Bitmap/Histogram
You are encouraged to solve this task according to the task description, using any language you may know.
Extend the basic bitmap storage defined on this page to support dealing with image histograms. The image histogram contains for each luminance the count of image pixels having this luminance. Choosing a histogram representation take care about the data type used for the counts. It must have range of at least 0..NxM, where N is the image width and M is the image height.
Test task
Histogram is useful for many image processing operations. As an example, use it to convert an image into black and white art. The method works as follows:
- Convert image to grayscale;
- Compute the histogram
- Find the median: defined as the luminance such that the image has an approximately equal number of pixels with lesser and greater luminance.
- Replace each pixel of luminance lesser than the median to black, and others to white.
Use read/write ppm file, and grayscale image solutions.
Action!
In the following solution the input file lena30g.PPM is loaded from H6 drive. Altirra emulator automatically converts CR/LF character from ASCII into 155 character in ATASCII charset used by Atari 8-bit computer when one from H6-H10 hard drive under DOS 2.5 is used.
INCLUDE "H6:LOADPPM5.ACT"
DEFINE HISTSIZE="256"
PROC PutBigPixel(INT x,y BYTE col)
IF x>=0 AND x<=79 AND y>=0 AND y<=47 THEN
y==LSH 2
col==RSH 4
IF col<0 THEN col=0
ELSEIF col>15 THEN col=15 FI
Color=col
Plot(x,y)
DrawTo(x,y+3)
FI
RETURN
PROC DrawImage(GrayImage POINTER image INT x,y)
INT i,j
BYTE c
FOR j=0 TO image.gh-1
DO
FOR i=0 TO image.gw-1
DO
c=GetGrayPixel(image,i,j)
PutBigPixel(x+i,y+j,c)
OD
OD
RETURN
PROC CalcHistogram(GrayImage POINTER image INT ARRAY hist)
INT i,j
BYTE c
Zero(hist,HISTSIZE*2)
FOR j=0 TO image.gh-1
DO
FOR i=0 TO image.gw-1
DO
c=GetGrayPixel(image,i,j)
hist(c)==+1
OD
OD
RETURN
BYTE FUNC CalcThresholdValue(INT width,height INT ARRAY hist)
INT i,sum,total,curr
total=width*height
sum=0
FOR i=0 TO HISTSIZE-1
DO
curr=hist(i)
IF sum>=(total-curr)/2 THEN
RETURN (i)
FI
sum==+curr
OD
RETURN (HISTSIZE-1)
PROC Binarize(GrayImage POINTER src,dst BYTE threshold)
INT i,j
BYTE c
FOR j=0 TO src.gh-1
DO
FOR i=0 TO src.gw-1
DO
c=GetGrayPixel(src,i,j)
IF c<threshold THEN
c=0
ELSE
c=255
FI
SetGrayPixel(dst,i,j,c)
OD
OD
RETURN
PROC Main()
BYTE CH=$02FC ;Internal hardware value for last key pressed
BYTE ARRAY dataIn(900),dataOut(900)
GrayImage in,out
INT ARRAY hist(HISTSIZE)
BYTE threshold
INT size=[30],x,y
Put(125) PutE() ;clear the screen
InitGrayImage(in,size,size,dataIn)
InitGrayImage(out,size,size,dataOut)
PrintE("Loading source image...")
LoadPPM5(in,"H6:LENA30G.PPM")
PrintE("Calc histogram...")
CalcHistogram(in,hist)
PrintE("Calc threshold value...")
threshold=CalcThresholdValue(in.gw,in.gh,hist)
PrintE("Binarization...")
Binarize(in,out,threshold)
Graphics(9)
x=(40-size)/2
y=(48-size)/2
DrawImage(in,x,y)
DrawImage(out,x+40,y)
DO UNTIL CH#$FF OD
CH=$FF
RETURN
- Output:
Screenshot from Atari 8-bit computer
Ada
Histogram of an image:
type Pixel_Count is mod 2**64;
type Histogram is array (Luminance) of Pixel_Count;
function Get_Histogram (Picture : Grayscale_Image) return Histogram is
Result : Histogram := (others => 0);
begin
for I in Picture'Range (1) loop
for J in Picture'Range (2) loop
declare
Count : Pixel_Count renames Result (Picture (I, J));
begin
Count := Count + 1;
end;
end loop;
end loop;
return Result;
end Get_Histogram;
Median of a histogram:
function Median (H : Histogram) return Luminance is
From : Luminance := Luminance'First;
To : Luminance := Luminance'Last;
Left : Pixel_Count := H (From);
Right : Pixel_Count := H (To);
begin
while From /= To loop
if Left < Right then
From := From + 1;
Left := Left + H (From);
else
To := To - 1;
Right := Right + H (To);
end if;
end loop;
return From;
end Median;
Conversion of an image to black and white art:
F1, F2 : File_Type;
begin
Open (F1, In_File, "city.ppm");
declare
X : Image := Get_PPM (F1);
Y : Grayscale_Image := Grayscale (X);
T : Luminance := Median (Get_Histogram (Y));
begin
Close (F1);
Create (F2, Out_File, "city_art.ppm");
for I in Y'Range (1) loop
for J in Y'Range (2) loop
if Y (I, J) < T then
X (I, J) := Black;
else
X (I, J) := White;
end if;
end loop;
end loop;
Put_PPM (F2, X);
end;
Close (F2);
BBC BASIC
INSTALL @lib$+"SORTLIB"
Sort% = FN_sortinit(0,0)
Width% = 200
Height% = 200
VDU 23,22,Width%;Height%;8,16,16,128
*display c:\lenagrey
DIM hist%(255), idx%(255)
FOR i% = 0 TO 255 : idx%(i%) = i% : NEXT
REM Build histogram:
FOR y% = 0 TO Height%-1
FOR x% = 0 TO Width%-1
l% = FNgetpixel(x%,y%) AND &FF
hist%(l%) += 1
NEXT
NEXT y%
REM Sort histogram:
C% = 256
CALL Sort%, hist%(0), idx%(0)
REM Find median:
total% = SUM(hist%())
half% = 0
FOR i% = 0 TO 255
half% += hist%(i%)
IF half% >= total%/2 THEN
median% = idx%(i%)
EXIT FOR
ENDIF
NEXT
REM Display black & white version:
FOR y% = 0 TO Height%-1
FOR x% = 0 TO Width%-1
l% = FNgetpixel(x%,y%) AND &FF
IF l% > median% THEN
PROCsetpixel(x%,y%,255,255,255)
ELSE
PROCsetpixel(x%,y%,0,0,0)
ENDIF
NEXT
NEXT y%
END
DEF PROCsetpixel(x%,y%,r%,g%,b%)
COLOUR 1,r%,g%,b%
GCOL 1
LINE x%*2,y%*2,x%*2,y%*2
ENDPROC
DEF FNgetpixel(x%,y%)
LOCAL col%
col% = TINT(x%*2,y%*2)
SWAP ?^col%,?(^col%+2)
= col%
C
typedef unsigned int histogram_t;
typedef histogram_t *histogram;
#define GET_LUM(IMG, X, Y) ( (IMG)->buf[ (Y) * (IMG)->width + (X)][0] )
histogram get_histogram(grayimage im);
luminance histogram_median(histogram h);
histogram get_histogram(grayimage im)
{
histogram t;
unsigned int x, y;
if ( im == NULL ) return NULL;
t = malloc( sizeof(histogram_t)*256 );
memset(t, 0, sizeof(histogram_t)*256 );
if (t!=NULL)
{
for(x=0; x < im->width; x++ )
{
for(y=0; y < im->height; y++ )
{
t[ GET_LUM(im, x, y) ]++;
}
}
}
return t;
}
The given histogram must be freed with a simple free(histogram).
