Binary search

From Rosetta Code
Task
Binary search
You are encouraged to solve this task according to the task description, using any language you may know.

A binary search divides a range of values into halves, and continues to narrow down the field of search until the unknown value is found. It is the classic example of a "divide and conquer" algorithm.

As an analogy, consider the children's game "guess a number." The scorer has a secret number, and will only tell the player if their guessed number is higher than, lower than, or equal to the secret number. The player then uses this information to guess a new number.

As the player, an optimal strategy for the general case is to start by choosing the range's midpoint as the guess, and then asking whether the guess was higher, lower, or equal to the secret number. If the guess was too high, one would select the point exactly between the range midpoint and the beginning of the range. If the original guess was too low, one would ask about the point exactly between the range midpoint and the end of the range. This process repeats until one has reached the secret number.

The Task

Given the starting point of a range, the ending point of a range, and the "secret value", implement a binary search through a sorted integer array for a certain number. Implementations can be recursive or iterative (both if you can). Print out whether or not the number was in the array afterwards. If it was, print the index also.

There are several binary search algorithms commonly seen. They differ by how they treat multiple values equal to the given value, and whether they indicate whether the element was found or not. For completeness we will present pseudocode for all of them.

All of the following code examples use an "inclusive" upper bound (i.e. high = N-1 initially). Any of the examples can be converted into an equivalent example using "exclusive" upper bound (i.e. high = N initially) by making the following simple changes (which simply increase high by 1):

  • change high = N-1 to high = N
  • change high = mid-1 to high = mid
  • (for recursive algorithm) change if (high < low) to if (high <= low)
  • (for iterative algorithm) change while (low <= high) to while (low < high)
Traditional algorithm

The algorithms are as follows (from Wikipedia). The algorithms return the index of some element that equals the given value (if there are multiple such elements, it returns some arbitrary one). It is also possible, when the element is not found, to return the "insertion point" for it (the index that the value would have if it were inserted into the array).

Recursive Pseudocode:

  // initially called with low = 0, high = N-1
  BinarySearch(A[0..N-1], value, low, high) {
      // invariants: value > A[i] for all i < low
                     value < A[i] for all i > high
      if (high < low)
          return not_found // value would be inserted at index "low"
      mid = (low + high) / 2
      if (A[mid] > value)
          return BinarySearch(A, value, low, mid-1)
      else if (A[mid] < value)
          return BinarySearch(A, value, mid+1, high)
      else
          return mid
  }

Iterative Pseudocode:

  BinarySearch(A[0..N-1], value) {
      low = 0
      high = N - 1
      while (low <= high) {
          // invariants: value > A[i] for all i < low
                         value < A[i] for all i > high
          mid = (low + high) / 2
          if (A[mid] > value)
              high = mid - 1
          else if (A[mid] < value)
              low = mid + 1
          else
              return mid
      }
      return not_found // value would be inserted at index "low"
  }
Leftmost insertion point

The following algorithms return the leftmost place where the given element can be correctly inserted (and still maintain the sorted order). This is the lower (inclusive) bound of the range of elements that are equal to the given value (if any). Equivalently, this is the lowest index where the element is greater than or equal to the given value (since if it were any lower, it would violate the ordering), or 1 past the last index if such an element does not exist. This algorithm does not determine if the element is actually found. This algorithm only requires one comparison per level.

Recursive Pseudocode:

  // initially called with low = 0, high = N - 1
  BinarySearch_Left(A[0..N-1], value, low, high) {
      // invariants: value > A[i] for all i < low
                     value <= A[i] for all i > high
      if (high < low)
          return low
      mid = (low + high) / 2
      if (A[mid] >= value)
          return BinarySearch_Left(A, value, low, mid-1)
      else
          return BinarySearch_Left(A, value, mid+1, high)
  }

Iterative Pseudocode:

  BinarySearch_Left(A[0..N-1], value) {
      low = 0
      high = N - 1
      while (low <= high) {
          // invariants: value > A[i] for all i < low
                         value <= A[i] for all i > high
          mid = (low + high) / 2
          if (A[mid] >= value)
              high = mid - 1
          else
              low = mid + 1
      }
      return low
  }
Rightmost insertion point

The following algorithms return the rightmost place where the given element can be correctly inserted (and still maintain the sorted order). This is the upper (exclusive) bound of the range of elements that are equal to the given value (if any). Equivalently, this is the lowest index where the element is greater than the given value, or 1 past the last index if such an element does not exist. This algorithm does not determine if the element is actually found. This algorithm only requires one comparison per level. Note that these algorithms are almost exactly the same as the leftmost-insertion-point algorithms, except for how the inequality treats equal values.

Recursive Pseudocode:

  // initially called with low = 0, high = N - 1
  BinarySearch_Right(A[0..N-1], value, low, high) {
      // invariants: value >= A[i] for all i < low
                     value < A[i] for all i > high
      if (high < low)
          return low
      mid = (low + high) / 2
      if (A[mid] > value)
          return BinarySearch_Right(A, value, low, mid-1)
      else
          return BinarySearch_Right(A, value, mid+1, high)
  }

Iterative Pseudocode:

  BinarySearch_Right(A[0..N-1], value) {
      low = 0
      high = N - 1
      while (low <= high) {
          // invariants: value >= A[i] for all i < low
                         value < A[i] for all i > high
          mid = (low + high) / 2
          if (A[mid] > value)
              high = mid - 1
          else
              low = mid + 1
      }
      return low
  }
Extra credit

Make sure it does not have overflow bugs.

The line in the pseudocode above to calculate the mean of two integers:

mid = (low + high) / 2

could produce the wrong result in some programming languages when used with a bounded integer type, if the addition causes an overflow. (This can occur if the array size is greater than half the maximum integer value.) If signed integers are used, and low + high overflows, it becomes a negative number, and dividing by 2 will still result in a negative number. Indexing an array with a negative number could produce an out-of-bounds exception, or other undefined behavior. If unsigned integers are used, an overflow will result in losing the largest bit, which will produce the wrong result.

One way to fix it is to manually add half the range to the low number:

mid = low + (high - low) / 2

Even though this is mathematically equivalent to the above, it is not susceptible to overflow.

Another way for signed integers, possibly faster, is the following:

mid = (low + high) >>> 1

where >>> is the logical right shift operator. The reason why this works is that, for signed integers, even though it overflows, when viewed as an unsigned number, the value is still the correct sum. To divide an unsigned number by 2, simply do a logical right shift.

References:

ACL2

<lang Lisp>(defun defarray (name size initial-element)

  (cons name
        (compress1 name
                   (cons (list :HEADER
                               :DIMENSIONS (list size)
                               :MAXIMUM-LENGTH (1+ size)
                               :DEFAULT initial-element
                               :NAME name)
                               nil))))

(defconst *dim* 100000)

(defun array-name (array)

  (first array))
      

(defun set-at (array i val)

  (cons (array-name array)
        (aset1 (array-name array)
               (cdr array)
               i
               val)))

(defun populate-array-ordered (array n)

  (if (zp n)
      array
      (populate-array-ordered (set-at array
                                      (- *dim* n)
                                      (- *dim* n))
                              (1- n))))

(include-book "arithmetic-3/top" :dir :system)

(defun binary-search-r (needle haystack low high)

  (declare (xargs :measure (nfix (1+ (- high low)))))
  (let* ((mid (floor (+ low high) 2))
         (current (aref1 (array-name haystack)
                         (cdr haystack)
                         mid)))
        (cond ((not (and (natp low) (natp high))) nil)
              ((= current needle)
               mid)
              ((zp (1+ (- high low))) nil)
              ((> current needle)
               (binary-search-r needle
                                haystack
                                low
                                (1- mid)))
              (t (binary-search-r needle
                                  haystack
                                  (1+ mid)
                                  high)))))

(defun binary-search (needle haystack)

  (binary-search-r needle haystack 0
                   (maximum-length (array-name haystack)
                                   (cdr haystack))))

(defun test-bsearch (needle)

  (binary-search needle
                 (populate-array-ordered
                  (defarray 'haystack *dim* 0)
                  *dim*)))</lang>

Ada

Both solutions are generic. The element can be of any comparable type (such that the operation < is visible in the instantiation scope of the function Search). Note that the completion condition is different from one given in the pseudocode example above. The example assumes that the array index type does not overflow when mid is incremented or decremented beyond the corresponding array bound. This is a wrong assumption for Ada, where array bounds can start or end at the very first or last value of the index type. To deal with this, the exit condition is rather directly expressed as crossing the corresponding array bound by the coming interval middle.

Recursive

<lang ada>with Ada.Text_IO; use Ada.Text_IO;

procedure Test_Recursive_Binary_Search is

  Not_Found : exception;
  
  generic
     type Index is range <>;
     type Element is private;
     type Array_Of_Elements is array (Index range <>) of Element;
     with function "<" (L, R : Element) return Boolean is <>;
  function Search (Container : Array_Of_Elements; Value : Element) return Index;
  function Search (Container : Array_Of_Elements; Value : Element) return Index is
     Mid : Index;
  begin
     if Container'Length > 0 then
        Mid := (Container'First + Container'Last) / 2;
        if Value < Container (Mid) then
           if Container'First /= Mid then
              return Search (Container (Container'First..Mid - 1), Value);
           end if;
        elsif Container (Mid) < Value then
           if Container'Last /= Mid then
              return Search (Container (Mid + 1..Container'Last), Value);
           end if;
        else
           return Mid;
        end if;
     end if;
     raise Not_Found;
  end Search;
  type Integer_Array is array (Positive range <>) of Integer;
  function Find is new Search (Positive, Integer, Integer_Array);
  
  procedure Test (X : Integer_Array; E : Integer) is
  begin
     New_Line;
     for I in X'Range loop
        Put (Integer'Image (X (I)));
     end loop;
     Put (" contains" & Integer'Image (E) & " at" & Integer'Image (Find (X, E)));
  exception
     when Not_Found =>
        Put (" does not contain" & Integer'Image (E));
  end Test;

begin

  Test ((2, 4, 6, 8, 9), 2);
  Test ((2, 4, 6, 8, 9), 1);
  Test ((2, 4, 6, 8, 9), 8);
  Test ((2, 4, 6, 8, 9), 10);
  Test ((2, 4, 6, 8, 9), 9);
  Test ((2, 4, 6, 8, 9), 5);

end Test_Recursive_Binary_Search;</lang>

Iterative

<lang ada>with Ada.Text_IO; use Ada.Text_IO;

procedure Test_Binary_Search is

  Not_Found : exception;
  
  generic
     type Index is range <>;
     type Element is private;
     type Array_Of_Elements is array (Index range <>) of Element;
     with function "<" (L, R : Element) return Boolean is <>;
  function Search (Container : Array_Of_Elements; Value : Element) return Index;
  function Search (Container : Array_Of_Elements; Value : Element) return Index is
     Low  : Index := Container'First;
     High : Index := Container'Last;
     Mid  : Index;
  begin
     if Container'Length > 0 then
        loop
           Mid := (Low + High) / 2;
           if Value < Container (Mid) then
              exit when Low = Mid;
              High := Mid - 1;
           elsif Container (Mid) < Value then
              exit when High = Mid;
              Low := Mid + 1;
           else
              return Mid;
           end if;
        end loop;
     end if;
     raise Not_Found;
  end Search;
  type Integer_Array is array (Positive range <>) of Integer;
  function Find is new Search (Positive, Integer, Integer_Array);
  
  procedure Test (X : Integer_Array; E : Integer) is
  begin
     New_Line;
     for I in X'Range loop
        Put (Integer'Image (X (I)));
     end loop;
     Put (" contains" & Integer'Image (E) & " at" & Integer'Image (Find (X, E)));
  exception
     when Not_Found =>
        Put (" does not contain" & Integer'Image (E));
  end Test;

begin

  Test ((2, 4, 6, 8, 9), 2);
  Test ((2, 4, 6, 8, 9), 1);
  Test ((2, 4, 6, 8, 9), 8);
  Test ((2, 4, 6, 8, 9), 10);
  Test ((2, 4, 6, 8, 9), 9);
  Test ((2, 4, 6, 8, 9), 5);

end Test_Binary_Search;</lang> Sample output:

 2 4 6 8 9 contains 2 at 1
 2 4 6 8 9 does not contain 1
 2 4 6 8 9 contains 8 at 4
 2 4 6 8 9 does not contain 10
 2 4 6 8 9 contains 9 at 5
 2 4 6 8 9 does not contain 5

ALGOL 68

Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny

<lang algol68>MODE ELEMENT = STRING;

  1. Iterative: #

PROC iterative binary search = ([]ELEMENT hay stack, ELEMENT needle)INT: (

   INT out,
       low := LWB hay stack,
       high := UPB hay stack;
   WHILE low < high DO
       INT mid := (low+high) OVER 2;
       IF hay stack[mid] > needle THEN high := mid-1
       ELIF hay stack[mid] < needle THEN low := mid+1
       ELSE out:= mid; stop iteration FI
   OD;
       low EXIT
   stop iteration:
       out
  1. Recursive: #

PROC recursive binary search = ([]ELEMENT hay stack, ELEMENT needle)INT: (

   IF LWB hay stack > UPB hay stack THEN
       LWB hay stack
   ELIF LWB hay stack = UPB hay stack THEN
       IF hay stack[LWB hay stack] = needle THEN LWB hay stack
       ELSE LWB hay stack FI
   ELSE
       INT mid := (LWB hay stack+UPB hay stack) OVER 2;
       IF hay stack[mid] > needle THEN recursive binary search(hay stack[:mid-1], needle)
       ELIF hay stack[mid] < needle THEN mid + recursive binary search(hay stack[mid+1:], needle)
       ELSE mid FI
  FI

);

  1. Test cases: #

test:(

 ELEMENT needle = "mister";
 []ELEMENT hay stack = ("AA","Maestro","Mario","Master","Mattress","Mister","Mistress","ZZ"),
         test cases = ("A","Master","Monk","ZZZ");
 PROC test search = (PROC([]ELEMENT, ELEMENT)INT search, []ELEMENT test cases)VOID:
   FOR case TO UPB test cases DO
       ELEMENT needle = test cases[case];
       INT index = search(hay stack, needle);
       BOOL found = ( index <= 0 | FALSE | hay stack[index]=needle);
       printf(($""""g""" "b("FOUND at","near")" index "dl$, needle, found, index))
   OD;
 test search(iterative binary search, test cases);
 test search(recursive binary search, test cases)

)</lang> Output:

"A" near index 1
"Master" FOUND at index 4
"Monk" near index 8
"ZZZ" near index 8

AutoHotkey

<lang AutoHotkey>array := "1,2,4,6,8,9" StringSplit, A, array, `,  ; creates associative array MsgBox % x := BinarySearch(A, 4, 1, A0) ; Recursive MsgBox % A%x% MsgBox % x := BinarySearchI(A, A0, 4)  ; Iterative MsgBox % A%x%

BinarySearch(A, value, low, high) { ; A0 contains length of array

 If (high < low)               ; A1, A2, A3...An are array elements
   Return not_found
 mid := Floor((low + high) / 2)
 If (A%mid% > value) ; A%mid% is automatically global since no such locals are present
   Return BinarySearch(A, value, low, mid - 1)
 Else If (A%mid% < value)
   Return BinarySearch(A, value, mid + 1, high)
 Else
   Return mid

}

BinarySearchI(A, lengthA, value) {

 low := 0
 high := lengthA - 1
 While (low <= high) {
   mid := Floor((low + high) / 2) ; round to lower integer
   If (A%mid% > value)   
     high := mid - 1
   Else If (A%mid% < value)
     low := mid + 1
   Else
     Return mid
 }
 Return not_found

}</lang>

AWK

Works with: Gawk
Works with: Mawk
Works with: Nawk

Recursive <lang awk>function binary_search(array, value, left, right, middle) {

   if (right < left) return 0
   middle = int((right + left) / 2)
   if (value == array[middle]) return 1
   if (value <  array[middle])
       return binary_search(array, value, left, middle - 1)
   return binary_search(array, value, middle + 1, right)

}</lang> Iterative <lang awk>function binary_search(array, value, left, right, middle) {

   while (left <= right) {
       middle = int((right + left) / 2)
       if (value == array[middle]) return 1
       if (value <  array[middle]) right = middle - 1
       else                        left  = middle + 1
   }
   return 0

