Base 16 numbers needing a to f
- Task
Show in decimal notation all positive integers (less than 501) which, when converted to hexadecimal notation, cannot be written without using at least one non-decimal digit ('a' to 'f').
11l
V l = (0..500).filter(n -> !hex(n).is_digit())
print(‘Found ’l.len" numbers between 0 and 500:\n")
L(n) l
print(‘#3’.format(n), end' I (L.index + 1) % 19 == 0 {"\n"} E ‘ ’)
print()
- Output:
Found 301 numbers between 0 and 500: 10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
68000 Assembly
MOVEQ #0,D0 ;clear D0
MOVEM.L D0,D1-D6 ;clear data regs
loop:
MOVE.W D0,D1 ;we'll use D1 as our temp storage.
JSR UnpackNibbles ;store each nibble in D2,D3,D4,D5 as separate values to ease comparison.
CMP.B #$0A,D2 ;compare to $0A
BCS dontPrintThis ;if less than, don't print D0 to the screen.
CMP.B #$0A,D3
BCS dontPrintThis ;repeat the comparison for each nibble.
CMP.B #$0A,D4
BCS dontPrintThis
CMP.B #$0A,D5
BCS dontPrintThis
JSR printD0 ;unimplemented printing routine.
dontPrintThis: ;loop overhead time
ADDQ.W #1,D0
CMP.W #501,D0
BCS loop
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
forever:
JMP forever ;we are done, so trap the program counter to prevent a crash.
;;;;MAIN ENDS HERE
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; SUBROUTINES
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
UnpackNibbles:
;input: D1
MOVEM.W D1,D2-D5
AND.W #$F000,D2
LSR.W #8,D2
LSR.W #4,D2 ;right shift into bottom nibble
AND.W #$0F00,D3
LSR.W #8,D3
AND.W #$00F0,D4
LSR.W #4,D4
AND.W #$000F,D5
RTS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
Action!
BYTE FUNC IsHexWithLetter(INT x)
DO
IF x MOD 16>9 THEN
RETURN (1)
FI
x==/16
UNTIL x=0
OD
RETURN (0)
PROC Main()
INT i,count,min=[0],max=[500]
count=0
FOR i=min TO max
DO
IF IsHexWithLetter(i) THEN
PrintI(i) Put(32)
count==+1
FI
OD
PrintF("%E%EFound %I numbers between %I and %I",count,min,max)
RETURN
- Output:
Screenshot from Atari 8-bit computer
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 Found 301 numbers between 0 and 500
Ada
with Ada.Text_Io;
procedure Base_16_Numbers is
Columns : constant := 24;
Base : constant := 16;
function Has_A_To_F (N : Positive) return Boolean is
C : Natural := N;
begin
while C > 0 loop
if C mod Base in 16#A# .. 16#F# then
return True;
end if;
C := C / Base;
end loop;
return False;
end Has_A_To_F;
package Natural_Io is new Ada.Text_Io.Integer_Io (Natural);
use Ada.Text_Io;
Count : Natural := 0;
begin
for N in 1 .. 500 loop
if Has_A_To_F (N) then
Count := Count + 1;
Natural_Io.Put (N, Width => 5);
if Count mod Columns = 0 then
New_Line;
end if;
end if;
end loop;
New_Line (2);
Put ("Total count: "); Natural_Io.Put (Count, Width => 3); New_Line;
end Base_16_Numbers;
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 Total count: 301
ALGOL 68
BEGIN # show numbers that when represented in hex, have at least one a-f digit #
INT h count := 0;
FOR i TO 500 DO
BITS v := BIN i;
WHILE v /= 16r0 DO
IF ABS ( v AND 16rf ) < 10
THEN v := v SHR 4
ELSE
v := 16r0;
print( ( " ", whole( i, -3 ) ) );
IF ( h count +:= 1 ) MOD 20 = 0 THEN print( ( newline ) ) FI
FI
OD
OD
END
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
ALGOL W
% show numbers that when represented in hex, have at least one a-f digit %
begin
integer hCount;
hCount := 0;
for i := 1 until 500 do begin
integer v;
v := i;
while v > 0 do begin
if ( v rem 16 ) < 10
then v := v div 16
else begin
% found a number that needs a-f in its hex representation %
v := 0;
hCOunt := hCOunt + 1;
writeon( i_w := 3, s_w := 0, " ", i );
if hCount rem 20 = 0 then write()
end if_hexDigit_lt_10__
end while_v_gt_0
end for_i
end.
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
APL
(⊢(/⍨)(10∨.≤16(⊥⍣¯1)⊢)¨)⍳500
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
AppleScript
Procedural
local output, n, x, ding
set output to {}
repeat with n from 0 to 500
set x to n
set ding to (x mod 16 > 9)
repeat until ((x < 10) or (ding))
set x to x div 16
set ding to (x mod 16 > 9)
end repeat
if (ding) then set end of output to n
end repeat
return output
- Output:
{10, 11, 12, 13, 14, 15, 26, 27, 28, 29, 30, 31, 42, 43, 44, 45, 46, 47, 58, 59, 60, 61, 62, 63, 74, 75, 76, 77, 78, 79, 90, 91, 92, 93, 94, 95, 106, 107, 108, 109, 110, 111, 122, 123, 124, 125, 126, 127, 138, 139, 140, 141, 142, 143, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 266, 267, 268, 269, 270, 271, 282, 283, 284, 285, 286, 287, 298, 299, 300, 301, 302, 303, 314, 315, 316, 317, 318, 319, 330, 331, 332, 333, 334, 335, 346, 347, 348, 349, 350, 351, 362, 363, 364, 365, 366, 367, 378, 379, 380, 381, 382, 383, 394, 395, 396, 397, 398, 399, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500}
Functional
Defining a simple predicate, and composing a test with formatted output from a set of generic functions:
-------- INTEGERS NEEDING HEX DIGITS HIGHER THAN 9 -------
-- p :: Int -> Bool
on p(n)
9 < n and (9 < (n mod 16) or p(n div 16))
end p
--------------------------- TEST -------------------------
on run
set upperLimit to 500
set w to length of (upperLimit as string)
set xs to filter(p, enumFromTo(0, upperLimit))
unlines(map(intercalate(" "), ¬
{{length of xs as string, ¬
"matches for the predicate:", linefeed}} & ¬
chunksOf(6, map(justifyRight(w, space), xs))))
end run
------------------------- GENERIC ------------------------
-- chunksOf :: Int -> [a] -> [[a]]
on chunksOf(k, xs)
script
on go(ys)
set ab to splitAt(k, ys)
set a to item 1 of ab
if {} ≠ a then
{a} & go(item 2 of ab)
else
a
end if
end go
end script
result's go(xs)
end chunksOf
-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
if m ≤ n then
set lst to {}
repeat with i from m to n
set end of lst to i
end repeat
lst
else
{}
end if
end enumFromTo
-- filter :: (a -> Bool) -> [a] -> [a]
on filter(p, xs)
tell mReturn(p)
set lst to {}
set lng to length of xs
repeat with i from 1 to lng
set v to item i of xs
if |λ|(v, i, xs) then set end of lst to v
end repeat
if {text, string} contains class of xs then
lst as text
else
lst
end if
end tell
end filter
-- intercalate :: String -> [String] -> String
on intercalate(delim)
script
on |λ|(xs)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, delim}
set s to xs as text
set my text item delimiters to dlm
s
end |λ|
end script
end intercalate
-- justifyRight :: Int -> Char -> String -> String
on justifyRight(n, cFiller)
script
on |λ|(x)
set s to x as string
if n > length of s then
text -n thru -1 of ((replicate(n, cFiller) as text) & s)
else
s
end if
end |λ|
end script
end justifyRight
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
-- 2nd class handler function lifted into 1st class script wrapper.
