# Almkvist-Giullera formula for pi

Almkvist-Giullera formula for pi
You are encouraged to solve this task according to the task description, using any language you may know.

The Almkvist-Giullera formula for calculating   1/π2   is based on the Calabi-Yau differential equations of order 4 and 5,   which were originally used to describe certain manifolds in string theory.

The formula is:

1/π2 = (25/3) ∑0 ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1

This formula can be used to calculate the constant   π-2,   and thus to calculate   π.

Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term:

(25) (6n)! (532n2 + 126n + 9) / (3(n!)6)     (***)

multiplied by a negative integer power of 10:

10-(6n + 3)

• Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series.
• Use the complete formula to calculate and print π to 70 decimal digits of precision.

Reference

## 11l

Translation of: C#
```F isqrt(BigInt =x)
BigInt q = 1
BigInt r = 0
BigInt t
L q <= x
q *= 4
L q > 1
q I/= 4
t = x - r - q
r I/= 2
I t >= 0
x = t
r += q
R r

F dump(=digs, show)
V gb = 1
digs++
V dg = digs + gb
BigInt t1 = 1
BigInt t2 = 9
BigInt t3 = 1
BigInt te
BigInt su = 0
V t = BigInt(10) ^ (I dg <= 60 {0} E dg - 60)
BigInt d = -1
BigInt _fn_ = 1

V n = 0
L n < dg
I n > 0
t3 *= BigInt(n) ^ 6
te = t1 * t2 I/ t3
V z = dg - 1 - n * 6
I z > 0
te *= BigInt(10) ^ z
E
te I/= BigInt(10) ^ -z
I show & n < 10
print(‘#2 #62’.format(n, te * 32 I/ 3 I/ t))
su += te

I te < 10
I show
digs--
print("\n#. iterations required for #. digits after the decimal point.\n".format(n, digs))
L.break

L(j) n * 6 + 1 .. n * 6 + 6
t1 *= j
d += 2
t2 += 126 + 532 * d

n++

V s = String(isqrt(BigInt(10) ^ (dg * 2 + 3) I/ su I/ 32 * 3 * BigInt(10) ^ (dg + 5)))
R s[0]‘.’s[1 .+ digs]

print(dump(70, 1B))```
Output:
``` 0  9600000000000000000000000000000000000000000000000000000000000
1   512256000000000000000000000000000000000000000000000000000000
2    19072247040000000000000000000000000000000000000000000000000
3      757482485760000000000000000000000000000000000000000000000
4       31254615037245600000000000000000000000000000000000000000
5        1320787470322549142065152000000000000000000000000000000
6          56727391979308908329225994240000000000000000000000000
7           2465060024817298714011276371558400000000000000000000
8            108065785435463945367040747443956640000000000000000
9              4770177939159496628747057049083997888000000000000

53 iterations required for 70 digits after the decimal point.

3.1415926535897932384626433832795028841971693993751058209749445923078164
```

## AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
or android 64 bits with application Termux
```/* ARM assembly AARCH64 Raspberry PI 3B */
/*  program calculPi64.s   */
/* this program use gmp library */
/* link with gcc option -lgmp */

/*******************************************/
/* Constantes file                         */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"

.equ MAXI,      10
.equ SIZEBIG,   100

/*********************************/
/* Initialized data              */
/*********************************/
.data
szMessDebutPgm:     .asciz "Program 64 bits start. \n"
szMessPi:           .asciz "\nPI = \n"
szCarriageReturn:   .asciz "\n"

szFormat:           .asciz " %Zd\n"
szFormatFloat:      .asciz " %.*Ff\n"
/*********************************/
/* UnInitialized data            */
/*********************************/
.bss
Result1:                    .skip SIZEBIG
Result2:                    .skip SIZEBIG
Result3:                    .skip SIZEBIG
Result4:                    .skip SIZEBIG
fIntex5:                    .skip SIZEBIG
fIntex6:                    .skip SIZEBIG
fIntex7:                    .skip SIZEBIG
fSum:                       .skip SIZEBIG
fSum1:                      .skip SIZEBIG
sBuffer:                    .skip SIZEBIG
fEpsilon:                   .skip SIZEBIG
fPrec:                      .skip SIZEBIG
fPI:                        .skip SIZEBIG
fTEN:                       .skip SIZEBIG
fONE:                       .skip SIZEBIG
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main
main:                             // entry of program
bl affichageMess
mov x20,#0                     // loop indice
1:
mov x0,x20
bl computeAlmkvist            // compute
mov x1,x0
ldr x0,qAdrszFormat           // print big integer
bl __gmp_printf

cmp x20,#MAXI
blt 1b                        // and loop

mov x0,#560                   // float précision in bits
bl __gmpf_set_default_prec

mov x19,#0                     // compute indice
ldr x0,qAdrfSum               // init to zéro
bl __gmpf_init
ldr x0,qAdrfSum1              // init to zéro
bl __gmpf_init

mov x1,#1                     // init à 1
bl __gmpf_init_set_ui

ldr x0,qAdrfIntex5            // init to zéro
bl __gmpf_init
ldr x0,qAdrfIntex6            // init to zéro
bl __gmpf_init
ldr x0,qAdrfIntex7            // init to zéro
bl __gmpf_init
ldr x0,qAdrfEpsilon           // init to zéro
bl __gmpf_init
ldr x0,qAdrfPrec              // init to zéro
bl __gmpf_init
ldr x0,qAdrfPI                // init to zéro
bl __gmpf_init
mov x1,#10                    // init to 10
bl __gmpf_init_set_ui

ldr x0,qAdrfIntex6            // compute 10 pow 70
mov x2,#70
bl __gmpf_pow_ui

ldr x0,qAdrfEpsilon           // divide 1 by 10 pow 70
bl __gmpf_div

2:                                // PI compute loop
mov x0,x19
bl computeAlmkvist
mov x20,x0
mov x1,#6
mul x2,x1,x19
add x6,x2,#3                  // compute 6n + 3

ldr x0,qAdrfIntex6            // compute 10 pow (6n+3)
mov x2,x6
bl __gmpf_pow_ui

ldr x0,qAdrfIntex7             // compute 1 / 10 pow (6n+3)
bl __gmpf_div

ldr x0,qAdrfIntex6             // result big float
mov x1,x20                     // big integer Almkvist
bl __gmpf_set_z                // conversion in big float

ldr x0,qAdrfIntex5             // result Almkvist * 1 / 10 pow (6n+3)
bl __gmpf_mul

bl __gmpf_set

ldr x0,qAdrfIntex7             // compute 1 / sum
bl __gmpf_div

ldr x0,qAdrfPI                 // compute square root (1 / sum )
bl __gmpf_sqrt

ldr x0,qAdrfIntex6             // compute variation PI
bl __gmpf_sub

bl __gmpf_abs

ldr x0,qAdrfPrec               // copy PI -> prévious
bl __gmpf_set

ldr x0,qAdrfIntex6             // compare gap and epsilon
bl __gmpf_cmp
cmp w0,#0                      // !!! cmp return result on 32 bits
bgt 2b                         // if gap is highter -> loop

bl affichageMess

mov x1,#70
bl __gmp_printf

100:                              // standard end of the program
mov x0, #0                    // return code
mov x8, #EXIT                 // request to exit program
svc #0                        // perform the system call
/***************************************************/
/*   compute  almkvist_giullera formula             */
/***************************************************/
/* x0 contains the number            */
computeAlmkvist:
stp x19,lr,[sp,-16]!           // save  registers
mov x19,x0
mov x1,#6
mul x0,x1,x0
bl computeFactorielle         // compute (n*6)!
mov x1,#532
mul x2,x19,x19
mul x2,x1,x2
mov x1,#126
mul x3,x19,x1
lsl x2,x2,#5                   // * 32

bl __gmpz_mul_ui

mov x0,x19
bl computeFactorielle

bl __gmpz_init                 // init to 0

mov x2,#6
bl __gmpz_pow_ui

mov x2,#3
bl __gmpz_mul_ui

bl __gmpz_cdiv_q

100:
ldp x19,lr,[sp],16              // restaur  2 registers
/***************************************************/
/*   compute  factorielle N                        */
/***************************************************/
/* x0 contains the number            */
/* x1 contains big number result address */
computeFactorielle:
stp x19,lr,[sp,-16]!           // save  registers
stp x20,x21,[sp,-16]!           // save  registers
mov x19,x0                     // save N
mov x20,x1                     // save result address
mov x1,#1                     // init to 1
bl __gmpz_init_set_ui
bl __gmpz_init                // init to 0
mov x21,#1
1:                                // loop
mov x1,x20                     // operator 1
mov x2,x21                     // operator 2
bl __gmpz_mul_ui
mov x0,x20                     // copy result4 -> result
bl __gmpz_set
cmp x21,x19                     // N ?
ble 1b                        // no -> loop

ldp x20,x21,[sp],16              // restaur  2 registers
ldp x19,lr,[sp],16              // restaur  2 registers
/********************************************************/
/*        File Include fonctions                        */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"```
```Program 64 bits start.
96
5122560
190722470400
7574824857600000
312546150372456000000
13207874703225491420651520
567273919793089083292259942400
24650600248172987140112763715584000
1080657854354639453670407474439566400000
47701779391594966287470570490839978880000000

PI =
3.1415926535897932384626433832795028841971693993751058209749445923078164
```

## ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32
Translation of: C++

Uses code from the Arithmetic/Rational task.

```# Almkvist-Giullera formula for pi - translated from the C++ sample         #

PR precision 1024 PR                    # set precision for LONG LONG modes #
MODE INTEGER = LONG LONG INT;
MODE FLOAT   = LONG LONG REAL;

INTEGER zero = 0, one = 1, ten = 10;

# iterative Greatest Common Divisor routine, returns the gcd of m and n #
PROC gcd = ( INTEGER m, n )INTEGER:
BEGIN
INTEGER a := ABS m, b := ABS n;
WHILE b /= 0 DO
INTEGER new a = b;
b        := a MOD b;
a        := new a
OD;
a
END # gcd # ;

# code from the Arithmetic/Rational task modified to use LONG LONG INT       #
MODE RATIONAL = STRUCT( INTEGER num #erator#,  den #ominator# );

PROC lcm = ( INTEGER a, b )INTEGER:                # least common multiple #
a OVER gcd(a, b) * b;

PRIO // = 9;                                 # higher then the ** operator #
OP // = ( INTEGER num, den )RATIONAL: (         # initialise and normalise #
INTEGER common = gcd( num, den );
IF den < 0 THEN
( -num OVER common, -den OVER common )
ELSE
( num OVER common, den OVER common )
FI
);

OP + = (RATIONAL a, b)RATIONAL: (
INTEGER common = lcm( den OF a, den OF b );
RATIONAL result := ( common OVER den OF a * num OF a + common OVER den OF b * num OF b, common );
num OF result//den OF result
);

OP +:= = (REF RATIONAL a, RATIONAL b)REF RATIONAL: ( a := a + b );

# end code from the Arithmetic/Rational task modified to use LONG LONG INT   #

OP / = ( FLOAT f, RATIONAL r )FLOAT: ( f * den OF r ) / num OF r;

INTEGER ag factorial n    := 1;
INT     ag last factorial := 0;
# returns factorial n, using ag factorial n and ag last factorial to reduce #
# the number of calculations                                                #
PROC ag factorial = ( INT n )INTEGER:
BEGIN
IF n < ag last factorial THEN
ag last factorial := 0;
ag factorial n    := 1
FI;
WHILE ag last factorial < n DO
ag factorial n *:= ( ag last factorial +:= 1 )
OD;
ag factorial n
END # ag gfgactorial # ;

# Return the integer portion of the nth term of Almkvist-Giullera sequence. #
PROC almkvist giullera = ( INT n )INTEGER:
ag factorial( 6 * n ) * 32 * ( 532 * n * n + 126 * n + 9 ) OVER ( ( ag factorial( n ) ^ 6 ) * 3 );

BEGIN
print( (  "n |                  Integer portion of nth term", newline ) );
print( (  "--+---------------------------------------------", newline ) );
FOR n FROM 0 TO 9 DO
print( ( whole( n, 0 ), " | ", whole( almkvist giullera( n ), -44 ), newline ) )
OD;
FLOAT    epsilon = FLOAT(10) ^ -70;
FLOAT    prev   := 0, pi := 0;
RATIONAL sum    := zero // one;
FOR n FROM 0
WHILE
RATIONAL term = almkvist giullera( n ) // ( ten ^ ( 6 * n + 3 ) );
sum +:= term;
pi   := long long sqrt( FLOAT(1) / sum );
ABS ( pi - prev ) >= epsilon
DO
prev := pi
OD;
print( ( newline, "Pi to 70 decimal places is:", newline ) );
print( ( fixed( pi, -72, 70 ), newline ) )
END```
Output:
```n |                  Integer portion of nth term
--+---------------------------------------------
0 |                                           96
1 |                                      5122560
2 |                                 190722470400
3 |                             7574824857600000
4 |                        312546150372456000000
5 |                   13207874703225491420651520
6 |               567273919793089083292259942400
7 |          24650600248172987140112763715584000
8 |     1080657854354639453670407474439566400000
9 | 47701779391594966287470570490839978880000000

Pi to 70 decimal places is:
3.1415926535897932384626433832795028841971693993751058209749445923078164
```

## ARM Assembly

Works with: as version Raspberry Pi
or android 32 bits with application Termux
```/* ARM assembly Raspberry PI  */
/*  program calculPi.s   */
/* this program use gmp library package : libgmp3-dev */
/* link with gcc option -lgmp */

/* REMARK 1 : this program use routines in a include file
see task Include a file language arm assembly
for the routine affichageMess conversion10
see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes                       */
/************************************/
.include "../constantes.inc"

.equ MAXI,      10
.equ SIZEBIG,   100

/*********************************/
/* Initialized data              */
/*********************************/
.data
szMessPi:            .asciz "\nPI = \n"
szCarriageReturn:   .asciz "\n"

szFormat:           .asciz " %Zd\n"
szFormatFloat:      .asciz " %.*Ff\n"
/*********************************/
/* UnInitialized data            */
/*********************************/
.bss
Result1:                    .skip SIZEBIG
Result2:                    .skip SIZEBIG
Result3:                    .skip SIZEBIG
Result4:                    .skip SIZEBIG
fInter5:                    .skip SIZEBIG
fInter6:                    .skip SIZEBIG
fInter7:                    .skip SIZEBIG
fSum:                       .skip SIZEBIG
fSum1:                      .skip SIZEBIG
sBuffer:                    .skip SIZEBIG
fEpsilon:                   .skip SIZEBIG
fPrec:                      .skip SIZEBIG
fPI:                        .skip SIZEBIG
fTEN:                       .skip SIZEBIG
fONE:                       .skip SIZEBIG
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main
main:                             @ entry of program
mov r4,#0                     @ loop indice
1:
mov r0,r4
bl computeAlmkvist            @ compute
mov r1,r0
ldr r0,iAdrszFormat           @ print big integer
bl __gmp_printf

cmp r4,#MAXI
blt 1b                        @ and loop

mov r0,#560                   @ float précision in bits
bl __gmpf_set_default_prec

mov r4,#0                     @ compute indice
ldr r0,iAdrfSum               @ init to zéro
bl __gmpf_init
ldr r0,iAdrfSum1              @ init to zéro
bl __gmpf_init

mov r1,#1                     @ init à 1
bl __gmpf_init_set_ui

ldr r0,iAdrfInter5            @ init to zéro
bl __gmpf_init
ldr r0,iAdrfInter6            @ init to zéro
bl __gmpf_init
ldr r0,iAdrfInter7            @ init to zéro
bl __gmpf_init
ldr r0,iAdrfEpsilon           @ init to zéro
bl __gmpf_init
ldr r0,iAdrfPrec              @ init to zéro
bl __gmpf_init
ldr r0,iAdrfPI                @ init to zéro
bl __gmpf_init
mov r1,#10                    @ init to 10
bl __gmpf_init_set_ui

ldr r0,iAdrfInter6            @ compute 10 pow 70
mov r2,#70
bl __gmpf_pow_ui

ldr r0,iAdrfEpsilon           @ divide 1 by 10 pow 70
bl __gmpf_div

2:                                @ PI compute loop
mov r0,r4
bl computeAlmkvist
mov r5,r0
mov r1,#6
mul r2,r1,r4
add r6,r2,#3                  @ compute 6n + 3

ldr r0,iAdrfInter6            @ compute 10 pow (6n+3)
mov r2,r6
bl __gmpf_pow_ui

ldr r0,iAdrfInter7             @ compute 1 / 10 pow (6n+3)
bl __gmpf_div

ldr r0,iAdrfInter6             @ result big float
mov r1,r5                      @ big integer Almkvist
bl __gmpf_set_z                @ conversion in big float

ldr r0,iAdrfInter5             @ result Almkvist * 1 / 10 pow (6n+3)
bl __gmpf_mul

bl __gmpf_set

ldr r0,iAdrfInter7             @ compute 1 / sum
bl __gmpf_div

ldr r0,iAdrfPI                 @ compute square root (1 / sum )
bl __gmpf_sqrt

ldr r0,iAdrfInter6             @ compute variation PI
bl __gmpf_sub

bl __gmpf_abs

ldr r0,iAdrfPrec               @ copy PI -> prévious
bl __gmpf_set

ldr r0,iAdrfInter6             @ compare gap and epsilon
bl __gmpf_cmp
cmp r0,#0
bgt 2b                         @ if gap is highter -> loop

bl affichageMess

mov r1,#70
bl __gmp_printf

100:                              @ standard end of the program
mov r0, #0                    @ return code
mov r7, #EXIT                 @ request to exit program
svc #0                        @ perform the system call
/***************************************************/
/*   compute  almkvist_giullera formula             */
/***************************************************/
/* r0 contains the number            */
computeAlmkvist:
push {r1-r4,lr}               @ save registers
mov r4,r0
mov r1,#6
mul r0,r1,r0
bl computeFactorielle         @ compute (n*6)!

mov r1,#532
mul r2,r4,r4
mul r2,r1,r2
mov r1,#126
mul r3,r4,r1
lsl r2,r2,#5                   @ * 32

bl __gmpz_mul_ui

mov r0,r4
bl computeFactorielle

bl __gmpz_init                 @ init to 0

mov r2,#6
bl __gmpz_pow_ui

mov r2,#3
bl __gmpz_mul_ui

bl __gmpz_cdiv_q

pop {r1-r4,pc}                 @ restaur des registres
/***************************************************/
/*   compute  factorielle N                        */
/***************************************************/
/* r0 contains the number            */
/* r1 contains big number result address */
computeFactorielle:
push {r1-r6,lr}               @ save registers
mov r5,r0                     @ save N
mov r6,r1                     @ save result address
mov r1,#1                     @ init to 1
bl __gmpz_init_set_ui
bl __gmpz_init                @ init to 0
mov r4,#1
1:                                @ loop
mov r1,r6                     @ operator 1
mov r2,r4                     @ operator 2
bl __gmpz_mul_ui
mov r0,r6                     @ copy result4 -> result
bl __gmpz_set
cmp r4,r5                     @ N ?
ble 1b                        @ no -> loop

mov r0,r1

pop {r1-r6,pc}                @ restaur des registres

/***************************************************/
/*      ROUTINES INCLUDE                           */
/***************************************************/
.include "../affichage.inc"```
``` 96
5122560
190722470400
7574824857600000
312546150372456000000
13207874703225491420651520
567273919793089083292259942400
24650600248172987140112763715584000
1080657854354639453670407474439566400000
47701779391594966287470570490839978880000000

PI =
3.1415926535897932384626433832795028841971693993751058209749445923078164
```

## C#

A little challenging due to lack of BigFloat or BigRational. Note the extended precision integers displayed for each term, not extended precision floats. Also features the next term based on the last term, rather than computing each term from scratch. And the multiply by 32, divide by 3 is reserved for final sum, instead of each term (except for the 0..9th displayed terms).

```using System;
using BI = System.Numerics.BigInteger;
using static System.Console;

class Program {

static BI isqrt(BI x) { BI q = 1, r = 0, t; while (q <= x) q <<= 2; while (q > 1) {
q >>= 2; t = x - r - q; r >>= 1; if (t >= 0) { x = t; r += q; } } return r; }

static string dump(int digs, bool show = false) {
int gb = 1, dg = ++digs + gb, z;
BI t1 = 1, t2 = 9, t3 = 1, te, su = 0,
t = BI.Pow(10, dg <= 60 ? 0 : dg - 60), d = -1, fn = 1;
for (BI n = 0; n < dg; n++) {
if (n > 0) t3 *= BI.Pow(n, 6);
te = t1 * t2 / t3;
if ((z = dg - 1 - (int)n * 6) > 0) te *= BI.Pow (10, z);
else te /= BI.Pow (10, -z);
if (show && n < 10)
WriteLine("{0,2} {1,62}", n, te * 32 / 3 / t);
su += te; if (te < 10) {
if (show) WriteLine("\n{0} iterations required for {1} digits " +
"after the decimal point.\n", n, --digs); break; }
for (BI j = n * 6 + 1; j <= n * 6 + 6; j++) t1 *= j;
t2 += 126 + 532 * (d += 2);
}
string s = string.Format("{0}", isqrt(BI.Pow(10, dg * 2 + 3) /
su / 32 * 3 * BI.Pow((BI)10, dg + 5)));
return s[0] + "." + s.Substring(1, digs); }

static void Main(string[] args) {
WriteLine(dump(70, true)); }
}
```
Output:
``` 0  9600000000000000000000000000000000000000000000000000000000000
1   512256000000000000000000000000000000000000000000000000000000
2    19072247040000000000000000000000000000000000000000000000000
3      757482485760000000000000000000000000000000000000000000000
4       31254615037245600000000000000000000000000000000000000000
5        1320787470322549142065152000000000000000000000000000000
6          56727391979308908329225994240000000000000000000000000
7           2465060024817298714011276371558400000000000000000000
8            108065785435463945367040747443956640000000000000000
9              4770177939159496628747057049083997888000000000000

53 iterations required for 70 digits after the decimal point.

3.1415926535897932384626433832795028841971693993751058209749445923078164
```

