# Zhang-Suen thinning algorithm

Zhang-Suen thinning algorithm
You are encouraged to solve this task according to the task description, using any language you may know.

This is an algorithm used to thin a black and white i.e. one bit per pixel images.

For example, with an input image of:

```
#################                   #############
##################               ################
###################            ##################
########     #######          ###################
######     #######         #######       ######
######     #######        #######
#################         #######
################          #######
#################         #######
######     #######        #######
######     #######        #######
######     #######         #######       ######
########     #######          ###################
########     ####### ######    ################## ######
########     ####### ######      ################ ######
########     ####### ######         ############# ######
```

It produces the thinned output:

```

# ##########                       #######
##        #                   ####       #
#          #                 ##
#          #                #
#          #                #
#          #                #
############               #
#          #               #
#          #                #
#          #                #
#          #                #
#                            ##
#                             ############
###                          ###

```
Algorithm

Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes.

The algorithm operates on all black pixels P1 that can have eight neighbours.

The neighbours are, in order, arranged as:

 P9 P2 P3 P8 P1 P4 P7 P6 P5

Obviously the boundary pixels of the image cannot have the full eight neighbours.

• Define ${\displaystyle A(P1)}$ = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular).
• Define ${\displaystyle B(P1)}$ = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) )

Step 1

All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage.

• (0) The pixel is black and has eight neighbours
• (1) ${\displaystyle 2<=B(P1)<=6}$
• (2) A(P1) = 1
• (3) At least one of P2 and P4 and P6 is white
• (4) At least one of P4 and P6 and P8 is white

After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white.

Step 2

All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage.

• (0) The pixel is black and has eight neighbours
• (1) ${\displaystyle 2<=B(P1)<=6}$
• (2) A(P1) = 1
• (3) At least one of P2 and P4 and P8 is white
• (4) At least one of P2 and P6 and P8 is white

After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white.

Iteration

If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed.

1. Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes.
2. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters.
```          00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
```

Reference

## 11l

Translation of: Python
```V beforeTxt = |‘1100111
1100111
1100111
1100111
1100110
1100110
1100110
1100110
1100110
1100110
1100110
1100110
1111110
0000000’

V smallrc01 =
|‘00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000’

V rc01 =
|‘00000000000000000000000000000000000000000000000000000000000
01111111111111111100000000000000000001111111111111000000000
01111111111111111110000000000000001111111111111111000000000
01111111111111111111000000000000111111111111111111000000000
01111111100000111111100000000001111111111111111111000000000
00011111100000111111100000000011111110000000111111000000000
00011111100000111111100000000111111100000000000000000000000
00011111111111111111000000000111111100000000000000000000000
00011111111111111110000000000111111100000000000000000000000
00011111111111111111000000000111111100000000000000000000000
00011111100000111111100000000111111100000000000000000000000
00011111100000111111100000000111111100000000000000000000000
00011111100000111111100000000011111110000000111111000000000
01111111100000111111100000000001111111111111111111000000000
01111111100000111111101111110000111111111111111111011111100
01111111100000111111101111110000001111111111111111011111100
01111111100000111111101111110000000001111111111111011111100
00000000000000000000000000000000000000000000000000000000000’

F intarray(binstring)
‘Change a 2D matrix of 01 chars into a list of lists of ints’
R binstring.split("\n").map(line -> line.map(ch -> (I ch == ‘1’ {1} E 0)))

F chararray(intmatrix)
‘Change a 2d list of lists of 1/0 ints into lines of 1/0 chars’
R intmatrix.map(row -> row.map(p -> String(p)).join(‘’)).join("\n")

F toTxt(intmatrix)
‘Change a 2d list of lists of 1/0 ints into lines of '#' and '.' chars’
R intmatrix.map(row -> row.map(p -> (I p {‘#’} E ‘.’)).join(‘’)).join("\n")

F neighbours_array(x, y, image)
‘Return 8-neighbours of point p1 of picture, in order’
V i = image
V (x1, y1, x_1, y_1) = (x + 1, y - 1, x - 1, y + 1)
R [i[y1][x], i[y1][x1], i[y][x1], i[y_1][x1], i[y_1][x], i[y_1][x_1], i[y][x_1], i[y1][x_1]]

F neighbours_tuple(x, y, image)
‘Return 8-neighbours of point p1 of picture, in order’
V i = image
V (x1, y1, x_1, y_1) = (x + 1, y - 1, x - 1, y + 1)
R (i[y1][x], i[y1][x1], i[y][x1], i[y_1][x1], i[y_1][x], i[y_1][x_1], i[y][x_1], i[y1][x_1])

F transitions(neighbours)
V s = 0
L(i) 7
s += Int((neighbours[i], neighbours[i + 1]) == (0, 1))
R s + Int((neighbours[7], neighbours[0]) == (0, 1))

F zhangSuen(&image)
V changing1 = [(-1, -1)]
V changing2 = [(-1, -1)]
L !changing1.empty | !changing2.empty
changing1.drop()
L(y) 1 .< image.len - 1
L(x) 1 .< image[0].len - 1
V n = neighbours_array(x, y, image)
V (P2, P3, P4, P5, P6, P7, P8, P9) = neighbours_tuple(x, y, image)
I (image[y][x] == 1 & P4 * P6 * P8 == 0 & P2 * P4 * P6 == 0 & transitions(n) == 1 & sum(n) C 2..6)
changing1.append((x, y))
L(x, y) changing1
image[y][x] = 0
changing2.drop()
L(y) 1 .< image.len - 1
L(x) 1 .< image[0].len - 1
V n = neighbours_array(x, y, image)
V (P2, P3, P4, P5, P6, P7, P8, P9) = neighbours_tuple(x, y, image)
I (image[y][x] == 1 & P2 * P6 * P8 == 0 & P2 * P4 * P8 == 0 & transitions(n) == 1 & sum(n) C 2..6)
changing2.append((x, y))
L(x, y) changing2
image[y][x] = 0
R image

L(picture) (beforeTxt, smallrc01, rc01)
V image = intarray(picture)
print("\nFrom:\n#.".format(toTxt(image)))
V after = zhangSuen(&image)
print("\nTo thinned:\n#.".format(toTxt(after)))```
Output:

```From:
...........................................................
.#################...................#############.........
.##################...............################.........
.###################............##################.........
.########.....#######..........###################.........
...######.....#######.........#######.......######.........
...######.....#######........#######.......................
...#################.........#######.......................
...################..........#######.......................
...#################.........#######.......................
...######.....#######........#######.......................
...######.....#######........#######.......................
...######.....#######.........#######.......######.........
.########.....#######..........###################.........
.########.....#######.######....##################.######..
.########.....#######.######......################.######..
.########.....#######.######.........#############.######..
...........................................................

