Jump to content

Almkvist-Giullera formula for pi

From Rosetta Code
Task
Almkvist-Giullera formula for pi
You are encouraged to solve this task according to the task description, using any language you may know.

The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory.


The formula is:

1/π2 = (25/3) ∑0 ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1


This formula can be used to calculate the constant   π-2,   and thus to calculate   π.

Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term:

(25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***)

multiplied by a negative integer power of 10:

10-(6n + 3)


Task
  • Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series.
  • Use the complete formula to calculate and print π to 70 decimal digits of precision.


Reference



11l

Translation of: C#
F isqrt(BigInt =x)
   BigInt q = 1
   BigInt r = 0
   BigInt t
   L q <= x
      q *= 4
   L q > 1
      q I/= 4
      t = x - r - q
      r I/= 2
      I t >= 0
         x = t
         r += q
   R r

F dump(=digs, show)
   V gb = 1
   digs++
   V dg = digs + gb
   BigInt t1 = 1
   BigInt t2 = 9
   BigInt t3 = 1
   BigInt te
   BigInt su = 0
   V t = BigInt(10) ^ (I dg <= 60 {0} E dg - 60)
   BigInt d = -1
   BigInt _fn_ = 1

   V n = 0
   L n < dg
      I n > 0
         t3 *= BigInt(n) ^ 6
      te = t1 * t2 I/ t3
      V z = dg - 1 - n * 6
      I z > 0
         te *= BigInt(10) ^ z
      E
         te I/= BigInt(10) ^ -z
      I show & n < 10
         print(‘#2 #62’.format(n, te * 32 I/ 3 I/ t))
      su += te

      I te < 10
         I show
            digs--
            print("\n#. iterations required for #. digits after the decimal point.\n".format(n, digs))
         L.break

      L(j) n * 6 + 1 .. n * 6 + 6
         t1 *= j
      d += 2
      t2 += 126 + 532 * d

      n++

   V s = String(isqrt(BigInt(10) ^ (dg * 2 + 3) I/ su I/ 32 * 3 * BigInt(10) ^ (dg + 5)))
   R s[0]‘.’s[1 .+ digs]

print(dump(70, 1B))
Output:
 0  9600000000000000000000000000000000000000000000000000000000000
 1   512256000000000000000000000000000000000000000000000000000000
 2    19072247040000000000000000000000000000000000000000000000000
 3      757482485760000000000000000000000000000000000000000000000
 4       31254615037245600000000000000000000000000000000000000000
 5        1320787470322549142065152000000000000000000000000000000
 6          56727391979308908329225994240000000000000000000000000
 7           2465060024817298714011276371558400000000000000000000
 8            108065785435463945367040747443956640000000000000000
 9              4770177939159496628747057049083997888000000000000

53 iterations required for 70 digits after the decimal point.

3.1415926535897932384626433832795028841971693993751058209749445923078164

AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
or android 64 bits with application Termux
/* ARM assembly AARCH64 Raspberry PI 3B */
/*  program calculPi64.s   */
/* this program use gmp library */
/* link with gcc option -lgmp */
 
/*******************************************/
/* Constantes file                         */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
 
.equ MAXI,      10
.equ SIZEBIG,   100
 
/*********************************/
/* Initialized data              */
/*********************************/
.data
szMessDebutPgm:     .asciz "Program 64 bits start. \n"
szMessPi:           .asciz "\nPI = \n"
szCarriageReturn:   .asciz "\n"

szFormat:           .asciz " %Zd\n"
szFormatFloat:      .asciz " %.*Ff\n"
/*********************************/
/* UnInitialized data            */
/*********************************/
.bss  
Result1:                    .skip SIZEBIG
Result2:                    .skip SIZEBIG
Result3:                    .skip SIZEBIG
Result4:                    .skip SIZEBIG
fIntex5:                    .skip SIZEBIG
fIntex6:                    .skip SIZEBIG
fIntex7:                    .skip SIZEBIG
fSum:                       .skip SIZEBIG
fSum1:                      .skip SIZEBIG
sBuffer:                    .skip SIZEBIG
fEpsilon:                   .skip SIZEBIG
fPrec:                      .skip SIZEBIG
fPI:                        .skip SIZEBIG
fTEN:                       .skip SIZEBIG
fONE:                       .skip SIZEBIG
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main 
main:                             // entry of program 
    ldr x0,qAdrszMessDebutPgm
    bl affichageMess
    mov x20,#0                     // loop indice
1:
    mov x0,x20
    bl computeAlmkvist            // compute 
    mov x1,x0
    ldr x0,qAdrszFormat           // print big integer
    bl __gmp_printf
    
    add x20,x20,#1
    cmp x20,#MAXI
    blt 1b                        // and loop
    
    mov x0,#560                   // float précision in bits
    bl __gmpf_set_default_prec
    
    mov x19,#0                     // compute indice
    ldr x0,qAdrfSum               // init to zéro
    bl __gmpf_init
    ldr x0,qAdrfSum1              // init to zéro
    bl __gmpf_init
    
    ldr x0,qAdrfONE               // result address
    mov x1,#1                     // init à 1
    bl __gmpf_init_set_ui
    
    ldr x0,qAdrfIntex5            // init to zéro
    bl __gmpf_init
    ldr x0,qAdrfIntex6            // init to zéro
    bl __gmpf_init
    ldr x0,qAdrfIntex7            // init to zéro
    bl __gmpf_init
    ldr x0,qAdrfEpsilon           // init to zéro
    bl __gmpf_init
    ldr x0,qAdrfPrec              // init to zéro
    bl __gmpf_init
    ldr x0,qAdrfPI                // init to zéro
    bl __gmpf_init
    ldr x0,qAdrfTEN
    mov x1,#10                    // init to 10
    bl __gmpf_init_set_ui
    
    ldr x0,qAdrfIntex6            // compute 10 pow 70
    ldr x1,qAdrfTEN
    mov x2,#70
    bl __gmpf_pow_ui
    
    ldr x0,qAdrfEpsilon           // divide 1 by 10 pow 70
    ldr x1,qAdrfONE               // dividende
    ldr x2,qAdrfIntex6            // divisor
    bl __gmpf_div
    
2:                                // PI compute loop
    mov x0,x19
    bl computeAlmkvist
    mov x20,x0
    mov x1,#6
    mul x2,x1,x19
    add x6,x2,#3                  // compute 6n + 3
    
    ldr x0,qAdrfIntex6            // compute 10 pow (6n+3)
    ldr x1,qAdrfTEN
    mov x2,x6
    bl __gmpf_pow_ui
    
    ldr x0,qAdrfIntex7             // compute 1 / 10 pow (6n+3)
    ldr x1,qAdrfONE                // dividende
    ldr x2,qAdrfIntex6             // divisor
    bl __gmpf_div
    
    ldr x0,qAdrfIntex6             // result big float
    mov x1,x20                     // big integer Almkvist
    bl __gmpf_set_z                // conversion in big float
    
    ldr x0,qAdrfIntex5             // result Almkvist * 1 / 10 pow (6n+3)
    ldr x1,qAdrfIntex7             // operator 1
    ldr x2,qAdrfIntex6             // operator 2
    bl __gmpf_mul
    
    ldr x0,qAdrfSum1               // terms addition
    ldr x1,qAdrfSum
    ldr x2,qAdrfIntex5
    bl __gmpf_add
    
    ldr x0,qAdrfSum                // copy terms
    ldr x1,qAdrfSum1
    bl __gmpf_set
    
    
    ldr x0,qAdrfIntex7             // compute 1 / sum 
    ldr x1,qAdrfONE                // dividende
    ldr x2,qAdrfSum                // divisor
    bl __gmpf_div
    
    ldr x0,qAdrfPI                 // compute square root (1 / sum )
    ldr x1,qAdrfIntex7
    bl __gmpf_sqrt
    
    ldr x0,qAdrfIntex6             // compute variation PI
    ldr x1,qAdrfPrec
    ldr x2,qAdrfPI
    bl __gmpf_sub
    
    ldr x0,qAdrfIntex6             // absolue value
    ldr x1,qAdrfIntex5
    bl __gmpf_abs
    
    add x19,x19,#1                   // increment indice
    
    ldr x0,qAdrfPrec               // copy PI -> prévious
    ldr x1,qAdrfPI
    bl __gmpf_set
        
    ldr x0,qAdrfIntex6             // compare gap and epsilon
    ldr x1,qAdrfEpsilon
    bl __gmpf_cmp
    cmp w0,#0                      // !!! cmp return result on 32 bits
    bgt 2b                         // if gap is highter -> loop
    
    ldr x0,qAdrszMessPi            // title display
    bl affichageMess
    
    ldr x2,qAdrfPI                 // PI display
    ldr x0,qAdrszFormatFloat
    mov x1,#70
    bl __gmp_printf
    
 
100:                              // standard end of the program 
    mov x0, #0                    // return code
    mov x8, #EXIT                 // request to exit program
    svc #0                        // perform the system call
qAdrszMessDebutPgm:          .quad szMessDebutPgm
qAdrszCarriageReturn:        .quad szCarriageReturn
qAdrfIntex5:                 .quad fIntex5
qAdrfIntex6:                 .quad fIntex6
qAdrfIntex7:                 .quad fIntex7
qAdrfSum:                    .quad fSum
qAdrfSum1:                   .quad fSum1
qAdrszFormatFloat:           .quad szFormatFloat
qAdrszMessPi:                .quad szMessPi
qAdrfEpsilon:                .quad fEpsilon
qAdrfPrec:                   .quad fPrec
qAdrfPI:                     .quad fPI
qAdrfTEN:                    .quad fTEN
qAdrfONE:                    .quad fONE
/***************************************************/
/*   compute  almkvist_giullera formula             */
/***************************************************/
/* x0 contains the number            */
computeAlmkvist:
    stp x19,lr,[sp,-16]!           // save  registers
    mov x19,x0
    mov x1,#6
    mul x0,x1,x0
    ldr x1,qAdrResult1            // result address
    bl computeFactorielle         // compute (n*6)!
    mov x1,#532
    mul x2,x19,x19
    mul x2,x1,x2
    mov x1,#126
    mul x3,x19,x1
    add x2,x2,x3
    add x2,x2,#9
    lsl x2,x2,#5                   // * 32
    
    ldr x0,qAdrResult2             // result
    ldr x1,qAdrResult1             // operator
    bl __gmpz_mul_ui
    
    mov x0,x19
    ldr x1,qAdrResult1 
    bl computeFactorielle
    
    ldr x0,qAdrResult3
    bl __gmpz_init                 // init to 0
    
    ldr x0,qAdrResult3             // result
    ldr x1,qAdrResult1             // operator
    mov x2,#6
    bl __gmpz_pow_ui
    
    ldr x0,qAdrResult1             // result
    ldr x1,qAdrResult3             // operator
    mov x2,#3
    bl __gmpz_mul_ui
    
    ldr x0,qAdrResult3             // result
    ldr x1,qAdrResult2             // operator
    ldr x2,qAdrResult1             // operator
    bl __gmpz_cdiv_q
    
    ldr x0,qAdrResult3             // return result address
100:
    ldp x19,lr,[sp],16              // restaur  2 registers
    ret                            // return to address lr x30
qAdrszFormat:         .quad szFormat
qAdrResult1:          .quad Result1
qAdrResult2:          .quad Result2
qAdrResult3:          .quad Result3
/***************************************************/
/*   compute  factorielle N                        */
/***************************************************/
/* x0 contains the number            */
/* x1 contains big number result address */
computeFactorielle:
    stp x19,lr,[sp,-16]!           // save  registers
    stp x20,x21,[sp,-16]!           // save  registers
    mov x19,x0                     // save N
    mov x20,x1                     // save result address
    mov x0,x1                     // result address
    mov x1,#1                     // init to 1
    bl __gmpz_init_set_ui
    ldr x0,qAdrResult4
    bl __gmpz_init                // init to 0
    mov x21,#1
1:                                // loop 
    ldr x0,qAdrResult4            // result
    mov x1,x20                     // operator 1
    mov x2,x21                     // operator 2
    bl __gmpz_mul_ui
    mov x0,x20                     // copy result4 -> result 
    ldr x1,qAdrResult4
    bl __gmpz_set
    add x21,x21,#1                  // increment indice
    cmp x21,x19                     // N ?
    ble 1b                        // no -> loop
    
    ldr  x0,qAdrResult4
    ldp x20,x21,[sp],16              // restaur  2 registers
    ldp x19,lr,[sp],16              // restaur  2 registers
    ret                            // return to address lr x30
qAdrResult4:          .quad Result4
/********************************************************/
/*        File Include fonctions                        */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
Program 64 bits start.
 96
 5122560
 190722470400
 7574824857600000
 312546150372456000000
 13207874703225491420651520
 567273919793089083292259942400
 24650600248172987140112763715584000
 1080657854354639453670407474439566400000
 47701779391594966287470570490839978880000000

PI =
 3.1415926535897932384626433832795028841971693993751058209749445923078164

ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32
Translation of: C++

Uses code from the Arithmetic/Rational task.
Note that ALGOL 68 Genie verswion 3 will warn that 1026 digits precision impacts performance.