luminance histogram_median(histogram h)
{
luminance From, To;
unsigned int Left, Right;
From = 0; To = (1 << (8*sizeof(luminance)))-1;
Left = h[From]; Right = h[To];
while( From != To )
{
if ( Left < Right )
{
From++; Left += h[From];
} else {
To--; Right += h[To];
}
}
return From;
}
An example of usage is the following code.
#include <stdio.h>
#include <stdlib.h>
#include "imglib.h"
/* usage example */
#define BLACK 0,0,0
#define WHITE 255,255,255
int main(int argc, char **argv)
{
image color_img;
grayimage g_img;
histogram h;
luminance T;
unsigned int x, y;
if ( argc < 2 )
{
fprintf(stderr, "histogram FILE\n");
exit(1);
}
color_img = read_image(argv[1]);
if ( color_img == NULL ) exit(1);
g_img = tograyscale(color_img);
h = get_histogram(g_img);
if ( h != NULL )
{
T = histogram_median(h);
for(x=0; x < g_img->width; x++)
{
for(y=0; y < g_img->height; y++)
{
if ( GET_LUM(g_img,x,y) < T )
{
put_pixel_unsafe(color_img, x, y, BLACK);
} else {
put_pixel_unsafe(color_img, x, y, WHITE);
}
}
}
output_ppm(stdout, color_img);
/* print_jpg(color_img, 90); */
free(h);
}
free_img((image)g_img);
free_img(color_img);
}
Which reads from the file specified from the command line and outputs to the standard out the PPM B/W version of the input image. The input image can be of any format handled by ImageMagick (see Read image file through a pipe)
Common Lisp
(defpackage #:histogram
(:use #:cl
#:opticl))
(in-package #:histogram)
(defun color->gray-image (image)
(check-type image 8-bit-rgb-image)
(let ((gray-image (with-image-bounds (height width) image
(make-8-bit-gray-image height width :initial-element 0))))
(do-pixels (i j) image
(multiple-value-bind (r g b) (pixel image i j)
(let ((gray (+ (* 0.2126 r) (* 0.7152 g) (* 0.0722 b))))
(setf (pixel gray-image i j) (round gray)))))
gray-image))
(defun make-histogram (image)
(check-type image 8-bit-gray-image)
(let ((histogram (make-array 256 :element-type 'fixnum :initial-element 0)))
(do-pixels (i j) image
(incf (aref histogram (pixel image i j))))
histogram))
(defun find-median (histogram)
(loop with num-pixels = (loop for count across histogram sum count)
with half = (/ num-pixels 2)
for count across histogram
for i from 0
sum count into acc
when (>= acc half)
return i))
(defun gray->black&white-image (image)
(check-type image 8-bit-gray-image)
(let* ((histogram (make-histogram image))
(median (find-median histogram))
(bw-image (with-image-bounds (height width) image
(make-1-bit-gray-image height width :initial-element 0))))
(do-pixels (i j) image
(setf (pixel bw-image i j) (if (<= (pixel image i j) median) 1 0)))
bw-image))
(defun main ()
(let* ((image (read-jpeg-file "lenna.jpg"))
(bw-image (gray->black&white-image (color->gray-image image))))
(write-pbm-file "lenna-bw.pbm" bw-image)))
D
It uses the grayscale_image from the Grayscale image Task. The loaded frog image is from the Color quantization Task.
import grayscale_image;
Color findSingleChannelMedian(Color)(in Image!Color img)
pure nothrow @nogc if (Color.tupleof.length == 1) // Hack.
in {
assert(img !is null);
} body {
size_t[Color.max + 1] hist;
foreach (immutable c; img.image)
hist[c]++;
// Slower indexes, but not significantly so.
auto from = Color(0);
auto to = Color(hist.length - 1);
auto left = hist[from];
auto right = hist[to];
while (from != to)
if (left < right) {
from++;
left += hist[from];
} else {
to--;
right += hist[to];
}
return from;
}
Image!Color binarizeInPlace(Color)(Image!Color img,
in Color thresh)
pure nothrow @nogc in {
assert(img !is null);
} body {
foreach (immutable i, ref c; img.image)
c = (c < thresh) ? Color.min : Color.max;
return img;
}
void main() {
Image!RGB im;
im.loadPPM6("quantum_frog.ppm");
auto img = im.rgb2grayImage();
img.binarizeInPlace(img.findSingleChannelMedian())
.savePGM("quantum_frog_bin.pgm");
}
FBSL
FBSL volatiles and function call concatenation used heavily for brevity.