if script is class of f then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
-- The list obtained by applying f
-- to each element of xs.
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary
-- assembly of a target length
-- replicate :: Int -> String -> String
on replicate(n, s)
-- Egyptian multiplication - progressively doubling a list,
-- appending stages of doubling to an accumulator where needed
-- for binary assembly of a target length
script p
on |λ|({n})
n ≤ 1
end |λ|
end script
script f
on |λ|({n, dbl, out})
if (n mod 2) > 0 then
set d to out & dbl
else
set d to out
end if
{n div 2, dbl & dbl, d}
end |λ|
end script
set xs to |until|(p, f, {n, s, ""})
item 2 of xs & item 3 of xs
end replicate
-- splitAt :: Int -> [a] -> ([a], [a])
on splitAt(n, xs)
if n > 0 and n < length of xs then
if class of xs is text then
{items 1 thru n of xs as text, ¬
items (n + 1) thru -1 of xs as text}
else
{items 1 thru n of xs, items (n + 1) thru -1 of xs}
end if
else
if n < 1 then
{{}, xs}
else
{xs, {}}
end if
end if
end splitAt
-- unlines :: [String] -> String
on unlines(xs)
-- A single string formed by the intercalation
-- of a list of strings with the newline character.
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set s to xs as text
set my text item delimiters to dlm
s
end unlines
-- until :: (a -> Bool) -> (a -> a) -> a -> a
on |until|(p, f, x)
set v to x
set mp to mReturn(p)
set mf to mReturn(f)
repeat until mp's |λ|(v)
set v to mf's |λ|(v)
end repeat
v
end |until|
- Output:
301 matches for the predicate: 10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
Arturo
needsAF?: function [x][
hex: as.hex x
loop `a`..`f` 'c [
if contains? hex c ->
return true
]
return false
]
print select 0..500 => needsAF?
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
AWK
# syntax: GAWK -f BASE-16_REPRESENTATION.AWK
BEGIN {
start = 1
stop = 500
for (i=start; i<=stop; i++) {
if (sprintf("%X",i) ~ /[A-F]/) {
printf("%4d%1s",i,++count%20?"":"\n")
}
}
printf("\nIntegers when displayed in hex require an A-F, %d-%d: %d\n",start,stop,count)
exit(0)
}
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 Integers when displayed in hex require an A-F, 1-500: 301
BASIC
BASIC256
function needs_af (n)
while n > 0
if (n % 16) > 9 then return true
n = n \ 16
end while
return false
end function
for i = 1 to 500
if needs_af(i) then print i; " ";
next i
end
Chipmunk Basic
The GW-BASIC solution works without any changes.
FreeBASIC
function needs_af( byval n as uinteger ) as boolean
while n>0
if n mod 16 > 9 then return true
n\=16
wend
return false
end function
for i as uinteger = 1 to 500
if needs_af(i) then print i;" ";
next i
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
Gambas
Public Sub Main()
For i As Integer = 1 To 500
If needs_af(i) Then Print i; " ";
Next
End
Function needs_af(n As Integer) As Boolean
While n > 0
If n Mod 16 > 9 Then Return True
n \= 16
Wend
Return False
End Function
GW-BASIC
10 DEFINT I,J
20 FOR I = 1 TO 500
30 J = I
40 IF (J AND 15) >= 10 THEN PRINT I, ELSE J = J / 16: IF J > 9 THEN 40
50 NEXT I
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
MSX Basic
The GW-BASIC solution works without any changes.
QuickBASIC
REM Base 16 numbers needing A to F
DECLARE FUNCTION UsesAToF! (BYVAL N%)
CONST TRUE = -1, FALSE = 0, MAX = 500
Count% = 0
FOR N% = 1 TO MAX
IF UsesAToF(N%) THEN
PRINT USING "####"; N%;
Count% = Count% + 1
IF Count% MOD 20 = 0 THEN PRINT
END IF
NEXT
PRINT : PRINT
PRINT USING "### numbers found."; Count%
END
FUNCTION UsesAToF (BYVAL N%)
WHILE N% > 9
IF N% MOD 16 >= 10 THEN
UsesAToF = TRUE: EXIT FUNCTION
ELSE
N% = N% \ 16
END IF
WEND
UsesAToF = FALSE
END FUNCTION
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 301 numbers found.
Run BASIC
for i = 1 to 500
if needsaf(i) then print i; " ";
next i
end
function needsaf(n)
while n > 0
if (n mod 16) > 9 then needsaf = 1 : goto [exit]
n = int(n / 16)
wend
needsaf = 0
[exit]
end function
- Output:
Same as FreeBASIC entry.
True BASIC
FUNCTION usesatof(n)
DO WHILE n > 9
IF REMAINDER(n,16) >= 10 THEN
LET usesatof = True
EXIT FUNCTION
ELSE
LET n = IP(n/16)
END IF
LOOP
LET usesatof = False
END FUNCTION
LET True = -1
LET False = 0
LET max = 500
LET count = 0
FOR n = 1 TO ROUND(max)
IF usesatof(n)<>0 THEN
PRINT USING "####": n;
LET count = count+1
IF REMAINDER(count,20) = 0 THEN PRINT
END IF
NEXT n
PRINT
PRINT USING "### numbers found.": count
END
- Output:
Same as QuickBASIC entry.