# Almkvist-Giullera formula for pi - translated from the C++ sample         #

PR precision 1024 PR                    # set precision for LONG LONG modes #
MODE INTEGER = LONG LONG INT;                       
MODE FLOAT   = LONG LONG REAL;

INTEGER zero = 0, one = 1, ten = 10;

# iterative Greatest Common Divisor routine, returns the gcd of m and n #
PROC gcd = ( INTEGER m, n )INTEGER:
     BEGIN
        INTEGER a := ABS m, b := ABS n;
        WHILE b /= 0 DO
            INTEGER new a = b;
            b        := a MOD b;
            a        := new a
        OD;
        a
    END # gcd # ;

# code from the Arithmetic/Rational task modified to use LONG LONG INT       #
 MODE RATIONAL = STRUCT( INTEGER num #erator#,  den #ominator# );

  PROC lcm = ( INTEGER a, b )INTEGER:                # least common multiple #
   a OVER gcd(a, b) * b;
 
  PRIO // = 9;                                 # higher then the ** operator #
  OP // = ( INTEGER num, den )RATIONAL: (         # initialise and normalise #
   INTEGER common = gcd( num, den );
   IF den < 0 THEN
     ( -num OVER common, -den OVER common )
   ELSE
     ( num OVER common, den OVER common )
   FI
 );
 
 OP + = (RATIONAL a, b)RATIONAL: (
   INTEGER common = lcm( den OF a, den OF b );
   RATIONAL result := ( common OVER den OF a * num OF a + common OVER den OF b * num OF b, common );
   num OF result//den OF result
 );

 OP +:= = (REF RATIONAL a, RATIONAL b)REF RATIONAL: ( a := a + b );
 
# end code from the Arithmetic/Rational task modified to use LONG LONG INT   #

OP / = ( FLOAT f, RATIONAL r )FLOAT: ( f * den OF r ) / num OF r;

INTEGER ag factorial n    := 1;
INT     ag last factorial := 0;
# returns factorial n, using ag factorial n and ag last factorial to reduce #
# the number of calculations                                                #
PROC ag factorial = ( INT n )INTEGER:
     BEGIN
         IF n < ag last factorial THEN
             ag last factorial := 0;
             ag factorial n    := 1
         FI;
         WHILE ag last factorial < n DO
             ag factorial n *:= ( ag last factorial +:= 1 )
         OD;
         ag factorial n
     END # ag gfgactorial # ;

# Return the integer portion of the nth term of Almkvist-Giullera sequence. #
PROC almkvist giullera = ( INT n )INTEGER:
    ag factorial( 6 * n ) * 32 * ( 532 * n * n + 126 * n + 9 ) OVER ( ( ag factorial( n ) ^ 6 ) * 3 );

BEGIN
    print( (  "n |                  Integer portion of nth term", newline ) );
    print( (  "--+---------------------------------------------", newline ) );
    FOR n FROM 0 TO 9 DO
        print( ( whole( n, 0 ), " | ", whole( almkvist giullera( n ), -44 ), newline ) )
    OD;
    FLOAT    epsilon = FLOAT(10) ^ -70;
    FLOAT    prev   := 0, pi approx := 0;
    RATIONAL sum    := zero // one;
    FOR n FROM 0
    WHILE
        RATIONAL nth term = almkvist giullera( n ) // ( ten ^ ( 6 * n + 3 ) );
        sum             +:= nth term;
        pi approx        := long long sqrt( FLOAT(1) / sum );
        ABS ( pi approx - prev ) >= epsilon
    DO
        prev := pi approx
    OD;
    print( ( newline, "Pi to 70 decimal places is:", newline ) );
    print( ( fixed( pi approx, -72, 70 ), newline ) )
END
Output:
n |                  Integer portion of nth term
--+---------------------------------------------
0 |                                           96
1 |                                      5122560
2 |                                 190722470400
3 |                             7574824857600000
4 |                        312546150372456000000
5 |                   13207874703225491420651520
6 |               567273919793089083292259942400
7 |          24650600248172987140112763715584000
8 |     1080657854354639453670407474439566400000
9 | 47701779391594966287470570490839978880000000

Pi to 70 decimal places is:
3.1415926535897932384626433832795028841971693993751058209749445923078164

ARM Assembly

Works with: as version Raspberry Pi
or android 32 bits with application Termux
/* ARM assembly Raspberry PI  */
/*  program calculPi.s   */
/* this program use gmp library package : libgmp3-dev */
/* link with gcc option -lgmp */
 
 /* REMARK 1 : this program use routines in a include file 
   see task Include a file language arm assembly 
   for the routine affichageMess conversion10 
   see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes                       */
/************************************/
.include "../constantes.inc"
 
.equ MAXI,      10
.equ SIZEBIG,   100
 
/*********************************/
/* Initialized data              */
/*********************************/
.data
szMessPi:            .asciz "\nPI = \n"
szCarriageReturn:   .asciz "\n"

szFormat:           .asciz " %Zd\n"
szFormatFloat:      .asciz " %.*Ff\n"
/*********************************/
/* UnInitialized data            */
/*********************************/
.bss
Result1:                    .skip SIZEBIG
Result2:                    .skip SIZEBIG
Result3:                    .skip SIZEBIG
Result4:                    .skip SIZEBIG
fInter5:                    .skip SIZEBIG
fInter6:                    .skip SIZEBIG
fInter7:                    .skip SIZEBIG
fSum:                       .skip SIZEBIG
fSum1:                      .skip SIZEBIG
sBuffer:                    .skip SIZEBIG
fEpsilon:                   .skip SIZEBIG
fPrec:                      .skip SIZEBIG
fPI:                        .skip SIZEBIG
fTEN:                       .skip SIZEBIG
fONE:                       .skip SIZEBIG
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main 
main:                             @ entry of program 
    mov r4,#0                     @ loop indice
1:
    mov r0,r4
    bl computeAlmkvist            @ compute 
    mov r1,r0
    ldr r0,iAdrszFormat           @ print big integer
    bl __gmp_printf
    
    add r4,r4,#1
    cmp r4,#MAXI
    blt 1b                        @ and loop
    
    mov r0,#560                   @ float précision in bits
    bl __gmpf_set_default_prec
    
    mov r4,#0                     @ compute indice
    ldr r0,iAdrfSum               @ init to zéro
    bl __gmpf_init
    ldr r0,iAdrfSum1              @ init to zéro
    bl __gmpf_init
    
    ldr r0,iAdrfONE               @ result address
    mov r1,#1                     @ init à 1
    bl __gmpf_init_set_ui
    
    ldr r0,iAdrfInter5            @ init to zéro
    bl __gmpf_init
    ldr r0,iAdrfInter6            @ init to zéro
    bl __gmpf_init
    ldr r0,iAdrfInter7            @ init to zéro
    bl __gmpf_init
    ldr r0,iAdrfEpsilon           @ init to zéro
    bl __gmpf_init
    ldr r0,iAdrfPrec              @ init to zéro
    bl __gmpf_init
    ldr r0,iAdrfPI                @ init to zéro
    bl __gmpf_init
    ldr r0,iAdrfTEN
    mov r1,#10                    @ init to 10
    bl __gmpf_init_set_ui
    
    ldr r0,iAdrfInter6            @ compute 10 pow 70
    ldr r1,iAdrfTEN
    mov r2,#70
    bl __gmpf_pow_ui
    
    ldr r0,iAdrfEpsilon           @ divide 1 by 10 pow 70
    ldr r1,iAdrfONE               @ dividende
    ldr r2,iAdrfInter6            @ divisor
    bl __gmpf_div
    
2:                                @ PI compute loop
    mov r0,r4
    bl computeAlmkvist
    mov r5,r0
    mov r1,#6
    mul r2,r1,r4
    add r6,r2,#3                  @ compute 6n + 3
    
    ldr r0,iAdrfInter6            @ compute 10 pow (6n+3)
    ldr r1,iAdrfTEN
    mov r2,r6
    bl __gmpf_pow_ui
    
    ldr r0,iAdrfInter7             @ compute 1 / 10 pow (6n+3)
    ldr r1,iAdrfONE                @ dividende
    ldr r2,iAdrfInter6             @ divisor
    bl __gmpf_div
    
    ldr r0,iAdrfInter6             @ result big float
    mov r1,r5                      @ big integer Almkvist
    bl __gmpf_set_z                @ conversion in big float
    
    ldr r0,iAdrfInter5             @ result Almkvist * 1 / 10 pow (6n+3)
    ldr r1,iAdrfInter7             @ operator 1
    ldr r2,iAdrfInter6             @ operator 2
    bl __gmpf_mul
    
    ldr r0,iAdrfSum1               @ terms addition
    ldr r1,iAdrfSum
    ldr r2,iAdrfInter5
    bl __gmpf_add
    
    ldr r0,iAdrfSum                @ copy terms
    ldr r1,iAdrfSum1
    bl __gmpf_set
    
    
    ldr r0,iAdrfInter7             @ compute 1 / sum 
    ldr r1,iAdrfONE                @ dividende
    ldr r2,iAdrfSum                @ divisor
    bl __gmpf_div
    
    ldr r0,iAdrfPI                 @ compute square root (1 / sum )
    ldr r1,iAdrfInter7
    bl __gmpf_sqrt
    
    ldr r0,iAdrfInter6             @ compute variation PI
    ldr r1,iAdrfPrec
    ldr r2,iAdrfPI
    bl __gmpf_sub
    
    ldr r0,iAdrfInter6             @ absolue value
    ldr r1,iAdrfInter5
    bl __gmpf_abs
    
    add r4,r4,#1                   @ increment indice
    
    ldr r0,iAdrfPrec               @ copy PI -> prévious
    ldr r1,iAdrfPI
    bl __gmpf_set
        
    ldr r0,iAdrfInter6             @ compare gap and epsilon
    ldr r1,iAdrfEpsilon
    bl __gmpf_cmp
    cmp r0,#0
    bgt 2b                         @ if gap is highter -> loop
    
    ldr r0,iAdrszMessPi            @ title display
    bl affichageMess
    
    ldr r2,iAdrfPI                 @ PI display
    ldr r0,iAdrszFormatFloat
    mov r1,#70
    bl __gmp_printf
    
 
100:                              @ standard end of the program 
    mov r0, #0                    @ return code
    mov r7, #EXIT                 @ request to exit program
    svc #0                        @ perform the system call
iAdrszCarriageReturn:        .int szCarriageReturn
iAdrfInter5:                 .int fInter5
iAdrfInter6:                 .int fInter6
iAdrfInter7:                 .int fInter7
iAdrfSum:                    .int fSum
iAdrfSum1:                   .int fSum1
iAdrszFormatFloat:           .int szFormatFloat
iAdrszMessPi:                .int szMessPi
iAdrfEpsilon:                .int fEpsilon
iAdrfPrec:                   .int fPrec
iAdrfPI:                     .int fPI
iAdrfTEN:                    .int fTEN
iAdrfONE:                    .int fONE
/***************************************************/
/*   compute  almkvist_giullera formula             */
/***************************************************/
/* r0 contains the number            */
computeAlmkvist:
    push {r1-r4,lr}               @ save registers 
    mov r4,r0
    mov r1,#6
    mul r0,r1,r0
    ldr r1,iAdrResult1            @ result address
    bl computeFactorielle         @ compute (n*6)!
    