24-bpp P.O.T.-size BMP solution:
#DEFINE WM_CLOSE 16
DIM colored = ".\LenaClr.bmp", grayscale = ".\LenaGry.bmp", blackwhite = ".\LenaBnw.bmp"
DIM head, tail, r, g, b, l, m, ptr, blobsize = 54 ' sizeof BMP headers
FILEGET(FILEOPEN(colored, BINARY), FILELEN(colored)): FILECLOSE(FILEOPEN) ' fill buffer
head = @FILEGET + blobsize: tail = @FILEGET + FILELEN ' get buffer bounds
ToGrayScale() ' derive grayscale image and save it to disk
ToBlackAndWhite() ' ditto, black-and-white image
FBSLSETTEXT(ME, "Clr") ' display colored image
FBSLTILE(ME, FBSLLOADIMAGE(colored))
RESIZE(ME, 0, 0, 136, 162): CENTER(ME): SHOW(ME)
FBSLTILE(FBSLFORM("Gry"), FBSLLOADIMAGE(grayscale)) ' ditto, grayscale
RESIZE(FBSLFORM, 0, 0, 136, 162): CENTER(FBSLFORM): SHOW(FBSLFORM)
FBSLTILE(FBSLFORM("B/w"), FBSLLOADIMAGE(blackwhite)) ' ditto, black-and-white
RESIZE(FBSLFORM, 0, 0, 136, 162): CENTER(FBSLFORM): SHOW(FBSLFORM)
BEGIN EVENTS ' main message loop
IF CBMSG = WM_CLOSE THEN DESTROY(ME) ' click any [X] button to quit
END EVENTS
SUB ToGrayScale()
FOR ptr = head TO tail STEP 3
b = PEEK(ptr + 0, 1) ' Windows stores colors in BGR order
g = PEEK(ptr + 1, 1)
r = PEEK(ptr + 2, 1)
l = 0.2126 * r + 0.7152 * g + 0.0722 * b ' derive luminance
POKE(ptr + 0, CHR(l))(ptr + 1, CHR)(ptr + 2, CHR) ' set pixel to shade of gray
m = m + l
NEXT
FILEPUT(FILEOPEN(grayscale, BINARY_NEW), FILEGET): FILECLOSE(FILEOPEN) ' save grayscale image
END SUB
SUB ToBlackAndWhite()
STATIC b = CHR(0), w = CHR(255) ' initialize once
m = m / (tail - head) * 3 ' derive median
FOR ptr = head TO tail STEP 3
IF PEEK(ptr + 0, 1) < m THEN ' set pixel black
POKE(ptr + 0, b)(ptr + 1, b)(ptr + 2, b)
ELSE ' set pixel white
POKE(ptr + 0, w)(ptr + 1, w)(ptr + 2, w)
END IF
NEXT
FILEPUT(FILEOPEN(blackwhite, BINARY_NEW), FILEGET): FILECLOSE(FILEOPEN) ' save b/w image
END SUB
Forth
: histogram ( array gmp -- )
over 256 cells erase
dup bdim * over bdata + swap bdata
do 1 over i c@ cells + +! loop drop ;
\ will not work as far as bdim bdata are not ans forth words \ do not forget to assign them yourself in your code
GnuForth 0.7
: bar ( v y x -- )
2dup at-xy .\" [" 100 spaces .\" ]" swap 1 + swap at-xy 0
DO .\" #"
LOOP
cr ;
: demo \ just demo to show it working in percentage 1% to 4%
5 1
DO i 10 i bar
LOOP
cr ;
\ will display :
[# ]
[## ]
[### ]
[#### ]
Call it from an array 0 toto swap cells + @ 10 5 bar \ draws bar from first item of toto array
Fortran
Note: luminance range is hard-encoded and is from 0 to 255. This could be enhanced.
module RCImageProcess
use RCImageBasic
implicit none
contains
subroutine get_histogram(img, histogram)
type(scimage), intent(in) :: img
integer, dimension(0:255), intent(out) :: histogram
integer :: i
histogram = 0
do i = 0,255
histogram(i) = sum(img%channel, img%channel == i)
end do
end subroutine get_histogram
function histogram_median(histogram)
integer, dimension(0:255), intent(in) :: histogram
integer :: histogram_median
integer :: from, to, left, right
from = 0
to = 255
left = histogram(from)
right = histogram(to)
do while ( from /= to )
if ( left < right ) then
from = from + 1
left = left + histogram(from)
else
to = to - 1
right = right + histogram(to)
end if
end do
histogram_median = from
end function histogram_median
end module RCImageProcess
Example:
program BasicImageTests
use RCImageBasic
use RCImageIO
use RCImageProcess
implicit none
type(rgbimage) :: animage
type(scimage) :: gray
integer, dimension(0:255) :: histo
integer :: ml
open(unit=10, file='lenna.ppm', action='read', status='old')
call read_ppm(10, animage)
close(10)
call init_img(gray)
! or
! call alloc_img(gray, animage%width, animage%height)
gray = animage
call get_histogram(gray, histo)
ml = histogram_median(histo)
where ( gray%channel >= ml )
animage%red = 255
animage%green = 255
animage%blue = 255
elsewhere
animage%red = 0
animage%green = 0
animage%blue = 0
end where
open(unit=10, file='elaborated.ppm', action='write')
call output_ppm(10, animage)
close(10)
call free_img(animage)
call free_img(gray)
end program BasicImageTests
Go
Histogram and Threshold functions are be added to the Grmap type for this task:
package raster
import "math"
func (g *Grmap) Histogram(bins int) []int {
if bins <= 0 {
bins = g.cols
}
h := make([]int, bins)
for _, p := range g.px {
h[int(p)*(bins-1)/math.MaxUint16]++
}
return h
}
func (g *Grmap) Threshold(t uint16) {
for i, p := range g.px {
if p < t {
g.px[i] = 0
} else {
g.px[i] = math.MaxUint16
}
}
}
Demonstration program computes the median:
package main
// Files required to build supporting package raster are found in:
// * This task (immediately above)
// * Bitmap
// * Grayscale image
// * Read a PPM file
// * Write a PPM file
import (
"raster"
"fmt"
"math"
)
func main() {
// (A file with this name is output by the Go solution to the task
// "Bitmap/Read an image through a pipe," but of course any 8-bit
// P6 PPM file should work.)
b, err := raster.ReadPpmFile("pipein.ppm")
if err != nil {
fmt.Println(err)
return
}
g := b.Grmap()
h := g.Histogram(0)
// compute median
lb, ub := 0, len(h)-1
var lSum, uSum int
for lb <= ub {
if lSum+h[lb] < uSum+h[ub] {
lSum += h[lb]
lb++
} else {
uSum += h[ub]
ub--
}
}
// apply threshold and write output file
g.Threshold(uint16(ub * math.MaxUint16 / len(h)))
err = g.Bitmap().WritePpmFile("threshold.ppm")
if err != nil {
fmt.Println(err)
}
}
Haskell
First, an implementation of a black-and-white instance of Color. For simplicty, we use ASCII PBM for output instead of the raw format.
