Vector products

From Rosetta Code
Task
Vector products
You are encouraged to solve this task according to the task description, using any language you may know.

A vector is defined as having three dimensions as being represented by an ordered collection of three numbers:   (X, Y, Z).

If you imagine a graph with the   x   and   y   axis being at right angles to each other and having a third,   z   axis coming out of the page, then a triplet of numbers,   (X, Y, Z)   would represent a point in the region,   and a vector from the origin to the point.

Given the vectors:

        A = (a1,  a2,  a3) 
        B = (b1,  b2,  b3) 
        C = (c1,  c2,  c3) 

then the following common vector products are defined:

  • The dot product       (a scalar quantity)
A • B = a1b1   +   a2b2   +   a3b3
  • The cross product       (a vector quantity)
A x B = (a2b3  -   a3b2,     a3b1   -   a1b3,     a1b2   -   a2b1)
  • The scalar triple product       (a scalar quantity)
A • (B x C)
  • The vector triple product       (a vector quantity)
A x (B x C)


Task

Given the three vectors:

        a = ( 3,    4,    5)
        b = ( 4,    3,    5)
        c = (-5,  -12,  -13)
  1. Create a named function/subroutine/method to compute the dot product of two vectors.
  2. Create a function to compute the cross product of two vectors.
  3. Optionally create a function to compute the scalar triple product of three vectors.
  4. Optionally create a function to compute the vector triple product of three vectors.
  5. Compute and display: a • b
  6. Compute and display: a x b
  7. Compute and display: a • b x c, the scalar triple product.
  8. Compute and display: a x b x c, the vector triple product.


References
  Wikipedia   cross product
  Wikipedia   triple product entries.


Related tasks



Ada[edit]

not using Ada.Numerics.Real_Arrays, to show some features of the language.

Ada determines which function to call not only on the types of the parameters, but also on the return type. That way we can use the same name for all multiplications (scalar and cross). But, if we add another one to stretch the vector, we get an ambiguity error, since the compiler can't know if A*(B*C) with result-type Vector is meant to be A stretched by the scalar product of B and C, or the cross product of A and the result of the cross product of B and C. Here, I used type qualification to tell the compiler that the result of (B*C) is of type Vector.

vector.adb:

with Ada.Text_IO;
 
procedure Vector is
type Float_Vector is array (Positive range <>) of Float;
package Float_IO is new Ada.Text_IO.Float_IO (Float);
 
procedure Vector_Put (X : Float_Vector) is
begin
Ada.Text_IO.Put ("(");
for I in X'Range loop
Float_IO.Put (X (I), Aft => 1, Exp => 0);
if I /= X'Last then
Ada.Text_IO.Put (", ");
end if;
end loop;
Ada.Text_IO.Put (")");
end Vector_Put;
 
-- cross product
function "*" (Left, Right : Float_Vector) return Float_Vector is
begin
if Left'Length /= Right'Length then
raise Constraint_Error with "vectors of different size in dot product";
end if;
if Left'Length /= 3 then
raise Constraint_Error with "dot product only implemented for R**3";
end if;
return Float_Vector'(Left (Left'First + 1) * Right (Right'First + 2) -
Left (Left'First + 2) * Right (Right'First + 1),
Left (Left'First + 2) * Right (Right'First) -
Left (Left'First) * Right (Right'First + 2),
Left (Left'First) * Right (Right'First + 1) -
Left (Left'First + 1) * Right (Right'First));
end "*";
 
-- scalar product
function "*" (Left, Right : Float_Vector) return Float is
Result : Float := 0.0;
I, J : Positive;
begin
if Left'Length /= Right'Length then
raise Constraint_Error with "vectors of different size in scalar product";
end if;
I := Left'First; J := Right'First;
while I <= Left'Last and then J <= Right'Last loop
Result := Result + Left (I) * Right (J);
I := I + 1; J := J + 1;
end loop;
return Result;
end "*";
 
-- stretching
function "*" (Left : Float_Vector; Right : Float) return Float_Vector is
Result : Float_Vector (Left'Range);
begin
for I in Left'Range loop
Result (I) := Left (I) * Right;
end loop;
return Result;
end "*";
 
A : constant Float_Vector := (3.0, 4.0, 5.0);
B : constant Float_Vector := (4.0, 3.0, 5.0);
C : constant Float_Vector := (-5.0, -12.0, -13.0);
begin
Ada.Text_IO.Put ("A: "); Vector_Put (A); Ada.Text_IO.New_Line;
Ada.Text_IO.Put ("B: "); Vector_Put (B); Ada.Text_IO.New_Line;
Ada.Text_IO.Put ("C: "); Vector_Put (C); Ada.Text_IO.New_Line;
Ada.Text_IO.New_Line;
Ada.Text_IO.Put ("A dot B = "); Float_IO.Put (A * B, Aft => 1, Exp => 0);
Ada.Text_IO.New_Line;
Ada.Text_IO.Put ("A x B = "); Vector_Put (A * B);
Ada.Text_IO.New_Line;
Ada.Text_IO.Put ("A dot (B x C) = "); Float_IO.Put (A * (B * C), Aft => 1, Exp => 0);
Ada.Text_IO.New_Line;
Ada.Text_IO.Put ("A x (B x C) = "); Vector_Put (A * Float_Vector'(B * C));
Ada.Text_IO.New_Line;
end Vector;

Output:

A: ( 3.0,  4.0,  5.0)
B: ( 4.0,  3.0,  5.0)
C: (-5.0, -12.0, -13.0)

A dot B = 49.0
A x B = ( 5.0,  5.0, -7.0)
A dot (B x C) =  6.0
A x (B x C) = (-267.0, 204.0, -3.0)

ALGOL 68[edit]

Translation of: Python
Note: This specimen retains the original Python coding style.
Works with: ALGOL 68 version Revision 1 - no extensions to language used.
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny.
MODE FIELD = INT;
FORMAT field fmt = $g(-0)$;
 
MODE VEC = [3]FIELD;
FORMAT vec fmt = $"("f(field fmt)", "f(field fmt)", "f(field fmt)")"$;
 
PROC crossp = (VEC a, b)VEC:(
#Cross product of two 3D vectors#
CO ASSERT(LWB a = LWB b AND UPB a = UPB b AND UPB b = 3 # "For 3D vectors only" #); CO
(a[2]*b[3] - a[3]*b[2], a[3]*b[1] - a[1]*b[3], a[1]*b[2] - a[2]*b[1])
);
 
PRIO MAXLWB = 8, MINUPB=8;
 
OP MAXLWB = (VEC a, b)INT: (LWB a<LWB b|LWB a|LWB b);
OP MINUPB = (VEC a, b)INT: (UPB a>UPB b|UPB a|UPB b);
 
PROC dotp = (VEC a, b)FIELD:(
#Dot product of two vectors#
FIELD sum := 0;
FOR i FROM a MAXLWB b TO a MINUPB b DO sum +:= a[i]*b[i] OD;
sum
);
 
PROC scalartriplep = (VEC a, b, c)VEC:(
#Scalar triple product of three vectors: "a . (b x c)"#
dotp(a, crossp(b, c))
);
 
PROC vectortriplep = (VEC a, b, c)VEC:(
#Vector triple product of three vectors: "a x (b x c)"#
crossp(a, crossp(b, c))
);
 
# Declare some useful operators #
PRIO DOT = 5, X = 5;
OP (VEC, VEC)FIELD DOT = dotp;
OP (VEC, VEC)VEC X = crossp;
 
main:(
VEC a=(3, 4, 5), b=(4, 3, 5), c=(-5, -12, -13);
printf(($"a = "f(vec fmt)"; b = "f(vec fmt)"; c = "f(vec fmt)l$ , a, b, c));
printf($"Using PROCedures:"l$);
printf(($"a . b = "f(field fmt)l$, dotp(a,b)));
printf(($"a x b = "f(vec fmt)l$, crossp(a,b)));
printf(($"a . (b x c) = "f(field fmt)l$, scalartriplep(a, b, c)));
printf(($"a x (b x c) = "f(vec fmt)l$, vectortriplep(a, b, c)));
printf($"Using OPerators:"l$);
printf(($"a . b = "f(field fmt)l$, a DOT b));
printf(($"a x b = "f(vec fmt)l$, a X b));
printf(($"a . (b x c) = "f(field fmt)l$, a DOT (b X c)));
printf(($"a x (b x c) = "f(vec fmt)l$, a X (b X c)))
)

Output:

a = (3, 4, 5);  b = (4, 3, 5);  c = (-5, -12, -13)
Using PROCedures:
a . b = 49
a x b = (5, 5, -7)
a . (b x c) = 6
a x (b x c) = (-267, 204, -3)
Using OPerators:
a . b = 49
a x b = (5, 5, -7)
a . (b x c) = 6
a x (b x c) = (-267, 204, -3)

ALGOL W[edit]

begin
 % define the Vector record type  %
record Vector( integer X, Y, Z );
 
 % calculates the dot product of two Vectors  %
integer procedure dotProduct( reference(Vector) value A, B ) ;
( X(A) * X(B) ) + ( Y(A) * Y(B) ) + ( Z(A) * Z(B) );
 
 % calculates the cross product or two Vectors  %
reference(Vector) procedure crossProduct( reference(Vector) value A, B ) ;
Vector( ( Y(A) * Z(B) ) - ( Z(A) * Y(B) )
, ( Z(A) * X(B) ) - ( X(A) * Z(B) )
, ( X(A) * Y(B) ) - ( Y(A) * X(B) )
);
 
 % calculates the scaler triple product of two vectors  %
integer procedure scalerTripleProduct( reference(Vector) value A, B, C ) ;
dotProduct( A, crossProduct( B, C ) );
 
 % calculates the vector triple product of two vectors  %
reference(Vector) procedure vectorTripleProduct( reference(Vector) value A, B, C ) ;
crossProduct( A, crossProduct( B, C ) );
 
 % test the Vector routines  %
begin
procedure writeonVector( reference(Vector) value v ) ;
writeon( "(", X(v), ", ", Y(v), ", ", Z(v), ")" );
 
Reference(Vector) a, b, c;
 
a := Vector( 3, 4, 5 );
b := Vector( 4, 3, 5 );
c := Vector( -5, -12, -13 );
 
i_w := 1; s_w := 0; % set output formatting  %
 
write( " a: " ); writeonVector( a );
write( " b: " ); writeonVector( b );
write( " c: " ); writeonVector( c );
write( " a . b: ", dotProduct( a, b ) );
write( " a x b: " ); writeonVector( crossProduct( a, b ) );
write( "a . ( b x c ): ", scalerTripleProduct( a, b, c ) );
write( "a x ( b x c ): " ); writeonVector( vectorTripleProduct( a, b, c ) )
end
end.
Output:
            a: (3, 4, 5)
            b: (4, 3, 5)
            c: (-5, -12, -13)
        a . b: 49
        a x b: (5, 5, -7)
a . ( b x c ): 6
a x ( b x c ): (-267, 204, -3)

AutoHotkey[edit]

Works with: AutoHotkey_L
V := {a: [3, 4, 5], b: [4, 3, 5], c: [-5, -12, -13]}
 
for key, val in V
Out .= key " = (" val[1] ", " val[2] ", " val[3] ")`n"
 
CP := CrossProduct(V.a, V.b)
VTP := VectorTripleProduct(V.a, V.b, V.c)
 
MsgBox, % Out "`na • b = " DotProduct(V.a, V.b) "`n"
. "a x b = (" CP[1] ", " CP[2] ", " CP[3] ")`n"
. "a • b x c = " ScalerTripleProduct(V.a, V.b, V.c) "`n"
. "a x b x c = (" VTP[1] ", " VTP[2] ", " VTP[3] ")"
 
DotProduct(v1, v2) {
return, v1[1] * v2[1] + v1[2] * v2[2] + v1[3] * v2[3]
}
 
CrossProduct(v1, v2) {
return, [v1[2] * v2[3] - v1[3] * v2[2]
, v1[3] * v2[1] - v1[1] * v2[3]
, v1[1] * v2[2] - v1[2] * v2[1]]
}
 
ScalerTripleProduct(v1, v2, v3) {
return, DotProduct(v1, CrossProduct(v2, v3))
}
 
VectorTripleProduct(v1, v2, v3) {
return, CrossProduct(v1, CrossProduct(v2, v3))
}

Output:

a = (3, 4, 5)
b = (4, 3, 5)
c = (-5, -12, -13)

a • b = 49
a x b = (5, 5, -7)
a • b x c = 6
a x b x c = (-267, 204, -3)

AWK[edit]

#!/usr/bin/awk -f 
BEGIN {
a[1] = 3; a[2]= 4; a[3] = 5;
b[1] = 4; b[2]= 3; b[3] = 5;
c[1] = -5; c[2]= -12; c[3] = -13;
 
print "a = ",printVec(a);
print "b = ",printVec(b);
print "c = ",printVec(c);
print "a.b = ",dot(a,b);
## upper case variables are used as temporary or intermediate results
cross(a,b,D);print "a.b = ",printVec(D);
cross(b,c,D);print "a.(b x c) = ",dot(a,D);
cross(b,c,D);cross(a,D,E); print "a x (b x c) = ",printVec(E);
}
 
function dot(A,B) {
return A[1]*B[1]+A[2]*B[2]+A[3]*B[3];
}
 
function cross(A,B,C) {
C[1] = A[2]*B[3]-A[3]*B[2];
C[2] = A[3]*B[1]-A[1]*B[3];
C[3] = A[1]*B[2]-A[2]*B[1];
}
 
function printVec(C) {
return "[ "C[1]" "C[2]" "C[3]" ]";
}

Output:

a =  [ 3 4 5 ]
b =  [ 4 3 5 ]
c =  [ -5 -12 -13 ]
A.b =  49
a.b =  [ 5 5 -7 ]
a.(b x c) =  6
a x (b x c) =  [ -267 204 -3 ]

BASIC256[edit]