To thinned:
...........................................................
...........................................................
....#.##########.......................#######.............
.....##........#...................####.......#............
.....#..........#.................##.......................
.....#..........#................#.........................
.....#..........#................#.........................
.....#..........#................#.........................
.....############...............#..........................
.....#..........#...............#..........................
.....#..........#................#.........................
.....#..........#................#.........................
.....#..........#................#.........................
.....#............................##.......................
.....#.............................############............
.......................###..........................###....
...........................................................
...........................................................
```

## Action!

```PROC DrawImage(BYTE ARRAY image BYTE x,y,width,height)
BYTE i,j
BYTE POINTER ptr

Color=2
FOR j=0 TO height-1
DO
Plot(x,j+y) DrawTo(x+width-1,j+y)
OD
Color=1
ptr=image
FOR j=0 TO height-1
DO
FOR i=0 TO width-1
DO
IF ptr^ THEN
Plot(i+x,j+y)
FI
ptr==+1
OD
OD
RETURN

PROC Thinning(BYTE ARRAY image BYTE width,height)
DEFINE PTR="CARD"
DEFINE MAX="200"
PTR ARRAY change(MAX)
BYTE POINTER p1,p2,p3,p4,p5,p6,p7,p8,p9,p68,p24
INT count,i
BYTE x,y,sum,step1

step1=1
DO
count=0
p1=image p8=p1-1 p4=p1+1
p2=p1-width p6=p1+width
p9=p2-1 p3=p2+1
p7=p6-1 p5=p6+1

FOR y=0 TO height-1
DO
FOR x=0 TO width-1
DO
IF p1^=1 AND x>0 AND y>0 AND x<width-1 AND y<height-1 THEN
sum=p2^+p3^+p4^+p5^+p6^+p7^+p8^+p9^
IF sum>=2 AND sum<=6 THEN
sum=0
IF p3^>p2^ THEN sum==+1 FI
IF p4^>p3^ THEN sum==+1 FI
IF p5^>p4^ THEN sum==+1 FI
IF p6^>p5^ THEN sum==+1 FI
IF p7^>p6^ THEN sum==+1 FI
IF p8^>p7^ THEN sum==+1 FI
IF p9^>p8^ THEN sum==+1 FI
IF p2^>p9^ THEN sum==+1 FI
IF sum=1 THEN
IF step1 THEN
p24=p4 p68=p6
ELSE
p24=p2 p68=p8
FI
IF p2^+p4^+p68^<3 AND p24^+p6^+p8^<3 THEN
change(count)=p1 count==+1
FI
FI
FI
FI
p1==+1 p2==+1 p3==+1 p4==+1 p5==+1
p6==+1 p7==+1 p8==+1 p9==+1
OD
OD
step1=1-step1
FOR i=0 TO count-1
DO
p1=change(i) p1^=0
OD
UNTIL count=0
OD
RETURN

PROC Main()
BYTE ARRAY image1=[
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0
0 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
BYTE ARRAY image2=[
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
BYTE width1=[32],height1=[10],width2=[59],height2=[18]
BYTE CH=\$02FC

Graphics(7+16)
Color=1
SetColor(0,0,\$00)
SetColor(4,0,\$04)
SetColor(1,0,\$0C)

DrawImage(image1,0,0,width1,height1)
Thinning(image1,width1,height1)
DrawImage(image1,width1+10,0,width1,height1)

DrawImage(image2,0,height1+10,width2,height2)
Thinning(image2,width2,height2)
DrawImage(image2,width2+10,height1+10,width2,height2)

DO UNTIL CH#\$FF OD
CH=\$FF
RETURN```
Output:

## AppleScript

```-- Params:
-- List of lists (rows) of "pixel" values.
-- Record indicating the values representing black and white.
on ZhangSuen(matrix, {black:black, white:white})
script o
property matrix : missing value
property changePixels : missing value

on A(neighbours) -- Count transitions from white to black.
set sum to 0
repeat with i from 1 to 8
if ((neighbours's item i is white) and (neighbours's item (i mod 8 + 1) is black)) then set sum to sum + 1
end repeat
return sum
end A

on B(neighbours) -- Count neighbouring black pixels.
set sum to 0
repeat with p in neighbours
if (p's contents is black) then set sum to sum + 1
end repeat
return sum
end B
end script

set o's matrix to matrix
set rowCount to (count o's matrix)
set columnCount to (count o's matrix's beginning) -- Assumed to be the same for every row.
repeat until (o's changePixels is {})
repeat with step from 1 to 2
set o's changePixels to {}
repeat with r from 2 to (rowCount - 1)
repeat with c from 2 to (columnCount - 1)
if (o's matrix's item r's item c is black) then
tell (a reference to o's matrix) to ¬
set neighbours to {item (r - 1)'s item c, item (r - 1)'s item (c + 1), ¬
item r's item (c + 1), item (r + 1)'s item (c + 1), item (r + 1)'s item c, ¬
item (r + 1)'s item (c - 1), item r's item (c - 1), item (r - 1)'s item (c - 1)}
set blackCount to o's B(neighbours)
if ((blackCount > 1) and (blackCount < 7) and (o's A(neighbours) is 1)) then
set {P2, x, P4, x, P6, x, P8} to neighbours
if (step is 1) then
set toChange to ((P4 is white) or (P6 is white) or ((P2 is white) and (P8 is white)))
else
set toChange to ((P2 is white) or (P8 is white) or ((P4 is white) and (P6 is white)))
end if
if (toChange) then set end of o's changePixels to {r, c}
end if
end if
end repeat
end repeat
if (o's changePixels is {}) then exit repeat
repeat with pixel in o's changePixels
set {r, c} to pixel
set o's matrix's item r's item c to white
end repeat
end repeat
end repeat

return o's matrix -- or: return matrix -- The input has been edited in place.
end ZhangSuen

on join(lst, delim)
set astid to AppleScript's text item delimiters
set AppleScript's text item delimiters to delim
set txt to lst as text
set AppleScript's text item delimiters to astid
return txt
end join

on demo()
set pattern to "00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000"
set matrix to pattern's paragraphs
repeat with thisRow in matrix
set thisRow's contents to thisRow's characters
end repeat
ZhangSuen(matrix, {black:"1", white:"0"})
repeat with thisRow in matrix
set thisRow's contents to join(thisRow, "")
end repeat
return join(matrix, linefeed)
end demo
return demo()
```
Output:
```"00000000000000000000000000000000
00111111100000000011111100000000
00100000100000000110000000000000
00100000010000000100000000000000
00100000100000000100000000000000
00111110100000000100000000000000
00000001100000000100000000000000
00000000100001000110000110001000
00000000010000000001111000000000
00000000000000000000000000000000"```

Alternative demo:

```on demo()
set pattern to "
#################                   #############
##################               ################
###################            ##################
########     #######          ###################
######     #######         #######       ######
######     #######        #######
#################         #######
################          #######
#################         #######
######     #######        #######
######     #######        #######
######     #######         #######       ######
########     #######          ###################
########     ####### ######    ################## ######
########     ####### ######      ################ ######
########     ####### ######         ############# ######
"
set matrix to pattern's paragraphs
repeat with thisRow in matrix
set thisRow's contents to thisRow's characters
end repeat
ZhangSuen(matrix, {black:"#", white:space})
repeat with thisRow in matrix
set thisRow's contents to join(thisRow, "")
end repeat
return join(matrix, linefeed)
end demo
return demo()
```
Output:
```

# ##########                       #######
##        #                   ####       #
#          #                 ##
#          #                #
#          #                #
#          #                #
############               #
#          #               #
#          #                #
#          #                #
#          #                #
#                            ##
#                             ############
###                          ###
```

## AutoHotkey

Works with: AutoHotkey_L

Reads input from a text file and writes output to a different text file (first creating the file, if necessary).

```FileIn  := A_ScriptDir "\Zhang-Suen.txt"
FileOut := A_ScriptDir "\NewFile.txt"

if (!FileExist(FileIn)) {
ExitApp
}
S := {}
N := [2,3,4,5,6,7,8,9,2]

{
LineNum := A_Index
S[LineNum, A_Index] := A_LoopField
}

Loop {
FlipCount := 0
Loop, 2 {
Noted := [], i := A_Index
for LineNum, Line in S {
for PixNum, Pix in Line {
; (0)
if (Pix = 0 || (P := GetNeighbors(LineNum, PixNum, S)) = 1)
continue
; (1)
BP := 0
for j, Val in P
BP += Val
if (BP < 2 || BP > 6)
continue
; (2)
AP := 0
Loop, 8
if (P[N[A_Index]] = "0" && P[N[A_Index + 1]] = "1")
AP++
if (AP != 1)
continue
; (3 and 4)
if (i = 1) {
if (P[2] + P[4] + P[6] = 3 || P[4] + P[6] + P[8] = 3)
continue
}
else if (P[2] + P[4] + P[8] = 3 || P[2] + P[6] + P[8] = 3)
continue

Noted.Insert([LineNum, PixNum])
FlipCount++
}
}
for j, Coords in Noted
S[Coords[1], Coords[2]] := 0
}
if (!FlipCount)
break
}

for LineNum, Line in S {
for PixNum, Pix in Line
Out .= Pix ? "#" : " "
Out .= "`n"
}
FileAppend, % Out, % FileOut

GetNeighbors(Y, X, S) {
Neighbors := []
if ((Neighbors[8] := S[Y, X - 1]) = "")
return 1
if ((Neighbors[4] := S[Y, X + 1]) = "")
return 1
Loop, 3
if ((Neighbors[A_Index = 1 ? 9 : A_Index] := S[Y - 1, X - 2 + A_Index]) = "")
return 1
Loop, 3
if ((Neighbors[8 - A_Index] := S[Y + 1, X - 2 + A_Index]) = "")
return 1
return Neighbors
}
```

Output:

```
#######         ######
#     #        ##
#      #       #
#     #        #
##### #        #
##        #
#    #   ##    ##   #
#         ####
```

## BASIC

### FreeBASIC

```' version 08-10-2016
' compile with: fbc -s console

Data "00000000000000000000000000000000"
Data "01111111110000000111111110000000"
Data "01110001111000001111001111000000"
Data "01110000111000001110000111000000"
Data "01110001111000001110000000000000"
Data "01111111110000001110000000000000"
Data "01110111100000001110000111000000"
Data "01110011110011101111001111011100"
Data "01110001111011100111111110011100"
Data "00000000000000000000000000000000"
Data "END"

' ------=< MAIN >=------

Dim As UInteger x, y, m, n
Dim As String input_str

Do        ' find out how big it is
If input_str = "END" Then Exit Do
If x < Len(input_str) Then x = Len(input_str)
y = y + 1
Loop

m = x -1 : n = y -1
ReDim As UByte old(m, n), new_(m, n)

y = 0
Restore   ' restore data pointer
Do        ' put data in array
If input_str="END" Then Exit Do
For x = 0 To Len(input_str) -1
old(x,y) = input_str[x] - Asc("0")
' print image
If old(x, y) = 0 Then Print "."; Else Print "#";
Next
Print
y = y + 1
Loop

'corners and sides do not change
For x = 0 To m
new_(x, 0) = old(x, 0)
new_(x, n) = old(x, n)
Next

