + q2); writeln("6. r * q: ", r * q); writeln(" q * r: ", q * r); writeln("7. q1 * q2: ", q1 * q2); writeln(" q2 * q1: ", q2 * q1); writeln("8. q1 * q2 != q2 * Q1 ? ", q1 * q2 != q2 * q1);
immutable QR i = QR(0, 1, 0, 0), j = QR(0, 0, 1, 0), k = QR(0, 0, 0, 1); writeln("9.1 i * i: ", i * i); writeln(" J * j: ", j * j); writeln(" k * k: ", k * k); writeln(" i * j * k: ", i * j * k); writeln("9.2 q1 / q2: ", q1 / q2); writeln("9.3 q1 / q2 * q2: ", q1 / q2 * q2); writeln(" q2 * q1 / q2: ", q2 * q1 / q2); writeln("9.4 exp(pi * i): ", exp(PI * i)); writeln(" exp(pi * j): ", exp(PI * j)); writeln(" exp(pi * k): ", exp(PI * k)); writeln(" exp(q): ", exp(q)); writeln(" log(q): ", log(q)); writeln(" exp(log(q)): ", exp(log(q))); writeln(" log(exp(q)): ", log(exp(q))); immutable s = q.exp.log; writeln("9.5 let s = log(exp(q)): ", s); writeln(" exp(s): ", exp(s)); writeln(" log(s): ", log(s)); writeln(" exp(log(s)): ", exp(log(s))); writeln(" log(exp(s)): ", log(exp(s)));
}</lang>
- Output:
1. q - norm: 7.34847 2. q - negative: [-2, -3, -4, -5] 3. q - conjugate: [2, -3, -4, -5] 4. r + q: [9, 3, 4, 5] q + r: [9, 3, 4, 5] 5. q1 + q2: [5, 7, 9, 11] 6. r * q: [14, 21, 28, 35] q * r: [14, 21, 28, 35] 7. q1 * q2: [-56, 16, 24, 26] q2 * q1: [-56, 18, 20, 28] 8. q1 * q2 != q2 * Q1 ? true 9.1 i * i: [-1, 0, 0, 0] J * j: [-1, 0, 0, 0] k * k: [-1, 0, 0, 0] i * j * k: [-1, 0, 0, 0] 9.2 q1 / q2: [0.790698, 0.0232558, -1.35525e-20, 0.0465116] 9.3 q1 / q2 * q2: [2, 3, 4, 5] q2 * q1 / q2: [2, 3.46512, 3.90698, 4.76744] 9.4 exp(pi * i): [-1, -5.42101e-20, -0, -0] exp(pi * j): [-1, -0, -5.42101e-20, -0] exp(pi * k): [-1, -0, -0, -5.42101e-20] exp(q): [5.21186, 2.22222, 2.96296, 3.7037] log(q): [1.99449, 0.549487, 0.732649, 0.915812] exp(log(q)): [2, 3, 4, 5] log(exp(q)): [2, 0.33427, 0.445694, 0.557117] 9.5 let s = log(exp(q)): [2, 0.33427, 0.445694, 0.557117] exp(s): [5.21186, 2.22222, 2.96296, 3.7037] log(s): [0.765279, 0.159215, 0.212286, 0.265358] exp(log(s)): [2, 0.33427, 0.445694, 0.557117] log(exp(s)): [2, 0.33427, 0.445694, 0.557117]
Delphi
<lang Delphi>unit Quaternions;
interface
type
TQuaternion = record A, B, C, D: double;
function Init (aA, aB, aC, aD : double): TQuaternion; function Norm : double; function Conjugate : TQuaternion; function ToString : string;
class operator Negative (Left : TQuaternion): TQuaternion; class operator Positive (Left : TQuaternion): TQuaternion; class operator Add (Left, Right : TQuaternion): TQuaternion; class operator Add (Left : TQuaternion; Right : double): TQuaternion; overload; class operator Add (Left : double; Right : TQuaternion): TQuaternion; overload; class operator Subtract (Left, Right : TQuaternion): TQuaternion; class operator Multiply (Left, Right : TQuaternion): TQuaternion; class operator Multiply (Left : TQuaternion; Right : double): TQuaternion; overload; class operator Multiply (Left : double; Right : TQuaternion): TQuaternion; overload; end;
implementation
uses
SysUtils;
{ TQuaternion }
function TQuaternion.Init(aA, aB, aC, aD: double): TQuaternion; begin
A := aA; B := aB; C := aC; D := aD;
result := Self;
end;
function TQuaternion.Norm: double; begin
result := sqrt(sqr(A) + sqr(B) + sqr(C) + sqr(D));
end;
function TQuaternion.Conjugate: TQuaternion; begin
result.B := -B; result.C := -C; result.D := -D;
end;
class operator TQuaternion.Negative(Left: TQuaternion): TQuaternion; begin
result.A := -Left.A; result.B := -Left.B; result.C := -Left.C; result.D := -Left.D;
end;
class operator TQuaternion.Positive(Left: TQuaternion): TQuaternion; begin
result := Left;
end;
class operator TQuaternion.Add(Left, Right: TQuaternion): TQuaternion; begin
result.A := Left.A + Right.A; result.B := Left.B + Right.B; result.C := Left.C + Right.C; result.D := Left.D + Right.D;
end;
class operator TQuaternion.Add(Left: TQuaternion; Right: double): TQuaternion; begin
result.A := Left.A + Right; result.B := Left.B; result.C := Left.C; result.D := Left.D;
end;
class operator TQuaternion.Add(Left: double; Right: TQuaternion): TQuaternion; begin
result.A := Left + Right.A; result.B := Right.B; result.C := Right.C; result.D := Right.D;
end;
class operator TQuaternion.Subtract(Left, Right: TQuaternion): TQuaternion; begin
result.A := Left.A - Right.A; result.B := Left.B - Right.B; result.C := Left.C - Right.C; result.D := Left.D - Right.D;
end;
class operator TQuaternion.Multiply(Left, Right: TQuaternion): TQuaternion; begin
result.A := Left.A * Right.A - Left.B * Right.B - Left.C * Right.C - Left.D * Right.D; result.B := Left.A * Right.B + Left.B * Right.A + Left.C * Right.D - Left.D * Right.C; result.C := Left.A * Right.C - Left.B * Right.D + Left.C * Right.A + Left.D * Right.B; result.D := Left.A * Right.D + Left.B * Right.C - Left.C * Right.B + Left.D * Right.A;
end;
class operator TQuaternion.Multiply(Left: double; Right: TQuaternion): TQuaternion; begin
result.A := Left * Right.A; result.B := Left * Right.B; result.C := Left * Right.C; result.D := Left * Right.D;
end;
class operator TQuaternion.Multiply(Left: TQuaternion; Right: double): TQuaternion; begin
result.A := Left.A * Right; result.B := Left.B * Right; result.C := Left.C * Right; result.D := Left.D * Right;
end;
function TQuaternion.ToString: string; begin
result := Format('%f + %fi + %fj + %fk', [A, B, C, D]);
end;
end.</lang>
Test program <lang Delphi>program QuaternionTest;
{$APPTYPE CONSOLE}
uses
Quaternions in 'Quaternions.pas';
var
r : double; q, q1, q2 : TQuaternion;
begin
r := 7; q := q .Init(1, 2, 3, 4); q1 := q1.Init(2, 3, 4, 5); q2 := q2.Init(3, 4, 5, 6);
writeln('q = ', q.ToString); writeln('q1 = ', q1.ToString); writeln('q2 = ', q2.ToString); writeln('r = ', r); writeln('Norm(q ) = ', q.Norm); writeln('Norm(q1) = ', q1.Norm); writeln('Norm(q2) = ', q2.Norm); writeln('-q = ', (-q).ToString); writeln('Conjugate q = ', q.Conjugate.ToString); writeln('q1 + q2 = ', (q1 + q2).ToString); writeln('q2 + q1 = ', (q2 + q1).ToString); writeln('q * r = ', (q * r).ToString); writeln('r * q = ', (r * q).ToString); writeln('q1 * q2 = ', (q1 * q2).ToString); writeln('q2 * q1 = ', (q2 * q1).ToString);
end.</lang>
- Output:
q = 1.00 + 2.00i + 3.00j + 4.00k q1 = 2.00 + 3.00i + 4.00j + 5.00k q2 = 3.00 + 4.00i + 5.00j + 6.00k r = 7.00000000000000E+0000 Norm(q ) = 5.47722557505166E+0000 Norm(q1) = 7.34846922834953E+0000 Norm(q2) = 9.27361849549570E+0000 -q = -1.00 + -2.00i + -3.00j + -4.00k Conjugate q = -1.00 + -2.00i + -3.00j + -4.00k q1 + q2 = 5.00 + 7.00i + 9.00j + 11.00k q2 + q1 = 5.00 + 7.00i + 9.00j + 11.00k q * r = 7.00 + 14.00i + 21.00j + 28.00k r * q = 7.00 + 14.00i + 21.00j + 28.00k q1 * q2 = -56.00 + 16.00i + 24.00j + 26.00k q2 * q1 = -56.00 + 18.00i + 20.00j + 28.00k
--DavidIzadaR 20:33, 7 August 2011 (UTC)
E
<lang e>interface Quaternion guards QS {} def makeQuaternion(a, b, c, d) {
return def quaternion implements QS { to __printOn(out) { out.print("(", a, " + ", b, "i + ") out.print(c, "j + ", d, "k)") }
# Task requirement 1 to norm() { return (a**2 + b**2 + c**2 + d**2).sqrt() }
# Task requirement 2 to negate() { return makeQuaternion(-a, -b, -c, -d) } # Task requirement 3 to conjugate() { return makeQuaternion(a, -b, -c, -d) }
# Task requirement 4, 5 # This implements q + r; r + q is deliberately prohibited by E to add(other :any[Quaternion, int, float64]) { switch (other) { match q :Quaternion { return makeQuaternion( a+q.a(), b+q.b(), c+q.c(), d+q.d()) } match real { return makeQuaternion(a+real, b, c, d) } } }
# Task requirement 6, 7 # This implements q * r; r * q is deliberately prohibited by E to multiply(other :any[Quaternion, int, float64]) { switch (other) { match q :Quaternion { return makeQuaternion( a*q.a() - b*q.b() - c*q.c() - d*q.d(), a*q.b() + b*q.a() + c*q.d() - d*q.c(), a*q.c() - b*q.d() + c*q.a() + d*q.b(), a*q.d() + b*q.c() - c*q.b() + d*q.a()) } match real { return makeQuaternion(real*a, real*b, real*c, real*d) } } } to a() { return a } to b() { return b } to c() { return c } to d() { return d } }
}</lang>
<lang e>? def q1 := makeQuaternion(2,3,4,5)
- value: (2 + 3i + 4j + 5k)
? def q2 := makeQuaternion(3,4,5,6)
- value: (3 + 4i + 5j + 6k)
? q1+q2
- value: (5 + 7i + 9j + 11k)
? q1*q2
- value: (-56 + 16i + 24j + 26k)
? q2*q1
- value: (-56 + 18i + 20j + 28k)
? q1+(-2)
- value: (0 + 3i + 4j + 5k)</lang>
Eero
<lang objc>#import <Foundation/Foundation.h>
interface Quaternion : Number
// Properties -- note that this is an immutable class. double real, i, j, k {readonly}
end
implementation Quaternion
initWithReal: double, i: double, j: double, k: double, return instancetype self = super.init if self _real = real; _i = i; _j = j; _k = k return self
+new: double real, ..., return instancetype va_list args va_start(args, real) object := Quaternion.alloc.initWithReal: real, i: va_arg(args, double), j: va_arg(args, double), k: va_arg(args, double) va_end(args) return object
descriptionWithLocale: id, return String = String.stringWithFormat: '(%.1f, %.1f, %.1f, %.1f)', self.real, self.i, self.j, self.k
norm, return double = sqrt(self.real * self.real + self.i * self.i + self.j * self.j + self.k * self.k)
negative, return Quaternion = Quaternion.new: -self.real, -self.i, -self.j, -self.k
conjugate, return Quaternion = Quaternion.new: self.real, -self.i, -self.j, -self.k
// Overload "+" operator (left operand is Quaternion) plus: Number operand, return Quaternion real := self.real, i = self.i, j = self.j, k = self.k if operand.isKindOfClass: Quaternion.class q := (Quaternion)operand real += q.real; i += q.i; j += q.j; k += q.k else real += (double)operand return Quaternion.new: real, i, j, k
// Overload "*" operator (left operand is Quaternion) multipliedBy: Number operand, return Quaternion real := self.real, i = self.i, j = self.j, k = self.k if operand.isKindOfClass: Quaternion.class q := (Quaternion)operand real = self.real * q.real - self.i* q.i - self.j * q.j - self.k * q.k i = self.real * q.i + self.i * q.real + self.j * q.k - self.k * q.j j = self.real * q.j - self.i * q.k + self.j * q.real + self.k * q.i k = self.real * q.k + self.i * q.j - self.j * q.i + self.k * q.real else real *= (double)operand i *= (double)operand; j *= (double)operand; k *= (double)operand return Quaternion.new: real, i, j, k
end
implementation Number (QuaternionOperators)
// Overload "+" operator (left operand is Number) plus: Quaternion operand, return Quaternion real := (double)self + operand.real return Quaternion.new: real, operand.i, operand.j, operand.k
// Overload "*" operator (left operand is Number) multipliedBy: Quaternion operand, return Quaternion r := (double)self return Quaternion.new: r * operand.real, r * operand.i, r * operand.j, r * operand.k
end
int main()
autoreleasepool
q := Quaternion.new: 1.0, 2.0, 3.0, 4.0 q1 := Quaternion.new: 2.0, 3.0, 4.0, 5.0 q2 := Quaternion.new: 3.0, 4.0, 5.0, 6.0
Log( 'q = %@', q ) Log( 'q1 = %@', q1 ) Log( 'q2 = %@\n\n', q2 )
Log( 'q norm = %.3f', q.norm ) Log( 'q negative = %@', q.negative ) Log( 'q conjugate = %@', q.conjugate ) Log( '7 + q = %@', 7.0 + q ) Log( 'q + 7 = %@', q + 7.0 ) Log( 'q1 + q2 = %@', q1 + q2 ) Log( '7 * q = %@', 7 * q) Log( 'q * 7 = %@', q * 7.0 ) Log( 'q1 * q2 = %@', q1 * q2 ) Log( 'q2 * q1 = %@', q2 * q1 )
return 0</lang>
- Output:
2013-09-04 16:40:29.818 a.out[2170:507] q = (1.0, 2.0, 3.0, 4.0) 2013-09-04 16:40:29.819 a.out[2170:507] q1 = (2.0, 3.0, 4.0, 5.0) 2013-09-04 16:40:29.820 a.out[2170:507] q2 = (3.0, 4.0, 5.0, 6.0) 2013-09-04 16:40:29.820 a.out[2170:507] q norm = 5.477 2013-09-04 16:40:29.820 a.out[2170:507] q negative = (-1.0, -2.0, -3.0, -4.0) 2013-09-04 16:40:29.820 a.out[2170:507] q conjugate = (1.0, -2.0, -3.0, -4.0) 2013-09-04 16:40:29.821 a.out[2170:507] 7 + q = (8.0, 2.0, 3.0, 4.0) 2013-09-04 16:40:29.821 a.out[2170:507] q + 7 = (8.0, 2.0, 3.0, 4.0) 2013-09-04 16:40:29.821 a.out[2170:507] q1 + q2 = (5.0, 7.0, 9.0, 11.0) 2013-09-04 16:40:29.821 a.out[2170:507] 7 * q = (7.0, 14.0, 21.0, 28.0) 2013-09-04 16:40:29.821 a.out[2170:507] q * 7 = (7.0, 14.0, 21.0, 28.0) 2013-09-04 16:40:29.822 a.out[2170:507] q1 * q2 = (-56.0, 16.0, 24.0, 26.0) 2013-09-04 16:40:29.822 a.out[2170:507] q2 * q1 = (-56.0, 18.0, 20.0, 28.0)
ERRE
<lang ERRE> PROGRAM QUATERNION
!$DOUBLE
TYPE QUATERNION=(A,B,C,D)
DIM Q:QUATERNION,Q1:QUATERNION,Q2:QUATERNION
DIM R:QUATERNION,S:QUATERNION,T:QUATERNION
PROCEDURE NORM(T.->NORM)
NORM=SQR(T.A*T.A+T.B*T.B+T.C*T.C+T.D*T.D)
END PROCEDURE
PROCEDURE NEGATIVE(T.->T.)
T.A=-T.A T.B=-T.B T.C=-T.C T.D=-T.D
END PROCEDURE
PROCEDURE CONJUGATE(T.->T.)
T.A=T.A T.B=-T.B T.C=-T.C T.D=-T.D
END PROCEDURE
PROCEDURE ADD_REAL(T.,REAL->T.)
T.A=T.A+REAL T.B=T.B T.C=T.C T.D=T.D
END PROCEDURE
PROCEDURE ADD(T.,S.->T.)
T.A=T.A+S.A T.B=T.B+S.B T.C=T.C+S.C T.D=T.D+S.D
END PROCEDURE
PROCEDURE MULT_REAL(T.,REAL->T.)
T.A=T.A*REAL T.B=T.B*REAL T.C=T.C*REAL T.D=T.D*REAL
END PROCEDURE
PROCEDURE MULT(T.,S.->R.)
R.A=T.A*S.A-T.B*S.B-T.C*S.C-T.D*S.D R.B=T.A*S.B+T.B*S.A+T.C*S.D-T.D*S.C R.C=T.A*S.C-T.B*S.D+T.C*S.A+T.D*S.B R.D=T.A*S.D+T.B*S.C-T.C*S.B+T.D*S.A
END PROCEDURE
PROCEDURE PRINTQ(T.)
PRINT("(";T.A;",";T.B;",";T.C;",";T.D;")")
END PROCEDURE
BEGIN
Q.A=1 Q.B=2 Q.C=3 Q.D=4 Q1.A=2 Q1.B=3 Q1.C=4 Q1.D=5 Q2.A=3 Q2.B=4 Q2.C=5 Q2.D=6 REAL=7
NORM(Q.->NORM) PRINT("Norm(q)=";NORM)
NEGATIVE(Q.->T.) PRINT("Negative(q) =";) PRINTQ(T.)
CONJUGATE(Q.->T.) PRINT("Conjugate(q) =";) PRINTQ(T.)
ADD_REAL(Q.,REAL->T.) PRINT("q + real =";) PRINTQ(T.)
! addition is commutative
ADD(Q1.,Q2.->T.) PRINT("q1 + q2 =";) PRINTQ(T.)
ADD(Q2.,Q1.->T.) PRINT("q2 + q1 = ";) PRINTQ(T.)
MULT_REAL(Q.,REAL->T.) PRINT("q * real =";) PRINTQ(T.)
! multiplication is not commutative
MULT(Q1.,Q2.->R.) PRINT("q1 * q2=";) PRINTQ(R.)
MULT(Q2.,Q1.->R.) PRINT("q2 * q1=";) PRINTQ(R.)