Works with: BASIC256
 
a={3,4,5}:b={4,3,5}:c={-5,-12,-13}
 
print "A.B = "+dot_product(ref(a),ref(b))
call cross_product(ref(a),ref(b),ref(y))
Print "AxB = ("+y[0]+","+y[1]+","+y[2]+")"
print "A.(BxC) = "+s_tri(ref(a),ref(b),ref(c))
call v_tri(ref(a),ref(b),ref(c),ref(x),ref(y))
Print "A x (BxC) = ("+y[0]+","+y[1]+","+y[2]+")"
 
function dot_product(ref(x1),ref(x2))
dot_product= 0
for t = 0 to 2
dot_product += x1[t]*x2[t]
next t
end function
 
subroutine cross_product(ref(x1),ref(x2),ref(y1))
y1={0,0,0}
y1[0]=x1[1]*x2[2]-x1[2]*x2[1]
y1[1]=x1[2]*x2[0]-x1[0]*x2[2]
y1[2]=x1[0]*x2[1]-x1[1]*x2[0]
end subroutine
 
function s_tri(ref(x1),ref(x2),ref(x3))
call cross_product(ref(x2),ref(x3),ref(y1))
s_tri=dot_product(ref(x1),ref(y1))
end function
 
subroutine v_tri(ref(x1),ref(x2),ref(x3),ref(y1),ref(y2))
call cross_product(ref(x2),ref(x3),ref(y1))
call cross_product(ref(x1),ref(y1),ref(y2))
end subroutine
 
 

Output:

A.B = 49
AxB = (5,5,-7)
A.(BxC) = 6
A x (BxC) = (-267,204,-3)

BBC BASIC[edit]

      DIM a(2), b(2), c(2), d(2)
a() = 3, 4, 5
b() = 4, 3, 5
c() = -5, -12, -13
 
PRINT "a . b = "; FNdot(a(),b())
PROCcross(a(),b(),d())
PRINT "a x b = (";d(0)", ";d(1)", ";d(2)")"
PRINT "a . (b x c) = "; FNscalartriple(a(),b(),c())
PROCvectortriple(a(),b(),c(),d())
PRINT "a x (b x c) = (";d(0)", ";d(1)", ";d(2)")"
END
 
DEF FNdot(A(),B())
LOCAL C() : DIM C(0,0)
C() = A().B()
= C(0,0)
 
DEF PROCcross(A(),B(),C())
C() = A(1)*B(2)-A(2)*B(1), A(2)*B(0)-A(0)*B(2), A(0)*B(1)-A(1)*B(0)
ENDPROC
 
DEF FNscalartriple(A(),B(),C())
LOCAL D() : DIM D(2)
PROCcross(B(),C(),D())
= FNdot(A(),D())
 
DEF PROCvectortriple(A(),B(),C(),D())
PROCcross(B(),C(),D())
PROCcross(A(),D(),D())
ENDPROC

Output:

a . b = 49
a x b = (5, 5, -7)
a . (b x c) = 6
a x (b x c) = (-267, 204, -3)

C[edit]

#include<stdio.h>
 
typedef struct{
float i,j,k;
}Vector;
 
Vector a = {3, 4, 5},b = {4, 3, 5},c = {-5, -12, -13};
 
float dotProduct(Vector a, Vector b)
{
return a.i*b.i+a.j*b.j+a.k*b.k;
}
 
Vector crossProduct(Vector a,Vector b)
{
Vector c = {a.j*b.k - a.k*b.j, a.k*b.i - a.i*b.k, a.i*b.j - a.j*b.i};
 
return c;
}
 
float scalarTripleProduct(Vector a,Vector b,Vector c)
{
return dotProduct(a,crossProduct(b,c));
}
 
Vector vectorTripleProduct(Vector a,Vector b,Vector c)
{
return crossProduct(a,crossProduct(b,c));
}
 
void printVector(Vector a)
{
printf("( %f, %f, %f)",a.i,a.j,a.k);
}
 
int main()
{
printf("\n a = "); printVector(a);
printf("\n b = "); printVector(b);
printf("\n c = "); printVector(c);
printf("\n a . b = %f",dotProduct(a,b));
printf("\n a x b = "); printVector(crossProduct(a,b));
printf("\n a . (b x c) = %f",scalarTripleProduct(a,b,c));
printf("\n a x (b x c) = "); printVector(vectorTripleProduct(a,b,c));
 
return 0;
}

Output:

 a = ( 3.000000, 4.000000, 5.000000)
 b = ( 4.000000, 3.000000, 5.000000)
 c = ( -5.000000, -12.000000, -13.000000)
 a . b = 49.000000
 a x b = ( 5.000000, 5.000000, -7.000000)
 a . (b x c) = 6.000000
 a x (b x c) = ( -267.000000, 204.000000, -3.000000)

C#[edit]

using System;
using System.Windows.Media.Media3D;
 
class VectorProducts
{
static double ScalarTripleProduct(Vector3D a, Vector3D b, Vector3D c)
{
return Vector3D.DotProduct(a, Vector3D.CrossProduct(b, c));
}
 
static Vector3D VectorTripleProduct(Vector3D a, Vector3D b, Vector3D c)
{
return Vector3D.CrossProduct(a, Vector3D.CrossProduct(b, c));
}
 
static void Main()
{
var a = new Vector3D(3, 4, 5);
var b = new Vector3D(4, 3, 5);
var c = new Vector3D(-5, -12, -13);
 
Console.WriteLine(Vector3D.DotProduct(a, b));
Console.WriteLine(Vector3D.CrossProduct(a, b));
Console.WriteLine(ScalarTripleProduct(a, b, c));
Console.WriteLine(VectorTripleProduct(a, b, c));
}
}

Output:

49
5;5;-7
6
-267;204;-3

C++[edit]

#include <iostream>
 
template< class T >
class D3Vector {
 
template< class U >
friend std::ostream & operator<<( std::ostream & , const D3Vector<U> & ) ;
 
public :
D3Vector( T a , T b , T c ) {
x = a ;
y = b ;
z = c ;
}
 
T dotproduct ( const D3Vector & rhs ) {
T scalar = x * rhs.x + y * rhs.y + z * rhs.z ;
return scalar ;
}
 
D3Vector crossproduct ( const D3Vector & rhs ) {
T a = y * rhs.z - z * rhs.y ;
T b = z * rhs.x - x * rhs.z ;
T c = x * rhs.y - y * rhs.x ;
D3Vector product( a , b , c ) ;
return product ;
}
 
D3Vector triplevec( D3Vector & a , D3Vector & b ) {
return crossproduct ( a.crossproduct( b ) ) ;
}
 
T triplescal( D3Vector & a, D3Vector & b ) {
return dotproduct( a.crossproduct( b ) ) ;
}
 
private :
T x , y , z ;
} ;
 
template< class T >
std::ostream & operator<< ( std::ostream & os , const D3Vector<T> & vec ) {
os << "( " << vec.x << " , " << vec.y << " , " << vec.z << " )" ;
return os ;
}
 
int main( ) {
D3Vector<int> a( 3 , 4 , 5 ) , b ( 4 , 3 , 5 ) , c( -5 , -12 , -13 ) ;
std::cout << "a . b : " << a.dotproduct( b ) << "\n" ;
std::cout << "a x b : " << a.crossproduct( b ) << "\n" ;
std::cout << "a . b x c : " << a.triplescal( b , c ) << "\n" ;
std::cout << "a x b x c : " << a.triplevec( b , c ) << "\n" ;
return 0 ;
}
Output:
a . b : 49
a x b : ( 5 , 5 , -7 )
a . b x c : 6
a x b x c : ( -267 , 204 , -3 )

Clojure[edit]

(defrecord Vector [x y z])
 
(defn dot
[U V]
(+ (* (:x U) (:x V))
(* (:y U) (:y V))
(* (:z U) (:z V))))
 
(defn cross
[U V]
(new Vector
(- (* (:y U) (:z V)) (* (:z U) (:y V)))
(- (* (:z U) (:x V)) (* (:x U) (:z V)))
(- (* (:x U) (:y V)) (* (:y U) (:x V)))))
 
(let [a (new Vector 3 4 5)
b (new Vector 4 3 5)
c (new Vector -5 -12 -13)]
(doseq
[prod (list
(dot a b)
(cross a b)
(dot a (cross b c))
(cross a (cross b c)))]
(println prod)))
Output:
49
#:user.Vector{:x 5, :y 5, :z -7}
6
#:user.Vector{:x -267, :y 204, :z -3}

Common Lisp[edit]

Using the Common Lisp Object System.

(defclass 3d-vector ()
((x :type number :initarg :x)
(y :type number :initarg :y)
(z :type number :initarg :z)))
 
(defmethod print-object ((object 3d-vector) stream)
(print-unreadable-object (object stream :type t)
(with-slots (x y z) object
(format stream "~a ~a ~a" x y z))))
 
(defun make-3d-vector (x y z)
(make-instance '3d-vector :x x :y y :z z))
 
(defmethod dot-product ((a 3d-vector) (b 3d-vector))
(with-slots ((a1 x) (a2 y) (a3 z)) a
(with-slots ((b1 x) (b2 y) (b3 z)) b
(+ (* a1 b1) (* a2 b2) (* a3 b3)))))
 
(defmethod cross-product ((a 3d-vector)
(b 3d-vector))
(with-slots ((a1 x) (a2 y) (a3 z)) a
(with-slots ((b1 x) (b2 y) (b3 z)) b
(make-instance '3d-vector
:x (- (* a2 b3) (* a3 b2))
:y (- (* a3 b1) (* a1 b3))
:z (- (* a1 b2) (* a2 b1))))))
 
(defmethod scalar-triple-product ((a 3d-vector)
(b 3d-vector)
(c 3d-vector))
(dot-product a (cross-product b c)))
 
(defmethod vector-triple-product ((a 3d-vector)
(b 3d-vector)
(c 3d-vector))
(cross-product a (cross-product b c)))
 
(defun vector-products-example ()
(let ((a (make-3d-vector 3 4 5))
(b (make-3d-vector 4 3 5))
(c (make-3d-vector -5 -12 -13)))
(values (dot-product a b)
(cross-product a b)
(scalar-triple-product a b c)
(vector-triple-product a b c))))

Output:

CL-USER> (vector-products-example)
49
#<3D-VECTOR 5 5 -7>
6
#<3D-VECTOR -267 204 -3>

Using vector type

(defun cross (a b)
(when (and (equal (length a) 3) (equal (length b) 3))
(vector
(- (* (elt a 1) (elt b 2)) (* (elt a 2) (elt b 1)))
(- (* (elt a 2) (elt b 0)) (* (elt a 0) (elt b 2)))
(- (* (elt a 0) (elt b 1)) (* (elt a 1) (elt b 0))))))
 
(defun dot (a b)
(when (equal (length a) (length b))
(loop for ai across a for bi across b sum (* ai bi))))
 
(defun scalar-triple (a b c)
(dot a (cross b c)))
 
(defun vector-triple (a b c)
(cross a (cross b c)))
 
(defun task (a b c)
(values (dot a b)
(cross a b)
(scalar-triple a b c)
(vector-triple a b c)))
 

Output:

CL-USER> (task (vector 3 4 5) (vector 4 3 5) (vector -5 -12 -13))
49
#(5 5 -7)
6
#(-267 204 -3)

D[edit]

import std.stdio, std.conv, std.numeric;
 
struct V3 {
union {
immutable struct { double x, y, z; }
immutable double[3] v;
}
 
double dot(in V3 rhs) const pure nothrow [email protected]*/ @nogc {
return dotProduct(v, rhs.v);
}
 
V3 cross(in V3 rhs) const pure nothrow @safe @nogc {
return V3(y * rhs.z - z * rhs.y,
z * rhs.x - x * rhs.z,
x * rhs.y - y * rhs.x);
}
 
string toString() const { return v.text; }
}
 
double scalarTriple(in V3 a, in V3 b, in V3 c) [email protected]*/ pure nothrow {
return a.dot(b.cross(c));
// function vector_products.V3.cross (const(V3) rhs) immutable
// is not callable using argument types (const(V3)) const
}
 
V3 vectorTriple(in V3 a, in V3 b, in V3 c) @safe pure nothrow @nogc {
return a.cross(b.cross(c));
}
 
void main() {
immutable V3 a = {3, 4, 5},
b = {4, 3, 5},
c = {-5, -12, -13};
 
writeln("a = ", a);
writeln("b = ", b);
writeln("c = ", c);
writeln("a . b = ", a.dot(b));
writeln("a x b = ", a.cross(b));
writeln("a . (b x c) = ", scalarTriple(a, b, c));
writeln("a x (b x c) = ", vectorTriple(a, b, c));
}
Output:
a = [3, 4, 5]
b = [4, 3, 5]
c = [-5, -12, -13]
a . b = 49
a x b = [5, 5, -7]
a . (b x c) = 6
a x (b x c) = [-267, 204, -3]

EchoLisp[edit]

The math library includes the dot-product and cross-product functions. They work on complex or real vectors.

