Carmichael 3 strong pseudoprimes

Revision as of 13:10, 16 September 2015 by Trizen (talk | contribs) (Added the Sidef language)

A lot of composite numbers can be separated from primes by Fermat's Little Theorem, but there are some that completely confound it. The Miller Rabin Test uses a combination of Fermat's Little Theorem and Chinese Division Theorem to overcome this.

Task
Carmichael 3 strong pseudoprimes
You are encouraged to solve this task according to the task description, using any language you may know.

The purpose of this task is to investigate such numbers using a method based on Carmichael numbers, as suggested in Notes by G.J.O Jameson March 2010.

The objective is to find Carmichael numbers of the form (where ) for all up to 61 (see page 7 of Notes by G.J.O Jameson March 2010 for solutions).

Pseudocode:
For a given

for 1 < h3 < Prime1

for 0 < d < h3+Prime1
if (h3+Prime1)*(Prime1-1) mod d == 0 and -Prime1 squared mod h3 == d mod h3
then
Prime2 = 1 + ((Prime1-1) * (h3+Prime1)/d)
next d if Prime2 is not prime
Prime3 = 1 + (Prime1*Prime2/h3)
next d if Prime3 is not prime
next d if (Prime2*Prime3) mod (Prime1-1) not equal 1
Prime1 * Prime2 * Prime3 is a Carmichael Number

Ada

Uses the Miller_Rabin package from Miller-Rabin primality test#ordinary integers. <lang Ada>with Ada.Text_IO, Miller_Rabin;

procedure Nemesis is

  type Number is range 0 .. 2**40-1; -- sufficiently large for the task
  function Is_Prime(N: Number) return Boolean is
     package MR is new Miller_Rabin(Number); use MR;
  begin
     return MR.Is_Prime(N) = Probably_Prime;
  end Is_Prime;

begin

  for P1 in Number(2) .. 61 loop
     if Is_Prime(P1) then
        for H3 in Number(1) .. P1 loop
           declare
              G: Number := H3 + P1;
              P2, P3: Number;
           begin
              Inner:
              for D in 1 .. G-1 loop
                 if ((H3+P1) * (P1-1)) mod D = 0 and then
                   (-(P1 * P1)) mod H3 = D mod H3
                 then
                    P2 := 1 + ((P1-1) * G / D);
                    P3 := 1 +(P1*P2/H3);
                    if Is_Prime(P2) and then Is_Prime(P3)
                      and then (P2*P3) mod (P1-1) = 1
                    then
                      Ada.Text_IO.Put_Line
                       ( Number'Image(P1) & " *"   & Number'Image(P2) & " *" &
                         Number'Image(P3) & "  = " & Number'Image(P1*P2*P3) );
                    end if;
                 end if;
              end loop Inner;
           end;
        end loop;
     end if;
  end loop;

end Nemesis;</lang>

Output:
 3 * 11 * 17  =  561
 5 * 29 * 73  =  10585
 5 * 17 * 29  =  2465
 5 * 13 * 17  =  1105
 7 * 19 * 67  =  8911

... (the full output is 69 lines long) ...

 61 * 271 * 571  =  9439201
 61 * 241 * 421  =  6189121
 61 * 3361 * 4021  =  824389441

C

<lang C>

  1. include <stdio.h>

/* C's % operator actually calculates the remainder of a / b so we need a

* small adjustment so it works as expected for negative values */
  1. define mod(n,m) ((((n) % (m)) + (m)) % (m))

int is_prime(unsigned int n) {

   if (n <= 3) {
       return n > 1;
   }
   else if (!(n % 2) || !(n % 3)) {
       return 0;
   }
   else {
       unsigned int i;
       for (i = 5; i*i <= n; i += 6)
           if (!(n % i) || !(n % (i + 2)))
               return 0;
       return 1;
   }

}

void carmichael3(int p1) {

   if (!is_prime(p1)) return;
   int h3, d, p2, p3;
   for (h3 = 1; h3 < p1; ++h3) {
       for (d = 1; d < h3 + p1; ++d) {
           if ((h3 + p1)*(p1 - 1) % d == 0 && mod(-p1 * p1, h3) == d % h3) {
               p2 = 1 + ((p1 - 1) * (h3 + p1)/d);
               if (!is_prime(p2)) continue;
               p3 = 1 + (p1 * p2 / h3);
               if (!is_prime(p3) || (p2 * p3) % (p1 - 1) != 1) continue;
               printf("%d %d %d\n", p1, p2, p3);
           }
       }
   }

}

int main(void) {

   int p1;
   for (p1 = 2; p1 < 62; ++p1)
       carmichael3(p1);
   return 0;

} </lang>

Output:
3 11 17
5 29 73
5 17 29
5 13 17
7 19 67
7 31 73
.
.
.
61 181 1381
61 541 3001
61 661 2521
61 271 571
61 241 421
61 3361 4021

D

<lang d>enum mod = (in int n, in int m) pure nothrow @nogc=> ((n % m) + m) % m;

bool isPrime(in uint n) pure nothrow @nogc {

 if (n == 2 || n == 3)
   return true;
 else if (n < 2 || n % 2 == 0 || n % 3 == 0)
   return false;
 for (uint div = 5, inc = 2; div ^^ 2 <= n;
    div += inc, inc = 6 - inc)
   if (n % div == 0)
     return false;
 return true;

}

void main() {

 import std.stdio;
 foreach (immutable p; 2 .. 62) {
   if (!p.isPrime) continue;
   foreach (immutable h3; 2 .. p) {
     immutable g = h3 + p;
     foreach (immutable d; 1 .. g) {
       if ((g * (p - 1)) % d != 0 || mod(-p * p, h3) != d % h3)
         continue;
       immutable q = 1 + (p - 1) * g / d;
       if (!q.isPrime) continue;
       immutable r = 1 + (p * q / h3);
       if (!r.isPrime || (q * r) % (p - 1) != 1) continue;
       writeln(p, " x ", q, " x ", r);
     }
   }
 }

}</lang>

Output:
3 x 11 x 17
5 x 29 x 73
5 x 17 x 29
5 x 13 x 17
7 x 19 x 67
7 x 31 x 73
7 x 13 x 31
7 x 23 x 41
7 x 73 x 103
7 x 13 x 19
13 x 61 x 397
13 x 37 x 241
13 x 97 x 421
13 x 37 x 97
13 x 37 x 61
17 x 41 x 233
17 x 353 x 1201
19 x 43 x 409
19 x 199 x 271
23 x 199 x 353
29 x 113 x 1093
29 x 197 x 953
31 x 991 x 15361
31 x 61 x 631
31 x 151 x 1171
31 x 61 x 271
31 x 61 x 211
31 x 271 x 601
31 x 181 x 331
37 x 109 x 2017
37 x 73 x 541
37 x 613 x 1621
37 x 73 x 181
37 x 73 x 109
41 x 1721 x 35281
41 x 881 x 12041
41 x 101 x 461
41 x 241 x 761
41 x 241 x 521
41 x 73 x 137
41 x 61 x 101
43 x 631 x 13567
43 x 271 x 5827
43 x 127 x 2731
43 x 127 x 1093
43 x 211 x 757
43 x 631 x 1597
43 x 127 x 211
43 x 211 x 337
43 x 433 x 643
43 x 547 x 673
43 x 3361 x 3907
47 x 3359 x 6073
47 x 1151 x 1933
47 x 3727 x 5153
53 x 157 x 2081
53 x 79 x 599
53 x 157 x 521
59 x 1451 x 2089
61 x 421 x 12841
61 x 181 x 5521
61 x 1301 x 19841
61 x 277 x 2113
61 x 181 x 1381
61 x 541 x 3001
61 x 661 x 2521
61 x 271 x 571
61 x 241 x 421
61 x 3361 x 4021