    mov r1,#532
    mul r2,r4,r4 
    mul r2,r1,r2
    mov r1,#126
    mul r3,r4,r1
    add r2,r2,r3
    add r2,#9
    lsl r2,r2,#5                   @ * 32
    
    ldr r0,iAdrResult2             @ result
    ldr r1,iAdrResult1             @ operator
    bl __gmpz_mul_ui
    
    mov r0,r4
    ldr r1,iAdrResult1 
    bl computeFactorielle
    
    ldr r0,iAdrResult3
    bl __gmpz_init                 @ init to 0
    
    ldr r0,iAdrResult3             @ result
    ldr r1,iAdrResult1             @ operator
    mov r2,#6
    bl __gmpz_pow_ui
    
    ldr r0,iAdrResult1             @ result
    ldr r1,iAdrResult3             @ operator
    mov r2,#3
    bl __gmpz_mul_ui
    
    ldr r0,iAdrResult3             @ result
    ldr r1,iAdrResult2             @ operator
    ldr r2,iAdrResult1             @ operator
    bl __gmpz_cdiv_q
    
    ldr r0,iAdrResult3             @ return result address
    
    pop {r1-r4,pc}                 @ restaur des registres
iAdrszFormat:         .int szFormat
iAdrResult1:          .int Result1
iAdrResult2:          .int Result2
iAdrResult3:          .int Result3
/***************************************************/
/*   compute  factorielle N                        */
/***************************************************/
/* r0 contains the number            */
/* r1 contains big number result address */
computeFactorielle:
    push {r1-r6,lr}               @ save registers 
    mov r5,r0                     @ save N
    mov r6,r1                     @ save result address
    mov r0,r1                     @ result address
    mov r1,#1                     @ init to 1
    bl __gmpz_init_set_ui
    ldr r0,iAdrResult4
    bl __gmpz_init                @ init to 0
    mov r4,#1
1:                                @ loop 
    ldr r0,iAdrResult4            @ result
    mov r1,r6                     @ operator 1
    mov r2,r4                     @ operator 2
    bl __gmpz_mul_ui
    mov r0,r6                     @ copy result4 -> result 
    ldr r1,iAdrResult4
    bl __gmpz_set
    add r4,r4,#1                  @ increment indice
    cmp r4,r5                     @ N ?
    ble 1b                        @ no -> loop
    
    mov r0,r1 
    
    pop {r1-r6,pc}                @ restaur des registres
iAdrResult4:          .int Result4

/***************************************************/
/*      ROUTINES INCLUDE                           */
/***************************************************/
.include "../affichage.inc"
 96
 5122560
 190722470400
 7574824857600000
 312546150372456000000
 13207874703225491420651520
 567273919793089083292259942400
 24650600248172987140112763715584000
 1080657854354639453670407474439566400000
 47701779391594966287470570490839978880000000

PI =
 3.1415926535897932384626433832795028841971693993751058209749445923078164

C#

A little challenging due to lack of BigFloat or BigRational. Note the extended precision integers displayed for each term, not extended precision floats. Also features the next term based on the last term, rather than computing each term from scratch. And the multiply by 32, divide by 3 is reserved for final sum, instead of each term (except for the 0..9th displayed terms).

using System;
using BI = System.Numerics.BigInteger;
using static System.Console;

class Program {

  static BI isqrt(BI x) { BI q = 1, r = 0, t; while (q <= x) q <<= 2; while (q > 1) {
    q >>= 2; t = x - r - q; r >>= 1; if (t >= 0) { x = t; r += q; } } return r; }

  static string dump(int digs, bool show = false) {
    int gb = 1, dg = ++digs + gb, z;
    BI t1 = 1, t2 = 9, t3 = 1, te, su = 0,
       t = BI.Pow(10, dg <= 60 ? 0 : dg - 60), d = -1, fn = 1;
    for (BI n = 0; n < dg; n++) {
      if (n > 0) t3 *= BI.Pow(n, 6);
      te = t1 * t2 / t3;
      if ((z = dg - 1 - (int)n * 6) > 0) te *= BI.Pow (10, z);
      else te /= BI.Pow (10, -z);
      if (show && n < 10)
        WriteLine("{0,2} {1,62}", n, te * 32 / 3 / t);
      su += te; if (te < 10) {
        if (show) WriteLine("\n{0} iterations required for {1} digits " +
        "after the decimal point.\n", n, --digs); break; }
      for (BI j = n * 6 + 1; j <= n * 6 + 6; j++) t1 *= j;
      t2 += 126 + 532 * (d += 2);
    }
    string s = string.Format("{0}", isqrt(BI.Pow(10, dg * 2 + 3) /
      su / 32 * 3 * BI.Pow((BI)10, dg + 5)));
    return s[0] + "." + s.Substring(1, digs); }

  static void Main(string[] args) {
    WriteLine(dump(70, true)); }
}
Output:
 0  9600000000000000000000000000000000000000000000000000000000000
 1   512256000000000000000000000000000000000000000000000000000000
 2    19072247040000000000000000000000000000000000000000000000000
 3      757482485760000000000000000000000000000000000000000000000
 4       31254615037245600000000000000000000000000000000000000000
 5        1320787470322549142065152000000000000000000000000000000
 6          56727391979308908329225994240000000000000000000000000
 7           2465060024817298714011276371558400000000000000000000
 8            108065785435463945367040747443956640000000000000000
 9              4770177939159496628747057049083997888000000000000

53 iterations required for 70 digits after the decimal point.

3.1415926535897932384626433832795028841971693993751058209749445923078164

C++

Library: Boost
Library: GMP
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/multiprecision/gmp.hpp>
#include <iomanip>
#include <iostream>

namespace mp = boost::multiprecision;
using big_int = mp::mpz_int;
using big_float = mp::cpp_dec_float_100;
using rational = mp::mpq_rational;

big_int factorial(int n) {
    big_int result = 1;
    for (int i = 2; i <= n; ++i)
        result *= i;
    return result;
}

// Return the integer portion of the nth term of Almkvist-Giullera sequence.
big_int almkvist_giullera(int n) {
    return factorial(6 * n) * 32 * (532 * n * n + 126 * n + 9) /
           (pow(factorial(n), 6) * 3);
}

int main() {
    std::cout << "n |                  Integer portion of nth term\n"
              << "------------------------------------------------\n";
    for (int n = 0; n < 10; ++n)
        std::cout << n << " | " << std::setw(44) << almkvist_giullera(n)
                  << '\n';

    big_float epsilon(pow(big_float(10), -70));
    big_float prev = 0, pi = 0;
    rational sum = 0;
    for (int n = 0;; ++n) {
        rational term(almkvist_giullera(n), pow(big_int(10), 6 * n + 3));
        sum += term;
        pi = sqrt(big_float(1 / sum));
        if (abs(pi - prev) < epsilon)
            break;
        prev = pi;
    }
    std::cout << "\nPi to 70 decimal places is:\n"
              << std::fixed << std::setprecision(70) << pi << '\n';
}
Output:
n |                  Integer portion of nth term
------------------------------------------------
0 |                                           96
1 |                                      5122560
2 |                                 190722470400
3 |                             7574824857600000
4 |                        312546150372456000000
5 |                   13207874703225491420651520
6 |               567273919793089083292259942400
7 |          24650600248172987140112763715584000
8 |     1080657854354639453670407474439566400000
9 | 47701779391594966287470570490839978880000000

Pi to 70 decimal places is:
3.1415926535897932384626433832795028841971693993751058209749445923078164

Common Lisp

Translation of: Raku
(ql:quickload :computable-reals :silent t)
(use-package :computable-reals)
(setq *print-prec* 70)
(defparameter *iterations* 52)

; factorial using computable-reals multiplication op to keep precision
(defun !r (n)
  (let ((p 1))
    (loop for i from 2 to n doing (setq p (*r p i)))
    p))

; the nth integer term
(defun integral (n)
   (let* ((polynomial (+r (*r 532 n n) (*r 126 n) 9))
          (numer  (*r 32 (!r (*r 6 n)) polynomial))
          (denom  (*r 3 (expt-r (!r n) 6))))
    (/r  numer denom)))
      

; the exponent for 10 in the nth term of the series
(defun power (n) (- 3 (* 6 (1+ n))))

; the nth term of the series
(defun almkvist-giullera (n)
  (/r (integral n) (expt-r 10 (abs (power n)))))

; the sum of the first n terms
(defun almkvist-giullera-sigma (n)
  (let ((s 0)) 
    (loop for i from 0 to n doing (setq s (+r s (almkvist-giullera i))))
    s))

; the approximation to pi after n terms
(defun almkvist-giullera-pi (n)
  (sqrt-r (/r 1 (almkvist-giullera-sigma n))))

(format t "~A. ~44A~4A ~A~%" "N" "Integral part of Nth term" "×10^" "=Actual value of Nth term")
(loop for i from 0 to 9 doing
  (format t "~&~a. ~44d ~3d " i (integral i) (power i))
  (finish-output *standard-output*)
  (print-r (almkvist-giullera i) 50 nil))

(format t "~%~%Pi after ~a iterations: " *iterations*)
(print-r (almkvist-giullera-pi *iterations*) *print-prec*)
Output:
N. Integral part of Nth term                   ×10^ =Actual value of Nth term
0.                                           96  -3 +0.09600000000000000000000000000000000000000000000000...
1.                                      5122560  -9 +0.00512256000000000000000000000000000000000000000000...
2.                                 190722470400 -15 +0.00019072247040000000000000000000000000000000000000...
3.                             7574824857600000 -21 +0.00000757482485760000000000000000000000000000000000...
4.                        312546150372456000000 -27 +0.00000031254615037245600000000000000000000000000000...
5.                   13207874703225491420651520 -33 +0.00000001320787470322549142065152000000000000000000...
6.               567273919793089083292259942400 -39 +0.00000000056727391979308908329225994240000000000000...
7.          24650600248172987140112763715584000 -45 +0.00000000002465060024817298714011276371558400000000...
8.     1080657854354639453670407474439566400000 -51 +0.00000000000108065785435463945367040747443956640000...
9. 47701779391594966287470570490839978880000000 -57 +0.00000000000004770177939159496628747057049083997888...

Pi after 52 iterations: 
+3.1415926535897932384626433832795028841971693993751058209749445923078164...

dc

Translation of: Common Lisp
[* factorial *]sz
[ 1 Sp [ d lp * sp 1 - d 1 <f ]Sf d 1 <f Lfsz sz Lp ]sF

[* nth integral term *]sz
[ sn 32 6 ln * lFx 532 ln * ln * 126 ln * + 9 + * * 3 ln lFx 6 ^ * / ]sI

[* nth exponent of 10 *]sz
[ 1 + 6 * 3 r - ]sE

[* nth term in series *]sz
[ d lIx r 10 r lEx _1 * ^ / ]sA

[* sum of the first n terms *]sz
[ [li lAx ls + ss li 1 - d si 0 r !<L]sL si 0ss lLx ls]sS

[* approximation of pi after n terms *]sz
[ lSx 1 r / v ]sP

[* count digits in a number *]sz
[sn 0 sd lCx ld]sD
[ld 1 + sd ln 10 0k / d sn 0 !=C]sC

[* print a number in a given column width *]sz
[sw d lDx si lw li <T n]sW
[[ ]n li 1 + si lw li <T]sT

[* main loop: print values for first 10 terms *]sz
[N. Integral part of Nth term .................. × 10^ =Actual value of Nth term]p
0 sj
[
  lj n [. ]n
  lj lIx 0k 1 / 44 lWx [ ]n
  lj lEx 4 lWx [ ]n
  lj 99k lAx 50k 1 / p
  lj 1 + d sj 10 >M
] sM
lMx

[]p

[* print resulting value of pi to 70 places *]sz
[Pi after ]n 52n [ iterations:]p
99k 52 lPx 70k 1 / p
Output:
N. Integral part of Nth term .................. × 10^ =Actual value of Nth term
0.                                           96    -3 .09600000000000000000000000000000000000000000000000
1.                                      5122560    -9 .00512256000000000000000000000000000000000000000000
2.                                 190722470400   -15 .00019072247040000000000000000000000000000000000000
3.                             7574824857600000   -21 .00000757482485760000000000000000000000000000000000
4.                        312546150372456000000   -27 .00000031254615037245600000000000000000000000000000
5.                   13207874703225491420651520   -33 .00000001320787470322549142065152000000000000000000
6.               567273919793089083292259942400   -39 .00000000056727391979308908329225994240000000000000
7.          24650600248172987140112763715584000   -45 .00000000002465060024817298714011276371558400000000
8.     1080657854354639453670407474439566400000   -51 .00000000000108065785435463945367040747443956640000
9. 47701779391594966287470570490839978880000000   -57 .00000000000004770177939159496628747057049083997888

3.1415926535897932384626433832795028841971693993751058209749445923078\
164

Erlang

This version uses integer math only (does not resort to a rational number package) Since the denominator is always a power of 10, it's possible to just keep track of the log of the denominator and scale the numerator accordingly; to keep track of the accuracy we get the order of magnitude of the difference between terms by subtracting the log of the numerator from the log of the denominator, so again, no rational arithmetic is needed.

However, Erlang does not have much in the way of calculating with large integers beyond basic arithmetic, so this version implements integer powers, logs, square roots, as well as the factorial function.

-mode(compile).