 
(lib 'math)
 
(define (scalar-triple-product a b c)
(dot-product a (cross-product b c)))
 
(define (vector-triple-product a b c)
(cross-product a (cross-product b c)))
 
(define a #(3 4 5))
(define b #(4 3 5))
(define c #(-5 -12 -13))
 
(cross-product a b)
→ #( 5 5 -7)
(dot-product a b)
49
(scalar-triple-product a b c)
6
(vector-triple-product a b c)
→ #( -267 204 -3)
 

Elixir[edit]

defmodule Vector do
def dot_product({a1,a2,a3}, {b1,b2,b3}), do: a1*b1 + a2*b2 + a3*b3
 
def cross_product({a1,a2,a3}, {b1,b2,b3}), do: {a2*b3 - a3*b2, a3*b1 - a1*b3, a1*b2 - a2*b1}
 
def scalar_triple_product(a, b, c), do: dot_product(a, cross_product(b, c))
 
def vector_triple_product(a, b, c), do: cross_product(a, cross_product(b, c))
end
 
a = {3, 4, 5}
b = {4, 3, 5}
c = {-5, -12, -13}
 
IO.puts "a = #{inspect a}"
IO.puts "b = #{inspect b}"
IO.puts "c = #{inspect c}"
IO.puts "a . b = #{inspect Vector.dot_product(a, b)}"
IO.puts "a x b = #{inspect Vector.cross_product(a, b)}"
IO.puts "a . (b x c) = #{inspect Vector.scalar_triple_product(a, b, c)}"
IO.puts "a x (b x c) = #{inspect Vector.vector_triple_product(a, b, c)}"
Output:
a = {3, 4, 5}
b = {4, 3, 5}
c = {-5, -12, -13}
a . b = 49
a x b = {5, 5, -7}
a . (b x c) = 6
a x (b x c) = {-267, 204, -3}

ERRE[edit]

 
PROGRAM VECTORPRODUCT
 
!$DOUBLE
 
TYPE TVECTOR=(X,Y,Z)
 
DIM A:TVECTOR,B:TVECTOR,C:TVECTOR
 
DIM AA:TVECTOR,BB:TVECTOR,CC:TVECTOR
DIM DD:TVECTOR,EE:TVECTOR,FF:TVECTOR
 
PROCEDURE DOTPRODUCT(DD.,EE.->DOTP)
DOTP=DD.X*EE.X+DD.Y*EE.Y+DD.Z*EE.Z
END PROCEDURE
 
PROCEDURE CROSSPRODUCT(DD.,EE.->FF.)
FF.X=DD.Y*EE.Z-DD.Z*EE.Y
FF.Y=DD.Z*EE.X-DD.X*EE.Z
FF.Z=DD.X*EE.Y-DD.Y*EE.X
END PROCEDURE
 
PROCEDURE SCALARTRIPLEPRODUCT(AA.,BB.,CC.->SCALARTP)
CROSSPRODUCT(BB.,CC.->FF.)
DOTPRODUCT(AA.,FF.->SCALARTP)
END PROCEDURE
 
PROCEDURE VECTORTRIPLEPRODUCT(AA.,BB.,CC.->FF.)
CROSSPRODUCT(BB.,CC.->FF.)
CROSSPRODUCT(AA.,FF.->FF.)
END PROCEDURE
 
PROCEDURE PRINTVECTOR(AA.)
PRINT("(";AA.X;",";AA.Y;",";AA.Z;")")
END PROCEDURE
 
BEGIN
A.X=3 A.Y=4 A.Z=5
B.X=4 B.Y=3 B.Z=5
C.X=-5 C.Y=-12 C.Z=-13
 
PRINT("A: ";) PRINTVECTOR(A.)
PRINT("B: ";) PRINTVECTOR(B.)
PRINT("C: ";) PRINTVECTOR(C.)
 
PRINT
DOTPRODUCT(A.,B.->DOTP)
PRINT("A.B =";DOTP)
 
CROSSPRODUCT(A.,B.->FF.)
PRINT("AxB =";) PRINTVECTOR(FF.)
 
SCALARTRIPLEPRODUCT(A.,B.,C.->SCALARTP)
PRINT("A.(BxC)=";SCALARTP)
 
VECTORTRIPLEPRODUCT(A.,B.,C.->FF.)
PRINT("Ax(BxC)=";) PRINTVECTOR(FF.)
END PROGRAM
 

Euphoria[edit]

constant X = 1, Y = 2, Z = 3
 
function dot_product(sequence a, sequence b)
return a[X]*b[X] + a[Y]*b[Y] + a[Z]*b[Z]
end function
 
function cross_product(sequence a, sequence b)
return { a[Y]*b[Z] - a[Z]*b[Y],
a[Z]*b[X] - a[X]*b[Z],
a[X]*b[Y] - a[Y]*b[X] }
end function
 
function scalar_triple(sequence a, sequence b, sequence c)
return dot_product( a, cross_product( b, c ) )
end function
 
function vector_triple( sequence a, sequence b, sequence c)
return cross_product( a, cross_product( b, c ) )
end function
 
constant a = { 3, 4, 5 }, b = { 4, 3, 5 }, c = { -5, -12, -13 }
 
puts(1,"a = ")
? a
puts(1,"b = ")
? b
puts(1,"c = ")
? c
puts(1,"a dot b = ")
? dot_product( a, b )
puts(1,"a x b = ")
? cross_product( a, b )
puts(1,"a dot (b x c) = ")
? scalar_triple( a, b, c )
puts(1,"a x (b x c) = ")
? vector_triple( a, b, c )

Output:

a = {3,4,5}
b = {4,3,5}
c = {-5,-12,-13}
a dot b = 49
a x b = {5,5,-7}
a dot (b x c) = 6
a x (b x c) = {-267,204,-3}

Fantom[edit]

class Main
{
Int dot_product (Int[] a, Int[] b)
{
a[0]*b[0] + a[1]*b[1] + a[2]*b[2]
}
 
Int[] cross_product (Int[] a, Int[] b)
{
[a[1]*b[2] - a[2]*b[1], a[2]*b[0] - a[0]*b[2], a[0]*b[1]-a[1]*b[0]]
}
 
Int scalar_triple_product (Int[] a, Int[] b, Int[] c)
{
dot_product (a, cross_product (b, c))
}
 
Int[] vector_triple_product (Int[] a, Int[] b, Int[] c)
{
cross_product (a, cross_product (b, c))
}
 
Void main ()
{
a := [3, 4, 5]
b := [4, 3, 5]
c := [-5, -12, -13]
 
echo ("a . b = " + dot_product (a, b))
echo ("a x b = [" + cross_product(a, b).join (", ") + "]")
echo ("a . (b x c) = " + scalar_triple_product (a, b, c))
echo ("a x (b x c) = [" + vector_triple_product(a, b, c).join (", ") + "]")
}
}

Output:

a . b = 49
a x b = [5, 5, -7]
a . (b x c) = 6
a x (b x c) = [-267, 204, -3]

Forth[edit]

Works with: Forth version 1994 ANSI with a separate floating point stack.
 
: 3f! ( &v - ) ( f: x y z - ) dup float+ dup float+ f! f! f! ;
 
: Vector \ Compiletime: ( f: x y z - ) ( <name> - )
create here [ 3 floats ] literal allot 3f! ; \ Runtime: ( - &v )
 
: >fx@ ( &v - ) ( f: - n ) postpone f@ ; immediate
: >fy@ ( &v - ) ( f: - n ) float+ f@ ;
: >fz@ ( &v - ) ( f: - n ) float+ float+ f@ ;
: .Vector ( &v - ) dup >fz@ dup >fy@ >fx@ f. f. f. ;
 
: Dot* ( &v1 &v2 - ) ( f - DotPrd )
2dup >fx@ >fx@ f*
2dup >fy@ >fy@ f* f+
>fz@ >fz@ f* f+ ;
 
: Cross* ( &v1 &v2 &vResult - )
>r 2dup >fz@ >fy@ f*
2dup >fy@ >fz@ f* f-
2dup >fx@ >fz@ f*
2dup >fz@ >fx@ f* f-
2dup >fy@ >fx@ f*
>fx@ >fy@ f* f-
r> 3f! ;
 
: ScalarTriple* ( &v1 &v2 &v3 - ) ( f: - ScalarTriple* )
>r pad Cross* pad r> Dot* ;
 
: VectorTriple* ( &v1 &v2 &v3 &vDest - )
>r swap r@ Cross* r> tuck Cross* ;
 
3e 4e 5e Vector A
4e 3e 5e Vector B
-5e -12e -13e Vector C
 
cr
cr .( a . b = ) A B Dot* f.
cr .( a x b = ) A B pad Cross* pad .Vector
cr .( a . [b x c] = ) A B C ScalarTriple* f.
cr .( a x [b x c] = ) A B C pad VectorTriple* pad .Vector
Output:
a . b = 49.0000
a x b = 5.00000 5.00000 -7.00000
a . [b x c] = 6.00000
a x [b x c] = -267.000 204.000 -3.00000

Fortran[edit]

Works with: Fortran version 95 and later

Specialized for 3-dimensional vectors.

program VectorProducts
 
real, dimension(3) :: a, b, c
 
a = (/ 3, 4, 5 /)
b = (/ 4, 3, 5 /)
c = (/ -5, -12, -13 /)
 
print *, dot_product(a, b)
print *, cross_product(a, b)
print *, s3_product(a, b, c)
print *, v3_product(a, b, c)
 
contains
 
function cross_product(a, b)
real, dimension(3) :: cross_product
real, dimension(3), intent(in) :: a, b
 
cross_product(1) = a(2)*b(3) - a(3)*b(2)
cross_product(2) = a(3)*b(1) - a(1)*b(3)
cross_product(3) = a(1)*b(2) - b(1)*a(2)
end function cross_product
 
function s3_product(a, b, c)
real :: s3_product
real, dimension(3), intent(in) :: a, b, c
 
s3_product = dot_product(a, cross_product(b, c))
end function s3_product
 
function v3_product(a, b, c)
real, dimension(3) :: v3_product
real, dimension(3), intent(in) :: a, b, c
 
v3_product = cross_product(a, cross_product(b, c))
end function v3_product
 
end program VectorProducts

Output

     49.0000
     5.00000         5.00000        -7.00000
     6.00000
    -267.000         204.000        -3.00000

FreeBASIC[edit]

  'Construct only required operators for this.
Type V3
As double x,y,z
declare operator cast() as string
End Type
#define dot *
#define cross ^
#define Show(t1,t) ? #t1;tab(22);t
 
operator V3.cast() as string
return "("+str(x)+","+str(y)+","+str(z)+")"
end operator
 
Operator dot(v1 As v3,v2 As v3) As double
Return v1.x*v2.x+v1.y*v2.y+v1.z*v2.z
End Operator
 
Operator cross(v1 As v3,v2 As v3) As v3
Return type<v3>(v1.y*v2.z-v2.y*v1.z,-(v1.x*v2.z-v2.x*v1.z),v1.x*v2.y-v2.x*v1.y)
End Operator
 
dim as V3 a = (3, 4, 5), b = (4, 3, 5), c = (-5, -12, -13)
 
Show(a,a)
Show(b,b)
Show(c,c)
?
Show(a . b,a dot b)
Show(a X b,a cross b)
Show(a . b X c,a dot b cross c)
Show(a X (b X c),a cross (b cross c))
sleep
Output:
a                    (3,4,5)
b                    (4,3,5)
c                    (-5,-12,-13)

a . b                 49
a X b                (5,5,-7)
a . b X c             6
a X (b X c)          (-267,204,-3)

FunL[edit]

A = (3, 4, 5)
B = (4, 3, 5)
C = (-5, -12, -13)
 
def dot( u, v ) = sum( u(i)v(i) | i <- 0:u.>length() )
def cross( u, v ) = (u(1)v(2) - u(2)v(1), u(2)v(0) - u(0)v(2), u(0)v(1) - u(1)v(0) )
def scalarTriple( u, v, w ) = dot( u, cross(v, w) )
def vectorTriple( u, v, w ) = cross( u, cross(v, w) )
 
println( "A\u00b7B = ${dot(A, B)}" )
println( "A\u00d7B = ${cross(A, B)}" )
println( "A\u00b7(B\u00d7C) = ${scalarTriple(A, B, C)}" )
println( "A\u00d7(B\u00d7C) = ${vectorTriple(A, B, C)}" )
Output:
A·B = 49
A×B = (5, 5, -7)
A·(B×C) = 6
A×(B×C) = (-267, 204, -3)

GAP[edit]

DotProduct := function(u, v)
return u*v;
end;
 
CrossProduct := function(u, v)
return [
u[2]*v[3] - u[3]*v[2],
u[3]*v[1] - u[1]*v[3],
u[1]*v[2] - u[2]*v[1] ];
end;
 
ScalarTripleProduct := function(u, v, w)
return DotProduct(u, CrossProduct(v, w));
end;
 
VectorTripleProduct := function(u, v, w)
return CrossProduct(u, CrossProduct(v, w));
end;
 
a := [3, 4, 5];
b := [4, 3, 5];
c := [-5, -12, -13];
 
DotProduct(a, b);
# 49
 
CrossProduct(a, b);
# [ 5, 5, -7 ]
 
ScalarTripleProduct(a, b, c);
# 6
 
# Another way to get it
Determinant([a, b, c]);
# 6
 
VectorTripleProduct(a, b, c);
# [ -267, 204, -3 ]

Go[edit]

package main
 
import "fmt"
 
type vector struct {
x, y, z float64
}
 
var (
a = vector{3, 4, 5}
b = vector{4, 3, 5}
c = vector{-5, -12, -13}
)
 
func dot(a, b vector) float64 {
return a.x*b.x + a.y*b.y + a.z*b.z
}
 
func cross(a, b vector) vector {
return vector{a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x}
}
 
func s3(a, b, c vector) float64 {
return dot(a, cross(b, c))
}
 
func v3(a, b, c vector) vector {
return cross(a, cross(b, c))
}
 
func main() {
fmt.Println(dot(a, b))
fmt.Println(cross(a, b))
fmt.Println(s3(a, b, c))
fmt.Println(v3(a, b, c))
}

Output:

49
{5 5 -7}
6
{-267 204 -3}

Groovy[edit]

Dot Product Solution:

def pairwiseOperation = { x, y, Closure binaryOp ->
assert x && y && x.size() == y.size()
[x, y].transpose().collect(binaryOp)
}
 
def pwMult = pairwiseOperation.rcurry { it[0] * it[1] }
 
def dotProduct = { x, y ->
assert x && y && x.size() == y.size()
pwMult(x, y).sum()
}

Cross Product Solution, using scalar operations:

def crossProductS = { x, y ->
assert x && y && x.size() == 3 && y.size() == 3
[x[1]*y[2] - x[2]*y[1], x[2]*y[0] - x[0]*y[2] , x[0]*y[1] - x[1]*y[0]]
}

Cross Product Solution, using "vector" operations:

def rotR = {
assert it && it.size() > 2
[it[-1]] + it[0..-2]
}
 
def rotL = {
assert it && it.size() > 2
it[1..-1] + [it[0]]
}
 
def pwSubtr = pairwiseOperation.rcurry { it[0] - it[1] }
 
def crossProductV = { x, y ->
assert x && y && x.size() == 3 && y.size() == 3
pwSubtr(pwMult(rotL(x), rotR(y)), pwMult(rotL(y), rotR(x)))
}