Haskell

Translation of: Ruby
Library: primes
Works with: GHC version 7.4.1
Works with: primes version 0.2.1.0

<lang haskell>#!/usr/bin/runhaskell

import Data.Numbers.Primes import Control.Monad (guard)

carmichaels = do

 p <- takeWhile (<= 61) primes
 h3 <- [2..(p-1)]
 let g = h3 + p
 d <- [1..(g-1)]
 guard $ (g * (p - 1)) `mod` d == 0 && (-1 * p * p) `mod` h3 == d `mod` h3
 let q = 1 + (((p - 1) * g) `div` d)
 guard $ isPrime q
 let r = 1 + ((p * q) `div` h3)
 guard $ isPrime r && (q * r) `mod` (p - 1) == 1
 return (p, q, r)

main = putStr $ unlines $ map show carmichaels</lang>

Output:
(3,11,17)
(5,29,73)
(5,17,29)
(5,13,17)
(7,19,67)
(7,31,73)
(7,13,31)
(7,23,41)
(7,73,103)
(7,13,19)
(13,61,397)
(13,37,241)
(13,97,421)
(13,37,97)
(13,37,61)
(17,41,233)
(17,353,1201)
(19,43,409)
(19,199,271)
(23,199,353)
(29,113,1093)
(29,197,953)
(31,991,15361)
(31,61,631)
(31,151,1171)
(31,61,271)
(31,61,211)
(31,271,601)
(31,181,331)
(37,109,2017)
(37,73,541)
(37,613,1621)
(37,73,181)
(37,73,109)
(41,1721,35281)
(41,881,12041)
(41,101,461)
(41,241,761)
(41,241,521)
(41,73,137)
(41,61,101)
(43,631,13567)
(43,271,5827)
(43,127,2731)
(43,127,1093)
(43,211,757)
(43,631,1597)
(43,127,211)
(43,211,337)
(43,433,643)
(43,547,673)
(43,3361,3907)
(47,3359,6073)
(47,1151,1933)
(47,3727,5153)
(53,157,2081)
(53,79,599)
(53,157,521)
(59,1451,2089)
(61,421,12841)
(61,181,5521)
(61,1301,19841)
(61,277,2113)
(61,181,1381)
(61,541,3001)
(61,661,2521)
(61,271,571)
(61,241,421)
(61,3361,4021)

Icon and Unicon

The following works in both languages. <lang unicon>link "factors"

procedure main(A)

   n := integer(!A) | 61
   every write(carmichael3(!n))

end

procedure carmichael3(p1)

   every (isprime(p1), (h := 1+!(p1-1)), (d := !(h+p1-1))) do
       if (mod(((h+p1)*(p1-1)),d) = 0, mod((-p1*p1),h) = mod(d,h)) then {
           p2 := 1 + (p1-1)*(h+p1)/d
           p3 := 1 + p1*p2/h
           if (isprime(p2), isprime(p3), mod((p2*p3),(p1-1)) = 1) then
               suspend format(p1,p2,p3)
           }

end

procedure mod(n,d)

  return (d+n%d)%d

end

procedure format(p1,p2,p3)

   return left(p1||" * "||p2||" * "||p3,20)||" = "||(p1*p2*p3)

end</lang>

Output, with middle lines elided:

->c3sp
3 * 11 * 17          = 561
5 * 29 * 73          = 10585
5 * 17 * 29          = 2465
5 * 13 * 17          = 1105
7 * 19 * 67          = 8911
7 * 31 * 73          = 15841
7 * 13 * 31          = 2821
7 * 23 * 41          = 6601
7 * 73 * 103         = 52633
7 * 13 * 19          = 1729
13 * 61 * 397        = 314821
13 * 37 * 241        = 115921
...
53 * 157 * 2081      = 17316001
53 * 79 * 599        = 2508013
53 * 157 * 521       = 4335241
59 * 1451 * 2089     = 178837201
61 * 421 * 12841     = 329769721
61 * 181 * 5521      = 60957361
61 * 1301 * 19841    = 1574601601
61 * 277 * 2113      = 35703361
61 * 181 * 1381      = 15247621
61 * 541 * 3001      = 99036001
61 * 661 * 2521      = 101649241
61 * 271 * 571       = 9439201
61 * 241 * 421       = 6189121
61 * 3361 * 4021     = 824389441
->

Julia

This solution is a straightforward implementation of the algorithm of the Jameson paper cited in the task description. Just for fun, I use Julia's capacity to accommodate Unicode identifiers to match some of the paper's symbols to the variables used in the carmichael function.

Function <lang Julia> function carmichael{T<:Integer}(pmax::T)

   0 < pmax || throw(DomainError())
   car = T[]
   for p in primes(pmax)
       for h₃ in 2:(p-1)
           m = (p - 1)*(h₃ + p)
           pmh = mod(-p^2, h₃)
           for Δ in 1:(h₃+p-1)
               m%Δ==0 && Δ%h₃==pmh || continue
               q = div(m, Δ) + 1
               isprime(q) || continue
               r = div((p*q - 1), h₃) + 1
               isprime(r) && mod(q*r, (p-1))==1 || continue
               append!(car, [p, q, r])
           end
       end
   end
   reshape(car, 3, div(length(car), 3))

end </lang>

Main <lang Julia> hi = 61 car = carmichael(hi)

curp = 0 tcnt = 0 print("Carmichael 3 (p\u00d7q\u00d7r) Pseudoprimes, up to p = ", hi, ":") for j in sortperm(1:size(car)[2], by=x->(car[1,x], car[2,x], car[3,x]))

   p, q, r = car[:,j]
   c = prod(car[:,j])
   if p != curp
       curp = p
       print(@sprintf("\n\np = %d\n  ", p))
       tcnt = 0
   end
   if tcnt == 4
       print("\n  ")
       tcnt = 1
   else
       tcnt += 1
   end
   print(@sprintf("p\u00d7%d\u00d7%d = %d  ", q, r, c))

end println("\n\n", size(car)[2], " results in total.") </lang>

Output:
Carmichael 3 (p×q×r) Pseudoprimes, up to p = 61:

p = 3
  p×11×17 = 561  

p = 5
  p×13×17 = 1105  p×17×29 = 2465  p×29×73 = 10585  

p = 7
  p×13×19 = 1729  p×13×31 = 2821  p×19×67 = 8911  p×23×41 = 6601  
  p×31×73 = 15841  p×73×103 = 52633  