}</lang>

BASIC

Recursive

Works with: FreeBASIC
Works with: RapidQ

<lang freebasic>FUNCTION binary_search ( array() AS Integer, value AS Integer, lo AS Integer, hi AS Integer) AS Integer

 DIM middle AS Integer
 
 IF hi < lo THEN
   binary_search = 0
 ELSE
   middle = (hi + lo) / 2
   SELECT CASE value
     CASE IS < array(middle)

binary_search = binary_search(array(), value, lo, middle-1)

     CASE IS > array(middle)

binary_search = binary_search(array(), value, middle+1, hi)

     CASE ELSE

binary_search = middle

   END SELECT
 END IF

END FUNCTION</lang> Iterative

Works with: FreeBASIC
Works with: RapidQ

<lang freebasic>FUNCTION binary_search ( array() AS Integer, value AS Integer, lo AS Integer, hi AS Integer) AS Integer

 DIM middle AS Integer
 
 WHILE lo <= hi
   middle = (hi + lo) / 2
   SELECT CASE value
     CASE IS < array(middle)

hi = middle - 1

     CASE IS > array(middle)

lo = middle + 1

     CASE ELSE

binary_search = middle EXIT FUNCTION

   END SELECT
 WEND
 binary_search = 0

END FUNCTION</lang> Testing the function

The following program can be used to test both recursive and iterative version. <lang freebasic>SUB search (array() AS Integer, value AS Integer)

 DIM idx AS Integer
 idx = binary_search(array(), value, LBOUND(array), UBOUND(array))
 PRINT "Value "; value;
 IF idx < 1 THEN
   PRINT " not found"
 ELSE
   PRINT " found at index "; idx
 END IF

END SUB

DIM test(1 TO 10) AS Integer DIM i AS Integer

DATA 2, 3, 5, 6, 8, 10, 11, 15, 19, 20 FOR i = 1 TO 10 ' Fill the test array

 READ test(i)

NEXT i

search test(), 4 search test(), 8 search test(), 20</lang> Output:

Value 4 not found
Value 8 found at index 5
Value 20 found at index 10

BBC BASIC

<lang bbcbasic> DIM array%(9)

     array%() = 7, 14, 21, 28, 35, 42, 49, 56, 63, 70
     
     secret% = 42
     index% = FNwhere(array%(), secret%, 0, DIM(array%(),1))
     IF index% >= 0 THEN
       PRINT "The value "; secret% " was found at index "; index%
     ELSE
       PRINT "The value "; secret% " was not found"
     ENDIF
     END
     
     REM Search ordered array A%() for the value S% from index B% to T%
     DEF FNwhere(A%(), S%, B%, T%)
     LOCAL H%
     H% = 2
     WHILE H%<(T%-B%) H% *= 2:ENDWHILE
     H% /= 2
     REPEAT
       IF (B%+H%)<=T% IF S%>=A%(B%+H%) B% += H%
       H% /= 2
     UNTIL H%=0
     IF S%=A%(B%) THEN = B% ELSE = -1</lang>

Brat

<lang brat>binary_search = { search_array, value, low, high |

 true? high < low
   { null }
   {
     mid = ((low + high) / 2).to_i
     
     true? search_array[mid] > value
       { binary_search search_array, value, low, mid - 1 }

{ true? search_array[mid] < value { binary_search search_array, value, mid + 1, high } { mid }

     }
  }

}

  1. Populate array

numbers = 1000.of { random 1000 }

  1. Sort the array

numbers.sort!

  1. Find a number

x = random 1000

p "Looking for #{x}"

index = binary_search numbers, x, 0, numbers.length - 1

null? index { p "Not found" } { p "Found at index: #{index}" }</lang>

C

Iterative <lang c>/* http://www.solipsys.co.uk/b_search/spec.htm */ typedef int Object;

int cmpObject(Object* pa, Object *pb) {

 Object a = *pa;
 Object b = *pb;
 if (a < b) return -1;
 if (a == b) return 0;
 if (a > b) return 1;
 assert(0);

}

int bsearch(Object Array[], int n, Object *KeyPtr, int (*cmp)(Object *, Object *),

           int NotFound) 

{

 unsigned left = 1, right = n; /* `unsigned' to avoid overflow in `(left + right)/2' */
 if ( ! (Array && n > 0 && KeyPtr && cmp)) 
   return NotFound; /* invalid input or empty array */
 while (left < right)
 {
   /* invariant: a[left] <= *KeyPtr <= a[right] or *KeyPtr not in Array */
   unsigned m = (left  +  right) / 2; /*NOTE: *intentionally* truncate for odd sum */
   
   if (cmp(Array + m, KeyPtr) < 0) 
     left = m + 1;       /* a[m] < *KeyPtr <= a[right] or *KeyPtr not in Array */
   else 
     /* assert(right != m) or infinite loop possible */
     right = m;          /* a[left] <= *KeyPtr <= a[m] or *KeyPtr not in Array */
 }
 /* assert(left == right) */
 return (cmp(Array + right, KeyPtr) == 0) ? right : NotFound;

}</lang> Example: <lang c>#define DUMMY -1 /* dummy element of array (to adjust indexing from 1..n) */

int main(void) {

 Object a[] = {DUMMY, 0, 1, 1, 2, 5}; /* allowed indices from 1 to n including */
 int n = sizeof(a)/sizeof(*a) - 1;
 const int NotFound = -1;
 /* key not in Array */
 Object key = 4;
 assert(NotFound == bsearch(a, n, &key, cmpObject, NotFound));
 key = DUMMY;
 assert(NotFound == bsearch(a, n, &key, cmpObject, NotFound));
 key = 7;
 assert(NotFound == bsearch(a, n, &key, cmpObject, NotFound));
 /* all possible `n' and `k' for `a' array */
 int k;
 key = 10; /* not in `a` array */
 for (n = 0; n <= sizeof(a)/sizeof(*a) - 1; ++n)
   for (k = n; k>=1; --k) {
     int index = bsearch(a, n, &a[k], cmpObject, NotFound);
     assert(index == k || (k==3 && index == 2) || n == 0); /* for equal `1's */
     assert(NotFound == bsearch(a, n, &key, cmpObject, NotFound));
   }
 n = sizeof(a)/sizeof(*a) - 1;
 /* NULL array */
 assert(NotFound == bsearch(NULL, n, &key, cmpObject, NotFound));
 /* NULL &key */
 assert(NotFound == bsearch(a, n, NULL, cmpObject, NotFound));
 /* NULL cmpObject */
 assert(1 == bsearch(a, n, &a[1], cmpObject, NotFound));
 assert(NotFound  == bsearch(a, n, &a[1], NULL, NotFound));
 printf("OK\n");
 return 0;

}</lang> Library <lang c>#include <stdlib.h> /* for bsearch */

  1. include <stdio.h>

int intcmp(const void *a, const void *b) {

   /* this is only correct if it doesn't overflow */
   return *(const int *)a - *(const int *)b;

}

int main() {

   int nums[5] = {2, 3, 5, 6, 8};
   int desired = 6;
   int *ptr = bsearch(&desired, nums, 5, sizeof(int), intcmp);
   if (ptr == NULL)
       printf("not found\n");
   else
       printf("index = %d\n", ptr - nums);
   return 0;

}</lang>

C++

Recursive <lang cpp>template <class T> int binsearch(const T array[], int len, T what) {

 if (len == 0) return -1;
 int mid = len / 2;
 if (array[mid] == what) return mid;
 if (array[mid] < what) {
   int result = binsearch(array+mid+1, len-(mid+1), what);
   if (result == -1) return -1;
   else return result + mid+1;
 }
 if (array[mid] > what)
   return binsearch(array, mid, what);

}

  1. include <iostream>

int main() {

 int array[] = {2, 3, 5, 6, 8};
 int result1 = binsearch(array, sizeof(array)/sizeof(int), 4),
     result2 = binsearch(array, sizeof(array)/sizeof(int), 8);
 if (result1 == -1) std::cout << "4 not found!" << std::endl;
 else std::cout << "4 found at " << result1 << std::endl;
 if (result2 == -1) std::cout << "8 not found!" << std::endl;
 else std::cout << "8 found at " << result2 << std::endl;
 return 0;

}</lang> Iterative <lang cpp>template <class T> int binSearch(const T arr[], int len, T what) {

 int low = 0;
 int high = len - 1;
 while (low <= high) {
   int mid = (low + high) / 2;
   if (arr[mid] > what)
     high = mid - 1;
   else if (arr[mid] < what)
     low = mid + 1;
   else
     return mid;
 }
 return -1; // indicate not found 

}</lang> Library C++'s Standard Template Library has four functions for binary search, depending on what information you want to get. They all need<lang cpp>#include <algorithm></lang>

The lower_bound() function returns an iterator to the first position where a value could be inserted without violating the order; i.e. the first element equal to the element you want, or the place where it would be inserted. <lang cpp>int *ptr = std::lower_bound(array, array+len, what); // a custom comparator can be given as fourth arg</lang>

The upper_bound() function returns an iterator to the last position where a value could be inserted without violating the order; i.e. one past the last element equal to the element you want, or the place where it would be inserted. <lang cpp>int *ptr = std::upper_bound(array, array+len, what); // a custom comparator can be given as fourth arg</lang>

The equal_range() function returns a pair of the results of lower_bound() and upper_bound(). <lang cpp>std::pair<int *, int *> bounds = std::equal_range(array, array+len, what); // a custom comparator can be given as fourth arg</lang> Note that the difference between the bounds is the number of elements equal to the element you want.

The binary_search() function returns true or false for whether an element equal to the one you want exists in the array. It does not give you any information as to where it is. <lang cpp>bool found = std::binary_search(array, array+len, what); // a custom comparator can be given as fourth arg</lang>

C#

Recursive

Translation of: Java

<lang csharp>using System;

namespace ConsoleApplication7 {

   class Program
   {
       public static void Main(string[] args)
       {
               int[] array;
               int needle;
               .....
               .....
               int index = binarySearch(array, needle, 0, array.Length);
               Console.WriteLine(needle + ((index == -1) ? " is not in the array" : (" is at index " + index)));
       }


       public static int binarySearch(int[] nums, int check, int lo, int hi){
               if(hi < lo){
                       return -1; //impossible index for "not found"
               }
               int guess = (hi + lo) / 2;
               if(nums[guess] > check){
                       return binarySearch(nums, check, lo, guess - 1);
               }else if(nums[guess]<check){
                       return binarySearch(nums, check, guess + 1, hi);
               }
               return guess;
               }
   }

}</lang> Iterative <lang csharp>using System;

namespace BinarySearch {

   class Program
   {
       static void Main(string[] args)
       {
           int[] a = new int[] { 2, 4, 6, 8, 9 };
           Console.WriteLine(BinarySearchIterative(a, 9));
           Console.WriteLine(BinarySearchRecursive(a, 9, 0, a.Length));
       }
       private static int BinarySearchIterative(int[] a, int val){
           int low = 0;
           int high = a.Length;
           while (low <= high)
           {
               int mid = (low + high) / 2;
               if (a[mid] > val)
                   high = mid-1;
               else if (a[mid] < val)
                   low = mid+1;
               else
                   return mid;
           }
           return -1;
       }
       private static int BinarySearchRecursive(int[] a, int val, int low, int high)
       {
           if (high < low)
               return -1;
           int mid = (low + high) / 2;
           if (a[mid] > val)
               return BinarySearchRecursive(a, val, low, mid - 1);
           else if (a[mid] < val)
               return BinarySearchRecursive(a, val, mid + 1, high);
           else
               return mid;
       }
   }

}</lang>

Chapel

iterative -- almost a direct translation of the pseudocode <lang chapel>proc binsearch(A:[], value) {

       var low = A.domain.dim(1).low;
       var high = A.domain.dim(1).high;
       while (low <= high) {
               var mid = (low + high) / 2;
               if A(mid) > value then
                       high = mid - 1;
               else if A(mid) < value then
                       low = mid + 1;
               else
                       return mid;
       }
       return 0;

}

writeln(binsearch([3, 4, 6, 9, 11], 9));</lang>

Output:
4

Clojure

Recursive <lang clojure>(defn bsearch

 ([coll t]
   (bsearch coll 0 (dec (count coll)) t))
 ([coll l u t]
   (if (> l u) -1
     (let [m (quot (+ l u) 2) mth (nth coll m)]
       (cond
         ; the middle element is greater than t
         ; so search the lower half
         (> mth t) (recur coll l (dec m) t)
         ; the middle element is less than t
         ; so search the upper half
         (< mth t) (recur coll (inc m) u t)
         ; we've found our target
         ; so return its index
         (= mth t) m)))))</lang>

COBOL

COBOL's SEARCH ALL statement is implemented as a binary search on most implementations. <lang cobol> >>SOURCE FREE IDENTIFICATION DIVISION. PROGRAM-ID. binary-search.

DATA DIVISION. WORKING-STORAGE SECTION. 01 nums-area VALUE "01040612184356".

   03  nums                            PIC 9(2)
                                       OCCURS 7 TIMES
                                       ASCENDING KEY nums
                                       INDEXED BY nums-idx.

PROCEDURE DIVISION.

   SEARCH ALL nums
       WHEN nums (nums-idx) = 4
           DISPLAY "Found 4 at index " nums-idx
   END-SEARCH
   .

END PROGRAM binary-search.</lang>

CoffeeScript

Recursive <lang coffeescript>binarySearch = (xs, x) ->

 do recurse = (low = 0, high = xs.length - 1) ->
   mid = Math.floor (low + high) / 2
   switch
     when high < low then NaN
     when xs[mid] > x then recurse low, mid - 1
     when xs[mid] < x then recurse mid + 1, high
     else mid</lang>

Iterative <lang coffeescript>binarySearch = (xs, x) ->

 [low, high] = [0, xs.length - 1]
 while low <= high
   mid = Math.floor (low + high) / 2
   switch
     when xs[mid] > x then high = mid - 1
     when xs[mid] < x then low = mid + 1
     else return mid
 NaN</lang>

Test <lang coffeescript>do (n = 12) ->

 odds = (it for it in [1..n] by 2)
 result = (it for it in \
   (binarySearch odds, it for it in [0..n]) \
   when not isNaN it)
 console.assert "#{result}" is "#{[0...odds.length]}"
 console.log "#{odds} are odd natural numbers"
 console.log "#{it} is ordinal of #{odds[it]}" for it in result</lang>

Output:

1,3,5,7,9,11 are odd natural numbers"
0 is ordinal of 1
1 is ordinal of 3
2 is ordinal of 5
3 is ordinal of 7
4 is ordinal of 9
5 is ordinal of 11

Common Lisp

Iterative <lang lisp>(defun binary-search (value array)

 (let ((low 0)
       (high (1- (length array))))
   
   (do () ((< high low) nil)
     (let ((middle (floor (/ (+ low high) 2))))
       
       (cond ((> (aref array middle) value)
              (setf high (1- middle)))
             
             ((< (aref array middle) value)
              (setf low (1+ middle)))
             
             (t (return middle)))))))</lang>

Recursive <lang lisp>(defun binary-search (value array &optional (low 0) (high (1- (length array))))

 (if (< high low)
     nil
     (let ((middle (floor (/ (+ low high) 2))))
       
       (cond ((> (aref array middle) value)
              (binary-search value array low (1- middle)))
             
             ((< (aref array middle) value)
              (binary-search value array (1+ middle) high))
             
             (t middle)))))</lang>

D

<lang d>import std.stdio, std.array, std.range, std.traits;

/// Recursive. bool binarySearch(R, T)(/*in*/ R data, in T x) pure nothrow @nogc if (isRandomAccessRange!R && is(Unqual!T == Unqual!(ElementType!R))) {

   if (data.empty)
       return false;
   immutable i = data.length / 2;
   immutable mid = data[i];
   if (mid > x)
       return data[0 .. i].binarySearch(x);
   if (mid < x)
       return data[i + 1 .. $].binarySearch(x);
   return true;

}

/// Iterative. bool binarySearchIt(R, T)(/*in*/ R data, in T x) pure nothrow @nogc if (isRandomAccessRange!R && is(Unqual!T == Unqual!(ElementType!R))) {

   while (!data.empty) {
       immutable i = data.length / 2;
       immutable mid = data[i];
       if (mid > x)
           data = data[0 .. i];
       else if (mid < x)
           data = data[i + 1 .. $];
       else
           return true;
   }
   return false;

}

void main() {

   /*const*/ auto items = [2, 4, 6, 8, 9].assumeSorted;
   foreach (const x; [1, 8, 10, 9, 5, 2])
       writefln("%2d %5s %5s %5s", x,
                items.binarySearch(x),
                items.binarySearchIt(x),
                // Standard Binary Search:
                !items.equalRange(x).empty);

}</lang>

Output:
 1 false false false
 8  true  true  true
10 false false false
 9  true  true  true
 5 false false false
 2  true  true  true

E

<lang e>/** Returns null if the value is not found. */ def binarySearch(collection, value) {

   var low := 0
   var high := collection.size() - 1
   while (low <= high) {
       def mid := (low + high) // 2
       def comparison := value.op__cmp(collection[mid])
       if      (comparison.belowZero()) { high := mid - 1 } \
       else if (comparison.aboveZero()) { low := mid + 1 }  \
       else if (comparison.isZero())    { return mid }      \
       else                             { throw("You expect me to binary search with a partial order?") }
   }
   return null

}</lang>

Eiffel

The following solution is based on the one described in: C. A. Furia, B. Meyer, and S. Velder. Loop Invariants: Analysis, Classification, and Examples. ACM Computing Surveys, 46(3), Article 34, January 2014. (Also available at http://arxiv.org/abs/1211.4470). It includes detailed loop invariants and pre- and postconditions, which make the running time linear (instead of logarithmic) when full contract checking is enabled.