END PROGRAM </lang>
Euphoria
<lang euphoria>function norm(sequence q)
return sqrt(power(q[1],2)+power(q[2],2)+power(q[3],2)+power(q[4],2))
end function
function conj(sequence q)
q[2..4] = -q[2..4] return q
end function
function add(object q1, object q2)
if atom(q1) != atom(q2) then if atom(q1) then q1 = {q1,0,0,0} else q2 = {q2,0,0,0} end if end if return q1+q2
end function
function mul(object q1, object q2)
if sequence(q1) and sequence(q2) then return { q1[1]*q2[1] - q1[2]*q2[2] - q1[3]*q2[3] - q1[4]*q2[4], q1[1]*q2[2] + q1[2]*q2[1] + q1[3]*q2[4] - q1[4]*q2[3], q1[1]*q2[3] - q1[2]*q2[4] + q1[3]*q2[1] + q1[4]*q2[2], q1[1]*q2[4] + q1[2]*q2[3] - q1[3]*q2[2] + q1[4]*q2[1] } else return q1*q2 end if
end function
function quats(sequence q)
return sprintf("%g + %gi + %gj + %gk",q)
end function
constant
q = {1, 2, 3, 4}, q1 = {2, 3, 4, 5}, q2 = {5, 6, 7, 8}, r = 7
printf(1, "norm(q) = %g\n", norm(q)) printf(1, "-q = %s\n", {quats(-q)}) printf(1, "conj(q) = %s\n", {quats(conj(q))}) printf(1, "q + r = %s\n", {quats(add(q,r))}) printf(1, "q1 + q2 = %s\n", {quats(add(q1,q2))}) printf(1, "q1 * q2 = %s\n", {quats(mul(q1,q2))}) printf(1, "q2 * q1 = %s\n", {quats(mul(q2,q1))})</lang>
- Output:
norm(q) = 5.47723 -q = -1 + -2i + -3j + -4k conj(q) = 1 + -2i + -3j + -4k q + r = 8 + 2i + 3j + 4k q1 + q2 = 7 + 9i + 11j + 13k q1 * q2 = -76 + 24i + 40j + 38k q2 * q1 = -76 + 30i + 28j + 44k
F#
Mainly a
On the minus side we have no way to define a conversion to Quaternion from any suitable (numeric) type.
On the plus side we can avoid the stuff to make the equality structual (from the referential equality default) by just declaring it as an attribute to the type and let the compiler handle the details. <lang fsharp>open System
[<Struct; StructuralEquality; NoComparison>] type Quaternion(r : float, i : float, j : float, k : float) =
member this.A = r member this.B = i member this.C = j member this.D = k
new (f : float) = Quaternion(f, 0., 0., 0.)
static member (~-) (q : Quaternion) = Quaternion(-q.A, -q.B, -q.C, -q.D) static member (+) (q1 : Quaternion, q2 : Quaternion) = Quaternion(q1.A + q2.A, q1.B + q2.B, q1.C + q2.C, q1.D + q2.D) static member (+) (q : Quaternion, r : float) = q + Quaternion(r) static member (+) (r : float, q: Quaternion) = Quaternion(r) + q static member (*) (q1 : Quaternion, q2 : Quaternion) = Quaternion( q1.A * q2.A - q1.B * q2.B - q1.C * q2.C - q1.D * q2.D, q1.A * q2.B + q1.B * q2.A + q1.C * q2.D - q1.D * q2.C, q1.A * q2.C - q1.B * q2.D + q1.C * q2.A + q1.D * q2.B, q1.A * q2.D + q1.B * q2.C - q1.C * q2.B + q1.D * q2.A) static member (*) (q : Quaternion, r : float) = q * Quaternion(r) static member (*) (r : float, q: Quaternion) = Quaternion(r) * q member this.Norm = Math.Sqrt(r * r + i * i + j * j + k * k) member this.Conjugate = Quaternion(r, -i, -j, -k) override this.ToString() = sprintf "Q(%f, %f, %f, %f)" r i j k
[<EntryPoint>] let main argv =
let q = Quaternion(1., 2., 3., 4.) let q1 = Quaternion(2., 3., 4., 5.) let q2 = Quaternion(3., 4., 5., 6.) let r = 7. printfn "q = %A" q printfn "q1 = %A" q1 printfn "q2 = %A" q2 printfn "r = %A" r printfn "q.Norm = %A" q.Norm printfn "q1.Norm = %A" q1.Norm printfn "q2.Norm = %A" q2.Norm printfn "-q = %A" -q printfn "q.Conjugate = %A" q.Conjugate printfn "q + r = %A" (q + (Quaternion r)) printfn "q1 + q2 = %A" (q1 + q2) printfn "q2 + q1 = %A" (q2 + q1) printfn "q * r = %A" (q * r) printfn "q1 * q2 = %A" (q1 * q2) printfn "q2 * q1 = %A" (q2 * q1) printfn "q1*q2 %s q2*q1" (if (q1 * q2) = (q2 * q1) then "=" else "<>") printfn "q %s Q(1.,2.,3.,4.)" (if q = Quaternion(1., 2., 3., 4.) then "=" else "<>") 0</lang>
- Output:
q = Q(1.000000, 2.000000, 3.000000, 4.000000) q1 = Q(2.000000, 3.000000, 4.000000, 5.000000) q2 = Q(3.000000, 4.000000, 5.000000, 6.000000) r = 7.0 q.Norm = 5.477225575 q1.Norm = 7.348469228 q2.Norm = 9.273618495 -q = Q(-1.000000, -2.000000, -3.000000, -4.000000) q.Conjugate = Q(1.000000, -2.000000, -3.000000, -4.000000) q + r = Q(8.000000, 2.000000, 3.000000, 4.000000) q1 + q2 = Q(5.000000, 7.000000, 9.000000, 11.000000) q2 + q1 = Q(5.000000, 7.000000, 9.000000, 11.000000) q * r = Q(7.000000, 14.000000, 21.000000, 28.000000) q1 * q2 = Q(-56.000000, 16.000000, 24.000000, 26.000000) q2 * q1 = Q(-56.000000, 18.000000, 20.000000, 28.000000) q1*q2 <> q2*q1 q = Q(1.,2.,3.,4.)
Forth
<lang forth>: quaternions 4 * floats ;
- qvariable create 1 quaternions allot ;
- q! ( a b c d q -- )
dup 3 floats + f! dup 2 floats + f! dup float+ f! f! ;
- qcopy ( src dest -- ) 1 quaternions move ;
- qnorm ( q -- f )
0e 4 0 do dup f@ fdup f* f+ float+ loop drop fsqrt ;
- qf* ( q f -- )
4 0 do dup f@ fover f* dup f! float+ loop fdrop drop ;
- qnegate ( q -- ) -1e qf* ;
- qconj ( q -- )
float+ 3 0 do dup f@ fnegate dup f! float+ loop drop ;
- qf+ ( q f -- ) dup f@ f+ f! ;
- q+ ( q1 q2 -- )
4 0 do over f@ dup f@ f+ dup f! float+ swap float+ swap loop 2drop ;
\ access
- q.a f@ ;
- q.b float+ f@ ;
- q.c 2 floats + f@ ;
- q.d 3 floats + f@ ;
- q* ( dest q1 q2 -- )
over q.a dup q.d f* over q.b dup q.c f* f+ over q.c dup q.b f* f- over q.d dup q.a f* f+ over q.a dup q.c f* over q.b dup q.d f* f- over q.c dup q.a f* f+ over q.d dup q.b f* f+ over q.a dup q.b f* over q.b dup q.a f* f+ over q.c dup q.d f* f+ over q.d dup q.c f* f- over q.a dup q.a f* over q.b dup q.b f* f- over q.c dup q.c f* f- over q.d dup q.d f* f- 2drop 4 0 do dup f! float+ loop drop ;
- q= ( q1 q2 -- ? )
4 0 do over f@ dup f@ f<> if 2drop false unloop exit then float+ swap float+ loop 2drop true ;
\ testing
- q. ( q -- )
[char] ( emit space 4 0 do dup f@ f. float+ loop drop [char] ) emit space ;
qvariable q 1e 2e 3e 4e q q! qvariable q1 2e 3e 4e 5e q1 q! create q2 3e f, 4e f, 5e f, 6e f, \ by hand
qvariable tmp qvariable m1 qvariable m2
q qnorm f. \ 5.47722557505166 q tmp qcopy tmp qnegate tmp q. \ ( -1. -2. -3. -4. ) q tmp qcopy tmp qconj tmp q. \ ( 1. -2. -3. -4. )
q m1 qcopy m1 7e qf+ m1 q. \ ( 8. 2. 3. 4. ) q m2 qcopy 7e m2 qf+ m2 q. \ ( 8. 2. 3. 4. ) m1 m2 q= . \ -1 (true)
q2 tmp qcopy q1 tmp q+ tmp q. \ ( 5. 7. 9. 11. )
q m1 qcopy m1 7e qf* m1 q. \ ( 7. 14. 21. 28. ) q m2 qcopy 7e m2 qf* m2 q. \ ( 7. 14. 21. 28. ) m1 m2 q= . \ -1 (true)
m1 q1 q2 q* m1 q. \ ( -56. 16. 24. 26. ) m2 q2 q1 q* m2 q. \ ( -56. 18. 20. 28. ) m1 m2 q= . \ 0 (false)</lang>
Fortran
<lang fortran>module Q_mod
implicit none
type quaternion real :: a, b, c, d end type
public :: norm, neg, conj public :: operator (+) public :: operator (*) private :: q_plus_q, q_plus_r, r_plus_q, & q_mult_q, q_mult_r, r_mult_q, & norm_q, neg_q, conj_q
interface norm module procedure norm_q end interface
interface neg module procedure neg_q end interface
interface conj module procedure conj_q end interface
interface operator (+) module procedure q_plus_q, q_plus_r, r_plus_q end interface
interface operator (*) module procedure q_mult_q, q_mult_r, r_mult_q end interface
contains
function norm_q(x) result(res)
real :: res type (quaternion), intent (in) :: x
res = sqrt(x%a*x%a + x%b*x%b + x%c*x%c + x%d*x%d)
end function norm_q
function neg_q(x) result(res)
type (quaternion) :: res type (quaternion), intent (in) :: x
res%a = -x%a res%b = -x%b res%c = -x%c res%d = -x%d
end function neg_q
function conj_q(x) result(res)
type (quaternion) :: res type (quaternion), intent (in) :: x
res%a = x%a res%b = -x%b res%c = -x%c res%d = -x%d
end function conj_q
function q_plus_q(x, y) result (res)
type (quaternion) :: res type (quaternion), intent (in) :: x, y res%a = x%a + y%a res%b = x%b + y%b res%c = x%c + y%c res%d = x%d + y%d
end function q_plus_q
function q_plus_r(x, r) result (res)
type (quaternion) :: res type (quaternion), intent (in) :: x real, intent(in) :: r res = x res%a = x%a + r
end function q_plus_r
function r_plus_q(r, x) result (res)
type (quaternion) :: res type (quaternion), intent (in) :: x real, intent(in) :: r res = x res%a = x%a + r
end function r_plus_q
function q_mult_q(x, y) result (res)
type (quaternion) :: res type (quaternion), intent (in) :: x, y res%a = x%a*y%a - x%b*y%b - x%c*y%c - x%d*y%d res%b = x%a*y%b + x%b*y%a + x%c*y%d - x%d*y%c res%c = x%a*y%c - x%b*y%d + x%c*y%a + x%d*y%b res%d = x%a*y%d + x%b*y%c - x%c*y%b + x%d*y%a
end function q_mult_q
function q_mult_r(x, r) result (res)
type (quaternion) :: res type (quaternion), intent (in) :: x real, intent(in) :: r res%a = x%a*r res%b = x%b*r res%c = x%c*r res%d = x%d*r
end function q_mult_r
function r_mult_q(r, x) result (res)
type (quaternion) :: res type (quaternion), intent (in) :: x real, intent(in) :: r res%a = x%a*r res%b = x%b*r res%c = x%c*r res%d = x%d*r
end function r_mult_q end module Q_mod
program Quaternions
use Q_mod implicit none
real :: r = 7.0 type(quaternion) :: q, q1, q2
q = quaternion(1, 2, 3, 4) q1 = quaternion(2, 3, 4, 5) q2 = quaternion(3, 4, 5, 6)
write(*, "(a, 4f8.3)") " q = ", q write(*, "(a, 4f8.3)") " q1 = ", q1 write(*, "(a, 4f8.3)") " q2 = ", q2 write(*, "(a, f8.3)") " r = ", r write(*, "(a, f8.3)") " Norm of q = ", norm(q) write(*, "(a, 4f8.3)") " Negative of q = ", neg(q) write(*, "(a, 4f8.3)") "Conjugate of q = ", conj(q) write(*, "(a, 4f8.3)") " q + r = ", q + r write(*, "(a, 4f8.3)") " r + q = ", r + q write(*, "(a, 4f8.3)") " q1 + q2 = ", q1 + q2 write(*, "(a, 4f8.3)") " q * r = ", q * r write(*, "(a, 4f8.3)") " r * q = ", r * q write(*, "(a, 4f8.3)") " q1 * q2 = ", q1 * q2 write(*, "(a, 4f8.3)") " q2 * q1 = ", q2 * q1
end program</lang>
- Output:
q = 1.000 2.000 3.000 4.000 q1 = 2.000 3.000 4.000 5.000 q2 = 3.000 4.000 5.000 6.000 r = 7.000 Norm of q = 5.477 Negative of q = -1.000 -2.000 -3.000 -4.000 Conjugate of q = 1.000 -2.000 -3.000 -4.000 q + r = 8.000 2.000 3.000 4.000 r + q = 8.000 2.000 3.000 4.000 q1 + q2 = 5.000 7.000 9.000 11.000 q * r = 7.000 14.000 21.000 28.000 r * q = 7.000 14.000 21.000 28.000 q1 * q2 = -56.000 16.000 24.000 26.000 q2 * q1 = -56.000 18.000 20.000 28.000
GAP
<lang gap># GAP has built-in support for quaternions
A := QuaternionAlgebra(Rationals);
- <algebra-with-one of dimension 4 over Rationals>
b := BasisVectors(Basis(A));
- [ e, i, j, k ]
q := [1, 2, 3, 4]*b;
- e+(2)*i+(3)*j+(4)*k
- Conjugate
ComplexConjugate(q);
- e+(-2)*i+(-3)*j+(-4)*k
- Division
1/q;
- (1/30)*e+(-1/15)*i+(-1/10)*j+(-2/15)*k
- Computing norm may be difficult, since the result would be in a quadratic field.
- Sqrt exists in GAP, but it is quite unusual: see ?E in GAP documentation, and the following example
Sqrt(5/3);
- 1/3*E(60)^7+1/3*E(60)^11-1/3*E(60)^19-1/3*E(60)^23-1/3*E(60)^31+1/3*E(60)^43-1/3*E(60)^47+1/3*E(60)^59
- However, the square of the norm is easy to compute
q*ComplexConjugate(q);
- (30)*e
q1 := [2, 3, 4, 5]*b;
- (2)*e+(3)*i+(4)*j+(5)*k
q2 := [3, 4, 5, 6]*b;
- (3)*e+(4)*i+(5)*j+(6)*k
q1*q2 - q2*q1;
- (-2)*i+(4)*j+(-2)*k
- Can't add directly to a rational, one must make a quaternion of it
r := 5/3*b[1];
- (5/3)*e
r + q;
- (8/3)*e+(2)*i+(3)*j+(4)*k
- For multiplication, no problem (we are in an algebra over rationals !)
r*q;
- (5/3)*e+(10/3)*i+(5)*j+(20/3)*k
5/3*q;
- (5/3)*e+(10/3)*i+(5)*j+(20/3)*k
- Negative
-q; (-1)*e+(-2)*i+(-3)*j+(-4)*k
- While quaternions are built-in, you can define an algebra in GAP by specifying it's multiplication table.
- See tutorial, p. 60, and reference of the functions used below.
- A multiplication table of dimension 4.
T := EmptySCTable(4, 0); SetEntrySCTable(T, 1, 1, [1, 1]); SetEntrySCTable(T, 1, 2, [1, 2]); SetEntrySCTable(T, 1, 3, [1, 3]); SetEntrySCTable(T, 1, 4, [1, 4]); SetEntrySCTable(T, 2, 1, [1, 2]); SetEntrySCTable(T, 2, 2, [-1, 1]); SetEntrySCTable(T, 2, 3, [1, 4]); SetEntrySCTable(T, 2, 4, [-1, 3]); SetEntrySCTable(T, 3, 1, [1, 3]); SetEntrySCTable(T, 3, 2, [-1, 4]); SetEntrySCTable(T, 3, 3, [-1, 1]); SetEntrySCTable(T, 3, 4, [1, 2]); SetEntrySCTable(T, 4, 1, [1, 4]); SetEntrySCTable(T, 4, 2, [1, 3]); SetEntrySCTable(T, 4, 3, [-1, 2]); SetEntrySCTable(T, 4, 4, [-1, 1]);
A := AlgebraByStructureConstants(Rationals, T, ["e", "i", "j", "k"]); b := GeneratorsOfAlgebra(A);
IsAssociative(A);
- true
IsCommutative(A);
- false
- Then, like above
q := [1, 2, 3, 4]*b;
- e+(2)*i+(3)*j+(4)*k
- However, as is, GAP does not know division or conjugate on this algebra.
- QuaternionAlgebra is useful as well for extensions of rationals,
- and this one _has_ conjugate and division, as seen previously.