For y = 0 To n
new_(0, y) = old(0, y)
new_(m, y) = old(m, y)
Next

Dim As UInteger tmp, change, stage = 1
Do
change = 0
For y = 1 To n -1
For x = 1 To m -1
' -1-
If old(x,y) = 0 Then ' first condition, p1 must be black
new_(x,y) = 0
Continue For
End If
' -2-
tmp = old(x, y -1) + old(x +1, y -1)
tmp = tmp + old(x +1, y) + old(x +1, y +1) + old(x, y +1)
tmp = tmp + old(x -1, y +1) + old(x -1, y) + old(x -1, y -1)
If tmp < 2 OrElse tmp > 6 Then ' 2 <= B(p1) <= 6
new_(x, y) = 1
Continue For
End If
' -3-
tmp = 0
If old(x   , y   ) = 0 And old(x   , y -1) = 1 Then tmp += 1  ' p1 > p2
If old(x   , y -1) = 0 And old(x +1, y -1) = 1 Then tmp += 1  ' p2 > p3
If old(x +1, y -1) = 0 And old(x +1, y   ) = 1 Then tmp += 1  ' p3 > p4
If old(x +1, y   ) = 0 And old(x +1, y +1) = 1 Then tmp += 1  ' p4 > p5
If old(x +1, y +1) = 0 And old(x   , y +1) = 1 Then tmp += 1  ' p5 > p6
If old(x   , y +1) = 0 And old(x -1, y +1) = 1 Then tmp += 1  ' p6 > p7
If old(x -1, y +1) = 0 And old(x -1, y   ) = 1 Then tmp += 1  ' p7 > p8
If old(x -1, y   ) = 0 And old(x -1, y -1) = 1 Then tmp += 1  ' p8 > p9
If old(x -1, y -1) = 0 And old(x   , y -1) = 1 Then tmp += 1  ' p9 > p2
' tmp = 1 ==> A(P1) = 1
If tmp <> 1 Then
new_(x, y) = 1
Continue For
End If
If (stage And 1) = 1 Then
' step 1 -4- -5-
If (old(x, y -1) + old(x +1, y) + old(x, y +1)) = 3 OrElse _
(old(x +1, y) + old(x, y +1) + old(x -1, y)) = 3 Then
new_(x, y) = 1
Continue For
End If
Else
' step 2 -4- -5-
If (old(x, y -1) + old(x +1, y) + old(x -1, y)) = 3 OrElse _
(old(x, y -1) + old(x, y +1) + old(x -1, y)) = 3 Then
new_(x, y) = 1
Continue For
End If
End If
' all condition are met, make p1 white (0)
new_(x, y) = 0
change = 1 ' flag change
Next
Next

' copy new_() into old()
For y = 0 To n
For x = 0 To m
old(x, y) = new_(x, y)
Next
Next

stage += 1
Loop Until change = 0 ' stop when there are no changes made

Print ' print result
Print "End result"
For y = 0 To n
For x = 0 To m
If old(x, y) = 0 Then Print "."; Else Print "#";
Next
Print
Next

' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End```
Output:
```................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................

End result
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................```

### VBA

Translation of: Phix
```Public n As Variant
Private Sub init()
n = [{-1,0;-1,1;0,1;1,1;1,0;1,-1;0,-1;-1,-1;-1,0}]
End Sub

Private Function AB(text As Variant, y As Integer, x As Integer, step As Integer) As Variant
Dim wtb As Integer
Dim bn As Integer
Dim prev As String: prev = "#"
Dim next_ As String
Dim p2468 As String
For i = 1 To UBound(n)
next_ = Mid(text(y + n(i, 1)), x + n(i, 2), 1)
wtb = wtb - (prev = "." And next_ <= "#")
bn = bn - (i > 1 And next_ <= "#")
If (i And 1) = 0 Then p2468 = p2468 & prev
prev = next_
Next i
If step = 2 Then '-- make it p6842
p2468 = Mid(p2468, 3, 2) & Mid(p2468, 1, 2)
'p2468 = p2468(3..4)&p2468(1..2)
End If
Dim ret(2) As Variant
ret(0) = wtb
ret(1) = bn
ret(2) = p2468
AB = ret
End Function

Private Sub Zhang_Suen(text As Variant)
Dim wtb As Integer
Dim bn As Integer
Dim changed As Boolean, changes As Boolean
Dim p2468 As String     '-- (p6842 for step 2)
Dim x As Integer, y As Integer, step As Integer
Do While True
changed = False
For step = 1 To 2
changes = False
For y = 1 To UBound(text) - 1
For x = 2 To Len(text(y)) - 1
If Mid(text(y), x, 1) = "#" Then
ret = AB(text, y, x, step)
wtb = ret(0)
bn = ret(1)
p2468 = ret(2)
If wtb = 1 _
And bn >= 2 And bn <= 6 _
And InStr(1, Mid(p2468, 1, 3), ".") _
And InStr(1, Mid(p2468, 2, 3), ".") Then
changes = True
text(y) = Left(text(y), x - 1) & "!" & Right(text(y), Len(text(y)) - x)
End If
End If
Next x
Next y
If changes Then
For y = 1 To UBound(text) - 1
text(y) = Replace(text(y), "!", ".")
Next y
changed = True
End If
Next step
If Not changed Then Exit Do
Loop
Debug.Print Join(text, vbCrLf)
End Sub

Public Sub main()
init
Dim Small_rc(9) As String
Small_rc(0) = "................................"
Small_rc(1) = ".#########.......########......."
Small_rc(2) = ".###...####.....####..####......"
Small_rc(3) = ".###....###.....###....###......"
Small_rc(4) = ".###...####.....###............."
Small_rc(5) = ".#########......###............."
Small_rc(6) = ".###.####.......###....###......"
Small_rc(7) = ".###..####..###.####..####.###.."
Small_rc(8) = ".###...####.###..########..###.."
Small_rc(9) = "................................"
Zhang_Suen (Small_rc)
End Sub```
Output:
```................................
...######.........######........
...#....#.........#....##.......
...#....#.........#......#......
...#....#.........#.............
...####.#.........#.............
.......##.........#.............
........#....#....#....##...#...
.........#....#....####......#..
................................```

## C

Input and out images written from and to files. Format of input file is :

```<Rows> <Columns>
<Blank pixel character> <Image Pixel character>
<Image of specified rows and columns made up of the two pixel types specified in the second line.>
```

The images before and after thinning are also printed on the console.