Test program (including triple products):

def test = { crossProduct ->
 
def scalarTripleProduct = { x, y, z ->
dotProduct(x, crossProduct(y, z))
}
 
def vectorTripleProduct = { x, y, z ->
crossProduct(x, crossProduct(y, z))
}
 
def a = [3, 4, 5]
def b = [4, 3, 5]
def c = [-5, -12, -13]
 
println(" a . b = " + dotProduct(a,b))
println(" a x b = " + crossProduct(a,b))
println("a . (b x c) = " + scalarTripleProduct(a,b,c))
println("a x (b x c) = " + vectorTripleProduct(a,b,c))
println()
}
 
test(crossProductS)
test(crossProductV)

Output:

      a . b = 49
      a x b = [5, 5, -7]
a . (b x c) = 6
a x (b x c) = [-267, 204, -3]

      a . b = 49
      a x b = [5, 5, -7]
a . (b x c) = 6
a x (b x c) = [-267, 204, -3]

Haskell[edit]

type Vector a = [a]
type Scalar a = a
 
a,b,c,d :: Vector Int
a = [ 3, 4, 5 ]
b = [ 4, 3, 5 ]
c = [-5,-12,-13 ]
d = [ 3, 4, 5, 6 ]
 
dot :: (Num t) => Vector t -> Vector t -> Scalar t
dot u v | length u == length v = sum $ zipWith (*) u v
| otherwise = error "Dotted Vectors must be of equal dimension."
 
cross :: (Num t) => Vector t -> Vector t -> Vector t
cross u v | length u == 3 && length v == 3 =
[u !! 1 * v !! 2 - u !! 2 * v !! 1,
u !! 2 * v !! 0 - u !! 0 * v !! 2,
u !! 0 * v !! 1 - u !! 1 * v !! 0]
| otherwise = error "Crossed Vectors must both be three dimensional."
 
scalarTriple :: (Num t) => Vector t -> Vector t -> Vector t -> Scalar t
scalarTriple q r s = dot q $ cross r s
 
vectorTriple :: (Num t) => Vector t -> Vector t -> Vector t -> Vector t
vectorTriple q r s = cross q $ cross r s
 
main = do
mapM_ putStrLn [ "a . b = " ++ (show $ dot a b)
, "a x b = " ++ (show $ cross a b)
, "a . b x c = " ++ (show $ scalarTriple a b c)
, "a x b x c = " ++ (show $ vectorTriple a b c)
, "a . d = " ++ (show $ dot a d) ]
Output:
a . b     = 49
a x b     = [5,5,-7]
a . b x c = 6
a x b x c = [-267,204,-3]
a . d     = *** Exception: Dotted Vectors must be of equal dimension.

Icon and Unicon[edit]

# record type to store a 3D vector
record Vector3D(x, y, z)
 
# procedure to display vector as a string
procedure toString (vector)
return "(" || vector.x || ", " || vector.y || ", " || vector.z || ")"
end
 
procedure dotProduct (a, b)
return a.x * b.x + a.y * b.y + a.z * b.z
end
 
procedure crossProduct (a, b)
x := a.y * b.z - a.z * b.y
y := a.z * b.x - a.x * b.z
z := a.x * b.y - a.y * b.x
return Vector3D(x, y, z)
end
 
procedure scalarTriple (a, b, c)
return dotProduct (a, crossProduct (b, c))
end
 
procedure vectorTriple (a, b, c)
return crossProduct (a, crossProduct (b, c))
end
 
# main procedure, to run given test
procedure main ()
a := Vector3D(3, 4, 5)
b := Vector3D(4, 3, 5)
c := Vector3D(-5, -12, -13)
 
writes ("A.B : " || toString(a) || "." || toString(b) || " = ")
write (dotProduct (a, b))
writes ("AxB : " || toString(a) || "x" || toString(b) || " = ")
write (toString(crossProduct (a, b)))
writes ("A.(BxC) : " || toString(a) || ".(" || toString(b) || "x" || toString(c) || ") = ")
write (scalarTriple (a, b, c))
writes ("Ax(BxC) : " || toString(a) || "x(" || toString(b) || "x" || toString(c) || ") = ")
write (toString(vectorTriple (a, b, c)))
end

Output:

A.B : (3, 4, 5).(4, 3, 5) = 49
AxB : (3, 4, 5)x(4, 3, 5) = (5, 5, -7)
A.(BxC) : (3, 4, 5).((4, 3, 5)x(-5, -12, -13)) = 6
Ax(BxC) : (3, 4, 5)x((4, 3, 5)x(-5, -12, -13)) = (-267, 204, -3)

J[edit]

Perhaps the most straightforward definition for cross product in J uses rotate multiply and subtract:

cross=: (1&|.@[ * 2&|.@]) - 2&|.@[ * 1&|.@]

However, there are other valid approaches. For example, a "generalized approach" based on j:Essays/Complete Tensor:

CT=: C.!.2 @ (#:i.) @ $~
ip=: +/ .* NB. inner product
cross=: ] ip CT@#@[ ip [

Note that there are a variety of other generalizations have cross products as a part of what they do.

An alternative definition for cross (based on finding the determinant of a 3 by 3 matrix where one row is unit vectors) could be:

cross=: [: > [: -&.>/ .(*&.>) (<"1=i.3) , ,:&:(<"0)

With an implementation of cross product and inner product, the rest of the task becomes trivial:

a=:  3 4 5
b=: 4 3 5
c=: -5 12 13
 
A=: 0 {:: ] NB. contents of the first box on the right
B=: 1 {:: ] NB. contents of the second box on the right
C=: 2 {:: ] NB. contents of the third box on the right
 
dotP=: A ip B
crossP=: A cross B
scTriP=: A ip B cross C
veTriP=: A cross B cross C

Required example:

   dotP a;b
49
crossP a;b
5 5 _7
scTriP a;b;c
6
veTriP a;b;c
_267 204 _3

Java[edit]

Works with: Java version 1.5+

All operations which return vectors give vectors containing Doubles.

public class VectorProds{
public static class Vector3D<T extends Number>{
private T a, b, c;
 
public Vector3D(T a, T b, T c){
this.a = a;
this.b = b;
this.c = c;
}
 
public double dot(Vector3D<?> vec){
return (a.doubleValue() * vec.a.doubleValue() +
b.doubleValue() * vec.b.doubleValue() +
c.doubleValue() * vec.c.doubleValue());
}
 
public Vector3D<Double> cross(Vector3D<?> vec){
Double newA = b.doubleValue()*vec.c.doubleValue() - c.doubleValue()*vec.b.doubleValue();
Double newB = c.doubleValue()*vec.a.doubleValue() - a.doubleValue()*vec.c.doubleValue();
Double newC = a.doubleValue()*vec.b.doubleValue() - b.doubleValue()*vec.a.doubleValue();
return new Vector3D<Double>(newA, newB, newC);
}
 
public double scalTrip(Vector3D<?> vecB, Vector3D<?> vecC){
return this.dot(vecB.cross(vecC));
}
 
public Vector3D<Double> vecTrip(Vector3D<?> vecB, Vector3D<?> vecC){
return this.cross(vecB.cross(vecC));
}
 
@Override
public String toString(){
return "<" + a.toString() + ", " + b.toString() + ", " + c.toString() + ">";
}
}
 
public static void main(String[] args){
Vector3D<Integer> a = new Vector3D<Integer>(3, 4, 5);
Vector3D<Integer> b = new Vector3D<Integer>(4, 3, 5);
Vector3D<Integer> c = new Vector3D<Integer>(-5, -12, -13);
 
System.out.println(a.dot(b));
System.out.println(a.cross(b));
System.out.println(a.scalTrip(b, c));
System.out.println(a.vecTrip(b, c));
}
}

Output:

49.0
<5.0, 5.0, -7.0>
6.0
<-267.0, 204.0, -3.0>
Works with: Java version 1.8+

This solution uses Java SE new Stream API

import java.util.Arrays;
import java.util.stream.IntStream;
 
public class VectorsOp {
// Vector dot product using Java SE 8 stream abilities
// the method first create an array of size values,
// and map the product of each vectors components in a new array (method map())
// and transform the array to a scalr by summing all elements (method reduce)
// the method parallel is there for optimization
private static int dotProduct(int[] v1, int[] v2,int length) {
 
int result = IntStream.range(0, length)
.parallel()
.map( id -> v1[id] * v2[id])
.reduce(0, Integer::sum);
 
return result;
}
 
// Vector Cross product using Java SE 8 stream abilities
// here we map in a new array where each element is equal to the cross product
// With Stream is is easier to handle N dimensions vectors
private static int[] crossProduct(int[] v1, int[] v2,int length) {
 
int result[] = new int[length] ;
//result[0] = v1[1] * v2[2] - v1[2]*v2[1] ;
//result[1] = v1[2] * v2[0] - v1[0]*v2[2] ;
// result[2] = v1[0] * v2[1] - v1[1]*v2[0] ;
 
result = IntStream.range(0, length)
.parallel()
.map( i -> v1[(i+1)%length] * v2[(i+2)%length] - v1[(i+2)%length]*v2[(i+1)%length])
.toArray();
 
return result;
}
 
public static void main (String[] args)
{
int[] vect1 = {3, 4, 5};
int[] vect2 = {4, 3, 5};
int[] vect3 = {-5, -12, -13};
 
System.out.println("dot product =:" + dotProduct(vect1,vect2,3));
 
int[] prodvect = new int[3];
prodvect = crossProduct(vect1,vect2,3);
System.out.println("cross product =:[" + prodvect[0] + ","
+ prodvect[1] + ","
+ prodvect[2] + "]");
 
prodvect = crossProduct(vect2,vect3,3);
System.out.println("scalar product =:" + dotProduct(vect1,prodvect,3));
 
prodvect = crossProduct(vect1,prodvect,3);
 
System.out.println("triple product =:[" + prodvect[0] + ","
+ prodvect[1] + ","
+ prodvect[2] + "]");
 
}
}

result is the same as above , fortunately

dot product =:49
cross product =:[5,5,-7]
scalar product =:6
triple product =:[-267,204,-3]

JavaScript[edit]

The dotProduct() function is generic and will create a dot product of any set of vectors provided they are all the same dimension. The crossProduct() function expects two 3D vectors.

function dotProduct() {
var len = arguments[0] && arguments[0].length;
var argsLen = arguments.length;
var i, j = len;
var prod, sum = 0;
 
// If no arguments supplied, return undefined
if (!len) {
return;
}
 
// If all vectors not same length, return undefined
i = argsLen;
while (i--) {
 
if (arguments[i].length != len) {
return; // return undefined
}
}
 
// Sum terms
while (j--) {
i = argsLen;
prod = 1;
 
while (i--) {
prod *= arguments[i][j];
}
sum += prod;
}
return sum;
}
 
function crossProduct(a, b) {
 
// Check lengths
if (a.length != 3 || b.length != 3) {
return;
}
 
return [a[1]*b[2] - a[2]*b[1],
a[2]*b[0] - a[0]*b[2],
a[0]*b[1] - a[1]*b[0]];
 
}
 
function scalarTripleProduct(a, b, c) {
return dotProduct(a, crossProduct(b, c));
}
 
function vectorTripleProduct(a, b, c) {
return crossProduct(a, crossProduct(b, c));
}
 
// Run tests
(function () {
var a = [3, 4, 5];
var b = [4, 3, 5];
var c = [-5, -12, -13];
 
alert(
'A . B: ' + dotProduct(a, b) +
'\n' +
'A x B: ' + crossProduct(a, b) +
'\n' +
'A . (B x C): ' + scalarTripleProduct(a, b, c) +
'\n' +
'A x (B x C): ' + vectorTripleProduct(a, b, c)
);
}());

Output:

A . B: 49
A x B: 5,5,-7
A . (B x C): 6
A x (B x C): -267,204,-3

jq[edit]

The dot_product() function is generic and will create a dot product of any pair of vectors provided they are both the same dimension. The other functions expect 3D vectors.
def dot_product(a; b):
reduce range(0;a|length) as $i (0; . + (a[$i] * b[$i]) );
 
# for 3d vectors
def cross_product(a;b):
[ a[1]*b[2] - a[2]*b[1], a[2]*b[0] - a[0]*b[2], a[0]*b[1]-a[1]*b[0] ];
 
def scalar_triple_product(a;b;c):
dot_product(a; cross_product(b; c));
 
def vector_triple_product(a;b;c):
cross_product(a; cross_product(b; c));
 
def main:
[3, 4, 5] as $a
| [4, 3, 5] as $b
| [-5, -12, -13] as $c
| "a . b = \(dot_product($a; $b))",
"a x b = [\( cross_product($a; $b) | map(tostring) | join (", ") )]" ,
"a . (b x c) = \( scalar_triple_product ($a; $b; $c)) )",
"a x (b x c) = [\( vector_triple_product($a; $b; $c)|map(tostring)|join (", ") )]" ;

Output:

"a . b = 49"
"a x b = [5, 5, -7]"
"a . (b x c) = 6 )"
"a x (b x c) = [-267, 204, -3]"

Julia[edit]

Julia provides dot and cross products as built-ins. It's easy enough to use these to construct the triple products.

 
function scltrip{T<:Number}(a::AbstractArray{T,1},
b::AbstractArray{T,1},
c::AbstractArray{T,1})
dot(a, cross(b, c))
end
 
function vectrip{T<:Number}(a::AbstractArray{T,1},
b::AbstractArray{T,1},
c::AbstractArray{T,1})
cross(a, cross(b, c))
end
 
a = [3, 4, 5]
b = [4, 3, 5]
c = [-5, -12, -13]
 
println("Test Vectors:")
println(" a = ", a)
println(" b = ", a)
println(" c = ", a)
 
println("\nVector Products:")
println(" a dot b = ", dot(a, b))
println(" a cross b = ", cross(a, b))
println(" a dot b cross c = ", scltrip(a, b, c))
println(" a cross b cross c = ", vectrip(a, b, c))
 
Output:
Test Vectors:
   a = [3,4,5]
   b = [3,4,5]
   c = [3,4,5]

Vector Products:
   a dot b = 49
   a cross b = [5,5,-7]
   a dot b cross c = 6
   a cross b cross c = [-267,204,-3]