- Try this on Q[z] where z is the square root of 5 (in GAP it's ER(5))
F := FieldByGenerators([ER(5)]); A := QuaternionAlgebra(F); b := GeneratorsOfAlgebra(A);
q := [1, 2, 3, 4]*b;
- e+(2)*i+(3)*j+(4)*k
- Conjugate and division
ComplexConjugate(q);
- e+(-2)*i+(-3)*j+(-4)*k
1/q;
- (1/30)*e+(-1/15)*i+(-1/10)*j+(-2/15)*k</lang>
Go
Conventions for method receiver, parameter, and return values modeled after Go's big number package. It provides flexibility without requiring unnecessary object creation. The test program creates only four quaternion objects, the three inputs and one more for an output. The three inputs are reused repeatedly without being modified. The output is also reused repeatedly, being overwritten for each operation. <lang go>package main
import (
"fmt" "math"
)
type qtn struct {
r, i, j, k float64
}
var (
q = &qtn{1, 2, 3, 4} q1 = &qtn{2, 3, 4, 5} q2 = &qtn{3, 4, 5, 6}
r float64 = 7
)
func main() {
fmt.Println("Inputs") fmt.Println("q:", q) fmt.Println("q1:", q1) fmt.Println("q2:", q2) fmt.Println("r:", r)
var qr qtn fmt.Println("\nFunctions") fmt.Println("q.norm():", q.norm()) fmt.Println("neg(q):", qr.neg(q)) fmt.Println("conj(q):", qr.conj(q)) fmt.Println("addF(q, r):", qr.addF(q, r)) fmt.Println("addQ(q1, q2):", qr.addQ(q1, q2)) fmt.Println("mulF(q, r):", qr.mulF(q, r)) fmt.Println("mulQ(q1, q2):", qr.mulQ(q1, q2)) fmt.Println("mulQ(q2, q1):", qr.mulQ(q2, q1))
}
func (q *qtn) String() string {
return fmt.Sprintf("(%g, %g, %g, %g)", q.r, q.i, q.j, q.k)
}
func (q *qtn) norm() float64 {
return math.Sqrt(q.r*q.r + q.i*q.i + q.j*q.j + q.k*q.k)
}
func (z *qtn) neg(q *qtn) *qtn {
z.r, z.i, z.j, z.k = -q.r, -q.i, -q.j, -q.k return z
}
func (z *qtn) conj(q *qtn) *qtn {
z.r, z.i, z.j, z.k = q.r, -q.i, -q.j, -q.k return z
}
func (z *qtn) addF(q *qtn, r float64) *qtn {
z.r, z.i, z.j, z.k = q.r+r, q.i, q.j, q.k return z
}
func (z *qtn) addQ(q1, q2 *qtn) *qtn {
z.r, z.i, z.j, z.k = q1.r+q2.r, q1.i+q2.i, q1.j+q2.j, q1.k+q2.k return z
}
func (z *qtn) mulF(q *qtn, r float64) *qtn {
z.r, z.i, z.j, z.k = q.r*r, q.i*r, q.j*r, q.k*r return z
}
func (z *qtn) mulQ(q1, q2 *qtn) *qtn {
z.r, z.i, z.j, z.k = q1.r*q2.r-q1.i*q2.i-q1.j*q2.j-q1.k*q2.k, q1.r*q2.i+q1.i*q2.r+q1.j*q2.k-q1.k*q2.j, q1.r*q2.j-q1.i*q2.k+q1.j*q2.r+q1.k*q2.i, q1.r*q2.k+q1.i*q2.j-q1.j*q2.i+q1.k*q2.r return z
}</lang>
- Output:
Inputs q: (1, 2, 3, 4) q1: (2, 3, 4, 5) q2: (3, 4, 5, 6) r: 7 Functions q.norm(): 5.477225575051661 neg(q): (-1, -2, -3, -4) conj(q): (1, -2, -3, -4) addF(q, r): (8, 2, 3, 4) addQ(q1, q2): (5, 7, 9, 11) mulF(q, r): (7, 14, 21, 28) mulQ(q1, q2): (-56, 16, 24, 26) mulQ(q2, q1): (-56, 18, 20, 28)
Haskell
<lang haskell>import Control.Monad import Control.Arrow import Data.List
data Quaternion = Q Double Double Double Double
deriving (Show, Ord, Eq)
realQ :: Quaternion -> Double realQ (Q r _ _ _) = r
imagQ :: Quaternion -> [Double] imagQ (Q _ i j k) = [i, j, k]
quaternionFromScalar s = Q s 0 0 0
listFromQ (Q a b c d) = [a,b,c,d] quaternionFromList [a, b, c, d] = Q a b c d
addQ, subQ, mulQ :: Quaternion -> Quaternion -> Quaternion addQ (Q a b c d) (Q p q r s) = Q (a+p) (b+q) (c+r) (d+s)
subQ (Q a b c d) (Q p q r s) = Q (a-p) (b-q) (c-r) (d-s)
mulQ (Q a b c d) (Q p q r s) =
Q (a*p - b*q - c*r - d*s) (a*q + b*p + c*s - d*r) (a*r - b*s + c*p + d*q) (a*s + b*r - c*q + d*p)
normQ = sqrt. sum. join (zipWith (*)). listFromQ
conjQ, negQ :: Quaternion -> Quaternion conjQ (Q a b c d) = Q a (-b) (-c) (-d)
negQ (Q a b c d) = Q (-a) (-b) (-c) (-d)</lang> To use with the Examples: <lang haskell>[q,q1,q2] = map quaternionFromList [[1..4],[2..5],[3..6]] -- a*b == b*a test :: Quaternion -> Quaternion -> Bool test a b = a `mulQ` b == b `mulQ` a</lang> Examples:
*Main> mulQ (Q 0 1 0 0) $ mulQ (Q 0 0 1 0) (Q 0 0 0 1) -- i*j*k Q (-1.0) 0.0 0.0 0.0 *Main> test q1 q2 False *Main> mulQ q1 q2 Q (-56.0) 16.0 24.0 26.0 *Main> flip mulQ q1 q2 Q (-56.0) 18.0 20.0 28.0 *Main> imagQ q [2.0,3.0,4.0]
Icon and Unicon
Using Unicon's class system.
<lang Unicon> class Quaternion(a, b, c, d)
method norm () return sqrt (a*a + b*b + c*c + d*d) end
method negative () return Quaternion(-a, -b, -c, -d) end
method conjugate () return Quaternion(a, -b, -c, -d) end
method add (n) if type(n) == "Quaternion__state" then return Quaternion(a+n.a, b+n.b, c+n.c, d+n.d) else return Quaternion(a+n, b, c, d) end
method multiply (n) if type(n) == "Quaternion__state" then return Quaternion(a*n.a - b*n.b - c*n.c - d*n.d, a*n.b + b*n.a + c*n.d - d*n.c, a*n.c - b*n.d + c*n.a + d*n.b, a*n.d + b*n.c - c*n.b + d*n.a) else return Quaternion(a*n, b*n, c*n, d*n) end
method sign (n) return if n >= 0 then "+" else "-" end
method string () return ("" || a || sign(b) || abs(b) || "i" || sign(c) || abs(c) || "j" || sign(d) || abs(d) || "k"); end
initially(a, b, c, d) self.a := if /a then 0 else a self.b := if /b then 0 else b self.c := if /c then 0 else c self.d := if /d then 0 else d
end </lang>
To test the above:
<lang Unicon> procedure main ()
q := Quaternion (1,2,3,4) q1 := Quaternion (2,3,4,5) q2 := Quaternion (3,4,5,6) r := 7
write ("The norm of " || q.string() || " is " || q.norm ()) write ("The negative of " || q.string() || " is " || q.negative().string ()) write ("The conjugate of " || q.string() || " is " || q.conjugate().string ()) write ("Sum of " || q.string() || " and " || r || " is " || q.add(r).string ()) write ("Sum of " || q.string() || " and " || q1.string() || " is " || q.add(q1).string ()) write ("Product of " || q.string() || " and " || r || " is " || q.multiply(r).string ()) write ("Product of " || q.string() || " and " || q1.string() || " is " || q.multiply(q1).string ()) write ("q1*q2 = " || q1.multiply(q2).string ()) write ("q2*q1 = " || q2.multiply(q1).string ())
end </lang>
- Output:
The norm of 1+2i+3j+4k is 5.477225575 The negative of 1+2i+3j+4k is -1-2i-3j-4k The conjugate of 1+2i+3j+4k is 1-2i-3j-4k Sum of 1+2i+3j+4k and 7 is 8+2i+3j+4k Sum of 1+2i+3j+4k and 2+3i+4j+5k is 3+5i+7j+9k Product of 1+2i+3j+4k and 7 is 7+14i+21j+28k Product of 1+2i+3j+4k and 2+3i+4j+5k is -36+6i+12j+12k q1*q2 = -56+16i+24j+26k q2*q1 = -56+18i+20j+28k
J
Derived from the j wiki:
<lang j> NB. utilities
ip=: +/ .* NB. inner product T=. (_1^#:0 10 9 12)*0 7 16 23 A.=i.4 toQ=: 4&{."1 :[: NB. real scalars -> quaternion
NB. task norm=: %:@ip~@toQ NB. | y neg=: -&toQ NB. - y and x - y conj=: 1 _1 _1 _1 * toQ NB. + y add=: +&toQ NB. x + y mul=: (ip T ip ])&toQ NB. x * y</lang>
T is a rank 3 tensor which allows us to express quaternion product ab as the inner product ATB if A and B are 4 element vectors representing the quaternions a and b. (Note also that once we have defined mul
we no longer need to retain the definition of T, so we define T using =. instead of =:). The value of T is probably more interesting than its definition, so:
<lang J> T 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 _1 0 0 1 0 0 0 0 0 0 _1 0 0 1 0
0 0 _1 0 0 0 0 1 1 0 0 0 0 _1 0 0
0 0 0 _1 0 0 _1 0 0 1 0 0 1 0 0 0</lang>
In other words, the last dimension of T corresponds to the structure of the right argument (columns, in the display of T), the first dimension of T corresponds to the structure of the left argument (tables, in the display of T) and the middle dimension of T corresponds to the structure of the result (rows, in the display of T).
Example use:
<lang> q=: 1 2 3 4
q1=: 2 3 4 5 q2=: 3 4 5 6 r=: 7 norm q
5.47723
neg q
_1 _2 _3 _4
conj q
1 _2 _3 _4
r add q
8 2 3 4
q1 add q2
5 7 9 11
r mul q
7 14 21 28
q1 mul q2
_56 16 24 26
q2 mul q1
_56 18 20 28</lang>
Finally, note that when quaternions are used to represent orientation or rotation, we are typically only interested in unit length quaternions. As this is the typical application for quaternions, you will sometimes see quaternion multiplication expressed using "simplifications" which are only valid for unit length quaternions. But note also that in many of those contexts you also need to normalize the quaternion length after multiplication.
(An exception to this need to normalize unit length quaternions after multiplication might be when quaternions are represented as an index into a geodesic grid. For example, a grid with 16x20 faces would have a total of 15 vertices for each face (5+4+3+2+1), 3 of those vertices would be from the original 20 vertices of the icosahedron, and 9 of those vertices (5+4+3-3) would be on the edge of the original face (and, thus, used for two faces), the remaining 3 vertices would be interior. This means we would have 170 vertices (20+(20*9%2)+20*3, which would allow a quaternion to be represented in a single byte index into a list of 170 quaternions, and would allow quaternion multiplication to be represented as a 29kbyte lookup table. In some contexts - where quaternion multiplication is needed in high volume for secondary or tertiary issues (where precision isn't vital), such low accuracy quaternions might be adequate or even an advantage...)
Java
<lang java>public class Quaternion {
private final double a, b, c, d;
public Quaternion(double a, double b, double c, double d) { this.a = a; this.b = b; this.c = c; this.d = d; } public Quaternion(double r) { this(r, 0.0, 0.0, 0.0); }
public double norm() { return Math.sqrt(a * a + b * b + c * c + d * d); }
public Quaternion negative() { return new Quaternion(-a, -b, -c, -d); }
public Quaternion conjugate() { return new Quaternion(a, -b, -c, -d); }
public Quaternion add(double r) { return new Quaternion(a + r, b, c, d); } public static Quaternion add(Quaternion q, double r) { return q.add(r); } public static Quaternion add(double r, Quaternion q) { return q.add(r); } public Quaternion add(Quaternion q) { return new Quaternion(a + q.a, b + q.b, c + q.c, d + q.d); } public static Quaternion add(Quaternion q1, Quaternion q2) { return q1.add(q2); }
public Quaternion times(double r) { return new Quaternion(a * r, b * r, c * r, d * r); } public static Quaternion times(Quaternion q, double r) { return q.times(r); } public static Quaternion times(double r, Quaternion q) { return q.times(r); } public Quaternion times(Quaternion q) { return new Quaternion( a * q.a - b * q.b - c * q.c - d * q.d, a * q.b + b * q.a + c * q.d - d * q.c, a * q.c - b * q.d + c * q.a + d * q.b, a * q.d + b * q.c - c * q.b + d * q.a ); } public static Quaternion times(Quaternion q1, Quaternion q2) { return q1.times(q2); }
@Override public boolean equals(Object obj) { if (!(obj instanceof Quaternion)) return false; final Quaternion other = (Quaternion) obj; if (Double.doubleToLongBits(this.a) != Double.doubleToLongBits(other.a)) return false; if (Double.doubleToLongBits(this.b) != Double.doubleToLongBits(other.b)) return false; if (Double.doubleToLongBits(this.c) != Double.doubleToLongBits(other.c)) return false; if (Double.doubleToLongBits(this.d) != Double.doubleToLongBits(other.d)) return false; return true; } @Override public String toString() { return String.format("%.2f + %.2fi + %.2fj + %.2fk", a, b, c, d).replaceAll("\\+ -", "- "); }
public String toQuadruple() { return String.format("(%.2f, %.2f, %.2f, %.2f)", a, b, c, d); }
public static void main(String[] args) { Quaternion q = new Quaternion(1.0, 2.0, 3.0, 4.0); Quaternion q1 = new Quaternion(2.0, 3.0, 4.0, 5.0); Quaternion q2 = new Quaternion(3.0, 4.0, 5.0, 6.0); double r = 7.0; System.out.format("q = %s%n", q); System.out.format("q1 = %s%n", q1); System.out.format("q2 = %s%n", q2); System.out.format("r = %.2f%n%n", r); System.out.format("\u2016q\u2016 = %.2f%n", q.norm()); System.out.format("-q = %s%n", q.negative()); System.out.format("q* = %s%n", q.conjugate()); System.out.format("q + r = %s%n", q.add(r)); System.out.format("q1 + q2 = %s%n", q1.add(q2)); System.out.format("q \u00d7 r = %s%n", q.times(r)); Quaternion q1q2 = q1.times(q2); Quaternion q2q1 = q2.times(q1); System.out.format("q1 \u00d7 q2 = %s%n", q1q2); System.out.format("q2 \u00d7 q1 = %s%n", q2q1); System.out.format("q1 \u00d7 q2 %s q2 \u00d7 q1%n", (q1q2.equals(q2q1) ? "=" : "\u2260")); }
}</lang>
- Output:
q = 1.00 + 2.00i + 3.00j + 4.00k q1 = 2.00 + 3.00i + 4.00j + 5.00k q2 = 3.00 + 4.00i + 5.00j + 6.00k r = 7.00 ‖q‖ = 5.48 -q = -1.00 - 2.00i - 3.00j - 4.00k q* = 1.00 - 2.00i - 3.00j - 4.00k q + r = 8.00 + 2.00i + 3.00j + 4.00k q1 + q2 = 5.00 + 7.00i + 9.00j + 11.00k q × r = 7.00 + 14.00i + 21.00j + 28.00k q1 × q2 = -56.00 + 16.00i + 24.00j + 26.00k q2 × q1 = -56.00 + 18.00i + 20.00j + 28.00k q1 × q2 ≠ q2 × q1
JavaScript
Runs on Firefox 3+, limited support in other JS engines. More compatible JavaScript deserves its own entry.
<lang javascript>var Quaternion = (function() {
// The Q() function takes an array argument and changes it // prototype so that it becomes a Quaternion instance. This is // scoped only for prototype member access. function Q(a) {
a.__proto__ = proto; return a;
}
// Actual constructor. This constructor converts its arguments to // an array, then that array to a Quaternion instance, then // returns that instance. (using "new" with this constructor is // optional) function Quaternion() {
return Q(Array.prototype.slice.call(arguments, 0, 4));
}
// Prototype for all Quaternions const proto = {
// Inherits from a 4-element Array __proto__ : [0,0,0,0],
// Properties -- In addition to Array[0..3] access, we // also define matching a, b, c, and d properties get a() this[0], get b() this[1], get c() this[2], get d() this[3],
// Methods norm : function() Math.sqrt(this.map(function(x) x*x).reduce(function(x,y) x+y)), negate : function() Q(this.map(function(x) -x)), conjugate : function() Q([ this[0] ].concat(this.slice(1).map(function(x) -x))), add : function(x) { if ("number" === typeof x) { return Q([ this[0] + x ].concat(this.slice(1))); } else { return Q(this.map(function(v,i) v+x[i])); } }, mul : function(r) { var q = this; if ("number" === typeof r) { return Q(q.map(function(e) e*r)); } else { return Q([ q[0] * r[0] - q[1] * r[1] - q[2] * r[2] - q[3] * r[3], q[0] * r[1] + q[1] * r[0] + q[2] * r[3] - q[3] * r[2], q[0] * r[2] - q[1] * r[3] + q[2] * r[0] + q[3] * r[1], q[0] * r[3] + q[1] * r[2] - q[2] * r[1] + q[3] * r[0] ]); } }, equals : function(q) this.every(function(v,i) v === q[i]), toString : function() (this[0] + " + " + this[1] + "i + "+this[2] + "j + " + this[3] + "k").replace(/\+ -/g, '- ')
};
Quaternion.prototype = proto; return Quaternion;
})();</lang>
Task/Example Usage:
<lang javascript>var q = Quaternion(1,2,3,4); var q1 = Quaternion(2,3,4,5); var q2 = Quaternion(3,4,5,6); var r = 7;
console.log("q = "+q); console.log("q1 = "+q1); console.log("q2 = "+q2); console.log("r = "+r); console.log("1. q.norm() = "+q.norm()); console.log("2. q.negate() = "+q.negate()); console.log("3. q.conjugate() = "+q.conjugate()); console.log("4. q.add(r) = "+q.add(r)); console.log("5. q1.add(q2) = "+q1.add(q2)); console.log("6. q.mul(r) = "+q.mul(r)); console.log("7.a. q1.mul(q2) = "+q1.mul(q2)); console.log("7.b. q2.mul(q1) = "+q2.mul(q1)); console.log("8. q1.mul(q2) " + (q1.mul(q2).equals(q2.mul(q1)) ? "==" : "!=") + " q2.mul(q1)");</lang>
- Output:
q = 1 + 2i + 3j + 4k q1 = 2 + 3i + 4j + 5k q2 = 3 + 4i + 5j + 6k r = 7 1. q.norm() = 5.477225575051661 2. q.negate() = -1 - 2i - 3j - 4k 3. q.conjugate() = 1 - 2i - 3j - 4k 4. q.add(r) = 8 + 2i + 3j + 4k 5. q1.add(q2) = 5 + 7i + 9j + 11k 6. q.mul(r) = 7 + 14i + 21j + 28k 7.a. q1.mul(q2) = -56 + 16i + 24j + 26k 7.b. q2.mul(q1) = -56 + 18i + 20j + 28k 8. q1.mul(q2) != q2.mul(q1)
jq
Program file: quaternion.jq<lang jq>def Quaternion(q0;q1;q2;q3): { "q0": q0, "q1": q1, "q2": q2, "q3": q3, "type": "Quaternion" };
- promotion of a real number to a quaternion
def Quaternion(r): if (r|type) == "number" then Quaternion(r;0;0;0) else r end;
- thoroughly recursive pretty-print
def pp:
def signage: if . >= 0 then "+ \(.)" else "- \(-.)" end;
if type == "object" then if .type == "Quaternion" then "\(.q0) \(.q1|signage)i \(.q2|signage)j \(.q3|signage)k" else with_entries( {key, "value" : (.value|pp)} ) end elif type == "array" then map(pp) else . end ;
def real(z): Quaternion(z).q0;
- Note: imag(z) returns the "i" component only,
- reflecting the embedding of the complex numbers within the quaternions:
def imag(z): Quaternion(z).q1;
def conj(z): Quaternion(z) | Quaternion(.q0; -(.q1); -(.q2); -(.q3));
def abs2(z): Quaternion(z) | .q0 * .q0 + .q1*.q1 + .q2*.q2 + .q3*.q3;
def abs(z): abs2(z) | sqrt;
def negate(z): Quaternion(z) | Quaternion(-.q0; -.q1; -.q2; -.q3);
- z + w
def plus(z; w):
def plusq(z;w): Quaternion(z.q0 + w.q0; z.q1 + w.q1; z.q2 + w.q2; z.q3 + w.q3); plusq( Quaternion(z); Quaternion(w) );
- z - w
def minus(z; w):
def minusq(z;w): Quaternion(z.q0 - w.q0; z.q1 - w.q1; z.q2 - w.q2; z.q3 - w.q3); minusq( Quaternion(z); Quaternion(w) );
- *
def times(z; w):
def timesq(z; w): Quaternion(z.q0*w.q0 - z.q1*w.q1 - z.q2*w.q2 - z.q3*w.q3; z.q0*w.q1 + z.q1*w.q0 + z.q2*w.q3 - z.q3*w.q2; z.q0*w.q2 - z.q1*w.q3 + z.q2*w.q0 + z.q3*w.q1; z.q0*w.q3 + z.q1*w.q2 - z.q2*w.q1 + z.q3*w.q0); timesq( Quaternion(z); Quaternion(w) );
- (z/w)
def div(z; w):
if (w|type) == "number" then Quaternion(z.q0/w; z.q1/w; z.q2/w; z.q3/w) else times(z; inv(w)) end;
def inv(z): div(conj(z); abs2(z));
- Example usage and output:
def say(msg; e): "\(msg) => \(e|pp)";
def demo:
say( "Quaternion(1;0;0;0)"; Quaternion(1;0;0;0)), (Quaternion (1; 2; 3; 4) as $q | Quaternion(2; 3; 4; 5) as $q1 | Quaternion(3; 4; 5; 6) as $q2 | 7 as $r | say( "abs($q)"; abs($q) ), # norm say( "negate($q)"; negate($q) ), say( "conj($q)"; conj($q) ), "", say( "plus($r; $q)"; plus($r; $q)), say( "plus($q; $r)"; plus($q; $r)), "", say( "plus($q1; $q2 )"; plus($q1; $q2)), "", say( "times($r;$q)"; times($r;$q)), say( "times($q;$r)"; times($q;$r)), "", say( "times($q1;$q2)"; times($q1;$q2)), say( "times($q2; $q1)"; times($q2; $q1)), say( "times($q1; $q2) != times($q2; $q1)"; times($q1; $q2) != times($q2; $q1) ) ) ;
demo</lang> Example usage and output: <lang sh># jq -c -n -R -f quaternion.jq Quaternion(1;0;0;0) => 1 + 0i + 0j + 0k abs($q) => 5.477225575051661 negate($q) => -1 - 2i - 3j + -4k conj($q) => 1 - 2i - 3j - 4k
plus($r; $q) => 8 + 2i + 3j + 4k plus($q; $r) => 8 + 2i + 3j + 4k
plus($q1; $q2 ) => 5 + 7i + 9j + 11k
times($r;$q) => 7 + 14i + 21j + 28k times($q;$r) => 7 + 14i + 21j + 28k
times($q1;$q2) => -56 + 16i + 24j + 26k times($q2; $q1) => -56 + 18i + 20j + 28k times($q1; $q2) != times($q2; $q1) => true</lang>
Julia
https://github.com/andrioni/Quaternions.jl/blob/master/src/Quaternions.jl has a more complete implementation. This is derived from the quaternion example file included with Julia 0.2, which implements a quaternion type complete with arithmetic, type conversions / promotion rules, polymorphism over arbitrary real numeric types, and pretty-printing. <lang julia>import Base: convert, promote_rule, show, conj, abs, +, -, *
immutable Quaternion{T<:Real} <: Number
q0::T q1::T q2::T q3::T
end
Quaternion(q0::Real,q1::Real,q2::Real,q3::Real) = Quaternion(promote(q0,q1,q2,q3)...)