```#include<stdlib.h>
#include<stdio.h>

char** imageMatrix;

char blankPixel,imagePixel;

typedef struct{
int row,col;
}pixel;

int getBlackNeighbours(int row,int col){

int i,j,sum = 0;

for(i=-1;i<=1;i++){
for(j=-1;j<=1;j++){
if(i!=0 || j!=0)
sum+= (imageMatrix[row+i][col+j]==imagePixel);
}
}

return sum;
}

int getBWTransitions(int row,int col){
return 	((imageMatrix[row-1][col]==blankPixel && imageMatrix[row-1][col+1]==imagePixel)
+(imageMatrix[row-1][col+1]==blankPixel && imageMatrix[row][col+1]==imagePixel)
+(imageMatrix[row][col+1]==blankPixel && imageMatrix[row+1][col+1]==imagePixel)
+(imageMatrix[row+1][col+1]==blankPixel && imageMatrix[row+1][col]==imagePixel)
+(imageMatrix[row+1][col]==blankPixel && imageMatrix[row+1][col-1]==imagePixel)
+(imageMatrix[row+1][col-1]==blankPixel && imageMatrix[row][col-1]==imagePixel)
+(imageMatrix[row][col-1]==blankPixel && imageMatrix[row-1][col-1]==imagePixel)
+(imageMatrix[row-1][col-1]==blankPixel && imageMatrix[row-1][col]==imagePixel));
}

int zhangSuenTest1(int row,int col){
int neighbours = getBlackNeighbours(row,col);

return ((neighbours>=2 && neighbours<=6)
&& (getBWTransitions(row,col)==1)
&& (imageMatrix[row-1][col]==blankPixel||imageMatrix[row][col+1]==blankPixel||imageMatrix[row+1][col]==blankPixel)
&& (imageMatrix[row][col+1]==blankPixel||imageMatrix[row+1][col]==blankPixel||imageMatrix[row][col-1]==blankPixel));
}

int zhangSuenTest2(int row,int col){
int neighbours = getBlackNeighbours(row,col);

return ((neighbours>=2 && neighbours<=6)
&& (getBWTransitions(row,col)==1)
&& (imageMatrix[row-1][col]==blankPixel||imageMatrix[row][col+1]==blankPixel||imageMatrix[row][col-1]==blankPixel)
&& (imageMatrix[row-1][col]==blankPixel||imageMatrix[row+1][col]==blankPixel||imageMatrix[row][col+1]==blankPixel));
}

void zhangSuen(char* inputFile, char* outputFile){

int startRow = 1,startCol = 1,endRow,endCol,i,j,count,rows,cols,processed;

pixel* markers;

FILE* inputP = fopen(inputFile,"r");

fscanf(inputP,"%d%d",&rows,&cols);

fscanf(inputP,"%d%d",&blankPixel,&imagePixel);

blankPixel<=9?blankPixel+='0':blankPixel;
imagePixel<=9?imagePixel+='0':imagePixel;

printf("\nPrinting original image :\n");

imageMatrix = (char**)malloc(rows*sizeof(char*));

for(i=0;i<rows;i++){
imageMatrix[i] = (char*)malloc((cols+1)*sizeof(char));
fscanf(inputP,"%s\n",imageMatrix[i]);
printf("\n%s",imageMatrix[i]);

}

fclose(inputP);

endRow = rows-2;
endCol = cols-2;
do{
markers = (pixel*)malloc((endRow-startRow+1)*(endCol-startCol+1)*sizeof(pixel));
count = 0;

for(i=startRow;i<=endRow;i++){
for(j=startCol;j<=endCol;j++){
if(imageMatrix[i][j]==imagePixel && zhangSuenTest1(i,j)==1){
markers[count].row = i;
markers[count].col = j;
count++;
}
}
}

processed = (count>0);

for(i=0;i<count;i++){
imageMatrix[markers[i].row][markers[i].col] = blankPixel;
}

free(markers);
markers = (pixel*)malloc((endRow-startRow+1)*(endCol-startCol+1)*sizeof(pixel));
count = 0;

for(i=startRow;i<=endRow;i++){
for(j=startCol;j<=endCol;j++){
if(imageMatrix[i][j]==imagePixel && zhangSuenTest2(i,j)==1){
markers[count].row = i;
markers[count].col = j;
count++;
}
}
}

if(processed==0)
processed = (count>0);

for(i=0;i<count;i++){
imageMatrix[markers[i].row][markers[i].col] = blankPixel;
}

free(markers);
}while(processed==1);

FILE* outputP = fopen(outputFile,"w");

printf("\n\n\nPrinting image after applying Zhang Suen Thinning Algorithm : \n\n\n");

for(i=0;i<rows;i++){
for(j=0;j<cols;j++){
printf("%c",imageMatrix[i][j]);
fprintf(outputP,"%c",imageMatrix[i][j]);
}
printf("\n");
fprintf(outputP,"\n");
}

fclose(outputP);

printf("\nImage also written to : %s",outputFile);
}

int main()
{
char inputFile[100],outputFile[100];

printf("Enter full path of input image file : ");
scanf("%s",inputFile);

printf("Enter full path of output image file : ");
scanf("%s",outputFile);

zhangSuen(inputFile,outputFile);

return 0;
}
```

Contents of input file : zhImage.txt

```10 32
0 1
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
```

Console interaction :

```Enter full path of input image file : zhImage.txt
Enter full path of output image file : out.txt

Printing original image :

00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000

Printing image after applying Zhang Suen Thinning Algorithm :

00000000000000000000000000000000
00111111100000000011111100000000
00100000100000000110000000000000
01000000100000000100000000000000
01000000100000001000000000000000
01111110100000001000000000000000
00000001000000000100000000000000
00000000100001000110000110001000
00000000010000000001111000000000
00000000000000000000000000000000

Image also written to : out.txt
```

Contents of out.txt :

```00000000000000000000000000000000
00111111100000000011111100000000
00100000100000000110000000000000
01000000100000000100000000000000
01000000100000001000000000000000
01111110100000001000000000000000
00000001000000000100000000000000
00000000100001000110000110001000
00000000010000000001111000000000
00000000000000000000000000000000
```

## C++

Compiled with --std=c++14

```#include <iostream>
#include <string>
#include <sstream>
#include <valarray>
const std::string input {
"................................"
".#########.......########......."
".###...####.....####..####......"
".###....###.....###....###......"
".###...####.....###............."
".#########......###............."
".###.####.......###....###......"
".###..####..###.####..####.###.."
".###...####.###..########..###.."
"................................"
};
const std::string input2 {
".........................................................."
".#################...................#############........"
".##################...............################........"
".###################............##################........"
".########.....#######..........###################........"
"...######.....#######.........#######.......######........"
"...######.....#######........#######......................"
"...#################.........#######......................"
"...################..........#######......................"
"...#################.........#######......................"
"...######.....#######........#######......................"
"...######.....#######........#######......................"
"...######.....#######.........#######.......######........"
".########.....#######..........###################........"
".########.....#######.######....##################.######."
".########.....#######.######......################.######."
".########.....#######.######.........#############.######."
".........................................................."
};

class ZhangSuen;

class Image {
public:
friend class ZhangSuen;
using pixel_t = char;
static const pixel_t BLACK_PIX;
static const pixel_t WHITE_PIX;