module Bitmap.BW(module Bitmap.BW) where
import Bitmap
import Control.Monad.ST
newtype BW = BW Bool deriving (Eq, Ord)
instance Color BW where
luminance (BW False) = 0
luminance _ = 255
black = BW False
white = BW True
toNetpbm [] = ""
toNetpbm l = init (concatMap f line) ++ "\n" ++ toNetpbm rest
where (line, rest) = splitAt 35 l
f (BW False) = "1 "
f _ = "0 "
fromNetpbm = map f
where f 1 = black
f _ = white
netpbmMagicNumber _ = "P1"
netpbmMaxval _ = ""
toBWImage :: Color c => Image s c -> ST s (Image s BW)
toBWImage = toBWImage' 128
toBWImage' :: Color c => Int -> Image s c -> ST s (Image s BW)
{- The first argument gives the darkest luminance assigned
to white. -}
toBWImage' darkestWhite = mapImage $ f . luminance
where f x | x < darkestWhite = black
| otherwise = white
Every instance of Color has a luminance method, so we don't need to convert an image to Gray to calculate its histogram.
import Bitmap
import Bitmap.RGB
import Bitmap.BW
import Bitmap.Netpbm
import Control.Monad.ST
import Data.Array
main = do
i <- readNetpbm "original.ppm" :: IO (Image RealWorld RGB)
writeNetpbm "bw.pbm" =<< stToIO (do
h <- histogram i
toBWImage' (medianIndex h) i)
histogram :: Color c => Image s c -> ST s [Int]
histogram = liftM f . getPixels where
f = elems . accumArray (+) 0 (0, 255) . map (\i -> (luminance i, 1))
medianIndex :: [Int] -> Int
{- Given a list l, finds the index i that minimizes
abs $ sum (take i l) - sum (drop i l) -}
medianIndex l = result
where (result, _, _, _, _) =
iterate f (0, 0, 0, l, reverse l) !! (length l - 1)
f (n, left, right, lL@(l : ls), rL@(r : rs)) =
if left < right
then (n + 1, left + l, right, ls, rL)
else (n, left, right + r, lL, rs)
J
Solution:
Using toGray
from Grayscale image.
getImgHist=: ([: /:~ ~. ,. #/.~)@,
medianHist=: {."1 {~ [: (+/\ I. -:@(+/)) {:"1
toBW=: 255 * medianHist@getImgHist < toGray
Example Usage:
Use Lenna100.jpg for testing (read using the media/platimg addon and convert to ppm file).
require 'media/platimg'
'Lenna100.ppm' writeppm~ 256#.inv readimg 'Lenna100.jpg'
786447
Read ppm file, convert to black and white and write to a new ppm file using writeppm
, readppm
and toColor
from the read/write ppm file, and grayscale image solutions.
'Lenna100BW.ppm' writeppm~ toColor toBW readppm 'Lenna100.ppm'
786447
Java
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
public enum ImageProcessing {
;
public static void main(String[] args) throws IOException {
BufferedImage img = ImageIO.read(new File("example.png"));
BufferedImage bwimg = toBlackAndWhite(img);
ImageIO.write(bwimg, "png", new File("example-bw.png"));
}
private static int luminance(int rgb) {
int r = (rgb >> 16) & 0xFF;
int g = (rgb >> 8) & 0xFF;
int b = rgb & 0xFF;
return (r + b + g) / 3;
}
private static BufferedImage toBlackAndWhite(BufferedImage img) {
int width = img.getWidth();
int height = img.getHeight();
int[] histo = computeHistogram(img);
int median = getMedian(width * height, histo);
BufferedImage bwimg = new BufferedImage(width, height, img.getType());
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
bwimg.setRGB(x, y, luminance(img.getRGB(x, y)) >= median ? 0xFFFFFFFF : 0xFF000000);
}
}
return bwimg;
}
private static int[] computeHistogram(BufferedImage img) {
int width = img.getWidth();
int height = img.getHeight();
int[] histo = new int[256];
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
histo[luminance(img.getRGB(x, y))]++;
}
}
return histo;
}
private static int getMedian(int total, int[] histo) {
int median = 0;
int sum = 0;
for (int i = 0; i < histo.length && sum + histo[i] < total / 2; i++) {
sum += histo[i];
median++;
}
return median;
}
}
Julia
using Images, FileIO
ima = load("data/lenna50.jpg")
imb = Gray.(ima)
medcol = median(imb)
imb[imb .≤ medcol] = Gray(0.0)
imb[imb .> medcol] = Gray(1.0)
save("data/lennaGray.jpg", imb)
Kotlin
Uses the image from the Percentage difference between images task as an example.
// version 1.2.10
import java.io.File
import java.awt.image.BufferedImage
import javax.imageio.ImageIO
const val BLACK = 0xff000000.toInt()
const val WHITE = 0xffffffff.toInt()
fun luminance(argb: Int): Int {
val red = (argb shr 16) and 0xFF
val green = (argb shr 8) and 0xFF
val blue = argb and 0xFF
return (0.2126 * red + 0.7152 * green + 0.0722 * blue).toInt()
}
val BufferedImage.histogram: IntArray
get() {
val lumCount = IntArray(256)
for (x in 0 until width) {
for (y in 0 until height) {
var argb = getRGB(x, y)
lumCount[luminance(argb)]++
}
}
return lumCount
}
fun findMedian(histogram: IntArray): Int {
var lSum = 0
var rSum = 0
var left = 0
var right = 255
do {
if (lSum < rSum) lSum += histogram[left++]
else rSum += histogram[right--]
}
while (left != right)
return left
}
fun BufferedImage.toBlackAndWhite(median: Int) {
for (x in 0 until width) {
for (y in 0 until height) {
val argb = getRGB(x, y)
val lum = luminance(argb)
if (lum < median)
setRGB(x, y, BLACK)
else
setRGB(x, y, WHITE)
}
}
}
fun main(args: Array<String>) {
val image = ImageIO.read(File("Lenna100.jpg"))
val median = findMedian(image.histogram)
image.toBlackAndWhite(median)
val bwFile = File("Lenna_bw.jpg")
ImageIO.write(image, "jpg", bwFile)
}
Lua
This solution uses functions defined at: Read ppm file#Lua, Write ppm file#Lua, Basic bitmap storage#Lua, Grayscale image#Lua.