<lang Eiffel>class APPLICATION

create make

feature {NONE} -- Initialization

make local a: ARRAY [INTEGER] keys: ARRAY [INTEGER] do a := <<0, 1, 4, 5, 6, 7, 8, 9, 12, 26, 45, 67, 78, 90, 98, 123, 211, 234, 456, 769, 865, 2345, 3215, 14345, 24324>> keys := <<0, 42, 45, 24324, 99999>> across keys as k loop if has_binary (a, k.item) then print ("The array has an element " + k.item.out) else print ("The array has NOT an element " + k.item.out) end print ("%N") end end

feature -- Search

has_binary (a: ARRAY [INTEGER]; key: INTEGER): BOOLEAN -- Does `a[a.lower..a.upper]' include an element `key'? require is_sorted (a, a.lower, a.upper) local i: INTEGER do i := where_binary (a, key) if a.lower <= i and i <= a.upper then Result := True else Result := False end end

where_binary (a: ARRAY [INTEGER]; key: INTEGER): INTEGER -- The index of an element `key' within `a[a.lower..a.upper]' if it exists. -- Otherwise an integer outside `[a.lower..a.upper]' require is_sorted (a, a.lower, a.upper) do Result := where_binary_range (a, key, a.lower, a.upper) end

where_binary_range (a: ARRAY [INTEGER]; key: INTEGER; low, high: INTEGER): INTEGER -- The index of an element `key' within `a[low..high]' if it exists. -- Otherwise an integer outside `[low..high]' note source: "http://arxiv.org/abs/1211.4470" require is_sorted (a, low, high) local i, j, mid: INTEGER do if low > high then Result := low - 1 else from i := low j := high mid := low Result := low - 1 invariant low <= i and i <= mid + 1 low <= mid and mid <= j and j <= high i <= j has (a, key, i, j) = has (a, key, low, high) until i >= j loop mid := i + (j - i) // 2 if a [mid] < key then i := mid + 1 else j := mid end variant j - i end if a [i] = key then Result := i end end ensure low <= Result and Result <= high implies a [Result] = key Result < low or Result > high implies not has (a, key, low, high) end

feature -- Implementation

is_sorted (a: ARRAY [INTEGER]; low, high: INTEGER): BOOLEAN -- Is `a[low..high]' sorted in nondecreasing order? require a.lower <= low high <= a.upper do Result := across low |..| (high - 1) as i all a [i.item] <= a [i.item + 1] end end

has (a: ARRAY [INTEGER]; key: INTEGER; low, high: INTEGER): BOOLEAN -- Is there an element `key' in `a[low..high]'? require a.lower <= low high <= a.upper do Result := across low |..| high as i some a [i.item] = key end end

end</lang>

Erlang

<lang Erlang>%% Task: Binary Search algorithm %% Author: Abhay Jain

-module(searching_algorithm). -export([start/0]).

start() ->

   List = [1,2,3],
   binary_search(List, 5, 1, length(List)).
   
   

binary_search(List, Value, Low, High) ->

   if Low > High ->
       io:format("Number ~p not found~n", [Value]),
       not_found;
      true ->
       Mid = (Low + High) div 2,
       MidNum = lists:nth(Mid, List),
       if MidNum > Value ->
           binary_search(List, Value, Low, Mid-1);
          MidNum < Value ->
           binary_search(List, Value, Mid+1, High);
          true ->
           io:format("Number ~p found at index ~p", [Value, Mid]),
           Mid
       end
   end.</lang>

Euphoria

Recursive

<lang euphoria>function binary_search(sequence s, object val, integer low, integer high)

   integer mid, cmp
   if high < low then
       return 0 -- not found
   else
       mid = floor( (low + high) / 2 )
       cmp = compare(s[mid], val)
       if  cmp > 0 then
           return binary_search(s, val, low, mid-1)
       elsif cmp < 0 then
           return binary_search(s, val, mid+1, high)
       else
           return mid
       end if
   end if

end function</lang>

Iterative

<lang euphoria>function binary_search(sequence s, object val)

   integer low, high, mid, cmp
   low = 1
   high = length(s)
   while low <= high do
       mid = floor( (low + high) / 2 )
       cmp = compare(s[mid], val)
       if cmp > 0 then
           high = mid - 1
       elsif cmp < 0 then
           low = mid + 1
       else
           return mid
       end if
   end while
   return 0 -- not found

end function</lang>

F#

Generic recursive version, using #light syntax: <lang fsharp>let rec binarySearch (myArray:array<IComparable>, low:int, high:int, value:IComparable) =

   if (high < low) then
       null
   else
       let mid = (low + high) / 2
       if (myArray.[mid] > value) then
           binarySearch (myArray, low, mid-1, value)
       else if (myArray.[mid] < value) then
           binarySearch (myArray, mid+1, high, value)
       else
           myArray.[mid]</lang>

FBSL

FBSL has built-in QuickSort() and BSearch() functions: <lang qbasic>#APPTYPE CONSOLE

DIM va[], sign = {1, -1}, toggle

PRINT "Loading ... "; DIM gtc = GetTickCount() FOR DIM i = 0 TO 1000000 va[] = sign[toggle] * PI * i toggle = NOT toggle ' randomize the array NEXT PRINT "done in ", GetTickCount() - gtc, " milliseconds"

PRINT "Sorting ... "; gtc = GetTickCount() QUICKSORT(va) ' quick sort the array PRINT "done in ", GetTickCount() - gtc, " milliseconds"

gtc = GetTickCount() PRINT 1000000 * PI, " found at index ", BSEARCH(va, 1000000 * PI), _ ' binary search through the array " in ", GetTickCount() - gtc, " milliseconds"

PAUSE</lang>

Output:

Loading ... done in 906 milliseconds
Sorting ... done in 547 milliseconds
3141592.65358979 found at index 1000000 in 0 milliseconds

Press any key to continue...

User-defined implementations of the same would be considerably slower. Nonetheless, here they are in order to comply with the task requirements.

Iterative: <lang qbasic>#APPTYPE CONSOLE

DIM va[]

PRINT "Loading ... "; DIM gtc = GetTickCount() FOR DIM i = 0 TO 1000000: va[] = i * PI: NEXT PRINT "done in ", GetTickCount() - gtc, " milliseconds"

gtc = GetTickCount() PRINT 1000000 * PI, " found at index ", BSearchIter(va, 1000000 * PI), _ " in ", GetTickCount() - gtc, " milliseconds"

PAUSE

FUNCTION BSearchIter(BYVAL array, BYVAL num) STATIC low = LBOUND(va), high = UBOUND(va) WHILE low <= high DIM midp = (high + low) \ 2 IF array[midp] > num THEN high = midp - 1 ELSEIF array[midp] < num THEN low = midp + 1 ELSE RETURN midp END IF WEND RETURN -1 END FUNCTION</lang>

Output:

Loading ... done in 391 milliseconds
3141592.65358979 found at index 1000000 in 62 milliseconds

Press any key to continue...

Recursive: <lang qbasic>#APPTYPE CONSOLE

DIM va[]

PRINT "Loading ... "; DIM gtc = GetTickCount() FOR DIM i = 0 TO 1000000: va[] = i * PI: NEXT PRINT "done in ", GetTickCount() - gtc, " milliseconds"

gtc = GetTickCount() PRINT 1000000 * PI, " found at index ", BSearchRec(va, 1000000 * PI, LBOUND(va), UBOUND(va)), _ " in ", GetTickCount() - gtc, " milliseconds"

PAUSE

FUNCTION BSearchRec(BYVAL array, BYVAL num, BYVAL low, BYVAL high) IF high < low THEN RETURN -1 DIM midp = (high + low) \ 2 IF array[midp] > num THEN RETURN BSearchRec(array, num, low, midp - 1) ELSEIF array[midp] < num THEN RETURN BSearchRec(array, num, midp + 1, high) END IF RETURN midp END FUNCTION</lang>

Output:

Loading ... done in 390 milliseconds
3141592.65358979 found at index 1000000 in 938 milliseconds

Press any key to continue...

Factor

Factor already includes a binary search in its standard library. The following code offers an interface compatible with the requirement of this task, and returns either the index of the element if it has been found or f otherwise. <lang factor>USING: binary-search kernel math.order ;

binary-search ( seq elt -- index/f )
   [ [ <=> ] curry search ] keep = [ drop f ] unless ;</lang>

Forth

This version is designed for maintaining a sorted array. If the item is not found, then then location returned is the proper insertion point for the item. This could be used in an optimized Insertion sort, for example. <lang forth>defer (compare) ' - is (compare) \ default to numbers

cstr-compare ( cstr1 cstr2 -- <=> ) \ counted strings
 swap count rot count compare ;
mid ( u l -- mid ) tuck - 2/ -cell and + ;
bsearch ( item upper lower -- where found? )
 rot >r
 begin  2dup >
 while  2dup mid
        dup @ r@ (compare)
        dup
 while  0<
        if   nip cell+   ( upper mid+1 )
        else rot drop swap ( mid lower )
        then
 repeat drop nip nip             true
 else   max ( insertion-point ) false
 then
 r> drop ;

create test 2 , 4 , 6 , 9 , 11 , 99 ,

probe ( n -- ) test 5 cells bounds bsearch . @ . cr ;

1 probe \ 0 2 2 probe \ -1 2 3 probe \ 0 4 10 probe \ 0 11 11 probe \ -1 11 12 probe \ 0 99</lang>

Fortran

Recursive In ISO Fortran 90 or later use a RECURSIVE function and ARRAY SECTION argument: <lang fortran>recursive function binarySearch_R (a, value) result (bsresult)

   real, intent(in) :: a(:), value
   integer          :: bsresult, mid
   
   mid = size(a)/2 + 1
   if (size(a) == 0) then
       bsresult = 0        ! not found
   else if (a(mid) > value) then
       bsresult= binarySearch_R(a(:mid-1), value)
   else if (a(mid) < value) then
       bsresult = binarySearch_R(a(mid+1:), value)
       if (bsresult /= 0) then
           bsresult = mid + bsresult
       end if
   else
       bsresult = mid      ! SUCCESS!!
   end if

end function binarySearch_R</lang> Iterative
In ISO Fortran 90 or later use an ARRAY SECTION POINTER: <lang fortran>function binarySearch_I (a, value)

   integer                  :: binarySearch_I
   real, intent(in), target :: a(:)
   real, intent(in)         :: value
   real, pointer            :: p(:)
   integer                  :: mid, offset
   
   p => a
   binarySearch_I = 0
   offset = 0
   do while (size(p) > 0)
       mid = size(p)/2 + 1
       if (p(mid) > value) then
           p => p(:mid-1)
       else if (p(mid) < value) then
           offset = offset + mid
           p => p(mid+1:)
       else
           binarySearch_I = offset + mid    ! SUCCESS!!
           return
       end if
   end do

end function binarySearch_I</lang>

Iterative, exclusive bounds, three-way test.

This has the array indexed from 1 to N, and the "not-found" return code is zero or negative. Changing the search to be for A(first:last) is trivial, but the "not-found" return protocol would require adjustment, as when starting the array indexing at zero. Depending on the version of Fortran the compiler supports, the specification of the array parameter may vary, as A(1) or A(*) or A(:), and in the latter case, parameter N could be omitted because the size of an array parameter may be ascertained via the SIZE function. For the more advanced fortrans, declaring the parameters to be INTENT(IN) may help, as despite passing arrays "by reference" being the norm, the newer compilers may generate copy-in, copy-out code, vitiating the whole point of using a fast binary search instead of a slow linear search. In this case, INTENT(IN) will at least prevent the copy-back. Similarly, later features allow the development of "generic" functions so that the same function name may be used yet the actual routine invoked will be selected according to how the parameters are integers, or floating-point, and of different precisions. There would still need to be a version of the function for each type combination, each with its own name. Unfortunately, there is no three-way comparison test for character data.

The use of "exclusive" bounds simplifies the adjustment of the bounds: the appropriate bound simply receives the value of P, there is no + 1 or - 1 adjustment at every step; similarly, the determination of an empty span is easy, and avoiding the risk of integer overflow via (L + R)/2 is achieved at the same time. The "inclusive" bounds version by contrast requires two manipulations of L and R at every step - once to see if the span is empty, and a second time to locate the index to test.

<lang Fortran>

     INTEGER FUNCTION FINDI(X,A,N)	!Binary chopper. Find i such that X = A(i)

Careful: it is surprisingly difficult to make this neat, due to vexations when N = 0 or 1.

      REAL X,A(*)		!Where is X in array A(1:N)?
      INTEGER N		!The count.
      INTEGER L,R,P		!Fingers.
       L = 0			!Establish outer bounds, to search A(L+1:R-1).
       R = N + 1		!L = first - 1; R = last + 1.
   1   P = (R - L)/2		!Probe point. Beware INTEGER overflow with (L + R)/2.
       IF (P.LE.0) GO TO 5	!Aha! Nowhere!! The span is empty.
       P = P + L		!Convert an offset from L to an array index.
       IF (X - A(P)) 3,4,2	!Compare to the probe point.
   2   L = P			!A(P) < X. Shift the left bound up: X follows A(P).
       GO TO 1			!Another chop.
   3   R = P			!X < A(P). Shift the right bound down: X precedes A(P).
       GO TO 1			!Try again.
   4   FINDI = P		!A(P) = X. So, X is found, here!
      RETURN			!Done.

Curse it!

   5   FINDI = -L		!X is not found. Insert it at L + 1, i.e. at A(1 - FINDI).
     END FUNCTION FINDI	!A's values need not be all different, merely in order.

</lang>

That corresponds to a nice symmetrical flowchart, but the image can't be uploaded - similary with plots of performance with N = 1:32767, alas. An alternative version is <lang Fortran>

     INTEGER FUNCTION FINDI(X,A,N)	!Binary chopper. Find i such that X = A(i)

Careful: it is surprisingly difficult to make this neat, due to vexations when N = 0 or 1.

      REAL X,A(*)		!Where is X in array A(1:N)?
      INTEGER N		!The count.
      INTEGER L,R,P		!Fingers.
       L = 0			!Establish outer bounds, to search A(L+1:R-1).
       R = N + 1		!L = first - 1; R = last + 1.
       GO TO 1			!Hop to it.
   2   L = P			!A(P) < X. Shift the left bound up: X follows A(P).
   1   P = (R - L)/2		!Probe point. Beware INTEGER overflow with (L + R)/2.
       IF (P.LE.0) GO TO 5	!Aha! Nowhere!! The span is empty.
       P = P + L		!Convert an offset from L to an array index.
       IF (X - A(P)) 3,4,2	!Compare to the probe point.
   3   R = P			!X < A(P). Shift the right bound down: X precedes A(P).
       GO TO 1			!Try again.
   4   FINDI = P		!A(P) = X. So, X is found, here!
      RETURN			!Done.

Curse it!

   5   FINDI = -L		!X is not found. Insert it at L + 1, i.e. at A(1 - FINDI).
     END FUNCTION FINDI	!A's values need not be all different, merely in order.