Image(unsigned width = 1, unsigned height = 1)
: width_{width}, height_{height}, data_( '\0', width_ * height_)
{}
Image(const Image& i) : width_{ i.width_}, height_{i.height_}, data_{i.data_}
{}
Image(Image&& i) : width_{ i.width_}, height_{i.height_}, data_{std::move(i.data_)}
{}
~Image() = default;
Image& operator=(const Image& i) {
if (this != &i) {
width_ = i.width_;
height_ = i.height_;
data_ = i.data_;
}
return *this;
}
Image& operator=(Image&& i) {
if (this != &i) {
width_ = i.width_;
height_ = i.height_;
data_ = std::move(i.data_);
}
return *this;
}
size_t idx(unsigned x, unsigned y) const noexcept { return y * width_ + x; }
bool operator()(unsigned x, unsigned y) {
return data_[idx(x, y)];
}
friend std::ostream& operator<<(std::ostream& o, const Image& i) {
o << i.width_ << " x " << i.height_ << std::endl;
size_t px = 0;
for(const auto& e : i.data_) {
o << (e?Image::BLACK_PIX:Image::WHITE_PIX);
if (++px % i.width_ == 0)
o << std::endl;
}
return o << std::endl;
}
friend std::istream& operator>>(std::istream& in, Image& img) {
auto it = std::begin(img.data_);
const auto end = std::end(img.data_);
Image::pixel_t tmp;
while(in && it != end) {
in >> tmp;
if (tmp != Image::BLACK_PIX && tmp != Image::WHITE_PIX)
throw "Bad character found in image";
*it = (tmp == Image::BLACK_PIX)?1:0;
++it;
}
return in;
}
unsigned width() const noexcept { return width_; }
unsigned height() const noexcept { return height_; }
struct Neighbours {
// 9 2 3
// 8 1 4
// 7 6 5
Neighbours(const Image& img, unsigned p1_x, unsigned p1_y)
: img_{img}
, p1_{img.idx(p1_x, p1_y)}
, p2_{p1_ - img.width()}
, p3_{p2_ + 1}
, p4_{p1_ + 1}
, p5_{p4_ + img.width()}
, p6_{p5_ - 1}
, p7_{p6_ - 1}
, p8_{p1_ - 1}
, p9_{p2_ - 1}
{}
const Image& img_;
const Image::pixel_t& p1() const noexcept { return img_.data_[p1_]; }
const Image::pixel_t& p2() const noexcept { return img_.data_[p2_]; }
const Image::pixel_t& p3() const noexcept { return img_.data_[p3_]; }
const Image::pixel_t& p4() const noexcept { return img_.data_[p4_]; }
const Image::pixel_t& p5() const noexcept { return img_.data_[p5_]; }
const Image::pixel_t& p6() const noexcept { return img_.data_[p6_]; }
const Image::pixel_t& p7() const noexcept { return img_.data_[p7_]; }
const Image::pixel_t& p8() const noexcept { return img_.data_[p8_]; }
const Image::pixel_t& p9() const noexcept { return img_.data_[p9_]; }
const size_t p1_, p2_, p3_, p4_, p5_, p6_, p7_, p8_, p9_;
};
Neighbours neighbours(unsigned x, unsigned y) const { return Neighbours(*this, x, y); }
private:
unsigned height_ { 0 };
unsigned width_ { 0 };
std::valarray<pixel_t> data_;
};

constexpr const Image::pixel_t Image::BLACK_PIX = '#';
constexpr const Image::pixel_t Image::WHITE_PIX = '.';

class ZhangSuen {
public:

// the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2
unsigned transitions_white_black(const Image::Neighbours& a) const {
unsigned sum = 0;
sum += (a.p9() == 0) && a.p2();
sum += (a.p2() == 0) && a.p3();
sum += (a.p3() == 0) && a.p4();
sum += (a.p8() == 0) && a.p9();
sum += (a.p4() == 0) && a.p5();
sum += (a.p7() == 0) && a.p8();
sum += (a.p6() == 0) && a.p7();
sum += (a.p5() == 0) && a.p6();
return sum;
}

// The number of black pixel neighbours of P1. ( = sum(P2 .. P9) )
unsigned black_pixels(const Image::Neighbours& a) const {
unsigned sum = 0;
sum += a.p9();
sum += a.p2();
sum += a.p3();
sum += a.p8();
sum += a.p4();
sum += a.p7();
sum += a.p6();
sum += a.p5();
return sum;
}
const Image& operator()(const Image& img) {
tmp_a_ = img;
size_t changed_pixels = 0;
do {
changed_pixels = 0;
// Step 1
tmp_b_ = tmp_a_;
for(size_t y = 1; y < tmp_a_.height() - 1; ++y) {
for(size_t x = 1; x < tmp_a_.width() - 1; ++x) {
if (tmp_a_.data_[tmp_a_.idx(x, y)]) {
auto n = tmp_a_.neighbours(x, y);
auto bp = black_pixels(n);
if (bp >= 2 && bp <= 6) {
auto tr = transitions_white_black(n);
if (    tr == 1
&& (n.p2() * n.p4() * n.p6() == 0)
&& (n.p4() * n.p6() * n.p8() == 0)
) {
tmp_b_.data_[n.p1_] = 0;
++changed_pixels;
}
}
}
}
}
// Step 2
tmp_a_ = tmp_b_;
for(size_t y = 1; y < tmp_b_.height() - 1; ++y) {
for(size_t x = 1; x < tmp_b_.width() - 1; ++x) {
if (tmp_b_.data_[tmp_b_.idx(x, y)]) {
auto n = tmp_b_.neighbours(x, y);
auto bp = black_pixels(n);
if (bp >= 2 && bp <= 6) {
auto tr = transitions_white_black(n);
if (    tr == 1
&& (n.p2() * n.p4() * n.p8() == 0)
&& (n.p2() * n.p6() * n.p8() == 0)
) {
tmp_a_.data_[n.p1_] = 0;
++changed_pixels;
}
}
}
}
}
} while(changed_pixels > 0);
return tmp_a_;
}
private:
Image tmp_a_;
Image tmp_b_;
};

int main(int argc, char const *argv[])
{
using namespace std;
Image img(32, 10);
istringstream iss{input};
iss >> img;
cout << img;
cout << "ZhangSuen" << endl;
ZhangSuen zs;
Image res = std::move(zs(img));
cout << res << endl;

Image img2(58,18);
istringstream iss2{input2};
iss2 >> img2;
cout << img2;
cout << "ZhangSuen with big image" << endl;
Image res2 = std::move(zs(img2));
cout << res2 << endl;
return 0;
}
```

Output:

```32 x 10
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................