p = 13
  p×37×61 = 29341  p×37×97 = 46657  p×37×241 = 115921  p×61×397 = 314821  
  p×97×421 = 530881  

p = 17
  p×41×233 = 162401  p×353×1201 = 7207201  

p = 19
  p×43×409 = 334153  p×199×271 = 1024651  

p = 23
  p×199×353 = 1615681  

p = 29
  p×113×1093 = 3581761  p×197×953 = 5444489  

p = 31
  p×61×211 = 399001  p×61×271 = 512461  p×61×631 = 1193221  p×151×1171 = 5481451  
  p×181×331 = 1857241  p×271×601 = 5049001  p×991×15361 = 471905281  

p = 37
  p×73×109 = 294409  p×73×181 = 488881  p×73×541 = 1461241  p×109×2017 = 8134561  
  p×613×1621 = 36765901  

p = 41
  p×61×101 = 252601  p×73×137 = 410041  p×101×461 = 1909001  p×241×521 = 5148001  
  p×241×761 = 7519441  p×881×12041 = 434932961  p×1721×35281 = 2489462641  

p = 43
  p×127×211 = 1152271  p×127×1093 = 5968873  p×127×2731 = 14913991  p×211×337 = 3057601  
  p×211×757 = 6868261  p×271×5827 = 67902031  p×433×643 = 11972017  p×547×673 = 15829633  
  p×631×1597 = 43331401  p×631×13567 = 368113411  p×3361×3907 = 564651361  

p = 47
  p×1151×1933 = 104569501  p×3359×6073 = 958762729  p×3727×5153 = 902645857  

p = 53
  p×79×599 = 2508013  p×157×521 = 4335241  p×157×2081 = 17316001  

p = 59
  p×1451×2089 = 178837201  

p = 61
  p×181×1381 = 15247621  p×181×5521 = 60957361  p×241×421 = 6189121  p×271×571 = 9439201  
  p×277×2113 = 35703361  p×421×12841 = 329769721  p×541×3001 = 99036001  p×661×2521 = 101649241  
  p×1301×19841 = 1574601601  p×3361×4021 = 824389441  

69 results in total.

Mathematica

<lang mathematica>Cases[Cases[

 Cases[Table[{p1, h3, d}, {p1, Array[Prime, PrimePi@61]}, {h3, 2, 
    p1 - 1}, {d, 1, h3 + p1 - 1}], {p1_Integer, h3_, d_} /; 
    PrimeQ[1 + (p1 - 1) (h3 + p1)/d] && 
     Divisible[p1^2 + d, h3] :> {p1, 1 + (p1 - 1) (h3 + p1)/d, h3}, 
  Infinity], {p1_, p2_, h3_} /; PrimeQ[1 + Floor[p1 p2/h3]] :> {p1, 
   p2, 1 + Floor[p1 p2/h3]}], {p1_, p2_, p3_} /; 
  Mod[p2 p3, p1 - 1] == 1 :> Print[p1, "*", p2, "*", p3]]</lang>

PARI/GP

<lang parigp>f(p)={

 my(v=List(),q,r);
 for(h=2,p-1,
   for(d=1,h+p-1,
     if((h+p)*(p-1)%d==0 && Mod(p,h)^2==-d && isprime(q=(p-1)*(h+p)/d+1) && isprime(r=p*q\h+1)&&q*r%(p-1)==1,
       listput(v,p*q*r)
     )
   )
 );
 Set(v)

}; forprime(p=3,67,v=f(p); for(i=1,#v,print1(v[i]", ")))</lang>

Output:
561, 1105, 2465, 10585, 1729, 2821, 6601, 8911, 15841, 52633, 29341, 46657, 115921, 314821, 530881, 162401, 7207201, 334153, 1024651, 1615681, 3581761, 5444489, 399001, 512461, 1193221, 1857241, 5049001, 5481451, 471905281, 294409, 488881, 1461241, 8134561, 36765901, 252601, 410041, 1909001, 5148001, 7519441, 434932961, 2489462641, 1152271, 3057601, 5968873, 6868261, 11972017, 14913991, 15829633, 43331401, 67902031, 368113411, 564651361, 104569501, 902645857, 958762729, 2508013, 4335241, 17316001, 178837201, 6189121, 9439201, 15247621, 35703361, 60957361, 99036001, 101649241, 329769721, 824389441, 1574601601, 10267951, 163954561, 7991602081,

Perl

Library: ntheory

<lang perl>use ntheory qw/forprimes is_prime vecprod/;

forprimes { my $p = $_;

  for my $h3 (2 .. $p-1) {
     my $ph3 = $p + $h3;
     for my $d (1 .. $ph3-1) {               # Jameseon procedure page 6
        next if ((-$p*$p) % $h3) != ($d % $h3);
        next if (($p-1)*$ph3) % $d;
        my $q = 1 + ($p-1)*$ph3 / $d;        # Jameson eq 7
        next unless is_prime($q);
        my $r = 1 + ($p*$q-1) / $h3;         # Jameson eq 6
        next unless is_prime($r);
        next unless ($q*$r) % ($p-1) == 1;
        printf "%2d x %5d x %5d = %s\n",$p,$q,$r,vecprod($p,$q,$r);
     }
  }

} 3,61;</lang>

Output:
 3 x    11 x    17 = 561
 5 x    29 x    73 = 10585
 5 x    17 x    29 = 2465
 5 x    13 x    17 = 1105
 ... full output is 69 lines ...
61 x   661 x  2521 = 101649241
61 x   271 x   571 = 9439201
61 x   241 x   421 = 6189121
61 x  3361 x  4021 = 824389441

Perl 6

An almost direct translation of the pseudocode. We take the liberty of going up to 67 to show we aren't limited to 32-bit integers. (Perl 6 uses arbitrary precision in any case.) <lang perl6>for (2..67).grep: *.is-prime -> \Prime1 {

   for 1 ^..^ Prime1 -> \h3 {
       my \g = h3 + Prime1;
       for 0 ^..^ h3 + Prime1 -> \d {
           if (h3 + Prime1) * (Prime1 - 1) %% d and -Prime1**2 % h3 == d % h3  {
               my \Prime2 = floor 1 + (Prime1 - 1) * g / d;
               next unless Prime2.is-prime;
               my \Prime3 = floor 1 + Prime1 * Prime2 / h3;
               next unless Prime3.is-prime;
               next unless (Prime2 * Prime3) % (Prime1 - 1) == 1;
               say "{Prime1} × {Prime2} × {Prime3} == {Prime1 * Prime2 * Prime3}";
           }
       }
   }