Yabasic
sub needs_af (n)
while n > 0
if mod(n, 16) > 9 then return true : fi
n = int(n / 16)
wend
return false
end sub
for i = 1 to 500
if needs_af(i) then print i, " ", : fi
next i
end
BCPL
get "libhdr"
let nondec(x) =
x = 0 -> false,
#XA <= (x & #XF) <= #XF -> true,
nondec(x >> 4)
let start() be
$( let c = 0
for n=1 to 500
if nondec(n)
$( writed(n,4)
c := c + 1
if c rem 20=0 then wrch('*N')
$)
wrch('*N')
$)
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
BQN
43‿7 ⥊ / 9 < 16 ⌊∘÷˜•_while_(≤ ∧ 9 ≥ |)¨ ↕501
- Output:
┌─ ╵ 10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 ┘
C
Create the sequence directly:
#include <stdio.h>
int main(void)
{
unsigned int h, l, n;
for (h = 0; h != 512; h += 16) {
for (l = (h & 0xff) < 0xa0 ? 10 : 0; l != 16; ++l) {
n = h | l;
if (n > 500) {
puts("");
return 0;
}
printf(" %u", n);
}
}
return 0;
}
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
C++
#include <iomanip>
#include <iostream>
// Returns true if the hexadecimal representation of n contains at least one
// non-decimal digit.
bool nondecimal(unsigned int n) {
for (; n > 0; n >>= 4) {
if ((n & 0xF) > 9)
return true;
}
return false;
}
int main() {
unsigned int count = 0;
for (unsigned int n = 0; n < 501; ++n) {
if (nondecimal(n)) {
++count;
std::cout << std::setw(3) << n << (count % 15 == 0 ? '\n' : ' ');
}
}
std::cout << "\n\n" << count << " such numbers found.\n";
}
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 301 such numbers found.
CLU
nondec = proc (x: int) returns (bool)
while x>9 do
if x//16>=10 then return(true) end
x := x/16
end
return(false)
end nondec
start_up = proc ()
po: stream := stream$primary_output()
count: int := 0
for n: int in int$from_to(1,500) do
if nondec(n) then
stream$putright(po, int$unparse(n), 4)
count := count + 1
if count//20=0 then stream$putl(po, "") end
end
end
stream$putl(po, "\nFound " || int$unparse(count) || " numbers.")
end start_up
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 Found 301 numbers.
COBOL
IDENTIFICATION DIVISION.
PROGRAM-ID. BASE-16.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 VARIABLES COMP.
02 STRP PIC 99 VALUE 1.
02 N PIC 999.
02 NTEMP PIC 999.
02 N16 PIC 999.
02 NMOD16 PIC 99.
02 BASE16-FLAG PIC 9.
88 BASE16 VALUE 1.
02 AMOUNT PIC 999 VALUE 0.
01 OUTPUT-FORMAT.
02 LINESTR PIC X(72).
02 OUTN PIC BZZ9.
PROCEDURE DIVISION.
BEGIN.
PERFORM NONDEC VARYING N FROM 1 BY 1
UNTIL N IS GREATER THAN 500.
PERFORM DISPLAY-LINE.
DISPLAY ' '.
MOVE AMOUNT TO OUTN.
DISPLAY OUTN ' numbers found.'
STOP RUN.
NONDEC.
MOVE N TO NTEMP.
PERFORM IS-NONDEC.
IF BASE16
MOVE N TO OUTN
STRING OUTN DELIMITED BY SIZE INTO LINESTR
WITH POINTER STRP
ADD 1 TO AMOUNT
IF STRP IS EQUAL TO 73 PERFORM DISPLAY-LINE.
DISPLAY-LINE.
IF STRP IS NOT EQUAL TO 1 DISPLAY LINESTR.
MOVE 1 TO STRP.
MOVE ' ' TO LINESTR.
IS-NONDEC.
IF NTEMP IS EQUAL TO ZERO
MOVE 0 TO BASE16-FLAG
ELSE
DIVIDE NTEMP BY 16 GIVING N16
COMPUTE NMOD16 = NTEMP - N16 * 16
IF NMOD16 IS NOT LESS THAN 10
MOVE 1 TO BASE16-FLAG
ELSE
MOVE N16 TO NTEMP
GO TO IS-NONDEC.
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 301 numbers found.
Cowgol
include "cowgol.coh";
sub nondecimal(n: uint16): (r: uint8) is
r := 0;
while n != 0 loop
if n & 15 >= 10 then
r := 1;
return;
else
n := n >> 4;
end if;
end loop;
end sub;
var i: uint16 := 0;
var c: uint8 := 0;
while i <= 500 loop
if nondecimal(i) != 0 then
print_i16(i);
if c<9 then
print_char('\t');
c := c + 1;
else
print_nl();
c := 0;
end if;
end if;
i := i + 1;
end loop;
print_nl();
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
Delphi
An example of using Delphi-style operations using set operators to find hex nibbles A..F
function HasAlphaDigits(W: integer): boolean;
{test if number has A..F in one or more of the digits}
{Only works for numbers up to 9FF or 2559}
begin
Result:=((W and $000F) in [$000A,$000B,$000C,$000D,$000E,$000F]) or
((W and $00F0) in [$00A0,$00B0,$00C0,$00D0,$00E0,$00F0]);
end;
procedure HasNibblesAF(Memo: TMemo);
{Find all numbers 1 through 500 where the hex}
{version has A..F in any of the nibbles}
var I,Cnt: integer;
var S: string;
begin
Cnt:=0;
S:='';
for I:=1 to 500 do
if HasAlphaDigits(I) then
begin
Inc(Cnt);
S:=S+Format('%4.0d', [I]);
if (Cnt mod 20)=0 then S:=S+#$0D+#$0A;
end;
Memo.Text:=S;
Memo.Lines.Add('Count = '+IntToStr(Cnt));
end;
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 Count = 301
EasyLang
func has_hexdig n .
while n > 0
d = n mod 16
if d >= 10
return 1
.
n = n div 16
.
return 0
.
for i to 500
if has_hexdig i = 1
write i & " "
.
.
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
F#
// Base 16 representation: Nigel Galloway. June 3rd., 2021
let rec fN g=match g%16,g/16 with (n,0)->9<n |(n,g) when n<10->fN g |_->true
seq{1..500}|>Seq.filter fN|>Seq.iter(printf "%d "); printfn ""
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
Factor
The non-decimal?
word is a translation of C++'s nondecimal
function. Having multiple exit points in a word is not very efficient (yet?) in Factor, so I've tweaked it to have one exit point at the end.
USING: combinators formatting grouping io kernel lists
lists.lazy math prettyprint sequences ;
! Returns t if the hexadecimal representation of n contains a
! non-decimal digit.