## C++

Library: Boost
Library: GMP
```#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/multiprecision/gmp.hpp>
#include <iomanip>
#include <iostream>

namespace mp = boost::multiprecision;
using big_int = mp::mpz_int;
using big_float = mp::cpp_dec_float_100;
using rational = mp::mpq_rational;

big_int factorial(int n) {
big_int result = 1;
for (int i = 2; i <= n; ++i)
result *= i;
return result;
}

// Return the integer portion of the nth term of Almkvist-Giullera sequence.
big_int almkvist_giullera(int n) {
return factorial(6 * n) * 32 * (532 * n * n + 126 * n + 9) /
(pow(factorial(n), 6) * 3);
}

int main() {
std::cout << "n |                  Integer portion of nth term\n"
<< "------------------------------------------------\n";
for (int n = 0; n < 10; ++n)
std::cout << n << " | " << std::setw(44) << almkvist_giullera(n)
<< '\n';

big_float epsilon(pow(big_float(10), -70));
big_float prev = 0, pi = 0;
rational sum = 0;
for (int n = 0;; ++n) {
rational term(almkvist_giullera(n), pow(big_int(10), 6 * n + 3));
sum += term;
pi = sqrt(big_float(1 / sum));
if (abs(pi - prev) < epsilon)
break;
prev = pi;
}
std::cout << "\nPi to 70 decimal places is:\n"
<< std::fixed << std::setprecision(70) << pi << '\n';
}
```
Output:
```n |                  Integer portion of nth term
------------------------------------------------
0 |                                           96
1 |                                      5122560
2 |                                 190722470400
3 |                             7574824857600000
4 |                        312546150372456000000
5 |                   13207874703225491420651520
6 |               567273919793089083292259942400
7 |          24650600248172987140112763715584000
8 |     1080657854354639453670407474439566400000
9 | 47701779391594966287470570490839978880000000

Pi to 70 decimal places is:
3.1415926535897932384626433832795028841971693993751058209749445923078164
```

## Common Lisp

Translation of: Raku
```(ql:quickload :computable-reals :silent t)
(use-package :computable-reals)
(setq *print-prec* 70)
(defparameter *iterations* 52)

; factorial using computable-reals multiplication op to keep precision
(defun !r (n)
(let ((p 1))
(loop for i from 2 to n doing (setq p (*r p i)))
p))

; the nth integer term
(defun integral (n)
(let* ((polynomial (+r (*r 532 n n) (*r 126 n) 9))
(numer  (*r 32 (!r (*r 6 n)) polynomial))
(denom  (*r 3 (expt-r (!r n) 6))))
(/r  numer denom)))

; the exponent for 10 in the nth term of the series
(defun power (n) (- 3 (* 6 (1+ n))))

; the nth term of the series
(defun almkvist-giullera (n)
(/r (integral n) (expt-r 10 (abs (power n)))))

; the sum of the first n terms
(defun almkvist-giullera-sigma (n)
(let ((s 0))
(loop for i from 0 to n doing (setq s (+r s (almkvist-giullera i))))
s))

; the approximation to pi after n terms
(defun almkvist-giullera-pi (n)
(sqrt-r (/r 1 (almkvist-giullera-sigma n))))

(format t "~A. ~44A~4A ~A~%" "N" "Integral part of Nth term" "×10^" "=Actual value of Nth term")
(loop for i from 0 to 9 doing
(format t "~&~a. ~44d ~3d " i (integral i) (power i))
(finish-output *standard-output*)
(print-r (almkvist-giullera i) 50 nil))

(format t "~%~%Pi after ~a iterations: " *iterations*)
(print-r (almkvist-giullera-pi *iterations*) *print-prec*)
```
Output:
```N. Integral part of Nth term                   ×10^ =Actual value of Nth term
0.                                           96  -3 +0.09600000000000000000000000000000000000000000000000...
1.                                      5122560  -9 +0.00512256000000000000000000000000000000000000000000...
2.                                 190722470400 -15 +0.00019072247040000000000000000000000000000000000000...
3.                             7574824857600000 -21 +0.00000757482485760000000000000000000000000000000000...
4.                        312546150372456000000 -27 +0.00000031254615037245600000000000000000000000000000...
5.                   13207874703225491420651520 -33 +0.00000001320787470322549142065152000000000000000000...
6.               567273919793089083292259942400 -39 +0.00000000056727391979308908329225994240000000000000...
7.          24650600248172987140112763715584000 -45 +0.00000000002465060024817298714011276371558400000000...
8.     1080657854354639453670407474439566400000 -51 +0.00000000000108065785435463945367040747443956640000...
9. 47701779391594966287470570490839978880000000 -57 +0.00000000000004770177939159496628747057049083997888...

Pi after 52 iterations:
+3.1415926535897932384626433832795028841971693993751058209749445923078164...
```

## dc

Translation of: Common Lisp
```[* factorial *]sz
[ 1 Sp [ d lp * sp 1 - d 1 <f ]Sf d 1 <f Lfsz sz Lp ]sF

[* nth integral term *]sz
[ sn 32 6 ln * lFx 532 ln * ln * 126 ln * + 9 + * * 3 ln lFx 6 ^ * / ]sI

[* nth exponent of 10 *]sz
[ 1 + 6 * 3 r - ]sE

[* nth term in series *]sz
[ d lIx r 10 r lEx _1 * ^ / ]sA

[* sum of the first n terms *]sz
[ [li lAx ls + ss li 1 - d si 0 r !<L]sL si 0ss lLx ls]sS

[* approximation of pi after n terms *]sz
[ lSx 1 r / v ]sP

[* count digits in a number *]sz
[sn 0 sd lCx ld]sD
[ld 1 + sd ln 10 0k / d sn 0 !=C]sC

[* print a number in a given column width *]sz
[sw d lDx si lw li <T n]sW
[[ ]n li 1 + si lw li <T]sT

[* main loop: print values for first 10 terms *]sz
[N. Integral part of Nth term .................. × 10^ =Actual value of Nth term]p
0 sj
[
lj n [. ]n
lj lIx 0k 1 / 44 lWx [ ]n
lj lEx 4 lWx [ ]n
lj 99k lAx 50k 1 / p
lj 1 + d sj 10 >M
] sM
lMx

[]p

[* print resulting value of pi to 70 places *]sz
[Pi after ]n 52n [ iterations:]p
99k 52 lPx 70k 1 / p```
Output:
```N. Integral part of Nth term .................. × 10^ =Actual value of Nth term
0.                                           96    -3 .09600000000000000000000000000000000000000000000000
1.                                      5122560    -9 .00512256000000000000000000000000000000000000000000
2.                                 190722470400   -15 .00019072247040000000000000000000000000000000000000
3.                             7574824857600000   -21 .00000757482485760000000000000000000000000000000000
4.                        312546150372456000000   -27 .00000031254615037245600000000000000000000000000000
5.                   13207874703225491420651520   -33 .00000001320787470322549142065152000000000000000000
6.               567273919793089083292259942400   -39 .00000000056727391979308908329225994240000000000000
7.          24650600248172987140112763715584000   -45 .00000000002465060024817298714011276371558400000000
8.     1080657854354639453670407474439566400000   -51 .00000000000108065785435463945367040747443956640000
9. 47701779391594966287470570490839978880000000   -57 .00000000000004770177939159496628747057049083997888

3.1415926535897932384626433832795028841971693993751058209749445923078\
164
```

## Erlang

This version uses integer math only (does not resort to a rational number package) Since the denominator is always a power of 10, it's possible to just keep track of the log of the denominator and scale the numerator accordingly; to keep track of the accuracy we get the order of magnitude of the difference between terms by subtracting the log of the numerator from the log of the denominator, so again, no rational arithmetic is needed.

However, Erlang does not have much in the way of calculating with large integers beyond basic arithmetic, so this version implements integer powers, logs, square roots, as well as the factorial function.

```-mode(compile).

% Integer math routines: factorial, power, square root, integer logarithm.
%
fac(N) -> fac(N, 1).
fac(N, A) when N < 2 -> A;
fac(N, A) -> fac(N - 1, N*A).

pow(_, N) when N < 0 -> pow_domain_error;
pow(2, N) -> 1 bsl N;
pow(A, N) -> ipow(A, N).

ipow(_, 0) -> 1;
ipow(A, 1) -> A;
ipow(A, 2) -> A*A;
ipow(A, N) ->
case N band 1 of
0 -> X = ipow(A, N bsr 1), X*X;
1 -> A * ipow(A, N - 1)
end.

% integer logarithm, based on Zeckendorf representations of integers.
%    https://www.keithschwarz.com/interesting/code/?dir=zeckendorf-logarithm
%    we need this, since the exponents get larger than IEEE-754 double can handle.

lognext({A, B, S, T}) -> {B, A+B, T, S*T}.
logprev({A, B, S, T}) -> {B-A, A, T div S, S}.

ilog(A, B) when (A =< 0) or (B < 2) -> ilog_domain_error;
ilog(A, B) ->
UBound = bracket(A, {0, 1, 1, B}),
backlog(A, UBound, 0).

bracket(A, State = {_, _, _, T}) when T > A -> State;
bracket(A, State) -> bracket(A, lognext(State)).

backlog(_, {0, _, 1, _}, Log) -> Log;
backlog(N, State = {A, _, S, _}, Log) when S =< N ->
backlog(N div S, logprev(State), Log + A);
backlog(N, State, Log) -> backlog(N, logprev(State), Log).

isqrt(N) when N < 0 -> isqrt_domain_error;
isqrt(N) ->
X0 = pow(2, ilog(N, 2) div 2),
iterate(N, newton(X0, N), N).

iterate(A, B, _) when A =< B -> A;
iterate(_, B, N) -> iterate(B, newton(B, N), N).

newton(X, N) -> (X + N div X) div 2.

