Almkvist-Giullera formula for pi
You are encouraged to solve this task according to the task description, using any language you may know.
The Almkvist-Giullera formula for calculating 1/π2 is based on the Calabi-Yau differential equations of order 4 and 5, which were originally used to describe certain manifolds in string theory.
The formula is:
- 1/π2 = (25/3) ∑0∞ ((6n)! / (n!6))(532n2 + 126n + 9) / 10002n+1
This formula can be used to calculate the constant π-2, and thus to calculate π.
Note that, because the product of all terms but the power of 1000 can be calculated as an integer, the terms in the series can be separated into a large integer term:
- (25) (6n)! (532n2 + 126n + 9) / (3(n!)6) (***)
multiplied by a negative integer power of 10:
- 10-(6n + 3)
- Task
-
- Print the integer portions (the starred formula, which is without the power of 1000 divisor) of the first 10 terms of the series.
- Use the complete formula to calculate and print π to 70 decimal digits of precision.
11l
F isqrt(BigInt =x)
BigInt q = 1
BigInt r = 0
BigInt t
L q <= x
q *= 4
L q > 1
q I/= 4
t = x - r - q
r I/= 2
I t >= 0
x = t
r += q
R r
F dump(=digs, show)
V gb = 1
digs++
V dg = digs + gb
BigInt t1 = 1
BigInt t2 = 9
BigInt t3 = 1
BigInt te
BigInt su = 0
V t = BigInt(10) ^ (I dg <= 60 {0} E dg - 60)
BigInt d = -1
BigInt _fn_ = 1
V n = 0
L n < dg
I n > 0
t3 *= BigInt(n) ^ 6
te = t1 * t2 I/ t3
V z = dg - 1 - n * 6
I z > 0
te *= BigInt(10) ^ z
E
te I/= BigInt(10) ^ -z
I show & n < 10
print(‘#2 #62’.format(n, te * 32 I/ 3 I/ t))
su += te
I te < 10
I show
digs--
print("\n#. iterations required for #. digits after the decimal point.\n".format(n, digs))
L.break
L(j) n * 6 + 1 .. n * 6 + 6
t1 *= j
d += 2
t2 += 126 + 532 * d
n++
V s = String(isqrt(BigInt(10) ^ (dg * 2 + 3) I/ su I/ 32 * 3 * BigInt(10) ^ (dg + 5)))
R s[0]‘.’s[1 .+ digs]
print(dump(70, 1B))
- Output:
0 9600000000000000000000000000000000000000000000000000000000000 1 512256000000000000000000000000000000000000000000000000000000 2 19072247040000000000000000000000000000000000000000000000000 3 757482485760000000000000000000000000000000000000000000000 4 31254615037245600000000000000000000000000000000000000000 5 1320787470322549142065152000000000000000000000000000000 6 56727391979308908329225994240000000000000000000000000 7 2465060024817298714011276371558400000000000000000000 8 108065785435463945367040747443956640000000000000000 9 4770177939159496628747057049083997888000000000000 53 iterations required for 70 digits after the decimal point. 3.1415926535897932384626433832795028841971693993751058209749445923078164
AArch64 Assembly
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program calculPi64.s */
/* this program use gmp library */
/* link with gcc option -lgmp */
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
.equ MAXI, 10
.equ SIZEBIG, 100
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessDebutPgm: .asciz "Program 64 bits start. \n"
szMessPi: .asciz "\nPI = \n"
szCarriageReturn: .asciz "\n"
szFormat: .asciz " %Zd\n"
szFormatFloat: .asciz " %.*Ff\n"
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
Result1: .skip SIZEBIG
Result2: .skip SIZEBIG
Result3: .skip SIZEBIG
Result4: .skip SIZEBIG
fIntex5: .skip SIZEBIG
fIntex6: .skip SIZEBIG
fIntex7: .skip SIZEBIG
fSum: .skip SIZEBIG
fSum1: .skip SIZEBIG
sBuffer: .skip SIZEBIG
fEpsilon: .skip SIZEBIG
fPrec: .skip SIZEBIG
fPI: .skip SIZEBIG
fTEN: .skip SIZEBIG
fONE: .skip SIZEBIG
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: // entry of program
ldr x0,qAdrszMessDebutPgm
bl affichageMess
mov x20,#0 // loop indice
1:
mov x0,x20
bl computeAlmkvist // compute
mov x1,x0
ldr x0,qAdrszFormat // print big integer
bl __gmp_printf
add x20,x20,#1
cmp x20,#MAXI
blt 1b // and loop
mov x0,#560 // float précision in bits
bl __gmpf_set_default_prec
mov x19,#0 // compute indice
ldr x0,qAdrfSum // init to zéro
bl __gmpf_init
ldr x0,qAdrfSum1 // init to zéro
bl __gmpf_init
ldr x0,qAdrfONE // result address
mov x1,#1 // init à 1
bl __gmpf_init_set_ui
ldr x0,qAdrfIntex5 // init to zéro
bl __gmpf_init
ldr x0,qAdrfIntex6 // init to zéro
bl __gmpf_init
ldr x0,qAdrfIntex7 // init to zéro
bl __gmpf_init
ldr x0,qAdrfEpsilon // init to zéro
bl __gmpf_init
ldr x0,qAdrfPrec // init to zéro
bl __gmpf_init
ldr x0,qAdrfPI // init to zéro
bl __gmpf_init
ldr x0,qAdrfTEN
mov x1,#10 // init to 10
bl __gmpf_init_set_ui
ldr x0,qAdrfIntex6 // compute 10 pow 70
ldr x1,qAdrfTEN
mov x2,#70
bl __gmpf_pow_ui
ldr x0,qAdrfEpsilon // divide 1 by 10 pow 70
ldr x1,qAdrfONE // dividende
ldr x2,qAdrfIntex6 // divisor
bl __gmpf_div
2: // PI compute loop
mov x0,x19
bl computeAlmkvist
mov x20,x0
mov x1,#6
mul x2,x1,x19
add x6,x2,#3 // compute 6n + 3
ldr x0,qAdrfIntex6 // compute 10 pow (6n+3)
ldr x1,qAdrfTEN
mov x2,x6
bl __gmpf_pow_ui
ldr x0,qAdrfIntex7 // compute 1 / 10 pow (6n+3)
ldr x1,qAdrfONE // dividende
ldr x2,qAdrfIntex6 // divisor
bl __gmpf_div
ldr x0,qAdrfIntex6 // result big float
mov x1,x20 // big integer Almkvist
bl __gmpf_set_z // conversion in big float
ldr x0,qAdrfIntex5 // result Almkvist * 1 / 10 pow (6n+3)
ldr x1,qAdrfIntex7 // operator 1
ldr x2,qAdrfIntex6 // operator 2
bl __gmpf_mul
ldr x0,qAdrfSum1 // terms addition
ldr x1,qAdrfSum
ldr x2,qAdrfIntex5
bl __gmpf_add
ldr x0,qAdrfSum // copy terms
ldr x1,qAdrfSum1
bl __gmpf_set
ldr x0,qAdrfIntex7 // compute 1 / sum
ldr x1,qAdrfONE // dividende
ldr x2,qAdrfSum // divisor
bl __gmpf_div
ldr x0,qAdrfPI // compute square root (1 / sum )
ldr x1,qAdrfIntex7
bl __gmpf_sqrt
ldr x0,qAdrfIntex6 // compute variation PI
ldr x1,qAdrfPrec
ldr x2,qAdrfPI
bl __gmpf_sub
ldr x0,qAdrfIntex6 // absolue value
ldr x1,qAdrfIntex5
bl __gmpf_abs
add x19,x19,#1 // increment indice
ldr x0,qAdrfPrec // copy PI -> prévious
ldr x1,qAdrfPI
bl __gmpf_set
ldr x0,qAdrfIntex6 // compare gap and epsilon
ldr x1,qAdrfEpsilon
bl __gmpf_cmp
cmp w0,#0 // !!! cmp return result on 32 bits
bgt 2b // if gap is highter -> loop
ldr x0,qAdrszMessPi // title display
bl affichageMess
ldr x2,qAdrfPI // PI display
ldr x0,qAdrszFormatFloat
mov x1,#70
bl __gmp_printf
100: // standard end of the program
mov x0, #0 // return code
mov x8, #EXIT // request to exit program
svc #0 // perform the system call
qAdrszMessDebutPgm: .quad szMessDebutPgm
qAdrszCarriageReturn: .quad szCarriageReturn
qAdrfIntex5: .quad fIntex5
qAdrfIntex6: .quad fIntex6
qAdrfIntex7: .quad fIntex7
qAdrfSum: .quad fSum
qAdrfSum1: .quad fSum1
qAdrszFormatFloat: .quad szFormatFloat
qAdrszMessPi: .quad szMessPi
qAdrfEpsilon: .quad fEpsilon
qAdrfPrec: .quad fPrec
qAdrfPI: .quad fPI
qAdrfTEN: .quad fTEN
qAdrfONE: .quad fONE
/***************************************************/
/* compute almkvist_giullera formula */
/***************************************************/
/* x0 contains the number */
computeAlmkvist:
stp x19,lr,[sp,-16]! // save registers
mov x19,x0
mov x1,#6
mul x0,x1,x0
ldr x1,qAdrResult1 // result address
bl computeFactorielle // compute (n*6)!
mov x1,#532
mul x2,x19,x19
mul x2,x1,x2
mov x1,#126
mul x3,x19,x1
add x2,x2,x3
add x2,x2,#9
lsl x2,x2,#5 // * 32
ldr x0,qAdrResult2 // result
ldr x1,qAdrResult1 // operator
bl __gmpz_mul_ui
mov x0,x19
ldr x1,qAdrResult1
bl computeFactorielle
ldr x0,qAdrResult3
bl __gmpz_init // init to 0
ldr x0,qAdrResult3 // result
ldr x1,qAdrResult1 // operator
mov x2,#6
bl __gmpz_pow_ui
ldr x0,qAdrResult1 // result
ldr x1,qAdrResult3 // operator
mov x2,#3
bl __gmpz_mul_ui
ldr x0,qAdrResult3 // result
ldr x1,qAdrResult2 // operator
ldr x2,qAdrResult1 // operator
bl __gmpz_cdiv_q
ldr x0,qAdrResult3 // return result address
100:
ldp x19,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
qAdrszFormat: .quad szFormat
qAdrResult1: .quad Result1
qAdrResult2: .quad Result2
qAdrResult3: .quad Result3
/***************************************************/
/* compute factorielle N */
/***************************************************/
/* x0 contains the number */
/* x1 contains big number result address */
computeFactorielle:
stp x19,lr,[sp,-16]! // save registers
stp x20,x21,[sp,-16]! // save registers
mov x19,x0 // save N
mov x20,x1 // save result address
mov x0,x1 // result address
mov x1,#1 // init to 1
bl __gmpz_init_set_ui
ldr x0,qAdrResult4
bl __gmpz_init // init to 0
mov x21,#1
1: // loop
ldr x0,qAdrResult4 // result
mov x1,x20 // operator 1
mov x2,x21 // operator 2
bl __gmpz_mul_ui
mov x0,x20 // copy result4 -> result
ldr x1,qAdrResult4
bl __gmpz_set
add x21,x21,#1 // increment indice
cmp x21,x19 // N ?
ble 1b // no -> loop
ldr x0,qAdrResult4
ldp x20,x21,[sp],16 // restaur 2 registers
ldp x19,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
qAdrResult4: .quad Result4
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
Program 64 bits start. 96 5122560 190722470400 7574824857600000 312546150372456000000 13207874703225491420651520 567273919793089083292259942400 24650600248172987140112763715584000 1080657854354639453670407474439566400000 47701779391594966287470570490839978880000000 PI = 3.1415926535897932384626433832795028841971693993751058209749445923078164
ALGOL 68
Uses code from the Arithmetic/Rational task.
Note that ALGOL 68 Genie verswion 3 will warn that 1026 digits precision impacts performance.