% Integer math routines: factorial, power, square root, integer logarithm.
%
fac(N) -> fac(N, 1).
fac(N, A) when N < 2 -> A;
fac(N, A) -> fac(N - 1, N*A).


pow(_, N) when N < 0 -> pow_domain_error;
pow(2, N) -> 1 bsl N;
pow(A, N) -> ipow(A, N).

ipow(_, 0) -> 1;
ipow(A, 1) -> A;
ipow(A, 2) -> A*A;
ipow(A, N) ->
    case N band 1 of
        0 -> X = ipow(A, N bsr 1), X*X;
        1 -> A * ipow(A, N - 1)
    end.

% integer logarithm, based on Zeckendorf representations of integers.
%    https://www.keithschwarz.com/interesting/code/?dir=zeckendorf-logarithm 
%    we need this, since the exponents get larger than IEEE-754 double can handle.

lognext({A, B, S, T}) -> {B, A+B, T, S*T}.
logprev({A, B, S, T}) -> {B-A, A, T div S, S}.

ilog(A, B) when (A =< 0) or (B < 2) -> ilog_domain_error;
ilog(A, B) ->
    UBound = bracket(A, {0, 1, 1, B}),
    backlog(A, UBound, 0).

bracket(A, State = {_, _, _, T}) when T > A -> State;
bracket(A, State) -> bracket(A, lognext(State)).

backlog(_, {0, _, 1, _}, Log) -> Log;
backlog(N, State = {A, _, S, _}, Log) when S =< N ->
    backlog(N div S, logprev(State), Log + A);
backlog(N, State, Log) -> backlog(N, logprev(State), Log).


isqrt(N) when N < 0 -> isqrt_domain_error;
isqrt(N) ->
    X0 = pow(2, ilog(N, 2) div 2),
    iterate(N, newton(X0, N), N).

iterate(A, B, _) when A =< B -> A;
iterate(_, B, N) -> iterate(B, newton(B, N), N).

newton(X, N) -> (X + N div X) div 2.


% With this out of the way, we can get down to some serious calculation.
%
term(N) -> {  % returns numerator and log10 of the denominator.
    (fac(6*N)*(N*(532*N + 126) + 9) bsl 5) div (3*pow(fac(N), 6)),
    6*N + 3
    }.

neg_term({N, D}) -> {-N, D}.
abs_term({N, D}) -> {abs(N), D}.

add_term(T1 = {_, D1}, T2 = {_, D2}) when D1 > D2 -> add_term(T2, T1);
add_term({N1, D1}, {N2, D2}) ->
    Scale = pow(10, D2 - D1),
    {N1*Scale + N2, D2}.

calculate(Prec) -> calculate(Prec, {0, 0}, 0).
calculate(Prec, T0, K) ->
    T1 = add_term(T0, term(K)),
    {N, D} = abs_term(add_term(neg_term(T1), T0)),
    Accuracy = D - ilog(N, 10),
    if
        Accuracy < Prec -> calculate(Prec, T1, K + 1);
        true -> T1
    end.

get_pi(Prec) ->
    {N0, D0} = calculate(Prec),
    % from the term, t = n0/10^d0, calculate 1/√t
    % if the denominator is an odd power of 10, add 1 to the denominator and multiply the numerator by 10.
    {N, D} = case D0 band 1 of
        0 -> {N0, D0};
        1 -> {10*N0, D0 + 1}
    end,
    [Three|Rest] = lists:sublist(
            integer_to_list(pow(10, D) div isqrt(N)), Prec),
    [Three, $. | Rest].

show_term({A, Decimals}) ->
    Str = integer_to_list(A),
    [$0, $.] ++ lists:duplicate(Decimals - length(Str), $0) ++ Str.

main(_) ->
    Terms = [term(N) || N <- lists:seq(0, 9)],
    io:format("The first 10 terms as scaled decimals are:~n"),
    [io:format("    ~s~n", [show_term(T)]) || T <- Terms],
    io:format("~nThe sum of these terms (pi^-2) is ~s~n",
                [show_term(lists:foldl(fun add_term/2, {0, 0}, Terms))]),
    Pi70 = get_pi(71),
    io:format("~npi to 70 decimal places:~n"),
    io:format("~s~n", [Pi70]).
Output:
The first 10 terms as scaled decimals are:
    0.096
    0.005122560
    0.000190722470400
    0.000007574824857600000
    0.000000312546150372456000000
    0.000000013207874703225491420651520
    0.000000000567273919793089083292259942400
    0.000000000024650600248172987140112763715584000
    0.000000000001080657854354639453670407474439566400000
    0.000000000000047701779391594966287470570490839978880000000

The sum of these terms (pi^-2) is 0.101321183642335555356499725503850584160514406378880000000

pi to 70 decimal places:
3.1415926535897932384626433832795028841971693993751058209749445923078164

F#

This task uses Isqrt_(integer_square_root)_of_X#F.23

// Almkvist-Giullera formula for pi. Nigel Galloway: August 17th., 2021
let factorial(n:bigint)=MathNet.Numerics.SpecialFunctions.Factorial n
let fN g=(532I*g*g+126I*g+9I)*(factorial(6I*g))/(3I*(factorial g)**6)
[0..9]|>Seq.iter(bigint>>fN>>(*)32I>>printfn "%A\n")
let _,n=Seq.unfold(fun(n,g)->let n=n*(10I**6)+fN g in Some(Isqrt((10I**(145+6*(int g)))/(32I*n)),(n,g+1I)))(0I,0I)|>Seq.pairwise|>Seq.find(fun(n,g)->n=g)
printfn $"""pi to 70 decimal places is %s{(n.ToString()).Insert(1,".")}"""
Output:
96
5122560
190722470400
7574824857600000
312546150372456000000
13207874703225491420651520
567273919793089083292259942400
24650600248172987140112763715584000
1080657854354639453670407474439566400000
47701779391594966287470570490839978880000000

pi to 70 decimal places is 3.14159265358979323846264338327950288419716939937510582097494459230781640

Factor

Works with: Factor version 0.99 2020-08-14
USING: continuations formatting io kernel locals math
math.factorials math.functions sequences ;

:: integer-term ( n -- m )
    32 6 n * factorial * 532 n sq * 126 n * + 9 + *
    n factorial 6 ^ 3 * / ;

: exponent-term ( n -- m ) 6 * 3 + neg ;

: nth-term ( n -- x )
    [ integer-term ] [ exponent-term 10^ * ] bi ;

! Factor doesn't have an arbitrary-precision square root afaik,
! so make one using Heron's method.

: sqrt-approx ( r x -- r' x ) [ over / + 2 / ] keep ;

:: almkvist-guillera ( precision -- x )
    0 0 :> ( summed! next-add! )
    [
        100,000,000 <iota> [| n |
            summed n nth-term + next-add!
            next-add summed - abs precision neg 10^ <
            [ return ] when
            next-add summed!
        ] each
    ] with-return
    next-add ;

CONSTANT: 1/pi 113/355  ! Use as initial guess for square root approximation

: pi ( -- )
    1/pi 70 almkvist-guillera 5 [ sqrt-approx ] times
    drop recip "%.70f\n" printf ;

! Task
"N                               Integer Portion  Pow  Nth Term (33 dp)" print
89 CHAR: - <repetition> print
10 [
    dup [ integer-term ] [ exponent-term ] [ nth-term ] tri
    "%d  %44d  %3d  %.33f\n" printf
] each-integer nl
"Pi to 70 decimal places:" print pi
Output:
N                               Integer Portion  Pow  Nth Term (33 dp)
-----------------------------------------------------------------------------------------
0                                            96   -3  0.096000000000000000000000000000000
1                                       5122560   -9  0.005122560000000000000000000000000
2                                  190722470400  -15  0.000190722470400000000000000000000
3                              7574824857600000  -21  0.000007574824857600000000000000000
4                         312546150372456000000  -27  0.000000312546150372456000000000000
5                    13207874703225491420651520  -33  0.000000013207874703225491420651520
6                567273919793089083292259942400  -39  0.000000000567273919793089083292260
7           24650600248172987140112763715584000  -45  0.000000000024650600248172987140113
8      1080657854354639453670407474439566400000  -51  0.000000000001080657854354639453670
9  47701779391594966287470570490839978880000000  -57  0.000000000000047701779391594966287

Pi to 70 decimal places:
3.1415926535897932384626433832795028841971693993751058209749445923078164

FreeBASIC

' version 10-10-2024
' compile with: fbc -s console

#Include Once "gmp.bi"
#Include Once "crt/stdio.bi"

#Define prec 70

Dim As UInteger n, tmp
Dim As String buffer = Space(50)
Dim As ZString Ptr gmp_str : gmp_str = Allocate(prec * 100)

Dim As Mpz_ptr t1, t2, t3, t4
t1  = Allocate(Len(__Mpz_struct)) : Mpz_init(t1)
t2  = Allocate(Len(__Mpz_struct)) : Mpz_init(t2)
t3  = Allocate(Len(__Mpz_struct)) : Mpz_init(t3)

Dim As mpf_ptr f1, f2, sum, pi
f1  = Allocate(Len(__Mpf_struct)) : Mpf_init2(f1, prec * 10)
f2  = Allocate(Len(__Mpf_struct)) : Mpf_init2(f2, prec * 10)
sum = Allocate(Len(__Mpf_struct)) : Mpf_init2(sum, prec * 10)
pi  = Allocate(Len(__Mpf_struct)) : Mpf_init2(pi, prec * 10)

For n = 0 To prec

    mpz_fac_ui(t1, 6 * n)

    mpz_ui_pow_ui(t2 , n, 2)
    mpz_mul_ui(t2, t2, 532)
    mpz_set_ui(t3, n)
    mpz_mul_ui(t3, t3, 126)
    mpz_add(t2, t2, t3)
    mpz_add_ui(t2, t2, 9)

    mpz_fac_ui(t3, n)
    mpz_pow_ui(t3, t3, 6)
    mpz_mul_ui(t3, t3, 3)

    mpz_mul(t1, t1, t2)
    mpz_mul_2exp(t1, t1, 5)
    mpz_divexact(t1, t1, t3)

    Mpz_get_str(gmp_str, 10, t1)
    If n < 10 Then
        RSet buffer, *gmp_str
        Print n; buffer
    EndIf

    tmp = 6 * n +3
    mpf_set_z(f1, t1)
    mpf_set_ui(f2, 10)
    mpf_pow_ui(f2, f2, tmp)
    mpf_div(f1, f1, f2)
    mpf_add(sum, sum, f1)

    If tmp - Len(*gmp_Str) > prec Then
        Print
        Print "Pi with 70 decimal digits of precision"
        mpf_sqrt(f2, sum)
        mpf_ui_div(pi , 1 , f2)
        gmp_printf (!"pi = %.*Ff \n", 70, pi)
        fflush(stdout)
        Exit For
    EndIf

Next

mpz_clears(t1, t2, t3, NULL)
mpf_clears(f1, f2, sum, pi, NULL)
DeAllocate(gmp_str)


' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
Output:
0                                                96
1                                           5122560
2                                      190722470400
3                                  7574824857600000
4                             312546150372456000000
5                        13207874703225491420651520
6                    567273919793089083292259942400
7               24650600248172987140112763715584000
8          1080657854354639453670407474439566400000
9      47701779391594966287470570490839978880000000

Pi with 70 decimal digits of precision
pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164

Go

Translation of: Wren
package main

import (
    "fmt"
    "math/big"
    "strings"
)

func factorial(n int64) *big.Int {
    var z big.Int
    return z.MulRange(1, n)
}

var one = big.NewInt(1)
var three = big.NewInt(3)
var six = big.NewInt(6)
var ten = big.NewInt(10)
var seventy = big.NewInt(70)

func almkvistGiullera(n int64, print bool) *big.Rat {
    t1 := big.NewInt(32)
    t1.Mul(factorial(6*n), t1)
    t2 := big.NewInt(532*n*n + 126*n + 9)
    t3 := new(big.Int)
    t3.Exp(factorial(n), six, nil)
    t3.Mul(t3, three)
    ip := new(big.Int)
    ip.Mul(t1, t2)
    ip.Quo(ip, t3)
    pw := 6*n + 3
    t1.SetInt64(pw)
    tm := new(big.Rat).SetFrac(ip, t1.Exp(ten, t1, nil))
    if print {
        fmt.Printf("%d  %44d  %3d  %-35s\n", n, ip, -pw, tm.FloatString(33))
    }
    return tm
}

func main() {
    fmt.Println("N                               Integer Portion  Pow  Nth Term (33 dp)")
    fmt.Println(strings.Repeat("-", 89))
    for n := int64(0); n < 10; n++ {
        almkvistGiullera(n, true)
    }

    sum := new(big.Rat)
    prev := new(big.Rat)
    pow70 := new(big.Int).Exp(ten, seventy, nil)
    prec := new(big.Rat).SetFrac(one, pow70)
    n := int64(0)
    for {
        term := almkvistGiullera(n, false)
        sum.Add(sum, term)
        z := new(big.Rat).Sub(sum, prev)
        z.Abs(z)
        if z.Cmp(prec) < 0 {
            break
        }
        prev.Set(sum)
        n++
    }
    sum.Inv(sum)
    pi := new(big.Float).SetPrec(256).SetRat(sum)
    pi.Sqrt(pi)
    fmt.Println("\nPi to 70 decimal places is:")
    fmt.Println(pi.Text('f', 70))
}
Output:
N                               Integer Portion  Pow  Nth Term (33 dp)
-----------------------------------------------------------------------------------------
0                                            96   -3  0.096000000000000000000000000000000
1                                       5122560   -9  0.005122560000000000000000000000000
2                                  190722470400  -15  0.000190722470400000000000000000000
3                              7574824857600000  -21  0.000007574824857600000000000000000
4                         312546150372456000000  -27  0.000000312546150372456000000000000
5                    13207874703225491420651520  -33  0.000000013207874703225491420651520
6                567273919793089083292259942400  -39  0.000000000567273919793089083292260
7           24650600248172987140112763715584000  -45  0.000000000024650600248172987140113
8      1080657854354639453670407474439566400000  -51  0.000000000001080657854354639453670
9  47701779391594966287470570490839978880000000  -57  0.000000000000047701779391594966287