}</lang>

Output:
3 × 11 × 17 == 561
5 × 29 × 73 == 10585
5 × 17 × 29 == 2465
5 × 13 × 17 == 1105
7 × 19 × 67 == 8911
7 × 31 × 73 == 15841
7 × 13 × 31 == 2821
7 × 23 × 41 == 6601
7 × 73 × 103 == 52633
7 × 13 × 19 == 1729
13 × 61 × 397 == 314821
13 × 37 × 241 == 115921
13 × 97 × 421 == 530881
13 × 37 × 97 == 46657
13 × 37 × 61 == 29341
17 × 41 × 233 == 162401
17 × 353 × 1201 == 7207201
19 × 43 × 409 == 334153
19 × 199 × 271 == 1024651
23 × 199 × 353 == 1615681
29 × 113 × 1093 == 3581761
29 × 197 × 953 == 5444489
31 × 991 × 15361 == 471905281
31 × 61 × 631 == 1193221
31 × 151 × 1171 == 5481451
31 × 61 × 271 == 512461
31 × 61 × 211 == 399001
31 × 271 × 601 == 5049001
31 × 181 × 331 == 1857241
37 × 109 × 2017 == 8134561
37 × 73 × 541 == 1461241
37 × 613 × 1621 == 36765901
37 × 73 × 181 == 488881
37 × 73 × 109 == 294409
41 × 1721 × 35281 == 2489462641
41 × 881 × 12041 == 434932961
41 × 101 × 461 == 1909001
41 × 241 × 761 == 7519441
41 × 241 × 521 == 5148001
41 × 73 × 137 == 410041
41 × 61 × 101 == 252601
43 × 631 × 13567 == 368113411
43 × 271 × 5827 == 67902031
43 × 127 × 2731 == 14913991
43 × 127 × 1093 == 5968873
43 × 211 × 757 == 6868261
43 × 631 × 1597 == 43331401
43 × 127 × 211 == 1152271
43 × 211 × 337 == 3057601
43 × 433 × 643 == 11972017
43 × 547 × 673 == 15829633
43 × 3361 × 3907 == 564651361
47 × 3359 × 6073 == 958762729
47 × 1151 × 1933 == 104569501
47 × 3727 × 5153 == 902645857
53 × 157 × 2081 == 17316001
53 × 79 × 599 == 2508013
53 × 157 × 521 == 4335241
59 × 1451 × 2089 == 178837201
61 × 421 × 12841 == 329769721
61 × 181 × 5521 == 60957361
61 × 1301 × 19841 == 1574601601
61 × 277 × 2113 == 35703361
61 × 181 × 1381 == 15247621
61 × 541 × 3001 == 99036001
61 × 661 × 2521 == 101649241
61 × 271 × 571 == 9439201
61 × 241 × 421 == 6189121
61 × 3361 × 4021 == 824389441
67 × 2311 × 51613 == 7991602081
67 × 331 × 7393 == 163954561
67 × 331 × 463 == 10267951

PicoLisp

<lang PicoLisp>(de modulo (X Y)

  (% (+ Y (% X Y)) Y) )

(de prime? (N)

  (let D 0
     (or
        (= N 2)
        (and
           (> N 1)
           (bit? 1 N)
           (for (D 3  T  (+ D 2))
              (T (> D (sqrt N)) T)
              (T (=0 (% N D)) NIL) ) ) ) ) )

(for P1 61

  (when (prime? P1)
     (for (H3 2 (> P1 H3) (inc H3))
        (let G (+ H3 P1)
           (for (D 1 (> G D) (inc D))
              (when
                 (and
                    (=0
                       (% (* G (dec P1)) D) )
                    (=
                       (modulo (* (- P1) P1) H3)
                       (% D H3)) )
                 (let
                    (P2
                       (inc
                          (/ (* (dec P1) G) D) )
                       P3 (inc (/ (* P1 P2) H3)) )
                    (when
                       (and
                          (prime? P2)
                          (prime? P3)
                          (= 1 (modulo (* P2 P3) (dec P1))) )
                       (print (list P1 P2 P3)) ) ) ) ) ) ) ) )

(prinl)

(bye)</lang>

PL/I

<lang PL/I>Carmichael: procedure options (main, reorder); /* 24 January 2014 */

  declare (Prime1, Prime2, Prime3, h3, d) fixed binary (31);
  put ('Carmichael numbers are:');
  do Prime1 = 1 to 61;
     do h3 = 2 to Prime1;

d_loop: do d = 1 to h3+Prime1-1;

           if (mod((h3+Prime1)*(Prime1-1), d) = 0) &
              (mod(-Prime1*Prime1, h3) = mod(d, h3)) then
              do;
                 Prime2 = (Prime1-1) * (h3+Prime1)/d; Prime2 = Prime2 + 1;
                 if ^is_prime(Prime2) then iterate d_loop;
                 Prime3 = Prime1*Prime2/h3; Prime3 = Prime3 + 1;
                 if ^is_prime(Prime3) then iterate d_loop;
                 if mod(Prime2*Prime3, Prime1-1) ^= 1 then iterate d_loop;
                 put skip edit (trim(Prime1), ' x ', trim(Prime2), ' x ', trim(Prime3)) (A);
              end;
        end;
     end;
  end;
  /* Uses is_prime from Rosetta Code PL/I. */

end Carmichael;</lang> Results:

Carmichael numbers are: 
3 x 11 x 17
5 x 29 x 73
5 x 17 x 29
5 x 13 x 17
7 x 19 x 67
7 x 31 x 73
7 x 13 x 31
7 x 23 x 41
7 x 73 x 103
7 x 13 x 19
9 x 89 x 401
9 x 29 x 53
13 x 61 x 397
13 x 37 x 241
13 x 97 x 421
13 x 37 x 97
13 x 37 x 61
17 x 41 x 233
17 x 353 x 1201
19 x 43 x 409
19 x 199 x 271
21 x 761 x 941
23 x 199 x 353
27 x 131 x 443
27 x 53 x 131
29 x 113 x 1093
29 x 197 x 953
31 x 991 x 15361
31 x 61 x 631
31 x 151 x 1171
31 x 61 x 271
31 x 61 x 211
31 x 271 x 601
31 x 181 x 331
35 x 647 x 7549
35 x 443 x 3877
37 x 109 x 2017
37 x 73 x 541
37 x 613 x 1621
37 x 73 x 181
37 x 73 x 109
41 x 1721 x 35281
41 x 881 x 12041
41 x 101 x 461
41 x 241 x 761
41 x 241 x 521
41 x 73 x 137
41 x 61 x 101
43 x 631 x 13567
43 x 271 x 5827
43 x 127 x 2731
43 x 127 x 1093
43 x 211 x 757
43 x 631 x 1597
43 x 127 x 211
43 x 211 x 337
43 x 433 x 643
43 x 547 x 673
43 x 3361 x 3907
47 x 3359 x 6073
47 x 1151 x 1933
47 x 3727 x 5153
49 x 313 x 5113
49 x 97 x 433
51 x 701 x 7151
53 x 157 x 2081
53 x 79 x 599
53 x 157 x 521
55 x 3079 x 84673
55 x 163 x 4483
55 x 1567 x 28729
55 x 109 x 1999
55 x 433 x 2647
55 x 919 x 3889
55 x 139 x 547
55 x 3889 x 12583
55 x 109 x 163
55 x 433 x 487
57 x 113 x 1289
57 x 113 x 281
57 x 4649 x 10193
59 x 1451 x 2089
61 x 421 x 12841
61 x 181 x 5521
61 x 1301 x 19841
61 x 277 x 2113
61 x 181 x 1381
61 x 541 x 3001
61 x 661 x 2521
61 x 271 x 571
61 x 241 x 421
61 x 3361 x 4021