function Histogram( image )
local size_x, size_y = #image, #image[1]
local histo = {}
for i = 0, 255 do
histo[i] = 0
end
for i = 1, size_x do
for j = 1, size_y do
histo[ image[i][j] ] = histo[ image[i][j] ] + 1
end
end
return histo
end
function FindMedian( histogram )
local sum_l, sum_r = 0, 0
local left, right = 0, 255
repeat
if sum_l < sum_r then
sum_l = sum_l + histogram[left]
left = left + 1
else
sum_r = sum_r + histogram[right]
right = right - 1
end
until left == right
return left
end
bitmap = Read_PPM( "inputimage.ppm" )
gray_im = ConvertToGrayscaleImage( bitmap )
histogram = Histogram( gray_im )
median = FindMedian( histogram )
for i = 1, #gray_im do
for j = 1, #gray_im[1] do
if gray_im[i][j] < median then
gray_im[i][j] = 0
else
gray_im[i][j] = 255
end
end
end
bitmap = ConvertToColorImage( gray_im )
Write_PPM( "outputimage.ppm", bitmap )
Mathematica /Wolfram Language
ImageLevels[img]
Nim
import bitmap
import grayscale_image
type Histogram = array[Luminance, Natural]
#---------------------------------------------------------------------------------------------------
func histogram*(img: GrayImage): Histogram =
## Build and return gray scale image histogram.
for lum in img.pixels:
inc result[lum]
#---------------------------------------------------------------------------------------------------
func median*(hist: Histogram): Luminance =
# Return the median luminance of a histogram.
var
inf = byte(0)
sup = Luminance.high
infCount, supCount = 0
while inf != sup:
if infCount < supCount:
inc infCount, hist[inf]
inc inf
else:
inc supCount, hist[sup]
dec sup
result = inf
#———————————————————————————————————————————————————————————————————————————————————————————————————
when isMainModule:
import ppm_read, ppm_write
# Read an image.
let image = readPPM("house.ppm")
# Build its histogram and find the median luminance.
let grayImage = image.toGrayImage
let hist = grayImage.histogram()
let m = hist.median()
echo "Median luminance: ", m
# Convert to black and white.
for pt in image.indices:
image[pt.x, pt.y] = if grayImage[pt.x, pt.y] < m: Black else: White
# Save image as a PPM file.
image.writePPM("house_bw.ppm")
OCaml
type histogram = int array
let get_histogram ~img:gray_channel =
let width = Bigarray.Array2.dim1 gray_channel
and height = Bigarray.Array2.dim2 gray_channel in
let t = Array.make 256 0 in
for x = 0 to pred width do
for y = 0 to pred height do
let v = gray_get_pixel_unsafe gray_channel x y in
t.(v) <- t.(v) + 1;
done;
done;
(t: histogram)
;;
let histogram_median (h : histogram) =
let from = 0 and to_ = 255 in
let left = h.(from) and right = h.(to_) in
let rec aux from to_ left right =
if from = to_
then (from)
else
if left < right
then aux (succ from) to_ (left + h.(from)) right
else aux from (pred to_) left (right + h.(to_))
in
aux from to_ left right
;;
main:
let () =
let img = read_ppm ~filename:"/tmp/foo.ppm" in
let width, height = get_dims img in
let res = new_img ~width ~height in
let g_img = to_grayscale ~img in
let h = get_histogram g_img in
let m = histogram_median h in
let light = (255, 255, 0)
and dark = (127, 0, 127) in
for x = 0 to pred width do
for y = 0 to pred height do
let v = gray_get_pixel_unsafe g_img x y in
if v > m
then put_pixel_unsafe res light x y
else put_pixel_unsafe res dark x y
done;
done;
output_ppm ~oc:stdout ~img:res;
;;
Octave
Using package Image
function h = imagehistogram(imago)
if ( isgray(imago) )
for j = 0:255
h(j+1) = numel(imago( imago == j ));
endfor
else
error("histogram on gray img only");
endif
endfunction
% test
im = jpgread("Lenna100.jpg");
img = rgb2gray(im);
h = imagehistogram(img);
% let's try to show the histogram
bar(h);
pause;
% in order to obtain the requested filtering, we
% can use median directly on the img, and then
% use that value, this way:
m = median(reshape(img, 1, numel(img)));
disp(m);
ibw = img;
ibw( img > m ) = 255;
ibw( img <= m ) = 0;
jpgwrite("lennamed_.jpg", ibw, 100);
% which disagree (128) with the m computed with histog_med (130).
% If we compute it this way:
% m = sort(reshape(img, 1, numel(img)))(ceil(numel(img)/2));
% we obtain 130... but builtin median works as expected, since
% N (number of pixel of Lenna) is even, not odd.
% but let's use our histogram h instead
function m = histog_med(histog)
from = 0; to = 255;
left = histog(from + 1); right = histog(to+1);
while ( from != to )
if ( left < right )
from++; left += histog(from+1);
else
to--; right += histog(to+1);
endif
endwhile
m = from;
endfunction
m = histog_med(h);
disp(m);
ibw( img > m ) = 255;
ibw( img <= m ) = 0;
jpgwrite("lennamed.jpg", ibw, 100);
Phix
Requires read_ppm() from Read_a_PPM_file, write_ppm() from Write_a_PPM_file.