Pi to 70 decimal places is:
3.1415926535897932384626433832795028841971693993751058209749445923078164

Haskell

Library: numbers
Translation of: Common Lisp
import Control.Monad
import Data.Number.CReal
import GHC.Integer
import Text.Printf

iterations = 52
main = do
  printf "N. %44s %4s %s\n" 
          "Integral part of Nth term" "×10^" "=Actual value of Nth term"

  forM_ [0..9] $ \n ->
    printf "%d. %44d %4d %s\n" n
                               (almkvistGiulleraIntegral n)
                               (tenExponent n)
                               (showCReal 50 (almkvistGiullera n))

  printf "\nPi after %d iterations:\n" iterations
  putStrLn $ showCReal 70 $ almkvistGiulleraPi iterations

-- The integral part of the Nth term in the Almkvist-Giullera series
almkvistGiulleraIntegral n =
  let polynomial  = (532 `timesInteger` n `timesInteger` n) `plusInteger` (126 `timesInteger` n) `plusInteger` 9
      numerator   = 32 `timesInteger` (facInteger (6 `timesInteger` n)) `timesInteger` polynomial
      denominator = 3 `timesInteger` (powInteger (facInteger n) 6)
   in numerator `divInteger` denominator

-- The exponent for 10 in the Nth term of the series
tenExponent n = 3 `minusInteger` (6 `timesInteger` (1 `plusInteger` n))

-- The Nth term in the series (integral * 10^tenExponent)
almkvistGiullera n = fromInteger (almkvistGiulleraIntegral n) / fromInteger (powInteger 10 (abs (tenExponent n)))

-- The sum of the first N terms
almkvistGiulleraSum n = sum $ map almkvistGiullera [0 .. n]

-- The approximation of pi from the first N terms
almkvistGiulleraPi n = sqrt $ 1 / almkvistGiulleraSum n

-- Utility: factorial for arbitrary-precision integers
facInteger n = if n `leInteger` 1 then 1 else n `timesInteger` facInteger (n `minusInteger` 1)

-- Utility: exponentiation for arbitrary-precision integers
powInteger 1 _ = 1
powInteger _ 0 = 1
powInteger b 1 = b
powInteger b e = b `timesInteger` powInteger b (e `minusInteger` 1)
Output:
N.                    Integral part of Nth term ×10^ =Actual value of Nth term
0.                                           96   -3 0.096
1.                                      5122560   -9 0.00512256
2.                                 190722470400  -15 0.0001907224704
3.                             7574824857600000  -21 0.0000075748248576
4.                        312546150372456000000  -27 0.000000312546150372456
5.                   13207874703225491420651520  -33 0.00000001320787470322549142065152
6.               567273919793089083292259942400  -39 0.0000000005672739197930890832922599424
7.          24650600248172987140112763715584000  -45 0.000000000024650600248172987140112763715584
8.     1080657854354639453670407474439566400000  -51 0.0000000000010806578543546394536704074744395664
9. 47701779391594966287470570490839978880000000  -57 0.00000000000004770177939159496628747057049083997888

Pi after 52 iterations:
3.1415926535897932384626433832795028841971693993751058209749445923078164

J

This solution just has it hard-coded that 53 iterations is necessary for 70 decimals. It would be possible to write a loop with a test, though in practice it would also be acceptable to just experiment to find the number of iterations.

sqrt is noticeably slow, bringing execution time to over 1 second. I'm not sure if it's because it's coded imperatively using traditional loops vs. J point-free style, or if it's due to the fact that the numbers are very large. I suspect the latter since it only takes 4 iterations of Heron's method to get the square root.

numerator =: monad define "0
    (3 * (! x: y)^6) %~ 32 * (!6x*y) * (y*(126 + 532*y)) + 9x
)

term =: numerator % 10x ^ 3 + 6&*

echo 'The first 10 numerators are:'
echo ,. numerator i.10

echo ''
echo 'The sum of the first 10 terms (pi^-2) is ', 0j15 ": +/ term i.10

heron =: [: -: ] + %

sqrt =: dyad define NB. usage: x0 tolerance sqrt x
                    NB. e.g.: (1, %10^100x) sqrt 2 -> √2 to 100 decimals as a ratio p/q
    x0  =. }: x
    eps =. }. x
    x1  =. y heron x0
    while. (| x1 - x0) > eps do.
        x2 =. y heron x1
        x0 =. x1
        x1 =. x2
    end.
    x1
)

pi70 =. (355r113, %10^70x) sqrt % +/ term i.53
echo ''
echo 'pi to 70 decimals: ', 0j70 ": pi70
exit ''
Output:
The first 10 numerators are:
                                          96
                                     5122560
                                190722470400
                            7574824857600000
                       312546150372456000000
                  13207874703225491420651520
              567273919793089083292259942400
         24650600248172987140112763715584000
    1080657854354639453670407474439566400000
47701779391594966287470570490839978880000000

The sum of the first 10 terms (pi^-2) is 0.101321183642336

pi to 70 decimals: 3.1415926535897932384626433832795028841971693993751058209749445923078164

Java

import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.MathContext;
import java.math.RoundingMode;

public final class AlmkvistGiulleraFormula {

	public static void main(String[] aArgs) {
		System.out.println("n                                   Integer part");
		System.out.println("================================================");
		for ( int n = 0; n <= 9; n++ ) {
			System.out.println(String.format("%d%47s", n, almkvistGiullera(n).toString()));
		}
		
		final int decimalPlaces = 70;
		final MathContext mathContext = new MathContext(decimalPlaces + 1, RoundingMode.HALF_EVEN);
		final BigDecimal epsilon = BigDecimal.ONE.divide(BigDecimal.TEN.pow(decimalPlaces));		
		BigDecimal previous = BigDecimal.ONE;		
		BigDecimal sum = BigDecimal.ZERO;
		BigDecimal pi = BigDecimal.ZERO;
		int n = 0;
		
		while ( pi.subtract(previous).abs().compareTo(epsilon) >= 0 ) {
			BigDecimal nextTerm = new BigDecimal(almkvistGiullera(n)).divide(BigDecimal.TEN.pow(6 * n + 3));			
			sum = sum.add(nextTerm);			
			previous = pi;
			n += 1;
			pi = BigDecimal.ONE.divide(sum, mathContext).sqrt(mathContext);
		}
		
		System.out.println(System.lineSeparator() + "pi to " + decimalPlaces + " decimal places:");
		System.out.println(pi);
	}	
	
	// The integer part of the n'th term of Almkvist-Giullera series.
	private static BigInteger almkvistGiullera(int aN) {
	    BigInteger term1 = factorial(6 * aN).multiply(BigInteger.valueOf(32));
	    BigInteger term2 = BigInteger.valueOf(532 * aN * aN + 126 * aN + 9);
	    BigInteger term3 = factorial(aN).pow(6).multiply(BigInteger.valueOf(3));
	    return term1.multiply(term2).divide(term3);
	}

	private static BigInteger factorial(int aNumber) {
	    BigInteger result = BigInteger.ONE;
	    for ( int i = 2; i <= aNumber; i++ ) {
	    	result = result.multiply(BigInteger.valueOf(i));
	    }
	    return result;
	}
	
}
Output:
n                                   Integer part
================================================
0                                             96
1                                        5122560
2                                   190722470400
3                               7574824857600000
4                          312546150372456000000
5                     13207874703225491420651520
6                 567273919793089083292259942400
7            24650600248172987140112763715584000
8       1080657854354639453670407474439566400000
9   47701779391594966287470570490839978880000000

pi to 70 decimal places:
3.1415926535897932384626433832795028841971693993751058209749445923078164

JavaScript

Translation of: Common Lisp
Works with: Node.js version 13+
Library: es-main

to support use of module as main code

import esMain from 'es-main';
import { BigFloat, set_precision as SetPrecision } from 'bigfloat-esnext';

const Iterations = 52;

export const demo = function() {
  SetPrecision(-75);
  console.log("N." + "Integral part of Nth term".padStart(45) + " ×10^ =Actual value of Nth term");
  for (let i=0; i<10; i++) {
    let line = `${i}. `;
    line += `${integral(i)} `.padStart(45);
    line += `${tenExponent(i)} `.padStart(5);
    line += nthTerm(i);
    console.log(line);
  }

  let pi = approximatePi(Iterations);
  SetPrecision(-70);
  pi = pi.dividedBy(100000).times(100000);
  console.log(`\nPi after ${Iterations} iterations: ${pi}`)
}

export const bigFactorial = n => n <= 1n ? 1n : n * bigFactorial(n-1n);

// the nth integer term
export const integral = function(i) {
  let n = BigInt(i);
  const polynomial  = 532n * n * n + 126n * n + 9n;
  const numerator   = 32n * bigFactorial(6n * n) * polynomial;
  const denominator = 3n * bigFactorial(n) ** 6n;
  return numerator / denominator;
}

// the exponent for 10 in the nth term of the series
export const tenExponent = n => 3n - 6n * (BigInt(n) + 1n);

// the nth term of the series
export const nthTerm = n =>
  new BigFloat(integral(n)).dividedBy(new BigFloat(10n ** -tenExponent(n)))

// the sum of the first n terms
export const sumThrough = function(n) {
  let sum = new BigFloat(0);
  for (let i=0; i<=n; ++i) {
    sum = sum.plus(nthTerm(i));
  }
  return sum;
}

// the approximation to pi after n terms
export const approximatePi  = n =>
   new BigFloat(1).dividedBy(sumThrough(n)).sqrt();

if (esMain(import.meta))
   demo();
Output:
N.                    Integral part of Nth term ×10^ =Actual value of Nth term
0.                                           96   -3 0.096
1.                                      5122560   -9 0.00512256
2.                                 190722470400  -15 0.0001907224704
3.                             7574824857600000  -21 0.0000075748248576
4.                        312546150372456000000  -27 0.000000312546150372456
5.                   13207874703225491420651520  -33 0.00000001320787470322549142065152
6.               567273919793089083292259942400  -39 0.0000000005672739197930890832922599424
7.          24650600248172987140112763715584000  -45 0.000000000024650600248172987140112763715584
8.     1080657854354639453670407474439566400000  -51 0.0000000000010806578543546394536704074744395664
9. 47701779391594966287470570490839978880000000  -57 0.00000000000004770177939159496628747057049083997888

Pi after 52 iterations: 3.1415926535897932384626433832795028841971693993751058209749445923078164

jq

Adapted from Wren

Works with gojq, the Go implementation of jq

This entry uses the "rational" module, which can be found at Arithmetic/Rational#jq.