convert{T}(::Type{Quaternion{T}}, x::Real) =
Quaternion(convert(T,x), zero(T), zero(T), zero(T))
convert{T}(::Type{Quaternion{T}}, z::Complex) =
Quaternion(convert(T,real(z)), convert(T,imag(z)), zero(T), zero(T))
convert{T}(::Type{Quaternion{T}}, z::Quaternion) =
Quaternion(convert(T,z.q0), convert(T,z.q1), convert(T,z.q2), convert(T,z.q3))
promote_rule{T,S}(::Type{Complex{T}}, ::Type{Quaternion{S}}) = Quaternion{promote_type(T,S)} promote_rule{T<:Real,S}(::Type{T}, ::Type{Quaternion{S}}) = Quaternion{promote_type(T,S)} promote_rule{T,S}(::Type{Quaternion{T}}, ::Type{Quaternion{S}}) = Quaternion{promote_type(T,S)}
function show(io::IO, z::Quaternion)
pm(x) = x < 0 ? " - $(-x)" : " + $x" print(io, z.q0, pm(z.q1), "i", pm(z.q2), "j", pm(z.q3), "k")
end
conj(z::Quaternion) = Quaternion(z.q0, -z.q1, -z.q2, -z.q3) abs(z::Quaternion) = sqrt(z.q0*z.q0 + z.q1*z.q1 + z.q2*z.q2 + z.q3*z.q3)
(-)(z::Quaternion) = Quaternion(-z.q0, -z.q1, -z.q2, -z.q3)
(+)(z::Quaternion, w::Quaternion) = Quaternion(z.q0 + w.q0, z.q1 + w.q1,
z.q2 + w.q2, z.q3 + w.q3)
(-)(z::Quaternion, w::Quaternion) = Quaternion(z.q0 - w.q0, z.q1 - w.q1,
z.q2 - w.q2, z.q3 - w.q3)
(*)(z::Quaternion, w::Quaternion) = Quaternion(z.q0*w.q0 - z.q1*w.q1 - z.q2*w.q2 - z.q3*w.q3,
z.q0*w.q1 + z.q1*w.q0 + z.q2*w.q3 - z.q3*w.q2, z.q0*w.q2 - z.q1*w.q3 + z.q2*w.q0 + z.q3*w.q1, z.q0*w.q3 + z.q1*w.q2 - z.q2*w.q1 + z.q3*w.q0)
</lang>
Example usage and output: <lang julia>julia> q = Quaternion(1,0,0,0) julia> q = Quaternion (1, 2, 3, 4)
q1 = Quaternion(2, 3, 4, 5) q2 = Quaternion(3, 4, 5, 6) r = 7.
julia> norm(q) 5.477225575051661
julia> -q -1 - 2i - 3j - 4k
julia> conj(q) 1 - 2i - 3j - 4k
julia> r + q, q + r (8.0 + 2.0i + 3.0j + 4.0k,8.0 + 2.0i + 3.0j + 4.0k)
julia> q1 + q2 5 + 7i + 9j + 11k
julia> r*q, q*r (7.0 + 14.0i + 21.0j + 28.0k,7.0 + 14.0i + 21.0j + 28.0k)
julia> q1*q2, q2*q1, q1*q2 != q2*q1 (-56 + 16i + 24j + 26k,-56 + 18i + 20j + 28k,true)</lang>
Liberty BASIC
Quaternions saved as a space-separated string of four numbers. <lang lb>
q$ = q$( 1 , 2 , 3 , 4 )
q1$ = q$( 2 , 3 , 4 , 5 ) q2$ = q$( 3 , 4 , 5 , 6 )
real = 7
print "q = " ; q$ print "q1 = " ; q1$ print "q2 = " ; q2$
print "real = " ; real
print "length /norm q = " ; length( q$ ) ' =norm norm of q print "negative (-q1) = " ; negative$( q1$ ) ' =negative negated q1 print "conjugate q = " ; conjugate$( q$ ) ' conjugate conjugate q print "real + q = " ; add1$( q$ , real ) ' real +quaternion real +q print "q + q2 = " ; add2$( q$ , q2$ ) ' sum two quaternions q +q2 print "real * q = " ; multiply1$( q$ , real ) ' real *quaternion real *q print "q1 * q2 = " ; multiply2$( q1$ , q2$ ) ' product of two quaternions q1 & q2 print "q2 * q1 = " ; multiply2$( q2$ , q1$ ) ' show q1 *q2 <> q2 *q1
end
function q$( r , i , j , k )
q$ = str$( r); " "; str$( i); " "; str$( j); " "; str$( k)
end function
function length( q$ )
r = val( word$( q$ , 1 ) ) i = val( word$( q$ , 2 ) ) j = val( word$( q$ , 3 ) ) k = val( word$( q$ , 4 ) ) length =sqr( r^2 +i^2 +j^2 +k^2)
end function
function multiply1$( q$ , d )
r = val( word$( q$ , 1 ) ) i = val( word$( q$ , 2 ) ) j = val( word$( q$ , 3 ) ) k = val( word$( q$ , 4 ) ) multiply1$ =q$( r*d, i*d, j*d, k*d)
end function
function multiply2$( q$ , b$ )
ar = val( word$( q$ , 1 ) ) 'a1 ai = val( word$( q$ , 2 ) ) 'b1 aj = val( word$( q$ , 3 ) ) 'c1 ak = val( word$( q$ , 4 ) ) 'd1
br = val( word$( b$ , 1 ) ) 'a2 bi = val( word$( b$ , 2 ) ) 'b2 bj = val( word$( b$ , 3 ) ) 'c2 bk = val( word$( b$ , 4 ) ) 'd2
multiply2$ =q$( _ ar *br_ +( 0 -ai) *bi_ +( 0 -aj) *bj_ +( 0 -ak) *bk _ ,_ ar *bi_ +ai *br_ +aj *bk_ +( 0 -ak) *bj_ ,_ ar *bj_ +( 0 -ai) *bk_ +aj *br_ +ak *bi_ ,_ ar *bk_ +ai *bj_ +( 0 -aj) *bi_ +ak *br )
end function
function negative$( q$ )
r = val( word$( q$ , 1 ) ) i = val( word$( q$ , 2 ) ) j = val( word$( q$ , 3 ) ) k = val( word$( q$ , 4 ) ) negative$ =q$( 0-r, 0-i, 0-j, 0-k)
end function
function conjugate$( q$ )
r = val( word$( q$ , 1 ) ) i = val( word$( q$ , 2 ) ) j = val( word$( q$ , 3 ) ) k = val( word$( q$ , 4 ) ) conjugate$ =q$( r, 0-i, 0-j, 0-k)
end function
function add1$( q$ , real )
r = val( word$( q$ , 1 ) ) i = val( word$( q$ , 2 ) ) j = val( word$( q$ , 3 ) ) k = val( word$( q$ , 4 ) ) add1$ =q$( r +real, i, j, k)
end function
function add2$( q$ , b$ )
ar = val( word$( q$ , 1 ) ) ai = val( word$( q$ , 2 ) ) aj = val( word$( q$ , 3 ) ) ak = val( word$( q$ , 4 ) ) br = val( word$( b$ , 1 ) ) bi = val( word$( b$ , 2 ) ) bj = val( word$( b$ , 3 ) ) bk = val( word$( b$ , 4 ) ) add2$ =q$( ar +br, ai +bi, aj +bj, ak +bk)
end function
</lang>
Lua
<lang lua>Quaternion = {}
function Quaternion.new( a, b, c, d )
local q = { a = a or 1, b = b or 0, c = c or 0, d = d or 0 }
local metatab = {} setmetatable( q, metatab ) metatab.__add = Quaternion.add metatab.__sub = Quaternion.sub metatab.__unm = Quaternion.unm metatab.__mul = Quaternion.mul
return q
end
function Quaternion.add( p, q )
if type( p ) == "number" then
return Quaternion.new( p+q.a, q.b, q.c, q.d )
elseif type( q ) == "number" then
return Quaternion.new( p.a+q, p.b, p.c, p.d )
else
return Quaternion.new( p.a+q.a, p.b+q.b, p.c+q.c, p.d+q.d )
end
end
function Quaternion.sub( p, q )
if type( p ) == "number" then
return Quaternion.new( p-q.a, q.b, q.c, q.d )
elseif type( q ) == "number" then
return Quaternion.new( p.a-q, p.b, p.c, p.d )
else
return Quaternion.new( p.a-q.a, p.b-q.b, p.c-q.c, p.d-q.d )
end
end
function Quaternion.unm( p )
return Quaternion.new( -p.a, -p.b, -p.c, -p.d )
end
function Quaternion.mul( p, q )
if type( p ) == "number" then
return Quaternion.new( p*q.a, p*q.b, p*q.c, p*q.d )
elseif type( q ) == "number" then
return Quaternion.new( p.a*q, p.b*q, p.c*q, p.d*q )
else
return Quaternion.new( p.a*q.a - p.b*q.b - p.c*q.c - p.d*q.d,
p.a*q.b + p.b*q.a + p.c*q.d - p.d*q.c, p.a*q.c - p.b*q.d + p.c*q.a + p.d*q.b,
p.a*q.d + p.b*q.c - p.c*q.b + p.d*q.a )
end
end
function Quaternion.conj( p )
return Quaternion.new( p.a, -p.b, -p.c, -p.d )
end
function Quaternion.norm( p )
return math.sqrt( p.a^2 + p.b^2 + p.c^2 + p.d^2 )
end
function Quaternion.print( p )
print( string.format( "%f + %fi + %fj + %fk\n", p.a, p.b, p.c, p.d ) )
end</lang> Examples: <lang lua>q1 = Quaternion.new( 1, 2, 3, 4 ) q2 = Quaternion.new( 5, 6, 7, 8 ) r = 12
print( "norm(q1) = ", Quaternion.norm( q1 ) ) io.write( "-q1 = " ); Quaternion.print( -q1 ) io.write( "conj(q1) = " ); Quaternion.print( Quaternion.conj( q1 ) ) io.write( "r+q1 = " ); Quaternion.print( r+q1 ) io.write( "q1+r = " ); Quaternion.print( q1+r ) io.write( "r*q1 = " ); Quaternion.print( r*q1 ) io.write( "q1*r = " ); Quaternion.print( q1*r ) io.write( "q1*q2 = " ); Quaternion.print( q1*q2 ) io.write( "q2*q1 = " ); Quaternion.print( q2*q1 )
- Output:
norm(q1) = 5.4772255750517 -q1 = -1.000000 -2.000000i -3.000000j -4.000000k conj(q1) = 1.000000 -2.000000i -3.000000j -4.000000k r+q1 = 13.000000 + 2.000000i + 3.000000j + 4.000000k q1+r = 13.000000 + 2.000000i + 3.000000j + 4.000000k r*q1 = 12.000000 + 24.000000i + 36.000000j + 48.000000k q1*r = 12.000000 + 24.000000i + 36.000000j + 48.000000k q1*q2 = -60.000000 + 12.000000i + 30.000000j + 24.000000k q2*q1 = -60.000000 + 20.000000i + 14.000000j + 32.000000k</lang>
Mathematica
<lang Mathematica><<Quaternions` q=Quaternion[1,2,3,4] q1=Quaternion[2,3,4,5] q2=Quaternion[3,4,5,6] r=7 ->Quaternion[1,2,3,4] ->Quaternion[2,3,4,5] ->Quaternion[3,4,5,6] ->7
Abs[q] ->√30 -q ->Quaternion[-1,-2,-3,-4] Conjugate[q] ->Quaternion[1,-2,-3,-4] r+q ->Quaternion[8,2,3,4] q+r ->Quaternion[8,2,3,4] q1+q2 ->Quaternion[5,7,9,11] q*r ->Quaternion[7,14,21,28] r*q ->Quaternion[7,14,21,28] q1**q2 ->Quaternion[-56,16,24,26] q2**q1 ->Quaternion[-56,18,20,28] </lang>
Mercury
A possible implementation of quaternions in Mercury (the simplest representation) would look like this. Note that this is a full module implementation, complete with boilerplate, and that it works by giving an explicit conversion function for floats, converting a float into a quaternion representation of that float. Thus the float value 7.0
gets turned into the quaternion representation q(7.0, 0.0, 0.0, 0.0)
through the function call r(7.0)
.
<lang Mercury>:- module quaternion.
- - interface.
- - import_module float.
- - type quaternion
---> q( w :: float, i :: float, j :: float, k :: float ).
% conversion
- - func r(float) = quaternion is det.
% operations
- - func norm(quaternion) = float is det.
- - func -quaternion = quaternion is det.
- - func conjugate(quaternion) = quaternion is det.
- - func quaternion + quaternion = quaternion is det.
- - func quaternion * quaternion = quaternion is det.
- - implementation.
- - import_module math.
% conversion r(W) = q(W, 0.0, 0.0, 0.0).
% operations norm(q(W, I, J, K)) = math.sqrt(W*W + I*I + J*J + K*K). -q(W, I, J, K) = q(-W, -I, -J, -K). conjugate(q(W, I, J, K)) = q(W, -I, -J, -K). q(W0, I0, J0, K0) + q(W1, I1, J1, K1) = q(W0+W1, I0+I1, J0+J1, K0+K1). q(W0, I0, J0, K0) * q(W1, I1, J1, K1) = q(W0*W1 - I0*I1 - J0*J1 - K0*K1,
W0*I1 + I0*W1 + J0*K1 - K0*J1, W0*J1 - I0*K1 + J0*W1 + K0*I1, W0*K1 + I0*J1 - J0*I1 + K0*W1 ).</lang>
The following test module puts the module through its paces.
<lang Mercury>:- module test_quaternion.
- - interface.
- - import_module io.
- - pred main(io::di, io::uo) is det.
- - implementation.
- - import_module quaternion.
- - import_module exception.
- - import_module float.
- - import_module list.
- - import_module string.
- - func to_string(quaternion) = string is det.
main(!IO) :-
Q = q(1.0, 2.0, 3.0, 4.0), Q1 = q(2.0, 3.0, 4.0, 5.0), Q2 = q(3.0, 4.0, 5.0, 6.0), R = 7.0, QR = r(R),
io.print("Q = ", !IO), io.print(to_string(Q), !IO), io.nl(!IO), io.print("Q1 = ", !IO), io.print(to_string(Q1), !IO), io.nl(!IO), io.print("Q2 = ", !IO), io.print(to_string(Q2), !IO), io.nl(!IO), io.print("R = ", !IO), io.print(R, !IO), io.nl(!IO), io.nl(!IO),
io.print("1. The norm of a quaternion.\n", !IO), io.print("norm(Q) = ", !IO), io.print(norm(Q), !IO), io.nl(!IO), io.nl(!IO),
io.print("2. The negative of a quaternion.\n", !IO), io.print("-Q = ", !IO), io.print(to_string(-Q), !IO), io.nl(!IO), io.nl(!IO),
io.print("3. The conjugate of a quaternion.\n", !IO), io.print("conjugate(Q) = ", !IO), io.print(to_string(conjugate(Q)), !IO), io.nl(!IO), io.nl(!IO),
io.print("4. Addition of a real number and a quaternion.\n", !IO), ( Q + QR = QR + Q -> io.print("Addition is commutative.\n", !IO) ; io.print("Addition is not commutative.\n", !IO) ), io.print("Q + R = ", !IO), io.print(to_string(Q + QR), !IO), io.nl(!IO), io.print("R + Q = ", !IO), io.print(to_string(QR + Q), !IO), io.nl(!IO), io.nl(!IO),
io.print("5. Addition of two quaternions.\n", !IO), ( Q1 + Q2 = Q2 + Q1 -> io.print("Addition is commutative.\n", !IO) ; io.print("Addition is not commutative.\n", !IO) ), io.print("Q1 + Q2 = ", !IO), io.print(to_string(Q1 + Q2), !IO), io.nl(!IO), io.print("Q2 + Q1 = ", !IO), io.print(to_string(Q2 + Q1), !IO), io.nl(!IO), io.nl(!IO),
io.print("6. Multiplication of a real number and a quaternion.\n", !IO), ( Q * QR = QR * Q -> io.print("Multiplication is commutative.\n", !IO) ; io.print("Multiplication is not commutative.\n", !IO) ), io.print("Q * R = ", !IO), io.print(to_string(Q * QR), !IO), io.nl(!IO), io.print("R * Q = ", !IO), io.print(to_string(QR * Q), !IO), io.nl(!IO), io.nl(!IO),
io.print("7. Multiplication of two quaternions.\n", !IO), ( Q1 * Q2 = Q2 * Q1 -> io.print("Multiplication is commutative.\n", !IO) ; io.print("Multiplication is not commutative.\n", !IO) ), io.print("Q1 * Q2 = ", !IO), io.print(to_string(Q1 * Q2), !IO), io.nl(!IO), io.print("Q2 * Q1 = ", !IO), io.print(to_string(Q2 * Q1), !IO), io.nl(!IO), io.nl(!IO).
to_string(q(I, J, K, W)) = string.format("q(%f, %f, %f, %f)",
[f(I), f(J), f(K), f(W)]).