</lang> The point of this is that the IF-test is going to initiate some jumps, so why not arrange that one of the bound adjustments needs no subsequent jump to the start of the next iteration - in the first version, both bound adjustments needed such a jump, the GO TO 1 statements. This was done by shifting the code for label 2 up to preceed the code for label 1 - and removing its now pointless GO TO 1 (executed each time), but adding an initial GO TO, executed once only. This sort of change is routine when manipulating spaghetti code...

It is because the method involves such a small amount of effort per iteration that minor changes offer a significant benefit. A lot depends on the implementation of the three-way test: the hope is that after the comparison, the computer hardware has indicators set for various outcomes, so that the necessary conditional branches can be made through successive inspection of those indicators, rather than repeating the comparison. These branch tests may in turn be made in an order that notes which option (if any) involves "falling through" to the next statement, thus it may be better to swap the order of labels 3 and 4. Further, the compiler may itself choose to re-order the various code pieces. First Fortran (in 1958) had a FREQUENCY statement whereby the programmer could indicate which paths were the more likely - for the binary search, equality is the less likely discovery. An assembler version of this routine attended to all these details.

Some compilers do not produce machine code directly, but instead translate the source code into another language which is then compiled, and a common choice for that is C. This is all very well, but C is one of the many languages that do not have a three-way test option and so cannot represent Fortran's three-way IF statement directly. Before emitting asservations of faith that pseudocode such as

 if expression > 0 then optionP
  else if expression < 0 then optionN
   else optionZ;

will be recognised by the excellent compiler producing only one comparison, note that the two expressions are not the same (one has <, the other >), and test what happens with pseudocode such as

 if X > 0 then print "Positive"
  else if X > 0 then print "Still positive";

That is, does the compiler make any remark, and does the resulting machine code contain a redundant test? However, despite all the above, the three-way IF statement has been declared deprecated in later versions of Fortran, with no alternative to repeated testing offered.

Incidentally, the exclusive-bounds version leads to a good version of the interpolation search (whereby the probe position is interpolated, not just in the middle of the span), unlike the version based on inclusive-bounds. Further, the unsourced offering in Wikipedia contains a bug - try searching an array of two equal elements.

GAP

<lang gap>Find := function(v, x)

 local low, high, mid;
 low := 1;
 high := Length(v);
 while low <= high do
   mid := QuoInt(low + high, 2);
   if v[mid] > x then
     high := mid - 1;
   elif v[mid] < x then
     low := mid + 1;
   else
     return mid;
   fi;
 od;
 return fail;

end;

u := [1..10]*7;

  1. [ 7, 14, 21, 28, 35, 42, 49, 56, 63, 70 ]

Find(u, 34);

  1. fail

Find(u, 35);

  1. 5</lang>

Go

Recursive: <lang go>func binarySearch(a []float64, value float64, low int, high int) int {

   if high < low {
       return -1
   }
   mid := (low + high) / 2
   if a[mid] > value {
       return binarySearch(a, value, low, mid-1)
   } else if a[mid] < value {
       return binarySearch(a, value, mid+1, high)
   }
   return mid

}</lang> Iterative: <lang go>func binarySearch(a []float64, value float64) int {

   low := 0
   high := len(a) - 1
   for low <= high {
       mid := (low + high) / 2
       if a[mid] > value {
           high = mid - 1
       } else if a[mid] < value {
           low = mid + 1
       } else {
           return mid
       }
   }
   return -1

}</lang> Library: <lang go>import "sort"

//...

sort.SearchInts([]int{0,1,4,5,6,7,8,9}, 6) // evaluates to 4</lang> Exploration of library source code shows that it uses the mid = low + (high - low) / 2 technique to avoid overflow.

There are also functions sort.SearchFloat64s(), sort.SearchStrings(), and a very general sort.Search() function that allows you to binary search a range of numbers based on any condition (not necessarily just search for an index of an element in an array).

Groovy

Both solutions use sublists and a tracking offset in preference to "high" and "low".

Recursive Solution

<lang groovy>def binSearchR binSearchR = { a, target, offset=0 ->

   def n = a.size()
   def m = n.intdiv(2)
   a.empty \
       ? ["insertion point": offset] \
       : a[m] > target \
           ? binSearchR(a[0..<m], target, offset) \
           : a[m] < target \
               ? binSearchR(a[(m + 1)..<n], target, offset + m + 1) \
               : [index: offset + m]

}</lang>

Iterative Solution

<lang groovy>def binSearchI = { aList, target ->

   def a = aList
   def offset = 0
   while (!a.empty) {
       def n = a.size()
       def m = n.intdiv(2)
       if(a[m] > target) {
           a = a[0..<m]
       } else if (a[m] < target) {
           a = a[(m + 1)..<n]
           offset += m + 1
       } else {
           return [index: offset + m]
       }
   }
   return ["insertion point": offset]

}</lang> Test: <lang groovy>def a = [] as Set def random = new Random() while (a.size() < 20) { a << random.nextInt(30) } def source = a.sort() source[0..-2].eachWithIndex { si, i -> assert si < source[i+1] }

println "${source}" 1.upto(5) {

   target = random.nextInt(10) + (it - 2) * 10
   print "Trial #${it}. Looking for: ${target}"
   def answers = [binSearchR, binSearchI].collect { search ->
       search(source, target)
   }
   assert answers[0] == answers[1]
   println """
   Answer: ${answers[0]}, : ${source[answers[0].values().iterator().next()]}"""

}</lang> Output:

[1, 2, 5, 8, 9, 10, 11, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29]
Trial #1. Looking for: -9
    Answer: [insertion point:0], : 1
Trial #2. Looking for: 7
    Answer: [insertion point:3], : 8
Trial #3. Looking for: 18
    Answer: [index:9], : 18
Trial #4. Looking for: 29
    Answer: [index:19], : 29
Trial #5. Looking for: 32
    Answer: [insertion point:20], : null

Haskell

The algorithm itself, parametrized by an "interrogation" predicate p in the spirit of the explanation above: <lang haskell>binarySearch :: Integral a => (a -> Ordering) -> (a, a) -> Maybe a binarySearch p (low,high)

 | high < low = Nothing
 | otherwise = 
     let mid = (low + high) `div` 2 in 
     case p mid of
       LT -> binarySearch p (low, mid-1)
       GT -> binarySearch p (mid+1, high)
       EQ -> Just mid</lang>

Application to an array: <lang haskell>import Data.Array

binarySearchArray :: (Ix i, Integral i, Ord e) => Array i e -> e -> Maybe i binarySearchArray a x = binarySearch p (bounds a) where

 p m = x `compare` (a ! m)</lang>

The algorithm uses tail recursion, so the iterative and the recursive approach are identical in Haskell (the compiler will convert recursive calls into jumps).

HicEst

<lang hicest>REAL :: n=10, array(n)

  array = NINT( RAN(n) )
  SORT(Vector=array, Sorted=array)
  x = NINT( RAN(n) )
  idx = binarySearch( array, x )
  WRITE(ClipBoard) x, "has position ", idx, "in ", array
END

FUNCTION binarySearch(A, value)

  REAL :: A(1), value
  low = 1
  high = LEN(A)
  DO i = 1, high
    IF( low > high) THEN
      binarySearch = 0
      RETURN
    ELSE
      mid = INT( (low + high) / 2 )
      IF( A(mid) > value) THEN
        high = mid - 1
      ELSEIF( A(mid) < value ) THEN
        low = mid + 1
      ELSE
        binarySearch = mid
        RETURN
      ENDIF
    ENDIF
  ENDDO
END</lang>

<lang hicest>7 has position 9 in 0 0 1 2 3 3 4 6 7 8 5 has position 0 in 0 0 1 2 3 3 4 6 7 8</lang>

Icon and Unicon

Only a recursive solution is shown here. <lang icon>procedure binsearch(A, target)

   if *A = 0 then fail
   mid := *A/2 + 1
   if target > A[mid] then {
       return mid + binsearch(A[(mid+1):0], target)
       }
   else if target < A[mid] then {
       return binsearch(A[1+:(mid-1)], target)
       }
   return mid

end</lang> A program to test this is: <lang icon>procedure main(args)

   target := integer(!args) | 3
   every put(A := [], 1 to 18 by 2)
   outList("Searching", A)
   write(target," is ",("at "||binsearch(A, target)) | "not found")

end

procedure outList(prefix, A)

   writes(prefix,": ")
   every writes(!A," ")
   write()

end</lang> with some sample runs:

->bins 0
Searching: 1 3 5 7 9 11 13 15 17 
0 is not found
->bins 1
Searching: 1 3 5 7 9 11 13 15 17 
1 is at 1
->bins 2
Searching: 1 3 5 7 9 11 13 15 17 
2 is not found
->bins 3
Searching: 1 3 5 7 9 11 13 15 17 
3 is at 2
->bins 16
Searching: 1 3 5 7 9 11 13 15 17 
16 is not found
->bins 17
Searching: 1 3 5 7 9 11 13 15 17 
17 is at 9
->bins 7
Searching: 1 3 5 7 9 11 13 15 17 
7 is at 4
->bins 9
Searching: 1 3 5 7 9 11 13 15 17 
9 is at 5
->bins 10
Searching: 1 3 5 7 9 11 13 15 17 
10 is not found
->

J

J already includes a binary search primitive (I.). The following code offers an interface compatible with the requirement of this task, and returns either the index of the element if it has been found or 'Not Found' otherwise: <lang j>bs=. i. 'Not Found'"_^:(-.@-:) I.</lang> Examples: <lang j> 2 3 5 6 8 10 11 15 19 20 bs 11 6

  2 3 5 6 8 10 11 15 19 20 bs 12

Not Found</lang> Direct tacit iterative and recursive versions to compare to other implementations follow:

Iterative <lang j>'X Y L H M'=. i.5 NB. Setting mnemonics for boxes f=. &({::) NB. Fetching the contents of a box o=. @: NB. Composing verbs (functions)

boxes=. ; , a: $~ 3: NB. Appending 3 (empty) boxes to the inputs LowHigh=. (0 ; # o (X f)) (L,H)} ] NB. Setting the low and high bounds midpoint=. < o (<. o (2 %~ L f + H f)) M} ] NB. Updating the midpoint case=. >: o * o (Y f - M f { X f) NB. Less=0, equal=1, or greater=2

squeeze=. (< o (_1 + M f) H} ])`(< o _: L} ])`(< o (1 + M f) L} ])@.case return=. (M f) o ((<@:('Not Found'"_) M} ]) ^: (_ ~: L f))

bs=. return o (squeeze o midpoint ^: (L f <: H f) ^:_) o LowHigh o boxes</lang> Recursive <lang j>'X Y L H M'=. i.5 NB. Setting mnemonics for boxes f=. &({::) NB. Fetching the contents of a box o=. @: NB. Composing verbs (functions)

boxes=. a: ,~ ; NB. Appending 1 (empty) box to the inputs midpoint=. < o (<. o (2 %~ L f + H f)) M} ] NB. Updating the midpoint case=. >: o * o (Y f - M f { X f) NB. Less=0, equal=1, or greater=2

recur=. (X f bs Y f ; L f ; (_1 + M f))`(M f)`(X f bs Y f ; (1 + M f) ; H f)@.case

bs=. (recur o midpoint`('Not Found'"_) @. (H f < L f) o boxes) :: ([ bs ] ; 0 ; (<: o # o [))</lang>

Java

Iterative <lang java>... //check will be the number we are looking for //nums will be the array we are searching through public static int binarySearch(int[] nums, int check){

       int hi = nums.length - 1;
       int lo = 0;
       while(hi >= lo){
               guess = lo + ((hi - lo) / 2);
               if(nums[guess] > check){
                       hi = guess - 1;
               }else if(nums[guess] < check){
                       lo = guess + 1;
               }else{
                       return guess;
               }
       }
       return -1;

}

public static void main(String[] args){

       int[] searchMe;
       int someNumber;
       ...
       int index = binarySearch(searchMe, someNumber);
       System.out.println(someNumber + ((index == -1) ? " is not in the array" : (" is at index " + index)));
       ...

}</lang> Recursive <lang java>public static void main(String[] args){

       int[] searchMe;
       int someNumber;
       ...
       int index = binarySearch(searchMe, someNumber, 0, searchMe.length);
       System.out.println(someNumber + ((index == -1) ? " is not in the array" : (" is at index " + index)));
       ...

}

public static int binarySearch(int[] nums, int check, int lo, int hi){

       if(hi < lo){
               return -1; //impossible index for "not found"
       }
       int guess = (hi + lo) / 2;
       if(nums[guess] > check){
               return binarySearch(nums, check, lo, guess - 1);
       }else if(nums[guess]<check){
               return binarySearch(nums, check, guess + 1, hi);
       }
       return guess;

}</lang> Library When the key is not found, the following functions return ~insertionPoint (the bitwise complement of the index where the key would be inserted, which is guaranteed to be a negative number).

For arrays: <lang java>import java.util.Arrays;

int index = Arrays.binarySearch(array, thing); int index = Arrays.binarySearch(array, startIndex, endIndex, thing);

// for objects, also optionally accepts an additional comparator argument: int index = Arrays.binarySearch(array, thing, comparator); int index = Arrays.binarySearch(array, startIndex, endIndex, thing, comparator);</lang> For Lists: <lang java>import java.util.Collections;

int index = Collections.binarySearch(list, thing); int index = Collections.binarySearch(list, thing, comparator);</lang>

JavaScript

A straightforward implementation of the pseudocode

Recursive <lang javascript>function binary_search_recursive(a, value, lo, hi) {

   if (hi < lo)
       return null;
   var mid = Math.floor((lo+hi)/2);
   if (a[mid] > value)
       return binary_search_recursive(a, value, lo, mid-1);
   else if (a[mid] < value)
       return binary_search_recursive(a, value, mid+1, hi);
   else
       return mid;

}</lang> Iterative <lang javascript>function binary_search_iterative(a, value) {

   lo = 0;
   hi = a.length - 1;
   while (lo <= hi) {
       var mid = Math.floor((lo+hi)/2);
       if (a[mid] > value)
           hi = mid - 1;
       else if (a[mid] < value)
           lo = mid + 1;
       else
           return mid;
   }
   return null;

}</lang>

jq

If the input array is sorted, then binarySearch(value) as defined here will return an index (i.e. offset) of value in the array if the array contains the value, and otherwise (-1 - ix), where ix is the insertion point, if the value cannot be found. binarySearch will always terminate.

Recursive solution:<lang jq>def binarySearch(value):

 # To avoid copying the array, simply pass in the current low and high offsets
 def binarySearch(low; high):
     if (high < low) then (-1 - low)
     else ( (low + high) / 2 | floor) as $mid
          | if (.[$mid] > value) then binarySearch(low; $mid-1)
            elif (.[$mid] < value) then binarySearch($mid+1; high)
            else $mid
            end
     end;
  binarySearch(0; length-1);</lang>

Example:<lang jq>[-1,-1.1,1,1,null,[null]] | binarySearch(1)</lang>

Output:

2

Julia

Iterative <lang matlab>function binary_search(l, value)

   low = 1
   high = length(l)
   while low <= high
       mid = int((low+high)/2)
       if l[mid] > value 
         high = mid-1
       elseif l[mid] < value 
         low = mid+1
       else 
         return mid
       end
   end     
     return -1

end</lang>

Recursive <lang matlab>function binary_search(l, value, low = 1, high = -1)

 high == -1    &&  (high = length(l))
 l==[]         &&  (return -1)
 low >= high   &&
   ((low > high || l[low] != value) ? (return -1) : return low)
 mid = int((low+high)/2)
 l[mid] > value ? (return binary_search(l, value, low, mid-1))  :
   l[mid] < value ? (return binary_search(l, value, mid+1, high)) :
     return mid

end</lang>

Liberty BASIC

<lang lb> dim theArray(100) for i = 1 to 100

 theArray(i) = i

next i

print binarySearch(80,30,90)

wait

FUNCTION binarySearch(val, lo, hi)

 IF hi < lo THEN
   binarySearch = 0
 ELSE
   middle = int((hi + lo) / 2):print middle
   if val < theArray(middle) then binarySearch = binarySearch(val, lo, middle-1)
   if val > theArray(middle) then binarySearch = binarySearch(val, middle+1, hi)
   if val = theArray(middle) then binarySearch = middle
 END IF

END FUNCTION </lang>

<lang logo>to bsearch :value :a :lower :upper

 if :upper < :lower [output []]
 localmake "mid int (:lower + :upper) / 2
 if item :mid :a > :value [output bsearch :value :a :lower :mid-1]
 if item :mid :a < :value [output bsearch :value :a :mid+1 :upper]
 output :mid

end</lang>

Lua

Iterative <lang lua>function binarySearch (list,value)

   local low = 1
   local high = #list
   local mid = 0
   while low <= high do
       mid = math.floor((low+high)/2)
       if list[mid] > value then high = mid - 1
       else if list[mid] < value then low = mid + 1
            else return mid
            end
       end
   end
   return false

end</lang> Recursive <lang lua>function binarySearch (list, value)

   local function search(low, high)
       if low > high then return false end
       local mid = math.floor((low+high)/2)
       if list[mid] > value then return search(low,mid-1) end
       if list[mid] < value then return search(mid+1,high) end
       return mid
   end
   return search(1,#list)

end</lang>

M4

<lang M4>define(`notfound',`-1')dnl define(`midsearch',`ifelse(defn($1[$4]),$2,$4, `ifelse(eval(defn($1[$4])>$2),1,`binarysearch($1,$2,$3,decr($4))',`binarysearch($1,$2,incr($4),$5)')')')dnl define(`binarysearch',`ifelse(eval($4<$3),1,notfound,`midsearch($1,$2,$3,eval(($3+$4)/2),$4)')')dnl dnl define(`setrange',`ifelse(`$3',`',$2,`define($1[$2],$3)`'setrange($1,incr($2),shift(shift(shift($@))))')')dnl define(`asize',decr(setrange(`a',1,1,3,5,7,11,13,17,19,23,29)))dnl dnl binarysearch(`a',5,1,asize) binarysearch(`a',8,1,asize)</lang> Output:

3
-1

Maple

The calculation of "mid" cannot overflow, since Maple uses arbitrary precision integer arithmetic, and the largest list or array is far, far smaller than the effective range of integers.