# Almkvist-Giullera formula for pi - translated from the C++ sample #
PR precision 1024 PR # set precision for LONG LONG modes #
MODE INTEGER = LONG LONG INT;
MODE FLOAT = LONG LONG REAL;
INTEGER zero = 0, one = 1, ten = 10;
# iterative Greatest Common Divisor routine, returns the gcd of m and n #
PROC gcd = ( INTEGER m, n )INTEGER:
BEGIN
INTEGER a := ABS m, b := ABS n;
WHILE b /= 0 DO
INTEGER new a = b;
b := a MOD b;
a := new a
OD;
a
END # gcd # ;
# code from the Arithmetic/Rational task modified to use LONG LONG INT #
MODE RATIONAL = STRUCT( INTEGER num #erator#, den #ominator# );
PROC lcm = ( INTEGER a, b )INTEGER: # least common multiple #
a OVER gcd(a, b) * b;
PRIO // = 9; # higher then the ** operator #
OP // = ( INTEGER num, den )RATIONAL: ( # initialise and normalise #
INTEGER common = gcd( num, den );
IF den < 0 THEN
( -num OVER common, -den OVER common )
ELSE
( num OVER common, den OVER common )
FI
);
OP + = (RATIONAL a, b)RATIONAL: (
INTEGER common = lcm( den OF a, den OF b );
RATIONAL result := ( common OVER den OF a * num OF a + common OVER den OF b * num OF b, common );
num OF result//den OF result
);
OP +:= = (REF RATIONAL a, RATIONAL b)REF RATIONAL: ( a := a + b );
# end code from the Arithmetic/Rational task modified to use LONG LONG INT #
OP / = ( FLOAT f, RATIONAL r )FLOAT: ( f * den OF r ) / num OF r;
INTEGER ag factorial n := 1;
INT ag last factorial := 0;
# returns factorial n, using ag factorial n and ag last factorial to reduce #
# the number of calculations #
PROC ag factorial = ( INT n )INTEGER:
BEGIN
IF n < ag last factorial THEN
ag last factorial := 0;
ag factorial n := 1
FI;
WHILE ag last factorial < n DO
ag factorial n *:= ( ag last factorial +:= 1 )
OD;
ag factorial n
END # ag gfgactorial # ;
# Return the integer portion of the nth term of Almkvist-Giullera sequence. #
PROC almkvist giullera = ( INT n )INTEGER:
ag factorial( 6 * n ) * 32 * ( 532 * n * n + 126 * n + 9 ) OVER ( ( ag factorial( n ) ^ 6 ) * 3 );
BEGIN
print( ( "n | Integer portion of nth term", newline ) );
print( ( "--+---------------------------------------------", newline ) );
FOR n FROM 0 TO 9 DO
print( ( whole( n, 0 ), " | ", whole( almkvist giullera( n ), -44 ), newline ) )
OD;
FLOAT epsilon = FLOAT(10) ^ -70;
FLOAT prev := 0, pi approx := 0;
RATIONAL sum := zero // one;
FOR n FROM 0
WHILE
RATIONAL nth term = almkvist giullera( n ) // ( ten ^ ( 6 * n + 3 ) );
sum +:= nth term;
pi approx := long long sqrt( FLOAT(1) / sum );
ABS ( pi approx - prev ) >= epsilon
DO
prev := pi approx
OD;
print( ( newline, "Pi to 70 decimal places is:", newline ) );
print( ( fixed( pi approx, -72, 70 ), newline ) )
END
- Output:
n | Integer portion of nth term --+--------------------------------------------- 0 | 96 1 | 5122560 2 | 190722470400 3 | 7574824857600000 4 | 312546150372456000000 5 | 13207874703225491420651520 6 | 567273919793089083292259942400 7 | 24650600248172987140112763715584000 8 | 1080657854354639453670407474439566400000 9 | 47701779391594966287470570490839978880000000 Pi to 70 decimal places is: 3.1415926535897932384626433832795028841971693993751058209749445923078164
ARM Assembly
/* ARM assembly Raspberry PI */
/* program calculPi.s */
/* this program use gmp library package : libgmp3-dev */
/* link with gcc option -lgmp */
/* REMARK 1 : this program use routines in a include file
see task Include a file language arm assembly
for the routine affichageMess conversion10
see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes */
/************************************/
.include "../constantes.inc"
.equ MAXI, 10
.equ SIZEBIG, 100
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessPi: .asciz "\nPI = \n"
szCarriageReturn: .asciz "\n"
szFormat: .asciz " %Zd\n"
szFormatFloat: .asciz " %.*Ff\n"
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
Result1: .skip SIZEBIG
Result2: .skip SIZEBIG
Result3: .skip SIZEBIG
Result4: .skip SIZEBIG
fInter5: .skip SIZEBIG
fInter6: .skip SIZEBIG
fInter7: .skip SIZEBIG
fSum: .skip SIZEBIG
fSum1: .skip SIZEBIG
sBuffer: .skip SIZEBIG
fEpsilon: .skip SIZEBIG
fPrec: .skip SIZEBIG
fPI: .skip SIZEBIG
fTEN: .skip SIZEBIG
fONE: .skip SIZEBIG
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: @ entry of program
mov r4,#0 @ loop indice
1:
mov r0,r4
bl computeAlmkvist @ compute
mov r1,r0
ldr r0,iAdrszFormat @ print big integer
bl __gmp_printf
add r4,r4,#1
cmp r4,#MAXI
blt 1b @ and loop
mov r0,#560 @ float précision in bits
bl __gmpf_set_default_prec
mov r4,#0 @ compute indice
ldr r0,iAdrfSum @ init to zéro
bl __gmpf_init
ldr r0,iAdrfSum1 @ init to zéro
bl __gmpf_init
ldr r0,iAdrfONE @ result address
mov r1,#1 @ init à 1
bl __gmpf_init_set_ui
ldr r0,iAdrfInter5 @ init to zéro
bl __gmpf_init
ldr r0,iAdrfInter6 @ init to zéro
bl __gmpf_init
ldr r0,iAdrfInter7 @ init to zéro
bl __gmpf_init
ldr r0,iAdrfEpsilon @ init to zéro
bl __gmpf_init
ldr r0,iAdrfPrec @ init to zéro
bl __gmpf_init
ldr r0,iAdrfPI @ init to zéro
bl __gmpf_init
ldr r0,iAdrfTEN
mov r1,#10 @ init to 10
bl __gmpf_init_set_ui
ldr r0,iAdrfInter6 @ compute 10 pow 70
ldr r1,iAdrfTEN
mov r2,#70
bl __gmpf_pow_ui
ldr r0,iAdrfEpsilon @ divide 1 by 10 pow 70
ldr r1,iAdrfONE @ dividende
ldr r2,iAdrfInter6 @ divisor
bl __gmpf_div
2: @ PI compute loop
mov r0,r4
bl computeAlmkvist
mov r5,r0
mov r1,#6
mul r2,r1,r4
add r6,r2,#3 @ compute 6n + 3
ldr r0,iAdrfInter6 @ compute 10 pow (6n+3)
ldr r1,iAdrfTEN
mov r2,r6
bl __gmpf_pow_ui
ldr r0,iAdrfInter7 @ compute 1 / 10 pow (6n+3)
ldr r1,iAdrfONE @ dividende
ldr r2,iAdrfInter6 @ divisor
bl __gmpf_div
ldr r0,iAdrfInter6 @ result big float
mov r1,r5 @ big integer Almkvist
bl __gmpf_set_z @ conversion in big float
ldr r0,iAdrfInter5 @ result Almkvist * 1 / 10 pow (6n+3)
ldr r1,iAdrfInter7 @ operator 1
ldr r2,iAdrfInter6 @ operator 2
bl __gmpf_mul
ldr r0,iAdrfSum1 @ terms addition
ldr r1,iAdrfSum
ldr r2,iAdrfInter5
bl __gmpf_add
ldr r0,iAdrfSum @ copy terms
ldr r1,iAdrfSum1
bl __gmpf_set
ldr r0,iAdrfInter7 @ compute 1 / sum
ldr r1,iAdrfONE @ dividende
ldr r2,iAdrfSum @ divisor
bl __gmpf_div
ldr r0,iAdrfPI @ compute square root (1 / sum )
ldr r1,iAdrfInter7
bl __gmpf_sqrt
ldr r0,iAdrfInter6 @ compute variation PI
ldr r1,iAdrfPrec
ldr r2,iAdrfPI
bl __gmpf_sub
ldr r0,iAdrfInter6 @ absolue value
ldr r1,iAdrfInter5
bl __gmpf_abs
add r4,r4,#1 @ increment indice
ldr r0,iAdrfPrec @ copy PI -> prévious
ldr r1,iAdrfPI
bl __gmpf_set
ldr r0,iAdrfInter6 @ compare gap and epsilon
ldr r1,iAdrfEpsilon
bl __gmpf_cmp
cmp r0,#0
bgt 2b @ if gap is highter -> loop
ldr r0,iAdrszMessPi @ title display
bl affichageMess
ldr r2,iAdrfPI @ PI display
ldr r0,iAdrszFormatFloat
mov r1,#70
bl __gmp_printf
100: @ standard end of the program
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
svc #0 @ perform the system call
iAdrszCarriageReturn: .int szCarriageReturn
iAdrfInter5: .int fInter5
iAdrfInter6: .int fInter6
iAdrfInter7: .int fInter7
iAdrfSum: .int fSum
iAdrfSum1: .int fSum1
iAdrszFormatFloat: .int szFormatFloat
iAdrszMessPi: .int szMessPi
iAdrfEpsilon: .int fEpsilon
iAdrfPrec: .int fPrec
iAdrfPI: .int fPI
iAdrfTEN: .int fTEN
iAdrfONE: .int fONE
/***************************************************/
/* compute almkvist_giullera formula */
/***************************************************/
/* r0 contains the number */
computeAlmkvist:
push {r1-r4,lr} @ save registers
mov r4,r0
mov r1,#6
mul r0,r1,r0
ldr r1,iAdrResult1 @ result address
bl computeFactorielle @ compute (n*6)!
mov r1,#532
mul r2,r4,r4
mul r2,r1,r2
mov r1,#126
mul r3,r4,r1
add r2,r2,r3
add r2,#9
lsl r2,r2,#5 @ * 32
ldr r0,iAdrResult2 @ result
ldr r1,iAdrResult1 @ operator
bl __gmpz_mul_ui
mov r0,r4
ldr r1,iAdrResult1
bl computeFactorielle
ldr r0,iAdrResult3
bl __gmpz_init @ init to 0
ldr r0,iAdrResult3 @ result
ldr r1,iAdrResult1 @ operator
mov r2,#6
bl __gmpz_pow_ui
ldr r0,iAdrResult1 @ result
ldr r1,iAdrResult3 @ operator
mov r2,#3
bl __gmpz_mul_ui
ldr r0,iAdrResult3 @ result
ldr r1,iAdrResult2 @ operator
ldr r2,iAdrResult1 @ operator
bl __gmpz_cdiv_q
ldr r0,iAdrResult3 @ return result address
pop {r1-r4,pc} @ restaur des registres
iAdrszFormat: .int szFormat
iAdrResult1: .int Result1
iAdrResult2: .int Result2
iAdrResult3: .int Result3
/***************************************************/
/* compute factorielle N */
/***************************************************/
/* r0 contains the number */
/* r1 contains big number result address */
computeFactorielle:
push {r1-r6,lr} @ save registers
mov r5,r0 @ save N
mov r6,r1 @ save result address
mov r0,r1 @ result address
mov r1,#1 @ init to 1
bl __gmpz_init_set_ui
ldr r0,iAdrResult4
bl __gmpz_init @ init to 0
mov r4,#1
1: @ loop
ldr r0,iAdrResult4 @ result
mov r1,r6 @ operator 1
mov r2,r4 @ operator 2
bl __gmpz_mul_ui
mov r0,r6 @ copy result4 -> result
ldr r1,iAdrResult4
bl __gmpz_set
add r4,r4,#1 @ increment indice
cmp r4,r5 @ N ?