Liberty BASIC[edit]

    print "Vector products of 3-D vectors"
 
print "Dot product of 3,4,5 and 4,3,5 is "
print DotProduct( "3,4,5", "4,3,5")
print "Cross product of 3,4,5 and 4,3,5 is "
print CrossProduct$( "3,4,5", "4,3,5")
print "Scalar triple product of 3,4,5, 4,3,5 -5, -12, -13 is "
print ScalarTripleProduct( "3,4,5", "4,3,5", "-5, -12, -13")
print "Vector triple product of 3,4,5, 4,3,5 -5, -12, -13 is "
print VectorTripleProduct$( "3,4,5", "4,3,5", "-5, -12, -13")
 
 
end
 
function DotProduct( i$, j$)
ix =val( word$( i$, 1, ","))
iy =val( word$( i$, 2, ","))
iz =val( word$( i$, 3, ","))
jx =val( word$( j$, 1, ","))
jy =val( word$( j$, 2, ","))
jz =val( word$( j$, 3, ","))
DotProduct = ix *jx +iy *jy + iz *jz
end function
 
function CrossProduct$( i$, j$)
ix =val( word$( i$, 1, ","))
iy =val( word$( i$, 2, ","))
iz =val( word$( i$, 3, ","))
jx =val( word$( j$, 1, ","))
jy =val( word$( j$, 2, ","))
jz =val( word$( j$, 3, ","))
cpx =iy *jz -iz *jy
cpy =iz *jx -ix *jz
cpz =ix *jy -iy *jx
CrossProduct$ =str$( cpx); ","; str$( cpy); ","; str$( cpz)
end function
 
function ScalarTripleProduct( i$, j$, k$))
ScalarTripleProduct =DotProduct( i$, CrossProduct$( j$, k$))
end function
 
function VectorTripleProduct$( i$, j$, k$))
VectorTripleProduct$ =CrossProduct$( i$, CrossProduct$( j$, k$))
end function
END SUB

Lingo[edit]

Lingo has a built-in vector data type that supports calculation of both dot and cross products:

a = vector(1,2,3)
b = vector(4,5,6)
 
put a * b
-- 32.0000
 
put a.dot(b)
-- 32.0000
 
put a.cross(b)
-- vector( -3.0000, 6.0000, -3.0000 )

Lua[edit]

Vector = {} 
function Vector.new( _x, _y, _z )
return { x=_x, y=_y, z=_z }
end
 
function Vector.dot( A, B )
return A.x*B.x + A.y*B.y + A.z*B.z
end
 
function Vector.cross( A, B )
return { x = A.y*B.z - A.z*B.y,
y = A.z*B.x - A.x*B.z,
z = A.x*B.y - A.y*B.x }
end
 
function Vector.scalar_triple( A, B, C )
return Vector.dot( A, Vector.cross( B, C ) )
end
 
function Vector.vector_triple( A, B, C )
return Vector.cross( A, Vector.cross( B, C ) )
end
 
 
A = Vector.new( 3, 4, 5 )
B = Vector.new( 4, 3, 5 )
C = Vector.new( -5, -12, -13 )
 
print( Vector.dot( A, B ) )
 
r = Vector.cross(A, B )
print( r.x, r.y, r.z )
 
print( Vector.scalar_triple( A, B, C ) )
 
r = Vector.vector_triple( A, B, C )
print( r.x, r.y, r.z )
49
5	5	-7
6
-267	204	-3

Mathematica[edit]

a={3,4,5};
b={4,3,5};
c={-5,-12,-13};
a.b
Cross[a,b]
a.Cross[b,c]
Cross[a,Cross[b,c]]

Output

49
{5,5,-7}
6
{-267,204,-3}

MATLAB / Octave[edit]

Matlab / Octave use double precesion numbers per default, and pi is a builtin constant value. Arbitrary precision is only implemented in some additional toolboxes (e.g. symbolic toolbox).

%    Create a named function/subroutine/method to compute the dot product of two vectors.
dot(a,b)
% Create a function to compute the cross product of two vectors.
cross(a,b)
% Optionally create a function to compute the scalar triple product of three vectors.
dot(a,cross(b,c))
% Optionally create a function to compute the vector triple product of three vectors.
cross(a,cross(b,c))
% Compute and display: a • b
cross(a,b)
% Compute and display: a x b
cross(a,b)
% Compute and display: a • b x c, the scaler triple product.
dot(a,cross(b,c))
% Compute and display: a x b x c, the vector triple product.
cross(a,cross(b,c))

Code for testing:

A = [ 3.0,  4.0,  5.0]
B = [ 4.0,  3.0,  5.0]
C = [-5.0, -12.0, -13.0]

dot(A,B)
cross(A,B)
dot(A,cross(B,C))
cross(A,cross(B,C))

Output:

>> A = [ 3.0,  4.0,  5.0]
>> B = [ 4.0,  3.0,  5.0]
>> C = [-5.0, -12.0, -13.0]

>> dot(A,B)
ans =  49
>> cross(A,B)
ans =
   5   5  -7
>> dot(A,cross(B,C))
ans =  6
>> cross(A,cross(B,C))
ans =
  -267   204    -3

Mercury[edit]

:- module vector_product.
:- interface.
 
:- import_module io.
:- pred main(io::di, io::uo) is det.
 
:- implementation.
:- import_module int, list, string.
 
main(!IO) :-
A = vector3d(3, 4, 5),
B = vector3d(4, 3, 5),
C = vector3d(-5, -12, -13),
io.format("A . B = %d\n", [i(A `dot_product` B)], !IO),
io.format("A x B = %s\n", [s(to_string(A `cross_product` B))], !IO),
io.format("A . (B x C) = %d\n", [i(scalar_triple_product(A, B, C))], !IO),
io.format("A x (B x C) = %s\n", [s(to_string(vector_triple_product(A, B, C)))], !IO).
 
:- type vector3d ---> vector3d(int, int, int).
 
:- func dot_product(vector3d, vector3d) = int.
 
dot_product(vector3d(A1, A2, A3), vector3d(B1, B2, B3)) =
A1 * B1 + A2 * B2 + A3 * B3.
 
:- func cross_product(vector3d, vector3d) = vector3d.
 
cross_product(vector3d(A1, A2, A3), vector3d(B1, B2, B3)) =
vector3d(A2 * B3 - A3 * B2, A3 * B1 - A1 * B3, A1 * B2 - A2 * B1).
 
:- func scalar_triple_product(vector3d, vector3d, vector3d) = int.
 
scalar_triple_product(A, B, C) = A `dot_product` (B `cross_product` C).
 
:- func vector_triple_product(vector3d, vector3d, vector3d) = vector3d.
 
vector_triple_product(A, B, C) = A `cross_product` (B `cross_product` C).
 
:- func to_string(vector3d) = string.
 
to_string(vector3d(X, Y, Z)) =
string.format("(%d, %d, %d)", [i(X), i(Y), i(Z)]).

МК-61/52[edit]

ПП	54	С/П	ПП	66	С/П
ИП0 ИП3 ИП6 П3 -> П0 -> П6
ИП1 ИП4 ИП7 П4 -> П1 -> П7
ИП2 ИП5 ИП8 П5 -> П2 -> П8
ПП 66
ИП6 ИП7 ИП8 П2 -> П1 -> П0
ИП9 ИПA ИПB П5 -> П4 -> П3
ПП 54 С/П ПП 66 С/П
ИП0 ИП3 * ИП1 ИП4 * + ИП2 ИП5 * + В/О
ИП1 ИП5 * ИП2 ИП4 * - П9
ИП2 ИП3 * ИП0 ИП5 * - ПA
ИП0 ИП4 * ИП1 ИП3 * - ПB В/О

Instruction: Р0 - a1, Р1 - a2, Р2 - a3, Р3 - b1, Р4 - b2, Р5 - b3, Р6 - c1, Р7 - c2, Р8 - c3; В/О С/П.

Nemerle[edit]

using System.Console;
 
module VectorProducts3d
{
Dot(x : int * int * int, y : int * int * int) : int
{
def (x1, x2, x3) = x;
def (y1, y2, y3) = y;
(x1 * y1) + (x2 * y2) + (x3 * y3)
}
 
Cross(x : int * int * int, y : int * int * int) : int * int * int
{
def (x1, x2, x3) = x;
def (y1, y2, y3) = y;
((x2 * y3 - x3 * y2), (x3 * y1 - x1 * y3), (x1 * y2 - x2 * y1))
}
 
ScalarTriple(a : int * int * int, b : int * int * int, c : int * int * int) : int
{
Dot(a, Cross(b, c))
}
 
VectorTriple(a : int * int * int, b : int * int * int, c : int * int * int) : int * int * int
{
Cross(a, Cross(b, c))
}
 
Main() : void
{
def a = (3, 4, 5); def b = (4, 3, 5); def c = (-5, -12, -13);
WriteLine(Dot(a, b)); WriteLine(Cross(a, b));
WriteLine(ScalarTriple(a, b, c));
WriteLine(VectorTriple(a, b, c));
}
}

Outputs

49
(5, 5, -7)
6
(-267, 204, -3)

Nim[edit]

import strutils
 
type Vector3 = array[1..3, float]
 
proc `$`(a: Vector3): string =
result = "["
 
for i, x in a:
if i > a.low:
result.add ", "
result.add formatFloat(x, precision = 0)
 
result.add "]"
 
proc `~⨯`(a, b: Vector3): Vector3 =
result = [a[2]*b[3] - a[3]*b[2], a[3]*b[1] - a[1]*b[3], a[1]*b[2] - a[2]*b[1]]
 
proc `~•`[T](a, b: T): float =
for i in a.low..a.high:
result += a[i] * b[i]
 
proc scalartrip(a, b, c: Vector3): float = a ~• (b ~⨯ c)
 
proc vectortrip(a, b, c: Vector3): Vector3 = a ~⨯ (b ~⨯ c)
 
let
a = [3.0, 4.0, 5.0]
b = [4.0, 3.0, 5.0]
c = [-5.0, -12.0, -13.0]
echo "a ⨯ b = ", a ~⨯ b
echo "a • b = ", (a ~• b).formatFloat(precision = 0)
echo "a . (b ⨯ c) = ", (scalartrip(a, b, c)).formatFloat(precision = 0)
echo "a ⨯ (b ⨯ c) = ", vectortrip(a, b, c)

Output:

a ⨯ b = [5, 5, -7]
a • b = 49
a . (b ⨯ c) = 6
a ⨯ (b ⨯ c) = [-267, 204, -3]

Objeck[edit]

bundle Default {
class VectorProduct {
function : Main(args : String[]) ~ Nil {
a := Vector3D->New(3.0, 4.0, 5.0);
b := Vector3D->New(4.0, 3.0, 5.0);
c := Vector3D->New(-5.0, -12.0, -13.0);
 
a->Dot(b)->Print();
a->Cross(b)->Print();
a->ScaleTrip(b, c)->Print();
a->VectorTrip(b, c)->Print();
}
}
 
class Vector3D {
@a : Float;
@b : Float;
@c : Float;
 
New(a : Float, b : Float, c : Float) {
@a := a;
@b := b;
@c := c;
}
 
method : GetA() ~ Float {
return @a;
}
 
method : GetB() ~ Float {
return @b;
}
 
method : GetC() ~ Float {
return @c;
}
 
method : public : Dot(vec : Vector3D) ~ Float {
return @a * vec->GetA() + @b * vec->GetB() + @c * vec->GetC();
}
 
method : public : Cross(vec : Vector3D) ~ Vector3D {
newA := @b * vec->GetC() - @c * vec->GetB();
newB := @c * vec->GetA() - @a * vec->GetC();
newC := @a * vec->GetB() - @b * vec->GetA();
 
return Vector3D->New(newA, newB, newC);
}
 
method : public : ScaleTrip(vec_b: Vector3D, vec_c : Vector3D) ~ Float {
return Dot(vec_b->Cross(vec_c));
}
 
method : public : Print() ~ Nil {
IO.Console->Print('<')->Print(@a)->Print(" ,")
->Print(@b)->Print(", ")->Print(@c)->PrintLine('>');
}
 
method : public : VectorTrip(vec_b: Vector3D, vec_c : Vector3D) ~ Vector3D {
return Cross(vec_b->Cross(vec_c));
}
}
}
 

Output:

49<5 ,5, -7>
6<-267 ,204, -3>

OCaml[edit]

let a = (3.0, 4.0, 5.0)
let b = (4.0, 3.0, 5.0)
let c = (-5.0, -12.0, -13.0)
 
let string_of_vector (x,y,z) =
Printf.sprintf "(%g, %g, %g)" x y z
 
let dot (a1, a2, a3) (b1, b2, b3) =
(a1 *. b1) +. (a2 *. b2) +. (a3 *. b3)
 
let cross (a1, a2, a3) (b1, b2, b3) =
(a2 *. b3 -. a3 *. b2,
a3 *. b1 -. a1 *. b3,
a1 *. b2 -. a2 *. b1)
 
let scalar_triple a b c =
dot a (cross b c)
 
let vector_triple a b c =
cross a (cross b c)
 
let () =
Printf.printf "a: %s\n" (string_of_vector a);
Printf.printf "b: %s\n" (string_of_vector b);
Printf.printf "c: %s\n" (string_of_vector c);
Printf.printf "a . b = %g\n" (dot a b);
Printf.printf "a x b = %s\n" (string_of_vector (cross a b));
Printf.printf "a . (b x c) = %g\n" (scalar_triple a b c);
Printf.printf "a x (b x c) = %s\n" (string_of_vector (vector_triple a b c));
;;

outputs:

a: (3, 4, 5)
b: (4, 3, 5)
c: (-5, -12, -13)
a . b = 49
a x b = (5, 5, -7)
a . (b x c) = 6
a x (b x c) = (-267, 204, -3)

Octave[edit]

Octave handles naturally vectors / matrices.

a = [3, 4, 5];
b = [4, 3, 5];
c = [-5, -12, -13];
 
function r = s3prod(a, b, c)
r = dot(a, cross(b, c));
endfunction
 
function r = v3prod(a, b, c)
r = cross(a, cross(b, c));
endfunction
 
% 49
dot(a, b)
% or matrix-multiplication between row and column vectors
a * b'
 
% 5 5 -7
cross(a, b) % only for 3d-vectors
 
% 6
s3prod(a, b, c)
 
% -267 204 -3
v3prod(a, b, c)

ooRexx[edit]

 
a = .vector~new(3, 4, 5);
b = .vector~new(4, 3, 5);
c = .vector~new(-5, -12, -13);
 
say a~dot(b)
say a~cross(b)
say a~scalarTriple(b, c)
say a~vectorTriple(b, c)
 