Recursive <lang Maple>BinarySearch := proc( A, value, low, high )

       description "recursive binary search";
       if high < low then
               FAIL
       else
               local mid := iquo( high + low, 2 );
               if A[ mid ] > value then
                       thisproc( A, value, low, mid - 1 )
               elif A[ mid ] < value then
                       thisproc( A, value, mid + 1, high )
               else
                       mid
               end if
       end if

end proc:</lang>

Iterative <lang Maple>BinarySearch := proc( A, value )

       description "iterative binary search";
       local low, high;
       low, high := ( lowerbound, upperbound )( A );
       while low <= high do
               local mid := iquo( low + high, 2 );
               if A[ mid ] > value then
                       high := mid - 1
               elif A[ mid ] < value then
                       low := mid + 1
               else
                       return mid
               end if
       end do;
       FAIL

end proc:</lang> We can use either lists or Arrays (or Vectors) for the first argument for these. <lang Maple>> N := 10: > P := [seq]( ithprime( i ), i = 1 .. N ): > BinarySearch( P, 12, 1, N ); # recursive version

                                 FAIL

> BinarySearch( P, 13, 1, N ); # recursive version

                                  6

> BinarySearch( Array( P ), 13, 1, N ); # make P into an array

                                  6

> PP := Array( -2 .. 7, P ): # check it works if the array is not 1-based. > BinarySearch( PP, 13 ); # iterative version

                                  3

> PP[ 3 ];

                                  13</lang>


Mathematica

Recursive <lang Mathematica>BinarySearchRecursive[x_List, val_, lo_, hi_] :=

Module[{mid = lo + Round@((hi - lo)/2)},
 If[hi < lo, Return[-1]];
 Return[ 
  Which[xmid > val, BinarySearchRecursive[x, val, lo, mid - 1],
   xmid < val, BinarySearchRecursive[x, val, mid + 1, hi],
   True, mid]
  ];
 ]</lang>

Iterative <lang Mathematica>BinarySearch[x_List, val_] := Module[{lo = 1, hi = Length@x, mid},

 While[lo <= hi,
  mid = lo + Round@((hi - lo)/2);
  Which[xmid > val, hi = mid - 1,
   xmid < val, lo = mid + 1,
   True, Return[mid]
   ];
  ];
 Return[-1];
 ]</lang>

MATLAB

Recursive <lang MATLAB>function mid = binarySearchRec(list,value,low,high)

   if( high < low )
       mid = [];
       return
   end
   
   mid = floor((low + high)/2);
   
   if( list(mid) > value )
       mid = binarySearchRec(list,value,low,mid-1);
       return
   elseif( list(mid) < value )
       mid = binarySearchRec(list,value,mid+1,high);
       return
   else
       return
   end
       

end</lang> Sample Usage: <lang MATLAB>>> binarySearchRec([1 2 3 4 5 6 6.5 7 8 9 11 18],6.5,1,numel([1 2 3 4 5 6 6.5 7 8 9 11 18]))

ans =

    7</lang>

Iterative <lang MATLAB>function mid = binarySearchIter(list,value)

   low = 1;
   high = numel(list) - 1;
   
   while( low <= high )
       mid = floor((low + high)/2);
   
       if( list(mid) > value )
           high = mid - 1;
       elseif( list(mid) < value )
       	low = mid + 1;
       else
           return
       end
   end
   
   mid = [];
           

end</lang> Sample Usage: <lang MATLAB>>> binarySearchIter([1 2 3 4 5 6 6.5 7 8 9 11 18],6.5)

ans =

    7</lang>

Maxima

<lang maxima>find(L, n) := block([i: 1, j: length(L), k, p],

   if n < L[i] or n > L[j] then 0 else (
       while j - i > 0 do (
           k: quotient(i + j, 2),
           p: L[k],
           if n < p then j: k - 1 elseif n > p then i: k + 1 else i: j: k
       ),
       if n = L[i] then i else 0
   )

)$

".."(a, b) := if a < b then makelist(i, i, a, b) else makelist(i, i, a, b, -1)$ infix("..")$

a: sublist(1 .. 1000, primep)$

find(a, 27); 0 find(a, 421); 82</lang>

MAXScript

Iterative <lang maxscript>fn binarySearchIterative arr value = (

   lower = 1
   upper = arr.count
   while lower <= upper do
   (
       mid = (lower + upper) / 2
       if arr[mid] > value then
       (
           upper = mid - 1
       )
       else if arr[mid] < value then
       (
           lower = mid + 1
       )
       else
       (
           return mid
       )
   )
   -1

)

arr = #(1, 3, 4, 5, 6, 7, 8, 9, 10) result = binarySearchIterative arr 6</lang> Recursive <lang maxscript>fn binarySearchRecursive arr value lower upper = (

   if lower == upper then
   (
       if arr[lower] == value then
       (
           return lower
       )
       else
       (
           return -1
       )
   )
   mid = (lower + upper) / 2
   if arr[mid] > value then
   (
       return binarySearchRecursive arr value lower (mid-1)
   )
   else if arr[mid] < value then
   (
       return binarySearchRecursive arr value (mid+1) upper
   )
   else
   (
       return mid
   )

)

arr = #(1, 3, 4, 5, 6, 7, 8, 9, 10) result = binarySearchRecursive arr 6 1 arr.count</lang>

Nim

Library <lang nim>import algorithm

let s = @[2,3,4,5,6,7,8,9,10,12,14,16,18,20,22,25,27,30] echo binarySearch(s, 10)</lang>

Iterative (from the standard library) <lang nim>proc binarySearch[T](a: openArray[T], key: T): int =

 var b = len(a)
 while result < b:
   var mid = (result + b) div 2
   if a[mid] < key: result = mid + 1
   else: b = mid
 if result >= len(a) or a[result] != key: result = -1</lang>

Niue

Library <lang ocaml>1 2 3 4 5 3 bsearch . ( => 2 ) 5 bsearch . ( => 0 ) 'sam 'tom 'kenny ( must be sorted before calling bsearch ) sort .s ( => kenny sam tom ) 'sam bsearch . ( => 1 ) 'tom bsearch . ( => 0 ) 'kenny bsearch . ( => 2 ) 'tony bsearch . ( => -1)</lang>

Objeck

Iterative <lang objeck>use Structure;

bundle Default {

 class BinarySearch {
   function : Main(args : String[]) ~ Nil {
     values := [-1, 3, 8, 13, 22];
     DoBinarySearch(values, 13)->PrintLine();
     DoBinarySearch(values, 7)->PrintLine();
   }
   
   function : native : DoBinarySearch(values : Int[], value : Int) ~ Int {
     low := 0;
     high := values->Size() - 1;
     while(low <= high) {
       mid := (low + high) / 2;
       
       if(values[mid] > value) {
         high := mid - 1;
       }
       else if(values[mid] < value) {
         low := mid + 1;
       }
       else {
         return mid;
       };
     };
     return -1;
   }
 }

}</lang>

Objective-C

Iterative <lang objc>#import <Foundation/Foundation.h>

@interface NSArray (BinarySearch) // Requires all elements of this array to implement a -compare: method which // returns a NSComparisonResult for comparison. // Returns NSNotFound when not found - (NSInteger) binarySearch:(id)key; @end

@implementation NSArray (BinarySearch) - (NSInteger) binarySearch:(id)key {

 NSInteger lo = 0;
 NSInteger hi = [self count] - 1;
 while (lo <= hi) {
   NSInteger mid = lo + (hi - lo) / 2;
   id midVal = self[mid];
   switch ([midVal compare:key]) {
   case NSOrderedAscending:
     lo = mid + 1;
     break;
   case NSOrderedDescending:
     hi = mid - 1;
     break;
   case NSOrderedSame:
     return mid;
   }
 }
 return NSNotFound;

} @end

int main() {

 @autoreleasepool {
   NSArray *a = @[@1, @3, @4, @5, @6, @7, @8, @9, @10];
   NSLog(@"6 is at position %d", [a binarySearch:@6]); // prints 4
 }
 return 0;

}</lang> Recursive <lang objc>#import <Foundation/Foundation.h>

@interface NSArray (BinarySearchRecursive) // Requires all elements of this array to implement a -compare: method which // returns a NSComparisonResult for comparison. // Returns NSNotFound when not found - (NSInteger) binarySearch:(id)key inRange:(NSRange)range; @end

@implementation NSArray (BinarySearchRecursive) - (NSInteger) binarySearch:(id)key inRange:(NSRange)range {

 if (range.length == 0)
   return NSNotFound;
 NSInteger mid = range.location + range.length / 2;
 id midVal = self[mid];
 switch ([midVal compare:key]) {
 case NSOrderedAscending:
   return [self binarySearch:key
                     inRange:NSMakeRange(mid + 1, NSMaxRange(range) - (mid + 1))];
 case NSOrderedDescending:
   return [self binarySearch:key
                     inRange:NSMakeRange(range.location, mid - range.location)];
 default:
   return mid;
 }

} @end

int main() {

 @autoreleasepool {
   NSArray *a = @[@1, @3, @4, @5, @6, @7, @8, @9, @10];
   NSLog(@"6 is at position %d", [a binarySearch:@6]); // prints 4
 }
 return 0;

}</lang> Library

Works with: Mac OS X version 10.6+

<lang objc>#import <Foundation/Foundation.h>

int main() {

 @autoreleasepool {
   NSArray *a = @[@1, @3, @4, @5, @6, @7, @8, @9, @10];
   NSLog(@"6 is at position %lu", [a indexOfObject:@6
                                     inSortedRange:NSMakeRange(0, [a count])
                                           options:0
                                   usingComparator:^(id x, id y){ return [x compare: y]; }]); // prints 4
 }
 return 0;

}</lang> Using Core Foundation (part of Cocoa, all versions): <lang objc>#import <Foundation/Foundation.h>

CFComparisonResult myComparator(const void *x, const void *y, void *context) {

 return [(__bridge id)x compare:(__bridge id)y];

}

int main(int argc, const char *argv[]) {

 @autoreleasepool {
   NSArray *a = @[@1, @3, @4, @5, @6, @7, @8, @9, @10];
   NSLog(@"6 is at position %ld", CFArrayBSearchValues((__bridge CFArrayRef)a,
                                                       CFRangeMake(0, [a count]),
                                                       (__bridge const void *)@6,
                                                       myComparator,
                                                       NULL)); // prints 4
 }
 return 0;

}</lang>

OCaml

Recursive <lang ocaml>let rec binary_search a value low high =

 if high = low then
   if a.(low) = value then
     low
   else
     raise Not_found
 else let mid = (low + high) / 2 in
   if a.(mid) > value then
     binary_search a value low (mid - 1)
   else if a.(mid) < value then
     binary_search a value (mid + 1) high
   else
     mid</lang>

Output:

# let arr = [|1; 3; 4; 5; 6; 7; 8; 9; 10|];;
val arr : int array = [|1; 3; 4; 5; 6; 7; 8; 9; 10|]
# binary_search arr 6 0 (Array.length arr - 1);;
- : int = 4
# binary_search arr 2 0 (Array.length arr - 1);;
Exception: Not_found.

OCaml supports proper tail-recursion; so this is effectively the same as iteration.

Octave

Recursive <lang octave>function i = binsearch_r(array, val, low, high)

 if ( high < low )
   i = 0;
 else
   mid = floor((low + high) / 2);
   if ( array(mid) > val )
     i = binsearch_r(array, val, low, mid-1);
   elseif ( array(mid) < val ) 
     i = binsearch_r(array, val, mid+1, high);
   else
     i = mid;
   endif
 endif

endfunction</lang> Iterative <lang octave>function i = binsearch(array, value)

 low = 1;
 high = numel(array);
 i = 0;
 while ( low <= high )
   mid = floor((low + high)/2);
   if (array(mid) > value) 
     high = mid - 1;
   elseif (array(mid) < value)
     low = mid + 1;
   else
     i = mid;
     return;
   endif
 endwhile

endfunction</lang> Example of using <lang octave>r = sort(discrete_rnd(10, [1:10], ones(10,1)/10)); disp(r); binsearch_r(r, 5, 1, numel(r)) binsearch(r, 5)</lang>

ooRexx

<lang ooRexx> data = .array~of(1, 3, 5, 7, 9, 11) -- search keys with a number of edge cases searchkeys = .array~of(0, 1, 4, 7, 11, 12) say "recursive binary search" loop key over searchkeys

   pos = recursiveBinarySearch(data, key)
   if pos == 0 then say "Key" key "not found"
   else say "Key" key "found at postion" pos

end say say "iterative binary search" loop key over searchkeys

   pos = iterativeBinarySearch(data, key)
   if pos == 0 then say "Key" key "not found"
   else say "Key" key "found at postion" pos

end

routine recursiveBinarySearch
 -- NB:  Rexx arrays are 1-based
 use strict arg data, value, low = 1, high = (data~items)
 -- make sure we don't go beyond the bounds
 high = min(high, data~items)
 -- zero indicates not found
 if high < low then return 0
 mid = (low + high) % 2
 if data[mid] > value then
     return recursiveBinarySearch(data, value, low, mid - 1)
 else if data[mid] < value then
     return recursiveBinarySearch(data, value, mid + 1, high)
 -- got it!
 return mid
routine iterativeBinarySearch
 -- NB:  Rexx arrays are 1-based
 use strict arg data, value, low = 1, high = (data~items)
 -- make sure we don't go beyond the bounds
 high = min(high, data~items)
 -- zero indicates not found
 if high < low then return 0
 loop while low <= high
     mid = (low + high) % 2
     if data[mid] > value then
         high = mid - 1
     else if data[mid] < value then
         low = mid + 1
     else
         return mid
 end
 return 0

</lang> Output:

recursive binary search
Key 0 not found
Key 1 found at postion 1
Key 4 not found
Key 7 found at postion 4
Key 11 found at postion 6
Key 12 not found

iterative binary search
Key 0 not found
Key 1 found at postion 1
Key 4 not found
Key 7 found at postion 4
Key 11 found at postion 6
Key 12 not found

Oz

Recursive <lang oz>declare

 fun {BinarySearch Arr Val}
    fun {Search Low High}
       if Low > High then nil
       else
          Mid = (Low+High) div 2
       in
          if Val < Arr.Mid then {Search Low Mid-1}
          elseif Val > Arr.Mid then {Search Mid+1 High}
          else [Mid]
          end
       end
    end
 in
    {Search {Array.low Arr} {Array.high Arr}}
 end
 A = {Tuple.toArray unit(2 3 5 6 8)}

in

 {System.printInfo "searching 4: "} {Show {BinarySearch A 4}}
 {System.printInfo "searching 8: "} {Show {BinarySearch A 8}}</lang>