: non-decimal? ( n -- ? )
{
{ [ dup zero? ] [ drop f ] }
{ [ dup 0xF bitand 9 > ] [ drop t ] }
[ -4 shift non-decimal? ]
} cond ;
1 lfrom [ non-decimal? ] lfilter [ 501 < ] lwhile
list>array dup 15 group [ [ "%3d " printf ] each nl ] each nl
length pprint " such numbers found." print
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 301 such numbers found.
The above solution uses lazy computation and tail recursion. Here's an eager solution, but it allocates a lot of intermediate sequences.
USING: formatting kernel math ranges sequences ;
IN: rosetta-code.needs-a..f?
: quads ( n -- seq )
[ dup 0 > ] [ 16 /mod ] produce nip ;
: needs-a..f? ( n -- ? )
quads [ 9 > ] any? ;
500 [1..b] [ needs-a..f? ] filter [ "%d " printf ] each
- Output:
Same numbers as above, but on a single line.
FOCAL
01.10 S C=0
01.20 F N=1,500;D 2
01.30 T !
01.40 Q
02.10 S X=N
02.20 S Y=FITR(X/16)
02.30 S Z=X-Y*16
02.40 I (Z-10)2.5,2.7,2.7
02.50 S X=Y
02.60 I (X),2.99,2.2
02.70 T %3,N
02.80 S C=C+1
02.90 I (C-10)2.99;T !;S C=0
02.99 R
- Output:
= 10= 11= 12= 13= 14= 15= 26= 27= 28= 29 = 30= 31= 42= 43= 44= 45= 46= 47= 58= 59 = 60= 61= 62= 63= 74= 75= 76= 77= 78= 79 = 90= 91= 92= 93= 94= 95= 106= 107= 108= 109 = 110= 111= 122= 123= 124= 125= 126= 127= 138= 139 = 140= 141= 142= 143= 154= 155= 156= 157= 158= 159 = 160= 161= 162= 163= 164= 165= 166= 167= 168= 169 = 170= 171= 172= 173= 174= 175= 176= 177= 178= 179 = 180= 181= 182= 183= 184= 185= 186= 187= 188= 189 = 190= 191= 192= 193= 194= 195= 196= 197= 198= 199 = 200= 201= 202= 203= 204= 205= 206= 207= 208= 209 = 210= 211= 212= 213= 214= 215= 216= 217= 218= 219 = 220= 221= 222= 223= 224= 225= 226= 227= 228= 229 = 230= 231= 232= 233= 234= 235= 236= 237= 238= 239 = 240= 241= 242= 243= 244= 245= 246= 247= 248= 249 = 250= 251= 252= 253= 254= 255= 266= 267= 268= 269 = 270= 271= 282= 283= 284= 285= 286= 287= 298= 299 = 300= 301= 302= 303= 314= 315= 316= 317= 318= 319 = 330= 331= 332= 333= 334= 335= 346= 347= 348= 349 = 350= 351= 362= 363= 364= 365= 366= 367= 378= 379 = 380= 381= 382= 383= 394= 395= 396= 397= 398= 399 = 410= 411= 412= 413= 414= 415= 416= 417= 418= 419 = 420= 421= 422= 423= 424= 425= 426= 427= 428= 429 = 430= 431= 432= 433= 434= 435= 436= 437= 438= 439 = 440= 441= 442= 443= 444= 445= 446= 447= 448= 449 = 450= 451= 452= 453= 454= 455= 456= 457= 458= 459 = 460= 461= 462= 463= 464= 465= 466= 467= 468= 469 = 470= 471= 472= 473= 474= 475= 476= 477= 478= 479 = 480= 481= 482= 483= 484= 485= 486= 487= 488= 489 = 490= 491= 492= 493= 494= 495= 496= 497= 498= 499 = 500
Forth
\ Returns true if the hexadecimal representation of n contains at least one
\ non-decimal digit.
: non-decimal ( u -- ? )
begin
dup 0 >
while
dup 15 and 9 > if
drop true exit
then
4 rshift
repeat
drop false ;
: main
0
501 0 do
i non-decimal if
1+
i 3 .r
dup 15 mod 0= if cr else space then
then
loop
cr cr . ." such numbers found." cr ;
main
bye
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 301 such numbers found.
Frink
select[1 to 500, {|n| base16[n] =~ %r/[a-f]/i}]
- Output:
[10, 11, 12, 13, 14, 15, 26, 27, 28, 29, 30, 31, 42, 43, 44, 45, 46, 47, 58, 59, 60, 61, 62, 63, 74, 75, 76, 77, 78, 79, 90, 91, 92, 93, 94, 95, 106, 107, 108, 109, 110, 111, 122, 123, 124, 125, 126, 127, 138, 139, 140, 141, 142, 143, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 266, 267, 268, 269, 270, 271, 282, 283, 284, 285, 286, 287, 298, 299, 300, 301, 302, 303, 314, 315, 316, 317, 318, 319, 330, 331, 332, 333, 334, 335, 346, 347, 348, 349, 350, 351, 362, 363, 364, 365, 366, 367, 378, 379, 380, 381, 382, 383, 394, 395, 396, 397, 398, 399, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500]
Go
package main
import (
"fmt"
"strconv"
"strings"
)
func main() {
const nondecimal = "abcdef"
c := 0
for i := int64(0); i <= 500; i++ {
hex := strconv.FormatInt(i, 16)
if strings.ContainsAny(nondecimal, hex) {
fmt.Printf("%3d ", i)
c++
if c%15 == 0 {
fmt.Println()
}
}
}
fmt.Printf("\n\n%d such numbers found.\n", c)
}
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 301 such numbers found.
Haskell
import Data.List (intercalate, transpose)
import Data.List.Split (chunksOf)
import Text.Printf (printf)
------- ANY DIGIT ABOVE 9 REQUIRED IN HEXADECIMAL ? ------
p :: Int -> Bool
p n =
9 < n
&& ( 9 < rem n 16
|| p (quot n 16)
)
--------------------------- TEST -------------------------
main :: IO ()
main =
let upperLimit = 500
xs = [show x | x <- [0 .. upperLimit], p x]
in mapM_
putStrLn
[ show (length xs)
<> " matches up to "
<> show upperLimit
<> ":\n",
table justifyRight " " $ chunksOf 15 xs
]
------------------------- DISPLAY ------------------------
table ::
(Int -> Char -> String -> String) ->
String ->
[[String]] ->
String
table alignment gap rows =
unlines $
fmap
( intercalate gap
. zipWith (`alignment` ' ') colWidths
)
rows
where
colWidths = maximum . fmap length <$> transpose rows
justifyRight :: Int -> Char -> String -> String
justifyRight n c = (drop . length) <*> (replicate n c <>)
- Output:
301 matches up to 500: 10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
J
needsAtoF=. (9 +./@:< 16&#.inv)"0
_16 echo\ I. needsAtoF i. 501
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
JavaScript
(() => {
"use strict";
// --- ANY ALPHA DIGITS REQUIRED IN HEXADECIMAL ? ----
// p :: Int -> Bool
const p = n =>
// True if a hexadecimal representation of the
// integer n requires any digits above 9.