Python

<lang python>class Isprime():

   
   Extensible sieve of Eratosthenes
   
   >>> isprime.check(11)
   True
   >>> isprime.multiples
   {2, 4, 6, 8, 9, 10}
   >>> isprime.primes
   [2, 3, 5, 7, 11]
   >>> isprime(13)
   True
   >>> isprime.multiples
   {2, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22}
   >>> isprime.primes
   [2, 3, 5, 7, 11, 13, 17, 19]
   >>> isprime.nmax
   22
   >>> 
   
   multiples = {2}
   primes = [2]
   nmax = 2
   
   def __init__(self, nmax):
       if nmax > self.nmax:
           self.check(nmax)
   def check(self, n):
       if type(n) == float:
           if not n.is_integer(): return False
           n = int(n)
       multiples = self.multiples
       if n <= self.nmax:
           return n not in multiples
       else:
           # Extend the sieve
           primes, nmax = self.primes, self.nmax
           newmax = max(nmax*2, n)
           for p in primes:
               multiples.update(range(p*((nmax + p + 1) // p), newmax+1, p))
           for i in range(nmax+1, newmax+1):
               if i not in multiples:
                   primes.append(i)
                   multiples.update(range(i*2, newmax+1, i))
           self.nmax = newmax
           return n not in multiples
   __call__ = check
           
       

def carmichael(p1):

   ans = []
   if isprime(p1):
       for h3 in range(2, p1):
           g = h3 + p1
           for d in range(1, g):
               if (g * (p1 - 1)) % d == 0 and (-p1 * p1) % h3 == d % h3:
                   p2 = 1 + ((p1 - 1)* g // d)
                   if isprime(p2):
                       p3 = 1 + (p1 * p2 // h3)
                       if isprime(p3):
                           if (p2 * p3) % (p1 - 1) == 1:
                               #print('%i X %i X %i' % (p1, p2, p3))
                               ans += [tuple(sorted((p1, p2, p3)))]
   return ans
               

isprime = Isprime(2)

ans = sorted(sum((carmichael(n) for n in range(62) if isprime(n)), [])) print(',\n'.join(repr(ans[i:i+5])[1:-1] for i in range(0, len(ans)+1, 5)))</lang>

Output:
(3, 11, 17), (5, 13, 17), (5, 17, 29), (5, 29, 73), (7, 13, 19),
(7, 13, 31), (7, 19, 67), (7, 23, 41), (7, 31, 73), (7, 73, 103),
(13, 37, 61), (13, 37, 97), (13, 37, 241), (13, 61, 397), (13, 97, 421),
(17, 41, 233), (17, 353, 1201), (19, 43, 409), (19, 199, 271), (23, 199, 353),
(29, 113, 1093), (29, 197, 953), (31, 61, 211), (31, 61, 271), (31, 61, 631),
(31, 151, 1171), (31, 181, 331), (31, 271, 601), (31, 991, 15361), (37, 73, 109),
(37, 73, 181), (37, 73, 541), (37, 109, 2017), (37, 613, 1621), (41, 61, 101),
(41, 73, 137), (41, 101, 461), (41, 241, 521), (41, 241, 761), (41, 881, 12041),
(41, 1721, 35281), (43, 127, 211), (43, 127, 1093), (43, 127, 2731), (43, 211, 337),
(43, 211, 757), (43, 271, 5827), (43, 433, 643), (43, 547, 673), (43, 631, 1597),
(43, 631, 13567), (43, 3361, 3907), (47, 1151, 1933), (47, 3359, 6073), (47, 3727, 5153),
(53, 79, 599), (53, 157, 521), (53, 157, 2081), (59, 1451, 2089), (61, 181, 1381),
(61, 181, 5521), (61, 241, 421), (61, 271, 571), (61, 277, 2113), (61, 421, 12841),
(61, 541, 3001), (61, 661, 2521), (61, 1301, 19841), (61, 3361, 4021)

Racket

<lang racket>

  1. lang racket

(require math)

(for ([p1 (in-range 3 62)] #:when (prime? p1))

 (for ([h3 (in-range 2 p1)])
   (define g (+ p1 h3))
   (let next ([d 1])
     (when (< d g)
       (when (and (zero? (modulo (* g (- p1 1)) d))
                  (= (modulo (- (sqr p1)) h3) (modulo d h3)))
         (define p2 (+ 1 (quotient (* g (- p1 1)) d)))
         (when (prime? p2)
           (define p3 (+ 1 (quotient (* p1 p2) h3)))
           (when (and (prime? p3) (= 1 (modulo (* p2 p3) (- p1 1))))
             (displayln (list p1 p2 p3 '=> (* p1 p2 p3))))))
       (next (+ d 1))))))

</lang> Output: <lang racket> (3 11 17 => 561) (5 29 73 => 10585) (5 17 29 => 2465) (5 13 17 => 1105) (7 19 67 => 8911) (7 31 73 => 15841) (7 23 41 => 6601) (7 73 103 => 52633) (13 61 397 => 314821) (13 97 421 => 530881) (13 37 97 => 46657) (13 37 61 => 29341) (17 41 233 => 162401) (17 353 1201 => 7207201) (19 43 409 => 334153) (19 199 271 => 1024651) (23 199 353 => 1615681) (29 113 1093 => 3581761) (29 197 953 => 5444489) (31 991 15361 => 471905281) (31 61 631 => 1193221) (31 151 1171 => 5481451) (31 61 271 => 512461) (31 61 211 => 399001) (31 271 601 => 5049001) (31 181 331 => 1857241) (37 109 2017 => 8134561) (37 73 541 => 1461241) (37 613 1621 => 36765901) (37 73 181 => 488881) (37 73 109 => 294409) (41 1721 35281 => 2489462641) (41 881 12041 => 434932961) (41 101 461 => 1909001) (41 241 761 => 7519441) (41 241 521 => 5148001) (41 73 137 => 410041) (41 61 101 => 252601) (43 631 13567 => 368113411) (43 127 1093 => 5968873) (43 211 757 => 6868261) (43 631 1597 => 43331401) (43 127 211 => 1152271) (43 211 337 => 3057601) (43 433 643 => 11972017) (43 547 673 => 15829633) (43 3361 3907 => 564651361) (47 3359 6073 => 958762729) (47 1151 1933 => 104569501) (47 3727 5153 => 902645857) (53 157 2081 => 17316001) (53 79 599 => 2508013) (53 157 521 => 4335241) (59 1451 2089 => 178837201) (61 421 12841 => 329769721) (61 1301 19841 => 1574601601) (61 277 2113 => 35703361) (61 541 3001 => 99036001) (61 661 2521 => 101649241) (61 271 571 => 9439201) (61 241 421 => 6189121) (61 3361 4021 => 824389441) </lang>

REXX

Note that REXX's version of   modulus   (//)   is really a   remainder   function,
so a version of the   modulus   function was hard-coded below.
(It was necessary to use modulus instead of remainder when using a negative value.)