 
::class vector
::method init
expose x y z
use arg x, y, z
 
::attribute x get
::attribute y get
::attribute z get
 
-- dot product operation
::method dot
expose x y z
use strict arg other
 
return x * other~x + y * other~y + z * other~z
 
-- cross product operation
::method cross
expose x y z
use strict arg other
 
newX = y * other~z - z * other~y
newY = z * other~x - x * other~z
newZ = x * other~y - y * other~x
return self~class~new(newX, newY, newZ)
 
-- scalar triple product
::method scalarTriple
use strict arg vectorB, vectorC
return self~dot(vectorB~cross(vectorC))
 
-- vector triple product
::method vectorTriple
use strict arg vectorB, vectorC
return self~cross(vectorB~cross(vectorC))
 
::method string
expose x y z
return "<"||x", "y", "z">"
 

Output:

49
<5, 5, -7>
6
<-267, 204, -3>

PARI/GP[edit]

dot(u,v)={
sum(i=1,#u,u[i]*v[i])
};
cross(u,v)={
[u[2]*v[3] - u[3]*v[2], u[3]*v[1] - u[1]*v[3], u[1]*v[2] - u[2]*v[1]]
};
striple(a,b,c)={
dot(a,cross(b,c))
};
vtriple(a,b,c)={
cross(a,cross(b,c))
};
 
a = [3,4,5]; b = [4,3,5]; c = [-5,-12,-13];
dot(a,b)
cross(a,b)
striple(a,b,c)
vtriple(a,b,c)

Output:

49
[5, 5, -7]
6
[-267, 204, -3]

Pascal[edit]

Program VectorProduct (output);
 
type
Tvector = record
x, y, z: double
end;
 
function dotProduct(a, b: Tvector): double;
begin
dotProduct := a.x*b.x + a.y*b.y + a.z*b.z;
end;
 
function crossProduct(a, b: Tvector): Tvector;
begin
crossProduct.x := a.y*b.z - a.z*b.y;
crossProduct.y := a.z*b.x - a.x*b.z;
crossProduct.z := a.x*b.y - a.y*b.x;
end;
 
function scalarTripleProduct(a, b, c: Tvector): double;
begin
scalarTripleProduct := dotProduct(a, crossProduct(b, c));
end;
 
function vectorTripleProduct(a, b, c: Tvector): Tvector;
begin
vectorTripleProduct := crossProduct(a, crossProduct(b, c));
end;
 
procedure printVector(a: Tvector);
begin
writeln(a.x:15:8, a.y:15:8, a.z:15:8);
end;
 
var
a: Tvector = (x: 3; y: 4; z: 5);
b: Tvector = (x: 4; y: 3; z: 5);
c: Tvector = (x:-5; y:-12; z:-13);
 
begin
write('a: '); printVector(a);
write('b: '); printVector(b);
write('c: '); printVector(c);
writeln('a . b: ', dotProduct(a,b):15:8);
write('a x b: '); printVector(crossProduct(a,b));
writeln('a . (b x c): ', scalarTripleProduct(a,b,c):15:8);
write('a x (b x c): '); printVector(vectorTripleProduct(a,b,c));
end.

Output:

a:      3.00000000     4.00000000     5.00000000
b:      4.00000000     3.00000000     5.00000000
c:     -5.00000000   -12.00000000   -13.00000000
a . b:     49.00000000
a x b:      5.00000000     5.00000000    -7.00000000
a . (b x c):      6.00000000
a x (b x c):   -267.00000000   204.00000000    -3.00000000

Perl[edit]

package Vector;
use List::Util 'sum';
use List::MoreUtils 'pairwise';
 
sub new { shift; bless [@_] }
 
use overload (
'""' => sub { "(@{+shift})" },
'&' => sub { sum pairwise { $a * $b } @{+shift}, @{+shift} },
'^' => sub {
my @a = @{+shift};
my @b = @{+shift};
bless [ $a[1]*$b[2] - $a[2]*$b[1],
$a[2]*$b[0] - $a[0]*$b[2],
$a[0]*$b[1] - $a[1]*$b[0] ]
},
);
 
package main;
my $a = Vector->new(3, 4, 5);
my $b = Vector->new(4, 3, 5);
my $c = Vector->new(-5, -12, -13);
 
print "a = $a b = $b c = $c\n";
print "$a . $b = ", $a & $b, "\n";
print "$a x $b = ", $a ^ $b, "\n";
print "$a . ($b x $c) = ", $a & ($b ^ $c), "\n";
print "$a x ($b x $c) = ", $a ^ ($b ^ $c), "\n";
Output:
a = (3 4 5) b = (4 3 5) c = (-5 -12 -13)
(3 4 5) . (4 3 5) = 49
(3 4 5) x (4 3 5) = (5 5 -7)
(3 4 5) . ((4 3 5) x (-5 -12 -13)) = 6
(3 4 5) x ((4 3 5) x (-5 -12 -13)) = (-267 204 -3)

Perl 6[edit]

Works with: rakudo version 2015-11-24
sub infix:<> { [+] @^a »*« @^b }
 
sub infix:<>([$a1, $a2, $a3], [$b1, $b2, $b3]) {
[ $a2*$b3 - $a3*$b2,
$a3*$b1 - $a1*$b3,
$a1*$b2 - $a2*$b1 ];
}
 
sub scalar-triple-product { @^a(@^b@^c) }
sub vector-triple-product { @^a(@^b@^c) }
 
my @a = <3 4 5>;
my @b = <4 3 5>;
my @c = <-5 -12 -13>;
 
say (:@a, :@b, :@c);
say "a ⋅ b = { @a ⋅ @b }";
say "a ⨯ b = <{ @a ⨯ @b }>";
say "a ⋅ (b ⨯ c) = { scalar-triple-product(@a, @b, @c) }";
say "a ⨯ (b ⨯ c) = <{ vector-triple-product(@a, @b, @c) }>";
Output:
("a" => ["3", "4", "5"], "b" => ["4", "3", "5"], "c" => ["-5", "-12", "-13"])
a ⋅ b = 49
a ⨯ b = <5 5 -7>
a ⋅ (b ⨯ c) = 6
a ⨯ (b ⨯ c) = <-267 204 -3>

Phix[edit]

function dot_product(sequence a, b)
return sum(sq_mul(a,b))
end function
 
function cross_product(sequence a, b)
integer {a1,a2,a3} = a, {b1,b2,b3} = b
return {a2*b3-a3*b2, a3*b1-a1*b3, a1*b2-a2*b1}
end function
 
function scalar_triple_product(sequence a, b, c)
return dot_product(a,cross_product(b,c))
end function
 
function vector_triple_product(sequence a, b, c)
return cross_product(a,cross_product(b,c))
end function
 
constant a = {3, 4, 5}, b = {4, 3, 5}, c = {-5, -12, -13}
 
puts(1," a . b = ")  ?dot_product(a,b)
puts(1," a x b = ")  ?cross_product(a,b)
puts(1,"a . (b x c) = ")  ?scalar_triple_product(a,b,c)
puts(1,"a x (b x c) = ")  ?vector_triple_product(a,b,c)
Output:
      a . b = 49
      a x b = {5,5,-7}
a . (b x c) = 6
a x (b x c) = {-267,204,-3}

PHP[edit]

<?php
 
class Vector
{
private $values;
 
public function setValues(array $values)
{
if (count($values) != 3)
throw new Exception('Values must contain exactly 3 values');
foreach ($values as $value)
if (!is_int($value) && !is_float($value))
throw new Exception('Value "' . $value . '" has an invalid type');
$this->values = $values;
}
 
public function getValues()
{
if ($this->values == null)
$this->setValues(array (
0,
0,
0
));
return $this->values;
}
 
public function Vector(array $values)
{
$this->setValues($values);
}
 
public static function dotProduct(Vector $va, Vector $vb)
{
$a = $va->getValues();
$b = $vb->getValues();
return ($a[0] * $b[0]) + ($a[1] * $b[1]) + ($a[2] * $b[2]);
}
 
public static function crossProduct(Vector $va, Vector $vb)
{
$a = $va->getValues();
$b = $vb->getValues();
return new Vector(array (
($a[1] * $b[2]) - ($a[2] * $b[1]),
($a[2] * $b[0]) - ($a[0] * $b[2]),
($a[0] * $b[1]) - ($a[1] * $b[0])
));
}
 
public static function scalarTripleProduct(Vector $va, Vector $vb, Vector $vc)
{
return self::dotProduct($va, self::crossProduct($vb, $vc));
}
 
public static function vectorTrippleProduct(Vector $va, Vector $vb, Vector $vc)
{
return self::crossProduct($va, self::crossProduct($vb, $vc));
}
}
 
class Program
{
 
public function Program()
{
$a = array (
3,
4,
5
);
$b = array (
4,
3,
5
);
$c = array (
-5,
-12,
-13
);
$va = new Vector($a);
$vb = new Vector($b);
$vc = new Vector($c);
 
$result1 = Vector::dotProduct($va, $vb);
$result2 = Vector::crossProduct($va, $vb)->getValues();
$result3 = Vector::scalarTripleProduct($va, $vb, $vc);
$result4 = Vector::vectorTrippleProduct($va, $vb, $vc)->getValues();
 
printf("\n");
printf("A = (%0.2f, %0.2f, %0.2f)\n", $a[0], $a[1], $a[2]);
printf("B = (%0.2f, %0.2f, %0.2f)\n", $b[0], $b[1], $b[2]);
printf("C = (%0.2f, %0.2f, %0.2f)\n", $c[0], $c[1], $c[2]);
printf("\n");
printf("A · B = %0.2f\n", $result1);
printf("A × B = (%0.2f, %0.2f, %0.2f)\n", $result2[0], $result2[1], $result2[2]);
printf("A · (B × C) = %0.2f\n", $result3);
printf("A × (B × C) =(%0.2f, %0.2f, %0.2f)\n", $result4[0], $result4[1], $result4[2]);
}
}
 
new Program();
?>
 

Output:


A = (3.00, 4.00, 5.00)
B = (4.00, 3.00, 5.00)
C = (-5.00, -12.00, -13.00)

A · B = 49.00
A × B = (5.00, 5.00, -7.00)
A · (B × C) = 6.00
A × (B × C) =(-267.00, 204.00, -3.00)

PicoLisp[edit]

(de dotProduct (A B)
(sum * A B) )
 
(de crossProduct (A B)
(list
(- (* (cadr A) (caddr B)) (* (caddr A) (cadr B)))
(- (* (caddr A) (car B)) (* (car A) (caddr B)))
(- (* (car A) (cadr B)) (* (cadr A) (car B))) ) )
 
(de scalarTriple (A B C)
(dotProduct A (crossProduct B C)) )
 
(de vectorTriple (A B C)
(crossProduct A (crossProduct B C)) )

Test:

(setq
   A ( 3   4   5)
   B ( 4   3   5)
   C (-5 -12 -13) )

: (dotProduct A B)
-> 49

: (crossProduct A B)
-> (5 5 -7)

: (scalarTriple A B C)
-> 6

: (vectorTriple A B C)
-> (-267 204 -3)

PL/I[edit]

/* dot product, cross product, etc.                  4 June 2011 */
 
test_products: procedure options (main);
 
declare a(3) fixed initial (3, 4, 5);
declare b(3) fixed initial (4, 3, 5);
declare c(3) fixed initial (-5, -12, -13);
declare e(3) fixed;
 
put skip list ('a . b =', dot_product(a, b));
call cross_product(a, b, e); put skip list ('a x b =', e);
put skip list ('a . (b x c) =', scalar_triple_product(a, b, c));
call vector_triple_product(a, b, c, e); put skip list ('a x (b x c) =', e);
 
 
dot_product: procedure (a, b) returns (fixed);
declare (a, b) (*) fixed;
return (sum(a*b));
end dot_product;
 
cross_product: procedure (a, b, c);
declare (a, b, c) (*) fixed;
c(1) = a(2)*b(3) - a(3)*b(2);
c(2) = a(3)*b(1) - a(1)*b(3);
c(3) = a(1)*b(2) - a(2)*b(1);
end cross_product;
 
scalar_triple_product: procedure (a, b, c) returns (fixed);
declare (a, b, c)(*) fixed;
declare t(hbound(a, 1)) fixed;
call cross_product(b, c, t);
return (dot_product(a, t));
end scalar_triple_product;
 
vector_triple_product: procedure (a, b, c, e);
declare (a, b, c, e)(*) fixed;
declare t(hbound(a,1)) fixed;
call cross_product(b, c, t);
call cross_product(a, t, e);
end vector_triple_product;
 
end test_products;

Results:

a . b =                       49
a x b =                        5                       5                      -7
a . (b x c) =                  6
a x (b x c) =               -267                     204                      -3
/* This version uses the ability of PL/I to return arrays. */
 
/* dot product, cross product, etc. 6 June 2011 */
 
test_products: procedure options (main);
define structure 1 vector, 2 vec(3) fixed;
declare (a, b, c) type(vector);
 
a.vec(1) = 3; a.vec(2) = 4; a.vec(3) = 5;
b.vec(1) = 4; b.vec(2) = 3; b.vec(3) = 5;
c.vec(1) = -5; c.vec(2) = -12; c.vec(3) = -13;
 
put skip list ('a . b =', dot_product (a, b) );
put skip list ('a x b =', cross_product(a, b).vec);
put skip list ('a . (b x c) =', scalar_triple_product(a, b, c) );
put skip list ('a x (b x c) =', vector_triple_product(a, b, c).vec);
 
 
dot_product: procedure (a, b) returns (fixed);
declare (a, b) type(vector);
return (sum(a.vec*b.vec));
end dot_product;
 
cross_product: procedure (a, b) returns (type(vector));
declare (a, b) type(vector);
declare c type vector;
c.vec(1) = a.vec(2)*b.vec(3) - a.vec(3)*b.vec(2);
c.vec(2) = a.vec(3)*b.vec(1) - a.vec(1)*b.vec(3);
c.vec(3) = a.vec(1)*b.vec(2) - a.vec(2)*b.vec(1);
return (c);
end cross_product;
 
scalar_triple_product: procedure (a, b, c) returns (fixed);
declare (a, b, c) type(vector);
declare t type (vector);
t = cross_product(b, c);
return (dot_product(a, t));
end scalar_triple_product;
 
vector_triple_product: procedure (a, b, c) returns (type(vector));
declare (a, b, c) type(vector);
declare (t, e) type (vector);
t = cross_product(b, c);
e = cross_product(a, t);
return (e);
end vector_triple_product;
 
end test_products;