Uses demo\rosetta\lena.ppm, included in the distribution, results may be verified with demo\rosetta\viewppm.exw
-- demo\rosetta\Bitmap_Histogram.exw (runnable version)
include ppm.e -- black, white, read_ppm(), write_ppm() (covers above requirements)
function to_bw(sequence image)
sequence hist = repeat(0,256)
for x=1 to length(image) do
for y=1 to length(image[x]) do
integer pixel = image[x][y] -- red,green,blue
sequence r_g_b = sq_and_bits(pixel,{#FF0000,#FF00,#FF})
integer {r,g,b} = sq_floor_div(r_g_b,{#010000,#0100,#01}),
lum = floor(0.2126*r + 0.7152*g + 0.0722*b)
image[x][y] = lum
hist[lum+1] += 1
end for
end for
integer lo = 1, hi = 256,
ltot = hist[lo],
rtot = hist[hi]
while lo!=hi do
if ltot<rtot then
lo += 1
ltot += hist[lo]
else
hi -= 1
rtot += hist[hi]
end if
end while
integer lum = lo
for i=1 to length(image) do
for j=1 to length(image[i]) do
image[i][j] = iff(image[i][j]<lum?black:white)
end for
end for
return image
end function
sequence img = read_ppm("Lena.ppm")
img = to_bw(img)
write_ppm("LenaBW.ppm",img)
PHP
define('src_name', 'input.jpg'); // source image
define('dest_name', 'output.jpg'); // destination image
$img = imagecreatefromjpeg(src_name); // read image
if(empty($img)){
echo 'Image could not be loaded!';
exit;
}
$black = imagecolorallocate($img, 0, 0, 0);
$white = imagecolorallocate($img, 255, 255, 255);
$width = imagesx($img);
$height = imagesy($img);
$array_lum = array(); // for storage of luminosity of each pixel
$sum_lum = 0; // total sum of luminosity
$average_lum = 0; // average luminosity of whole image
for($x = 0; $x < $width; $x++){
for($y = 0; $y < $height; $y++){
// read pixel value
$color = imagecolorat($img, $x, $y);
$r = ($color >> 16) & 0xFF;
$g = ($color >> 8) & 0xFF;
$b = $color & 0xFF;
// save pixel luminosity in temporary array
$array_lum[$x][$y] = ($r + $g + $b);
// add pixel luminosity to sum
$sum_lum += $array_lum[$x][$y];
}
}
// calculate average luminosity
$average_lum = $sum_lum / ($width * $height);
for($x = 0; $x < $width; $x++){
for($y = 0; $y < $height; $y++){
// pixel is brighter than average -> set white
// else -> set black
if($array_lum[$x][$y] > $average_lum){
imagesetpixel($img, $x, $y, $white);
}
else{
imagesetpixel($img, $x, $y, $black);
}
}
}
// save black and white image to dest_name
imagejpeg($img, dest_name);
if(!file_exists(dest_name)){
echo 'Image not saved! Check permission!';
}
Example:
The Image on the left is read in and the average luminosity calculated.
Every pixel darker than average is painted black; brighter painted white.
The black and white image on the right is then saved to the file system.
PicoLisp
(de histogram (Pgm)
(let H (need 256 0)
(for L Pgm
(for G L
(inc (nth H (inc G))) ) )
H ) )
PureBasic
Also requires PureBasic solutions for Read a PPM file, Grayscale image, and Write a PPM file.
Procedure getHistogram(image, Array histogram(1))
Protected w = ImageWidth(image) - 1
Protected h = ImageHeight(image) - 1
Dim histogram(255) ;output
StartDrawing(ImageOutput(image))
For x = 0 To w
For y = 0 To h
lum = Red(Point(x, y)) ;the Green or Blue color components could be used also
histogram(lum) + 1
Next
Next
StopDrawing()
EndProcedure
Procedure median(Array histogram(1))
Protected low, high = 255, left, right
While low <> high
If left < right
low + 1
left + histogram(low)
Else
high - 1
right + histogram(high)
EndIf
Wend
ProcedureReturn low
EndProcedure
Procedure blackAndWhite(image, median)
Protected w = ImageWidth(image) - 1
Protected h = ImageHeight(image) - 1
CallDebugger
StartDrawing(ImageOutput(image))
For x = 0 To w
For y = 0 To h
If Red(Point(x, y)) < median ;the Green or Blue color components could be used also
Plot(x, y, $000000) ;black
Else
Plot(x, y, $FFFFFF) ;white
EndIf
Next
Next
StopDrawing()
EndProcedure
Define sourceFile.s, outputFile.s, image = 3, m
Dim histogram(255)
sourceFile = OpenFileRequester("Select source image file", "*.ppm", "PPM image (*.ppm)|PPM", 0)
If sourceFile And LCase(GetExtensionPart(sourceFile)) = "ppm"
LoadImagePPM(image, sourceFile)
ImageGrayout(image)
getHistogram(image,histogram())
m = median(histogram())
blackAndWhite(image, m)
outputFile = Left(sourceFile, Len(sourceFile) - Len(GetExtensionPart(sourceFile))) + "_bw." + GetExtensionPart(sourceFile)
SaveImageAsPPM(image, outputFile, 1)
EndIf
Python
Makes use of the Pillow library (PIL) you can install it using pip. The code is probably not the fastest or the image I used (1960x1960) is just too big.
from PIL import Image
# Open the image
image = Image.open("lena.jpg")
# Get the width and height of the image
width, height = image.size
# Calculate the amount of pixels
amount = width * height
# Total amount of greyscale
total = 0
# B/W image
bw_image = Image.new('L', (width, height), 0)
# Bitmap image
bm_image = Image.new('1', (width, height), 0)
for h in range(0, height):
for w in range(0, width):
r, g, b = image.getpixel((w, h))
greyscale = int((r + g + b) / 3)
total += greyscale
bw_image.putpixel((w, h), gray_scale)
# The average greyscale
avg = total / amount
black = 0
white = 1
for h in range(0, height):
for w in range(0, width):
v = bw_image.getpixel((w, h))
if v >= avg:
bm_image.putpixel((w, h), white)
else:
bm_image.putpixel((w, h), black)
bw_image.show()
bm_image.show()
Racket
#lang racket
(require racket/draw math/statistics racket/require
(filtered-in
(lambda (name) (regexp-replace #rx"unsafe-" name ""))
racket/unsafe/ops))
;; CIE formula as discussed in "Greyscale image" task
(define (L r g b)
;; In fact there is no need, statistically for L to be divided by 10000
(fx+ (fx* r 2126) (fx+ (fx* g 7152) (fx* b 722))))
(define (prepare-bytes bm depth load-content?)
(define w (send bm get-width))
(define h (send bm get-height))
(define rv (make-bytes (* w h depth)))
(define just-alpha? #f)
(define pre-multiply? #t); let racket cope with alpha-ness
(when load-content? (send bm get-argb-pixels 0 0 w h rv just-alpha? pre-multiply?))