% With this out of the way, we can get down to some serious calculation.
%
term(N) -> {  % returns numerator and log10 of the denominator.
(fac(6*N)*(N*(532*N + 126) + 9) bsl 5) div (3*pow(fac(N), 6)),
6*N + 3
}.

neg_term({N, D}) -> {-N, D}.
abs_term({N, D}) -> {abs(N), D}.

add_term(T1 = {_, D1}, T2 = {_, D2}) when D1 > D2 -> add_term(T2, T1);
Scale = pow(10, D2 - D1),
{N1*Scale + N2, D2}.

calculate(Prec) -> calculate(Prec, {0, 0}, 0).
calculate(Prec, T0, K) ->
Accuracy = D - ilog(N, 10),
if
Accuracy < Prec -> calculate(Prec, T1, K + 1);
true -> T1
end.

get_pi(Prec) ->
{N0, D0} = calculate(Prec),
% from the term, t = n0/10^d0, calculate 1/√t
% if the denominator is an odd power of 10, add 1 to the denominator and multiply the numerator by 10.
{N, D} = case D0 band 1 of
0 -> {N0, D0};
1 -> {10*N0, D0 + 1}
end,
[Three|Rest] = lists:sublist(
integer_to_list(pow(10, D) div isqrt(N)), Prec),
[Three, \$. | Rest].

show_term({A, Decimals}) ->
Str = integer_to_list(A),
[\$0, \$.] ++ lists:duplicate(Decimals - length(Str), \$0) ++ Str.

main(_) ->
Terms = [term(N) || N <- lists:seq(0, 9)],
io:format("The first 10 terms as scaled decimals are:~n"),
[io:format("    ~s~n", [show_term(T)]) || T <- Terms],
io:format("~nThe sum of these terms (pi^-2) is ~s~n",
Pi70 = get_pi(71),
io:format("~npi to 70 decimal places:~n"),
io:format("~s~n", [Pi70]).
```
Output:
```The first 10 terms as scaled decimals are:
0.096
0.005122560
0.000190722470400
0.000007574824857600000
0.000000312546150372456000000
0.000000013207874703225491420651520
0.000000000567273919793089083292259942400
0.000000000024650600248172987140112763715584000
0.000000000001080657854354639453670407474439566400000
0.000000000000047701779391594966287470570490839978880000000

The sum of these terms (pi^-2) is 0.101321183642335555356499725503850584160514406378880000000

pi to 70 decimal places:
3.1415926535897932384626433832795028841971693993751058209749445923078164
```

## F#

```// Almkvist-Giullera formula for pi. Nigel Galloway: August 17th., 2021
let factorial(n:bigint)=MathNet.Numerics.SpecialFunctions.Factorial n
let fN g=(532I*g*g+126I*g+9I)*(factorial(6I*g))/(3I*(factorial g)**6)
[0..9]|>Seq.iter(bigint>>fN>>(*)32I>>printfn "%A\n")
let _,n=Seq.unfold(fun(n,g)->let n=n*(10I**6)+fN g in Some(Isqrt((10I**(145+6*(int g)))/(32I*n)),(n,g+1I)))(0I,0I)|>Seq.pairwise|>Seq.find(fun(n,g)->n=g)
printfn \$"""pi to 70 decimal places is %s{(n.ToString()).Insert(1,".")}"""
```
Output:
```96
5122560
190722470400
7574824857600000
312546150372456000000
13207874703225491420651520
567273919793089083292259942400
24650600248172987140112763715584000
1080657854354639453670407474439566400000
47701779391594966287470570490839978880000000

pi to 70 decimal places is 3.14159265358979323846264338327950288419716939937510582097494459230781640
```

## Factor

Works with: Factor version 0.99 2020-08-14
```USING: continuations formatting io kernel locals math
math.factorials math.functions sequences ;

:: integer-term ( n -- m )
32 6 n * factorial * 532 n sq * 126 n * + 9 + *
n factorial 6 ^ 3 * / ;

: exponent-term ( n -- m ) 6 * 3 + neg ;

: nth-term ( n -- x )
[ integer-term ] [ exponent-term 10^ * ] bi ;

! Factor doesn't have an arbitrary-precision square root afaik,
! so make one using Heron's method.

: sqrt-approx ( r x -- r' x ) [ over / + 2 / ] keep ;

:: almkvist-guillera ( precision -- x )
0 0 :> ( summed! next-add! )
[
100,000,000 <iota> [| n |
next-add summed - abs precision neg 10^ <
[ return ] when
] each
] with-return

CONSTANT: 1/pi 113/355  ! Use as initial guess for square root approximation

: pi ( -- )
1/pi 70 almkvist-guillera 5 [ sqrt-approx ] times
drop recip "%.70f\n" printf ;

"N                               Integer Portion  Pow  Nth Term (33 dp)" print
89 CHAR: - <repetition> print
10 [
dup [ integer-term ] [ exponent-term ] [ nth-term ] tri
"%d  %44d  %3d  %.33f\n" printf
] each-integer nl
"Pi to 70 decimal places:" print pi
```
Output:
```N                               Integer Portion  Pow  Nth Term (33 dp)
-----------------------------------------------------------------------------------------
0                                            96   -3  0.096000000000000000000000000000000
1                                       5122560   -9  0.005122560000000000000000000000000
2                                  190722470400  -15  0.000190722470400000000000000000000
3                              7574824857600000  -21  0.000007574824857600000000000000000
4                         312546150372456000000  -27  0.000000312546150372456000000000000
5                    13207874703225491420651520  -33  0.000000013207874703225491420651520
6                567273919793089083292259942400  -39  0.000000000567273919793089083292260
7           24650600248172987140112763715584000  -45  0.000000000024650600248172987140113
8      1080657854354639453670407474439566400000  -51  0.000000000001080657854354639453670
9  47701779391594966287470570490839978880000000  -57  0.000000000000047701779391594966287

Pi to 70 decimal places:
3.1415926535897932384626433832795028841971693993751058209749445923078164
```

## Go

Translation of: Wren
```package main

import (
"fmt"
"math/big"
"strings"
)

func factorial(n int64) *big.Int {
var z big.Int
return z.MulRange(1, n)
}

var one = big.NewInt(1)
var three = big.NewInt(3)
var six = big.NewInt(6)
var ten = big.NewInt(10)
var seventy = big.NewInt(70)

func almkvistGiullera(n int64, print bool) *big.Rat {
t1 := big.NewInt(32)
t1.Mul(factorial(6*n), t1)
t2 := big.NewInt(532*n*n + 126*n + 9)
t3 := new(big.Int)
t3.Exp(factorial(n), six, nil)
t3.Mul(t3, three)
ip := new(big.Int)
ip.Mul(t1, t2)
ip.Quo(ip, t3)
pw := 6*n + 3
t1.SetInt64(pw)
tm := new(big.Rat).SetFrac(ip, t1.Exp(ten, t1, nil))
if print {
fmt.Printf("%d  %44d  %3d  %-35s\n", n, ip, -pw, tm.FloatString(33))
}
return tm
}

func main() {
fmt.Println("N                               Integer Portion  Pow  Nth Term (33 dp)")
fmt.Println(strings.Repeat("-", 89))
for n := int64(0); n < 10; n++ {
almkvistGiullera(n, true)
}

sum := new(big.Rat)
prev := new(big.Rat)
pow70 := new(big.Int).Exp(ten, seventy, nil)
prec := new(big.Rat).SetFrac(one, pow70)
n := int64(0)
for {
term := almkvistGiullera(n, false)
z := new(big.Rat).Sub(sum, prev)
z.Abs(z)
if z.Cmp(prec) < 0 {
break
}
prev.Set(sum)
n++
}
sum.Inv(sum)
pi := new(big.Float).SetPrec(256).SetRat(sum)
pi.Sqrt(pi)
fmt.Println("\nPi to 70 decimal places is:")
fmt.Println(pi.Text('f', 70))
}
```
Output:
```N                               Integer Portion  Pow  Nth Term (33 dp)
-----------------------------------------------------------------------------------------
0                                            96   -3  0.096000000000000000000000000000000
1                                       5122560   -9  0.005122560000000000000000000000000
2                                  190722470400  -15  0.000190722470400000000000000000000
3                              7574824857600000  -21  0.000007574824857600000000000000000
4                         312546150372456000000  -27  0.000000312546150372456000000000000
5                    13207874703225491420651520  -33  0.000000013207874703225491420651520
6                567273919793089083292259942400  -39  0.000000000567273919793089083292260
7           24650600248172987140112763715584000  -45  0.000000000024650600248172987140113
8      1080657854354639453670407474439566400000  -51  0.000000000001080657854354639453670
9  47701779391594966287470570490839978880000000  -57  0.000000000000047701779391594966287

Pi to 70 decimal places is:
3.1415926535897932384626433832795028841971693993751058209749445923078164
```

Library: numbers
Translation of: Common Lisp
```import Control.Monad
import Data.Number.CReal
import GHC.Integer
import Text.Printf

iterations = 52
main = do
printf "N. %44s %4s %s\n"
"Integral part of Nth term" "×10^" "=Actual value of Nth term"

forM_ [0..9] \$ \n ->
printf "%d. %44d %4d %s\n" n
(almkvistGiulleraIntegral n)
(tenExponent n)
(showCReal 50 (almkvistGiullera n))

printf "\nPi after %d iterations:\n" iterations
putStrLn \$ showCReal 70 \$ almkvistGiulleraPi iterations

-- The integral part of the Nth term in the Almkvist-Giullera series
almkvistGiulleraIntegral n =
let polynomial  = (532 `timesInteger` n `timesInteger` n) `plusInteger` (126 `timesInteger` n) `plusInteger` 9
numerator   = 32 `timesInteger` (facInteger (6 `timesInteger` n)) `timesInteger` polynomial
denominator = 3 `timesInteger` (powInteger (facInteger n) 6)
in numerator `divInteger` denominator

-- The exponent for 10 in the Nth term of the series
tenExponent n = 3 `minusInteger` (6 `timesInteger` (1 `plusInteger` n))

-- The Nth term in the series (integral * 10^tenExponent)
almkvistGiullera n = fromInteger (almkvistGiulleraIntegral n) / fromInteger (powInteger 10 (abs (tenExponent n)))

-- The sum of the first N terms
almkvistGiulleraSum n = sum \$ map almkvistGiullera [0 .. n]