9 < n && (
9 < n % 16 || p(
Math.trunc(n / 16)
)
);
// ---------------------- TEST -----------------------
// main :: IO ()
const main = () => {
const
upperLimit = 500,
xs = enumFromTo(0)(upperLimit)
.flatMap(
x => p(x) ? [
`${x}`
] : []
);
return [
`${xs.length} matches up to ${upperLimit}:\n`,
table(" ")(justifyRight)(
chunksOf(6)(xs)
)
].join("\n");
};
// --------------------- DISPLAY ---------------------
// table :: String ->
// (Int -> Char -> String -> String) ->
// [[String]] -> String
const table = gap =>
// A tabulation of rows of string values,
// with a specified gap between columns,
// and choice of cell alignment function
// (justifyLeft | center | justifyRight)
alignment => rows => {
const
colWidths = transpose(rows).map(
row => maximum(row.map(x => x.length))
);
return rows.map(
compose(
intercalate(gap),
zipWith(
flip(alignment)(" ")
)(colWidths)
)
).join("\n");
};
// --------------------- GENERIC ---------------------
// chunksOf :: Int -> [a] -> [[a]]
const chunksOf = n => {
// xs split into sublists of length n.
// The last sublist will be short if n
// does not evenly divide the length of xs .
const go = xs => {
const chunk = xs.slice(0, n);
return 0 < chunk.length ? (
[chunk].concat(
go(xs.slice(n))
)
) : [];
};
return go;
};
// compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
const compose = (...fs) =>
// A function defined by the right-to-left
// composition of all the functions in fs.
fs.reduce(
(f, g) => x => f(g(x)),
x => x
);
// enumFromTo :: Int -> Int -> [Int]
const enumFromTo = m =>
n => Array.from({
length: 1 + n - m
}, (_, i) => m + i);
// flip :: (a -> b -> c) -> b -> a -> c
const flip = op =>
// The binary function op with
// its arguments reversed.
1 < op.length ? (
(a, b) => op(b, a)
) : (x => y => op(y)(x));
// intercalateS :: String -> [String] -> String
const intercalate = s =>
// The concatenation of xs
// interspersed with copies of s.
xs => xs.join(s);
// justifyRight :: Int -> Char -> String -> String
const justifyRight = n =>
// The string s, preceded by enough padding (with
// the character c) to reach the string length n.
c => s => Boolean(s) ? (
s.padStart(n, c)
) : "";
// maximum :: Ord a => [a] -> a
const maximum = xs => (
// The largest value in a non-empty list.
ys => 0 < ys.length ? (
ys.slice(1).reduce(
(a, y) => y > a ? (
y
) : a, ys[0]
)
) : undefined
)(xs);
// transpose :: [[a]] -> [[a]]
const transpose = rows => {
// If any rows are shorter than those that follow,
// their elements are skipped:
// > transpose [[10,11],[20],[],[30,31,32]]
// == [[10,20,30],[11,31],[32]]
const go = xss =>
0 < xss.length ? (() => {
const
h = xss[0],
t = xss.slice(1);
return 0 < h.length ? [
[h[0]].concat(t.reduce(
(a, xs) => a.concat(
0 < xs.length ? (
[xs[0]]
) : []
),
[]
))
].concat(go([h.slice(1)].concat(
t.map(xs => xs.slice(1))
))) : go(t);
})() : [];
return go(rows);
};
// zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
const zipWith = f =>
// A list constructed by zipping with a
// custom function, rather than with the
// default tuple constructor.
xs => ys => xs.map(
(x, i) => f(x)(ys[i])
).slice(
0, Math.min(xs.length, ys.length)
);
// MAIN ---
return main();
})();
- Output:
301 matches up to 500: 10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
jq
Works with gojq, the Go implementation of jq
# decimal number to hex string using lower-case letters
def hex:
def stream:
recurse(if . >= 16 then ./16|floor else empty end) | . % 16 ;
[stream] | reverse
| map(if . < 10 then 48 + . else . + 87 end) | implode
end;
# For pretty-printing
def nwise($n):
def n: if length <= $n then . else .[0:$n] , (.[$n:] | n) end;
n;
def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;
def task:
["a","b","c","d","e","f"] as $letters
| [ range(1;501)
| (hex | explode | map([.]|implode)) as $hex
| select( any($hex[]; IN( $letters[] )))]
| nwise(10) | map(lpad(4)) | join("")
;
task
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
Julia
usesletters = filter(n -> begin s = string(n, base = 16); any(c -> c in s, collect("abcdef")) end, 1:500)
foreach(p -> print(rpad(p[2], 4), p[1] % 15 == 0 ? "\n" : ""), enumerate(usesletters))
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
ksh
Generate all possible digit combinations directly:
typeset -i10 n
for n in '16#'{,1}{{0..9}{a..f},{a..f}{{0..9},{a..f}}}
do
((n < 501)) || break
print -n -r -- " $n"
done
print
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
Mathematica /Wolfram Language
Select[Range[500], AnyTrue[IntegerDigits[#, 16], GreaterEqualThan[10]] &]
- Output:
{10, 11, 12, 13, 14, 15, 26, 27, 28, 29, 30, 31, 42, 43, 44, 45, 46, 47, 58, 59, 60, 61, 62, 63, 74, 75, 76, 77, 78, 79, 90, 91, 92, 93, 94, 95, 106, 107, 108, 109, 110, 111, 122, 123, 124, 125, 126, 127, 138, 139, 140, 141, 142, 143, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 266, 267, 268, 269, 270, 271, 282, 283, 284, 285, 286, 287, 298, 299, 300, 301, 302, 303, 314, 315, 316, 317, 318, 319, 330, 331, 332, 333, 334, 335, 346, 347, 348, 349, 350, 351, 362, 363, 364, 365, 366, 367, 378, 379, 380, 381, 382, 383, 394, 395, 396, 397, 398, 399, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500}
Modula-2
MODULE NonDecimal;
FROM InOut IMPORT WriteString, WriteCard, WriteLn;
CONST max = 500;
VAR n, count: CARDINAL;
PROCEDURE usesAtoF(n: CARDINAL): BOOLEAN;
BEGIN
WHILE n>9 DO
IF n MOD 16 >= 10 THEN
RETURN TRUE;
ELSE
n := n DIV 16;
END;
END;
RETURN FALSE;
END usesAtoF;
BEGIN
count := 0;
FOR n := 1 TO max DO
IF usesAtoF(n) THEN
WriteCard(n, 4);
INC(count);
IF count MOD 20 = 0 THEN
WriteLn;
END;
END;
END;
WriteLn;
WriteLn;
WriteCard(count, 3);
WriteString(" numbers found.");
WriteLn;
END NonDecimal.