rv)
(define (bitmap-histogram bm)
(unless (send bm is-color?) (error 'bitmap->histogram "bitmap must be colour"))
(define pxls (prepare-bytes bm 4 #t))
(define l# (make-hash))
(for ((r (in-bytes pxls 1 #f 4)) (g (in-bytes pxls 2 #f 4)) (b (in-bytes pxls 3 #f 4)))
(hash-update! l# (L r g b) add1 0))
(define xs (hash-keys l#)) ; the colour values
(define ws (hash-values l#)) ; the "weights" i.e. counts for median
(values xs ws))
(define (bitmap-quantile q bm (hist-xs #f) (hist-ws #f))
(define-values (xs ws) (if (and hist-xs hist-ws)
(values hist-xs hist-ws)
(bitmap-histogram bm)))
(quantile q < xs ws))
;; we don't return a 1-depth bitmap, so we can do more interesting things with colour
(define (bitmap->monochrome q bm (hist-xs #f) (hist-ws #f))
(define Q (bitmap-quantile q bm hist-xs hist-ws))
(define pxls (prepare-bytes bm 4 #t))
(for ((r (in-bytes pxls 1 #f 4))
(g (in-bytes pxls 2 #f 4))
(b (in-bytes pxls 3 #f 4))
(i (sequence-map (curry fx* 4) (in-naturals))))
(define l (L r g b))
(define rgb+ (cond [(fx< l Q) 0] [else 255]))
(bytes-set! pxls (fx+ i 1) rgb+)
(bytes-set! pxls (fx+ i 2) rgb+)
(bytes-set! pxls (fx+ i 3) rgb+))
(define w (send bm get-width))
(define h (send bm get-height))
(define rv (make-bitmap w h #f))
(send rv set-argb-pixels 0 0 w h pxls)
rv)
(module+ main
(define bm (read-bitmap "271px-John_Constable_002.jpg"))
(define-values (xs ws) (bitmap-histogram bm))
(void
(send (bitmap->monochrome 1/4 bm) save-file "histogram-racket-0.25.png" 'png)
(send (bitmap->monochrome 1/2 bm) save-file "histogram-racket-0.50.png" 'png) ; median
(send (bitmap->monochrome 3/4 bm xs ws) save-file "histogram-racket-0.75.png" 'png)))
- Output:
Original Image, 25% image, 50% image, 75% image
Sorry guys... I just give up on linking/displaying these images any other way!
Raku
(formerly Perl 6)
Uses pieces from Bitmap, Write a PPM file and Grayscale image tasks. Included here to make a complete, runnable program.
class Pixel { has UInt ($.R, $.G, $.B) }
class Bitmap {
has UInt ($.width, $.height);
has Pixel @.data;
}
role PBM {
has @.BM;
method P4 returns Blob {
"P4\n{self.width} {self.height}\n".encode('ascii')
~ Blob.new: self.BM
}
}
sub getline ( $fh ) {
my $line = '#'; # skip comments when reading image file
$line = $fh.get while $line.substr(0,1) eq '#';
$line;
}
sub load-ppm ( $ppm ) {
my $fh = $ppm.IO.open( :enc('ISO-8859-1') );
my $type = $fh.&getline;
my ($width, $height) = $fh.&getline.split: ' ';
my $depth = $fh.&getline;
Bitmap.new( width => $width.Int, height => $height.Int,
data => ( $fh.slurp.ords.rotor(3).map:
{ Pixel.new(R => $_[0], G => $_[1], B => $_[2]) } )
)
}
sub grayscale ( Bitmap $bmp ) {
map { (.R*0.2126 + .G*0.7152 + .B*0.0722).round(1) min 255 }, $bmp.data;
}
sub histogram ( Bitmap $bmp ) {
my @gray = grayscale($bmp);
my $threshold = @gray.sum / @gray;
for @gray.rotor($bmp.width) {
my @row = $_.list;
@row.push(0) while @row % 8;
$bmp.BM.append: @row.rotor(8).map: { :2(($_ X< $threshold)».Numeric.join) }
}
}
my $filename = './Lenna.ppm';
my Bitmap $b = load-ppm( $filename ) but PBM;
histogram($b);
'./Lenna-bw.pbm'.IO.open(:bin, :w).write: $b.P4;
See Lenna, and Lenna-bw images. (converted to .png as .ppm format is not widely supported).
Ruby
class Pixmap
def histogram
histogram = Hash.new(0)
@height.times do |y|
@width.times do |x|
histogram[self[x,y].luminosity] += 1
end
end
histogram
end
def to_blackandwhite
hist = histogram
# find the median luminosity
median = nil
sum = 0
hist.keys.sort.each do |lum|
sum += hist[lum]
if sum > @height * @width / 2
median = lum
break
end
end
# create the black and white image
bw = self.class.new(@width, @height)
@height.times do |y|
@width.times do |x|
bw[x,y] = self[x,y].luminosity < median ? RGBColour::BLACK : RGBColour::WHITE
end
end
bw
end
def save_as_blackandwhite(filename)
to_blackandwhite.save(filename)
end
end
Pixmap.open('file.ppm').save_as_blackandwhite('file_bw.ppm')
Rust
extern crate image;
use image::{DynamicImage, GenericImageView, ImageBuffer, Rgba};
/// index of the alpha channel in RGBA
const ALPHA: usize = 3;
/// Computes the luminance of a single pixel
/// Result lies within `u16::MIN..u16::MAX`
const fn luminance(rgba: Rgba<u8>) -> u16 {
let Rgba([r, g, b, _a]) = rgba;
55 * r as u16 + 183 * g as u16 + 19 * b as u16
}
/// computes the median of a given histogram
/// Result lies within `u16::MIN..u16::MAX`
fn get_median(total: usize, histogram: &[usize]) -> u16 {
let mut sum = 0;
for (index, &count) in histogram.iter().enumerate() {
sum += count;
if sum >= total / 2 {
return index as u16;
}
}
u16::MAX
}
/// computes the histogram of a given image
fn compute_histogram(img: &DynamicImage) -> Vec<usize> {
let mut histogram = vec![0; 1 << u16::BITS];
img.pixels()
.map(|(_x, _y, pixel)| luminance(pixel))
.for_each(|luminance| histogram[luminance as usize] += 1);
histogram
}
/// returns a black or white pixel with an alpha value
const fn black_white(is_white: bool, alpha: u8) -> [u8; 4] {
if is_white {
[255, 255, 255, alpha]
} else {
[0, 0, 0, alpha]
}
}
/// create a monochome compy of the given image
/// preserves alpha data
fn convert_to_monochrome(img: &DynamicImage) -> ImageBuffer<Rgba<u8>, Vec<u8>> {
let histogram = compute_histogram(img);
let (width, height) = img.dimensions();
let pixel_count = (width * height) as usize;
let median = get_median(pixel_count, &histogram);
let pixel_buffer = img.pixels()
.flat_map(|(_x, _y, pixel)| black_white(luminance(pixel) > median, pixel[ALPHA]))
.collect();
ImageBuffer::from_vec(width, height, pixel_buffer).unwrap_or_else(|| unreachable!())
}
fn main() {
let img = image::open("lena.jpg").expect("could not load image file");
let img = convert_to_monochrome(&img);
img.save("lena-mono.png").expect("could not save result image");
}
Scala
See also
- Basic Bitmap Storage for RgbBitmap class
- Grayscale Bitmap Task for luminosity method
- Read a PPM File image loading
object BitmapOps {
def histogram(bm:RgbBitmap)={
val hist=new Array[Int](255)
for(x <- 0 until bm.width; y <- 0 until bm.height; l=luminosity(bm.getPixel(x,y)))
hist(l)+=1
hist
}
def histogram_median(hist:Array[Int])={
var from=0
var to=hist.size-1
var left=hist(from)
var right=hist(to)
while(from!=to){
if (left<right)
{from+=1; left+=hist(from)}
else
{to-=1; right+=hist(to)}
}
from
}
def monochrom(bm:RgbBitmap, threshold:Int)={
val image=new RgbBitmap(bm.width, bm.height)
val c1=Color.BLACK
val c2=Color.WHITE
for(x <- 0 until bm.width; y <- 0 until bm.height; l=luminosity(bm.getPixel(x,y)))
image.setPixel(x, y, if(l>threshold) c2 else c1)
image
}
}
Usage:
val img=Pixmap.load("image.ppm").get
val hist=BitmapOps.histogram(img)
val mid=BitmapOps.histogram_median(hist);
val mainframe=new MainFrame(){
title="Test"
visible=true
contents=new Label(){
icon=new ImageIcon(BitmapOps.monochrom(img, mid).image)
}
}
Tcl
Uses readPPM, grayscale and output_ppm from other pages.