-- The approximation of pi from the first N terms
almkvistGiulleraPi n = sqrt \$ 1 / almkvistGiulleraSum n

-- Utility: factorial for arbitrary-precision integers
facInteger n = if n `leInteger` 1 then 1 else n `timesInteger` facInteger (n `minusInteger` 1)

-- Utility: exponentiation for arbitrary-precision integers
powInteger 1 _ = 1
powInteger _ 0 = 1
powInteger b 1 = b
powInteger b e = b `timesInteger` powInteger b (e `minusInteger` 1)
```
Output:
```N.                    Integral part of Nth term ×10^ =Actual value of Nth term
0.                                           96   -3 0.096
1.                                      5122560   -9 0.00512256
2.                                 190722470400  -15 0.0001907224704
3.                             7574824857600000  -21 0.0000075748248576
4.                        312546150372456000000  -27 0.000000312546150372456
5.                   13207874703225491420651520  -33 0.00000001320787470322549142065152
6.               567273919793089083292259942400  -39 0.0000000005672739197930890832922599424
7.          24650600248172987140112763715584000  -45 0.000000000024650600248172987140112763715584
8.     1080657854354639453670407474439566400000  -51 0.0000000000010806578543546394536704074744395664
9. 47701779391594966287470570490839978880000000  -57 0.00000000000004770177939159496628747057049083997888

Pi after 52 iterations:
3.1415926535897932384626433832795028841971693993751058209749445923078164```

## J

This solution just has it hard-coded that 53 iterations is necessary for 70 decimals. It would be possible to write a loop with a test, though in practice it would also be acceptable to just experiment to find the number of iterations.

sqrt is noticeably slow, bringing execution time to over 1 second. I'm not sure if it's because it's coded imperatively using traditional loops vs. J point-free style, or if it's due to the fact that the numbers are very large. I suspect the latter since it only takes 4 iterations of Heron's method to get the square root.

```numerator =: monad define "0
(3 * (! x: y)^6) %~ 32 * (!6x*y) * (y*(126 + 532*y)) + 9x
)

term =: numerator % 10x ^ 3 + 6&*

echo 'The first 10 numerators are:'
echo ,. numerator i.10

echo ''
echo 'The sum of the first 10 terms (pi^-2) is ', 0j15 ": +/ term i.10

heron =: [: -: ] + %

sqrt =: dyad define NB. usage: x0 tolerance sqrt x
NB. e.g.: (1, %10^100x) sqrt 2 -> √2 to 100 decimals as a ratio p/q
x0  =. }: x
eps =. }. x
x1  =. y heron x0
while. (| x1 - x0) > eps do.
x2 =. y heron x1
x0 =. x1
x1 =. x2
end.
x1
)

pi70 =. (355r113, %10^70x) sqrt % +/ term i.53
echo ''
echo 'pi to 70 decimals: ', 0j70 ": pi70
exit ''
```
Output:
```The first 10 numerators are:
96
5122560
190722470400
7574824857600000
312546150372456000000
13207874703225491420651520
567273919793089083292259942400
24650600248172987140112763715584000
1080657854354639453670407474439566400000
47701779391594966287470570490839978880000000

The sum of the first 10 terms (pi^-2) is 0.101321183642336

pi to 70 decimals: 3.1415926535897932384626433832795028841971693993751058209749445923078164
```

## Java

```import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.MathContext;
import java.math.RoundingMode;

public final class AlmkvistGiulleraFormula {

public static void main(String[] aArgs) {
System.out.println("n                                   Integer part");
System.out.println("================================================");
for ( int n = 0; n <= 9; n++ ) {
System.out.println(String.format("%d%47s", n, almkvistGiullera(n).toString()));
}

final int decimalPlaces = 70;
final MathContext mathContext = new MathContext(decimalPlaces + 1, RoundingMode.HALF_EVEN);
final BigDecimal epsilon = BigDecimal.ONE.divide(BigDecimal.TEN.pow(decimalPlaces));
BigDecimal previous = BigDecimal.ONE;
BigDecimal sum = BigDecimal.ZERO;
BigDecimal pi = BigDecimal.ZERO;
int n = 0;

while ( pi.subtract(previous).abs().compareTo(epsilon) >= 0 ) {
BigDecimal nextTerm = new BigDecimal(almkvistGiullera(n)).divide(BigDecimal.TEN.pow(6 * n + 3));
previous = pi;
n += 1;
pi = BigDecimal.ONE.divide(sum, mathContext).sqrt(mathContext);
}

System.out.println(System.lineSeparator() + "pi to " + decimalPlaces + " decimal places:");
System.out.println(pi);
}

// The integer part of the n'th term of Almkvist-Giullera series.
private static BigInteger almkvistGiullera(int aN) {
BigInteger term1 = factorial(6 * aN).multiply(BigInteger.valueOf(32));
BigInteger term2 = BigInteger.valueOf(532 * aN * aN + 126 * aN + 9);
BigInteger term3 = factorial(aN).pow(6).multiply(BigInteger.valueOf(3));
return term1.multiply(term2).divide(term3);
}

private static BigInteger factorial(int aNumber) {
BigInteger result = BigInteger.ONE;
for ( int i = 2; i <= aNumber; i++ ) {
result = result.multiply(BigInteger.valueOf(i));
}
return result;
}

}
```
Output:
```n                                   Integer part
================================================
0                                             96
1                                        5122560
2                                   190722470400
3                               7574824857600000
4                          312546150372456000000
5                     13207874703225491420651520
6                 567273919793089083292259942400
7            24650600248172987140112763715584000
8       1080657854354639453670407474439566400000
9   47701779391594966287470570490839978880000000

pi to 70 decimal places:
3.1415926535897932384626433832795028841971693993751058209749445923078164
```

## JavaScript

Translation of: Common Lisp
Works with: Node.js version 13+
Library: es-main

to support use of module as main code

```import esMain from 'es-main';
import { BigFloat, set_precision as SetPrecision } from 'bigfloat-esnext';

const Iterations = 52;

export const demo = function() {
SetPrecision(-75);
console.log("N." + "Integral part of Nth term".padStart(45) + " ×10^ =Actual value of Nth term");
for (let i=0; i<10; i++) {
let line = `\${i}. `;
line += nthTerm(i);
console.log(line);
}

let pi = approximatePi(Iterations);
SetPrecision(-70);
pi = pi.dividedBy(100000).times(100000);
console.log(`\nPi after \${Iterations} iterations: \${pi}`)
}

export const bigFactorial = n => n <= 1n ? 1n : n * bigFactorial(n-1n);

// the nth integer term
export const integral = function(i) {
let n = BigInt(i);
const polynomial  = 532n * n * n + 126n * n + 9n;
const numerator   = 32n * bigFactorial(6n * n) * polynomial;
const denominator = 3n * bigFactorial(n) ** 6n;
return numerator / denominator;
}

// the exponent for 10 in the nth term of the series
export const tenExponent = n => 3n - 6n * (BigInt(n) + 1n);

// the nth term of the series
export const nthTerm = n =>
new BigFloat(integral(n)).dividedBy(new BigFloat(10n ** -tenExponent(n)))

// the sum of the first n terms
export const sumThrough = function(n) {
let sum = new BigFloat(0);
for (let i=0; i<=n; ++i) {
sum = sum.plus(nthTerm(i));
}
return sum;
}

// the approximation to pi after n terms
export const approximatePi  = n =>
new BigFloat(1).dividedBy(sumThrough(n)).sqrt();

if (esMain(import.meta))
demo();
```
Output:
```N.                    Integral part of Nth term ×10^ =Actual value of Nth term
0.                                           96   -3 0.096
1.                                      5122560   -9 0.00512256
2.                                 190722470400  -15 0.0001907224704
3.                             7574824857600000  -21 0.0000075748248576
4.                        312546150372456000000  -27 0.000000312546150372456
5.                   13207874703225491420651520  -33 0.00000001320787470322549142065152
6.               567273919793089083292259942400  -39 0.0000000005672739197930890832922599424
7.          24650600248172987140112763715584000  -45 0.000000000024650600248172987140112763715584
8.     1080657854354639453670407474439566400000  -51 0.0000000000010806578543546394536704074744395664
9. 47701779391594966287470570490839978880000000  -57 0.00000000000004770177939159496628747057049083997888

Pi after 52 iterations: 3.1415926535897932384626433832795028841971693993751058209749445923078164```

## jq

Works with gojq, the Go implementation of jq

This entry uses the "rational" module, which can be found at Arithmetic/Rational#jq.

Preliminaries

```# A reminder to include the "rational" module:
# include "rational";

def lpad(\$len): tostring | (\$len - length) as \$l | (" " * \$l)[:\$l] + .;

# To take advantage of gojq's arbitrary-precision integer arithmetic:
def power(\$b): . as \$in | reduce range(0;\$b) as \$i (1; . * \$in);

def factorial:
if . < 2 then 1
else reduce range(2;.+1) as \$i (1; .*\$i)
end;```

Almkvist-Giullera Formula

```def almkvistGiullera(print):
. as \$n
| ((6*\$n) | factorial * 32) as \$t1
| (532*\$n*\$n + 126*\$n + 9) as \$t2
| ((\$n | factorial | power(6))*3) as \$t3
| (\$t1 * \$t2 / \$t3) as \$ip
| ( 6*\$n + 3) as \$pw
| r(\$ip; 10 | power(\$pw)) as \$tm
| if print
else \$tm
end;```

```def task1:
"N                               Integer Portion  Pow  Nth Term",
("-" * 89),
(range(0;10) | almkvistGiullera(true)) ;

r(1; 10 | power(\$precision)) as \$p
| {sum: r(0;1), prev: r(0;1), n:  0 }
| until(.stop;
.sum = radd(.sum; .n | almkvistGiullera(false))
| if rminus(.sum; .prev) | rabs | rlessthan(\$p)
then .stop = true
else .prev = .sum
| .n += 1
end)
| .sum | rinv
| rsqrt(\$precision)
| "\nPi to \(\$precision) decimal places is:",
"\(r_to_decimal(\$precision))" ;

""
Output:
```N                               Integer Portion  Pow  Nth Term
-----------------------------------------------------------------------------------------
0                                           96  -3, 0.096
1                                      5122560  -9, 0.00512256
2                                 190722470400 -15, 0.0001907224704
3                             7574824857600000 -21, 0.0000075748248576
4                        312546150372456000000 -27, 0.000000312546150372456
5                   13207874703225491420651520 -33, 0.00000001320787470322549142065152
6               567273919793089083292259942400 -39, 0.0000000005672739197930890832922599424
7          24650600248172987140112763715584000 -45, 0.000000000024650600248172987140112763715584
8     1080657854354639453670407474439566400000 -51, 0.0000000000010806578543546394536704074744395664
9 47701779391594966287470570490839978880000000 -57, 0.00000000000004770177939159496628747057049083997888

Pi to 70 decimal places is:
3.1415926535897932384626433832795028841971693993751058209749445923078164
```