ble 1b @ no -> loop
mov r0,r1
pop {r1-r6,pc} @ restaur des registres
iAdrResult4: .int Result4
/***************************************************/
/* ROUTINES INCLUDE */
/***************************************************/
.include "../affichage.inc"
96 5122560 190722470400 7574824857600000 312546150372456000000 13207874703225491420651520 567273919793089083292259942400 24650600248172987140112763715584000 1080657854354639453670407474439566400000 47701779391594966287470570490839978880000000 PI = 3.1415926535897932384626433832795028841971693993751058209749445923078164
C#
A little challenging due to lack of BigFloat or BigRational. Note the extended precision integers displayed for each term, not extended precision floats. Also features the next term based on the last term, rather than computing each term from scratch. And the multiply by 32, divide by 3 is reserved for final sum, instead of each term (except for the 0..9th displayed terms).
using System;
using BI = System.Numerics.BigInteger;
using static System.Console;
class Program {
static BI isqrt(BI x) { BI q = 1, r = 0, t; while (q <= x) q <<= 2; while (q > 1) {
q >>= 2; t = x - r - q; r >>= 1; if (t >= 0) { x = t; r += q; } } return r; }
static string dump(int digs, bool show = false) {
int gb = 1, dg = ++digs + gb, z;
BI t1 = 1, t2 = 9, t3 = 1, te, su = 0,
t = BI.Pow(10, dg <= 60 ? 0 : dg - 60), d = -1, fn = 1;
for (BI n = 0; n < dg; n++) {
if (n > 0) t3 *= BI.Pow(n, 6);
te = t1 * t2 / t3;
if ((z = dg - 1 - (int)n * 6) > 0) te *= BI.Pow (10, z);
else te /= BI.Pow (10, -z);
if (show && n < 10)
WriteLine("{0,2} {1,62}", n, te * 32 / 3 / t);
su += te; if (te < 10) {
if (show) WriteLine("\n{0} iterations required for {1} digits " +
"after the decimal point.\n", n, --digs); break; }
for (BI j = n * 6 + 1; j <= n * 6 + 6; j++) t1 *= j;
t2 += 126 + 532 * (d += 2);
}
string s = string.Format("{0}", isqrt(BI.Pow(10, dg * 2 + 3) /
su / 32 * 3 * BI.Pow((BI)10, dg + 5)));
return s[0] + "." + s.Substring(1, digs); }
static void Main(string[] args) {
WriteLine(dump(70, true)); }
}
- Output:
0 9600000000000000000000000000000000000000000000000000000000000 1 512256000000000000000000000000000000000000000000000000000000 2 19072247040000000000000000000000000000000000000000000000000 3 757482485760000000000000000000000000000000000000000000000 4 31254615037245600000000000000000000000000000000000000000 5 1320787470322549142065152000000000000000000000000000000 6 56727391979308908329225994240000000000000000000000000 7 2465060024817298714011276371558400000000000000000000 8 108065785435463945367040747443956640000000000000000 9 4770177939159496628747057049083997888000000000000 53 iterations required for 70 digits after the decimal point. 3.1415926535897932384626433832795028841971693993751058209749445923078164
C++
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/multiprecision/gmp.hpp>
#include <iomanip>
#include <iostream>
namespace mp = boost::multiprecision;
using big_int = mp::mpz_int;
using big_float = mp::cpp_dec_float_100;
using rational = mp::mpq_rational;
big_int factorial(int n) {
big_int result = 1;
for (int i = 2; i <= n; ++i)
result *= i;
return result;
}
// Return the integer portion of the nth term of Almkvist-Giullera sequence.
big_int almkvist_giullera(int n) {
return factorial(6 * n) * 32 * (532 * n * n + 126 * n + 9) /
(pow(factorial(n), 6) * 3);
}
int main() {
std::cout << "n | Integer portion of nth term\n"
<< "------------------------------------------------\n";
for (int n = 0; n < 10; ++n)
std::cout << n << " | " << std::setw(44) << almkvist_giullera(n)
<< '\n';
big_float epsilon(pow(big_float(10), -70));
big_float prev = 0, pi = 0;
rational sum = 0;
for (int n = 0;; ++n) {
rational term(almkvist_giullera(n), pow(big_int(10), 6 * n + 3));
sum += term;
pi = sqrt(big_float(1 / sum));
if (abs(pi - prev) < epsilon)
break;
prev = pi;
}
std::cout << "\nPi to 70 decimal places is:\n"
<< std::fixed << std::setprecision(70) << pi << '\n';
}
- Output:
n | Integer portion of nth term ------------------------------------------------ 0 | 96 1 | 5122560 2 | 190722470400 3 | 7574824857600000 4 | 312546150372456000000 5 | 13207874703225491420651520 6 | 567273919793089083292259942400 7 | 24650600248172987140112763715584000 8 | 1080657854354639453670407474439566400000 9 | 47701779391594966287470570490839978880000000 Pi to 70 decimal places is: 3.1415926535897932384626433832795028841971693993751058209749445923078164
Common Lisp
(ql:quickload :computable-reals :silent t)
(use-package :computable-reals)
(setq *print-prec* 70)
(defparameter *iterations* 52)
; factorial using computable-reals multiplication op to keep precision
(defun !r (n)
(let ((p 1))
(loop for i from 2 to n doing (setq p (*r p i)))
p))
; the nth integer term
(defun integral (n)
(let* ((polynomial (+r (*r 532 n n) (*r 126 n) 9))
(numer (*r 32 (!r (*r 6 n)) polynomial))
(denom (*r 3 (expt-r (!r n) 6))))
(/r numer denom)))
; the exponent for 10 in the nth term of the series
(defun power (n) (- 3 (* 6 (1+ n))))
; the nth term of the series
(defun almkvist-giullera (n)
(/r (integral n) (expt-r 10 (abs (power n)))))
; the sum of the first n terms
(defun almkvist-giullera-sigma (n)
(let ((s 0))
(loop for i from 0 to n doing (setq s (+r s (almkvist-giullera i))))
s))
; the approximation to pi after n terms
(defun almkvist-giullera-pi (n)
(sqrt-r (/r 1 (almkvist-giullera-sigma n))))
(format t "~A. ~44A~4A ~A~%" "N" "Integral part of Nth term" "×10^" "=Actual value of Nth term")
(loop for i from 0 to 9 doing
(format t "~&~a. ~44d ~3d " i (integral i) (power i))
(finish-output *standard-output*)
(print-r (almkvist-giullera i) 50 nil))
(format t "~%~%Pi after ~a iterations: " *iterations*)
(print-r (almkvist-giullera-pi *iterations*) *print-prec*)
- Output:
N. Integral part of Nth term ×10^ =Actual value of Nth term 0. 96 -3 +0.09600000000000000000000000000000000000000000000000... 1. 5122560 -9 +0.00512256000000000000000000000000000000000000000000... 2. 190722470400 -15 +0.00019072247040000000000000000000000000000000000000... 3. 7574824857600000 -21 +0.00000757482485760000000000000000000000000000000000... 4. 312546150372456000000 -27 +0.00000031254615037245600000000000000000000000000000... 5. 13207874703225491420651520 -33 +0.00000001320787470322549142065152000000000000000000... 6. 567273919793089083292259942400 -39 +0.00000000056727391979308908329225994240000000000000... 7. 24650600248172987140112763715584000 -45 +0.00000000002465060024817298714011276371558400000000... 8. 1080657854354639453670407474439566400000 -51 +0.00000000000108065785435463945367040747443956640000... 9. 47701779391594966287470570490839978880000000 -57 +0.00000000000004770177939159496628747057049083997888... Pi after 52 iterations: +3.1415926535897932384626433832795028841971693993751058209749445923078164...
dc
[* factorial *]sz
[ 1 Sp [ d lp * sp 1 - d 1 <f ]Sf d 1 <f Lfsz sz Lp ]sF
[* nth integral term *]sz
[ sn 32 6 ln * lFx 532 ln * ln * 126 ln * + 9 + * * 3 ln lFx 6 ^ * / ]sI
[* nth exponent of 10 *]sz
[ 1 + 6 * 3 r - ]sE
[* nth term in series *]sz
[ d lIx r 10 r lEx _1 * ^ / ]sA
[* sum of the first n terms *]sz
[ [li lAx ls + ss li 1 - d si 0 r !<L]sL si 0ss lLx ls]sS
[* approximation of pi after n terms *]sz
[ lSx 1 r / v ]sP
[* count digits in a number *]sz
[sn 0 sd lCx ld]sD
[ld 1 + sd ln 10 0k / d sn 0 !=C]sC
[* print a number in a given column width *]sz
[sw d lDx si lw li <T n]sW
[[ ]n li 1 + si lw li <T]sT
[* main loop: print values for first 10 terms *]sz
[N. Integral part of Nth term .................. × 10^ =Actual value of Nth term]p
0 sj
[
lj n [. ]n
lj lIx 0k 1 / 44 lWx [ ]n
lj lEx 4 lWx [ ]n
lj 99k lAx 50k 1 / p
lj 1 + d sj 10 >M
] sM
lMx
[]p
[* print resulting value of pi to 70 places *]sz
[Pi after ]n 52n [ iterations:]p
99k 52 lPx 70k 1 / p
- Output:
N. Integral part of Nth term .................. × 10^ =Actual value of Nth term 0. 96 -3 .09600000000000000000000000000000000000000000000000 1. 5122560 -9 .00512256000000000000000000000000000000000000000000 2. 190722470400 -15 .00019072247040000000000000000000000000000000000000 3. 7574824857600000 -21 .00000757482485760000000000000000000000000000000000 4. 312546150372456000000 -27 .00000031254615037245600000000000000000000000000000 5. 13207874703225491420651520 -33 .00000001320787470322549142065152000000000000000000 6. 567273919793089083292259942400 -39 .00000000056727391979308908329225994240000000000000 7. 24650600248172987140112763715584000 -45 .00000000002465060024817298714011276371558400000000 8. 1080657854354639453670407474439566400000 -51 .00000000000108065785435463945367040747443956640000 9. 47701779391594966287470570490839978880000000 -57 .00000000000004770177939159496628747057049083997888 3.1415926535897932384626433832795028841971693993751058209749445923078\ 164
Erlang
This version uses integer math only (does not resort to a rational number package) Since the denominator is always a power of 10, it's possible to just keep track of the log of the denominator and scale the numerator accordingly; to keep track of the accuracy we get the order of magnitude of the difference between terms by subtracting the log of the numerator from the log of the denominator, so again, no rational arithmetic is needed.
However, Erlang does not have much in the way of calculating with large integers beyond basic arithmetic, so this version implements integer powers, logs, square roots, as well as the factorial function.
-mode(compile).
% Integer math routines: factorial, power, square root, integer logarithm.
%
fac(N) -> fac(N, 1).
fac(N, A) when N < 2 -> A;
fac(N, A) -> fac(N - 1, N*A).
pow(_, N) when N < 0 -> pow_domain_error;
pow(2, N) -> 1 bsl N;
pow(A, N) -> ipow(A, N).
ipow(_, 0) -> 1;
ipow(A, 1) -> A;
ipow(A, 2) -> A*A;
ipow(A, N) ->
case N band 1 of
0 -> X = ipow(A, N bsr 1), X*X;
1 -> A * ipow(A, N - 1)
end.
% integer logarithm, based on Zeckendorf representations of integers.