package require Tcl 8.5
package require Tk
proc convert_to_blackandwhite {filename} {
set img [image create photo]
readPPM $img $filename
grayscale $img
set hist [histogram $img]
set median [median $img $hist]
blackandwhite $img $median
output_ppm $img bw_$filename
}
proc histogram {image} {
set hist [dict create]
for {set x 0} {$x < [image width $image]} {incr x} {
for {set y 0} {$y < [image height $image]} {incr y} {
dict incr hist [luminance {*}[$image get $x $y]]
}
}
return $hist
}
proc luminance {r g b} {
expr {
int(0.2126*$r + 0.7152*$g + 0.0722*$b)
}
}
proc median {img hist} {
set sum [expr {[image width $img] * [image height $img]}]
set total 0
foreach luminance [lsort -integer [dict keys $hist]] {
incr total [dict get $hist $luminance]
if {$total > $sum / 2} break
}
return $luminance
}
proc blackandwhite {image median} {
for {set x 0} {$x < [image width $image]} {incr x} {
for {set y 0} {$y < [image height $image]} {incr y} {
if {[luminance {*}[$image get $x $y]] < $median} {
$image put black -to $x $y
} else {
$image put white -to $x $y
}
}
}
}
Vedit macro language
The input image is in edit buffer pointed by numeric register #15. On return, #30 points to buffer containing histogram data. The histogram data is given as ASCII decimal values, one value per line.
:HISTOGRAM:
#30 = Buf_Free // #30 = buffer to store histogram data
for (#9=0; #9<256; #9++) {
Out_Reg(21) TC(#9) Out_Reg(Clear) // @21 = intensity value to be counted
Buf_Switch(#15) // switch to image buffer
#8 = Search(@21, CASE+BEGIN+ALL+NOERR) // count intensity values
Buf_Switch(#30) // switch to histogram buffer
Num_Ins(#8, FILL) // store count
}
Return
Wren
import "dome" for Window
import "graphics" for Canvas, Color, ImageData
class ImageHistogram {
construct new(filename, filename2) {
_image = ImageData.load(filename)
Window.resize(_image.width, _image.height)
Canvas.resize(_image.width, _image.height)
Window.title = filename2
_image2 = ImageData.create("Grayscale", _image.width, _image.height)
_image3 = ImageData.create("B & W", _image.width, _image.height)
}
init() {
toGrayScale()
var h = histogram
var m = median(h)
toBlackAndWhite(m)
_image3.draw(0, 0)
_image3.saveToFile(Window.title)
}
luminance(c) { (0.2126 * c.r + 0.7152 * c.g + 0.0722 * c.b).floor }
toGrayScale() {
for (x in 0..._image.width) {
for (y in 0..._image.height) {
var c1 = _image.pget(x, y)
var lumin = luminance(c1)
var c2 = Color.rgb(lumin, lumin, lumin, c1.a)
_image2.pset(x, y, c2)
}
}
}
toBlackAndWhite(median) {
for (x in 0..._image2.width) {
for (y in 0..._image2.height) {
var c = _image2.pget(x, y)
var lum = luminance(c)
if (lum < median) {
_image3.pset(x, y, Color.black)
} else {
_image3.pset(x, y, Color.white)
}
}
}
}
histogram {
var h = List.filled(256, 0)
for (x in 0..._image2.width) {
for (y in 0..._image2.height) {
var c = _image2.pget(x, y)
var lum = luminance(c)
h[lum] = h[lum] + 1
}
}
return h
}
median(h) {
var lSum = 0
var rSum = 0
var left = 0
var right = 255
while (true) {
if (lSum < rSum) {
lSum = lSum + h[left]
left = left + 1
} else {
rSum = rSum + h[right]
right = right - 1
}
if (left == right) break
}
return left
}
update() {}
draw(alpha) {}
}
var Game = ImageHistogram.new("Lenna100.jpg", "Lenna100_B&W.png")
zkl
Uses the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl
fcn histogram(image){
hist:=List.createLong(256,0); // array[256] of zero
image.data.howza(0).pump(Void,'wrap(c){ hist[c]+=1 }); // byte by byte loop
hist;
}
fcn histogramMedian(hist){
from,to:=0,(2).pow(8) - 1; // 16 bits of luminance
left,right:=hist[from],hist[to];
while(from!=to){
if(left<right){ from+=1; left +=hist[from]; }
else { to -=1; right+=hist[to]; }
}
from
}
img:=PPM.readPPMFile("lenaGrey.ppm"); // a grey scale image
median:=histogramMedian(histogram(img));
median.println();
bw:=PPM(img.w,img.h);
// stream bytes from orginal, convert to black/white, write to new image
// each pixel is 24 bit RGB
img.data.pump(bw.data.clear(),'wrap(c){ if(c>median) 0xff else 0 });
bw.write(File("foo.ppm","wb"));
- Output:
101
See the BBC Basic entry or: http://www.zenkinetic.com/Images/RosettaCode/lenaBW.jpg