The Carmichael numbers are shown in numerical order.
Some code optimization was done, while not necessary for the small default number (61), it was significant for larger numbers. <lang rexx>/*REXX program calculates Carmichael 3-strong pseudoprimes (up to N).*/ numeric digits 30 /*in case user wants bigger nums.*/ parse arg N .; if N== then N=61 /*allow user to specify the limit*/ if 7=='f7'x then times='af'x /*if EBCDIC machine, use a bullet*/

            else times='f9'x          /* " ASCII     "      "  "   "   */

carms=0 /*number of Carmichael #s so far.*/ !.=0;  !.2=1; !.3=1; !.5=1; !.7=1; !.11=1; !.13=1; !.17=1; !.19=1; !.23=1

                                      /*[↓]  prime # memoization array.*/
   do p=3  to N  by 2;  if \isPrime(p)  then iterate  /*Not prime? Skip*/
   pm=p-1;  nps=-p*p;   bot=0;  top=0 /*some handy-dandy REXX variables*/
   @.=0                               /*[↑]  Carmichael numbers are odd*/
            do h3=2  to  pm;  g=h3+p  /*find Carmichael #s for this P. */
            gPM=g*pm;         npsH3=((nps//h3)+h3)//h3     /*shortcuts.*/
               do d=1  for g-1
               if gPM//d  \==  0              then iterate
               if npsH3   \==  d//h3          then iterate
               q=1+gPM%d;     if \isPrime(q)  then iterate
               r=1+p*q%h3;    if q*r//pm\==1  then iterate
                              if \isPrime(r)  then iterate
               carms=carms+1; @.q=r   /*bump Carmichael #; add to array*/
               if bot==0  then bot=q;   bot=min(bot,q);    top=max(top,q)
  /*find the maximum.              */
               end   /*d*/            /* [↑]  find minimum and maximum.*/
            end      /*h3*/
   $=0                                /*display a list of some Carm #s.*/
        do j=bot  to top  by 2;       if @.j==0  then iterate;        $=1
        say '──────── a Carmichael number: '   p   times  j   times   @.j
        end   /*j*/
   if $  then say                     /*show beautification blank line.*/
   end        /*p*/

say; say carms ' Carmichael numbers found.' exit /*stick a fork in it, we're done.*/ /*──────────────────────────────────ISPRIME subroutine──────────────────*/ isPrime: procedure expose !.; parse arg x; if !.x then return 1 if x<23 then return 0; if x//2==0 then return 0; if x// 3==0 then return 0 if right(x,1)==5 then return 0; if x// 7==0 then return 0 if x//11==0 then return 0; if x//13==0 then return 0 if x//17==0 then return 0; if x//19==0 then return 0

                  do i=23 by 6  until i*i>x; if x// i   ==0 then return 0
                                             if x//(i+2)==0 then return 0
                  end  /*i*/

!.x=1; return 1</lang> output when using the default input:

──────── a Carmichael number:  3 ∙ 11 ∙ 17

──────── a Carmichael number:  5 ∙ 13 ∙ 17
──────── a Carmichael number:  5 ∙ 17 ∙ 29
──────── a Carmichael number:  5 ∙ 29 ∙ 73

──────── a Carmichael number:  7 ∙ 13 ∙ 19
──────── a Carmichael number:  7 ∙ 19 ∙ 67
──────── a Carmichael number:  7 ∙ 23 ∙ 41
──────── a Carmichael number:  7 ∙ 31 ∙ 73
──────── a Carmichael number:  7 ∙ 73 ∙ 103

──────── a Carmichael number:  13 ∙ 37 ∙ 61
──────── a Carmichael number:  13 ∙ 61 ∙ 397
──────── a Carmichael number:  13 ∙ 97 ∙ 421

──────── a Carmichael number:  17 ∙ 41 ∙ 233
──────── a Carmichael number:  17 ∙ 353 ∙ 1201

──────── a Carmichael number:  19 ∙ 43 ∙ 409
──────── a Carmichael number:  19 ∙ 199 ∙ 271

──────── a Carmichael number:  23 ∙ 199 ∙ 353

──────── a Carmichael number:  29 ∙ 113 ∙ 1093
──────── a Carmichael number:  29 ∙ 197 ∙ 953

──────── a Carmichael number:  31 ∙ 61 ∙ 211
──────── a Carmichael number:  31 ∙ 151 ∙ 1171
──────── a Carmichael number:  31 ∙ 181 ∙ 331
──────── a Carmichael number:  31 ∙ 271 ∙ 601
──────── a Carmichael number:  31 ∙ 991 ∙ 15361

──────── a Carmichael number:  37 ∙ 73 ∙ 109
──────── a Carmichael number:  37 ∙ 109 ∙ 2017
──────── a Carmichael number:  37 ∙ 613 ∙ 1621

──────── a Carmichael number:  41 ∙ 61 ∙ 101
──────── a Carmichael number:  41 ∙ 73 ∙ 137
──────── a Carmichael number:  41 ∙ 101 ∙ 461
──────── a Carmichael number:  41 ∙ 241 ∙ 521
──────── a Carmichael number:  41 ∙ 881 ∙ 12041
──────── a Carmichael number:  41 ∙ 1721 ∙ 35281

──────── a Carmichael number:  43 ∙ 127 ∙ 211
──────── a Carmichael number:  43 ∙ 211 ∙ 337
──────── a Carmichael number:  43 ∙ 271 ∙ 5827
──────── a Carmichael number:  43 ∙ 433 ∙ 643
──────── a Carmichael number:  43 ∙ 547 ∙ 673
──────── a Carmichael number:  43 ∙ 631 ∙ 1597
──────── a Carmichael number:  43 ∙ 3361 ∙ 3907

──────── a Carmichael number:  47 ∙ 1151 ∙ 1933
──────── a Carmichael number:  47 ∙ 3359 ∙ 6073
──────── a Carmichael number:  47 ∙ 3727 ∙ 5153

──────── a Carmichael number:  53 ∙ 79 ∙ 599
──────── a Carmichael number:  53 ∙ 157 ∙ 521

──────── a Carmichael number:  59 ∙ 1451 ∙ 2089

──────── a Carmichael number:  61 ∙ 181 ∙ 1381
──────── a Carmichael number:  61 ∙ 241 ∙ 421
──────── a Carmichael number:  61 ∙ 271 ∙ 571
──────── a Carmichael number:  61 ∙ 277 ∙ 2113
──────── a Carmichael number:  61 ∙ 421 ∙ 12841
──────── a Carmichael number:  61 ∙ 541 ∙ 3001
──────── a Carmichael number:  61 ∙ 661 ∙ 2521
──────── a Carmichael number:  61 ∙ 1301 ∙ 19841
──────── a Carmichael number:  61 ∙ 3361 ∙ 4021