ZhangSuen
32 x 10
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................

58 x 18
..........................................................
.#################...................#############........
.##################...............################........
.###################............##################........
.########.....#######..........###################........
...######.....#######.........#######.......######........
...######.....#######........#######......................
...#################.........#######......................
...################..........#######......................
...#################.........#######......................
...######.....#######........#######......................
...######.....#######........#######......................
...######.....#######.........#######.......######........
.########.....#######..........###################........
.########.....#######.######....##################.######.
.########.....#######.######......################.######.
.########.....#######.######.........#############.######.
..........................................................

ZhangSuen with big image
58 x 18
..........................................................
..........................................................
....#.##########.......................#######............
.....##........#...................####.......#...........
.....#..........#.................##......................
.....#..........#................#........................
.....#..........#................#........................
.....#..........#................#........................
.....############...............#.........................
.....#..........#...............#.........................
.....#..........#................#........................
.....#..........#................#........................
.....#..........#................#........................
.....#............................##......................
.....#.............................############...........
.......................###..........................###...
..........................................................
..........................................................
```

## D

This uses the module from the Bitmap Task. And it performs no heap allocations.

```import std.stdio, std.algorithm, std.string, std.functional,
std.typecons, std.typetuple, bitmap;

struct BlackWhite {
ubyte c;
alias c this;
static immutable black = typeof(this)(0),
white = typeof(this)(1);
}

alias Neighbours = BlackWhite[9];
alias Img = Image!BlackWhite;

/// Zhang-Suen thinning algorithm.
Img zhangSuen(Img image1, Img image2) pure nothrow @safe @nogc
in {
assert(image1.image.all!(x => x == Img.black || x == Img.white));
assert(image1.nx == image2.nx && image1.ny == image2.ny);
} out(result) {
assert(result.nx == image1.nx && result.ny == image1.ny);
assert(result.image.all!(x => x == Img.black || x == Img.white));
} body {
/// True if inf <= x <= sup.
static inInterval(T)(in T x, in T inf, in T sup) pure nothrow @safe @nogc {
return x >= inf && x <= sup;
}

/// Return 8-neighbours+1 of point (x,y) of given image, in order.
static void neighbours(in Img I, in size_t x, in size_t y,
out Neighbours n) pure nothrow @safe @nogc {
n = [I[x,y-1], I[x+1,y-1], I[x+1,y], I[x+1,y+1], // P2,P3,P4,P5
I[x,y+1], I[x-1,y+1], I[x-1,y], I[x-1,y-1], // P6,P7,P8,P9
I[x,y-1]];
}

if (image1.nx < 3 || image1.ny < 3) {
image2.image[] = image1.image[];
return image2;
}

immutable static zeroOne = [0, 1]; //**
Neighbours n;
bool hasChanged;
do {
hasChanged = false;

foreach (immutable ab; TypeTuple!(tuple(2, 4), tuple(0, 6))) {
foreach (immutable y; 1 .. image1.ny - 1) {
foreach (immutable x; 1 .. image1.nx - 1) {
neighbours(image1, x, y, n);
if (image1[x, y] &&                    // Cond. 0
(!n[ab[0]] || !n[4] || !n[6]) &&   // Cond. 4
(!n[0] || !n[2] || !n[ab[1]]) &&   // Cond. 3
//n[].count([0, 1]) == 1 &&
n[].count(zeroOne) == 1 &&         // Cond. 2
// n[0 .. 8].sum in iota(2, 7)) {
inInterval(n[0 .. 8].sum, 2, 6)) { // Cond. 1
hasChanged = true;
image2[x, y] = Img.black;
} else
image2[x, y] = image1[x, y];
}
}
image1.swap(image2);
}
} while (hasChanged);

return image1;
}

void main() {
immutable before_txt = "
##..###
##..###
##..###
##..###
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
######.
.......";

immutable small_rc = "
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................";

immutable rc = "
...........................................................
.#################...................#############.........
.##################...............################.........
.###################............##################.........
.########.....#######..........###################.........
...######.....#######.........#######.......######.........
...######.....#######........#######.......................
...#################.........#######.......................
...################..........#######.......................
...#################.........#######.......................
...######.....#######........#######.......................
...######.....#######........#######.......................
...######.....#######.........#######.......######.........
.########.....#######..........###################.........
.########.....#######.######....##################.######..
.########.....#######.######......################.######..
.########.....#######.######.........#############.######..
...........................................................";

foreach (immutable txt; [before_txt, small_rc, rc]) {
auto img = Img.fromText(txt);
"From:".writeln;
img.textualShow(/*bl=*/ '.', /*wh=*/ '#');
"\nTo thinned:".writeln;
img.zhangSuen(img.dup).textualShow(/*bl=*/ '.', /*wh=*/ '#');
writeln;
}
}
```
Output:
```From:
##..###
##..###
##..###
##..###
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
######.
.......

To thinned:
##..###
#.....#
#.....#
#...###
#...#..
#...#..
#...#..
#...#..
#...#..
#...#..
#...#..
#...#..
#####..
.......

From:
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................

To thinned:
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................

From:
...........................................................
.#################...................#############.........
.##################...............################.........
.###################............##################.........
.########.....#######..........###################.........
...######.....#######.........#######.......######.........
...######.....#######........#######.......................
...#################.........#######.......................
...################..........#######.......................
...#################.........#######.......................
...######.....#######........#######.......................
...######.....#######........#######.......................
...######.....#######.........#######.......######.........
.########.....#######..........###################.........
.########.....#######.######....##################.######..
.########.....#######.######......################.######..
.########.....#######.######.........#############.######..
...........................................................