The output is:

a . b =                       49 
a x b =                        5                       5                      -7 
a . (b x c) =                  6 
a x (b x c) =               -267                     204                      -3 

PowerShell[edit]

 
function dot-product($a,$b) {
$a[0]*$b[0] + $a[1]*$b[1] + $a[2]*$b[2]
}
 
function cross-product($a,$b) {
$v1 = $a[1]*$b[2] - $a[2]*$b[1]
$v2 = $a[2]*$b[0] - $a[0]*$b[2]
$v3 = $a[0]*$b[1] - $a[1]*$b[0]
@($v1,$v2,$v3)
}
 
function scalar-triple-product($a,$b,$c) {
dot-product $a (cross-product $b $c)
}
 
function vector-triple-product($a,$b) {
cross-product $a (cross-product $b $c)
}
 
$a = @(3, 4, 5)
$b = @(4, 3, 5)
$c = @(-5, -12, -13)
 
"a.b = $(dot-product $a $b)"
"axb = $(cross-product $a $b)"
"a.(bxc) = $(scalar-triple-product $a $b $c)"
"ax(bxc) = $(vector-triple-product $a $b $c)"
 

Output:

a.b = 49
axb = 5 5 -7
a.(bxc) = 6
ax(bxc) = -267 204 -3  

Prolog[edit]

Works with SWI-Prolog.

 
dot_product([A1, A2, A3], [B1, B2, B3], Ans) :-
Ans is A1 * B1 + A2 * B2 + A3 * B3.
 
cross_product([A1, A2, A3], [B1, B2, B3], Ans) :-
T1 is A2 * B3 - A3 * B2,
T2 is A3 * B1 - A1 * B3,
T3 is A1 * B2 - A2 * B1,
Ans = [T1, T2, T3].
 
scala_triple(A, B, C, Ans) :-
cross_product(B, C, Temp),
dot_product(A, Temp, Ans).
 
vector_triple(A, B, C, Ans) :-
cross_product(B, C, Temp),
cross_product(A, Temp, Ans).
 

Output:

?- dot_product([3.0, 4.0, 5.0], [4.0, 3.0, 5.0], Ans).
Ans = 49.0.

?- cross_product([3.0, 4.0, 5.0], [4.0, 3.0, 5.0], Ans).
Ans = [5.0, 5.0, -7.0].

?- scala_triple([3.0, 4.0, 5.0], [4.0, 3.0, 5.0], [-5.0, -12.0, -13.0], Ans).
Ans = 6.0.

?- vector_triple([3.0, 4.0, 5.0], [4.0, 3.0, 5.0], [-5.0, -12.0, -13.0], Ans).
Ans = [-267.0, 204.0, -3.0].

PureBasic[edit]

Structure vector
x.f
y.f
z.f
EndStructure
 
;convert vector to a string for display
Procedure.s toString(*v.vector)
ProcedureReturn "[" + StrF(*v\x, 2) + ", " + StrF(*v\y, 2) + ", " + StrF(*v\z, 2) + "]"
EndProcedure
 
Procedure.f dotProduct(*a.vector, *b.vector)
ProcedureReturn *a\x * *b\x + *a\y * *b\y + *a\z * *b\z
EndProcedure
 
Procedure crossProduct(*a.vector, *b.vector, *r.vector)
*r\x = *a\y * *b\z - *a\z * *b\y
*r\y = *a\z * *b\x - *a\x * *b\z
*r\z = *a\x * *b\y - *a\y * *b\x
EndProcedure
 
Procedure.f scalarTriple(*a.vector, *b.vector, *c.vector)
Protected r.vector
crossProduct(*b, *c, r)
ProcedureReturn dotProduct(*a, r)
EndProcedure
 
Procedure vectorTriple(*a.vector, *b.vector, *c.vector, *r.vector)
Protected r.vector
crossProduct(*b, *c, r)
crossProduct(*a, r, *r)
EndProcedure
 
If OpenConsole()
Define.vector a, b, c, r
a\x = 3: a\y = 4: a\z = 5
b\x = 4: b\y = 3: b\z = 5
c\x = -5: c\y = -12: c\z = -13
 
PrintN("a = " + toString(a) + ", b = " + toString(b) + ", c = " + toString(c))
PrintN("a . b = " + StrF(dotProduct(a, b), 2))
crossProduct(a, b, r)
PrintN("a x b = " + toString(r))
PrintN("a . b x c = " + StrF(scalarTriple(a, b, c), 2))
vectorTriple(a, b, c, r)
PrintN("a x b x c = " + toString(r))
 
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
CloseConsole()
EndIf

Sample output:

a = [3.00, 4.00, 5.00], b = [4.00, 3.00, 5.00], c = [-5.00, -12.00, -13.00]
a . b = 49.00
a x b = [5.00, 5.00, -7.00]
a . b x c  = 6.00
a x b x c = [-267.00, 204.00, -3.00]

Python[edit]

The solution is in the form of an Executable library.

def crossp(a, b):
'''Cross product of two 3D vectors'''
assert len(a) == len(b) == 3, 'For 3D vectors only'
a1, a2, a3 = a
b1, b2, b3 = b
return (a2*b3 - a3*b2, a3*b1 - a1*b3, a1*b2 - a2*b1)
 
def dotp(a,b):
'''Dot product of two eqi-dimensioned vectors'''
assert len(a) == len(b), 'Vector sizes must match'
return sum(aterm * bterm for aterm,bterm in zip(a, b))
 
def scalartriplep(a, b, c):
'''Scalar triple product of three vectors: "a . (b x c)"'''
return dotp(a, crossp(b, c))
 
def vectortriplep(a, b, c):
'''Vector triple product of three vectors: "a x (b x c)"'''
return crossp(a, crossp(b, c))
 
if __name__ == '__main__':
a, b, c = (3, 4, 5), (4, 3, 5), (-5, -12, -13)
print("a = %r; b = %r; c = %r" % (a, b, c))
print("a . b = %r" % dotp(a,b))
print("a x b = %r"  % (crossp(a,b),))
print("a . (b x c) = %r" % scalartriplep(a, b, c))
print("a x (b x c) = %r" % (vectortriplep(a, b, c),))
Output:
a = (3, 4, 5);  b = (4, 3, 5);  c = (-5, -12, -13)
a . b = 49
a x b = (5, 5, -7)
a . (b x c) = 6
a x (b x c) = (-267, 204, -3)
Note

The popular numpy package has functions for dot and cross products.

R[edit]

#===============================================================
# Vector products
# R implementation
#===============================================================
 
a <- c(3, 4, 5)
b <- c(4, 3, 5)
c <- c(-5, -12, -13)
 
#---------------------------------------------------------------
# Dot product
#---------------------------------------------------------------
 
dotp <- function(x, y) {
if (length(x) == length(y)) {
sum(x*y)
}
}
 
#---------------------------------------------------------------
# Cross product
#---------------------------------------------------------------
 
crossp <- function(x, y) {
if (length(x) == 3 && length(y) == 3) {
c(x[2]*y[3] - x[3]*y[2], x[3]*y[1] - x[1]*y[3], x[1]*y[2] - x[2]*y[1])
}
}
 
#---------------------------------------------------------------
# Scalar triple product
#---------------------------------------------------------------
 
scalartriplep <- function(x, y, z) {
if (length(x) == 3 && length(y) == 3 && length(z) == 3) {
dotp(x, crossp(y, z))
}
}
 
#---------------------------------------------------------------
# Vector triple product
#---------------------------------------------------------------
 
vectortriplep <- function(x, y, z) {
if (length(x) == 3 && length(y) == 3 && length(z) == 3) {
crosssp(x, crossp(y, z))
}
}
 
#---------------------------------------------------------------
# Compute and print
#---------------------------------------------------------------
 
cat("a . b =", dotp(a, b))
cat("a x b =", crossp(a, b))
cat("a . (b x c) =", scalartriplep(a, b, c))
cat("a x (b x c) =", vectortriplep(a, b, c))
Output:
a . b = 49
a x b = 5 5 -7
a . (b x c) = 6
a x (b x c) = -267 204 -3

Note: R has built-in functions for vector and matrix multiplications. Examples: "crossprod", %*% for inner and %o% for outer product.

Racket[edit]

 
#lang racket
 
(define (dot-product X Y)
(for/sum ([x (in-vector X)] [y (in-vector Y)]) (* x y)))
 
(define (cross-product X Y)
(define len (vector-length X))
(for/vector ([n len])
(define (ref V i) (vector-ref V (modulo (+ n i) len)))
(- (* (ref X 1) (ref Y 2)) (* (ref X 2) (ref Y 1)))))
 
(define (scalar-triple-product X Y Z)
(dot-product X (cross-product Y Z)))
 
(define (vector-triple-product X Y Z)
(cross-product X (cross-product Y Z)))
 
(define A '#(3 4 5))
(define B '#(4 3 5))
(define C '#(-5 -12 -13))
 
(printf "A = ~s\n" A)
(printf "B = ~s\n" B)
(printf "C = ~s\n" C)
(newline)
 
(printf "A . B = ~s\n" (dot-product A B))
(printf "A x B = ~s\n" (cross-product A B))
(printf "A . B x C = ~s\n" (scalar-triple-product A B C))
(printf "A x B x C = ~s\n" (vector-triple-product A B C))
 

REXX[edit]

/*REXX program computes the products:  dot,  cross,  scalar triple,  and  vector triple.*/
a= 3 4 5
b= 4 3 5 /*positive numbers don't need quotes. */
c= "-5 -12 -13"
call tellV 'vector A =', a /*show the A vector, aligned numbers.*/
call tellV 'vector B =', b /* " " B " " " */
call tellV 'vector C =', c /* " " C " " " */
say
call tellV ' dot product [A∙B] =', dot(a, b)
call tellV 'cross product [AxB] =', cross(a, b)
call tellV 'scalar triple product [A∙(BxC)] =', dot(a, cross(b, c) )
call tellV 'vector triple product [Ax(BxC)] =', cross(a, cross(b, c) )
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
cross: procedure; parse arg x1 x2 x3,y1 y2 y3 /*the CROSS product.*/
return x2*y3-x3*y2 x3*y1-x1*y3 x1*y2-x2*y1 /*a vector quantity. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
dot: procedure; parse arg x1 x2 x3,y1 y2 y3 /*the DOT product.*/
return x1*y1 + x2*y2 + x3*y3 /*a scalar quantity. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
tellV: procedure; parse arg name,x y z /*display the vector. */
w=max(4, length(x), length(y), length(z)) /*max width of numbers*/
say right(name, 40) right(x,w) right(y,w) right(z,w) /*enforce alignment. */
return

output

                              vector A =    3    4    5
                              vector B =    4    3    5
                              vector C =   -5  -12  -13

                     dot product [A∙B] =   49
                   cross product [AxB] =    5    5   -7
       scalar triple product [A∙(BxC)] =    6
       vector triple product [Ax(BxC)] = -267  204   -3

Ruby[edit]

Dot product is also known as inner product. The standard library already defines Vector#inner_product and Vector# cross_product, so this program only defines the other two methods.

require 'matrix'
 
class Vector
def scalar_triple_product(b, c)
self.inner_product(b.cross_product c)
end
 
def vector_triple_product(b, c)
self.cross_product(b.cross_product c)
end
end
 
a = Vector[3, 4, 5]
b = Vector[4, 3, 5]
c = Vector[-5, -12, -13]
 
puts "a dot b = #{a.inner_product b}"
puts "a cross b = #{a.cross_product b}"
puts "a dot (b cross c) = #{a.scalar_triple_product b, c}"
puts "a cross (b cross c) = #{a.vector_triple_product b, c}"
Output:
a dot b = 49
a cross b = Vector[5, 5, -7]
a dot (b cross c) = 6
a cross (b cross c) = Vector[-267, 204, -3]

Scala[edit]

case class Vector3D(x:Double, y:Double, z:Double) {
def dot(v:Vector3D):Double=x*v.x + y*v.y + z*v.z;
def cross(v:Vector3D)=Vector3D(y*v.z - z*v.y, z*v.x - x*v.z, x*v.y - y*v.x)
def scalarTriple(v1:Vector3D, v2:Vector3D)=this dot (v1 cross v2)
def vectorTriple(v1:Vector3D, v2:Vector3D)=this cross (v1 cross v2)
}
 
object VectorTest {
def main(args:Array[String])={
val a=Vector3D(3,4,5)
val b=Vector3D(4,3,5)
val c=Vector3D(-5,-12,-13)
 
println(" a . b : " + (a dot b))
println(" a x b : " + (a cross b))
println("a . (b x c) : " + (a scalarTriple(b, c)))
println("a x (b x c) : " + (a vectorTriple(b, c)))
}
}
Output:
      a . b : 49.0
      a x b : Vector3D(5.0,5.0,-7.0)
a . (b x c) : 6.0
a x (b x c) : Vector3D(-267.0,204.0,-3.0)

Scheme[edit]

Works with: Guile
Works with: Gauche

Using modified dot-product function from the Dot product task.