69  Carmichael numbers found.

Ruby

Works with: Ruby version 1.9

<lang ruby># Generate Charmichael Numbers

require 'prime'

Prime.each(61) do |p|

 (2...p).each do |h3|
   g = h3 + p
   (1...g).each do |d|
     next if (g*(p-1)) % d != 0 or (-p*p) % h3 != d % h3
     q = 1 + ((p - 1) * g / d)
     next unless q.prime?
     r = 1 + (p * q / h3)
     next unless r.prime? and (q * r) % (p - 1) == 1
     puts "#{p} x #{q} x #{r}" 
   end
 end
 puts

end</lang>

Output:
3 x 11 x 17

5 x 29 x 73
5 x 17 x 29
5 x 13 x 17

7 x 19 x 67
7 x 31 x 73
7 x 13 x 31
7 x 23 x 41
7 x 73 x 103
7 x 13 x 19


13 x 61 x 397
13 x 37 x 241
13 x 97 x 421
13 x 37 x 97
13 x 37 x 61

17 x 41 x 233
17 x 353 x 1201

19 x 43 x 409
19 x 199 x 271

23 x 199 x 353

29 x 113 x 1093
29 x 197 x 953

31 x 991 x 15361
31 x 61 x 631
31 x 151 x 1171
31 x 61 x 271
31 x 61 x 211
31 x 271 x 601
31 x 181 x 331

37 x 109 x 2017
37 x 73 x 541
37 x 613 x 1621
37 x 73 x 181
37 x 73 x 109

41 x 1721 x 35281
41 x 881 x 12041
41 x 101 x 461
41 x 241 x 761
41 x 241 x 521
41 x 73 x 137
41 x 61 x 101

43 x 631 x 13567
43 x 271 x 5827
43 x 127 x 2731
43 x 127 x 1093
43 x 211 x 757
43 x 631 x 1597
43 x 127 x 211
43 x 211 x 337
43 x 433 x 643
43 x 547 x 673
43 x 3361 x 3907

47 x 3359 x 6073
47 x 1151 x 1933
47 x 3727 x 5153

53 x 157 x 2081
53 x 79 x 599
53 x 157 x 521

59 x 1451 x 2089

61 x 421 x 12841
61 x 181 x 5521
61 x 1301 x 19841
61 x 277 x 2113
61 x 181 x 1381
61 x 541 x 3001
61 x 661 x 2521
61 x 271 x 571
61 x 241 x 421
61 x 3361 x 4021

Seed7

The function isPrime below is borrowed from the Seed7 algorithm collection.

<lang seed7>$ include "seed7_05.s7i";

const func boolean: isPrime (in integer: number) is func

 result
   var boolean: prime is FALSE;
 local
   var integer: upTo is 0;
   var integer: testNum is 3;
 begin
   if number = 2 then
     prime := TRUE;
   elsif odd(number) and number > 2 then
     upTo := sqrt(number);
     while number rem testNum <> 0 and testNum <= upTo do
       testNum +:= 2;
     end while;
     prime := testNum > upTo;
   end if;
 end func;

const proc: main is func

 local
   var integer: p1 is 0;
   var integer: h3 is 0;
   var integer: g is 0;
   var integer: d is 0;
   var integer: p2 is 0;
   var integer: p3 is 0;
 begin
   for p1 range 2 to 61 do
     if isPrime(p1) then
       for h3 range 2 to p1 do
         g := h3 + p1;
         for d range 1 to pred(g) do
           if (g * pred(p1)) mod d = 0 and -p1 ** 2 mod h3 = d mod h3 then
             p2 := 1 + pred(p1) * g div d;
             if isPrime(p2) then
               p3 := 1 + p1 * p2 div h3;
               if isPrime(p3) and (p2 * p3) mod pred(p1) = 1 then
                 writeln(p1 <& " * " <& p2 <& " * " <& p3 <& " = " <& p1*p2*p3);
               end if;
             end if;
           end if;
         end for;
       end for;
     end if;
   end for;
 end func;</lang>
Output:
3 * 11 * 17 = 561
5 * 29 * 73 = 10585
5 * 17 * 29 = 2465
5 * 13 * 17 = 1105
7 * 19 * 67 = 8911
7 * 31 * 73 = 15841
7 * 13 * 31 = 2821
7 * 23 * 41 = 6601
7 * 73 * 103 = 52633
7 * 13 * 19 = 1729
13 * 61 * 397 = 314821
13 * 37 * 241 = 115921
13 * 97 * 421 = 530881
13 * 37 * 97 = 46657
13 * 37 * 61 = 29341
17 * 41 * 233 = 162401
17 * 353 * 1201 = 7207201
19 * 43 * 409 = 334153
19 * 199 * 271 = 1024651
23 * 199 * 353 = 1615681
29 * 113 * 1093 = 3581761
29 * 197 * 953 = 5444489
31 * 991 * 15361 = 471905281
31 * 61 * 631 = 1193221
31 * 151 * 1171 = 5481451
31 * 61 * 271 = 512461
31 * 61 * 211 = 399001
31 * 271 * 601 = 5049001
31 * 181 * 331 = 1857241
37 * 109 * 2017 = 8134561
37 * 73 * 541 = 1461241
37 * 613 * 1621 = 36765901
37 * 73 * 181 = 488881
37 * 73 * 109 = 294409
41 * 1721 * 35281 = 2489462641
41 * 881 * 12041 = 434932961                                                                                                                                                 
41 * 101 * 461 = 1909001                                                                                                                                                     
41 * 241 * 761 = 7519441                                                                                                                                                     
41 * 241 * 521 = 5148001                                                                                                                                                     
41 * 73 * 137 = 410041                                                                                                                                                       
41 * 61 * 101 = 252601                                                                                                                                                       
43 * 631 * 13567 = 368113411                                                                                                                                                 
43 * 271 * 5827 = 67902031                                                                                                                                                   
43 * 127 * 2731 = 14913991                                                                                                                                                   
43 * 127 * 1093 = 5968873                                                                                                                                                    
43 * 211 * 757 = 6868261                                                                                                                                                     
43 * 631 * 1597 = 43331401                                                                                                                                                   
43 * 127 * 211 = 1152271
43 * 211 * 337 = 3057601
43 * 433 * 643 = 11972017
43 * 547 * 673 = 15829633
43 * 3361 * 3907 = 564651361
47 * 3359 * 6073 = 958762729
47 * 1151 * 1933 = 104569501
47 * 3727 * 5153 = 902645857
53 * 157 * 2081 = 17316001
53 * 79 * 599 = 2508013
53 * 157 * 521 = 4335241
59 * 1451 * 2089 = 178837201
61 * 421 * 12841 = 329769721
61 * 181 * 5521 = 60957361
61 * 1301 * 19841 = 1574601601
61 * 277 * 2113 = 35703361
61 * 181 * 1381 = 15247621
61 * 541 * 3001 = 99036001
61 * 661 * 2521 = 101649241
61 * 271 * 571 = 9439201
61 * 241 * 421 = 6189121
61 * 3361 * 4021 = 824389441