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 301 numbers found.
Nim
import strutils, sugar
let list = collect(newSeq):
for n in 0..500:
if not n.toHex.allCharsInSet(Digits): n
echo "Found ", list.len, " numbers between 0 and 500:\n"
for i, n in list:
stdout.write ($n).align(3), if (i + 1) mod 19 == 0: '\n' else: ' '
echo()
- Output:
Found 301 numbers between 0 and 500: 10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
Nu
const a_f = '{a,b,c,d,e,f}'
$'0x{,1}{{0..9}($a_f),($a_f){{0..9},($a_f)}}'
| str expand
| into int
| take while { $in < 501 }
| str join ' '
OCaml
let rec has_xdigit n =
n land 15 > 9 || n > 15 && has_xdigit (n lsr 4)
let () =
Seq.(ints 1 |> take 500 |> filter has_xdigit |> map string_of_int)
|> List.of_seq |> String.concat " " |> print_endline
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
Perl
#!/usr/bin/perl
use strict; # https://rosettacode.org/wiki/Base-16_representation
use warnings;
print join( ' ', grep sprintf("%x", $_) =~ tr/a-z//, 1 .. 500 ) =~
s/.{71}\K /\n/gr, "\n";
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
Phix
with javascript_semantics
function above9(integer n) return max(sprintf("%x",n))>'9' end function
printf(1,"%s\n",{join(shorten(apply(filter(tagset(500),above9),sprint),"found",10))})
- Output:
10 11 12 13 14 15 26 27 28 29 ... 491 492 493 494 495 496 497 498 499 500 (301 found)
with javascript_semantics
requires("1.0.0")
include mpfr.e
sequence tests = {"500","1e8","1e25","1e35"}
constant fmt = "%47s %40s %47s\n"
printf(1,fmt,{"threshold","can","cannot"})
for t=1 to length(tests) do
mpz threshold = mpz_init(tests[t])
string thresh = mpz_get_str(threshold,10,true)
object limit = mpz_get_str(threshold,16)
for i=1 to length(limit) do
if limit[i]>'9' then limit[i..$] = '9' exit end if
end for
limit = mpz_init(limit)
mpz_sub(threshold,threshold,limit)
string can = mpz_get_str(limit,10,true),
cannot = mpz_get_str(threshold,10,true)
printf(1,fmt,{thresh,can,cannot})
end for
- Output:
threshold can cannot 500 199 301 100,000,000 5,999,999 94,000,001 10,000,000,000,000,000,000,000,000 845,951,614,014,849,999,999 9,999,154,048,385,985,150,000,001 100,000,000,000,000,000,000,000,000,000,000,000 134,261,729,999,999,999,999,999,999,999 99,999,865,738,270,000,000,000,000,000,000,001
Explanation: Consider a limit of 8191, or #1FFF, clearly 1999 (decimal) can be expressed without A..F, the rest with one or more.
Slightly less obvious, a limit of 8192 or #2000, clearly 2000 (decimal) can be expressed without A..F, the rest with one or more.
In other words all those "decimal-looking" numbers will occur in order, and no other "decimal" numbers, with others that need hex chars interspersed.
PL/M
100H: /* SHOW NUMBERS THAT WHEN REPRESENTED IN HEX, HAVE AT LEAST 1 A-F DIGIT */
/* CP/M BDOS SYSTEM CALL */
BDOS: PROCEDURE( FN, V ); DECLARE FN BYTE, V ADDRESS; GOTO 5; END;
/* PRINTS A BYTE AS A CHARACTER */
PRINT$CHAR: PROCEDURE( C ); DECLARE C BYTE; CALL BDOS( 2, C ); END;
/* PRINTS A $ TERMINATED STRING */
PRINT$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S ); END;
/* PRINTS A NUMBER IN THE MINIMUN FIELD WIDTH */
PRINT$NUMBER: PROCEDURE( N );
DECLARE N ADDRESS;
DECLARE V ADDRESS, N$STR ( 6 )BYTE, W BYTE;
V = N;
W = LAST( N$STR );
N$STR( W ) = '$';
N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
DO WHILE( ( V := V / 10 ) > 0 );
N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
END;
CALL PRINT$STRING( .N$STR( W ) );
END PRINT$NUMBER;
DECLARE ( H$COUNT, I, V ) ADDRESS;
H$COUNT = 0;
DO I = 1 TO 500;
V = I;
DO WHILE( V > 0 );
IF ( V AND 0FH ) < 0AH
THEN V = SHR( V, 4 );
ELSE DO;
V = 0;
CALL PRINT$CHAR( ' ' );
IF I < 10 THEN CALL PRINT$CHAR( ' ' );
IF I < 100 THEN CALL PRINT$CHAR( ' ' );
CALL PRINT$NUMBER( I );
H$COUNT = H$COUNT + 1;
IF H$COUNT >= 20 THEN DO;
CALL PRINT$STRING( .( 0DH, 0AH, '$' ) );
H$COUNT = 0;
END;
END;
END;
END;
EOF
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
Python
direct generation
from itertools import takewhile
seq = (h << 4 | l for h in range(32) for l in range(h & 14 < 9 and 10, 16))
print(*takewhile(lambda n: n < 501, seq))
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
brute force search
'''Integers needing any alpha digits in hex'''
# p :: Int -> Bool
def p(n):
'''True if n requires any digits above 9
when expressed as a hexadecimal.
'''
return 9 < n and (9 < n % 16 or p(n // 16))
# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''Matches for the predicate p in the range [0..500]'''
xs = [
str(n) for n in range(1, 1 + 500)
if p(n)
]
print(f'{len(xs)} matches for the predicate:\n')
print(
table(6)(xs)
)
# ----------------------- GENERIC ------------------------
# chunksOf :: Int -> [a] -> [[a]]
def chunksOf(n):
'''A series of lists of length n, subdividing the
contents of xs. Where the length of xs is not evenly
divisible, the final list will be shorter than n.
'''
def go(xs):
return (
xs[i:n + i] for i in range(0, len(xs), n)
) if 0 < n else None
return go
# table :: Int -> [String] -> String
def table(n):
'''A list of strings formatted as
right-justified rows of n columns.