Preliminaries

# A reminder to include the "rational" module:
# include "rational";

def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;

# To take advantage of gojq's arbitrary-precision integer arithmetic:
def power($b): . as $in | reduce range(0;$b) as $i (1; . * $in);

def factorial:
    if . < 2 then 1
    else reduce range(2;.+1) as $i (1; .*$i)
    end;

Almkvist-Giullera Formula

def almkvistGiullera(print):
  . as $n
  | ((6*$n) | factorial * 32) as $t1
  | (532*$n*$n + 126*$n + 9) as $t2
  | (($n | factorial | power(6))*3) as $t3
  | ($t1 * $t2 / $t3) as $ip
  | ( 6*$n + 3) as $pw
  | r($ip; 10 | power($pw)) as $tm
  | if print
    then "\($n|lpad(2)) \($ip|lpad(44)) \(-$pw|lpad(3)), \($tm|r_to_decimal(100))"
    else $tm
    end;

The Tasks

def task1:
  "N                               Integer Portion  Pow  Nth Term",
  ("-" * 89),
  (range(0;10) | almkvistGiullera(true)) ;

def task2($precision):
  r(1; 10 | power($precision)) as $p
  | {sum: r(0;1), prev: r(0;1), n:  0 }
  | until(.stop;
    .sum = radd(.sum; .n | almkvistGiullera(false))
    | if rminus(.sum; .prev) | rabs | rlessthan($p)
      then .stop = true
      else .prev = .sum
      | .n += 1
      end)
   | .sum | rinv
   | rsqrt($precision)
   | "\nPi to \($precision) decimal places is:",
    "\(r_to_decimal($precision))" ;

task1,
""
task2(70)
Output:
N                               Integer Portion  Pow  Nth Term
-----------------------------------------------------------------------------------------
 0                                           96  -3, 0.096
 1                                      5122560  -9, 0.00512256
 2                                 190722470400 -15, 0.0001907224704
 3                             7574824857600000 -21, 0.0000075748248576
 4                        312546150372456000000 -27, 0.000000312546150372456
 5                   13207874703225491420651520 -33, 0.00000001320787470322549142065152
 6               567273919793089083292259942400 -39, 0.0000000005672739197930890832922599424
 7          24650600248172987140112763715584000 -45, 0.000000000024650600248172987140112763715584
 8     1080657854354639453670407474439566400000 -51, 0.0000000000010806578543546394536704074744395664
 9 47701779391594966287470570490839978880000000 -57, 0.00000000000004770177939159496628747057049083997888

Pi to 70 decimal places is:
3.1415926535897932384626433832795028841971693993751058209749445923078164

Julia

using Formatting

setprecision(BigFloat, 300)

function integerterm(n)
    p = BigInt(532) * n * n + BigInt(126) * n + 9
    return (p * BigInt(2)^5 * factorial(BigInt(6) * n)) ÷ (3 * factorial(BigInt(n))^6)
end

exponentterm(n) = -(6n + 3)

nthterm(n) = integerterm(n) * big"10.0"^exponentterm(n)

println("  N                       Integer Term              Power of 10     Nth Term")
println("-"^90)
for n in 0:9
    println(lpad(n, 3), lpad(integerterm(n), 48), lpad(exponentterm(n), 4),
        lpad(format("{1:22.19e}", nthterm(n)), 35))
end

function AlmkvistGuillera(floatprecision)
    summed = nthterm(0)
    for n in 1:10000000
        next = summed + nthterm(n)
        if abs(next - summed) < big"10.0"^(-floatprecision)
            return next
        end
        summed = next
    end
end

println("\nπ to 70 digits is ", format(big"1.0" / sqrt(AlmkvistGuillera(70)), precision=70))

println("Computer π is     ", format(π + big"0.0", precision=70))
Output:
  N                       Integer Term              Power of 10     Nth Term
------------------------------------------------------------------------------------------
  0                                              96  -3          9.6000000000000000000e-02
  1                                         5122560  -9          5.1225600000000000000e-03
  2                                    190722470400 -15          1.9072247040000000000e-04
  3                                7574824857600000 -21          7.5748248576000000000e-06
  4                           312546150372456000000 -27          3.1254615037245600000e-07
  5                      13207874703225491420651520 -33          1.3207874703225491421e-08
  6                  567273919793089083292259942400 -39          5.6727391979308908329e-10
  7             24650600248172987140112763715584000 -45          2.4650600248172987140e-11
  8        1080657854354639453670407474439566400000 -51          1.0806578543546394537e-12
  9    47701779391594966287470570490839978880000000 -57          4.7701779391594966287e-14

π to 70 digits is 3.1415926535897932384626433832795028841971693993751058209749445923078164
Computer π is     3.1415926535897932384626433832795028841971693993751058209749445923078164

Kotlin

Translation of: Java
import java.math.BigDecimal
import java.math.BigInteger
import java.math.MathContext
import java.math.RoundingMode

object CodeKt{

    @JvmStatic
    fun main(args: Array<String>) {
        println("n                                   Integer part")
        println("================================================")
        for (n in 0..9) {
            println(String.format("%d%47s", n, almkvistGiullera(n).toString()))
        }

        val decimalPlaces = 70
        val mathContext = MathContext(decimalPlaces + 1, RoundingMode.HALF_EVEN)
        val epsilon = BigDecimal.ONE.divide(BigDecimal.TEN.pow(decimalPlaces))
        var previous = BigDecimal.ONE
        var sum = BigDecimal.ZERO
        var pi = BigDecimal.ZERO
        var n = 0

        while (pi.subtract(previous).abs().compareTo(epsilon) >= 0) {
            val nextTerm = BigDecimal(almkvistGiullera(n)).divide(BigDecimal.TEN.pow(6 * n + 3), mathContext)
            sum = sum.add(nextTerm)
            previous = pi
            n += 1
            pi = BigDecimal.ONE.divide(sum, mathContext).sqrt(mathContext)
        }

        println("\npi to $decimalPlaces decimal places:")
        println(pi)
    }

    private fun almkvistGiullera(aN: Int): BigInteger {
        val term1 = factorial(6 * aN) * BigInteger.valueOf(32)
        val term2 = BigInteger.valueOf(532L * aN * aN + 126 * aN + 9)
        val term3 = factorial(aN).pow(6) * BigInteger.valueOf(3)
        return term1 * term2 / term3
    }

    private fun factorial(aNumber: Int): BigInteger {
        var result = BigInteger.ONE
        for (i in 2..aNumber) {
            result *= BigInteger.valueOf(i.toLong())
        }
        return result
    }

    private fun BigDecimal.sqrt(context: MathContext): BigDecimal {
        var x = BigDecimal(Math.sqrt(this.toDouble()), context)
        if (this == BigDecimal.ZERO) return BigDecimal.ZERO
        val two = BigDecimal.valueOf(2)
        while (true) {
            val y = this.divide(x, context)
            x = x.add(y).divide(two, context)
            val nextY = this.divide(x, context)
            if (y == nextY || y == nextY.add(BigDecimal.ONE.divide(BigDecimal.TEN.pow(context.precision), context))) {
                break
            }
        }
        return x
    }
}
Output:
n                                   Integer part
================================================
0                                             96
1                                        5122560
2                                   190722470400
3                               7574824857600000
4                          312546150372456000000
5                     13207874703225491420651520
6                 567273919793089083292259942400
7            24650600248172987140112763715584000
8       1080657854354639453670407474439566400000
9   47701779391594966287470570490839978880000000

pi to 70 decimal places:
3.1415926535897932384626433832795028841971693993751058209749445923078164

Mathematica /Wolfram Language

ClearAll[numerator, denominator]
numerator[n_] := (2^5) ((6 n)!) (532 n^2 + 126 n + 9)/(3 (n!)^6)
denominator[n_] := 10^(6 n + 3)
numerator /@ Range[0, 9]
val = 1/Sqrt[Total[numerator[#]/denominator[#] & /@ Range[0, 100]]];
N[val, 70]
Output:
{96,5122560,190722470400,7574824857600000,312546150372456000000,13207874703225491420651520,567273919793089083292259942400,24650600248172987140112763715584000,1080657854354639453670407474439566400000,47701779391594966287470570490839978880000000}
3.141592653589793238462643383279502884197169399375105820974944592307816

Nim

Library: nim-decimal

Derived from Wren version with some simplifications.

import strformat, strutils
import decimal

proc fact(n: int): DecimalType =
  result = newDecimal(1)
  if n < 2: return
  for i in 2..n:
    result *= i

proc almkvistGiullera(n: int): DecimalType =
  ## Return the integer portion of the nth term of Almkvist-Giullera sequence.
  let t1 = fact(6 * n) * 32
  let t2 = 532 * n * n + 126 * n + 9
  let t3 = fact(n) ^ 6 * 3
  result = t1 * t2 / t3

let One = newDecimal(1)

setPrec(78)
echo "N                               Integer portion"
echo repeat('-', 47)
for n in 0..9:
  echo &"{n}  {almkvistGiullera(n):>44}"
echo()

echo "Pi to 70 decimal places:"
var
  sum = newDecimal(0)
  prev = newDecimal(0)
  prec = One.scaleb(newDecimal(-70))
  n = 0
while true:
  sum += almkvistGiullera(n) / One.scaleb(newDecimal(6 * n + 3))
  if abs(sum - prev) < prec: break
  prev = sum.clone
  inc n
let pi = 1 / sqrt(sum)
echo ($pi)[0..71]
Output:
N                               Integer portion
-----------------------------------------------
0                                            96
1                                       5122560
2                                  190722470400
3                              7574824857600000
4                         312546150372456000000
5                    13207874703225491420651520
6                567273919793089083292259942400
7           24650600248172987140112763715584000
8      1080657854354639453670407474439566400000
9  47701779391594966287470570490839978880000000

Pi to 70 decimal places:
3.1415926535897932384626433832795028841971693993751058209749445923078164

Perl

Translation of: Raku
use strict;
use warnings;
use feature qw(say);
use Math::AnyNum qw(:overload factorial);

sub almkvist_giullera_integral {
    my($n) = @_;
    (32 * (14*$n * (38*$n + 9) + 9) * factorial(6*$n)) / (3*factorial($n)**6);
}

sub almkvist_giullera {
    my($n) = @_;
    almkvist_giullera_integral($n) / (10**(6*$n + 3));
}

sub almkvist_giullera_pi {
    my ($prec) = @_;

    local $Math::AnyNum::PREC = 4*($prec+1);

    my $sum = 0;
    my $target = '';

    for (my $n = 0; ; ++$n) {
        $sum += almkvist_giullera($n);
        my $curr = ($sum**-.5)->as_dec;
        return $target if ($curr eq $target);
        $target = $curr;
    }
}

say 'First 10 integer portions: ';
say "$_  " . almkvist_giullera_integral($_) for 0..9;

my $precision = 70;

printf("π to %s decimal places is:\n%s\n",
    $precision, almkvist_giullera_pi($precision));
Output:
First 10 integer portions:
0  96
1  5122560
2  190722470400
3  7574824857600000
4  312546150372456000000
5  13207874703225491420651520
6  567273919793089083292259942400
7  24650600248172987140112763715584000
8  1080657854354639453670407474439566400000
9  47701779391594966287470570490839978880000000
π to 70 decimal places is:
3.1415926535897932384626433832795028841971693993751058209749445923078164

Phix

with javascript_semantics
requires("1.0.0") 
include mpfr.e
mpfr_set_default_precision(-70)
 
function almkvistGiullera(integer n, bool bPrint)
    mpz {t1,t2,ip} = mpz_inits(3)
    mpz_fac_ui(t1,6*n) 
    mpz_mul_si(t1,t1,32)                -- t1:=2^5*(6n)!
    mpz_fac_ui(t2,n)
    mpz_pow_ui(t2,t2,6)
    mpz_mul_si(t2,t2,3)                 -- t2:=3*(n!)^6
    mpz_mul_si(ip,t1,532*n*n+126*n+9)   -- ip:=t1*(532n^2+126n+9)
    mpz_fdiv_q(ip,ip,t2)                -- ip:=ip/t2
    integer pw := 6*n+3
    mpz_ui_pow_ui(t1,10,pw)             -- t1 := 10^(6n+3)
    mpq tm = mpq_init_set_z(ip,t1)      -- tm := rat(ip/t1)
    if bPrint then
        string ips = mpz_get_str(ip),
               tms = mpfr_get_fixed(mpfr_init_set_q(tm),50)
        tms = trim_tail(tms,"0")
        printf(1,"%d  %44s  %3d  %s\n", {n, ips, -pw, tms})
    end if
    return tm
end function
 
constant hdr = "N --------------- Integer portion -------------  Pow  ----------------- Nth term (50 dp) -----------------"
printf(1,"%s\n%s\n",{hdr,repeat('-',length(hdr))})
for n=0 to 9 do
    {} = almkvistGiullera(n, true)
end for
 
mpq {res,prev,z} = mpq_inits(3),
    prec = mpq_init_set_str(sprintf("1/1%s",repeat('0',70)))
integer n = 0
while true do
    mpq term := almkvistGiullera(n, false)
    mpq_add(res,res,term)
    mpq_sub(z,res,prev)
    mpq_abs(z,z)
    if mpq_cmp(z,prec) < 0 then exit end if
    mpq_set(prev,res)
    n += 1
end while
mpq_inv(res,res)
mpfr pi = mpfr_init_set_q(res)
mpfr_sqrt(pi,pi)
printf(1,"\nCalculation of pi took %d iterations using the Almkvist-Giullera formula.\n\n",n)
printf(1,"Pi to 70 d.p.: %s\n",mpfr_get_fixed(pi,70))
mpfr_const_pi(pi)
printf(1,"Pi (builtin) : %s\n",mpfr_get_fixed(pi,70))
Output:
N --------------- Integer portion -------------  Pow  ----------------- Nth term (50 dp) -----------------
----------------------------------------------------------------------------------------------------------
0                                            96   -3  0.096
1                                       5122560   -9  0.00512256
2                                  190722470400  -15  0.0001907224704
3                              7574824857600000  -21  0.0000075748248576
4                         312546150372456000000  -27  0.000000312546150372456
5                    13207874703225491420651520  -33  0.00000001320787470322549142065152
6                567273919793089083292259942400  -39  0.0000000005672739197930890832922599424
7           24650600248172987140112763715584000  -45  0.000000000024650600248172987140112763715584
8      1080657854354639453670407474439566400000  -51  0.0000000000010806578543546394536704074744395664
9  47701779391594966287470570490839978880000000  -57  0.00000000000004770177939159496628747057049083997888

Calculation of pi took 52 iterations using the Almkvist-Giullera formula.