% https://www.keithschwarz.com/interesting/code/?dir=zeckendorf-logarithm
% we need this, since the exponents get larger than IEEE-754 double can handle.
lognext({A, B, S, T}) -> {B, A+B, T, S*T}.
logprev({A, B, S, T}) -> {B-A, A, T div S, S}.
ilog(A, B) when (A =< 0) or (B < 2) -> ilog_domain_error;
ilog(A, B) ->
UBound = bracket(A, {0, 1, 1, B}),
backlog(A, UBound, 0).
bracket(A, State = {_, _, _, T}) when T > A -> State;
bracket(A, State) -> bracket(A, lognext(State)).
backlog(_, {0, _, 1, _}, Log) -> Log;
backlog(N, State = {A, _, S, _}, Log) when S =< N ->
backlog(N div S, logprev(State), Log + A);
backlog(N, State, Log) -> backlog(N, logprev(State), Log).
isqrt(N) when N < 0 -> isqrt_domain_error;
isqrt(N) ->
X0 = pow(2, ilog(N, 2) div 2),
iterate(N, newton(X0, N), N).
iterate(A, B, _) when A =< B -> A;
iterate(_, B, N) -> iterate(B, newton(B, N), N).
newton(X, N) -> (X + N div X) div 2.
% With this out of the way, we can get down to some serious calculation.
%
term(N) -> { % returns numerator and log10 of the denominator.
(fac(6*N)*(N*(532*N + 126) + 9) bsl 5) div (3*pow(fac(N), 6)),
6*N + 3
}.
neg_term({N, D}) -> {-N, D}.
abs_term({N, D}) -> {abs(N), D}.
add_term(T1 = {_, D1}, T2 = {_, D2}) when D1 > D2 -> add_term(T2, T1);
add_term({N1, D1}, {N2, D2}) ->
Scale = pow(10, D2 - D1),
{N1*Scale + N2, D2}.
calculate(Prec) -> calculate(Prec, {0, 0}, 0).
calculate(Prec, T0, K) ->
T1 = add_term(T0, term(K)),
{N, D} = abs_term(add_term(neg_term(T1), T0)),
Accuracy = D - ilog(N, 10),
if
Accuracy < Prec -> calculate(Prec, T1, K + 1);
true -> T1
end.
get_pi(Prec) ->
{N0, D0} = calculate(Prec),
% from the term, t = n0/10^d0, calculate 1/√t
% if the denominator is an odd power of 10, add 1 to the denominator and multiply the numerator by 10.
{N, D} = case D0 band 1 of
0 -> {N0, D0};
1 -> {10*N0, D0 + 1}
end,
[Three|Rest] = lists:sublist(
integer_to_list(pow(10, D) div isqrt(N)), Prec),
[Three, $. | Rest].
show_term({A, Decimals}) ->
Str = integer_to_list(A),
[$0, $.] ++ lists:duplicate(Decimals - length(Str), $0) ++ Str.
main(_) ->
Terms = [term(N) || N <- lists:seq(0, 9)],
io:format("The first 10 terms as scaled decimals are:~n"),
[io:format(" ~s~n", [show_term(T)]) || T <- Terms],
io:format("~nThe sum of these terms (pi^-2) is ~s~n",
[show_term(lists:foldl(fun add_term/2, {0, 0}, Terms))]),
Pi70 = get_pi(71),
io:format("~npi to 70 decimal places:~n"),
io:format("~s~n", [Pi70]).
- Output:
The first 10 terms as scaled decimals are: 0.096 0.005122560 0.000190722470400 0.000007574824857600000 0.000000312546150372456000000 0.000000013207874703225491420651520 0.000000000567273919793089083292259942400 0.000000000024650600248172987140112763715584000 0.000000000001080657854354639453670407474439566400000 0.000000000000047701779391594966287470570490839978880000000 The sum of these terms (pi^-2) is 0.101321183642335555356499725503850584160514406378880000000 pi to 70 decimal places: 3.1415926535897932384626433832795028841971693993751058209749445923078164
F#
This task uses Isqrt_(integer_square_root)_of_X#F.23
// Almkvist-Giullera formula for pi. Nigel Galloway: August 17th., 2021
let factorial(n:bigint)=MathNet.Numerics.SpecialFunctions.Factorial n
let fN g=(532I*g*g+126I*g+9I)*(factorial(6I*g))/(3I*(factorial g)**6)
[0..9]|>Seq.iter(bigint>>fN>>(*)32I>>printfn "%A\n")
let _,n=Seq.unfold(fun(n,g)->let n=n*(10I**6)+fN g in Some(Isqrt((10I**(145+6*(int g)))/(32I*n)),(n,g+1I)))(0I,0I)|>Seq.pairwise|>Seq.find(fun(n,g)->n=g)
printfn $"""pi to 70 decimal places is %s{(n.ToString()).Insert(1,".")}"""
- Output:
96 5122560 190722470400 7574824857600000 312546150372456000000 13207874703225491420651520 567273919793089083292259942400 24650600248172987140112763715584000 1080657854354639453670407474439566400000 47701779391594966287470570490839978880000000 pi to 70 decimal places is 3.14159265358979323846264338327950288419716939937510582097494459230781640
Factor
USING: continuations formatting io kernel locals math
math.factorials math.functions sequences ;
:: integer-term ( n -- m )
32 6 n * factorial * 532 n sq * 126 n * + 9 + *
n factorial 6 ^ 3 * / ;
: exponent-term ( n -- m ) 6 * 3 + neg ;
: nth-term ( n -- x )
[ integer-term ] [ exponent-term 10^ * ] bi ;
! Factor doesn't have an arbitrary-precision square root afaik,
! so make one using Heron's method.
: sqrt-approx ( r x -- r' x ) [ over / + 2 / ] keep ;
:: almkvist-guillera ( precision -- x )
0 0 :> ( summed! next-add! )
[
100,000,000 <iota> [| n |
summed n nth-term + next-add!
next-add summed - abs precision neg 10^ <
[ return ] when
next-add summed!
] each
] with-return
next-add ;
CONSTANT: 1/pi 113/355 ! Use as initial guess for square root approximation
: pi ( -- )
1/pi 70 almkvist-guillera 5 [ sqrt-approx ] times
drop recip "%.70f\n" printf ;
! Task
"N Integer Portion Pow Nth Term (33 dp)" print
89 CHAR: - <repetition> print
10 [
dup [ integer-term ] [ exponent-term ] [ nth-term ] tri
"%d %44d %3d %.33f\n" printf
] each-integer nl
"Pi to 70 decimal places:" print pi
- Output:
N Integer Portion Pow Nth Term (33 dp) ----------------------------------------------------------------------------------------- 0 96 -3 0.096000000000000000000000000000000 1 5122560 -9 0.005122560000000000000000000000000 2 190722470400 -15 0.000190722470400000000000000000000 3 7574824857600000 -21 0.000007574824857600000000000000000 4 312546150372456000000 -27 0.000000312546150372456000000000000 5 13207874703225491420651520 -33 0.000000013207874703225491420651520 6 567273919793089083292259942400 -39 0.000000000567273919793089083292260 7 24650600248172987140112763715584000 -45 0.000000000024650600248172987140113 8 1080657854354639453670407474439566400000 -51 0.000000000001080657854354639453670 9 47701779391594966287470570490839978880000000 -57 0.000000000000047701779391594966287 Pi to 70 decimal places: 3.1415926535897932384626433832795028841971693993751058209749445923078164
FreeBASIC
' version 10-10-2024
' compile with: fbc -s console
#Include Once "gmp.bi"
#Include Once "crt/stdio.bi"
#Define prec 70
Dim As UInteger n, tmp
Dim As String buffer = Space(50)
Dim As ZString Ptr gmp_str : gmp_str = Allocate(prec * 100)
Dim As Mpz_ptr t1, t2, t3, t4
t1 = Allocate(Len(__Mpz_struct)) : Mpz_init(t1)
t2 = Allocate(Len(__Mpz_struct)) : Mpz_init(t2)
t3 = Allocate(Len(__Mpz_struct)) : Mpz_init(t3)
Dim As mpf_ptr f1, f2, sum, pi
f1 = Allocate(Len(__Mpf_struct)) : Mpf_init2(f1, prec * 10)
f2 = Allocate(Len(__Mpf_struct)) : Mpf_init2(f2, prec * 10)
sum = Allocate(Len(__Mpf_struct)) : Mpf_init2(sum, prec * 10)
pi = Allocate(Len(__Mpf_struct)) : Mpf_init2(pi, prec * 10)
For n = 0 To prec
mpz_fac_ui(t1, 6 * n)
mpz_ui_pow_ui(t2 , n, 2)
mpz_mul_ui(t2, t2, 532)
mpz_set_ui(t3, n)
mpz_mul_ui(t3, t3, 126)
mpz_add(t2, t2, t3)
mpz_add_ui(t2, t2, 9)
mpz_fac_ui(t3, n)
mpz_pow_ui(t3, t3, 6)
mpz_mul_ui(t3, t3, 3)
mpz_mul(t1, t1, t2)
mpz_mul_2exp(t1, t1, 5)
mpz_divexact(t1, t1, t3)
Mpz_get_str(gmp_str, 10, t1)
If n < 10 Then
RSet buffer, *gmp_str
Print n; buffer
EndIf
tmp = 6 * n +3
mpf_set_z(f1, t1)
mpf_set_ui(f2, 10)
mpf_pow_ui(f2, f2, tmp)
mpf_div(f1, f1, f2)
mpf_add(sum, sum, f1)
If tmp - Len(*gmp_Str) > prec Then
Print
Print "Pi with 70 decimal digits of precision"
mpf_sqrt(f2, sum)
mpf_ui_div(pi , 1 , f2)
gmp_printf (!"pi = %.*Ff \n", 70, pi)
fflush(stdout)
Exit For
EndIf
Next
mpz_clears(t1, t2, t3, NULL)
mpf_clears(f1, f2, sum, pi, NULL)
DeAllocate(gmp_str)
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
- Output:
0 96 1 5122560 2 190722470400 3 7574824857600000 4 312546150372456000000 5 13207874703225491420651520 6 567273919793089083292259942400 7 24650600248172987140112763715584000 8 1080657854354639453670407474439566400000 9 47701779391594966287470570490839978880000000 Pi with 70 decimal digits of precision pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164
Go
package main
import (
"fmt"
"math/big"
"strings"
)
func factorial(n int64) *big.Int {
var z big.Int
return z.MulRange(1, n)
}
var one = big.NewInt(1)
var three = big.NewInt(3)
var six = big.NewInt(6)
var ten = big.NewInt(10)
var seventy = big.NewInt(70)
func almkvistGiullera(n int64, print bool) *big.Rat {
t1 := big.NewInt(32)
t1.Mul(factorial(6*n), t1)
t2 := big.NewInt(532*n*n + 126*n + 9)
t3 := new(big.Int)
t3.Exp(factorial(n), six, nil)
t3.Mul(t3, three)
ip := new(big.Int)
ip.Mul(t1, t2)
ip.Quo(ip, t3)
pw := 6*n + 3
t1.SetInt64(pw)
tm := new(big.Rat).SetFrac(ip, t1.Exp(ten, t1, nil))
if print {
fmt.Printf("%d %44d %3d %-35s\n", n, ip, -pw, tm.FloatString(33))
}
return tm
}
func main() {
fmt.Println("N Integer Portion Pow Nth Term (33 dp)")
fmt.Println(strings.Repeat("-", 89))
for n := int64(0); n < 10; n++ {
almkvistGiullera(n, true)
}
sum := new(big.Rat)
prev := new(big.Rat)
pow70 := new(big.Int).Exp(ten, seventy, nil)
prec := new(big.Rat).SetFrac(one, pow70)
n := int64(0)
for {
term := almkvistGiullera(n, false)
sum.Add(sum, term)
z := new(big.Rat).Sub(sum, prev)
z.Abs(z)
if z.Cmp(prec) < 0 {
break
}
prev.Set(sum)
n++
}
sum.Inv(sum)
pi := new(big.Float).SetPrec(256).SetRat(sum)
pi.Sqrt(pi)
fmt.Println("\nPi to 70 decimal places is:")
fmt.Println(pi.Text('f', 70))
}
- Output:
N Integer Portion Pow Nth Term (33 dp) ----------------------------------------------------------------------------------------- 0 96 -3 0.096000000000000000000000000000000 1 5122560 -9 0.005122560000000000000000000000000 2 190722470400 -15 0.000190722470400000000000000000000 3 7574824857600000 -21 0.000007574824857600000000000000000 4 312546150372456000000 -27 0.000000312546150372456000000000000 5 13207874703225491420651520 -33 0.000000013207874703225491420651520 6 567273919793089083292259942400 -39 0.000000000567273919793089083292260 7 24650600248172987140112763715584000 -45 0.000000000024650600248172987140113 8 1080657854354639453670407474439566400000 -51 0.000000000001080657854354639453670 9 47701779391594966287470570490839978880000000 -57 0.000000000000047701779391594966287 Pi to 70 decimal places is: 3.1415926535897932384626433832795028841971693993751058209749445923078164
Haskell
import Control.Monad
import Data.Number.CReal
import GHC.Integer
import Text.Printf
iterations = 52
main = do
printf "N. %44s %4s %s\n"
"Integral part of Nth term" "×10^" "=Actual value of Nth term"
forM_ [0..9] $ \n ->
printf "%d. %44d %4d %s\n" n
(almkvistGiulleraIntegral n)
(tenExponent n)
(showCReal 50 (almkvistGiullera n))
printf "\nPi after %d iterations:\n" iterations
putStrLn $ showCReal 70 $ almkvistGiulleraPi iterations
-- The integral part of the Nth term in the Almkvist-Giullera series
almkvistGiulleraIntegral n =
let polynomial = (532 `timesInteger` n `timesInteger` n) `plusInteger` (126 `timesInteger` n) `plusInteger` 9
numerator = 32 `timesInteger` (facInteger (6 `timesInteger` n)) `timesInteger` polynomial
denominator = 3 `timesInteger` (powInteger (facInteger n) 6)
in numerator `divInteger` denominator
-- The exponent for 10 in the Nth term of the series
tenExponent n = 3 `minusInteger` (6 `timesInteger` (1 `plusInteger` n))
-- The Nth term in the series (integral * 10^tenExponent)
almkvistGiullera n = fromInteger (almkvistGiulleraIntegral n) / fromInteger (powInteger 10 (abs (tenExponent n)))
-- The sum of the first N terms
almkvistGiulleraSum n = sum $ map almkvistGiullera [0 .. n]
-- The approximation of pi from the first N terms
almkvistGiulleraPi n = sqrt $ 1 / almkvistGiulleraSum n
-- Utility: factorial for arbitrary-precision integers
facInteger n = if n `leInteger` 1 then 1 else n `timesInteger` facInteger (n `minusInteger` 1)
-- Utility: exponentiation for arbitrary-precision integers
powInteger 1 _ = 1
powInteger _ 0 = 1
powInteger b 1 = b
powInteger b e = b `timesInteger` powInteger b (e `minusInteger` 1)
- Output:
N. Integral part of Nth term ×10^ =Actual value of Nth term 0. 96 -3 0.096 1. 5122560 -9 0.00512256 2. 190722470400 -15 0.0001907224704 3. 7574824857600000 -21 0.0000075748248576 4. 312546150372456000000 -27 0.000000312546150372456 5. 13207874703225491420651520 -33 0.00000001320787470322549142065152 6. 567273919793089083292259942400 -39 0.0000000005672739197930890832922599424 7. 24650600248172987140112763715584000 -45 0.000000000024650600248172987140112763715584 8. 1080657854354639453670407474439566400000 -51 0.0000000000010806578543546394536704074744395664 9. 47701779391594966287470570490839978880000000 -57 0.00000000000004770177939159496628747057049083997888 Pi after 52 iterations: 3.1415926535897932384626433832795028841971693993751058209749445923078164
J
This solution just has it hard-coded that 53 iterations is necessary for 70 decimals. It would be possible to write a loop with a test, though in practice it would also be acceptable to just experiment to find the number of iterations.
sqrt is noticeably slow, bringing execution time to over 1 second. I'm not sure if it's because it's coded imperatively using traditional loops vs. J point-free style, or if it's due to the fact that the numbers are very large. I suspect the latter since it only takes 4 iterations of Heron's method to get the square root.
numerator =: monad define "0
(3 * (! x: y)^6) %~ 32 * (!6x*y) * (y*(126 + 532*y)) + 9x
)
term =: numerator % 10x ^ 3 + 6&*
echo 'The first 10 numerators are:'
echo ,. numerator i.10
echo ''
echo 'The sum of the first 10 terms (pi^-2) is ', 0j15 ": +/ term i.10
heron =: [: -: ] + %
sqrt =: dyad define NB. usage: x0 tolerance sqrt x
NB. e.g.: (1, %10^100x) sqrt 2 -> √2 to 100 decimals as a ratio p/q
x0 =. }: x
eps =. }. x
x1 =. y heron x0
while. (| x1 - x0) > eps do.
x2 =. y heron x1
x0 =. x1
x1 =. x2
end.
x1
)
pi70 =. (355r113, %10^70x) sqrt % +/ term i.53
echo ''
echo 'pi to 70 decimals: ', 0j70 ": pi70
exit ''
- Output:
The first 10 numerators are: 96 5122560 190722470400 7574824857600000 312546150372456000000 13207874703225491420651520 567273919793089083292259942400 24650600248172987140112763715584000 1080657854354639453670407474439566400000 47701779391594966287470570490839978880000000 The sum of the first 10 terms (pi^-2) is 0.101321183642336 pi to 70 decimals: 3.1415926535897932384626433832795028841971693993751058209749445923078164
Java
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.MathContext;
import java.math.RoundingMode;
public final class AlmkvistGiulleraFormula {
public static void main(String[] aArgs) {
System.out.println("n Integer part");
System.out.println("================================================");
for ( int n = 0; n <= 9; n++ ) {
System.out.println(String.format("%d%47s", n, almkvistGiullera(n).toString()));
}
final int decimalPlaces = 70;
final MathContext mathContext = new MathContext(decimalPlaces + 1, RoundingMode.HALF_EVEN);
final BigDecimal epsilon = BigDecimal.ONE.divide(BigDecimal.TEN.pow(decimalPlaces));
BigDecimal previous = BigDecimal.ONE;
BigDecimal sum = BigDecimal.ZERO;
BigDecimal pi = BigDecimal.ZERO;
int n = 0;
while ( pi.subtract(previous).abs().compareTo(epsilon) >= 0 ) {
BigDecimal nextTerm = new BigDecimal(almkvistGiullera(n)).divide(BigDecimal.TEN.pow(6 * n + 3));
sum = sum.add(nextTerm);
previous = pi;
n += 1;
pi = BigDecimal.ONE.divide(sum, mathContext).sqrt(mathContext);
}
System.out.println(System.lineSeparator() + "pi to " + decimalPlaces + " decimal places:");
System.out.println(pi);
}
// The integer part of the n'th term of Almkvist-Giullera series.
private static BigInteger almkvistGiullera(int aN) {
BigInteger term1 = factorial(6 * aN).multiply(BigInteger.valueOf(32));
BigInteger term2 = BigInteger.valueOf(532 * aN * aN + 126 * aN + 9);
BigInteger term3 = factorial(aN).pow(6).multiply(BigInteger.valueOf(3));
return term1.multiply(term2).divide(term3);
}
private static BigInteger factorial(int aNumber) {
BigInteger result = BigInteger.ONE;
for ( int i = 2; i <= aNumber; i++ ) {
result = result.multiply(BigInteger.valueOf(i));
}
return result;
}
}
- Output:
n Integer part ================================================ 0 96 1 5122560 2 190722470400 3 7574824857600000 4 312546150372456000000 5 13207874703225491420651520 6 567273919793089083292259942400 7 24650600248172987140112763715584000 8 1080657854354639453670407474439566400000 9 47701779391594966287470570490839978880000000 pi to 70 decimal places: 3.1415926535897932384626433832795028841971693993751058209749445923078164
JavaScript
to support use of module as main code
import esMain from 'es-main';
import { BigFloat, set_precision as SetPrecision } from 'bigfloat-esnext';
const Iterations = 52;
export const demo = function() {
SetPrecision(-75);
console.log("N." + "Integral part of Nth term".padStart(45) + " ×10^ =Actual value of Nth term");
for (let i=0; i<10; i++) {
let line = `${i}. `;
line += `${integral(i)} `.padStart(45);
line += `${tenExponent(i)} `.padStart(5);
line += nthTerm(i);
console.log(line);
}
let pi = approximatePi(Iterations);
SetPrecision(-70);
pi = pi.dividedBy(100000).times(100000);
console.log(`\nPi after ${Iterations} iterations: ${pi}`)
}
export const bigFactorial = n => n <= 1n ? 1n : n * bigFactorial(n-1n);
// the nth integer term
export const integral = function(i) {
let n = BigInt(i);
const polynomial = 532n * n * n + 126n * n + 9n;
const numerator = 32n * bigFactorial(6n * n) * polynomial;
const denominator = 3n * bigFactorial(n) ** 6n;
return numerator / denominator;
}
// the exponent for 10 in the nth term of the series
export const tenExponent = n => 3n - 6n * (BigInt(n) + 1n);
// the nth term of the series
export const nthTerm = n =>
new BigFloat(integral(n)).dividedBy(new BigFloat(10n ** -tenExponent(n)))
// the sum of the first n terms
export const sumThrough = function(n) {
let sum = new BigFloat(0);
for (let i=0; i<=n; ++i) {
sum = sum.plus(nthTerm(i));
}
return sum;
}
// the approximation to pi after n terms
export const approximatePi = n =>
new BigFloat(1).dividedBy(sumThrough(n)).sqrt();
if (esMain(import.meta))
demo();
- Output:
N. Integral part of Nth term ×10^ =Actual value of Nth term 0. 96 -3 0.096 1. 5122560 -9 0.00512256 2. 190722470400 -15 0.0001907224704 3. 7574824857600000 -21 0.0000075748248576 4. 312546150372456000000 -27 0.000000312546150372456 5. 13207874703225491420651520 -33 0.00000001320787470322549142065152 6. 567273919793089083292259942400 -39 0.0000000005672739197930890832922599424 7. 24650600248172987140112763715584000 -45 0.000000000024650600248172987140112763715584 8. 1080657854354639453670407474439566400000 -51 0.0000000000010806578543546394536704074744395664 9. 47701779391594966287470570490839978880000000 -57 0.00000000000004770177939159496628747057049083997888 Pi after 52 iterations: 3.1415926535897932384626433832795028841971693993751058209749445923078164
jq
Adapted from Wren
Works with gojq, the Go implementation of jq
This entry uses the "rational" module, which can be found at Arithmetic/Rational#jq.