'''
def go(xs):
w = len(xs[-1])
return '\n'.join(
' '.join(row) for row in chunksOf(n)([
s.rjust(w, ' ') for s in xs
])
)
return go
# MAIN ---
if __name__ == '__main__':
main()
- Output:
301 matches for the predicate: 10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
Quackery
[ false swap
[ dup 0 != while
16 /mod
9 > iff
[ dip not ]
done
again ]
drop ] is haslet ( n --> b )
[]
501 times
[ i^ haslet if
[ i^ number$
nested join ] ]
60 wrap$
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
Raku
Yet another poorly specced, poorly named, trivial task.
How many integers in base 16 cannot be written without using a hexadecimal digit? All of them. Or none of them.
Base 16 is not hexadecimal. Hexadecimal is an implementation of base 16.
use Base::Any;
set-digits <⑩ ⑪ ⑫ ⑬ ⑭ ⑮ ⑯ ⑰ ⑱ ⑲ ⑳ ㉑ ㉒ ㉓ ㉔ ㉕>;
say (7**35).&to-base(16);
# ⑭㉒⑱⑩⑰⑰⑳⑮⑱⑳⑩⑳⑱㉒㉑⑰㉒⑫⑭⑲⑯⑩㉔⑮⑰
How many of those glyphs are decimal digits? And yet it is in base 16, albeit with non-standard digit glyphs. So they all can be written without using a hexadecimal digit.
But wait a minute; is 2 a hexadecimal digit? Why yes, yes it is. So none of them can be written in hexadecimal without using a hexadecimal digit.
Bah. Show which when written in base 16, contain a digit glyph with a value greater than 9:
put display :20cols, :fmt('%3d'), (^501).grep( { so any |.map: { .polymod(16 xx *) »>» 9 } } );
sub display ($list, :$cols = 10, :$fmt = '%6d', :$title = "{+$list} matching:\n" ) {
cache $list;
$title ~ $list.batch($cols)».fmt($fmt).join: "\n"
}
- Output:
301 matching: 10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
But wait a minute. Let's take another look at the the task title. Base-16 representation. It isn't talking about Base 16 at all. It's talking about Base-16... so let's do it in base -16.
use Base::Any;
put display :20cols, :fmt('%3d'), (^501).grep( { .&to-base(-16).contains: /<[A..F]>/ } );
sub display ($list, :$cols = 10, :$fmt = '%6d', :$title = "{+$list} matching:\n" ) {
cache $list;
$title ~ $list.batch($cols)».fmt($fmt).join: "\n"
}
- Output:
306 matching: 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 170 171 172 173 174 175 186 187 188 189 190 191 202 203 204 205 206 207 218 219 220 221 222 223 234 235 236 237 238 239 250 251 252 253 254 255 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 426 427 428 429 430 431 442 443 444 445 446 447 458 459 460 461 462 463 474 475 476 477 478 479 490 491 492 493 494 495
Of course, if you are looking for the count of the hexadecimal numbers up to some threshold that only use "decimal" digits, it is silly and counter-productive to iterate through them and check each when you really only need to check one.
use Lingua::EN::Numbers;
for 500
,10**8
,10**25
,10**35
-> $threshold {
my $limit = $threshold.base(16);
my $i = $limit.index: ['A'..'F'];
quietly $limit = $limit.substr(0, $i) ~ ('9' x ($limit.chars - $i)) if $i.Str;
for ' CAN ', $limit,
'CAN NOT', $threshold - $limit {
printf( "Quantity of numbers up to %s that %s be expressed in hexadecimal without using any alphabetics: %*s\n",
comma($threshold), $^a, comma($threshold).chars, comma($^c) )
}
say '';
}
- Output:
Quantity of numbers up to 500 that CAN be expressed in hexadecimal without using any alphabetics: 199 Quantity of numbers up to 500 that CAN NOT be expressed in hexadecimal without using any alphabetics: 301 Quantity of numbers up to 100,000,000 that CAN be expressed in hexadecimal without using any alphabetics: 5,999,999 Quantity of numbers up to 100,000,000 that CAN NOT be expressed in hexadecimal without using any alphabetics: 94,000,001 Quantity of numbers up to 10,000,000,000,000,000,000,000,000 that CAN be expressed in hexadecimal without using any alphabetics: 845,951,614,014,849,999,999 Quantity of numbers up to 10,000,000,000,000,000,000,000,000 that CAN NOT be expressed in hexadecimal without using any alphabetics: 9,999,154,048,385,985,150,000,001 Quantity of numbers up to 100,000,000,000,000,000,000,000,000,000,000,000 that CAN be expressed in hexadecimal without using any alphabetics: 134,261,729,999,999,999,999,999,999,999 Quantity of numbers up to 100,000,000,000,000,000,000,000,000,000,000,000 that CAN NOT be expressed in hexadecimal without using any alphabetics: 99,999,865,738,270,000,000,000,000,000,000,001
REXX
REXX automatically uses only uppercase when converting integers to hexadecimal, but the lowercase alphabetic letters were also included for boilerplate code.