Pi to 70 d.p.: 3.1415926535897932384626433832795028841971693993751058209749445923078164
Pi (builtin) : 3.1415926535897932384626433832795028841971693993751058209749445923078164

PicoLisp

(scl 70)
(de fact (N)
   (if (=0 N)
      1
      (* N (fact (dec N))) ) )
(de almkvist (N)
   (let
      (A (* 32 (fact (* 6 N)))
         B (+ (* 532 N N) (* 126 N) 9)
         C (* (** (fact N) 6) 3) )
      (/ (* A B) C) ) )
(de integral (N)
   (*/
      1.0
      (almkvist N)
      (** 10 (+ 3 (* 6 N))) ) )
(let (S 0  N -1)
   (do 10
      (println (inc 'N) (almkvist N)) )
   (prinl)
   (setq N -1)
   (while (gt0 (integral (inc 'N)))
      (inc 'S @) )
   (setq S (sqrt (*/ 1.0 1.0 S) 1.0))
   (prinl "Pi to 70 decimal places is:")
   (prinl (format S *Scl)) )
Output:
0 96
1 5122560
2 190722470400
3 7574824857600000
4 312546150372456000000
5 13207874703225491420651520
6 567273919793089083292259942400
7 24650600248172987140112763715584000
8 1080657854354639453670407474439566400000
9 47701779391594966287470570490839978880000000

Pi to 70 decimal places is:
3.1415926535897932384626433832795028841971693993751058209749445923078152

Python

import mpmath as mp

with mp.workdps(72):

    def integer_term(n):
        p = 532 * n * n + 126 * n + 9
        return (p * 2**5 * mp.factorial(6 * n)) / (3 * mp.factorial(n)**6)

    def exponent_term(n):
        return -(mp.mpf("6.0") * n + 3)

    def nthterm(n):
        return integer_term(n) * mp.mpf("10.0")**exponent_term(n)


    for n in range(10):
        print("Term ", n, '  ', int(integer_term(n)))


    def almkvist_guillera(floatprecision):
        summed, nextadd = mp.mpf('0.0'), mp.mpf('0.0')
        for n in range(100000000):
            nextadd = summed + nthterm(n)
            if abs(nextadd - summed) < 10.0**(-floatprecision):
                break

            summed = nextadd

        return nextadd


    print('\nπ to 70 digits is ', end='')
    mp.nprint(mp.mpf(1.0 / mp.sqrt(almkvist_guillera(70))), 71)
    print('mpmath π is       ', end='')
    mp.nprint(mp.pi, 71)
Output:
Term  0    96
Term  1    5122560
Term  2    190722470400
Term  3    7574824857600000
Term  4    312546150372456000000
Term  5    13207874703225491420651520
Term  6    567273919793089083292259942400
Term  7    24650600248172987140112763715584000
Term  8    1080657854354639453670407474439566400000
Term  9    47701779391594966287470570490839978880000000

π to 70 digits is 3.1415926535897932384626433832795028841971693993751058209749445923078164
mpmath π is       3.1415926535897932384626433832795028841971693993751058209749445923078164

Quackery

  [ $ "bigrat.qky" loadfile ] now!

  [ 1 swap times [ i^ 1+ * ] ] is !       ( n --> n   )

  [ dup dup 2 ** 532 *
    over 126 * + 9 +
    swap 6 * ! * 32 *
    swap ! 6 ** 3 * / ]        is intterm ( n --> n   )

  [ dup intterm 
    10 rot 6 * 3 + ** 
    reduce ]                   is vterm   ( n --> n/d )

  10 times [ i^ intterm echo cr ] cr
  
  0 n->v 
  53 times [ i^ vterm v+ ]
  1/v 70 vsqrt drop 
  70 point$ echo$ cr
Output:
96
5122560
190722470400
7574824857600000
312546150372456000000
13207874703225491420651520
567273919793089083292259942400
24650600248172987140112763715584000
1080657854354639453670407474439566400000
47701779391594966287470570490839978880000000

3.1415926535897932384626433832795028841971693993751058209749445923078164

Raku

# 20201013 Raku programming solution

use BigRoot;
use Rat::Precise;
use experimental :cached;

BigRoot.precision = 75 ;
my $Precision     = 70 ;
my $AGcache       =  0 ;

sub postfix:<!>(Int $n --> Int) is cached { [*] 1 .. $n }

sub Integral(Int $n --> Int) is cached {
   (2*(6*$n)! * (532*$n² + 126*$n + 9)) div (3*($n!))
}

sub A-G(Int $n --> FatRat) is cached { # Almkvist-Giullera
   Integral($n).FatRat / (10**(6*$n + 3)).FatRat
}

sub Pi(Int $n --> Str) {
   (1/(BigRoot.newton's-sqrt: $AGcache += A-G $n)).precise($Precision)
}

say "First 10 integer portions : ";
say $_, "\t", Integral $_ for ^10;

my $target = Pi my $Nth = 0;

loop { $target eq ( my $next = Pi ++$Nth ) ?? ( last ) !! $target = $next }

say "π to $Precision decimal places is :\n$target"
Output:
First 10 integer portions :
0       96
1       5122560
2       190722470400
3       7574824857600000
4       312546150372456000000
5       13207874703225491420651520
6       567273919793089083292259942400
7       24650600248172987140112763715584000
8       1080657854354639453670407474439566400000
9       47701779391594966287470570490839978880000000
π to 70 decimal places is :
3.1415926535897932384626433832795028841971693993751058209749445923078164

REXX

/*REXX program uses the Almkvist─Giullera formula for   1 / (pi**2)     [or  pi ** -2]. */
numeric digits length( pi() )  +  length(.);                                       w= 102
say $(   , 3)       $(              , w%2)       $('power', 5)       $(          , w)
say $('N', 3)       $('integer term', w%2)       $('of 10', 5)       $('Nth term', w)
say $(   , 3, "─")  $(              , w%2, "─")  $(       , 5, "─")  $(          , w, "─")
                                  s= 0           /*initialize   S   (the sum)  to zero. */
     do n=0  until old=s;    old= s              /*use the "older" value of  S  for OLD.*/
     a= 2**5  *  !(6*n)  *  (532 * n**2  +  126*n  +  9)  /  (3 * !(n)**6)
     z= 10 ** (- (6*n + 3) )
     s= s     +   a * z
     if n>10  then do;  do 3*(n==11);  say ' .';  end;  iterate;  end
     say $(n, 3) right(a, w%2)  $(powX(z), 5)  right( lowE( format(a*z, 1, w-6, 2, 0)), w)
     end   /*n*/
say
say 'The calculation of pi took '       n       " iterations with "         digits() ,
    " decimal digits precision using"   subword( sourceLine(1), 4, 3).
say
numeric digits length( pi() ) - length(.);  d= digits() - length(.);          @= ' ↓↓↓ '
say center(@ 'calculated pi to '  d   " fractional decimal digits (below) is "@, d+4, '─')
say ' 'sqrt(1/s);          say
say ' 'pi();  @= ' ↑↑↑ '
say center(@ 'the  true  pi to '  d   " fractional decimal digits (above) is" @, d+4, '─')
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
$:    procedure; parse arg text,width,fill;     return center(text, width, left(fill, 1) )
!:    procedure; parse arg x; !=1;;      do j=2  to x;    != !*j;    end;         return !
lowE: procedure; parse arg x; return translate(x, 'e', "E")
powX: procedure; parse arg p; return right( format( p, 1, 3, 2, 0),  3)   +   0
/*──────────────────────────────────────────────────────────────────────────────────────*/
pi:   pi=3.141592653589793238462643383279502884197169399375105820974944592307816406286208,
      ||9986280348253421170679821480865132823066470938446095505822317253594081284811174503
      return pi
/*──────────────────────────────────────────────────────────────────────────────────────*/
sqrt: procedure; parse arg x;  if x=0  then return 0;  d=digits();  numeric digits;  h=d+6
      m.=9; numeric form; parse value format(x,2,1,,0) 'E0' with g 'E' _ .; g=g*.5'e'_ % 2
        do j=0  while h>9;        m.j= h;                 h= h % 2  +  1;       end  /*j*/
        do k=j+5  to 0  by -1;    numeric digits m.k;     g= (g + x/g) * .5;    end  /*k*/
      numeric digits d;           return g/1
output   when using the internal default input:

(Shown at two─thirds size.)

                                                        power
 N                     integer term                     of 10                                                Nth term
─── ─────────────────────────────────────────────────── ───── ──────────────────────────────────────────────────────────────────────────────────────────────────────
 0                                                   96  -3   9.600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-02
 1                                              5122560  -9   5.122560000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-03
 2                                         190722470400  -15  1.907224704000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-04
 3                                     7574824857600000  -21  7.574824857600000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-06
 4                                312546150372456000000  -27  3.125461503724560000000000000000000000000000000000000000000000000000000000000000000000000000000000e-07
 5                           13207874703225491420651520  -33  1.320787470322549142065152000000000000000000000000000000000000000000000000000000000000000000000000e-08
 6                       567273919793089083292259942400  -39  5.672739197930890832922599424000000000000000000000000000000000000000000000000000000000000000000000e-10
 7                  24650600248172987140112763715584000  -45  2.465060024817298714011276371558400000000000000000000000000000000000000000000000000000000000000000e-11
 8             1080657854354639453670407474439566400000  -51  1.080657854354639453670407474439566400000000000000000000000000000000000000000000000000000000000000e-12
 9         47701779391594966287470570490839978880000000  -57  4.770177939159496628747057049083997888000000000000000000000000000000000000000000000000000000000000e-14
10    2117262852373157207626265529989139651218848358400  -63  2.117262852373157207626265529989139651218848358400000000000000000000000000000000000000000000000000e-15
 .
 .
 .

The calculation of pi took  122  iterations with  163  decimal digits precision using the Almkvist─Giullera formula.

────────────────────────────────────────────── ↓↓↓  calculated pi to  160  fractional decimal digits (below) is  ↓↓↓ ───────────────────────────────────────────────
 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174503

 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174503
────────────────────────────────────────────── ↑↑↑  the  true  pi to  160  fractional decimal digits (above) is  ↑↑↑ ───────────────────────────────────────────────

RPL

Works with: HP version 49

The starred formula can be implemented like this:

« → n
  « 32 6 n * FACT *
    532 n SQ * 126 n * + 9 + *
    3 / n FACT 6 ^ / 
» » 'ALMKV' STO

or like that:

« → n '2^5*(6*n)!*(532*SQ(n)+126*n+9)/(3*n!^6)'
» 'ALMKV' STO

which is more readable, although a little bit (0.6%) slower than the pure reverse Polish approach.