## Julia

```using Formatting

setprecision(BigFloat, 300)

function integerterm(n)
p = BigInt(532) * n * n + BigInt(126) * n + 9
return (p * BigInt(2)^5 * factorial(BigInt(6) * n)) ÷ (3 * factorial(BigInt(n))^6)
end

exponentterm(n) = -(6n + 3)

nthterm(n) = integerterm(n) * big"10.0"^exponentterm(n)

println("  N                       Integer Term              Power of 10     Nth Term")
println("-"^90)
for n in 0:9
end

function AlmkvistGuillera(floatprecision)
summed = nthterm(0)
for n in 1:10000000
next = summed + nthterm(n)
if abs(next - summed) < big"10.0"^(-floatprecision)
return next
end
summed = next
end
end

println("\nπ to 70 digits is ", format(big"1.0" / sqrt(AlmkvistGuillera(70)), precision=70))

println("Computer π is     ", format(π + big"0.0", precision=70))
```
Output:
```  N                       Integer Term              Power of 10     Nth Term
------------------------------------------------------------------------------------------
0                                              96  -3          9.6000000000000000000e-02
1                                         5122560  -9          5.1225600000000000000e-03
2                                    190722470400 -15          1.9072247040000000000e-04
3                                7574824857600000 -21          7.5748248576000000000e-06
4                           312546150372456000000 -27          3.1254615037245600000e-07
5                      13207874703225491420651520 -33          1.3207874703225491421e-08
6                  567273919793089083292259942400 -39          5.6727391979308908329e-10
7             24650600248172987140112763715584000 -45          2.4650600248172987140e-11
8        1080657854354639453670407474439566400000 -51          1.0806578543546394537e-12
9    47701779391594966287470570490839978880000000 -57          4.7701779391594966287e-14

π to 70 digits is 3.1415926535897932384626433832795028841971693993751058209749445923078164
Computer π is     3.1415926535897932384626433832795028841971693993751058209749445923078164
```

## Kotlin

Translation of: Java
```import java.math.BigDecimal
import java.math.BigInteger
import java.math.MathContext
import java.math.RoundingMode

object CodeKt{

@JvmStatic
fun main(args: Array<String>) {
println("n                                   Integer part")
println("================================================")
for (n in 0..9) {
println(String.format("%d%47s", n, almkvistGiullera(n).toString()))
}

val decimalPlaces = 70
val mathContext = MathContext(decimalPlaces + 1, RoundingMode.HALF_EVEN)
val epsilon = BigDecimal.ONE.divide(BigDecimal.TEN.pow(decimalPlaces))
var previous = BigDecimal.ONE
var sum = BigDecimal.ZERO
var pi = BigDecimal.ZERO
var n = 0

while (pi.subtract(previous).abs().compareTo(epsilon) >= 0) {
val nextTerm = BigDecimal(almkvistGiullera(n)).divide(BigDecimal.TEN.pow(6 * n + 3), mathContext)
previous = pi
n += 1
pi = BigDecimal.ONE.divide(sum, mathContext).sqrt(mathContext)
}

println("\npi to \$decimalPlaces decimal places:")
println(pi)
}

private fun almkvistGiullera(aN: Int): BigInteger {
val term1 = factorial(6 * aN) * BigInteger.valueOf(32)
val term2 = BigInteger.valueOf(532L * aN * aN + 126 * aN + 9)
val term3 = factorial(aN).pow(6) * BigInteger.valueOf(3)
return term1 * term2 / term3
}

private fun factorial(aNumber: Int): BigInteger {
var result = BigInteger.ONE
for (i in 2..aNumber) {
result *= BigInteger.valueOf(i.toLong())
}
return result
}

private fun BigDecimal.sqrt(context: MathContext): BigDecimal {
var x = BigDecimal(Math.sqrt(this.toDouble()), context)
if (this == BigDecimal.ZERO) return BigDecimal.ZERO
val two = BigDecimal.valueOf(2)
while (true) {
val y = this.divide(x, context)
val nextY = this.divide(x, context)
if (y == nextY || y == nextY.add(BigDecimal.ONE.divide(BigDecimal.TEN.pow(context.precision), context))) {
break
}
}
return x
}
}
```
Output:
```n                                   Integer part
================================================
0                                             96
1                                        5122560
2                                   190722470400
3                               7574824857600000
4                          312546150372456000000
5                     13207874703225491420651520
6                 567273919793089083292259942400
7            24650600248172987140112763715584000
8       1080657854354639453670407474439566400000
9   47701779391594966287470570490839978880000000

pi to 70 decimal places:
3.1415926535897932384626433832795028841971693993751058209749445923078164

```

## Mathematica/Wolfram Language

```ClearAll[numerator, denominator]
numerator[n_] := (2^5) ((6 n)!) (532 n^2 + 126 n + 9)/(3 (n!)^6)
denominator[n_] := 10^(6 n + 3)
numerator /@ Range[0, 9]
val = 1/Sqrt[Total[numerator[#]/denominator[#] & /@ Range[0, 100]]];
N[val, 70]
```
Output:
```{96,5122560,190722470400,7574824857600000,312546150372456000000,13207874703225491420651520,567273919793089083292259942400,24650600248172987140112763715584000,1080657854354639453670407474439566400000,47701779391594966287470570490839978880000000}
3.141592653589793238462643383279502884197169399375105820974944592307816```

## Nim

Library: nim-decimal

Derived from Wren version with some simplifications.

```import strformat, strutils
import decimal

proc fact(n: int): DecimalType =
result = newDecimal(1)
if n < 2: return
for i in 2..n:
result *= i

proc almkvistGiullera(n: int): DecimalType =
## Return the integer portion of the nth term of Almkvist-Giullera sequence.
let t1 = fact(6 * n) * 32
let t2 = 532 * n * n + 126 * n + 9
let t3 = fact(n) ^ 6 * 3
result = t1 * t2 / t3

let One = newDecimal(1)

setPrec(78)
echo "N                               Integer portion"
echo repeat('-', 47)
for n in 0..9:
echo &"{n}  {almkvistGiullera(n):>44}"
echo()

echo "Pi to 70 decimal places:"
var
sum = newDecimal(0)
prev = newDecimal(0)
prec = One.scaleb(newDecimal(-70))
n = 0
while true:
sum += almkvistGiullera(n) / One.scaleb(newDecimal(6 * n + 3))
if abs(sum - prev) < prec: break
prev = sum.clone
inc n
let pi = 1 / sqrt(sum)
echo (\$pi)[0..71]
```
Output:
```N                               Integer portion
-----------------------------------------------
0                                            96
1                                       5122560
2                                  190722470400
3                              7574824857600000
4                         312546150372456000000
5                    13207874703225491420651520
6                567273919793089083292259942400
7           24650600248172987140112763715584000
8      1080657854354639453670407474439566400000
9  47701779391594966287470570490839978880000000

Pi to 70 decimal places:
3.1415926535897932384626433832795028841971693993751058209749445923078164```

## Perl

Translation of: Raku
```use strict;
use warnings;
use feature qw(say);

sub almkvist_giullera_integral {
my(\$n) = @_;
(32 * (14*\$n * (38*\$n + 9) + 9) * factorial(6*\$n)) / (3*factorial(\$n)**6);
}

sub almkvist_giullera {
my(\$n) = @_;
almkvist_giullera_integral(\$n) / (10**(6*\$n + 3));
}

sub almkvist_giullera_pi {
my (\$prec) = @_;

local \$Math::AnyNum::PREC = 4*(\$prec+1);

my \$sum = 0;
my \$target = '';

for (my \$n = 0; ; ++\$n) {
\$sum += almkvist_giullera(\$n);
my \$curr = (\$sum**-.5)->as_dec;
return \$target if (\$curr eq \$target);
\$target = \$curr;
}
}

say 'First 10 integer portions: ';
say "\$_  " . almkvist_giullera_integral(\$_) for 0..9;

my \$precision = 70;

printf("π to %s decimal places is:\n%s\n",
\$precision, almkvist_giullera_pi(\$precision));
```
Output:
```First 10 integer portions:
0  96
1  5122560
2  190722470400
3  7574824857600000
4  312546150372456000000
5  13207874703225491420651520
6  567273919793089083292259942400
7  24650600248172987140112763715584000
8  1080657854354639453670407474439566400000
9  47701779391594966287470570490839978880000000
π to 70 decimal places is:
3.1415926535897932384626433832795028841971693993751058209749445923078164```

## Phix

```with javascript_semantics
requires("1.0.0")
include mpfr.e
mpfr_set_default_precision(-70)

function almkvistGiullera(integer n, bool bPrint)
mpz {t1,t2,ip} = mpz_inits(3)
mpz_fac_ui(t1,6*n)
mpz_mul_si(t1,t1,32)                -- t1:=2^5*(6n)!
mpz_fac_ui(t2,n)
mpz_pow_ui(t2,t2,6)
mpz_mul_si(t2,t2,3)                 -- t2:=3*(n!)^6
mpz_mul_si(ip,t1,532*n*n+126*n+9)   -- ip:=t1*(532n^2+126n+9)
mpz_fdiv_q(ip,ip,t2)                -- ip:=ip/t2
integer pw := 6*n+3
mpz_ui_pow_ui(t1,10,pw)             -- t1 := 10^(6n+3)
mpq tm = mpq_init_set_z(ip,t1)      -- tm := rat(ip/t1)
if bPrint then
string ips = mpz_get_str(ip),
tms = mpfr_get_fixed(mpfr_init_set_q(tm),50)
tms = trim_tail(tms,"0")
printf(1,"%d  %44s  %3d  %s\n", {n, ips, -pw, tms})
end if
return tm
end function

constant hdr = "N --------------- Integer portion -------------  Pow  ----------------- Nth term (50 dp) -----------------"
printf(1,"%s\n%s\n",{hdr,repeat('-',length(hdr))})
for n=0 to 9 do
{} = almkvistGiullera(n, true)
end for

mpq {res,prev,z} = mpq_inits(3),
prec = mpq_init_set_str(sprintf("1/1%s",repeat('0',70)))
integer n = 0
while true do
mpq term := almkvistGiullera(n, false)
mpq_sub(z,res,prev)
mpq_abs(z,z)
if mpq_cmp(z,prec) < 0 then exit end if
mpq_set(prev,res)
n += 1
end while
mpq_inv(res,res)
mpfr pi = mpfr_init_set_q(res)
mpfr_sqrt(pi,pi)
printf(1,"\nCalculation of pi took %d iterations using the Almkvist-Giullera formula.\n\n",n)
printf(1,"Pi to 70 d.p.: %s\n",mpfr_get_fixed(pi,70))
mpfr_const_pi(pi)
printf(1,"Pi (builtin) : %s\n",mpfr_get_fixed(pi,70))
```
Output:
```N --------------- Integer portion -------------  Pow  ----------------- Nth term (50 dp) -----------------
----------------------------------------------------------------------------------------------------------
0                                            96   -3  0.096
1                                       5122560   -9  0.00512256
2                                  190722470400  -15  0.0001907224704
3                              7574824857600000  -21  0.0000075748248576
4                         312546150372456000000  -27  0.000000312546150372456
5                    13207874703225491420651520  -33  0.00000001320787470322549142065152
6                567273919793089083292259942400  -39  0.0000000005672739197930890832922599424
7           24650600248172987140112763715584000  -45  0.000000000024650600248172987140112763715584
8      1080657854354639453670407474439566400000  -51  0.0000000000010806578543546394536704074744395664
9  47701779391594966287470570490839978880000000  -57  0.00000000000004770177939159496628747057049083997888

Calculation of pi took 52 iterations using the Almkvist-Giullera formula.