Preliminaries
# A reminder to include the "rational" module:
# include "rational";
def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;
# To take advantage of gojq's arbitrary-precision integer arithmetic:
def power($b): . as $in | reduce range(0;$b) as $i (1; . * $in);
def factorial:
if . < 2 then 1
else reduce range(2;.+1) as $i (1; .*$i)
end;
Almkvist-Giullera Formula
def almkvistGiullera(print):
. as $n
| ((6*$n) | factorial * 32) as $t1
| (532*$n*$n + 126*$n + 9) as $t2
| (($n | factorial | power(6))*3) as $t3
| ($t1 * $t2 / $t3) as $ip
| ( 6*$n + 3) as $pw
| r($ip; 10 | power($pw)) as $tm
| if print
then "\($n|lpad(2)) \($ip|lpad(44)) \(-$pw|lpad(3)), \($tm|r_to_decimal(100))"
else $tm
end;
The Tasks
def task1:
"N Integer Portion Pow Nth Term",
("-" * 89),
(range(0;10) | almkvistGiullera(true)) ;
def task2($precision):
r(1; 10 | power($precision)) as $p
| {sum: r(0;1), prev: r(0;1), n: 0 }
| until(.stop;
.sum = radd(.sum; .n | almkvistGiullera(false))
| if rminus(.sum; .prev) | rabs | rlessthan($p)
then .stop = true
else .prev = .sum
| .n += 1
end)
| .sum | rinv
| rsqrt($precision)
| "\nPi to \($precision) decimal places is:",
"\(r_to_decimal($precision))" ;
task1,
""
task2(70)
- Output:
N Integer Portion Pow Nth Term ----------------------------------------------------------------------------------------- 0 96 -3, 0.096 1 5122560 -9, 0.00512256 2 190722470400 -15, 0.0001907224704 3 7574824857600000 -21, 0.0000075748248576 4 312546150372456000000 -27, 0.000000312546150372456 5 13207874703225491420651520 -33, 0.00000001320787470322549142065152 6 567273919793089083292259942400 -39, 0.0000000005672739197930890832922599424 7 24650600248172987140112763715584000 -45, 0.000000000024650600248172987140112763715584 8 1080657854354639453670407474439566400000 -51, 0.0000000000010806578543546394536704074744395664 9 47701779391594966287470570490839978880000000 -57, 0.00000000000004770177939159496628747057049083997888 Pi to 70 decimal places is: 3.1415926535897932384626433832795028841971693993751058209749445923078164
Julia
using Formatting
setprecision(BigFloat, 300)
function integerterm(n)
p = BigInt(532) * n * n + BigInt(126) * n + 9
return (p * BigInt(2)^5 * factorial(BigInt(6) * n)) ÷ (3 * factorial(BigInt(n))^6)
end
exponentterm(n) = -(6n + 3)
nthterm(n) = integerterm(n) * big"10.0"^exponentterm(n)
println(" N Integer Term Power of 10 Nth Term")
println("-"^90)
for n in 0:9
println(lpad(n, 3), lpad(integerterm(n), 48), lpad(exponentterm(n), 4),
lpad(format("{1:22.19e}", nthterm(n)), 35))
end
function AlmkvistGuillera(floatprecision)
summed = nthterm(0)
for n in 1:10000000
next = summed + nthterm(n)
if abs(next - summed) < big"10.0"^(-floatprecision)
return next
end
summed = next
end
end
println("\nπ to 70 digits is ", format(big"1.0" / sqrt(AlmkvistGuillera(70)), precision=70))
println("Computer π is ", format(π + big"0.0", precision=70))
- Output:
N Integer Term Power of 10 Nth Term ------------------------------------------------------------------------------------------ 0 96 -3 9.6000000000000000000e-02 1 5122560 -9 5.1225600000000000000e-03 2 190722470400 -15 1.9072247040000000000e-04 3 7574824857600000 -21 7.5748248576000000000e-06 4 312546150372456000000 -27 3.1254615037245600000e-07 5 13207874703225491420651520 -33 1.3207874703225491421e-08 6 567273919793089083292259942400 -39 5.6727391979308908329e-10 7 24650600248172987140112763715584000 -45 2.4650600248172987140e-11 8 1080657854354639453670407474439566400000 -51 1.0806578543546394537e-12 9 47701779391594966287470570490839978880000000 -57 4.7701779391594966287e-14 π to 70 digits is 3.1415926535897932384626433832795028841971693993751058209749445923078164 Computer π is 3.1415926535897932384626433832795028841971693993751058209749445923078164
Kotlin
import java.math.BigDecimal
import java.math.BigInteger
import java.math.MathContext
import java.math.RoundingMode
object CodeKt{
@JvmStatic
fun main(args: Array<String>) {
println("n Integer part")
println("================================================")
for (n in 0..9) {
println(String.format("%d%47s", n, almkvistGiullera(n).toString()))
}
val decimalPlaces = 70
val mathContext = MathContext(decimalPlaces + 1, RoundingMode.HALF_EVEN)
val epsilon = BigDecimal.ONE.divide(BigDecimal.TEN.pow(decimalPlaces))
var previous = BigDecimal.ONE
var sum = BigDecimal.ZERO
var pi = BigDecimal.ZERO
var n = 0
while (pi.subtract(previous).abs().compareTo(epsilon) >= 0) {
val nextTerm = BigDecimal(almkvistGiullera(n)).divide(BigDecimal.TEN.pow(6 * n + 3), mathContext)
sum = sum.add(nextTerm)
previous = pi
n += 1
pi = BigDecimal.ONE.divide(sum, mathContext).sqrt(mathContext)
}
println("\npi to $decimalPlaces decimal places:")
println(pi)
}
private fun almkvistGiullera(aN: Int): BigInteger {
val term1 = factorial(6 * aN) * BigInteger.valueOf(32)
val term2 = BigInteger.valueOf(532L * aN * aN + 126 * aN + 9)
val term3 = factorial(aN).pow(6) * BigInteger.valueOf(3)
return term1 * term2 / term3
}
private fun factorial(aNumber: Int): BigInteger {
var result = BigInteger.ONE
for (i in 2..aNumber) {
result *= BigInteger.valueOf(i.toLong())
}
return result
}
private fun BigDecimal.sqrt(context: MathContext): BigDecimal {
var x = BigDecimal(Math.sqrt(this.toDouble()), context)
if (this == BigDecimal.ZERO) return BigDecimal.ZERO
val two = BigDecimal.valueOf(2)
while (true) {
val y = this.divide(x, context)
x = x.add(y).divide(two, context)
val nextY = this.divide(x, context)
if (y == nextY || y == nextY.add(BigDecimal.ONE.divide(BigDecimal.TEN.pow(context.precision), context))) {
break
}
}
return x
}
}
- Output:
n Integer part ================================================ 0 96 1 5122560 2 190722470400 3 7574824857600000 4 312546150372456000000 5 13207874703225491420651520 6 567273919793089083292259942400 7 24650600248172987140112763715584000 8 1080657854354639453670407474439566400000 9 47701779391594966287470570490839978880000000 pi to 70 decimal places: 3.1415926535897932384626433832795028841971693993751058209749445923078164
Mathematica /Wolfram Language
ClearAll[numerator, denominator]
numerator[n_] := (2^5) ((6 n)!) (532 n^2 + 126 n + 9)/(3 (n!)^6)
denominator[n_] := 10^(6 n + 3)
numerator /@ Range[0, 9]
val = 1/Sqrt[Total[numerator[#]/denominator[#] & /@ Range[0, 100]]];
N[val, 70]
- Output:
{96,5122560,190722470400,7574824857600000,312546150372456000000,13207874703225491420651520,567273919793089083292259942400,24650600248172987140112763715584000,1080657854354639453670407474439566400000,47701779391594966287470570490839978880000000} 3.141592653589793238462643383279502884197169399375105820974944592307816
Nim
Derived from Wren version with some simplifications.
import strformat, strutils
import decimal
proc fact(n: int): DecimalType =
result = newDecimal(1)
if n < 2: return
for i in 2..n:
result *= i
proc almkvistGiullera(n: int): DecimalType =
## Return the integer portion of the nth term of Almkvist-Giullera sequence.
let t1 = fact(6 * n) * 32
let t2 = 532 * n * n + 126 * n + 9
let t3 = fact(n) ^ 6 * 3
result = t1 * t2 / t3
let One = newDecimal(1)
setPrec(78)
echo "N Integer portion"
echo repeat('-', 47)
for n in 0..9:
echo &"{n} {almkvistGiullera(n):>44}"
echo()
echo "Pi to 70 decimal places:"
var
sum = newDecimal(0)
prev = newDecimal(0)
prec = One.scaleb(newDecimal(-70))
n = 0
while true:
sum += almkvistGiullera(n) / One.scaleb(newDecimal(6 * n + 3))
if abs(sum - prev) < prec: break
prev = sum.clone
inc n
let pi = 1 / sqrt(sum)
echo ($pi)[0..71]
- Output:
N Integer portion ----------------------------------------------- 0 96 1 5122560 2 190722470400 3 7574824857600000 4 312546150372456000000 5 13207874703225491420651520 6 567273919793089083292259942400 7 24650600248172987140112763715584000 8 1080657854354639453670407474439566400000 9 47701779391594966287470570490839978880000000 Pi to 70 decimal places: 3.1415926535897932384626433832795028841971693993751058209749445923078164
Perl
use strict;
use warnings;
use feature qw(say);
use Math::AnyNum qw(:overload factorial);
sub almkvist_giullera_integral {
my($n) = @_;
(32 * (14*$n * (38*$n + 9) + 9) * factorial(6*$n)) / (3*factorial($n)**6);
}
sub almkvist_giullera {
my($n) = @_;
almkvist_giullera_integral($n) / (10**(6*$n + 3));
}
sub almkvist_giullera_pi {
my ($prec) = @_;
local $Math::AnyNum::PREC = 4*($prec+1);
my $sum = 0;
my $target = '';
for (my $n = 0; ; ++$n) {
$sum += almkvist_giullera($n);
my $curr = ($sum**-.5)->as_dec;
return $target if ($curr eq $target);
$target = $curr;
}
}
say 'First 10 integer portions: ';
say "$_ " . almkvist_giullera_integral($_) for 0..9;
my $precision = 70;
printf("π to %s decimal places is:\n%s\n",
$precision, almkvist_giullera_pi($precision));
- Output:
First 10 integer portions: 0 96 1 5122560 2 190722470400 3 7574824857600000 4 312546150372456000000 5 13207874703225491420651520 6 567273919793089083292259942400 7 24650600248172987140112763715584000 8 1080657854354639453670407474439566400000 9 47701779391594966287470570490839978880000000 π to 70 decimal places is: 3.1415926535897932384626433832795028841971693993751058209749445923078164
Phix
with javascript_semantics requires("1.0.0") include mpfr.e mpfr_set_default_precision(-70) function almkvistGiullera(integer n, bool bPrint) mpz {t1,t2,ip} = mpz_inits(3) mpz_fac_ui(t1,6*n) mpz_mul_si(t1,t1,32) -- t1:=2^5*(6n)! mpz_fac_ui(t2,n) mpz_pow_ui(t2,t2,6) mpz_mul_si(t2,t2,3) -- t2:=3*(n!)^6 mpz_mul_si(ip,t1,532*n*n+126*n+9) -- ip:=t1*(532n^2+126n+9) mpz_fdiv_q(ip,ip,t2) -- ip:=ip/t2 integer pw := 6*n+3 mpz_ui_pow_ui(t1,10,pw) -- t1 := 10^(6n+3) mpq tm = mpq_init_set_z(ip,t1) -- tm := rat(ip/t1) if bPrint then string ips = mpz_get_str(ip), tms = mpfr_get_fixed(mpfr_init_set_q(tm),50) tms = trim_tail(tms,"0") printf(1,"%d %44s %3d %s\n", {n, ips, -pw, tms}) end if return tm end function constant hdr = "N --------------- Integer portion ------------- Pow ----------------- Nth term (50 dp) -----------------" printf(1,"%s\n%s\n",{hdr,repeat('-',length(hdr))}) for n=0 to 9 do {} = almkvistGiullera(n, true) end for mpq {res,prev,z} = mpq_inits(3), prec = mpq_init_set_str(sprintf("1/1%s",repeat('0',70))) integer n = 0 while true do mpq term := almkvistGiullera(n, false) mpq_add(res,res,term) mpq_sub(z,res,prev) mpq_abs(z,z) if mpq_cmp(z,prec) < 0 then exit end if mpq_set(prev,res) n += 1 end while mpq_inv(res,res) mpfr pi = mpfr_init_set_q(res) mpfr_sqrt(pi,pi) printf(1,"\nCalculation of pi took %d iterations using the Almkvist-Giullera formula.\n\n",n) printf(1,"Pi to 70 d.p.: %s\n",mpfr_get_fixed(pi,70)) mpfr_const_pi(pi) printf(1,"Pi (builtin) : %s\n",mpfr_get_fixed(pi,70))
- Output:
N --------------- Integer portion ------------- Pow ----------------- Nth term (50 dp) ----------------- ---------------------------------------------------------------------------------------------------------- 0 96 -3 0.096 1 5122560 -9 0.00512256 2 190722470400 -15 0.0001907224704 3 7574824857600000 -21 0.0000075748248576 4 312546150372456000000 -27 0.000000312546150372456 5 13207874703225491420651520 -33 0.00000001320787470322549142065152 6 567273919793089083292259942400 -39 0.0000000005672739197930890832922599424 7 24650600248172987140112763715584000 -45 0.000000000024650600248172987140112763715584 8 1080657854354639453670407474439566400000 -51 0.0000000000010806578543546394536704074744395664 9 47701779391594966287470570490839978880000000 -57 0.00000000000004770177939159496628747057049083997888 Calculation of pi took 52 iterations using the Almkvist-Giullera formula. Pi to 70 d.p.: 3.1415926535897932384626433832795028841971693993751058209749445923078164 Pi (builtin) : 3.1415926535897932384626433832795028841971693993751058209749445923078164
PicoLisp
(scl 70)
(de fact (N)
(if (=0 N)
1
(* N (fact (dec N))) ) )
(de almkvist (N)
(let
(A (* 32 (fact (* 6 N)))
B (+ (* 532 N N) (* 126 N) 9)
C (* (** (fact N) 6) 3) )
(/ (* A B) C) ) )
(de integral (N)
(*/
1.0
(almkvist N)
(** 10 (+ 3 (* 6 N))) ) )
(let (S 0 N -1)
(do 10
(println (inc 'N) (almkvist N)) )
(prinl)
(setq N -1)
(while (gt0 (integral (inc 'N)))
(inc 'S @) )
(setq S (sqrt (*/ 1.0 1.0 S) 1.0))
(prinl "Pi to 70 decimal places is:")
(prinl (format S *Scl)) )
- Output:
0 96 1 5122560 2 190722470400 3 7574824857600000 4 312546150372456000000 5 13207874703225491420651520 6 567273919793089083292259942400 7 24650600248172987140112763715584000 8 1080657854354639453670407474439566400000 9 47701779391594966287470570490839978880000000 Pi to 70 decimal places is: 3.1415926535897932384626433832795028841971693993751058209749445923078152
Python
import mpmath as mp
with mp.workdps(72):
def integer_term(n):
p = 532 * n * n + 126 * n + 9
return (p * 2**5 * mp.factorial(6 * n)) / (3 * mp.factorial(n)**6)
def exponent_term(n):
return -(mp.mpf("6.0") * n + 3)
def nthterm(n):
return integer_term(n) * mp.mpf("10.0")**exponent_term(n)
for n in range(10):
print("Term ", n, ' ', int(integer_term(n)))
def almkvist_guillera(floatprecision):
summed, nextadd = mp.mpf('0.0'), mp.mpf('0.0')
for n in range(100000000):
nextadd = summed + nthterm(n)
if abs(nextadd - summed) < 10.0**(-floatprecision):
break
summed = nextadd
return nextadd
print('\nπ to 70 digits is ', end='')
mp.nprint(mp.mpf(1.0 / mp.sqrt(almkvist_guillera(70))), 71)
print('mpmath π is ', end='')
mp.nprint(mp.pi, 71)
- Output:
Term 0 96 Term 1 5122560 Term 2 190722470400 Term 3 7574824857600000 Term 4 312546150372456000000 Term 5 13207874703225491420651520 Term 6 567273919793089083292259942400 Term 7 24650600248172987140112763715584000 Term 8 1080657854354639453670407474439566400000 Term 9 47701779391594966287470570490839978880000000 π to 70 digits is 3.1415926535897932384626433832795028841971693993751058209749445923078164 mpmath π is 3.1415926535897932384626433832795028841971693993751058209749445923078164
Quackery
[ $ "bigrat.qky" loadfile ] now!