LDIVN is defined at Metallic ratios

« 0 → x t 
  « 0 1
    WHILE DUP x ≤ REPEAT 4 * END
    WHILE DUP 1 > 
    REPEAT 4 IQUOT
           DUP2 + x SWAP - 't' STO
           SWAP 2 IQUOT SWAP
           IF t 0 ≥ THEN t 'x' STO SWAP OVER + SWAP END
    END DROP
» » 'ISQRT' STO

« -105 CF     @ set exact mode
  « n ALMKV » 'n' 0 9 1 SEQ 
  -1 → j
  « 0 ""
    DO SWAP 'j' INCR ALMKV 10 6 j * 3 + ^ / + EVAL
    UNTIL DUP FXND ISQRT SWAP ISQRT 70 LDIVN ROT OVER ==
    END
    "π" →TAG NIP j "iterations" →TAG
» » 'TASK' STO
Output:
3: { 96 5122560 190722470400 7574824857600000 312546150372456000000 13207874703225491420651520 567273919793089083292259942400 24650600248172987140112763715584000 1080657854354639453670407474439566400000 47701779391594966287470570490839978880000000 }
2: π:"3.1415926535897932384626433832795028841971693993751058209749445923078164"
1: iterations:53

Rust

use astro_float::{BigFloat, Consts, RoundingMode};
use num_bigint::BigInt;
use std::ops::{Div, Mul};
use std::str::FromStr;

const PR: usize = 228;
const RM: RoundingMode = RoundingMode::None;

fn factorial(n: u32) -> BigInt {
    let mut p = BigInt::from(1);
    for i in 2..=n {
        p *= i;
    }
    p
}

fn exponent_term(n: u32) -> u32 {
    6 * n + 3
}

fn integer_term(n: u32) -> BigInt {
    let p = 532 * n * n + 126 * n + 9;
    (p * BigInt::from(2).pow(5).mul(factorial(6 * n))).div(BigInt::from(3).mul(factorial(n).pow(6)))
}

fn nth_term(n: u32) -> BigFloat {
    let divisor = BigInt::from(10).pow(exponent_term(n));
    return BigFloat::from_str(&integer_term(n).to_string())
        .unwrap()
        .div(
            &BigFloat::from_str(&divisor.to_string()).unwrap(),
            PR,
            RoundingMode::Up,
        );
}

fn almkvist_guillera(float_precision: &BigFloat) -> BigFloat {
    let mut c = Consts::new().unwrap();
    let mut summed = nth_term(0);
    let mut next_sum = summed.clone();
    for n in 1..10000 {
        next_sum = summed.add(&nth_term(n), PR, RM);
        if (next_sum.sub(&summed, PR, RM)).abs()
            < BigFloat::from(10.0).pow(&(-float_precision), PR, RM, &mut c)
        {
            break;
        }
        summed = next_sum.clone();
    }
    next_sum
}

fn main() {
    let mut c = Consts::new().unwrap();
    println!(
        " N {:>21} {:>28} {:>20}\n{}\n",
        "NUMERATOR",
        "-EXP",
        "TERM (rounded)",
        "_".repeat(80)
    );
    for n in 0..10 {
        let mut t = nth_term(n);
        t.try_set_precision(64, RM, 64);
        println!(
            "{:>2}  {:<44}  {:>2}  {}",
            n,
            integer_term(n),
            exponent_term(n),
            t
        );
    }
    let pi_string = BigFloat::from(1.0)
        .div(
            &almkvist_guillera(&BigFloat::from(320)).sqrt(PR, RM),
            PR,
            RM,
        )
        .to_string();
    println!(
        "\nAlmkvist-Guillera π to 75 digits is {}\n",
        pi_string[..pi_string.len() - 6].to_string()
    );
    let library_pi_string = Consts::pi(&mut c, PR, RM).to_string();
    println!(
        "BigFloat (astro_float) library π is {}",
        library_pi_string[..library_pi_string.len() - 5].to_string()
    );
}
Output:
 N             NUMERATOR                         -EXP       TERM (rounded)
________________________________________________________________________________

 0  96                                             3  9.5999999999999999999e-2
 1  5122560                                        9  5.1225599999999999996e-3
 2  190722470400                                  15  1.907224704e-4
 3  7574824857600000                              21  7.5748248575999999999e-6
 4  312546150372456000000                         27  3.1254615037245599998e-7
 5  13207874703225491420651520                    33  1.320787470322549142e-8
 6  567273919793089083292259942400                39  5.6727391979308908324e-10
 7  24650600248172987140112763715584000           45  2.4650600248172987139e-11
 8  1080657854354639453670407474439566400000      51  1.0806578543546394536e-12
 9  47701779391594966287470570490839978880000000  57  4.7701779391594966287e-14

Almkvist-Guillera π to 75 digits is 3.14159265358979323846264338327950288419716939937510582097494459230781640628

BigFloat (astro_float) library π is 3.14159265358979323846264338327950288419716939937510582097494459230781640628

Scala

Translation of: Java
import java.math.{BigDecimal, BigInteger, MathContext, RoundingMode}

object AlmkvistGiulleraFormula extends App {
  println("n                                   Integer part")
  println("================================================")
  for (n <- 0 to 9) {
    val term = almkvistGiullera(n).toString
    println(f"$n%1d" + " " * (47 - term.length) + term)
  }

  val decimalPlaces = 70
  val mathContext = new MathContext(decimalPlaces + 1, RoundingMode.HALF_EVEN)
  val epsilon = BigDecimal.ONE.divide(BigDecimal.TEN.pow(decimalPlaces))
  var previous = BigDecimal.ONE
  var sum = BigDecimal.ZERO
  var pi = BigDecimal.ZERO
  var n = 0

  while (pi.subtract(previous).abs.compareTo(epsilon) >= 0) {
    val nextTerm = new BigDecimal(almkvistGiullera(n)).divide(BigDecimal.TEN.pow(6 * n + 3))
    sum = sum.add(nextTerm)
    previous = pi
    n += 1
    pi = BigDecimal.ONE.divide(sum, mathContext).sqrt(mathContext)
  }

  println("\npi to " + decimalPlaces + " decimal places:")
  println(pi)

  def almkvistGiullera(aN: Int): BigInteger = {
    val term1 = factorial(6 * aN).multiply(BigInteger.valueOf(32))
    val term2 = BigInteger.valueOf(532 * aN * aN + 126 * aN + 9)
    val term3 = factorial(aN).pow(6).multiply(BigInteger.valueOf(3))
    term1.multiply(term2).divide(term3)
  }

  def factorial(aNumber: Int): BigInteger = {
    var result = BigInteger.ONE
    for (i <- 2 to aNumber) {
      result = result.multiply(BigInteger.valueOf(i))
    }
    result
  }
}
Output:
n                                   Integer part
================================================
0                                             96
1                                        5122560
2                                   190722470400
3                               7574824857600000
4                          312546150372456000000
5                     13207874703225491420651520
6                 567273919793089083292259942400
7            24650600248172987140112763715584000
8       1080657854354639453670407474439566400000
9   47701779391594966287470570490839978880000000

pi to 70 decimal places:
3.1415926535897932384626433832795028841971693993751058209749445923078164

Sidef

func almkvist_giullera(n) {
    (32 * (14*n * (38*n + 9) + 9) * (6*n)!) / (3 * n!**6)
}

func almkvist_giullera_pi(prec = 70) {

    local Num!PREC = (4*(prec+1)).numify

    var sum = 0
    var target = -1

    for n in (0..Inf) {
        sum += (almkvist_giullera(n) / (10**(6*n + 3)))
        var curr = (sum**-.5).as_dec
        return target if (target == curr)
        target = curr
    }
}

say 'First 10 integer portions: '

10.of {|n|
    say "#{n} #{almkvist_giullera(n)}"
}

with(70) {|n|
    say "π to #{n} decimal places is:"
    say almkvist_giullera_pi(n)
}
Output:
First 10 integer portions: 
0 96
1 5122560
2 190722470400
3 7574824857600000
4 312546150372456000000
5 13207874703225491420651520
6 567273919793089083292259942400
7 24650600248172987140112763715584000
8 1080657854354639453670407474439566400000
9 47701779391594966287470570490839978880000000
π to 70 decimal places is:
3.1415926535897932384626433832795028841971693993751058209749445923078164

Visual Basic .NET

Translation of: C#
Imports System, BI = System.Numerics.BigInteger, System.Console

Module Module1

    Function isqrt(ByVal x As BI) As BI
        Dim t As BI, q As BI = 1, r As BI = 0
        While q <= x : q <<= 2 : End While
        While q > 1 : q >>= 2 : t = x - r - q : r >>= 1
            If t >= 0 Then x = t : r += q
        End While : Return r
    End Function

    Function dump(ByVal digs As Integer, ByVal Optional show As Boolean = False) As String
        digs += 1
        Dim z As Integer, gb As Integer = 1, dg As Integer = digs + gb
        Dim te As BI, t1 As BI = 1, t2 As BI = 9, t3 As BI = 1, su As BI = 0, t As BI = BI.Pow(10, If(dg <= 60, 0, dg - 60)), d As BI = -1, fn As BI = 1
        For n As BI = 0 To dg - 1
            If n > 0 Then t3 = t3 * BI.Pow(n, 6)
            te = t1 * t2 / t3 : z = dg - 1 - CInt(n) * 6
            If z > 0 Then te = te * BI.Pow(10, z) Else te = te / BI.Pow(10, -z)
            If show AndAlso n < 10 Then WriteLine("{0,2} {1,62}", n, te * 32 / 3 / t)
            su += te : If te < 10 Then
                digs -= 1
                If show Then WriteLine(vbLf & "{0} iterations required for {1} digits " & _
                    "after the decimal point." & vbLf, n, digs)
                Exit For
            End If
            For j As BI = n * 6 + 1 To n * 6 + 6
                t1 = t1 * j : Next
            d += 2 : t2 += 126 + 532 * d
        Next
        Dim s As String = String.Format("{0}", isqrt(BI.Pow(10, dg * 2 + 3) _
            / su / 32 * 3 * BI.Pow(CType(10, BI), dg + 5)))
        Return s(0) & "." & s.Substring(1, digs)
    End Function

    Sub Main(ByVal args As String())
        WriteLine(dump(70, true))
    End Sub

End Module
Output:
 0  9600000000000000000000000000000000000000000000000000000000000
 1   512256000000000000000000000000000000000000000000000000000000
 2    19072247040000000000000000000000000000000000000000000000000
 3      757482485760000000000000000000000000000000000000000000000
 4       31254615037245600000000000000000000000000000000000000000
 5        1320787470322549142065152000000000000000000000000000000
 6          56727391979308908329225994240000000000000000000000000
 7           2465060024817298714011276371558400000000000000000000
 8            108065785435463945367040747443956640000000000000000
 9              4770177939159496628747057049083997888000000000000

53 iterations required for 70 digits after the decimal point.

3.1415926535897932384626433832795028841971693993751058209749445923078164

Wren

Library: Wren-big
Library: Wren-fmt
import "./big" for BigInt, BigRat
import "./fmt" for Fmt

var factorial = Fn.new { |n|
    if (n < 2) return BigInt.one
    var fact = BigInt.one
    for (i in 2..n) fact = fact * i
    return fact
}

var almkvistGiullera = Fn.new { |n, print|
    var t1 = factorial.call(6*n) * 32
    var t2 = 532*n*n + 126*n + 9
    var t3 = factorial.call(n).pow(6)*3
    var ip = t1 * t2 / t3
    var pw = 6*n + 3
    var tm = BigRat.new(ip, BigInt.ten.pow(pw))
    if (print) {
        Fmt.print("$d  $44i  $3d  $-35s", n, ip, -pw, tm.toDecimal(33))
    } else {
        return tm
    }
}

System.print("N                               Integer Portion  Pow  Nth Term (33 dp)")
System.print("-" * 89)
for (n in 0..9) {
    almkvistGiullera.call(n, true)
}

var sum  = BigRat.zero
var prev = BigRat.zero
var prec = BigRat.new(BigInt.one, BigInt.ten.pow(70))
var n = 0
while(true) {
    var term = almkvistGiullera.call(n, false)
    sum = sum + term
    if ((sum-prev).abs < prec) break
    prev = sum
    n = n + 1
}
var pi = BigRat.one/sum.sqrt(70)
System.print("\nPi to 70 decimal places is:")
System.print(pi.toDecimal(70))
Output:
N                               Integer Portion  Pow  Nth Term (33 dp)
-----------------------------------------------------------------------------------------
0                                            96   -3  0.096                              
1                                       5122560   -9  0.00512256                         
2                                  190722470400  -15  0.0001907224704                    
3                              7574824857600000  -21  0.0000075748248576                 
4                         312546150372456000000  -27  0.000000312546150372456            
5                    13207874703225491420651520  -33  0.00000001320787470322549142065152 
6                567273919793089083292259942400  -39  0.000000000567273919793089083292260
7           24650600248172987140112763715584000  -45  0.000000000024650600248172987140113
8      1080657854354639453670407474439566400000  -51  0.000000000001080657854354639453670
9  47701779391594966287470570490839978880000000  -57  0.000000000000047701779391594966287

Pi to 70 decimal places is:
3.1415926535897932384626433832795028841971693993751058209749445923078164
Cookies help us deliver our services. By using our services, you agree to our use of cookies.