/*REXX pgm finds positive integers when shown in hexadecimal require an alphabetic glyph*/
parse arg n cols . /*obtain optional argument from the CL.*/
if n=='' | n=="," then n = 501 /*Not specified? Then use the default.*/
if cols=='' | cols=="," then cols= 10 /* " " " " " " */
w= 10 /*width of a number in any column. */
title= ' positive integers when displayed in hexadecimal that require an alphabetic' ,
"glyph, where N < " n
say ' index │'center(title, 1 + cols*(w+1) ) /*display the title for the output. */
say '───────┼'center("" , 1 + cols*(w+1), '─') /* " a sep " " " */
found= 0; y= 'abcdefABCDEF'; idx= 1 /*initialize # of high hexadecimal nums*/
$= /*list of high hexadecimal #'s (so far)*/
do j=1 for n-1 /*search for high hexadecimal numbers. */
if verify(y, d2x(j), 'M')==0 then iterate /*No alphabetical characters? Then skip*/ /* ◄■■■■■■■■ the filter. */
found= found + 1 /*bump number of high hexadecimal #'s. */
$= $ right(j, w) /*add a high hexadecimal number──► list*/
if found // cols \== 0 then iterate /*have we populated a line of output? */
say center(idx, 7)'│' substr($, 2); $= /*display what we have so far (cols). */
idx= idx + cols /*bump the index count for the output*/
end /*j*/
if $\=='' then say center(idx, 7)"│" substr($, 2) /*possible display residual output.*/
say '───────┴'center("" , 1 + cols*(w+1), '─') /*display the foot sep for output. */
say
say 'Found ' found title
exit 0 /*stick a fork in it, we're all done. */
- output when using the default inputs:
index │ positive integers when displayed in hexadecimal that require an alphabetic glyph, where N < 501 ───────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────────── 1 │ 10 11 12 13 14 15 26 27 28 29 11 │ 30 31 42 43 44 45 46 47 58 59 21 │ 60 61 62 63 74 75 76 77 78 79 31 │ 90 91 92 93 94 95 106 107 108 109 41 │ 110 111 122 123 124 125 126 127 138 139 51 │ 140 141 142 143 154 155 156 157 158 159 61 │ 160 161 162 163 164 165 166 167 168 169 71 │ 170 171 172 173 174 175 176 177 178 179 81 │ 180 181 182 183 184 185 186 187 188 189 91 │ 190 191 192 193 194 195 196 197 198 199 101 │ 200 201 202 203 204 205 206 207 208 209 111 │ 210 211 212 213 214 215 216 217 218 219 121 │ 220 221 222 223 224 225 226 227 228 229 131 │ 230 231 232 233 234 235 236 237 238 239 141 │ 240 241 242 243 244 245 246 247 248 249 151 │ 250 251 252 253 254 255 266 267 268 269 161 │ 270 271 282 283 284 285 286 287 298 299 171 │ 300 301 302 303 314 315 316 317 318 319 181 │ 330 331 332 333 334 335 346 347 348 349 191 │ 350 351 362 363 364 365 366 367 378 379 201 │ 380 381 382 383 394 395 396 397 398 399 211 │ 410 411 412 413 414 415 416 417 418 419 221 │ 420 421 422 423 424 425 426 427 428 429 231 │ 430 431 432 433 434 435 436 437 438 439 241 │ 440 441 442 443 444 445 446 447 448 449 251 │ 450 451 452 453 454 455 456 457 458 459 261 │ 460 461 462 463 464 465 466 467 468 469 271 │ 470 471 472 473 474 475 476 477 478 479 281 │ 480 481 482 483 484 485 486 487 488 489 291 │ 490 491 492 493 494 495 496 497 498 499 301 │ 500 ───────┴─────────────────────────────────────────────────────────────────────────────────────────────────────────────── Found 301 positive integers when displayed in hexadecimal that require an alphabetic glyph, where N < 501
Ring
see "working..." + nl
baseList = ["a","b","c","d","e","f"]
row = 1
limit = 500
for n = 1 to limit
num = 0
flag = 1
hex = hex(n)
lenHex = len(hex)
for m = 1 to lenHex
ind = find(baseList,hex[m])
if ind < 1
num = num + 1
ok
next
if num != lenHex
row = row + 1
see "" + n + " "
if row%10 = 0
see nl
ok
ok
next
see nl + "done..." + nl
- Output:
working... 10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 done...
RPL
≪ 1 CF WHILE DUP REPEAT 16 MOD LAST / IP SWAP IF 9 > THEN 1 SF END END DROP 1 FS? ≫ 'A2F?' STO
≪ { } 1 500 FOR n IF n A2F? THEN n + END NEXT 440 .2 BEEP ≫ EVAL
- Output:
1: { 10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 }
Result coming after 505 seconds on a basic HP-28S, I have added a BEEP
instruction at the end of the code. Thus, the program can be used to deliver at the same time 301 numbers needing A to F in base 16 and perfectly cooked al dente pasta.
Optimized version
Faster by 10%:
≪ 1 CF WHILE REPEAT IF LAST DUP 16 MOD 9 > THEN NOT 1 SF ELSE 16 / IP END END 1 FS? ≫ 'A2F?' STO
Ruby
puts (0..500).select{|n| n.digits(16).any?{|d| d >= 10} }.join(" ")
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
Sidef
(0..500).grep {|n| n.digits(16).any {|d| d >= 10} }.join(" ").say
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
V (Vlang)
const nondecimal = "abcdef"
fn main() {
mut c := 0
for i := i64(0); i <= 500; i++ {
hex := i.hex()
if nondecimal.contains_any(hex) {
print('${i:3d} ')
c++
if c % 15 == 0 {
println('')
}
}
}
println('\n\n$c such numbers found.\n')
}
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 301 such numbers found.
Wren
import "./fmt" for Conv, Fmt
var nondecimal = "abcdef"
var c = 0
for (i in 0..500) {
var hex = Conv.hex(i)
if (hex.any { |c| nondecimal.contains(c) }) {
Fmt.write("$3s ", i)
c = c + 1
if (c % 15 == 0) System.print()
}
}
System.print("\n\n%(c) such numbers found.")
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 301 such numbers found.
XPL0
Borrowed masking concept from C++, which was much more elegant than my first solution.
func HasHex(N);
int N;
[while N do
[if (N&$F) > 9 then return true; N:= N>>4];
return false;
];
int N, Cnt;
[Cnt:= 0;
for N:= 1 to 500 do
[if HasHex(N) then
[if N<100 then ChOut(0, ^ );
IntOut(0, N);
Cnt:= Cnt+1;
if rem(Cnt/20) = 0 then CrLf(0) else ChOut(0, ^ );
];
];
CrLf(0);
IntOut(0, Cnt); Text(0, " such numbers found."); CrLf(0);
]
- Output:
10 11 12 13 14 15 26 27 28 29 30 31 42 43 44 45 46 47 58 59 60 61 62 63 74 75 76 77 78 79 90 91 92 93 94 95 106 107 108 109 110 111 122 123 124 125 126 127 138 139 140 141 142 143 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 266 267 268 269 270 271 282 283 284 285 286 287 298 299 300 301 302 303 314 315 316 317 318 319 330 331 332 333 334 335 346 347 348 349 350 351 362 363 364 365 366 367 378 379 380 381 382 383 394 395 396 397 398 399 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 301 such numbers found.
- Draft Programming Tasks
- 11l
- 68000 Assembly
- Action!
- Ada
- ALGOL 68
- ALGOL W
- APL
- AppleScript
- Arturo
- AWK
- BASIC
- BASIC256
- Chipmunk Basic
- FreeBASIC
- Gambas
- GW-BASIC
- MSX Basic
- QuickBASIC
- Run BASIC
- True BASIC
- Yabasic
- BCPL
- BQN
- C
- C++
- CLU
- COBOL
- Cowgol
- Delphi
- SysUtils,StdCtrls
- EasyLang
- F Sharp
- Factor
- FOCAL
- Forth
- Frink
- Go
- Haskell
- J
- JavaScript
- Jq
- Julia
- Ksh
- Mathematica
- Wolfram Language
- Modula-2
- Nim
- Nu
- OCaml
- Perl
- Phix
- PL/M
- Python
- Quackery
- Raku
- REXX
- Ring
- RPL
- Ruby
- Sidef
- V (Vlang)
- Wren
- Wren-fmt
- XPL0