Iterative <lang oz>declare

 fun {BinarySearch Arr Val}
    Low = {NewCell {Array.low Arr}}
    High = {NewCell {Array.high Arr}}
 in
    for while:@Low =< @High  return:Return  default:nil do
       Mid = (@Low + @High) div 2
    in
       if Val < Arr.Mid then High := Mid-1
       elseif Val > Arr.Mid then Low := Mid+1
       else {Return [Mid]}
       end
    end
 end
 A = {Tuple.toArray unit(2 3 5 6 8)}

in

 {System.printInfo "searching 4: "} {Show {BinarySearch A 4}}
 {System.printInfo "searching 8: "} {Show {BinarySearch A 8}}</lang>

PARI/GP

Note that, despite the name, setsearch works on sorted vectors as well as sets. <lang parigp>setsearch(s, n)</lang>

Pascal

Iterative <lang pascal>function binary_search(element: real; list: array of real): integer; var

   l, m, h: integer;

begin

   l := 0;
   h := High(list) - 1;
   binary_search := -1;
   while l <= h do
   begin
       m := (l + h) div 2;
       if list[m] > element then
       begin
           h := m - 1;
       end
       else if list[m] < element then
       begin
           l := m + 1;
       end
       else
       begin
           binary_search := m;
           break;
       end;
   end;

end;</lang> Usage: <lang pascal>var

   list: array[0 .. 9] of real;

// ... indexof := binary_search(123, list);</lang>

Perl

Iterative <lang perl>sub binary_search {

 my ($array_ref, $value, $left, $right) = @_;
 while ($left <= $right) {
   my $middle = int(($right + $left) / 2);
   if ($array_ref->[$middle] == $value) {
     return 1;
   }
   if ($value < $array_ref->[$middle]) {
     $right = $middle - 1;
   } else {
     $left = $middle + 1;
   }
 }
 return 0;

}</lang> Recursive <lang perl>sub binary_search {

 my ($array_ref, $value, $left, $right) = @_;
 if ($right < $left) {
   return 0;
 }
 my $middle = int(($right + $left) / 2);
 if ($array_ref->[$middle] == $value) {
   return 1;
 }
 if ($value < $array_ref->[$middle]) {
   binary_search($array_ref, $value, $left, $middle - 1);
 } else {
   binary_search($array_ref, $value, $middle + 1, $right);
 }

}</lang>

Perl 6

With either of the below implementations of binary_search, one could write a function to search any object that does Positional this way: <lang perl6>sub search (@a, $x --> Int) {

   binary_search { $x cmp @a[$^i] }, 0, @a.end

}</lang> Iterative <lang perl6>sub binary_search (&p, Int $lo is copy, Int $hi is copy --> Int) {

   until $lo > $hi {
       my Int $mid = ($lo + $hi) div 2;
       given p $mid {
           when -1 { $hi = $mid - 1; } 
           when  1 { $lo = $mid + 1; }
           default { return $mid;    }
       }
   }
   fail;

}</lang> Recursive

Translation of: Haskell

<lang perl6>sub binary_search (&p, Int $lo, Int $hi --> Int) {

   $lo <= $hi or fail;
   my Int $mid = ($lo + $hi) div 2;
   given p $mid {
       when -1 { binary_search &p, $lo,      $mid - 1 } 
       when  1 { binary_search &p, $mid + 1, $hi      }
       default { $mid                                 }
   }

}</lang>

PHP

Iterative <lang php>function binary_search( $array, $secret, $start, $end ) {

       do
       {
               $guess = (int)($start + ( ( $end - $start ) / 2 ));
               if ( $array[$guess] > $secret )
                       $end = $guess;
               if ( $array[$guess] < $secret )
                       $start = $guess;
               if ( $end < $start)
                       return -1;
       } while ( $array[$guess] != $secret );
       return $guess;

}</lang> Recursive <lang php>function binary_search( $array, $secret, $start, $end ) {

       $guess = (int)($start + ( ( $end - $start ) / 2 ));
       if ( $end < $start)
               return -1;
       if ( $array[$guess] > $secret )
               return (binary_search( $array, $secret, $start, $guess ));
       if ( $array[$guess] < $secret )
               return (binary_search( $array, $secret, $guess, $end ) );
       return $guess;

}</lang>

PicoLisp

Recursive <lang PicoLisp>(de recursiveSearch (Val Lst Len)

  (unless (=0 Len)
     (let (N (inc (/ Len 2))  L (nth Lst N))
        (cond
           ((= Val (car L)) Val)
           ((> Val (car L))
              (recursiveSearch Val (cdr L) (- Len N)) )
           (T (recursiveSearch Val Lst (dec N))) ) ) ) )</lang>

Output:

: (recursiveSearch 5 (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9)
-> 5
: (recursiveSearch '(a b) (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9)
-> (a b)
: (recursiveSearch (9) (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9)
-> NIL

Iterative <lang PicoLisp>(de iterativeSearch (Val Lst Len)

  (use (N L)
     (loop
        (T (=0 Len))
        (setq
           N (inc (/ Len 2))
           L (nth Lst N) )
        (T (= Val (car L)) Val)
        (if (> Val (car L))
           (setq Lst (cdr L)  Len (- Len N))
           (setq Len (dec N)) ) ) ) )</lang>

Output:

: (iterativeSearch 5 (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9)
-> 5
: (iterativeSearch '(a b) (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9)
-> (a b)
: (iterativeSearch (9) (2 3 5 8 "abc" "klm" "xyz" (7) (a b)) 9)
-> NIL

PL/I

<lang PL/I>/* A binary search of list A for element M */ search: procedure (A, M) returns (fixed binary);

  declare (A(*), M) fixed binary;
  declare (l, r, mid) fixed binary;
  l = lbound(a,1)-1; r = hbound(A,1)+1;
  do while (l <= r);
     mid = (l+r)/2;
     if A(mid) = M then return (mid);
     if A(mid) < M then
        L = mid+1;
     else
        R = mid-1;
  end;
  return (lbound(A,1)-1);

end search;</lang>

Pop11

Iterative <lang pop11>define BinarySearch(A, value);

   lvars low = 1, high = length(A), mid;
   while low <= high do
       (low + high) div 2 -> mid;
       if A(mid) > value then
           mid - 1 -> high;
       elseif A(mid) < value then
           mid + 1 -> low;
       else
           return(mid);
       endif;
   endwhile;
   return("not_found");

enddefine;

/* Tests */ lvars A = {2 3 5 6 8};

BinarySearch(A, 4) => BinarySearch(A, 5) => BinarySearch(A, 8) =></lang> Recursive <lang pop11>define BinarySearch(A, value);

   define do_it(low, high);
       if high < low then
           return("not_found");
       endif;
       (low + high) div 2 -> mid;
       if A(mid) > value then
           do_it(low, mid-1);
       elseif A(mid) < value then
           do_it(mid+1, high);
       else
           mid;
       endif;
   enddefine;
   do_it(1, length(A));

enddefine;</lang>

Prolog

Tested with Gnu-Prolog. <lang Prolog>bin_search(Elt,List,Result):-

 length(List,N), bin_search_inner(Elt,List,1,N,Result).
 

bin_search_inner(Elt,List,J,J,J):-

 nth(J,List,Elt).

bin_search_inner(Elt,List,Begin,End,Mid):-

 Begin < End,
 Mid is (Begin+End) div 2,
 nth(Mid,List,Elt).

bin_search_inner(Elt,List,Begin,End,Result):-

 Begin < End,
 Mid is (Begin+End) div 2,
 nth(Mid,List,MidElt),
 MidElt < Elt,
 NewBegin is Mid+1,
 bin_search_inner(Elt,List,NewBegin,End,Result).

bin_search_inner(Elt,List,Begin,End,Result):-

 Begin < End,
 Mid is (Begin+End) div 2,
 nth(Mid,List,MidElt),
 MidElt > Elt,
 NewEnd is Mid-1,
 bin_search_inner(Elt,List,Begin,NewEnd,Result).</lang>
Output examples:
 ?- bin_search(4,[1,2,4,8,16,32,64,128],Result).
Result = 3.

?- bin_search(5,[1,2,4,8],Result).
Result = -1.

PureBasic

Both recursive and iterative procedures are included and called in the code below. <lang PureBasic>#Recursive = 0 ;recursive binary search method

  1. Iterative = 1 ;iterative binary search method
  2. NotFound = -1 ;search result if item not found
Recursive

Procedure R_BinarySearch(Array a(1), value, low, high)

 Protected mid
 If high < low
   ProcedureReturn #NotFound
 EndIf 
 
 mid = (low + high) / 2
 If a(mid) > value
   ProcedureReturn R_BinarySearch(a(), value, low, mid - 1)
 ElseIf a(mid) < value
   ProcedureReturn R_BinarySearch(a(), value, mid + 1, high)
 Else
   ProcedureReturn mid
 EndIf 

EndProcedure

Iterative

Procedure I_BinarySearch(Array a(1), value, low, high)

 Protected mid
 While low <= high
   mid = (low + high) / 2
   If a(mid) > value            
     high = mid - 1
   ElseIf a(mid) < value
     low = mid + 1
   Else
     ProcedureReturn mid
   EndIf
 Wend
 ProcedureReturn #NotFound

EndProcedure

Procedure search (Array a(1), value, method)

 Protected idx
 
 Select method
   Case #Iterative
     idx = I_BinarySearch(a(), value, 0, ArraySize(a()))
   Default
     idx = R_BinarySearch(a(), value, 0, ArraySize(a()))
 EndSelect
 
 Print("  Value " + Str(Value))
 If idx < 0
   PrintN(" not found")
 Else
   PrintN(" found at index " + Str(idx))
 EndIf

EndProcedure


  1. NumElements = 9 ;zero based count

Dim test(#NumElements)

DataSection

 Data.i 2, 3, 5, 6, 8, 10, 11, 15, 19, 20

EndDataSection

fill the test array

For i = 0 To #NumElements

 Read test(i)

Next


If OpenConsole()

 PrintN("Recursive search:")
 search(test(), 4, #Recursive)
 search(test(), 8, #Recursive)
 search(test(), 20, #Recursive)
 PrintN("")
 PrintN("Iterative search:")
 search(test(), 4, #Iterative)
 search(test(), 8, #Iterative)
 search(test(), 20, #Iterative)
 Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")
 Input()
 CloseConsole()

EndIf</lang> Sample output:

Recursive search:
  Value 4 not found
  Value 8 found at index 4
  Value 20 found at index 9

Iterative search:
  Value 4 not found
  Value 8 found at index 4
  Value 20 found at index 9

Python

Python: Iterative

<lang python>def binary_search(l, value):

   low = 0
   high = len(l)-1
   while low <= high: 
       mid = (low+high)//2
       if l[mid] > value: high = mid-1
       elif l[mid] < value: low = mid+1
       else: return mid
   return -1</lang>

Python: Recursive

<lang python>def binary_search(l, value, low = 0, high = -1):

   if not l: return -1
   if(high == -1): high = len(l)-1
   if low == high:
       if l[low] == value: return low
       else: return -1
   mid = (low+high)//2
   if l[mid] > value: return binary_search(l, value, low, mid-1)
   elif l[mid] < value: return binary_search(l, value, mid+1, high)
   else: return mid</lang>

Python: Library


Python's bisect module provides binary search functions <lang python>index = bisect.bisect_left(list, item) # leftmost insertion point index = bisect.bisect_right(list, item) # rightmost insertion point index = bisect.bisect(list, item) # same as bisect_right

  1. same as above but actually insert the item into the list at the given place:

bisect.insort_left(list, item) bisect.insort_right(list, item) bisect.insort(list, item)</lang>

Python: Alternate

Complete binary search function with python's bisect module:

<lang python>from bisect import bisect_left

def binary_search(a, x, lo=0, hi=None): # can't use a to specify default for hi

   hi = hi if hi is not None else len(a) # hi defaults to len(a)   
   pos = bisect_left(a,x,lo,hi)          # find insertion position
   return (pos if pos != hi and a[pos] == x else -1) # don't walk off the end</lang>

Python: Approximate binary search

Returns the nearest item of list l to value. <lang python>def binary_search(l, value):

   low = 0
   high = len(l)-1
   while low + 1 < high:
       mid = (low+high)//2
       if l[mid] > value:
           high = mid
       elif l[mid] < value:
           low = mid
       else:
           return mid
   return high if abs(l[high] - value) < abs(l[low] - value) else low</lang>

R

Recursive <lang R>BinSearch <- function(A, value, low, high) {

 if ( high < low ) {
   return(NULL)
 } else {
   mid <- floor((low + high) / 2)
   if ( A[mid] > value )
     BinSearch(A, value, low, mid-1)
   else if ( A[mid] < value )
     BinSearch(A, value, mid+1, high)
   else
     mid
 }

}</lang> Iterative <lang R>IterBinSearch <- function(A, value) {

 low = 1
 high = length(A)
 i = 0
 while ( low <= high ) {
   mid <- floor((low + high)/2)
   if ( A[mid] > value )
     high <- mid - 1
   else if ( A[mid] < value )
     low <- mid + 1
   else
     return(mid)
 }
 NULL

}</lang> Example <lang R>a <- 1:100 IterBinSearch(a, 50) BinSearch(a, 50, 1, length(a)) # output 50 IterBinSearch(a, 101) # outputs NULL</lang>

Racket

<lang racket>

  1. lang racket

(define (binary-search x v)

 ; loop : index index -> index or #f
 ;   return i s.t. l<=i<h and v[i]=x
 (define (loop l h)
   (cond [(>= l h) #f]
         [else (define m (quotient (+ l h) 2))
               (define y (vector-ref v m))
               (cond 
                 [(> y x) (loop l (- m 1))]
                 [(< y x) (loop (+ m 1) h)]
                 [else m])]))
 (loop 0 (vector-length v)))

</lang> Examples:

(binary-search 6 #(1 3 4 5 6 7 8 9 10))  ; gives 4
(binary-search 6 #(1 3 4 5 7 8 9 10))    ; gives #f 

REXX

recursive version

Incidentally, REXX doesn't care if the values are integers (or even numbers), as long as they're in order.

(includes the extra credit) <lang rexx>/*REXX program finds a value in a list using a recursive binary search. */ @= 11 17 29 37 41 59 67 71 79 97 101 107 127 137 149 163 179 163 179,

 191 197 223 227 239 251 269 277 281 307 311 331 347 367 379 397 419 431 439,
 457 461 479 487 499 521 541 557 569 587 599 613 617 631 641 659 673 701 719,
 727 739 751 757 769 787 809 821 827 853 857 877 881 907 929 937 967 991 1009  
                                      /* [↑]   a list of strong primes.*/

parse arg ? . /*get a number the user specified*/ if ?== then do

             say;       say '*** error! *** no arg specified.';       say
             exit 13
             end
low = 1

high = words(@) avg=(word(@,1)+word(@,high))/2

loc = binarySearch(low,high)

if loc==-1 then do

                say  ?  "wasn't found in the list."
                exit                  /*stick a fork in it, we're done.*/
                end
           else say  ?  'is in the list, its index is:'  loc

say say 'arithmetic mean of the' high "values=" avg exit /*stick a fork in it, we're done.*/ /*───────────────────────────────────BINARYSEARCH subroutine────────────*/ binarySearch: procedure expose @ ?; parse arg low,high if high<low then return -1 /*the item wasn't found in list. */ mid=(low+high)%2 y=word(@,mid) if ?=y then return mid if y>? then return binarySearch(low, mid-1)

                 return  binarySearch(mid+1, high)</lang>

output when using the input of: 499.1

499.1 wasn't found in the list.

output when using the input of: 499

arithmetic mean of the 74 values= 510

499 is in the list, its index is: 41

iterative version

(includes the extra credit) <lang rexx>/*REXX program finds a value in a list using an iterative binary search.*/ @= 3 7 13 19 23 31 43 47 61 73 83 89 103 109 113 131 139 151 167 181,

 193 199 229 233 241 271 283 293 313 317 337 349 353 359 383 389 401 409 421 433,
 443 449 463 467 491 503 509 523 547 571 577 601 619 643 647 661 677 683 691 709,
 743 761 773 797 811 823 829 839 859 863 883 887 911 919 941 953 971 983 1013
                                      /* [↑]     a list of weak primes.*/

parse arg ? . /*get a number the user specified*/ if ?== then do

              say;      say '*** error! *** no arg specified.';       say
              exit 13
              end
low = 1

high = words(@) say 'arithmetic mean of the' high "values=" (word(@,1)+word(@,high))/2 say

              do  while  low<=high;   mid=(low+high)%2;     y=word(@,mid)
              if ?=y  then do
                           say ?  'is in the list, its index is:'  mid
                           exit       /*stick a fork in it, we're done.*/
                           end
              if y>?  then high=mid-1
                      else  low=mid+1
              end   /*while*/

say  ? "wasn't found in the list."