Pi to 70 d.p.: 3.1415926535897932384626433832795028841971693993751058209749445923078164
Pi (builtin) : 3.1415926535897932384626433832795028841971693993751058209749445923078164
```

## PicoLisp

```(scl 70)
(de fact (N)
(if (=0 N)
1
(* N (fact (dec N))) ) )
(de almkvist (N)
(let
(A (* 32 (fact (* 6 N)))
B (+ (* 532 N N) (* 126 N) 9)
C (* (** (fact N) 6) 3) )
(/ (* A B) C) ) )
(de integral (N)
(*/
1.0
(almkvist N)
(** 10 (+ 3 (* 6 N))) ) )
(let (S 0  N -1)
(do 10
(println (inc 'N) (almkvist N)) )
(prinl)
(setq N -1)
(while (gt0 (integral (inc 'N)))
(inc 'S @) )
(setq S (sqrt (*/ 1.0 1.0 S) 1.0))
(prinl "Pi to 70 decimal places is:")
(prinl (format S *Scl)) )```
Output:
```0 96
1 5122560
2 190722470400
3 7574824857600000
4 312546150372456000000
5 13207874703225491420651520
6 567273919793089083292259942400
7 24650600248172987140112763715584000
8 1080657854354639453670407474439566400000
9 47701779391594966287470570490839978880000000

Pi to 70 decimal places is:
3.1415926535897932384626433832795028841971693993751058209749445923078152
```

## Python

```import mpmath as mp

with mp.workdps(72):

def integer_term(n):
p = 532 * n * n + 126 * n + 9
return (p * 2**5 * mp.factorial(6 * n)) / (3 * mp.factorial(n)**6)

def exponent_term(n):
return -(mp.mpf("6.0") * n + 3)

def nthterm(n):
return integer_term(n) * mp.mpf("10.0")**exponent_term(n)

for n in range(10):
print("Term ", n, '  ', int(integer_term(n)))

def almkvist_guillera(floatprecision):
for n in range(100000000):
if abs(nextadd - summed) < 10.0**(-floatprecision):
break

print('\nπ to 70 digits is ', end='')
mp.nprint(mp.mpf(1.0 / mp.sqrt(almkvist_guillera(70))), 71)
print('mpmath π is       ', end='')
mp.nprint(mp.pi, 71)
```
Output:
```Term  0    96
Term  1    5122560
Term  2    190722470400
Term  3    7574824857600000
Term  4    312546150372456000000
Term  5    13207874703225491420651520
Term  6    567273919793089083292259942400
Term  7    24650600248172987140112763715584000
Term  8    1080657854354639453670407474439566400000
Term  9    47701779391594966287470570490839978880000000

π to 70 digits is 3.1415926535897932384626433832795028841971693993751058209749445923078164
mpmath π is       3.1415926535897932384626433832795028841971693993751058209749445923078164
```

## Quackery

```  [ \$ "bigrat.qky" loadfile ] now!

[ 1 swap times [ i^ 1+ * ] ] is !       ( n --> n   )

[ dup dup 2 ** 532 *
over 126 * + 9 +
swap 6 * ! * 32 *
swap ! 6 ** 3 * / ]        is intterm ( n --> n   )

[ dup intterm
10 rot 6 * 3 + **
reduce ]                   is vterm   ( n --> n/d )

10 times [ i^ intterm echo cr ] cr

0 n->v
53 times [ i^ vterm v+ ]
1/v 70 vsqrt drop
70 point\$ echo\$ cr```
Output:
```96
5122560
190722470400
7574824857600000
312546150372456000000
13207874703225491420651520
567273919793089083292259942400
24650600248172987140112763715584000
1080657854354639453670407474439566400000
47701779391594966287470570490839978880000000

3.1415926535897932384626433832795028841971693993751058209749445923078164
```

## Raku

```# 20201013 Raku programming solution

use BigRoot;
use Rat::Precise;
use experimental :cached;

BigRoot.precision = 75 ;
my \$Precision     = 70 ;
my \$AGcache       =  0 ;

sub postfix:<!>(Int \$n --> Int) is cached { [*] 1 .. \$n }

sub Integral(Int \$n --> Int) is cached {
(2⁵*(6*\$n)! * (532*\$n² + 126*\$n + 9)) div (3*(\$n!)⁶)
}

sub A-G(Int \$n --> FatRat) is cached { # Almkvist-Giullera
Integral(\$n).FatRat / (10**(6*\$n + 3)).FatRat
}

sub Pi(Int \$n --> Str) {
(1/(BigRoot.newton's-sqrt: \$AGcache += A-G \$n)).precise(\$Precision)
}

say "First 10 integer portions : ";
say \$_, "\t", Integral \$_ for ^10;

my \$target = Pi my \$Nth = 0;

loop { \$target eq ( my \$next = Pi ++\$Nth ) ?? ( last ) !! \$target = \$next }

say "π to \$Precision decimal places is :\n\$target"
```
Output:
```First 10 integer portions :
0       96
1       5122560
2       190722470400
3       7574824857600000
4       312546150372456000000
5       13207874703225491420651520
6       567273919793089083292259942400
7       24650600248172987140112763715584000
8       1080657854354639453670407474439566400000
9       47701779391594966287470570490839978880000000
π to 70 decimal places is :
3.1415926535897932384626433832795028841971693993751058209749445923078164```

## REXX

```/*REXX program uses the Almkvist─Giullera formula for   1 / (pi**2)     [or  pi ** -2]. */
numeric digits length( pi() )  +  length(.);                                       w= 102
say \$(   , 3)       \$(              , w%2)       \$('power', 5)       \$(          , w)
say \$('N', 3)       \$('integer term', w%2)       \$('of 10', 5)       \$('Nth term', w)
say \$(   , 3, "─")  \$(              , w%2, "─")  \$(       , 5, "─")  \$(          , w, "─")
s= 0           /*initialize   S   (the sum)  to zero. */
do n=0  until old=s;    old= s              /*use the "older" value of  S  for OLD.*/
a= 2**5  *  !(6*n)  *  (532 * n**2  +  126*n  +  9)  /  (3 * !(n)**6)
z= 10 ** (- (6*n + 3) )
s= s     +   a * z
if n>10  then do;  do 3*(n==11);  say ' .';  end;  iterate;  end
say \$(n, 3) right(a, w%2)  \$(powX(z), 5)  right( lowE( format(a*z, 1, w-6, 2, 0)), w)
end   /*n*/
say
say 'The calculation of pi took '       n       " iterations with "         digits() ,
" decimal digits precision using"   subword( sourceLine(1), 4, 3).
say
numeric digits length( pi() ) - length(.);  d= digits() - length(.);          @= ' ↓↓↓ '
say center(@ 'calculated pi to '  d   " fractional decimal digits (below) is "@, d+4, '─')
say ' 'sqrt(1/s);          say
say ' 'pi();  @= ' ↑↑↑ '
say center(@ 'the  true  pi to '  d   " fractional decimal digits (above) is" @, d+4, '─')
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
\$:    procedure; parse arg text,width,fill;     return center(text, width, left(fill, 1) )
!:    procedure; parse arg x; !=1;;      do j=2  to x;    != !*j;    end;         return !
lowE: procedure; parse arg x; return translate(x, 'e', "E")
powX: procedure; parse arg p; return right( format( p, 1, 3, 2, 0),  3)   +   0
/*──────────────────────────────────────────────────────────────────────────────────────*/
pi:   pi=3.141592653589793238462643383279502884197169399375105820974944592307816406286208,
||9986280348253421170679821480865132823066470938446095505822317253594081284811174503
return pi
/*──────────────────────────────────────────────────────────────────────────────────────*/
sqrt: procedure; parse arg x;  if x=0  then return 0;  d=digits();  numeric digits;  h=d+6
m.=9; numeric form; parse value format(x,2,1,,0) 'E0' with g 'E' _ .; g=g*.5'e'_ % 2
do j=0  while h>9;        m.j= h;                 h= h % 2  +  1;       end  /*j*/
do k=j+5  to 0  by -1;    numeric digits m.k;     g= (g + x/g) * .5;    end  /*k*/
numeric digits d;           return g/1
```
output   when using the internal default input:

(Shown at two─thirds size.)

```                                                        power
N                     integer term                     of 10                                                Nth term
─── ─────────────────────────────────────────────────── ───── ──────────────────────────────────────────────────────────────────────────────────────────────────────
0                                                   96  -3   9.600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-02
1                                              5122560  -9   5.122560000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-03
2                                         190722470400  -15  1.907224704000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-04
3                                     7574824857600000  -21  7.574824857600000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-06
4                                312546150372456000000  -27  3.125461503724560000000000000000000000000000000000000000000000000000000000000000000000000000000000e-07
5                           13207874703225491420651520  -33  1.320787470322549142065152000000000000000000000000000000000000000000000000000000000000000000000000e-08
6                       567273919793089083292259942400  -39  5.672739197930890832922599424000000000000000000000000000000000000000000000000000000000000000000000e-10
7                  24650600248172987140112763715584000  -45  2.465060024817298714011276371558400000000000000000000000000000000000000000000000000000000000000000e-11
8             1080657854354639453670407474439566400000  -51  1.080657854354639453670407474439566400000000000000000000000000000000000000000000000000000000000000e-12
9         47701779391594966287470570490839978880000000  -57  4.770177939159496628747057049083997888000000000000000000000000000000000000000000000000000000000000e-14
10    2117262852373157207626265529989139651218848358400  -63  2.117262852373157207626265529989139651218848358400000000000000000000000000000000000000000000000000e-15
.
.
.

The calculation of pi took  122  iterations with  163  decimal digits precision using the Almkvist─Giullera formula.

────────────────────────────────────────────── ↓↓↓  calculated pi to  160  fractional decimal digits (below) is  ↓↓↓ ───────────────────────────────────────────────
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174503

3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174503
────────────────────────────────────────────── ↑↑↑  the  true  pi to  160  fractional decimal digits (above) is  ↑↑↑ ───────────────────────────────────────────────
```

## RPL

Works with: HP version 49

The starred formula can be implemented like this:

```« → n
« 32 6 n * FACT *
532 n SQ * 126 n * + 9 + *
3 / n FACT 6 ^ /
» » 'ALMKV' STO
```

or like that:

```« → n '2^5*(6*n)!*(532*SQ(n)+126*n+9)/(3*n!^6)'
» 'ALMKV' STO
```

which is more readable, although a little bit (0.6%) slower than the pure reverse Polish approach.