- - end_module test_quaternion.</lang>
The output of the above code follows:
% ./test_quaternion Q = q(1.000000, 2.000000, 3.000000, 4.000000) Q1 = q(2.000000, 3.000000, 4.000000, 5.000000) Q2 = q(3.000000, 4.000000, 5.000000, 6.000000) R = 7.0 1. The norm of a quaternion. norm(Q) = 5.477225575051661 2. The negative of a quaternion. -Q = q(-1.000000, -2.000000, -3.000000, -4.000000) 3. The conjugate of a quaternion. conjugate(Q) = q(1.000000, -2.000000, -3.000000, -4.000000) 4. Addition of a real number and a quaternion. Addition is commutative. Q + R = q(8.000000, 2.000000, 3.000000, 4.000000) R + Q = q(8.000000, 2.000000, 3.000000, 4.000000) 5. Addition of two quaternions. Addition is commutative. Q1 + Q2 = q(5.000000, 7.000000, 9.000000, 11.000000) Q2 + Q1 = q(5.000000, 7.000000, 9.000000, 11.000000) 6. Multiplication of a real number and a quaternion. Multiplication is commutative. Q * R = q(7.000000, 14.000000, 21.000000, 28.000000) R * Q = q(7.000000, 14.000000, 21.000000, 28.000000) 7. Multiplication of two quaternions. Multiplication is not commutative. Q1 * Q2 = q(-56.000000, 16.000000, 24.000000, 26.000000) Q2 * Q1 = q(-56.000000, 18.000000, 20.000000, 28.000000)
OCaml
This implementation was build strictly to the specs without looking (too much) at other implementations. The implementation as a record type with only floats is said (on the ocaml mailing list) to be especially efficient. Put this into a file quaternion.ml: <lang ocaml> type quaternion = {a: float; b: float; c: float; d: float}
let norm q = sqrt (q.a**2.0 +.
q.b**2.0 +. q.c**2.0 +. q.d**2.0 )
let floatneg r = ~-. r (* readability *)
let negative q =
{a = floatneg q.a; b = floatneg q.b; c = floatneg q.c; d = floatneg q.d }
let conjugate q =
{a = q.a; b = floatneg q.b; c = floatneg q.c; d = floatneg q.d }
let addrq r q = {q with a = q.a +. r}
let addq q1 q2 =
{a = q1.a +. q2.a; b = q1.b +. q2.b; c = q1.c +. q2.c; d = q1.d +. q2.d }
let multrq r q =
{a = q.a *. r; b = q.b *. r; c = q.c *. r; d = q.d *. r }
let multq q1 q2 =
{a = q1.a*.q2.a -. q1.b*.q2.b -. q1.c*.q2.c -. q1.d*.q2.d; b = q1.a*.q2.b +. q1.b*.q2.a +. q1.c*.q2.d -. q1.d*.q2.c; c = q1.a*.q2.c -. q1.b*.q2.d +. q1.c*.q2.a +. q1.d*.q2.b; d = q1.a*.q2.d +. q1.b*.q2.c -. q1.c*.q2.b +. q1.d*.q2.a }
let qmake a b c d = {a;b;c;d} (* readability omitting a= b=... *)
let qstring q =
Printf.sprintf "(%g, %g, %g, %g)" q.a q.b q.c q.d ;;
(* test data *) let q = qmake 1.0 2.0 3.0 4.0 let q1 = qmake 2.0 3.0 4.0 5.0 let q2 = qmake 3.0 4.0 5.0 6.0 let r = 7.0
let () = (* written strictly to spec *)
let pf = Printf.printf in pf "starting with data q=%s, q1=%s, q2=%s, r=%g\n" (qstring q) (qstring q1) (qstring q2) r; pf "1. norm of q = %g \n" (norm q) ; pf "2. negative of q = %s \n" (qstring (negative q)); pf "3. conjugate of q = %s \n" (qstring (conjugate q)); pf "4. adding r to q = %s \n" (qstring (addrq r q)); pf "5. adding q1 and q2 = %s \n" (qstring (addq q1 q2)); pf "6. multiply r and q = %s \n" (qstring (multrq r q)); pf "7. multiply q1 and q2 = %s \n" (qstring (multq q1 q2)); pf "8. instead q2 * q1 = %s \n" (qstring (multq q2 q1)); pf "\n";
</lang>
using this file on the command line will produce:
$ ocaml quaternion.ml starting with data q=(1, 2, 3, 4), q1=(2, 3, 4, 5), q2=(3, 4, 5, 6), r=7 1. norm of q = 5.47723 2. negative of q = (-1, -2, -3, -4) 3. conjugate of q = (1, -2, -3, -4) 4. adding r to q = (8, 2, 3, 4) 5. adding q1 and q2 = (5, 7, 9, 11) 6. multiply r and q = (7, 14, 21, 28) 7. multiply q1 and q2 = (-56, 16, 24, 26) 8. instead q2 * q1 = (-56, 18, 20, 28)
For completeness, and since data types are of utmost importance in OCaml, here the types produced by pasting the code into the toplevel (ocaml is the toplevel): <lang ocaml> type quaternion = { a : float; b : float; c : float; d : float; } val norm : quaternion -> float = <fun> val floatneg : float -> float = <fun> val negative : quaternion -> quaternion = <fun> val conjugate : quaternion -> quaternion = <fun> val addrq : float -> quaternion -> quaternion = <fun> val addq : quaternion -> quaternion -> quaternion = <fun> val multrq : float -> quaternion -> quaternion = <fun> val multq : quaternion -> quaternion -> quaternion = <fun> val qmake : float -> float -> float -> float -> quaternion = <fun> val qstring : quaternion -> string = <fun> </lang>
Octave
There is an add-on package (toolbox) to Octave available from http://octave.sourceforge.net/quaternion/
Such a package can be install with the command:
<lang>pkg install -forge quaternion</lang>
Here is a sample interactive session solving the task:
<lang>> q = quaternion (1, 2, 3, 4) q = 1 + 2i + 3j + 4k > q1 = quaternion (2, 3, 4, 5) q1 = 2 + 3i + 4j + 5k > q2 = quaternion (3, 4, 5, 6) q2 = 3 + 4i + 5j + 6k > r = 7 r = 7 > norm(q) ans = 5.4772 > -q ans = -1 - 2i - 3j - 4k > conj(q) ans = 1 - 2i - 3j - 4k > q + r ans = 8 + 2i + 3j + 4k > q1 + q2 ans = 5 + 7i + 9j + 11k > q * r ans = 7 + 14i + 21j + 28k > q1 * q2 ans = -56 + 16i + 24j + 26k > q1 == q2 ans = 0</lang>
Oforth
Setting a priority (here 160) to Quaternion class and defining #asQuaternion, integers and floats can be fully mixed with quaternions. neg is defined as "0 self -" into Number class, so no need to define it (if #- is defined).
<lang Oforth>160 Number Class newPriority: Quaternion(a, b, c, d)
Quaternion method: _a { @a } Quaternion method: _b { @b } Quaternion method: _c { @c } Quaternion method: _d { @d }
Quaternion method: initialize { := a := b := c := d } Quaternion method: << { '(' <<c @a << ',' <<c @b << ',' <<c @c << ',' <<c @d << ')' <<c }
Integer method: asQuaternion { Quaternion new(self, 0, 0, 0) } Float method: asQuaternion { Quaternion new(self, 0, 0, 0) }
Quaternion method: ==(q) { q _a @a == q _b @b == and q _c @c == and q _d @d == and } Quaternion method: norm { @a sq @b sq + @c sq + @d sq + sqrt } Quaternion method: conj { Quaternion new(@a, @b neg, @c neg, @d neg) } Quaternion method: +(q) { Quaternion new(q _a @a +, q _b @b +, q _c @c +, q _d @d +) } Quaternion method: -(q) { Quaternion new(q _a @a -, q _b @b -, q _c @c -, q _d @d -) }
Quaternion method: *(q) {
Quaternion new(q _a @a * q _b @b * - q _c @c * - q _d @d * -, q _a @b * q _b @a * + q _c @d * + q _d @c * -, q _a @c * q _b @d * - q _c @a * + q _d @b * +, q _a @d * q _b @c * + q _c @b * - q _d @a * + )
}</lang>
Usage :
<lang Oforth>func: test { | q q1 q2 r |
Quaternion new(1, 2, 3, 4) ->q Quaternion new(2, 3, 4, 5) ->q1 Quaternion new(3, 4, 5, 6) ->q2 7.0 -> r
System.Out "q = " << q << cr System.Out "q1 = " << q1 << cr System.Out "q2 = " << q2 << cr
System.Out "norm q = " << q norm << cr System.Out "neg q = " << q neg << cr System.Out "conj q = " << q conj << cr System.Out "q +r = " << q r + << cr System.Out "q1 + q2 = " << q1 q2 + << cr System.Out "q * r = " << q r * << cr System.Out "q1 * q2 = " << q1 q2 * << cr q1 q2 * q2 q1 * == ifFalse: [ "q1q2 and q2q1 are different quaternions" println ]
}</lang>
- Output:
q = (1,2,3,4) q1 = (2,3,4,5) q2 = (3,4,5,6) norm q = 5.47722557505166 neg q = (-1,-2,-3,-4) conj q = (1,-2,-3,-4) q +r = (8,2,3,4) q1 + q2 = (5,7,9,11) q * r = (7,14,21,28) q1 * q2 = (-56,16,24,26) q1q2 and q2q1 are different quaternions
ooRexx
Note, this example uses operator overloads to perform the math operation. The operator overloads only work if the left-hand-side of the operation is a quaterion instance. Thus something like "7 + q1" would not work because this would get passed to the "+" of the string class. For those situations, the best solution would be an addition method on the .Quaternion class itself that took the appropriate action. I've chosen not to implement those to keep the example shorter. <lang ooRexx> q = .quaternion~new(1, 2, 3, 4) q1 = .quaternion~new(2, 3, 4, 5) q2 = .quaternion~new(3, 4, 5, 6) r = 7
say "q =" q say "q1 =" q1 say "q2 =" q2 say "r =" r say "norm(q) =" q~norm say "-q =" (-q) say "q* =" q~conjugate say "q + r =" q + r say "q1 + q2 =" q1 + q2 say "q * r =" q * r q1q2 = q1 * q2 q2q1 = q2 * q1 say "q1 * q2 =" q1q2 say "q2 * q1 =" q2q1 say "q1 == q1 =" (q1 == q1) say "q1q2 == q2q1 =" (q1q2 == q2q1)
- class quaternion
- method init
expose r i j k use strict arg r, i = 0, j = 0, k = 0
-- quaternion instances are immutable, so these are -- read only attributes
- attribute r GET
- attribute i GET
- attribute j GET
- attribute k GET
- method norm
expose r i j k return rxcalcsqrt(r * r + i * i + j * j + k * k)
- method invert
expose r i j k norm = self~norm return self~class~new(r / norm, i / norm, j / norm, k / norm)
- method negative
expose r i j k return self~class~new(-r, -i, -j, -k)
- method conjugate
expose r i j k return self~class~new(r, -i, -j, -k)
- method add
expose r i j k use strict arg other if other~isa(.quaternion) then return self~class~new(r + other~r, i + other~i, j + other~j, k + other~k) else return self~class~new(r + other, i, j, k)
- method subtract
expose r i j k use strict arg other if other~isa(.quaternion) then return self~class~new(r - other~r, i - other~i, j - other~j, k - other~k) else return self~class~new(r - other, i, j, k)
- method times
expose r i j k use strict arg other if other~isa(.quaternion) then return self~class~new(r * other~r - i * other~i - j * other~j - k * other~k, - r * other~i + i * other~r + j * other~k - k * other~j, - r * other~j - i * other~k + j * other~r + k * other~i, - r * other~k + i * other~j - j * other~i + k * other~r) else return self~class~new(r * other, i * other, j * other, k * other)
- method divide
use strict arg other -- this is easier if everything is a quaternion if \other~isA(.quaternion) then other = .quaternion~new(other) -- division is multiplication with the inversion return self * other~invert
- method "=="
expose r i j k use strict arg other
if \other~isa(.quaternion) then return .false -- Note: these are numeric comparisons, so we're using the "=" -- method so those are handled correctly return r = other~r & i = other~i & j = other~j & k = other~k
- method "\=="
use strict arg other return \self~"\=="(other)
- method "="
-- this is equivalent of "==" forward message("==")
- method "\="
-- this is equivalent of "\==" forward message("\==")
- method "<>"
-- this is equivalent of "\==" forward message("\==")
- method "><"
-- this is equivalent of "\==" forward message("\==")
-- some operator overrides -- these only work if the left-hand-side of the -- subexpression is a quaternion
- method "*"
forward message("TIMES")
- method "/"
forward message("DIVIDE")
- method "-"
-- need to check if this is a prefix minus or a subtract if arg() == 0 then forward message("NEGATIVE") else forward message("SUBTRACT")
- method "+"
-- need to check if this is a prefix plus or an addition if arg() == 0 then return self -- we can return this copy since it is immutable else forward message("ADD")
- method string
expose r i j k return r self~formatnumber(i)"i" self~formatnumber(j)"j" self~formatnumber(k)"k"
- method formatnumber private
use arg value if value > 0 then return "+" value else return "-" value~abs
-- override hashcode for collection class hash uses
- method hashCode
expose r i j k return r~hashcode~bitxor(i~hashcode)~bitxor(j~hashcode)~bitxor(k~hashcode)
- requires rxmath LIBRARY
</lang>
q = 1 + 2i + 3j + 4k q1 = 2 + 3i + 4j + 5k q2 = 3 + 4i + 5j + 6k r = 7 norm(q) = 5.47722558 -q = -1 - 2i - 3j - 4k q* = 1 - 2i - 3j - 4k q + r = 8 + 2i + 3j + 4k q1 + q2 = 5 + 7i + 9j + 11k q * r = 7 + 14i + 21j + 28k q1 * q2 = -56 + 16i + 24j + 26k q2 * q1 = -56 + 18i + 20j + 28k q1 == q1 = 1 q1q2 == q2q1 = 0
PARI/GP
Here is a simple solution in GP. I think it's possible to implement this type directly in Pari by abusing t_COMPLEX, but I haven't attempted this. <lang parigp>q.norm={ if(type(q) != "t_VEC" || #q != 4, error("incorrect type")); sqrt(q[1]^2+q[2]^2+q[3]^2+q[4]^2) }; q.conj={ if(type(q) != "t_VEC" || #q != 4, error("incorrect type")); -[-q[1],q[2],q[3],q[4]] }; q.add={ if(type(q) != "t_VEC" || #q != 4, error("incorrect type")); x->if(type(x) == "t_INT" || type(x) == t_REAL, [q[1]+x,q[2],q[3],q[4]] , if(type(x) == "t_VEC" && #x == 4, q+x , error("incorrect type") ) ) }; q.mult={ if(type(q) != "t_VEC" || #q != 4, error("incorrect type")); x->if(type(x) == "t_INT" || type(x) == t_REAL, x*q , if(type(x) == "t_VEC" && #x == 4, [q[1]*x[1] - q[2]*x[2] - q[3]*x[3] - q[4]*x[4], q[1]*x[2] + q[2]*x[1] + q[3]*x[4] - q[4]*x[3], q[1]*x[3] - q[2]*x[4] + q[3]*x[1] + q[4]*x[2], q[1]*x[4] + q[2]*x[3] - q[3]*x[2] + q[4]*x[1]] , error("incorrect type") ) ) };</lang> Usage: <lang parigp>r=7;q=[1,2,3,4];q1=[2,3,4,5];q2=[3,4,5,6]; q.norm -q q.conj q.add(r) q1.add(q2) q1.add(q2) \\ or q1+q2 q.mult(r) \\ or r*q or q*r q1.mult(q2) q1.mult(q2) != q2.mult(q1)</lang>
Pascal
The Delphi example also works with FreePascal.