                                      /*stick a fork in it, we're done.*/</lang>

output when using the input of: -314

arithmetic mean of the 79 values= 508

-314 wasn't found in the list.

output when using the input of: 619

arithmetic mean of the 79 values= 508

619 is in the list, its index is: 53

Ruby

Recursive <lang ruby>class Array

 def binary_search(val, low=0, high=(length - 1))
   return nil if high < low
   mid = (low + high) / 2
   case
     when self[mid] > val then binary_search(val, low, mid-1)
     when self[mid] < val then binary_search(val, mid+1, high)
     else mid
   end
 end

end

ary = [0,1,4,5,6,7,8,9,12,26,45,67,78,90,98,123,211,234,456,769,865,2345,3215,14345,24324]

[0,42,45,24324,99999].each do |val|

 i = ary.binary_search(val)
 if i
   puts "found #{val} at index #{i}: #{ary[i]}"
 else
   puts "#{val} not found in array"
 end

end</lang> Iterative <lang ruby>class Array

 def binary_search_iterative(val)
   low, high = 0, length - 1
   while low <= high
     mid = (low + high) / 2
     case
       when self[mid] > val then high = mid - 1
       when self[mid] < val then low = mid + 1
       else return mid
     end
   end
   nil
 end

end

ary = [0,1,4,5,6,7,8,9,12,26,45,67,78,90,98,123,211,234,456,769,865,2345,3215,14345,24324]

[0,42,45,24324,99999].each do |val|

 i = ary.binary_search_iterative(val)
 if i
   puts "found #{val} at index #{i}: #{ary[i]}"
 else
   puts "#{val} not found in array"
 end

end</lang>

Output:
found 0 at index 0: 0
42 not found in array
found 45 at index 10: 45
found 24324 at index 24: 24324
99999 not found in array

Built in Since Ruby 2.0, arrays ship with a binary search method "bsearch": <lang ruby>haystack = [0,1,4,5,6,7,8,9,12,26,45,67,78,90,98,123,211,234,456,769,865,2345,3215,14345,24324] needles = [0,42,45,24324,99999]

needles.select{|needle| haystack.bsearch{|hay| needle <=> hay} } # => [0, 45, 24324] </lang>Which is 60% faster than "needles & haystack".

Run BASIC

Recursive <lang runbasic>dim theArray(100) global theArray for i = 1 to 100

 theArray(i) = i

next i

print binarySearch(80,30,90)

FUNCTION binarySearch(val, lo, hi)

 IF hi < lo THEN
   binarySearch = 0
 ELSE
   middle = (hi + lo) / 2
   if val < theArray(middle) then binarySearch = binarySearch(val, lo, middle-1)
   if val > theArray(middle) then binarySearch = binarySearch(val, middle+1, hi)
   if val = theArray(middle) then binarySearch = middle
 END IF

END FUNCTION</lang>

Rust

Iterative <lang rust>fn binary_search(haystack: ~[int], needle: int) -> int {

   let mut low  = 0;
   let mut high = haystack.len() as int - 1;
   if high == 0 { return -1 }
   while low <= high {
       // avoid overflow
       let mid = low + (high - low) / 2;
       if      haystack[mid] > needle { high = mid - 1 }
       else if haystack[mid] < needle { low  = mid + 1 }
       else                           { return mid     }
   }
   return -1;

}</lang>

Scala

Recursive <lang scala>def binarySearch[A <% Ordered[A]](a: IndexedSeq[A], v: A) = {

 def recurse(low: Int, high: Int): Option[Int] = (low + high) / 2 match {
   case _ if high < low => None
   case mid if a(mid) > v => recurse(low, mid - 1)
   case mid if a(mid) < v => recurse(mid + 1, high)
   case mid => Some(mid)
 }
 recurse(0, a.size - 1)

}</lang> Iterative <lang scala>def binarySearch[A <% Ordered[A]](xs: Seq[A], x: A): Option[Int] = {

 var (low, high) = (0, xs.size - 1)
 while (low <= high)
   (low + high) / 2 match {
     case mid if xs(mid) > x => high = mid - 1
     case mid if xs(mid) < x => low = mid + 1
     case mid => return Some(mid)
   }
 None

}</lang> Test <lang scala>def testBinarySearch(n: Int) = {

 val odds = 1 to n by 2
 val result = (0 to n).flatMap(binarySearch(odds, _))
 assert(result == (0 until odds.size))
 println(s"$odds are odd natural numbers")
 for (it <- result)
   println(s"$it is ordinal of ${odds(it)}")

}

def main() = testBinarySearch(12)</lang> Output:

Range(1, 3, 5, 7, 9, 11) are odd natural numbers
0 is ordinal of 1
1 is ordinal of 3
2 is ordinal of 5
3 is ordinal of 7
4 is ordinal of 9
5 is ordinal of 11

Scheme

Recursive <lang scheme>(define (binary-search value vector)

 (let helper ((low 0)
              (high (- (vector-length vector) 1)))
   (if (< high low)
       #f
       (let ((middle (quotient (+ low high) 2)))
         (cond ((> (vector-ref vector middle) value)
                (helper low (- middle 1)))
               ((< (vector-ref vector middle) value)
                (helper (+ middle 1) high))
               (else middle))))))</lang>

Example:

> (binary-search 6 '#(1 3 4 5 6 7 8 9 10))
4
> (binary-search 2 '#(1 3 4 5 6 7 8 9 10))
#f

The calls to helper are in tail position, so since Scheme implementations support proper tail-recursion the computation proces is iterative.

Seed7

Iterative <lang seed7>const func integer: binarySearchIterative (in array elemType: arr, in elemType: aKey) is func

 result
   var integer: result is 0;
 local
   var integer: low is 1;
   var integer: high is 0;
   var integer: middle is 0;
 begin
   high := length(arr);
   while result = 0 and low <= high do
     middle := low + (high - low) div 2;
     if aKey < arr[middle] then
       high := pred(middle);
     elsif aKey > arr[middle] then
       low := succ(middle);
     else
       result := middle;
     end if;
   end while;
 end func;</lang>

Recursive <lang seed7>const func integer: binarySearch (in array elemType: arr, in elemType: aKey, in integer: low, in integer: high) is func

 result
   var integer: result is 0;
 begin
   if low <= high then
     result := (low + high) div 2;
     if aKey < arr[result] then
       result := binarySearch(arr, aKey, low, pred(result)); # search left
     elsif aKey > arr[result] then
       result := binarySearch(arr, aKey, succ(result), high); # search right
     end if;
   end if;
 end func;

const func integer: binarySearchRecursive (in array elemType: arr, in elemType: aKey) is

 return binarySearch(arr, aKey, 1, length(arr));</lang>

Sidef

Iterative <lang ruby>func binary_search(a, i) {

   var l = 0;
   var h = a.offset;
   while (l <= h) {
       var mid = (h+l / 2 -> int);
       a[mid] > i && (h = mid-1; next);
       a[mid] < i && (l = mid+1; next);
       return mid;
   }
   return -1;

}</lang> Recursive <lang ruby>func binary_search(array, value, low, high) {

   high < low && return -1;
   var middle = (high+low / 2 -> int);
   if (value < array[middle]) {
       return binary_search(array, value, low, middle-1);
   }
   elsif (value > array[middle]) {
       return binary_search(array, value, middle+1, high);
   }
   return middle;

}</lang>

SPARK

SPARK does not allow recursion, so only the iterative solution is provided. This example shows the use of a loop assertion.

All the code for this task validates with SPARK GPL 2010 and compiles and executes with GPS GPL 2010.

The Binary_Searches package is shown first. Search is a procedure, rather than a function, so that it can return a Found flag and a Position for Item, if found. This is better design than having a Position value that means 'item not found'.

There are two versions of the package provided, although the Ada code of the two versions is identical.

The first version has a postcondition that if Found is True the Position value returned is correct. This version also has a number of 'check' annotations. These are inserted to allow the Simplifier to prove all the verification conditions. See the SPARK Proof Process. <lang Ada>package Binary_Searches is

  subtype Item_Type is Integer; -- From specs.
  subtype Index_Type is Integer range 1 .. 100;
  type Array_Type is array (Index_Type range <>) of Item_Type;
  procedure Search (Source   : in     Array_Type;
                    Item     : in     Item_Type;
                    Found    :     out Boolean;
                    Position :     out Index_Type);
  --# derives Found,
  --#         Position from
  --#            Source,
  --#            Item;
  --# post Found -> Source (Position) = Item;
  -- If Found is False then Position is undefined.

end Binary_Searches;


package body Binary_Searches is

  procedure Search (Source   : in     Array_Type;
                    Item     : in     Item_Type;
                    Found    :     out Boolean;
                    Position :     out Index_Type)
  is
     Lower      : Index_Type; -- Lower bound of Subrange.
     Upper      : Index_Type; -- Upper bound of Subrange.
     Terminated : Boolean;
  begin
     Found := False;
     -- Default status updated on success.
     Lower      := Source'First;
     Upper      := Source'Last;
     Position   := (Lower + Upper) / 2;
     Terminated := False;
     while not Terminated loop
     --# assert Lower >= Source'First
     --#  and   Upper <= Source'Last
     --#  and   Position in Lower .. Upper
     --#  and   not Found;
        if Item < Source (Position) then
           if Position = Lower then
              -- No lower subrange.
              Terminated := True;
           else
              --# check Position > Lower;
              -- For the two following proofs.
              --# check Position - 1 >= Lower;
              --# check Lower + Position - 1 >= Lower * 2;
              --# check (Lower + Position - 1) / 2 >= Lower;
              -- For "Position >= Lower" in loop assertion.
              --# check Lower < Position;
              --# check Lower + Position - 1 <= (Position - 1) * 2;
              --# check (Lower + Position - 1) / 2 <= (Position - 1);
              -- For "Position <= Upper" in loop assertion.
              -- Switch to lower half subrange.
              Upper := Position - 1;
              Position := (Lower + Upper) / 2;
           end if;
        elsif Item > Source (Position) then
           if Position = Upper then
              -- No upper subrange.
              Terminated := True;
           else
              --# check Position < Upper;
              -- For the two following proofs.
              --# check Upper >= Position + 1;
              --# check Position + 1 + Upper >= (Position + 1) * 2;
              --# check (Position + 1 + Upper) / 2 >= (Position + 1);
              -- For "Position >= Lower" in loop assertion.
              --# check Position + 1 <= Upper;
              --# check Position + 1 + Upper <= Upper * 2;
              --# check (Position + 1 + Upper) / 2 <= Upper;
              -- For "Position <= Upper" in loop assertion.
              -- Switch to upper half subrange.
              Lower := Position + 1;
              Position := (Lower + Upper) / 2;
           end if;
        else
           Found      := True;
           Terminated := True;
        end if;
     end loop;
  end Search;

end Binary_Searches;</lang> The second version of the package has a stronger postcondition on Search, which also states that if Found is False then there is no value in Source equal to Item. This postcondition cannot be proved without a precondition that Source is ordered. This version needs four user rules (see the SPARK Proof Process) to be provided to the Simplifier so that it can prove all the verification conditions. <lang Ada>package Binary_Searches is

  subtype Item_Type is Integer; -- From specs.
  subtype Index_Type is Integer range 1 .. 100;
  type Array_Type is array (Index_Type range <>) of Item_Type;
  --  Ordered_Between is a 'proof function'.  It does not have a code
  --  body, but its meaning is defined by a proof rule:
  --
  --    Ordered_Between (Source, Low_Bound, High_Bound)
  --      <->
  --    for all I in Index_Type range Low_Bound .. High_Bound - 1 =>
  --             (Source(I) < Source(I + 1)) ;
  --
  --# function Ordered_Between (Source               : Array_Type;
  --#                           Range_From, Range_To : Index_Type)
  --#    return Boolean;
  procedure Search (Source   : in     Array_Type;
                    Item     : in     Item_Type;
                    Found    :     out Boolean;
                    Position :     out Index_Type);
  --# derives Found,
  --#         Position from
  --#            Source,
  --#            Item;
  --# pre  Ordered_Between (Source, Source'First, Source'Last);
  --# post (Found -> (Source (Position) = Item))
  --#  and (not Found ->
  --#         (for all I in Index_Type range Source'Range
  --#                                  => (Source(I) /= Item)));

end Binary_Searches;


package body Binary_Searches is

  procedure Search (Source   : in     Array_Type;
                    Item     : in     Item_Type;
                    Found    :     out Boolean;
                    Position :     out Index_Type)
  is
     Lower      : Index_Type; -- Lower bound of Subrange.
     Upper      : Index_Type; -- Upper bound of Subrange.
     Terminated : Boolean;
  begin
     Found := False;
     -- Default status updated on success.
     Lower      := Source'First;
     Upper      := Source'Last;
     Position   := (Lower + Upper) / 2;
     Terminated := False;
     while not Terminated loop
     --# assert not Terminated
     --#   and  not Found
     --#   and  Lower >= Source'First
     --#   and  Upper <= Source'Last
     --#   and  Position in Lower .. Upper
     --#   and  (Lower = Source'First or
     --#         (Lower > Source'First and Source(Lower - 1) < Item))
     --#   and  (Upper = Source'Last or
     --#         (Upper < Source'Last and Source(Upper + 1) > Item));
        if Item < Source (Position) then
           if Position = Lower then
              -- No lower subrange.
              Terminated := True;
           else
              -- Switch to lower half subrange.
              Upper := Position - 1;
              Position := (Lower + Upper) / 2;
           end if;
        elsif Item > Source (Position) then
           if Position = Upper then
              -- No upper subrange.
              Terminated := True;
           else
              -- Switch to upper half subrange.
              Lower := Position + 1;
              Position := (Lower + Upper) / 2;
           end if;
        else
           Found      := True;
           Terminated := True;
        end if;
     end loop;
  end Search;

end Binary_Searches;</lang> The user rules for this version of the package (written in FDL, a language for modelling algorithms).

binary_search_rule(1): (X + Y) div 2 >= X
                         may_be_deduced_from
                       [ X <= Y,
                         X >= 1,
                         Y >= 1] .

binary_search_rule(2): (X + Y) div 2 <= Y
                         may_be_deduced_from
                       [ X <= Y,
                         X >= 1,
                         Y >= 1] .

binary_search_rule(3): for_all(I_ : integer, First <= I_ and I_ <= Last
                                  -> element(S, [I_]) <> X)
                         may_be_deduced_from
                       [ ordered_between(S, First, Last),
                         P >= First,
                         P <= Last,
                         element(S, [P]) > X,
                         P = First or (P > First and element(S, [P - 1]) < X) ] .

binary_search_rule(4): for_all(I_ : integer, First <= I_ and I_ <= Last
                                  -> element(S, [I_]) <> X)
                         may_be_deduced_from
                       [ ordered_between(S, First, Last),
                         P >= First,
                         P <= Last,
                         element(S, [P]) < X,
                         P = Last or (P < Last and element(S, [P + 1]) > X) ] .