`LDIVN` is defined at Metallic ratios

```« 0 → x t
« 0 1
WHILE DUP x ≤ REPEAT 4 * END
WHILE DUP 1 >
REPEAT 4 IQUOT
DUP2 + x SWAP - 't' STO
SWAP 2 IQUOT SWAP
IF t 0 ≥ THEN t 'x' STO SWAP OVER + SWAP END
END DROP
» » 'ISQRT' STO

« -105 CF     @ set exact mode
« n ALMKV » 'n' 0 9 1 SEQ
-1 → j
« 0 ""
DO SWAP 'j' INCR ALMKV 10 6 j * 3 + ^ / + EVAL
UNTIL DUP FXND ISQRT SWAP ISQRT 70 LDIVN ROT OVER ==
END
"π" →TAG NIP j "iterations" →TAG
```
Output:
```3: { 96 5122560 190722470400 7574824857600000 312546150372456000000 13207874703225491420651520 567273919793089083292259942400 24650600248172987140112763715584000 1080657854354639453670407474439566400000 47701779391594966287470570490839978880000000 }
2: π:"3.1415926535897932384626433832795028841971693993751058209749445923078164"
1: iterations:53
```

## Scala

Translation of: Java
```import java.math.{BigDecimal, BigInteger, MathContext, RoundingMode}

object AlmkvistGiulleraFormula extends App {
println("n                                   Integer part")
println("================================================")
for (n <- 0 to 9) {
val term = almkvistGiullera(n).toString
println(f"\$n%1d" + " " * (47 - term.length) + term)
}

val decimalPlaces = 70
val mathContext = new MathContext(decimalPlaces + 1, RoundingMode.HALF_EVEN)
val epsilon = BigDecimal.ONE.divide(BigDecimal.TEN.pow(decimalPlaces))
var previous = BigDecimal.ONE
var sum = BigDecimal.ZERO
var pi = BigDecimal.ZERO
var n = 0

while (pi.subtract(previous).abs.compareTo(epsilon) >= 0) {
val nextTerm = new BigDecimal(almkvistGiullera(n)).divide(BigDecimal.TEN.pow(6 * n + 3))
previous = pi
n += 1
pi = BigDecimal.ONE.divide(sum, mathContext).sqrt(mathContext)
}

println("\npi to " + decimalPlaces + " decimal places:")
println(pi)

def almkvistGiullera(aN: Int): BigInteger = {
val term1 = factorial(6 * aN).multiply(BigInteger.valueOf(32))
val term2 = BigInteger.valueOf(532 * aN * aN + 126 * aN + 9)
val term3 = factorial(aN).pow(6).multiply(BigInteger.valueOf(3))
term1.multiply(term2).divide(term3)
}

def factorial(aNumber: Int): BigInteger = {
var result = BigInteger.ONE
for (i <- 2 to aNumber) {
result = result.multiply(BigInteger.valueOf(i))
}
result
}
}
```
Output:
```n                                   Integer part
================================================
0                                             96
1                                        5122560
2                                   190722470400
3                               7574824857600000
4                          312546150372456000000
5                     13207874703225491420651520
6                 567273919793089083292259942400
7            24650600248172987140112763715584000
8       1080657854354639453670407474439566400000
9   47701779391594966287470570490839978880000000

pi to 70 decimal places:
3.1415926535897932384626433832795028841971693993751058209749445923078164

```

## Sidef

```func almkvist_giullera(n) {
(32 * (14*n * (38*n + 9) + 9) * (6*n)!) / (3 * n!**6)
}

func almkvist_giullera_pi(prec = 70) {

local Num!PREC = (4*(prec+1)).numify

var sum = 0
var target = -1

for n in (0..Inf) {
sum += (almkvist_giullera(n) / (10**(6*n + 3)))
var curr = (sum**-.5).as_dec
return target if (target == curr)
target = curr
}
}

say 'First 10 integer portions: '

10.of {|n|
say "#{n} #{almkvist_giullera(n)}"
}

with(70) {|n|
say "π to #{n} decimal places is:"
say almkvist_giullera_pi(n)
}
```
Output:
```First 10 integer portions:
0 96
1 5122560
2 190722470400
3 7574824857600000
4 312546150372456000000
5 13207874703225491420651520
6 567273919793089083292259942400
7 24650600248172987140112763715584000
8 1080657854354639453670407474439566400000
9 47701779391594966287470570490839978880000000
π to 70 decimal places is:
3.1415926535897932384626433832795028841971693993751058209749445923078164
```

## Visual Basic .NET

Translation of: C#
```Imports System, BI = System.Numerics.BigInteger, System.Console

Module Module1

Function isqrt(ByVal x As BI) As BI
Dim t As BI, q As BI = 1, r As BI = 0
While q <= x : q <<= 2 : End While
While q > 1 : q >>= 2 : t = x - r - q : r >>= 1
If t >= 0 Then x = t : r += q
End While : Return r
End Function

Function dump(ByVal digs As Integer, ByVal Optional show As Boolean = False) As String
digs += 1
Dim z As Integer, gb As Integer = 1, dg As Integer = digs + gb
Dim te As BI, t1 As BI = 1, t2 As BI = 9, t3 As BI = 1, su As BI = 0, t As BI = BI.Pow(10, If(dg <= 60, 0, dg - 60)), d As BI = -1, fn As BI = 1
For n As BI = 0 To dg - 1
If n > 0 Then t3 = t3 * BI.Pow(n, 6)
te = t1 * t2 / t3 : z = dg - 1 - CInt(n) * 6
If z > 0 Then te = te * BI.Pow(10, z) Else te = te / BI.Pow(10, -z)
If show AndAlso n < 10 Then WriteLine("{0,2} {1,62}", n, te * 32 / 3 / t)
su += te : If te < 10 Then
digs -= 1
If show Then WriteLine(vbLf & "{0} iterations required for {1} digits " & _
"after the decimal point." & vbLf, n, digs)
Exit For
End If
For j As BI = n * 6 + 1 To n * 6 + 6
t1 = t1 * j : Next
d += 2 : t2 += 126 + 532 * d
Next
Dim s As String = String.Format("{0}", isqrt(BI.Pow(10, dg * 2 + 3) _
/ su / 32 * 3 * BI.Pow(CType(10, BI), dg + 5)))
Return s(0) & "." & s.Substring(1, digs)
End Function

Sub Main(ByVal args As String())
WriteLine(dump(70, true))
End Sub

End Module
```
Output:
``` 0  9600000000000000000000000000000000000000000000000000000000000
1   512256000000000000000000000000000000000000000000000000000000
2    19072247040000000000000000000000000000000000000000000000000
3      757482485760000000000000000000000000000000000000000000000
4       31254615037245600000000000000000000000000000000000000000
5        1320787470322549142065152000000000000000000000000000000
6          56727391979308908329225994240000000000000000000000000
7           2465060024817298714011276371558400000000000000000000
8            108065785435463945367040747443956640000000000000000
9              4770177939159496628747057049083997888000000000000

53 iterations required for 70 digits after the decimal point.

3.1415926535897932384626433832795028841971693993751058209749445923078164```

## Wren

Library: Wren-big
Library: Wren-fmt
```import "./big" for BigInt, BigRat
import "./fmt" for Fmt

var factorial = Fn.new { |n|
if (n < 2) return BigInt.one
var fact = BigInt.one
for (i in 2..n) fact = fact * i
return fact
}

var almkvistGiullera = Fn.new { |n, print|
var t1 = factorial.call(6*n) * 32
var t2 = 532*n*n + 126*n + 9
var t3 = factorial.call(n).pow(6)*3
var ip = t1 * t2 / t3
var pw = 6*n + 3
var tm = BigRat.new(ip, BigInt.ten.pow(pw))
if (print) {
Fmt.print("\$d  \$44i  \$3d  \$-35s", n, ip, -pw, tm.toDecimal(33))
} else {
return tm
}
}

System.print("N                               Integer Portion  Pow  Nth Term (33 dp)")
System.print("-" * 89)
for (n in 0..9) {
almkvistGiullera.call(n, true)
}

var sum  = BigRat.zero
var prev = BigRat.zero
var prec = BigRat.new(BigInt.one, BigInt.ten.pow(70))
var n = 0
while(true) {
var term = almkvistGiullera.call(n, false)
sum = sum + term
if ((sum-prev).abs < prec) break
prev = sum
n = n + 1
}
var pi = BigRat.one/sum.sqrt(70)
System.print("\nPi to 70 decimal places is:")
System.print(pi.toDecimal(70))
```
Output:
```N                               Integer Portion  Pow  Nth Term (33 dp)
-----------------------------------------------------------------------------------------
0                                            96   -3  0.096
1                                       5122560   -9  0.00512256
2                                  190722470400  -15  0.0001907224704
3                              7574824857600000  -21  0.0000075748248576
4                         312546150372456000000  -27  0.000000312546150372456
5                    13207874703225491420651520  -33  0.00000001320787470322549142065152
6                567273919793089083292259942400  -39  0.000000000567273919793089083292260
7           24650600248172987140112763715584000  -45  0.000000000024650600248172987140113
8      1080657854354639453670407474439566400000  -51  0.000000000001080657854354639453670
9  47701779391594966287470570490839978880000000  -57  0.000000000000047701779391594966287

Pi to 70 decimal places is:
3.1415926535897932384626433832795028841971693993751058209749445923078164
```