Perl
<lang Perl>package Quaternion; use List::Util 'reduce'; use List::MoreUtils 'pairwise';
sub make {
my $cls = shift; if (@_ == 1) { return bless [ @_, 0, 0, 0 ] } elsif (@_ == 4) { return bless [ @_ ] } else { die "Bad number of components: @_" }
}
sub _abs { sqrt reduce { $a + $b * $b } @{ +shift } } sub _neg { bless [ map(-$_, @{+shift}) ] } sub _str { "(@{+shift})" }
sub _add {
my ($x, $y) = @_; $y = [ $y, 0, 0, 0 ] unless ref $y; bless [ pairwise { $a + $b } @$x, @$y ]
}
sub _sub {
my ($x, $y, $swap) = @_; $y = [ $y, 0, 0, 0 ] unless ref $y; my @x = pairwise { $a - $b } @$x, @$y; if ($swap) { $_ = -$_ for @x } bless \@x;
}
sub _mul {
my ($x, $y) = @_; if (!ref $y) { return bless [ map($_ * $y, @$x) ] } my ($a1, $b1, $c1, $d1) = @$x; my ($a2, $b2, $c2, $d2) = @$y; bless [ $a1 * $a2 - $b1 * $b2 - $c1 * $c2 - $d1 * $d2, $a1 * $b2 + $b1 * $a2 + $c1 * $d2 - $d1 * $c2, $a1 * $c2 - $b1 * $d2 + $c1 * $a2 + $d1 * $b2, $a1 * $d2 + $b1 * $c2 - $c1 * $b2 + $d1 * $a2]
}
sub conjugate {
my @a = map { -$_ } @{$_[0]}; $a[0] = $_[0][0]; bless \@a
}
use overload (
'""' => \&_str, '+' => \&_add, '-' => \&_sub, '*' => \&_mul, 'neg' => \&_neg, 'abs' => \&_abs,
);
package main;
my $a = Quaternion->make(1, 2, 3, 4); my $b = Quaternion->make(1, 1, 1, 1);
print "a = $a\n"; print "b = $b\n"; print "|a| = ", abs($a), "\n"; print "-a = ", -$a, "\n"; print "a + 1 = ", $a + 1, "\n"; print "a + b = ", $a + $b, "\n"; print "a - b = ", $a - $b, "\n"; print "a conjugate is ", $a->conjugate, "\n"; print "a * b = ", $a * $b, "\n"; print "b * a = ", $b * $a, "\n";</lang>
Perl 6
<lang perl6>class Quaternion {
has Real ( $.r, $.i, $.j, $.k ); multi method new ( Real $r, Real $i, Real $j, Real $k ) { self.bless: :$r, :$i, :$j, :$k; } multi qu(*@r) is export { Quaternion.new: |@r } sub postfix:<j>(Real $x) is export { qu 0, 0, $x, 0 } sub postfix:<k>(Real $x) is export { qu 0, 0, 0, $x } method Str () { "$.r + {$.i}i + {$.j}j + {$.k}k" } method reals () { $.r, $.i, $.j, $.k } method conj () { qu $.r, -$.i, -$.j, -$.k } method norm () { sqrt [+] self.reals X** 2 } multi infix:<eqv> ( Quaternion $a, Quaternion $b ) is export { $a.reals eqv $b.reals } multi infix:<+> ( Quaternion $a, Real $b ) is export { qu $b+$a.r, $a.i, $a.j, $a.k } multi infix:<+> ( Real $a, Quaternion $b ) is export { qu $a+$b.r, $b.i, $b.j, $b.k } multi infix:<+> ( Quaternion $a, Complex $b ) is export { qu $b.re + $a.r, $b.im + $a.i, $a.j, $a.k } multi infix:<+> ( Complex $a, Quaternion $b ) is export { qu $a.re + $b.r, $a.im + $b.i, $b.j, $b.k } multi infix:<+> ( Quaternion $a, Quaternion $b ) is export { qu $a.reals Z+ $b.reals } multi prefix:<-> ( Quaternion $a ) is export { qu $a.reals X* -1 } multi infix:<*> ( Quaternion $a, Real $b ) is export { qu $a.reals X* $b } multi infix:<*> ( Real $a, Quaternion $b ) is export { qu $b.reals X* $a } multi infix:<*> ( Quaternion $a, Complex $b ) is export { $a * qu $b.reals, 0, 0 } multi infix:<*> ( Complex $a, Quaternion $b ) is export { $b R* qu $a.reals, 0, 0 } multi infix:<*> ( Quaternion $a, Quaternion $b ) is export {
my @a_rijk = $a.reals; my ( $r, $i, $j, $k ) = $b.reals; return qu [+]( @a_rijk Z* $r, -$i, -$j, -$k ), # real [+]( @a_rijk Z* $i, $r, $k, -$j ), # i [+]( @a_rijk Z* $j, -$k, $r, $i ), # j [+]( @a_rijk Z* $k, $j, -$i, $r ); # k
}
} import Quaternion;
my $q = 1 + 2i + 3j + 4k; my $q1 = 2 + 3i + 4j + 5k; my $q2 = 3 + 4i + 5j + 6k; my $r = 7;
say "1) q norm = {$q.norm}"; say "2) -q = {-$q}"; say "3) q conj = {$q.conj}"; say "4) q + r = {$q + $r}"; say "5) q1 + q2 = {$q1 + $q2}"; say "6) q * r = {$q * $r}"; say "7) q1 * q2 = {$q1 * $q2}"; say "8) q1q2 { $q1 * $q2 eqv $q2 * $q1 ?? '==' !! '!=' } q2q1";</lang>
- Output:
1) q norm = 5.47722557505166 2) -q = -1 + -2i + -3j + -4k 3) q conj = 1 + -2i + -3j + -4k 4) q + r = 8 + 2i + 3j + 4k 5) q1 + q2 = 5 + 7i + 9j + 11k 6) q * r = 7 + 14i + 21j + 28k 7) q1 * q2 = -56 + 16i + 24j + 26k 8) q1q2 != q2q1
Phix
<lang Phix>function norm(sequence q)
return sqrt(sum(sq_power(q,2)))
end function
function conj(sequence q)
q[2..4] = sq_uminus(q[2..4]) return q
end function
function add(object q1, object q2)
if atom(q1)!=atom(q2) then if atom(q1) then q1 = {q1,0,0,0} else q2 = {q2,0,0,0} end if end if return sq_add(q1,q2)
end function
function mul(object q1, object q2)
if sequence(q1) and sequence(q2) then return { q1[1]*q2[1] - q1[2]*q2[2] - q1[3]*q2[3] - q1[4]*q2[4], q1[1]*q2[2] + q1[2]*q2[1] + q1[3]*q2[4] - q1[4]*q2[3], q1[1]*q2[3] - q1[2]*q2[4] + q1[3]*q2[1] + q1[4]*q2[2], q1[1]*q2[4] + q1[2]*q2[3] - q1[3]*q2[2] + q1[4]*q2[1] } else return sq_mul(q1,q2) end if
end function
function quats(sequence q)
return sprintf("%g + %gi + %gj + %gk",q)
end function
constant
q = {1, 2, 3, 4}, q1 = {2, 3, 4, 5}, q2 = {3, 4, 5, 6}, r = 7
printf(1, "q = %s\n", {quats(q)}) printf(1, "r = %g\n", r) printf(1, "norm(q) = %g\n", norm(q)) printf(1, "-q = %s\n", {quats(-q)}) printf(1, "conj(q) = %s\n", {quats(conj(q))}) printf(1, "q + r = %s\n", {quats(add(q,r))}) printf(1, "q * r = %s\n", {quats(mul(q,r))}) printf(1, "q1 = %s\n", {quats(q1)}) printf(1, "q2 = %s\n", {quats(q2)}) printf(1, "q1 + q2 = %s\n", {quats(add(q1,q2))}) printf(1, "q2 + q1 = %s\n", {quats(add(q2,q1))}) printf(1, "q1 * q2 = %s\n", {quats(mul(q1,q2))}) printf(1, "q2 * q1 = %s\n", {quats(mul(q2,q1))})</lang>
- Output:
q = 1 + 2i + 3j + 4k r = 7 norm(q) = 5.47723 -q = -1 + -2i + -3j + -4k conj(q) = 1 + -2i + -3j + -4k q + r = 8 + 2i + 3j + 4k q * r = 7 + 14i + 21j + 28k q1 = 2 + 3i + 4j + 5k q2 = 3 + 4i + 5j + 6k q1 + q2 = 5 + 7i + 9j + 11k q2 + q1 = 5 + 7i + 9j + 11k q1 * q2 = -56 + 16i + 24j + 26k q2 * q1 = -56 + 18i + 20j + 28k
PicoLisp
<lang PicoLisp>(scl 6)
(def 'quatCopy copy)
(de quatNorm (Q)
(sqrt (sum * Q Q)) )
(de quatNeg (Q)
(mapcar - Q) )
(de quatConj (Q)
(cons (car Q) (mapcar - (cdr Q))) )
(de quatAddR (Q R)
(cons (+ R (car Q)) (cdr Q)) )
(de quatAdd (Q1 Q2)
(mapcar + Q1 Q2) )
(de quatMulR (Q R)
(mapcar */ (mapcar * Q (circ R)) (1.0 .)) )
(de quatMul (Q1 Q2)
(mapcar '((Ops I) (sum '((Op R I) (Op (*/ R (get Q2 I) 1.0))) Ops Q1 I) ) '((+ - - -) (+ + + -) (+ - + +) (+ + - +)) '((1 2 3 4) (2 1 4 3) (3 4 1 2) (4 3 2 1)) ) )
(de quatFmt (Q)
(mapcar '((R S) (pack (format R *Scl) S)) Q '(" + " "i + " "j + " "k") ) )</lang>
Test: <lang PicoLisp>(setq
Q (1.0 2.0 3.0 4.0) Q1 (2.0 3.0 4.0 5.0) Q2 (3.0 4.0 5.0 6.0) R 7.0 )
(prinl "R = " (format R *Scl)) (prinl "Q = " (quatFmt Q)) (prinl "Q1 = " (quatFmt Q1)) (prinl "Q2 = " (quatFmt Q2)) (prinl) (prinl "norm(Q) = " (format (quatNorm Q) *Scl)) (prinl "norm(Q1) = " (format (quatNorm Q1) *Scl)) (prinl "norm(Q2) = " (format (quatNorm Q2) *Scl)) (prinl "neg(Q) = " (quatFmt (quatNeg Q))) (prinl "conj(Q) = " (quatFmt (quatConj Q))) (prinl "Q + R = " (quatFmt (quatAddR Q R))) (prinl "Q1 + Q2 = " (quatFmt (quatAdd Q1 Q2))) (prinl "Q * R = " (quatFmt (quatMulR Q R))) (prinl "Q1 * Q2 = " (quatFmt (quatMul Q1 Q2))) (prinl "Q2 * Q1 = " (quatFmt (quatMul Q2 Q1))) (prinl (if (= (quatMul Q1 Q2) (quatMul Q2 Q1)) "Equal" "Not equal"))</lang>
- Output:
R = 7.000000 Q = 1.000000 + 2.000000i + 3.000000j + 4.000000k Q1 = 2.000000 + 3.000000i + 4.000000j + 5.000000k Q2 = 3.000000 + 4.000000i + 5.000000j + 6.000000k norm(Q) = 5.477225 norm(Q1) = 7.348469 norm(Q2) = 9.273618 neg(Q) = -1.000000 + -2.000000i + -3.000000j + -4.000000k conj(Q) = 1.000000 + -2.000000i + -3.000000j + -4.000000k Q + R = 8.000000 + 2.000000i + 3.000000j + 4.000000k Q1 + Q2 = 5.000000 + 7.000000i + 9.000000j + 11.000000k Q * R = 7.000000 + 14.000000i + 21.000000j + 28.000000k Q1 * Q2 = -56.000000 + 16.000000i + 24.000000j + 26.000000k Q2 * Q1 = -56.000000 + 18.000000i + 20.000000j + 28.000000k Not equal
PL/I
<lang pli>*process source attributes xref or(!);
qu: Proc Options(main); /********************************************************************** * 06.09.2013 Walter Pachl translated from REXX * added tasks 9 and A **********************************************************************/ dcl v(4) Char(1) Var Init(,'i','j','k'); define structure 1 quat, 2 x(4) Dec Float(15); Dcl q type quat; Call quat_init(q, 1,2,3,4); Dcl q1 type quat; Call quat_init(q1,2,3,4,5); Dcl q2 type quat; Call quat_init(q2,3,4,5,6); Dcl q3 type quat; Call quat_init(q3,-2,3,-4,-5); Dcl r Dec Float(15)Init(7);
call showq(' ','q' ,q); call showq(' ','q1' ,q1); call showq(' ','q2' ,q2); call showq(' ','q3' ,q3); call shows(' ','r' ,r); Call shows('task 1:','norm q' ,norm(q)); Call showq('task 2:','quatneg q' ,quatneg(q)); Call showq('task 3:','conjugate q' ,quatConj(q)); Call showq('task 4:','addition r+q' ,quatAddsq(r,q)); Call showq('task 5:','addition q1+q2' ,quatAdd(q1,q2)); Call showq('task 6:','multiplication q*r' ,quatMulqs(q,r)); Call showq('task 7:','multiplication q1*q2' ,quatMul(q1,q2)); Call showq('task 8:','multiplication q2*q1' ,quatMul(q2,q1)); Call showq('task 9:','quatsub q1-q1' ,quatAdd(q1,quatneg(q1))); Call showq('task A:','addition q1+q3' ,quatAdd(q1,q3)); Call showt('task B:','equal' ,quatEqual(quatMul(q1,q2), quatMul(q2,q1))); Call showt('task C:','q1=q1' ,quatEqual(q1,q1));
quatNeg: procedure(qp) Returns(type quat); Dcl (qp,qr) type quat; qr.x(*)=-qp.x(*); Return (qr); End;
quatAdd: procedure(qp,qq) Returns(type quat); Dcl (qp,qq,qr) type quat; qr.x(*)=qp.x(*)+qq.x(*); Return (qr); End;
quatAddsq: procedure(v,qp) Returns(type quat); Dcl v Dec Float(15); Dcl (qp,qr) type quat; qr.x(*)=qp.x(*); qr.x(1)=qp.x(1)+v; Return (qr); End;
quatConj: procedure(qp) Returns(type quat); Dcl (qp,qr) type quat; qr.x(*)=-qp.x(*); qr.x(1)= qp.x(1); Return (qr); End;
quatMul: procedure(qp,qq) Returns(type quat); Dcl (qp,qq,qr) type quat; qr.x(1)= qp.x(1)*qq.x(1)-qp.x(2)*qq.x(2)-qp.x(3)*qq.x(3)-qp.x(4)*qq.x(4); qr.x(2)= qp.x(1)*qq.x(2)+qp.x(2)*qq.x(1)+qp.x(3)*qq.x(4)-qp.x(4)*qq.x(3); qr.x(3)= qp.x(1)*qq.x(3)-qp.x(2)*qq.x(4)+qp.x(3)*qq.x(1)+qp.x(4)*qq.x(2); qr.x(4)= qp.x(1)*qq.x(4)+qp.x(2)*qq.x(3)-qp.x(3)*qq.x(2)+qp.x(4)*qq.x(1); Return (qr); End;
quatMulqs: procedure(qp,v) Returns(type quat); Dcl (qp,qr) type quat; Dcl v Dec Float(15); qr.x(*)=qp.x(*)*v; Return (qr); End;
shows: Procedure(t1,t2,v); Dcl (t1,t2) Char(*); Dcl v Dec Float(15); Put Edit(t1,right(t2,24),' --> ',v)(Skip,a,a,a,f(15,13)); End;
showt: Procedure(t1,t2,v); Dcl (t1,t2) Char(*); Dcl v Char(*) Var); Put Edit(t1,right(t2,24),' --> ',v)(Skip,a,a,a,a); End;
showq: Procedure(t1,t2,qp); Dcl qp type quat; Dcl (t1,t2) Char(*); Dcl (s,s2,p) Char(100) Var Init(); Dcl i Bin Fixed(31); Put String(s) Edit(t1,right(t2,24),' --> ')(a,a,a); Do i=1 To 4; Put String(p) Edit(abs(qp.x(i)))(p'ZZZ9'); p=trim(p); Select; When(qp.x(i)<0) p='-'!!p!!v(i); When(p=0) p=; Otherwise Do If s2^= Then p='+'!!p; If i>1 Then p=p!!v(i); End; End; s2=s2!!p End; If s2= Then s2='0'; Put Edit(s!!s2)(Skip,a); End;
norm: Procedure(qp) Returns(Dec Float(15)); Dcl qp type quat; Dcl r Dec Float(15) Init(0); Dcl i Bin Fixed(31); Do i=1 To 4; r=r+qp.x(i)**2; End; Return (sqrt(r)); End;
quat_init: Proc(qp,x,y,z,u); Dcl qp type quat; Dcl (x,y,z,u) Dec Float(15); qp.x(1)=x; qp.x(2)=y; qp.x(3)=z; qp.x(4)=u; End;
End;</lang>
- Output:
q --> 1+2i+3j+4k q1 --> 2+3i+4j+5k q2 --> 3+4i+5j+6k q3 --> -2+3i-4j-5k r --> 7.0000000000000 task 1: norm q --> 5.4772255750517 task 2: quatneg q --> -1-2i-3j-4k task 3: conjugate q --> 1-2i-3j-4k task 4: addition r+q --> 8+2i+3j+4k task 5: addition q1+q2 --> 5+7i+9j+11k task 6: multiplication q*r --> 7+14i+21j+28k task 7: multiplication q1*q2 --> -56+16i+24j+26k task 8: multiplication q2*q1 --> -56+18i+20j+28k task 9: quatsub q1-q1 --> 0 task A: addition q1+q3 --> 6i task B: equal --> not equal task C: q1=q1 --> equal
PowerShell
<lang PowerShell> class Quaternion {
[Double]$a [Double]$b [Double]$c [Double]$d Quaternion() { $this.a = 0 $this.b = 0 $this.c = 0 $this.d = 0 } Quaternion([Double]$a, [Double]$b, [Double]$c, [Double]$d) { $this.a = $a $this.b = $b $this.c = $c $this.d = $d } [Double]abs2() {return $this.a*$this.a + $this.b*$this.b + $this.c*$this.c + $this.d*$this.d} [Double]abs() {return [math]::sqrt($this.abs2())} static [Quaternion]real([Double]$r) {return [Quaternion]::new($r, 0, 0, 0)} static [Quaternion]add([Quaternion]$m,[Quaternion]$n) {return [Quaternion]::new($m.a+$n.a, $m.b+$n.b, $m.c+$n.c, $m.d+$n.d)} [Quaternion]addreal([Double]$r) {return [Quaternion]::add($this,[Quaternion]::real($r))} static [Quaternion]mul([Quaternion]$m,[Quaternion]$n) { return [Quaternion]::new( ($m.a*$n.a) - ($m.b*$n.b) - ($m.c*$n.c) - ($m.d*$n.d), ($m.a*$n.b) + ($m.b*$n.a) + ($m.c*$n.d) - ($m.d*$n.c), ($m.a*$n.c) - ($m.b*$n.d) + ($m.c*$n.a) + ($m.d*$n.b), ($m.a*$n.d) + ($m.b*$n.c) - ($m.c*$n.b) + ($m.d*$n.a)) }
[Quaternion]mul([Double]$r) {return [Quaternion]::new($r*$this.a, $r*$this.b, $r*$this.c, $r*$this.d)} [Quaternion]negate() {return $this.mul(-1)} [Quaternion]conjugate() {return [Quaternion]::new($this.a, -$this.b, -$this.c, -$this.d)} static [String]st([Double]$r) { if(0 -le $r) {return "+$r"} else {return "$r"} } [String]show() {return "$($this.a)$([Quaternion]::st($this.b))i$([Quaternion]::st($this.c))j$([Quaternion]::st($this.d))k"} static [String]show([Quaternion]$other) {return $other.show()}
}
$q = [Quaternion]::new(1, 2, 3, 4)
$q1 = [Quaternion]::new(2, 3, 4, 5)
$q2 = [Quaternion]::new(3, 4, 5, 6)
$r = 7
"`$q: $($q.show())"
"`$q1: $($q1.show())"
"`$q2: $($q2.show())"
"`$r: $r"
""
"norm `$q: $($q.abs())"
"negate `$q: $($q.negate().show())"
"conjugate `$q: $($q.conjugate().show())"
"`$q + `$r: $($q.addreal($r).show())"
"`$q1 + `$q2: $([Quaternion]::show([Quaternion]::add($q1,$q2)))"
"`$q * `$r: $($q.mul($r).show())"
"`$q1 * `$q2: $([Quaternion]::show([Quaternion]::mul($q1,$q2)))"
"`$q2 * `$q1: $([Quaternion]::show([Quaternion]::mul($q2,$q1)))"
</lang>
Output:
$q: 1+2i+3j+4k $q1: 2+3i+4j+5k $q2: 3+4i+5j+6k $r: 7 norm $q: 5.47722557505166 negate $q: -1-2i-3j-4k conjugate $q: 1-2i-3j-4k $q + $r: 8+2i+3j+4k $q1 + $q2: 5+7i+9j+11k $q * $r: 7+14i+21j+28k $q1 * $q2: -56+16i+24j+26k $q2 * $q1: -56+18i+20j+28k
Prolog
<lang Prolog>% A quaternion is represented as a complex term qx/4 add(qx(R0,I0,J0,K0), qx(R1,I1,J1,K1), qx(R,I,J,K)) :- !, R is R0+R1, I is I0+I1, J is J0+J1, K is K0+K1. add(qx(R0,I,J,K), F, qx(R,I,J,K)) :- number(F), !, R is R0 + F. add(F, qx(R0,I,J,K), Qx) :- add(qx(R0,I,J,K), F, Qx). mul(qx(R0,I0,J0,K0), qx(R1,I1,J1,K1), qx(R,I,J,K)) :- !, R is R0*R1 - I0*I1 - J0*J1 - K0*K1, I is R0*I1 + I0*R1 + J0*K1 - K0*J1, J is R0*J1 - I0*K1 + J0*R1 + K0*I1, K is R0*K1 + I0*J1 - J0*I1 + K0*R1. mul(qx(R0,I0,J0,K0), F, qx(R,I,J,K)) :- number(F), !, R is R0*F, I is I0*F, J is J0*F, K is K0*F. mul(F, qx(R0,I0,J0,K0), Qx) :- mul(qx(R0,I0,J0,K0),F,Qx). abs(qx(R,I,J,K), Norm) :- Norm is sqrt(R*R+I*I+J*J+K*K). negate(qx(Ri,Ii,Ji,Ki),qx(R,I,J,K)) :- R is -Ri, I is -Ii, J is -Ji, K is -Ki. conjugate(qx(R,Ii,Ji,Ki),qx(R,I,J,K)) :- I is -Ii, J is -Ji, K is -Ki.</lang>
Test: <lang Prolog>data(q, qx(1,2,3,4)). data(q1, qx(2,3,4,5)). data(q2, qx(3,4,5,6)). data(r, 7).
test :- data(Name, qx(A,B,C,D)), abs(qx(A,B,C,D), Norm), writef('abs(%w) is %w\n', [Name, Norm]), fail. test :- data(q, Qx), negate(Qx, Nqx), writef('negate(%w) is %w\n', [q, Nqx]), fail. test :- data(q, Qx), conjugate(Qx, Nqx), writef('conjugate(%w) is %w\n', [q, Nqx]), fail. test :- data(q1, Q1), data(q2, Q2), add(Q1, Q2, Qx), writef('q1+q2 is %w\n', [Qx]), fail. test :- data(q1, Q1), data(q2, Q2), add(Q2, Q1, Qx), writef('q2+q1 is %w\n', [Qx]), fail. test :- data(q, Qx), data(r, R), mul(Qx, R, Nqx), writef('q*r is %w\n', [Nqx]), fail. test :- data(q, Qx), data(r, R), mul(R, Qx, Nqx), writef('r*q is %w\n', [Nqx]), fail. test :- data(q1, Q1), data(q2, Q2), mul(Q1, Q2, Qx), writef('q1*q2 is %w\n', [Qx]), fail. test :- data(q1, Q1), data(q2, Q2), mul(Q2, Q1, Qx), writef('q2*q1 is %w\n', [Qx]), fail. test.</lang>
- Output:
?- test. abs(q) is 5.477225575051661 abs(q1) is 7.3484692283495345 abs(q2) is 9.273618495495704 negate(q) is qx(-1,-2,-3,-4) conjugate(q) is qx(1,-2,-3,-4) q1+q2 is qx(5,7,9,11) q2+q1 is qx(5,7,9,11) q*r is qx(7,14,21,28) r*q is qx(7,14,21,28) q1*q2 is qx(-56,16,24,26) q2*q1 is qx(-56,18,20,28)
PureBasic
<lang PureBasic>Structure Quaternion
a.f b.f c.f d.f
EndStructure
Procedure.f QNorm(*x.Quaternion)
ProcedureReturn Sqr(Pow(*x\a, 2) + Pow(*x\b, 2) + Pow(*x\c, 2) + Pow(*x\d, 2))
EndProcedure
- If supplied, the result is returned in the quaternion structure *res,
- otherwise a new quaternion is created. A pointer to the result is returned.