[ 1 swap times [ i^ 1+ * ] ] is ! ( n --> n )
[ dup dup 2 ** 532 *
over 126 * + 9 +
swap 6 * ! * 32 *
swap ! 6 ** 3 * / ] is intterm ( n --> n )
[ dup intterm
10 rot 6 * 3 + **
reduce ] is vterm ( n --> n/d )
10 times [ i^ intterm echo cr ] cr
0 n->v
53 times [ i^ vterm v+ ]
1/v 70 vsqrt drop
70 point$ echo$ cr
- Output:
96 5122560 190722470400 7574824857600000 312546150372456000000 13207874703225491420651520 567273919793089083292259942400 24650600248172987140112763715584000 1080657854354639453670407474439566400000 47701779391594966287470570490839978880000000 3.1415926535897932384626433832795028841971693993751058209749445923078164
Raku
# 20201013 Raku programming solution
use BigRoot;
use Rat::Precise;
use experimental :cached;
BigRoot.precision = 75 ;
my $Precision = 70 ;
my $AGcache = 0 ;
sub postfix:<!>(Int $n --> Int) is cached { [*] 1 .. $n }
sub Integral(Int $n --> Int) is cached {
(2⁵*(6*$n)! * (532*$n² + 126*$n + 9)) div (3*($n!)⁶)
}
sub A-G(Int $n --> FatRat) is cached { # Almkvist-Giullera
Integral($n).FatRat / (10**(6*$n + 3)).FatRat
}
sub Pi(Int $n --> Str) {
(1/(BigRoot.newton's-sqrt: $AGcache += A-G $n)).precise($Precision)
}
say "First 10 integer portions : ";
say $_, "\t", Integral $_ for ^10;
my $target = Pi my $Nth = 0;
loop { $target eq ( my $next = Pi ++$Nth ) ?? ( last ) !! $target = $next }
say "π to $Precision decimal places is :\n$target"
- Output:
First 10 integer portions : 0 96 1 5122560 2 190722470400 3 7574824857600000 4 312546150372456000000 5 13207874703225491420651520 6 567273919793089083292259942400 7 24650600248172987140112763715584000 8 1080657854354639453670407474439566400000 9 47701779391594966287470570490839978880000000 π to 70 decimal places is : 3.1415926535897932384626433832795028841971693993751058209749445923078164
REXX
/*REXX program uses the Almkvist─Giullera formula for 1 / (pi**2) [or pi ** -2]. */
numeric digits length( pi() ) + length(.); w= 102
say $( , 3) $( , w%2) $('power', 5) $( , w)
say $('N', 3) $('integer term', w%2) $('of 10', 5) $('Nth term', w)
say $( , 3, "─") $( , w%2, "─") $( , 5, "─") $( , w, "─")
s= 0 /*initialize S (the sum) to zero. */
do n=0 until old=s; old= s /*use the "older" value of S for OLD.*/
a= 2**5 * !(6*n) * (532 * n**2 + 126*n + 9) / (3 * !(n)**6)
z= 10 ** (- (6*n + 3) )
s= s + a * z
if n>10 then do; do 3*(n==11); say ' .'; end; iterate; end
say $(n, 3) right(a, w%2) $(powX(z), 5) right( lowE( format(a*z, 1, w-6, 2, 0)), w)
end /*n*/
say
say 'The calculation of pi took ' n " iterations with " digits() ,
" decimal digits precision using" subword( sourceLine(1), 4, 3).
say
numeric digits length( pi() ) - length(.); d= digits() - length(.); @= ' ↓↓↓ '
say center(@ 'calculated pi to ' d " fractional decimal digits (below) is "@, d+4, '─')
say ' 'sqrt(1/s); say
say ' 'pi(); @= ' ↑↑↑ '
say center(@ 'the true pi to ' d " fractional decimal digits (above) is" @, d+4, '─')
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
$: procedure; parse arg text,width,fill; return center(text, width, left(fill, 1) )
!: procedure; parse arg x; !=1;; do j=2 to x; != !*j; end; return !
lowE: procedure; parse arg x; return translate(x, 'e', "E")
powX: procedure; parse arg p; return right( format( p, 1, 3, 2, 0), 3) + 0
/*──────────────────────────────────────────────────────────────────────────────────────*/
pi: pi=3.141592653589793238462643383279502884197169399375105820974944592307816406286208,
||9986280348253421170679821480865132823066470938446095505822317253594081284811174503
return pi
/*──────────────────────────────────────────────────────────────────────────────────────*/
sqrt: procedure; parse arg x; if x=0 then return 0; d=digits(); numeric digits; h=d+6
m.=9; numeric form; parse value format(x,2,1,,0) 'E0' with g 'E' _ .; g=g*.5'e'_ % 2
do j=0 while h>9; m.j= h; h= h % 2 + 1; end /*j*/
do k=j+5 to 0 by -1; numeric digits m.k; g= (g + x/g) * .5; end /*k*/
numeric digits d; return g/1
- output when using the internal default input:
(Shown at two─thirds size.)
power N integer term of 10 Nth term ─── ─────────────────────────────────────────────────── ───── ────────────────────────────────────────────────────────────────────────────────────────────────────── 0 96 -3 9.600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-02 1 5122560 -9 5.122560000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-03 2 190722470400 -15 1.907224704000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-04 3 7574824857600000 -21 7.574824857600000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-06 4 312546150372456000000 -27 3.125461503724560000000000000000000000000000000000000000000000000000000000000000000000000000000000e-07 5 13207874703225491420651520 -33 1.320787470322549142065152000000000000000000000000000000000000000000000000000000000000000000000000e-08 6 567273919793089083292259942400 -39 5.672739197930890832922599424000000000000000000000000000000000000000000000000000000000000000000000e-10 7 24650600248172987140112763715584000 -45 2.465060024817298714011276371558400000000000000000000000000000000000000000000000000000000000000000e-11 8 1080657854354639453670407474439566400000 -51 1.080657854354639453670407474439566400000000000000000000000000000000000000000000000000000000000000e-12 9 47701779391594966287470570490839978880000000 -57 4.770177939159496628747057049083997888000000000000000000000000000000000000000000000000000000000000e-14 10 2117262852373157207626265529989139651218848358400 -63 2.117262852373157207626265529989139651218848358400000000000000000000000000000000000000000000000000e-15 . . . The calculation of pi took 122 iterations with 163 decimal digits precision using the Almkvist─Giullera formula. ────────────────────────────────────────────── ↓↓↓ calculated pi to 160 fractional decimal digits (below) is ↓↓↓ ─────────────────────────────────────────────── 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174503 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174503 ────────────────────────────────────────────── ↑↑↑ the true pi to 160 fractional decimal digits (above) is ↑↑↑ ───────────────────────────────────────────────
RPL
The starred formula can be implemented like this:
« → n
« 32 6 n * FACT *
532 n SQ * 126 n * + 9 + *
3 / n FACT 6 ^ /
» » 'ALMKV' STO
or like that:
« → n '2^5*(6*n)!*(532*SQ(n)+126*n+9)/(3*n!^6)'
» 'ALMKV' STO
which is more readable, although a little bit (0.6%) slower than the pure reverse Polish approach.