Sidef

Translation of: Perl

<lang ruby>var ntheory = frequire('ntheory');

ntheory.forprimes({ |*p|

  p = Number.new(p[-1]);
  range(2, p-1).each { |h3|
     var ph3 = (p + h3);
     range(1, ph3-1).each { |d|
        ((-p * p) % h3) != (d % h3) && next;
        ((p-1)*ph3) % d && next;
        var q = 1+((p-1) * ph3 / d);
        ntheory.is_prime(q) || next;
        var r = 1+((p*q - 1)/h3);
        ntheory.is_prime(r) || next;
        (q*r) % (p-1) == 1 || next;
        printf("%2d x %5d x %5d = %s\n",p,q,r,ntheory.vecprod(p,q,r));
     }
  }

}, 3, 61);</lang>

Output:
 3 x    11 x    17 = 561
 5 x    29 x    73 = 10585
 5 x    17 x    29 = 2465
 5 x    13 x    17 = 1105
 ... full output is 69 lines ...
61 x   661 x  2521 = 101649241
61 x   271 x   571 = 9439201
61 x   241 x   421 = 6189121
61 x  3361 x  4021 = 824389441

Tcl

Using the primality tester from the Miller-Rabin task... <lang tcl>proc carmichael {limit {rounds 10}} {

   set carmichaels {}
   for {set p1 2} {$p1 <= $limit} {incr p1} {

if {![miller_rabin $p1 $rounds]} continue for {set h3 2} {$h3 < $p1} {incr h3} { set g [expr {$h3 + $p1}] for {set d 1} {$d < $h3+$p1} {incr d} { if {(($h3+$p1)*($p1-1))%$d != 0} continue if {(-($p1**2))%$h3 != $d%$h3} continue

set p2 [expr {1 + ($p1-1)*$g/$d}] if {![miller_rabin $p2 $rounds]} continue

set p3 [expr {1 + $p1*$p2/$h3}] if {![miller_rabin $p3 $rounds]} continue

if {($p2*$p3)%($p1-1) != 1} continue lappend carmichaels $p1 $p2 $p3 [expr {$p1*$p2*$p3}] } }

   }
   return $carmichaels

}</lang> Demonstrating: <lang tcl>set results [carmichael 61 2] puts "[expr {[llength $results]/4}] Carmichael numbers found" foreach {p1 p2 p3 c} $results {

   puts "$p1 x $p2 x $p3 = $c"

}</lang>

Output:
69 Carmichael numbers found
3 x 11 x 17 = 561
5 x 29 x 73 = 10585
5 x 17 x 29 = 2465
5 x 13 x 17 = 1105
7 x 19 x 67 = 8911
7 x 31 x 73 = 15841
7 x 13 x 31 = 2821
7 x 23 x 41 = 6601
7 x 73 x 103 = 52633
7 x 13 x 19 = 1729
13 x 61 x 397 = 314821
13 x 37 x 241 = 115921
13 x 97 x 421 = 530881
13 x 37 x 97 = 46657
13 x 37 x 61 = 29341
17 x 41 x 233 = 162401
17 x 353 x 1201 = 7207201
19 x 43 x 409 = 334153
19 x 199 x 271 = 1024651
23 x 199 x 353 = 1615681
29 x 113 x 1093 = 3581761
29 x 197 x 953 = 5444489
31 x 991 x 15361 = 471905281
31 x 61 x 631 = 1193221
31 x 151 x 1171 = 5481451
31 x 61 x 271 = 512461
31 x 61 x 211 = 399001
31 x 271 x 601 = 5049001
31 x 181 x 331 = 1857241
37 x 109 x 2017 = 8134561
37 x 73 x 541 = 1461241
37 x 613 x 1621 = 36765901
37 x 73 x 181 = 488881
37 x 73 x 109 = 294409
41 x 1721 x 35281 = 2489462641
41 x 881 x 12041 = 434932961
41 x 101 x 461 = 1909001
41 x 241 x 761 = 7519441
41 x 241 x 521 = 5148001
41 x 73 x 137 = 410041
41 x 61 x 101 = 252601
43 x 631 x 13567 = 368113411
43 x 271 x 5827 = 67902031
43 x 127 x 2731 = 14913991
43 x 127 x 1093 = 5968873
43 x 211 x 757 = 6868261
43 x 631 x 1597 = 43331401
43 x 127 x 211 = 1152271
43 x 211 x 337 = 3057601
43 x 433 x 643 = 11972017
43 x 547 x 673 = 15829633
43 x 3361 x 3907 = 564651361
47 x 3359 x 6073 = 958762729
47 x 1151 x 1933 = 104569501
47 x 3727 x 5153 = 902645857
53 x 157 x 2081 = 17316001
53 x 79 x 599 = 2508013
53 x 157 x 521 = 4335241
59 x 1451 x 2089 = 178837201
61 x 421 x 12841 = 329769721
61 x 181 x 5521 = 60957361
61 x 1301 x 19841 = 1574601601
61 x 277 x 2113 = 35703361
61 x 181 x 1381 = 15247621
61 x 541 x 3001 = 99036001
61 x 661 x 2521 = 101649241
61 x 271 x 571 = 9439201
61 x 241 x 421 = 6189121
61 x 3361 x 4021 = 824389441

zkl

Using the Miller-Rabin primality test in lib GMP. <lang zkl>var BN=Import("zklBigNum"), bi=BN(0); // gonna recycle bi primes:=T(2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61); var p2,p3; cs:=[[(p1,h3,d); primes; { [2..p1 - 1] }; // list comprehension

     { [1..h3 + p1 - 1] },

{ ((h3 + p1)*(p1 - 1)%d == 0 and ((-p1*p1):mod(_,h3) == d%h3)) },//guard { (p2=1 + (p1 - 1)*(h3 + p1)/d):bi.set(_).probablyPrime() },//guard { (p3=1 + (p1*p2/h3)):bi.set(_).probablyPrime() }, //guard { 1==(p2*p3)%(p1 - 1) }; //guard

  { T(p1,p2,p3) }  // return list of three primes in Carmichael number

]]; fcn mod(a,b) { m:=a%b; if(m<0) m+b else m }</lang> <lang>cs.len().println(" Carmichael numbers found:"); cs.pump(Console.println,fcn([(p1,p2,p3)]){

  "%2d * %4d * %5d = %d".fmt(p1,p2,p3,p1*p2*p3) });</lang>
Output:
69 Carmichael numbers found:
 3 *   11 *    17 = 561
 5 *   29 *    73 = 10585
 5 *   17 *    29 = 2465
 5 *   13 *    17 = 1105
 7 *   19 *    67 = 8911
...
61 *  181 *  1381 = 15247621
61 *  541 *  3001 = 99036001
61 *  661 *  2521 = 101649241
61 *  271 *   571 = 9439201
61 *  241 *   421 = 6189121
61 * 3361 *  4021 = 824389441