(define (dot-product A B)
(apply + (map * (vector->list A) (vector->list B))))
 
(define (cross-product A B)
(define len (vector-length A))
(define xp (make-vector (vector-length A) #f))
(let loop ((n 0))
(vector-set! xp n (-
(* (vector-ref A (modulo (+ n 1) len))
(vector-ref B (modulo (+ n 2) len)))
(* (vector-ref A (modulo (+ n 2) len))
(vector-ref B (modulo (+ n 1) len)))))
(if (eqv? len (+ n 1))
xp
(loop (+ n 1)))))
 
(define (scalar-triple-product A B C)
(dot-product A (cross-product B C)))
 
(define (vector-triple-product A B C)
(cross-product A (cross-product B C)))
 
 
(define A #( 3 4 5))
(define B #(4 3 5))
(define C #(-5 -12 -13))
 
(display "A = ")(display A)(newline)
(display "B = ")(display B)(newline)
(display "C = ")(display C)(newline)
(newline)
(display "A . B = ")(display (dot-product A B))(newline)
(display "A x B = ")(display (cross-product A B))(newline)
(display "A . B x C = ")(display (scalar-triple-product A B C))(newline)
(display "A x B x C = ") (display (vector-triple-product A B C))(newline)
Output:
A = #(3 4 5)
B = #(4 3 5)
C = #(-5 -12 -13)

A . B = 49
A x B = #(5 5 -7)
A . B x C = 6
A x B x C = #(-267 204 -3)

Seed7[edit]

The program below uses Seed7s capaibility to define operator symbols. The operators dot and X are defined with with priority 6 and assiciativity left-to-right.

$ include "seed7_05.s7i";
include "float.s7i";
 
const type: vec3 is new struct
var float: x is 0.0;
var float: y is 0.0;
var float: z is 0.0;
end struct;
 
const func vec3: vec3 (in float: x, in float: y, in float: z) is func
result
var vec3: aVector is vec3.value;
begin
aVector.x := x;
aVector.y := y;
aVector.z := z;
end func;
 
$ syntax expr: .(). dot .() is -> 6;
const func float: (in vec3: a) dot (in vec3: b) is
return a.x*b.x + a.y*b.y + a.z*b.z;
 
$ syntax expr: .(). X .() is -> 6;
const func vec3: (in vec3: a) X (in vec3: b) is
return vec3(a.y*b.z - a.z*b.y,
a.z*b.x - a.x*b.z,
a.x*b.y - a.y*b.x);
 
const func string: str (in vec3: v) is
return "(" <& v.x <& ", " <& v.y <& ", " <& v.z <& ")";
 
enable_output(vec3);
 
const func float: scalarTriple (in vec3: a, in vec3: b, in vec3: c) is
return a dot (b X c);
 
const func vec3: vectorTriple (in vec3: a, in vec3: b, in vec3: c) is
return a X (b X c);
 
const proc: main is func
local
const vec3: a is vec3(3.0, 4.0, 5.0);
const vec3: b is vec3(4.0, 3.0, 5.0);
const vec3: c is vec3(-5.0, -12.0, -13.0);
begin
writeln("a = " <& a <& ", b = " <& b <& ", c = " <& c);
writeln("a . b = " <& a dot b);
writeln("a x b = " <& a X b);
writeln("a .(b x c) = " <& scalarTriple(a, b, c));
writeln("a x(b x c) = " <& vectorTriple(a, b, c));
end func;
Output:
a = (3.0, 4.0, 5.0), b = (4.0, 3.0, 5.0), c = (-5.0, -12.0, -13.0)
a . b      = 49.0
a x b      = (5.0, 5.0, -7.0)
a .(b x c) = 6.0
a x(b x c) = (-267.0, 204.0, -3.0)

Sidef[edit]

class Vector(x, y, z) {
method ∙(vec) {
[self{:x,:y,:z}] »*« [vec{:x,:y,:z}] «+»;
}
 
method ⨉(vec) {
Vector(self.y*vec.z - self.z*vec.y,
self.z*vec.x - self.x*vec.z,
self.x*vec.y - self.y*vec.x);
}
 
method to_s {
"(#{x}, #{y}, #{z})";
}
}
 
var a = Vector(3, 4, 5);
var b = Vector(4, 3, 5);
var c = Vector(-5, -12, -13);
 
say "a=#{a}; b=#{b}; c=#{c};";
say "a ∙ b = #{a ∙ b}";
say "a ⨉ b = #{a ⨉ b}";
say "a ∙ (b ⨉ c) = #{a ∙ (b ⨉ c)}";
say "a ⨉ (b ⨉ c) = #{a ⨉ (b ⨉ c)}";
Output:
a=(3, 4, 5); b=(4, 3, 5); c=(-5, -12, -13);
a ∙ b = 49
a ⨉ b = (5, 5, -7)
a ∙ (b ⨉ c) = 6
a ⨉ (b ⨉ c) = (-267, 204, -3)

Tcl[edit]

proc dot {A B} {
lassign $A a1 a2 a3
lassign $B b1 b2 b3
expr {$a1*$b1 + $a2*$b2 + $a3*$b3}
}
proc cross {A B} {
lassign $A a1 a2 a3
lassign $B b1 b2 b3
list [expr {$a2*$b3 - $a3*$b2}] \
[expr {$a3*$b1 - $a1*$b3}] \
[expr {$a1*$b2 - $a2*$b1}]
}
proc scalarTriple {A B C} {
dot $A [cross $B $C]
}
proc vectorTriple {A B C} {
cross $A [cross $B $C]
}

Demonstrating:

set a {3 4 5}
set b {4 3 5}
set c {-5 -12 -13}
puts "a • b = [dot $a $b]"
puts "a x b = [cross $a $b]"
puts "a • b x c = [scalarTriple $a $b $c]"
puts "a x b x c = [vectorTriple $a $b $c]"
Output:
a • b = 49
a x b = 5 5 -7
a • b x c = 6
a x b x c = -267 204 -3

uBasic/4tH[edit]

Translation of: BBC BASIC

Since uBasic/4tH has only one single array, we use its variables to hold the offsets of the vectors. A similar problem arises when local vectors are required.

a = 0                                  ' use variables for vector addresses
b = a + 3
c = b + 3
d = c + 3
 
Proc _Vector (a, 3, 4, 5) ' initialize the vectors
Proc _Vector (b, 4, 3, 5)
Proc _Vector (c, -5, -12, -13)
 
Print "a . b = "; FUNC(_FNdot(a, b))
Proc _Cross (a, b, d)
Print "a x b = (";@(d+0);", ";@(d+1);", ";@(d+2);")"
Print "a . (b x c) = "; FUNC(_FNscalarTriple(a, b, c))
Proc _VectorTriple (a, b, c, d)
Print "a x (b x c) = (";@(d+0);", ";@(d+1);", ";@(d+2);")"
End
 
_FNdot Param (2)
Return ((@(a@+0)*@(b@+0))+(@(a@+1)*@(b@+1))+(@(a@+2)*@(b@+2)))
 
_Vector Param (4) ' initialize a vector
@(a@ + 0) = b@
@(a@ + 1) = c@
@(a@ + 2) = d@
Return
 
_Cross Param (3)
@(c@+0) = @(a@ + 1) * @(b@ + 2) - @(a@ + 2) * @(b@ + 1)
@(c@+1) = @(a@ + 2) * @(b@ + 0) - @(a@ + 0) * @(b@ + 2)
@(c@+2) = @(a@ + 0) * @(b@ + 1) - @(a@ + 1) * @(b@ + 0)
Return
 
_FNscalarTriple Param (3)
Local (1) ' a "local" vector
d@ = d + 3 ' (best effort) ;-)
Proc _Cross(b@, c@, d@)
Return (FUNC(_FNdot(a@, d@)))
 
_VectorTriple Param(4)
Local (1) ' a "local" vector
e@ = d + 3 ' (best effort) ;-)
Proc _Cross (b@, c@, e@)
Proc _Cross (a@, e@, d@)
Return
Output:
a . b = 49
a x b = (5, 5, -7)
a . (b x c) = 6
a x (b x c) = (-267, 204, -3)

0 OK, 0:1370

Visual Basic .NET[edit]

Class: Vector3D

Public Class Vector3D
Private _x, _y, _z As Double
 
Public Sub New(ByVal X As Double, ByVal Y As Double, ByVal Z As Double)
_x = X
_y = Y
_z = Z
End Sub
 
Public Property X() As Double
Get
Return _x
End Get
Set(ByVal value As Double)
_x = value
End Set
End Property
 
Public Property Y() As Double
Get
Return _y
End Get
Set(ByVal value As Double)
_y = value
End Set
End Property
 
Public Property Z() As Double
Get
Return _z
End Get
Set(ByVal value As Double)
_z = value
End Set
End Property
 
Public Function Dot(ByVal v2 As Vector3D) As Double
Return (X * v2.X) + (Y * v2.Y) + (Z * v2.Z)
End Function
 
Public Function Cross(ByVal v2 As Vector3D) As Vector3D
Return New Vector3D((Y * v2.Z) - (Z * v2.Y), _
(Z * v2.X) - (X * v2.Z), _
(X * v2.Y) - (Y * v2.X))
End Function
 
Public Function ScalarTriple(ByVal v2 As Vector3D, ByVal v3 As Vector3D) As Double
Return Me.Dot(v2.Cross(v3))
End Function
 
Public Function VectorTriple(ByRef v2 As Vector3D, ByVal v3 As Vector3D) As Vector3D
Return Me.Cross(v2.Cross(v3))
End Function
 
Public Overrides Function ToString() As String
Return String.Format("({0}, {1}, {2})", _x, _y, _z)
End Function
End Class

Module: Module1

Module Module1
 
Sub Main()
Dim v1 As New Vector3D(3, 4, 5)
Dim v2 As New Vector3D(4, 3, 5)
Dim v3 As New Vector3D(-5, -12, -13)
 
Console.WriteLine("v1: {0}", v1.ToString())
Console.WriteLine("v2: {0}", v2.ToString())
Console.WriteLine("v3: {0}", v3.ToString())
Console.WriteLine()
 
Console.WriteLine("v1 . v2 = {0}", v1.Dot(v2))
Console.WriteLine("v1 x v2 = {0}", v1.Cross(v2).ToString())
Console.WriteLine("v1 . (v2 x v3) = {0}", v1.ScalarTriple(v2, v3))
Console.WriteLine("v1 x (v2 x v3) = {0}", v1.VectorTriple(v2, v3))
End Sub
 
End Module

Output:

v1: (3, 4, 5)
v2: (4, 3, 5)
v3: (-5, -12, -13)

v1 . v2 = 49
v1 x v2 = (5, 5, -7)
v1 . (v2 x v3) = 6
v1 x (v2 x v3) = (-267, 204, -3)

Wortel[edit]

@let {
dot &[a b] @sum @mapm ^* [a b]
cross &[a b] [[
-*a.1 b.2 *a.2 b.1
-*a.2 b.0 *a.0 b.2
-*a.0 b.1 *a.1 b.0
]]
scalarTripleProduct &[a b c] !!dot a !!cross b c
vectorTripleProduct &[a b c] !!cross a !!cross b c
 
a [3 4 5]
b [4 3 5]
c [5N 12N 13N]
 
[[
 !!dot a b
 !!cross a b
@!scalarTripleProduct [a b c]
@!vectorTripleProduct [a b c]
]]
}

Returns:

[49 [5 5 -7] 6 [-267 204 -3]]

XPL0[edit]

include c:\cxpl\codes;          \intrinsic 'code' declarations
 
func DotProd(A, B); \Return the dot product of two 3D vectors
int A, B; \A ù B
return A(0)*B(0) + A(1)*B(1) + A(2)*B(2);
 
proc CrossProd(A, B, C); \Calculate the cross product of two 3D vectors
int A, B, C; \C:= A x B
[C(0):= A(1)*B(2) - A(2)*B(1);
C(1):= A(2)*B(0) - A(0)*B(2);
C(2):= A(0)*B(1) - A(1)*B(0);
]; \CrossProd
 
func ScalarTriProd(A, B, C); \Return the scalar triple product
int A, B, C; \A ù (B x C)
int D(3);
[CrossProd(B, C, D);
return DotProd(A, D);
]; \ScalarTriProd
 
proc VectTriProd(A, B, C, D); \Calculate the vector triple product
int A, B, C, D; \D:= A x (B x C)
int E(3);
[CrossProd(B, C, E);
CrossProd(A, E, D);
]; \CrossProd
 
 
int A, B, C, D(3);
[A:= [3, 4, 5]; B:= [4, 3, 5]; C:= [-5, -12, -13];
 
IntOut(0, DotProd(A,B)); CrLf(0);
 
CrossProd(A, B, D);
IntOut(0, D(0)); ChOut(0, 9\tab\);
IntOut(0, D(1)); ChOut(0, 9\tab\);
IntOut(0, D(2)); CrLf(0);
 
IntOut(0, ScalarTriProd(A,B,C)); CrLf(0);
 
VectTriProd(A, B, C, D);
IntOut(0, D(0)); ChOut(0, 9\tab\);
IntOut(0, D(1)); ChOut(0, 9\tab\);
IntOut(0, D(2)); CrLf(0);
]

Output:

49
5       5       -7
6
-267    204     -3

zkl[edit]

Since the input vectors are all int, the output is int. For a float output, use float data (or convert) in the input vectors and change sum() to sum(0.0) (in dotp).

The [(a1,a2,a3)] parameter notation just means add a preamble to the function body to do list assignment: a1,a2,a3:=arglist[0]. Since we don't need the vector as such, don't bother to name it (in the parameter list)

fcn dotp(a,b){ a.zipWith('*,b).sum() } //1 slow but concise
fcn crossp([(a1,a2,a3)],[(b1,b2,b3)]) //2
{ return(a2*b3 - a3*b2, a3*b1 - a1*b3, a1*b2 - a2*b1) }
a,b,c := T(3,4,5), T(4,3,5), T(-5,-12,-13);
dotp(a,b).println(); //5 --> 49
crossp(a,b).println(); //6 --> (5,5,-7)
dotp(a, crossp(b,c)).println(); //7 --> 6
crossp(a, crossp(b,c)).println(); //8 --> (-267,204,-3)
Output:
49
L(5,5,-7)
6
L(-267,204,-3)

Or, using the GNU Scientific Library:

var [const] GSL=Import("zklGSL");	// libGSL (GNU Scientific Library)
a:=GSL.VectorFromData( 3, 4, 5);
b:=GSL.VectorFromData( 4, 3, 5);
c:=GSL.VectorFromData(-5,-12,-13);
 
(a*b).println(); // 49, dot product
a.copy().crossProduct(b) // (5,5,-7) cross product, in place
.format().println();
(a*(b.copy().crossProduct(c))).println(); // 6 scalar triple product
(a.crossProduct(b.crossProduct(c))) // (-267,204,-3) vector triple product, in place
.format().println();
Output:
49
5.00,5.00,-7.00
6
-267.00,204.00,-3.00