Procedure QNeg(*x.Quaternion, *res.Quaternion = 0)
If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf If *res *res\a = -*x\a *res\b = -*x\b *res\c = -*x\c *res\d = -*x\d EndIf ProcedureReturn *res
EndProcedure
Procedure QConj(*x.Quaternion, *res.Quaternion = 0)
If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf If *res *res\a = *x\a *res\b = -*x\b *res\c = -*x\c *res\d = -*x\d EndIf ProcedureReturn *res
EndProcedure
Procedure QAddReal(r.f, *x.Quaternion, *res.Quaternion = 0)
If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf If *res *res\a = *x\a + r *res\b = *x\b *res\c = *x\c *res\d = *x\d EndIf ProcedureReturn *res
EndProcedure
Procedure QAddQuaternion(*x.Quaternion, *y.Quaternion, *res.Quaternion = 0)
If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf If *res *res\a = *x\a + *y\a *res\b = *x\b + *y\b *res\c = *x\c + *y\c *res\d = *x\d + *y\d EndIf ProcedureReturn *res
EndProcedure
Procedure QMulReal_and_Quaternion(r.f, *x.Quaternion, *res.Quaternion = 0)
If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf If *res *res\a = *x\a * r *res\b = *x\b * r *res\c = *x\c * r *res\d = *x\d * r EndIf ProcedureReturn *res
EndProcedure
Procedure QMulQuaternion(*x.Quaternion, *y.Quaternion, *res.Quaternion = 0)
If *res = 0: *res.Quaternion = AllocateMemory(SizeOf(Quaternion)): EndIf If *res *res\a = *x\a * *y\a - *x\b * *y\b - *x\c * *y\c - *x\d * *y\d *res\b = *x\a * *y\b + *x\b * *y\a + *x\c * *y\d - *x\d * *y\c *res\c = *x\a * *y\c - *x\b * *y\d + *x\c * *y\a + *x\d * *y\b *res\d = *x\a * *y\d + *x\b * *y\c - *x\c * *y\b + *x\d * *y\a EndIf ProcedureReturn *res
EndProcedure
Procedure Q_areEqual(*x.Quaternion, *y.Quaternion)
If (*x\a <> *y\a) Or (*x\b <> *y\b) Or (*x\c <> *y\c) Or (*x\d <> *y\d) ProcedureReturn 0 ;false EndIf ProcedureReturn 1 ;true
EndProcedure</lang> Implementation & test <lang PureBasic>Procedure.s ShowQ(*x.Quaternion, NN = 0)
ProcedureReturn "{" + StrF(*x\a, NN) + "," + StrF(*x\b, NN) + "," + StrF(*x\c, NN) + "," + StrF(*x\d, NN) + "}"
EndProcedure
If OpenConsole()
Define.Quaternion Q0, Q1, Q2, res, res2 Define.f r = 7 Q0\a = 1: Q0\b = 2: Q0\c = 3: Q0\d = 4 Q1\a = 2: Q1\b = 3: Q1\c = 4: Q1\d = 5 Q2\a = 3: Q2\b = 4: Q2\c = 5: Q2\d = 6 PrintN("Q0 = " + ShowQ(Q0, 0)) PrintN("Q1 = " + ShowQ(Q1, 0)) PrintN("Q2 = " + ShowQ(Q2, 0)) PrintN("Normal of Q0 = " + StrF(QNorm(Q0))) PrintN("Neg(Q0) = " + ShowQ(QNeg(Q0, res))) PrintN("Conj(Q0) = " + ShowQ(QConj(Q0, res))) PrintN("r + Q0 = " + ShowQ(QAddReal(r, Q0, res))) PrintN("Q0 + Q1 = " + ShowQ(QAddQuaternion(Q0, Q1, res))) PrintN("Q1 + Q2 = " + ShowQ(QAddQuaternion(Q1, Q2, res))) PrintN("Q1 * Q2 = " + ShowQ(QMulQuaternion(Q1, Q2, res))) PrintN("Q2 * Q1 = " + ShowQ(QMulQuaternion(Q2, Q1, res2))) Print( "Q1 * Q2"): If Q_areEqual(res, res2): Print(" = "): Else: Print(" <> "): EndIf: Print( "Q2 * Q1") Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input() CloseConsole()
EndIf</lang> Result
Q0 = {1,2,3,4} Q1 = {2,3,4,5} Q2 = {3,4,5,6} Normal of Q0 = 5.4772257805 Neg(Q0) = {-1,-2,-3,-4} Conj(Q0) = {1,-2,-3,-4} r + Q0 = {8,2,3,4} Q0 + Q1 = {3,5,7,9} Q1 + Q2 = {5,7,9,11} Q1 * Q2 = {-56,16,24,26} Q2 * Q1 = {-56,18,20,28} Q1 * Q2 <> Q2 * Q1
Python
This example extends Pythons namedtuples to add extra functionality. <lang python>from collections import namedtuple import math
class Q(namedtuple('Quaternion', 'real, i, j, k')):
'Quaternion type: Q(real=0.0, i=0.0, j=0.0, k=0.0)'
__slots__ = ()
def __new__(_cls, real=0.0, i=0.0, j=0.0, k=0.0): 'Defaults all parts of quaternion to zero' return super().__new__(_cls, float(real), float(i), float(j), float(k))
def conjugate(self): return Q(self.real, -self.i, -self.j, -self.k)
def _norm2(self): return sum( x*x for x in self)
def norm(self): return math.sqrt(self._norm2())
def reciprocal(self): n2 = self._norm2() return Q(*(x / n2 for x in self.conjugate()))
def __str__(self): 'Shorter form of Quaternion as string' return 'Q(%g, %g, %g, %g)' % self
def __neg__(self): return Q(-self.real, -self.i, -self.j, -self.k)
def __add__(self, other): if type(other) == Q: return Q( *(s+o for s,o in zip(self, other)) ) try: f = float(other) except: return NotImplemented return Q(self.real + f, self.i, self.j, self.k)
def __radd__(self, other): return Q.__add__(self, other)
def __mul__(self, other): if type(other) == Q: a1,b1,c1,d1 = self a2,b2,c2,d2 = other return Q( a1*a2 - b1*b2 - c1*c2 - d1*d2, a1*b2 + b1*a2 + c1*d2 - d1*c2, a1*c2 - b1*d2 + c1*a2 + d1*b2, a1*d2 + b1*c2 - c1*b2 + d1*a2 ) try: f = float(other) except: return NotImplemented return Q(self.real * f, self.i * f, self.j * f, self.k * f)
def __rmul__(self, other): return Q.__mul__(self, other)
def __truediv__(self, other): if type(other) == Q: return self.__mul__(other.reciprocal()) try: f = float(other) except: return NotImplemented return Q(self.real / f, self.i / f, self.j / f, self.k / f)
def __rtruediv__(self, other): return other * self.reciprocal()
__div__, __rdiv__ = __truediv__, __rtruediv__
Quaternion = Q
q = Q(1, 2, 3, 4) q1 = Q(2, 3, 4, 5) q2 = Q(3, 4, 5, 6) r = 7</lang>
Continued shell session Run the above with the -i flag to python on the command line, or run with idle then continue in the shell as follows: <lang python>>>> q Quaternion(real=1.0, i=2.0, j=3.0, k=4.0) >>> q1 Quaternion(real=2.0, i=3.0, j=4.0, k=5.0) >>> q2 Quaternion(real=3.0, i=4.0, j=5.0, k=6.0) >>> r 7 >>> q.norm() 5.477225575051661 >>> q1.norm() 7.3484692283495345 >>> q2.norm() 9.273618495495704 >>> -q Quaternion(real=-1.0, i=-2.0, j=-3.0, k=-4.0) >>> q.conjugate() Quaternion(real=1.0, i=-2.0, j=-3.0, k=-4.0) >>> r + q Quaternion(real=8.0, i=2.0, j=3.0, k=4.0) >>> q + r Quaternion(real=8.0, i=2.0, j=3.0, k=4.0) >>> q1 + q2 Quaternion(real=5.0, i=7.0, j=9.0, k=11.0) >>> q2 + q1 Quaternion(real=5.0, i=7.0, j=9.0, k=11.0) >>> q * r Quaternion(real=7.0, i=14.0, j=21.0, k=28.0) >>> r * q Quaternion(real=7.0, i=14.0, j=21.0, k=28.0) >>> q1 * q2 Quaternion(real=-56.0, i=16.0, j=24.0, k=26.0) >>> q2 * q1 Quaternion(real=-56.0, i=18.0, j=20.0, k=28.0) >>> assert q1 * q2 != q2 * q1 >>> >>> i, j, k = Q(0,1,0,0), Q(0,0,1,0), Q(0,0,0,1) >>> i*i Quaternion(real=-1.0, i=0.0, j=0.0, k=0.0) >>> j*j Quaternion(real=-1.0, i=0.0, j=0.0, k=0.0) >>> k*k Quaternion(real=-1.0, i=0.0, j=0.0, k=0.0) >>> i*j*k Quaternion(real=-1.0, i=0.0, j=0.0, k=0.0) >>> q1 / q2 Quaternion(real=0.7906976744186047, i=0.023255813953488358, j=-2.7755575615628914e-17, k=0.046511627906976744) >>> q1 / q2 * q2 Quaternion(real=2.0000000000000004, i=3.0000000000000004, j=4.000000000000001, k=5.000000000000001) >>> q2 * q1 / q2 Quaternion(real=2.0, i=3.465116279069768, j=3.906976744186047, k=4.767441860465116) >>> q1.reciprocal() * q1 Quaternion(real=0.9999999999999999, i=0.0, j=0.0, k=0.0) >>> q1 * q1.reciprocal() Quaternion(real=0.9999999999999999, i=0.0, j=0.0, k=0.0) >>> </lang>
R
Using the quaternions package.
<lang R> library(quaternions)
q <- Q(1, 2, 3, 4) q1 <- Q(2, 3, 4, 5) q2 <- Q(3, 4, 5, 6) r <- 7.0
display <- function(x){
e <- deparse(substitute(x)) res <- if(class(x) == "Q") paste(x$r, "+", x$i, "i+", x$j, "j+", x$k, "k", sep = "") else x cat(noquote(paste(c(e, " = ", res, "\n"), collapse=""))) invisible(res)
}
display(norm(q)) display(-q) display(Conj(q)) display(r + q) display(q1 + q2) display(r*q) display(q*r) if(display(q1*q2) == display(q2*q1)) cat("q1*q2 == q2*q1\n") else cat("q1*q2 != q2*q1\n")
- norm(q) = 5.47722557505166
- -q = -1+-2i+-3j+-4k
- Conj(q) = 1+-2i+-3j+-4k
- r + q = 8+2i+3j+4k
- q1 + q2 = 5+7i+9j+11k
- r * q = 7+14i+21j+28k
- q * r = 7+14i+21j+28k
- q1 * q2 = -56+16i+24j+26k
- q2 * q1 = -56+18i+20j+28k
- q1*q2 != q2*q1
</lang>
Racket
<lang Racket>#lang racket
(struct quaternion (a b c d)
#:transparent)
(define-match-expander quaternion:
(λ (stx) (syntax-case stx () [(_ a b c d) #'(or (quaternion a b c d) (and a (app (λ(_) 0) b) (app (λ(_) 0) c) (app (λ(_) 0) d)))])))
(define (norm q)
(match q [(quaternion: a b c d) (sqrt (+ (sqr a) (sqr b) (sqr c) (sqr d)))]))
(define (negate q)
(match q [(quaternion: a b c d) (quaternion (- a) (- b) (- c) (- d))]))
(define (conjugate q)
(match q [(quaternion: a b c d) (quaternion a (- b) (- c) (- d))]))
(define (add q1 q2 . q-rest)
(let ((ans (match* (q1 q2) [((quaternion: a1 b1 c1 d1) (quaternion: a2 b2 c2 d2)) (quaternion (+ a1 a2) (+ b1 b2) (+ c1 c2) (+ d1 d2))]))) (if (empty? q-rest) ans (apply add (cons ans q-rest)))))
(define (multiply q1 q2 . q-rest)
(let ((ans (match* (q1 q2) [((quaternion: a1 b1 c1 d1) (quaternion: a2 b2 c2 d2)) (quaternion (- (* a1 a2) (* b1 b2) (* c1 c2) (* d1 d2)) (+ (* a1 b2) (* b1 a2) (* c1 d2) (- (* d1 c2))) (+ (* a1 c2) (- (* b1 d2)) (* c1 a2) (* d1 b2)) (+ (* a1 d2) (* b1 c2) (- (* c1 b2)) (* d1 a2)))]))) (if (empty? q-rest) ans (apply multiply (cons ans q-rest)))))
- Tests
(module+ main
(define i (quaternion 0 1 0 0)) (define j (quaternion 0 0 1 0)) (define k (quaternion 0 0 0 1)) (displayln (multiply i j k)) (newline) (define q (quaternion 1 2 3 4)) (define q1 (quaternion 2 3 4 5)) (define q2 (quaternion 3 4 5 6)) (define r 7) (for ([quat (list q q1 q2)]) (displayln quat) (displayln (norm quat)) (displayln (negate quat)) (displayln (conjugate quat)) (newline)) (add r q) (add q1 q2) (multiply r q) (newline) (multiply q1 q2) (multiply q2 q1) (equal? (multiply q1 q2) (multiply q2 q1)))</lang>
- Output:
#(struct:quaternion -1 0 0 0) #(struct:quaternion 1 2 3 4) 5.477225575051661 #(struct:quaternion -1 -2 -3 -4) #(struct:quaternion 1 -2 -3 -4) #(struct:quaternion 2 3 4 5) 7.3484692283495345 #(struct:quaternion -2 -3 -4 -5) #(struct:quaternion 2 -3 -4 -5) #(struct:quaternion 3 4 5 6) 9.273618495495704 #(struct:quaternion -3 -4 -5 -6) #(struct:quaternion 3 -4 -5 -6) (quaternion 8 2 3 4) (quaternion 5 7 9 11) (quaternion 7 14 21 28) (quaternion -56 16 24 26) (quaternion -56 18 20 28) #f
REXX
The REXX language has no native quaternion support, but subroutines can be easily written. <lang rexx>/*REXX pgm performs some operations on quaternion type numbers and shows results*/
q = 1 2 3 4 ; q1 = 2 3 4 5 r = 7 ; q2 = 3 4 5 6
call qShow q , 'q' call qShow q1 , 'q1' call qShow q2 , 'q2' call qShow r , 'r' call qShow qNorm(q) , 'norm q' , "task 1:" call qShow qNeg(q) , 'negative q' , "task 2:" call qShow qConj(q) , 'conjugate q' , "task 3:" call qShow qAdd( r, q ) , 'addition r+q' , "task 4:" call qShow qAdd(q1, q2 ) , 'addition q1+q2' , "task 5:" call qShow qMul( q, r ) , 'multiplication q*r' , "task 6:" call qShow qMul(q1, q2 ) , 'multiplication q1*q2' , "task 7:" call qShow qMul(q2, q1 ) , 'multiplication q2*q1' , "task 8:" exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────*/ qConj: procedure; parse arg x; call qXY; return x.1 (-x.2) (-x.3) (-x.4) qNeg: procedure; parse arg x; call qXY; return -x.1 (-x.2) (-x.3) (-x.4) /*──────────────────────────────────────────────────────────────────────────────*/ qAdd: procedure; parse arg x,y; call qXY 2; return x.1+y.1 x.2+y.2 x.3+y.3 x.4+y.4 /*──────────────────────────────────────────────────────────────────────────────*/ qMul: procedure; parse arg x,y; call qXY y
return x.1*y.1-x.2*y.2-x.3*y.3-x.4*y.4 x.1*y.2+x.2*y.1+x.3*y.4-x.4*y.3, x.1*y.3-x.2*y.4+x.3*y.1+x.4*y.2 x.1*y.4+x.2*y.3-x.3*y.2+x.4*y.1
/*──────────────────────────────────────────────────────────────────────────────*/ qNorm: procedure; parse arg x; call qXY; return sqrt(x.1**2+x.2**2+x.3**2+x.4**2) /*──────────────────────────────────────────────────────────────────────────────*/ qShow: procedure; parse arg x; call qXY; $=
do m=1 for 4; _=x.m; if _==0 then iterate; if _>=0 then _='+'_ if m\==1 then _=_ || substr('~ijk',m,1); $=strip($ || _,,'+') end /*m*/ say left(arg(3),9) right(arg(2),20) ' ──► ' $ return $
/*──────────────────────────────────────────────────────────────────────────────*/ qXY: do n=1 for 4; x.n=word(word(x,n) 0,1)/1; end /*n*/
if arg()==1 then do m=1 for 4; y.m=word(word(y,m) 0,1)/1; end /*m*/ return
/*──────────────────────────────────────────────────────────────────────────────*/ sqrt: procedure; parse arg x; if x=0 then return 0; d=digits(); i=; m.=9
numeric digits 9; numeric form; h=d+6; if x<0 then do; x=-x; i='i'; end parse value format(x,2,1,,0) 'E0' with g 'E' _ .; g=g*.5'e'_%2 do j=0 while h>9; m.j=h; h=h%2+1; end /*j*/ do k=j+5 to 0 by -1; numeric digits m.k; g=(g+x/g)*.5; end /*k*/ numeric digits d; return (g/1)i /*make complex if X < 0. */</lang>
output when using the default input:
q ──► 1+2i+3j+4k q1 ──► 2+3i+4j+5k q2 ──► 3+4i+5j+6k r ──► 7 task 1: norm q ──► 5.47722558 task 2: negative q ──► -1-2i-3j-4k task 3: conjugate q ──► 1-2i-3j-4k task 4: addition r+q ──► 8+2i+3j+4k task 5: addition q1+q2 ──► 5+7i+9j+11k task 6: multiplication q*r ──► 7+14i+21j+28k task 7: multiplication q1*q2 ──► -56+16i+24j+26k task 8: multiplication q2*q1 ──► -56+18i+20j+28k
Ruby
<lang ruby>class Quaternion