LDIVN
is defined at Metallic ratios
« 0 → x t « 0 1 WHILE DUP x ≤ REPEAT 4 * END WHILE DUP 1 > REPEAT 4 IQUOT DUP2 + x SWAP - 't' STO SWAP 2 IQUOT SWAP IF t 0 ≥ THEN t 'x' STO SWAP OVER + SWAP END END DROP » » 'ISQRT' STO « -105 CF @ set exact mode « n ALMKV » 'n' 0 9 1 SEQ -1 → j « 0 "" DO SWAP 'j' INCR ALMKV 10 6 j * 3 + ^ / + EVAL UNTIL DUP FXND ISQRT SWAP ISQRT 70 LDIVN ROT OVER == END "π" →TAG NIP j "iterations" →TAG » » 'TASK' STO
- Output:
3: { 96 5122560 190722470400 7574824857600000 312546150372456000000 13207874703225491420651520 567273919793089083292259942400 24650600248172987140112763715584000 1080657854354639453670407474439566400000 47701779391594966287470570490839978880000000 } 2: π:"3.1415926535897932384626433832795028841971693993751058209749445923078164" 1: iterations:53
Rust
use astro_float::{BigFloat, Consts, RoundingMode};
use num_bigint::BigInt;
use std::ops::{Div, Mul};
use std::str::FromStr;
const PR: usize = 228;
const RM: RoundingMode = RoundingMode::None;
fn factorial(n: u32) -> BigInt {
let mut p = BigInt::from(1);
for i in 2..=n {
p *= i;
}
p
}
fn exponent_term(n: u32) -> u32 {
6 * n + 3
}
fn integer_term(n: u32) -> BigInt {
let p = 532 * n * n + 126 * n + 9;
(p * BigInt::from(2).pow(5).mul(factorial(6 * n))).div(BigInt::from(3).mul(factorial(n).pow(6)))
}
fn nth_term(n: u32) -> BigFloat {
let divisor = BigInt::from(10).pow(exponent_term(n));
return BigFloat::from_str(&integer_term(n).to_string())
.unwrap()
.div(
&BigFloat::from_str(&divisor.to_string()).unwrap(),
PR,
RoundingMode::Up,
);
}
fn almkvist_guillera(float_precision: &BigFloat) -> BigFloat {
let mut c = Consts::new().unwrap();
let mut summed = nth_term(0);
let mut next_sum = summed.clone();
for n in 1..10000 {
next_sum = summed.add(&nth_term(n), PR, RM);
if (next_sum.sub(&summed, PR, RM)).abs()
< BigFloat::from(10.0).pow(&(-float_precision), PR, RM, &mut c)
{
break;
}
summed = next_sum.clone();
}
next_sum
}
fn main() {
let mut c = Consts::new().unwrap();
println!(
" N {:>21} {:>28} {:>20}\n{}\n",
"NUMERATOR",
"-EXP",
"TERM (rounded)",
"_".repeat(80)
);
for n in 0..10 {
let mut t = nth_term(n);
t.try_set_precision(64, RM, 64);
println!(
"{:>2} {:<44} {:>2} {}",
n,
integer_term(n),
exponent_term(n),
t
);
}
let pi_string = BigFloat::from(1.0)
.div(
&almkvist_guillera(&BigFloat::from(320)).sqrt(PR, RM),
PR,
RM,
)
.to_string();
println!(
"\nAlmkvist-Guillera π to 75 digits is {}\n",
pi_string[..pi_string.len() - 6].to_string()
);
let library_pi_string = Consts::pi(&mut c, PR, RM).to_string();
println!(
"BigFloat (astro_float) library π is {}",
library_pi_string[..library_pi_string.len() - 5].to_string()
);
}
- Output:
N NUMERATOR -EXP TERM (rounded) ________________________________________________________________________________ 0 96 3 9.5999999999999999999e-2 1 5122560 9 5.1225599999999999996e-3 2 190722470400 15 1.907224704e-4 3 7574824857600000 21 7.5748248575999999999e-6 4 312546150372456000000 27 3.1254615037245599998e-7 5 13207874703225491420651520 33 1.320787470322549142e-8 6 567273919793089083292259942400 39 5.6727391979308908324e-10 7 24650600248172987140112763715584000 45 2.4650600248172987139e-11 8 1080657854354639453670407474439566400000 51 1.0806578543546394536e-12 9 47701779391594966287470570490839978880000000 57 4.7701779391594966287e-14 Almkvist-Guillera π to 75 digits is 3.14159265358979323846264338327950288419716939937510582097494459230781640628 BigFloat (astro_float) library π is 3.14159265358979323846264338327950288419716939937510582097494459230781640628
Scala
import java.math.{BigDecimal, BigInteger, MathContext, RoundingMode}
object AlmkvistGiulleraFormula extends App {
println("n Integer part")
println("================================================")
for (n <- 0 to 9) {
val term = almkvistGiullera(n).toString
println(f"$n%1d" + " " * (47 - term.length) + term)
}
val decimalPlaces = 70
val mathContext = new MathContext(decimalPlaces + 1, RoundingMode.HALF_EVEN)
val epsilon = BigDecimal.ONE.divide(BigDecimal.TEN.pow(decimalPlaces))
var previous = BigDecimal.ONE
var sum = BigDecimal.ZERO
var pi = BigDecimal.ZERO
var n = 0
while (pi.subtract(previous).abs.compareTo(epsilon) >= 0) {
val nextTerm = new BigDecimal(almkvistGiullera(n)).divide(BigDecimal.TEN.pow(6 * n + 3))
sum = sum.add(nextTerm)
previous = pi
n += 1
pi = BigDecimal.ONE.divide(sum, mathContext).sqrt(mathContext)
}
println("\npi to " + decimalPlaces + " decimal places:")
println(pi)
def almkvistGiullera(aN: Int): BigInteger = {
val term1 = factorial(6 * aN).multiply(BigInteger.valueOf(32))
val term2 = BigInteger.valueOf(532 * aN * aN + 126 * aN + 9)
val term3 = factorial(aN).pow(6).multiply(BigInteger.valueOf(3))
term1.multiply(term2).divide(term3)
}
def factorial(aNumber: Int): BigInteger = {
var result = BigInteger.ONE
for (i <- 2 to aNumber) {
result = result.multiply(BigInteger.valueOf(i))
}
result
}
}
- Output:
n Integer part ================================================ 0 96 1 5122560 2 190722470400 3 7574824857600000 4 312546150372456000000 5 13207874703225491420651520 6 567273919793089083292259942400 7 24650600248172987140112763715584000 8 1080657854354639453670407474439566400000 9 47701779391594966287470570490839978880000000 pi to 70 decimal places: 3.1415926535897932384626433832795028841971693993751058209749445923078164
Sidef
func almkvist_giullera(n) {
(32 * (14*n * (38*n + 9) + 9) * (6*n)!) / (3 * n!**6)
}
func almkvist_giullera_pi(prec = 70) {
local Num!PREC = (4*(prec+1)).numify
var sum = 0
var target = -1
for n in (0..Inf) {
sum += (almkvist_giullera(n) / (10**(6*n + 3)))
var curr = (sum**-.5).as_dec
return target if (target == curr)
target = curr
}
}
say 'First 10 integer portions: '
10.of {|n|
say "#{n} #{almkvist_giullera(n)}"
}
with(70) {|n|
say "π to #{n} decimal places is:"
say almkvist_giullera_pi(n)
}
- Output:
First 10 integer portions: 0 96 1 5122560 2 190722470400 3 7574824857600000 4 312546150372456000000 5 13207874703225491420651520 6 567273919793089083292259942400 7 24650600248172987140112763715584000 8 1080657854354639453670407474439566400000 9 47701779391594966287470570490839978880000000 π to 70 decimal places is: 3.1415926535897932384626433832795028841971693993751058209749445923078164
Visual Basic .NET
Imports System, BI = System.Numerics.BigInteger, System.Console
Module Module1
Function isqrt(ByVal x As BI) As BI
Dim t As BI, q As BI = 1, r As BI = 0
While q <= x : q <<= 2 : End While
While q > 1 : q >>= 2 : t = x - r - q : r >>= 1
If t >= 0 Then x = t : r += q
End While : Return r
End Function
Function dump(ByVal digs As Integer, ByVal Optional show As Boolean = False) As String
digs += 1
Dim z As Integer, gb As Integer = 1, dg As Integer = digs + gb
Dim te As BI, t1 As BI = 1, t2 As BI = 9, t3 As BI = 1, su As BI = 0, t As BI = BI.Pow(10, If(dg <= 60, 0, dg - 60)), d As BI = -1, fn As BI = 1
For n As BI = 0 To dg - 1
If n > 0 Then t3 = t3 * BI.Pow(n, 6)
te = t1 * t2 / t3 : z = dg - 1 - CInt(n) * 6
If z > 0 Then te = te * BI.Pow(10, z) Else te = te / BI.Pow(10, -z)
If show AndAlso n < 10 Then WriteLine("{0,2} {1,62}", n, te * 32 / 3 / t)
su += te : If te < 10 Then
digs -= 1
If show Then WriteLine(vbLf & "{0} iterations required for {1} digits " & _
"after the decimal point." & vbLf, n, digs)
Exit For
End If
For j As BI = n * 6 + 1 To n * 6 + 6
t1 = t1 * j : Next
d += 2 : t2 += 126 + 532 * d
Next
Dim s As String = String.Format("{0}", isqrt(BI.Pow(10, dg * 2 + 3) _
/ su / 32 * 3 * BI.Pow(CType(10, BI), dg + 5)))
Return s(0) & "." & s.Substring(1, digs)
End Function
Sub Main(ByVal args As String())
WriteLine(dump(70, true))
End Sub
End Module
- Output:
0 9600000000000000000000000000000000000000000000000000000000000 1 512256000000000000000000000000000000000000000000000000000000 2 19072247040000000000000000000000000000000000000000000000000 3 757482485760000000000000000000000000000000000000000000000 4 31254615037245600000000000000000000000000000000000000000 5 1320787470322549142065152000000000000000000000000000000 6 56727391979308908329225994240000000000000000000000000 7 2465060024817298714011276371558400000000000000000000 8 108065785435463945367040747443956640000000000000000 9 4770177939159496628747057049083997888000000000000 53 iterations required for 70 digits after the decimal point. 3.1415926535897932384626433832795028841971693993751058209749445923078164
Wren
import "./big" for BigInt, BigRat
import "./fmt" for Fmt
var factorial = Fn.new { |n|
if (n < 2) return BigInt.one
var fact = BigInt.one
for (i in 2..n) fact = fact * i
return fact
}
var almkvistGiullera = Fn.new { |n, print|
var t1 = factorial.call(6*n) * 32
var t2 = 532*n*n + 126*n + 9
var t3 = factorial.call(n).pow(6)*3
var ip = t1 * t2 / t3
var pw = 6*n + 3
var tm = BigRat.new(ip, BigInt.ten.pow(pw))
if (print) {
Fmt.print("$d $44i $3d $-35s", n, ip, -pw, tm.toDecimal(33))
} else {
return tm
}
}
System.print("N Integer Portion Pow Nth Term (33 dp)")
System.print("-" * 89)
for (n in 0..9) {
almkvistGiullera.call(n, true)
}
var sum = BigRat.zero
var prev = BigRat.zero
var prec = BigRat.new(BigInt.one, BigInt.ten.pow(70))
var n = 0
while(true) {
var term = almkvistGiullera.call(n, false)
sum = sum + term
if ((sum-prev).abs < prec) break
prev = sum
n = n + 1
}
var pi = BigRat.one/sum.sqrt(70)
System.print("\nPi to 70 decimal places is:")
System.print(pi.toDecimal(70))
- Output:
N Integer Portion Pow Nth Term (33 dp) ----------------------------------------------------------------------------------------- 0 96 -3 0.096 1 5122560 -9 0.00512256 2 190722470400 -15 0.0001907224704 3 7574824857600000 -21 0.0000075748248576 4 312546150372456000000 -27 0.000000312546150372456 5 13207874703225491420651520 -33 0.00000001320787470322549142065152 6 567273919793089083292259942400 -39 0.000000000567273919793089083292260 7 24650600248172987140112763715584000 -45 0.000000000024650600248172987140113 8 1080657854354639453670407474439566400000 -51 0.000000000001080657854354639453670 9 47701779391594966287470570490839978880000000 -57 0.000000000000047701779391594966287 Pi to 70 decimal places is: 3.1415926535897932384626433832795028841971693993751058209749445923078164
- Programming Tasks
- Solutions by Programming Task
- 11l
- AArch64 Assembly
- ALGOL 68
- ARM Assembly
- C sharp
- System.Numerics
- C++
- Boost
- GMP
- Common Lisp
- Computable-reals
- Dc
- Erlang
- F Sharp
- Factor
- FreeBASIC
- Go
- Haskell
- Numbers
- J
- Java
- JavaScript
- Bigfloat-esnext
- Es-main
- Jq
- Julia
- Kotlin
- Mathematica
- Wolfram Language
- Nim
- Nim-decimal
- Perl
- Phix
- PicoLisp
- Python
- Quackery
- Raku
- REXX
- RPL
- Rust
- Scala
- Sidef
- Visual Basic .NET
- Wren
- Wren-big
- Wren-fmt