The test program: <lang Ada>with Binary_Searches; with SPARK_IO;

--# inherit Binary_Searches, --# SPARK_IO;

--# main_program; procedure Test_Binary_Search --# global in out SPARK_IO.Outputs; --# derives SPARK_IO.Outputs from *; is

  subtype Index_Type5 is Binary_Searches.Index_Type range 1 .. 5;
  subtype Index_Type7 is Binary_Searches.Index_Type range 1 .. 7;
  subtype Index_Type9 is Binary_Searches.Index_Type range 91 .. 99;
  -- Needed to define a constrained Array_Type.
  subtype Array_Type5 is Binary_Searches.Array_Type (Index_Type5);
  subtype Array_Type7 is Binary_Searches.Array_Type (Index_Type7);
  subtype Array_Type9 is Binary_Searches.Array_Type (Index_Type9);
  -- Needed to pass an array literal to Run_Search.
  -- SPARK does not allow an unconstrained type mark for that purpose.
  procedure Run_Search (Source : in     Binary_Searches.Array_Type;
                        Item   : in     Binary_Searches.Item_Type)
  --# global in out SPARK_IO.Outputs;
  --# derives SPARK_IO.Outputs from *,
  --#                               Item,
  --#                               Source;
  is
     Found    : Boolean;
     Position : Binary_Searches.Index_Type;
  begin
     SPARK_IO.Put_String (File => SPARK_IO.Standard_Output,
                          Item => "Searching for ",
                          Stop => 0);
     SPARK_IO.Put_Integer (File  => SPARK_IO.Standard_Output,
                           Item  => Item,
                           Width => 3,
                           Base  => 10);
     SPARK_IO.Put_String (File => SPARK_IO.Standard_Output,
                          Item => " in (",
                          Stop => 0);
     for Source_Index in Binary_Searches.Index_Type range Source'Range loop
        SPARK_IO.Put_Integer (File  => SPARK_IO.Standard_Output,
                              Item  => Source (Source_Index),
                              Width => 3,
                              Base  => 10);
     end loop;
     SPARK_IO.Put_String (File => SPARK_IO.Standard_Output,
                          Item => "): ",
                          Stop => 0);
     Binary_Searches.Search (Source   => Source,    -- in
                             Item     => Item,      -- in
                             Found    => Found,     -- out
                             Position => Position); -- out
     if Found then
        SPARK_IO.Put_String (File => SPARK_IO.Standard_Output,
                             Item => "found as #",
                             Stop => 0);
        SPARK_IO.Put_Integer (File  => SPARK_IO.Standard_Output,
                              Item  => Position,
                              Width => 0, -- to stick to the sibling '#' sign.
                              Base  => 10);
        SPARK_IO.Put_Line (File => SPARK_IO.Standard_Output,
                           Item => ".",
                           Stop => 0);
     else
        SPARK_IO.Put_Line (File => SPARK_IO.Standard_Output,
                           Item => "not found.",
                           Stop => 0);
     end if;
  end Run_Search;

begin

  SPARK_IO.New_Line (File => SPARK_IO.Standard_Output, Spacing => 1);
  Run_Search (Source => Array_Type5'(0, 1, 2, 3, 4), Item => 3);
  Run_Search (Source => Array_Type5'(2, 4, 6, 8, 10), Item => 3);
  Run_Search (Source => Array_Type7'(1, 2, 3, 4, 5, 6, 7), Item => 0);
  Run_Search (Source => Array_Type7'(1, 2, 3, 4, 5, 6, 7), Item => 7);
  Run_Search (Source => Array_Type9'(1, 2, 3, 4, 5, 6, 7, 8, 9), Item => 10);
  Run_Search (Source => Array_Type9'(1, 2, 3, 4, 5, 6, 7, 8, 9), Item => 1);
  Run_Search (Source => Array_Type9'(1, 2, 3, 4, 5, 6, 7, 8, 9), Item => 6);

end Test_Binary_Search; </lang>

Test output (for the last three tests the array is indexed from 91):

Searching for   3 in (  0  1  2  3  4): found as #4.
Searching for   3 in (  2  4  6  8 10): not found.
Searching for   0 in (  1  2  3  4  5  6  7): not found.
Searching for   7 in (  1  2  3  4  5  6  7): found as #7.
Searching for  10 in (  1  2  3  4  5  6  7  8  9): not found.
Searching for   1 in (  1  2  3  4  5  6  7  8  9): found as #91.
Searching for   6 in (  1  2  3  4  5  6  7  8  9): found as #96.

Standard ML

Recursive <lang sml>fun binary_search cmp (key, arr) =

 let
   fun aux slice =
     if ArraySlice.isEmpty slice then
       NONE
     else
       let
	  val mid = ArraySlice.length slice div 2
       in

case cmp (ArraySlice.sub (slice, mid), key) of LESS => aux (ArraySlice.subslice (slice, mid+1, NONE))

	   | GREATER => aux (ArraySlice.subslice (slice, 0, SOME mid))

| EQUAL => SOME (#2 (ArraySlice.base slice) + mid)

       end
 in
   aux (ArraySlice.full arr)
 end</lang>

Usage:

- val a = Array.fromList [2, 3, 5, 6, 8];
val a = [|2,3,5,6,8|] : int array
- binary_search Int.compare (4, a);
val it = NONE : int option
- binary_search Int.compare (8, a);
val it = SOME 4 : int option

Standard ML supports proper tail-recursion; so this is effectively the same as iteration.

Library

Works with: SML/NJ

Usage:

- structure IntArray = struct
=   open Array
=   type elem = int
=   type array = int Array.array
=   type vector = int Vector.vector
= end;
structure IntArray :
  sig
[ ... rest omitted ]
- structure IntBSearch = BSearchFn (IntArray);
structure IntBSearch :
  sig
    structure A : <sig>
    val bsearch : ('a * A.elem -> order)
                  -> 'a * A.array -> (int * A.elem) option
  end
- val a = Array.fromList [2, 3, 5, 6, 8];
val a = [|2,3,5,6,8|] : int array
- IntBSearch.bsearch Int.compare (4, a);
val it = NONE : (int * IntArray.elem) option
- IntBSearch.bsearch Int.compare (8, a);
val it = SOME (4,8) : (int * IntArray.elem) option

Swift

Recursive <lang swift>func binarySearch<T: Comparable>(xs: [T], x: T) -> Int? {

 var recurse: ((Int, Int) -> Int?)!
 recurse = {(low, high) in switch (low + high) / 2 {
   case _ where high < low: return nil
   case let mid where xs[mid] > x: return recurse(low, mid - 1)
   case let mid where xs[mid] < x: return recurse(mid + 1, high)
   case let mid: return mid
 }}
 return recurse(0, xs.count - 1)

}</lang> Iterative <lang swift>func binarySearch<T: Comparable>(xs: [T], x: T) -> Int? {

 var (low, high) = (0, xs.count - 1)
 while low <= high {
   switch (low + high) / 2 {
     case let mid where xs[mid] > x: high = mid - 1
     case let mid where xs[mid] < x: low = mid + 1
     case let mid: return mid
   }
 }
 return nil

}</lang> Test <lang swift>func testBinarySearch(n: Int) {

 let odds = Array(stride(from: 1, through: n, by: 2))
 let result = flatMap(0...n) {binarySearch(odds, $0)}
 assert(result == Array(0..<odds.count))
 println("\(odds) are odd natural numbers")
 for it in result {
   println("\(it) is ordinal of \(odds[it])")
 }

}

testBinarySearch(12)

func flatMap<T, U>(source: [T], transform: (T) -> U?) -> [U] {

 return source.reduce([]) {(var xs, x) in if let x = transform(x) {xs.append(x)}; return xs}

}</lang> Output:

[1, 3, 5, 7, 9, 11] are odd natural numbers
0 is ordinal of 1
1 is ordinal of 3
2 is ordinal of 5
3 is ordinal of 7
4 is ordinal of 9
5 is ordinal of 11

Tcl

ref: Tcl wiki <lang tcl>proc binSrch {lst x} {

   set len [llength $lst]
   if {$len == 0} {
       return -1
   } else {
       set pivotIndex [expr {$len / 2}]
       set pivotValue [lindex $lst $pivotIndex]
       if {$pivotValue == $x} {
           return $pivotIndex
       } elseif {$pivotValue < $x} {
           set recursive [binSrch [lrange $lst $pivotIndex+1 end] $x]
           return [expr {$recursive > -1 ? $recursive + $pivotIndex + 1 : -1}]
       } elseif {$pivotValue > $x} {
           set recursive [binSrch [lrange $lst 0 $pivotIndex-1] $x]
           return [expr {$recursive > -1 ? $recursive : -1}]
       }
   }

} proc binary_search {lst x} {

   if {[set idx [binSrch $lst $x]] == -1} {
       puts "element $x not found in list"
   } else {
       puts "element $x found at index $idx"
   }

}</lang> Note also that, from Tcl 8.4 onwards, the lsearch command includes the -sorted option to enable binary searching of Tcl lists. <lang tcl>proc binarySearch {lst x} {

   set idx [lsearch -sorted -exact $lst $x]
   if {$idx == -1} {
       puts "element $x not found in list"
   } else {
       puts "element $x found at index $idx"
   }

}</lang>

TI-83 BASIC

<lang ti83b>PROGRAM:BINSEARC

Disp "INPUT A LIST:"
Input L1
SortA(L1)
Disp "INPUT A NUMBER:"
Input A
1→L
dim(L1)→H
int(L+(H-L)/2)→M
While L<H and L1(M)≠A
If A>M
Then
M+1→L
Else
M-1→H
End
int(L+(H-L)/2)→M
End
If L1(M)=A
Then
Disp A
Disp "IS AT POSITION"
Disp M
Else
Disp A
Disp "IS NOT IN"
Disp L1</lang>

UnixPipes

Parallel <lang bash>splitter() {

  a=$1; s=$2; l=$3; r=$4;
  mid=$(expr ${#a[*]} / 2);
  echo $s ${a[*]:0:$mid} > $l
  echo $(($mid + $s)) ${a[*]:$mid} > $r

}

bsearch() {

  (to=$1; read s arr; a=($arr);
      test  ${#a[*]} -gt 1  && (splitter $a $s >(bsearch $to) >(bsearch $to)) || (test "$a" -eq "$to" && echo $a at $s)
  )

}

binsearch() {

  (read arr; echo "0 $arr" | bsearch $1)

}

echo "1 2 3 4 6 7 8 9" | binsearch 6</lang>

VBA

Recursive version: <lang vb>Public Function BinarySearch(a, value, low, high) 'search for "value" in ordered array a(low..high) 'return index point if found, -1 if not found

 If high < low Then
   BinarySearch = -1 'not found
   Exit Function
 End If
 midd = low + Int((high - low) / 2) ' "midd" because "Mid" is reserved in VBA
 If a(midd) > value Then
   BinarySearch = BinarySearch(a, value, low, midd - 1)
 ElseIf a(midd) < value Then
   BinarySearch = BinarySearch(a, value, midd + 1, high)
 Else
   BinarySearch = midd
 End If

End Function</lang> Here are some test functions: <lang vb>Public Sub testBinarySearch(n) Dim a(1 To 100) 'create an array with values = multiples of 10 For i = 1 To 100: a(i) = i * 10: Next Debug.Print BinarySearch(a, n, LBound(a), UBound(a)) End Sub

Public Sub stringtestBinarySearch(w) 'uses BinarySearch with a string array Dim a a = Array("AA", "Maestro", "Mario", "Master", "Mattress", "Mister", "Mistress", "ZZ") Debug.Print BinarySearch(a, w, LBound(a), UBound(a)) End Sub</lang> and sample output:

stringtestBinarySearch "Master"
 3 
testBinarySearch "Master"
-1 
testBinarySearch 170
 17 
stringtestBinarySearch 170
-1 
stringtestBinarySearch "Moo"
-1 
stringtestBinarySearch "ZZ"
 7 

Iterative version: <lang vb>Public Function BinarySearch2(a, value) 'search for "value" in array a 'return index point if found, -1 if not found

 low = LBound(a)
 high = UBound(a)
 Do While low <= high
   midd = low + Int((high - low) / 2)
   If a(midd) = value Then
     BinarySearch2 = midd
     Exit Function
   ElseIf a(midd) > value Then
     high = midd - 1
   Else
     low = midd + 1
   End If
Loop
BinarySearch2 = -1 'not found

End Function</lang>

Vedit macro language

Iterative

For this implementation, the numbers to be searched must be stored in current edit buffer, one number per line. (Could be for example a csv table where the first column is used as key field.) <lang vedit>// Main program for testing BINARY_SEARCH

  1. 3 = Get_Num("Value to search: ")

EOF

  1. 2 = Cur_Line // hi
  2. 1 = 1 // lo

Call("BINARY_SEARCH") Message("Value ") Num_Type(#3, NOCR) if (Return_Value < 1) {

   Message(" not found\n")

} else {

   Message(" found at index ") Num_Type(Return_Value)

} return

BINARY_SEARCH:

while (#1 <= #2) {

   #12 = (#1 + #2) / 2
   Goto_Line(#12)
   #11 = Num_Eval()
   if (#3 == #11) {
       return(#12)             // found
   } else {
       if (#3 < #11) {
           #2 = #12-1
       } else {
           #1 = #12+1
       }
   }

} return(0) // not found</lang>

Visual Basic .NET

Iterative <lang vbnet>Function BinarySearch(ByVal A() As Integer, ByVal value As Integer) As Integer

   Dim low As Integer = 0
   Dim high As Integer = A.Length - 1
   Dim middle As Integer = 0
   While low <= high
       middle = (low + high) / 2
       If A(middle) > value Then
           high = middle - 1
       ElseIf A(middle) < value Then
           low = middle + 1
       Else
           Return middle
       End If
   End While
   Return Nothing

End Function</lang> Recursive <lang vbnet>Function BinarySearch(ByVal A() As Integer, ByVal value As Integer, ByVal low As Integer, ByVal high As Integer) As Integer

   Dim middle As Integer = 0
   If high < low Then
       Return Nothing
   End If
   middle = (low + high) / 2
   If A(middle) > value Then
       Return BinarySearch(A, value, low, middle - 1)
   ElseIf A(middle) < value Then
       Return BinarySearch(A, value, middle + 1, high)
   Else
       Return middle
   End If

End Function</lang>

VBScript

Translation of: BASIC

Recursive <lang vb>Function binary_search(arr,value,lo,hi) If hi < lo Then binary_search = 0 Else middle=Int((hi+lo)/2) If value < arr(middle) Then binary_search = binary_search(arr,value,lo,middle-1) ElseIf value > arr(middle) Then binary_search = binary_search(arr,value,middle+1,hi) Else binary_search = middle Exit Function End If End If End Function

'Tesing the function. num_range = Array(2,3,5,6,8,10,11,15,19,20) n = CInt(WScript.Arguments(0)) idx = binary_search(num_range,n,LBound(num_range),UBound(num_range)) If idx > 0 Then WScript.StdOut.Write n & " found at index " & idx WScript.StdOut.WriteLine Else WScript.StdOut.Write n & " not found" WScript.StdOut.WriteLine End If</lang>

Output:

Note: Array index starts at 0.

C:\>cscript /nologo binary_search.vbs 4
4 not found

C:\>cscript /nologo binary_search.vbs 8
8 found at index 4

C:\>cscript /nologo binary_search.vbs 20
20 found at index 9

Wortel

Translation of: JavaScript

<lang wortel>; Recursive @var rec &[a v l h] [

 @if < h l @return null
 @var m @/ +h l 2
 @? {
   > `m a v @!rec[a v l -m 1]
   < `m a v @!rec[a v +1 m h]
   m
 }

]

Iterative

@var itr &[a v] [

 @vars{l 0 h #-a}
 @while <= l h [
   @var m @/ +l h 2
   @iff {
     > `m a v :h -m 1
     < `m a v :l +m 1
     @return m
   }
 ]
 null

]</lang>

zkl

This algorithm is tail recursive, which means it is both recursive and iterative (since tail recursion optimizes to a jump). Overflow is not possible because Ints (64 bit) are a lot bigger than the max length of a list. <lang zkl>fcn bsearch(list,value){ // list is sorted

  fcn(list,value, low,high){
     if (high < low) return(Void);	// not found
     mid:=(low + high) / 2;
     if (list[mid] > value) return(self.fcn(list,value, low,   mid-1));
     if (list[mid] < value) return(self.fcn(list,value, mid+1, high));
     return(mid);			// found
  }(list,value,0,list.len()-1);

}</lang> <lang zkl>list:=T(1,3,5,7,9,11); println("Sorted values: ",list); foreach i in ([0..12]){

  n:=bsearch(list,i);
  if (Void==n) println("Not found: ",i);
  else println("found ",i," at index ",n);

}</lang>

Output:
Sorted values: L(1,3,5,7,9,11)
Not found: 0
found 1 at index 0
Not found: 2
found 3 at index 1
Not found: 4
found 5 at index 2
Not found: 6
found 7 at index 3
Not found: 8
found 9 at index 4
Not found: 10
found 11 at index 5
Not found: 12
</lang>