def initialize(*parts) raise ArgumentError, "wrong number of arguments (#{parts.size} for 4)" unless parts.size == 4 raise ArgumentError, "invalid value of quaternion parts #{parts}" unless parts.all? {|x| x.is_a?(Numeric)} @parts = parts end def to_a; @parts; end def to_s; "Quaternion#{@parts.to_s}" end alias inspect to_s def complex_parts; [Complex(*to_a[0..1]), Complex(*to_a[2..3])]; end def real; @parts.first; end def imag; @parts[1..3]; end def conj; Quaternion.new(real, *imag.map(&:-@)); end def norm; Math.sqrt(to_a.reduce(0){|sum,e| sum + e**2}) end # In Rails: Math.sqrt(to_a.sum { e**2 }) def ==(other) case other when Quaternion; to_a == other.to_a when Numeric; to_a == [other, 0, 0, 0] else false end end def -@; Quaternion.new(*to_a.map(&:-@)); end def -(other); self + -other; end def +(other) case other when Numeric Quaternion.new(real + other, *imag) when Quaternion Quaternion.new(*to_a.zip(other.to_a).map { |x,y| x + y }) # In Rails: zip(other).map(&:sum) end end def *(other) case other when Numeric Quaternion.new(*to_a.map { |x| x * other }) when Quaternion # Multiplication of quaternions in C x C space. See "Cayley-Dickson construction". a, b, c, d = *complex_parts, *other.complex_parts x, y = a*c - d.conj*b, a*d + b*c.conj Quaternion.new(x.real, x.imag, y.real, y.imag) end end # Coerce is called by Ruby to return a compatible type/receiver when the called method/operation does not accept a Quaternion def coerce(other) case other when Numeric then [Scalar.new(other), self] else raise TypeError, "#{other.class} can't be coerced into #{self.class}" end end class Scalar def initialize(val); @val = val; end def +(other); other + @val; end def *(other); other * @val; end def -(other); Quaternion.new(@val, 0, 0, 0) - other; end end
end
if __FILE__ == $0
q = Quaternion.new(1,2,3,4) q1 = Quaternion.new(2,3,4,5) q2 = Quaternion.new(3,4,5,6) r = 7 expressions = ["q", "q1", "q2", "q.norm", "-q", "q.conj", "q + r", "r + q","q1 + q2", "q2 + q1", "q * r", "r * q", "q1 * q2", "q2 * q1", "(q1 * q2 != q2 * q1)", "q - r", "r - q"] expressions.each do |exp| puts "%20s = %s" % [exp, eval(exp)] end
end</lang>
- Output:
q = Quaternion[1, 2, 3, 4] q1 = Quaternion[2, 3, 4, 5] q2 = Quaternion[3, 4, 5, 6] q.norm = 5.477225575051661 -q = Quaternion[-1, -2, -3, -4] q.conj = Quaternion[1, -2, -3, -4] q + r = Quaternion[8, 2, 3, 4] r + q = Quaternion[8, 2, 3, 4] q1 + q2 = Quaternion[5, 7, 9, 11] q2 + q1 = Quaternion[5, 7, 9, 11] q * r = Quaternion[7, 14, 21, 28] r * q = Quaternion[7, 14, 21, 28] q1 * q2 = Quaternion[-56, 16, 24, 26] q2 * q1 = Quaternion[-56, 18, 20, 28] (q1 * q2 != q2 * q1) = true q - r = Quaternion[-6, 2, 3, 4] r - q = Quaternion[6, -2, -3, -4]
Scala
<lang scala>case class Quaternion(re:Double =0.0, i:Double =0.0, j:Double =0.0, k:Double =0.0) {
lazy val im=(i, j, k) private lazy val norm2=re*re + i*i + j*j + k*k lazy val norm=math.sqrt(norm2) def negative=new Quaternion(-re, -i, -j, -k) def conjugate=new Quaternion(re, -i, -j, -k) def reciprocal=new Quaternion(re/norm2, -i/norm2, -j/norm2, -k/norm2) def +(q:Quaternion)=new Quaternion(re+q.re, i+q.i, j+q.j, k+q.k) def -(q:Quaternion)=new Quaternion(re-q.re, i-q.i, j-q.j, k-q.k) def *(q:Quaternion)=new Quaternion(
re*q.re - i*q.i - j*q.j - k*q.k, re*q.i + i*q.re + j*q.k - k*q.j, re*q.j - i*q.k + j*q.re + k*q.i, re*q.k + i*q.j - j*q.i + k*q.re
) def /(q:Quaternion)=this*q.reciprocal def unary_- = negative def unary_~ = conjugate override def equals(x:Any):Boolean=x match {
case Quaternion(re, i, j, k) => (Double.doubleToLongBits(this.re)==Double.doubleToLongBits(re)) && Double.doubleToLongBits(this.i)==Double.doubleToLongBits(i) && Double.doubleToLongBits(this.j)==Double.doubleToLongBits(j) && Double.doubleToLongBits(this.k)==Double.doubleToLongBits(k) case _ => false }
override def toString()="Q(%.2f, %.2fi, %.2fj, %.2fk)".formatLocal(Locale.ENGLISH, re,i,j,k)
}
object Quaternion {
implicit def number2Quaternion[T <% Number](n:T):Quaternion = apply(n.doubleValue)
}</lang> Demonstration: <lang scala>val q0=Quaternion(1.0, 2.0, 3.0, 4.0); val q1=Quaternion(2.0, 3.0, 4.0, 5.0); val q2=Quaternion(3.0, 4.0, 5.0, 6.0); val r=7;
println("q0 = "+ q0) println("q1 = "+ q1) println("q2 = "+ q2) println("r = "+ r) println()
println("q0.re = "+ q0.re) println("q0.im = "+ q0.im) println("q0.norm = "+ q0.norm) println("q0.negative = "+ q0.negative) println("-q0 = "+ -q0) println("q0.conjugate = "+ q0.conjugate) println("~q0 = "+ ~q0) println("q1+q2 = "+ (q1+q2)) println("q2+q1 = "+ (q2+q1)) println("q1+r = "+ (q1+r)) println("r+q1 = "+ (r+q1)) println("q1-q2 = "+ (q1-q2)) println("q2-q1 = "+ (q2-q1)) println("q1-r = "+ (q1-r)) println("r-q1 = "+ (r-q1)) println("q1*q2 = "+ q1*q2) println("q2*q1 = "+ q2*q1) println("q1*r = "+ q1*r) println("r*q1 = "+ r*q1) println("(q1*q2)!=(q2*q1) = "+ ((q1*q2)!=(q2*q1))) println("q1/q2 = "+ q1/q2) println("q2/q1 = "+ q2/q1) println("q1/r = "+ q1/r) println("r/q1 = "+ r/q1)</lang>
- Output:
q0 = Q(1.00, 2.00i, 3.00j, 4.00k) q1 = Q(2.00, 3.00i, 4.00j, 5.00k) q2 = Q(3.00, 4.00i, 5.00j, 6.00k) r = 7 q0.re = 1.0 q0.im = (2.0,3.0,4.0) q0.norm = 5.477225575051661 q0.negative = Q(-1.00, -2.00i, -3.00j, -4.00k) -q0 = Q(-1.00, -2.00i, -3.00j, -4.00k) q0.conjugate = Q(1.00, -2.00i, -3.00j, -4.00k) ~q0 = Q(1.00, -2.00i, -3.00j, -4.00k) q1+q2 = Q(5.00, 7.00i, 9.00j, 11.00k) q2+q1 = Q(5.00, 7.00i, 9.00j, 11.00k) q1+r = Q(9.00, 3.00i, 4.00j, 5.00k) r+q1 = Q(9.00, 3.00i, 4.00j, 5.00k) q1-q2 = Q(-1.00, -1.00i, -1.00j, -1.00k) q2-q1 = Q(1.00, 1.00i, 1.00j, 1.00k) q1-r = Q(-5.00, 3.00i, 4.00j, 5.00k) r-q1 = Q(5.00, -3.00i, -4.00j, -5.00k) q1*q2 = Q(-56.00, 16.00i, 24.00j, 26.00k) q2*q1 = Q(-56.00, 18.00i, 20.00j, 28.00k) q1*r = Q(14.00, 21.00i, 28.00j, 35.00k) r*q1 = Q(14.00, 21.00i, 28.00j, 35.00k) (q1*q2)!=(q2*q1) = true q1/q2 = Q(0.79, 0.02i, -0.00j, 0.05k) q2/q1 = Q(1.26, -0.04i, 0.00j, -0.07k) q1/r = Q(0.29, 0.43i, 0.57j, 0.71k) r/q1 = Q(0.26, -0.39i, -0.52j, -0.65k)
Tcl
or
<lang tcl>package require TclOO
- Support class that provides C++-like RAII lifetimes
oo::class create RAII-support {
constructor {} {
upvar 1 { end } end lappend end [self] trace add variable end unset [namespace code {my destroy}]
} destructor {
catch { upvar 1 { end } end trace remove variable end unset [namespace code {my destroy}] }
} method return Template:Level 1 {
incr level upvar 1 { end } end upvar $level { end } parent trace remove variable end unset [namespace code {my destroy}] lappend parent [self] trace add variable parent unset [namespace code {my destroy}] return -level $level [self]
}
}
- Class of quaternions
oo::class create Q {
superclass RAII-support variable R I J K constructor {{real 0} {i 0} {j 0} {k 0}} {
next namespace import ::tcl::mathfunc::* ::tcl::mathop::* variable R [double $real] I [double $i] J [double $j] K [double $k]
} self method return args {
[my new {*}$args] return 2
}
method p {} {
return "Q($R,$I,$J,$K)"
} method values {} {
list $R $I $J $K
}
method Norm {} {
+ [* $R $R] [* $I $I] [* $J $J] [* $K $K]
}
method conjugate {} {
Q return $R [- $I] [- $J] [- $K]
} method norm {} {
sqrt [my Norm]
} method unit {} {
set n [my norm] Q return [/ $R $n] [/ $I $n] [/ $J $n] [/ $K $n]
} method reciprocal {} {
set n2 [my Norm] Q return [/ $R $n2] [/ $I $n2] [/ $J $n2] [/ $K $n2]
} method - Template:Q "" {
if {[llength [info level 0]] == 2} { Q return [- $R] [- $I] [- $J] [- $K] } [my + [$q -]] return
} method + q {
if {[info object isa object $q]} { lassign [$q values] real i j k Q return [+ $R $real] [+ $I $i] [+ $J $j] [+ $K $k] } Q return [+ $R [double $q]] $I $J $K
} method * q {
if {[info object isa object $q]} { lassign [my values] a1 b1 c1 d1 lassign [$q values] a2 b2 c2 d2 Q return [expr {$a1*$a2 - $b1*$b2 - $c1*$c2 - $d1*$d2}] \ [expr {$a1*$b2 + $b1*$a2 + $c1*$d2 - $d1*$c2}] \ [expr {$a1*$c2 - $b1*$d2 + $c1*$a2 + $d1*$b2}] \ [expr {$a1*$d2 + $b1*$c2 - $c1*$b2 + $d1*$a2}] } set f [double $q] Q return [* $R $f] [* $I $f] [* $J $f] [* $K $f]
} method == q {
expr { [info object isa object $q] && [info object isa typeof $q [self class]] && [my values] eq [$q values] }
}
export - + * ==
}</lang> Demonstration code: <lang tcl>set q [Q new 1 2 3 4] set q1 [Q new 2 3 4 5] set q2 [Q new 3 4 5 6] set r 7
puts "q = [$q p]" puts "q1 = [$q1 p]" puts "q2 = [$q2 p]" puts "r = $r" puts "q norm = [$q norm]" puts "q1 norm = [$q1 norm]" puts "q2 norm = [$q2 norm]" puts "-q = [[$q -] p]" puts "q conj = [[$q conjugate] p]" puts "q + r = [[$q + $r] p]"
- Real numbers are not objects, so no extending operations for them
puts "q1 + q2 = [[$q1 + $q2] p]" puts "q2 + q1 = [[$q2 + $q1] p]" puts "q * r = [[$q * $r] p]" puts "q1 * q2 = [[$q1 * $q2] p]" puts "q2 * q1 = [[$q2 * $q1] p]" puts "equal(q1*q2, q2*q1) = [[$q1 * $q2] == [$q2 * $q1]]"</lang>
- Output:
q = Q(1.0,2.0,3.0,4.0) q1 = Q(2.0,3.0,4.0,5.0) q2 = Q(3.0,4.0,5.0,6.0) r = 7 q norm = 5.477225575051661 q1 norm = 7.3484692283495345 q2 norm = 9.273618495495704 -q = Q(-1.0,-2.0,-3.0,-4.0) q conj = Q(1.0,-2.0,-3.0,-4.0) q + r = Q(8.0,2.0,3.0,4.0) q1 + q2 = Q(5.0,7.0,9.0,11.0) q2 + q1 = Q(5.0,7.0,9.0,11.0) q * r = Q(7.0,14.0,21.0,28.0) q1 * q2 = Q(-56.0,16.0,24.0,26.0) q2 * q1 = Q(-56.0,18.0,20.0,28.0) equal(q1*q2, q2*q1) = 0
zkl
<lang zkl>class Quat{
fcn init(real=0,i1=0,i2=0,i3=0){ var [const] vector= // Quat(r,i,j,k) or Quat( (r,i,j,k) ) (if(List.isType(real)) real else vm.arglist).apply("toFloat"); var r,i,j,k; r,i,j,k=vector; // duplicate data for ease of coding var [const] // properties: This is one way to do it norm2=vector.apply("pow",2).sum(0.0), // Norm squared
abs=norm2.sqrt(), // Norm arg=(r/abs()).acos(), // Theta !!!this may be incorrect...
; } fcn toString { String("[",vector.concat(","),"]") } var [const proxy] // properties that need calculation (or are recursive) conj =fcn{ Quat(r,-i,-j,-k) }, // Conjugate recip =fcn{ n2:=norm2; Quat(r/n2,-i/n2,-j/n2,-k/n2) },// Reciprocal pureim =fcn{ Quat(0, i, j, k) }, // Pure imagery versor =fcn{ self / abs; }, // Unit versor iversor=fcn{ pureim / pureim.abs; }, // Unit versor of imagery part ; fcn __opEQ(z) { r == z.r and i == z.i and j == z.j and k == z.k } fcn __opNEQ(z){ (not (self==z)) }
fcn __opNegate{ Quat(-r, -i, -j, -k) } fcn __opAdd(z){ if (Quat.isInstanceOf(z)) Quat(vector.zipWith('+,z.vector)); else Quat(r+z,i,j,k); } fcn __opSub(z){ if (Quat.isInstanceOf(z)) Quat(vector.zipWith('-,z.vector)); else Quat(r-z,vector.xplode(1)); // same as above } fcn __opMul(z){ if (Quat.isInstanceOf(z)){
Quat(r*z.r - i*z.i - j*z.j - k*z.k, r*z.i + i*z.r + j*z.k - k*z.j, r*z.j - i*z.k + j*z.r + k*z.i, r*z.k + i*z.j - j*z.i + k*z.r);
} else Quat(vector.apply('*(z))); } fcn __opDiv(z){ if (Quat.isInstanceOf(z)) self*z.recip; else Quat(r/z,i/z,j/z,k/z); } fcn pow(r){ exp(r*iversor*arg)*abs.pow(r) } // Power function fcn log{ iversor*(r / abs).acos() + abs.log() } fcn exp{ // e^q inorm:=pureim.abs; (iversor*inorm.sin() + inorm.cos()) * r.exp(); }
}</lang> <lang zkl> // Demo code r:=7; q:=Quat(2,3,4,5); q1:=Quat(2,3,4,5); q2:=Quat(3,4,5,6);
println("1. norm: q.abs: ", q.abs); println("2. -q: ", -q); println("3. conjugate: q.conj: ", q.conj); println("4. Quat(r) + q: ", Quat(r) + q); println(" q + r: ", q + r); println("5. q1 + q2: ", q1 + q2); println("6. Quat(r) * q: ", Quat(r) * q); println(" q * r: ", q * r); println("7. q1 * q2: ", q1 * q2); println(" q2 * q1: ", q2 * q1); println("8. q1 * q2 == q2 * q1 ? ", q1 * q2 == q2 * q1);
i:=Quat(0,1); j:=Quat(0,0,1); k:=Quat(0,0,0,1); println("9.1 i * i: ", i * i); println(" J * j: ", j * j); println(" k * k: ", k * k); println(" i * j * k: ", i * j * k);
println("9.2 q1 / q2: ", q1 / q2); println("9.3 q1 / q2 * q2: ", q1 / q2 * q2); println(" q2 * q1 / q2: ", q2 * q1 / q2); println("9.4 (i * pi).exp(): ", (i * (0.0).pi).exp()); println(" exp(j * pi): ", (j * (0.0).pi).exp()); println(" exp(k * pi): ", (k * (0.0).pi).exp()); println(" q.exp(): ", q.exp()); println(" q.log(): ", q.log()); println(" q.log().exp(): ", q.log().exp()); println(" q.exp().log(): ", q.exp().log());
s:=q.exp().log(); println("9.5 let s=q.exp().log(): ", s); println(" s.exp(): ", s.exp()); println(" s.log(): ", s.log()); println(" s.log().exp(): ", s.log().exp()); println(" s.exp().log(): ", s.exp().log());</lang>
- Output:
1. norm: q.abs: 7.34847 2. -q: [-2,-3,-4,-5] 3. conjugate: q.conj: [2,-3,-4,-5] 4. Quat(r) + q: [9,3,4,5] q + r: [9,3,4,5] 5. q1 + q2: [5,7,9,11] 6. Quat(r) * q: [14,21,28,35] q * r: [14,21,28,35] 7. q1 * q2: [-56,16,24,26] q2 * q1: [-56,18,20,28] 8. q1 * q2 == q2 * q1 ? False 9.1 i * i: [-1,0,0,0] J * j: [-1,0,0,0] k * k: [-1,0,0,0] i * j * k: [-1,0,0,0] 9.2 q1 / q2: [0.790698,0.0232558,-2.77556e-17,0.0465116] 9.3 q1 / q2 * q2: [2,3,4,5] q2 * q1 / q2: [2,3.46512,3.90698,4.76744] 9.4 (i * pi).exp(): [-1,1.22465e-16,0,0] exp(j * pi): [-1,0,1.22465e-16,0] exp(k * pi): [-1,0,0,1.22465e-16] q.exp(): [5.21186,2.22222,2.96296,3.7037] q.log(): [1.99449,0.549487,0.732649,0.915812] q.log().exp(): [2,3,4,5] q.exp().log(): [2,0.33427,0.445694,0.557117] 9.5 let s=q.exp().log(): [2,0.33427,0.445694,0.557117] s.exp(): [5.21186,2.22222,2.96296,3.7037] s.log(): [0.765279,0.159215,0.212286,0.265358] s.log().exp(): [2,0.33427,0.445694,0.557117] s.exp().log(): [2,0.33427,0.445694,0.557117]
- Programming Tasks
- Solutions by Programming Task
- Ada
- ALGOL 68
- ALGOL W
- AutoHotkey
- Axiom
- BBC BASIC
- C
- C++
- C sharp
- Common Lisp
- D
- Delphi
- E
- Eero
- ERRE
- Euphoria
- F Sharp
- Forth
- Fortran
- GAP
- Go
- Haskell
- Unicon
- J
- Java
- JavaScript
- Jq
- Julia
- Liberty BASIC
- Lua
- Mathematica
- Mercury
- OCaml
- Octave
- Oforth
- OoRexx
- PARI/GP
- Pascal
- Perl
- Perl 6
- Phix
- PicoLisp
- PL/I
- PowerShell
- Prolog
- PureBasic
- Python
- R
- Racket
- REXX
- Ruby
- Scala
- Tcl
- TclOO
- Zkl
- GUISS/Omit
- Geometry