To thinned:
...........................................................
...........................................................
....#.##########.......................#######.............
.....##........#...................####.......#............
.....#..........#.................##.......................
.....#..........#................#.........................
.....#..........#................#.........................
.....#..........#................#.........................
.....############...............#..........................
.....#..........#...............#..........................
.....#..........#................#.........................
.....#..........#................#.........................
.....#..........#................#.........................
.....#............................##.......................
.....#.............................############............
.......................###..........................###....
...........................................................
...........................................................```

## Elena

ELENA 6.x :

Translation of: Java
```import system'collections;
import system'routines;
import extensions;
import extensions'routines;

const string[] image = new string[]{
"                                                          ",
" #################                   #############        ",
" ##################               ################        ",
" ###################            ##################        ",
" ########     #######          ###################        ",
"   ######     #######         #######       ######        ",
"   ######     #######        #######                      ",
"   #################         #######                      ",
"   ################          #######                      ",
"   #################         #######                      ",
"   ######     #######        #######                      ",
"   ######     #######        #######                      ",
"   ######     #######         #######       ######        ",
" ########     #######          ###################        ",
" ########     ####### ######    ################## ###### ",
" ########     ####### ######      ################ ###### ",
" ########     ####### ######         ############# ###### ",
"                                                          "};

static int[][] nbrs = new int[][]
{
new int[]{0, -1}, new int[]{1, -1}, new int[]{1, 0},   new int[]{1, 1}, new int[]{0, 1},
new int[]{-1, 1}, new int[]{-1, 0}, new int[]{-1, -1}, new int[]{0, -1}
};

static int[][][] nbrGroups = new int[][][]
{
new int[][]{new int[]{0, 2, 4}, new int[]{2, 4, 6}},
new int[][]{new int[]{0, 2, 6}, new int[]{0, 4, 6}}
};

extension zhangsuenOp : Matrix<CharValue>
{
proceed(r, c, toWhite, firstStep)
{
if (self[r][c] != \$35)
{ ^ false };

int nn := self.numNeighbors(r,c);

if ((nn < 2) || (nn > 6))
{ ^ false };

if(self.numTransitions(r,c) != 1)
{ ^ false };

ifnot (self.atLeastOneIsWhite(r,c,firstStep.iif(0,1)))
{ ^ false };

toWhite.append(new { x = c; y = r; });

^ true
}

numNeighbors(r,c)
{
int count := 0;

for (int i := 0; i < nbrs.Length - 1; i += 1)
{
if (self[r + nbrs[i][1]][c + nbrs[i + 1][0]] == \$35)
{ count += 1 }
};

^ count;
}

numTransitions(r,c)
{
int count := 0;

for (int i := 0; i < nbrs.Length - 1; i += 1)
{
if (self[r + nbrs[i][1]][c + nbrs[i][0]] == \$32)
{
if (self[r + nbrs[i + 1][1]][c + nbrs[i + 1][0]] == \$35)
{
count := count + 1
}
}
};

^ count
}

atLeastOneIsWhite(r, c, step)
{
int count := 0;
var group := nbrGroups[step];
for(int i := 0; i < 2; i += 1)
{
for(int j := 0; j < group[i].Length; j += 1)
{
var nbr := nbrs[group[i][j]];

if (self[r + nbr[1]][c + nbr[0]] == \$32)
{ count := count + 1; \$break; };
}
};

^ count > 1
}

thinImage()
{
bool firstStep := false;
bool hasChanged := true;
var toWhite := new List();

while (hasChanged || firstStep)
{
hasChanged := false;
firstStep := firstStep.Inverted;

for(int r := 1; r < self.Rows - 1; r += 1)
{
for(int c := 1; c < self.Columns - 1; c += 1)
{
if(self.proceed(r,c,toWhite,firstStep))
{ hasChanged := true }
}
};

toWhite.forEach::(p){ self[p.y][p.x] := \$32 };
toWhite.clear()
}
}

print()
{
var it := self.enumerator();

it.forEach::(ch){ console.print(ch," ") };
while (it.next())
{
console.writeLine();

it.forEach::(ch){ console.print(ch," ") }
}
}
}

public program()
{
{
int Rows = image.Length;

int Columns = image[0].Length;

at(int i, int j)
= image[i][j];
});

grid.thinImage();

grid.print();

}```
Output:
```

# #     # # # # # # # # #                                             # # # # # # # #
# # #               #                                       # # #                 #
#                     #                                   # #
#                     #                                   #
#                     #                                 #
#                 # # #                                 #
# # # # # # # # #     #                               #
#                   #                               #
#                     #                                 #
#                     #                                 #
#                     #                                 #
#                                                         # #
# # # # # # # # # # # #
# # #                                                     # # #

```

## Elixir

Translation of: Ruby
```defmodule ZhangSuen do
@neighbours  [{-1,0},{-1,1},{0,1},{1,1},{1,0},{1,-1},{0,-1},{-1,-1}]  # 8 neighbours

def thinning(str, black \\ ?#) do
s0 = for {line, i} <- (String.split(str, "\n") |> Enum.with_index),
{c, j}    <- (to_char_list(line) |> Enum.with_index),
into: Map.new,
do: {{i,j}, (if c==black, do: 1, else: 0)}
{xrange, yrange} = range(s0)
print(s0, xrange, yrange)
s1 = thinning_loop(s0, xrange, yrange)
print(s1, xrange, yrange)
end

defp thinning_loop(s0, xrange, yrange) do
s1 = step(s0, xrange, yrange, 1)            # Step 1
s2 = step(s1, xrange, yrange, 0)            # Step 2
if Map.equal?(s0, s2), do: s2, else: thinning_loop(s2, xrange, yrange)
end

defp step(s, xrange, yrange, g) do
for x <- xrange, y <- yrange, into: Map.new, do: {{x,y}, s[{x,y}] - zs(s,x,y,g)}
end

defp zs(s, x, y, g) do
if get(s,x,y) == 0 or                                       # P1
(get(s,x-1,y) + get(s,x,y+1) + get(s,x+g,y-1+g)) == 3 or  # P2, P4, P6/P8
(get(s,x-1+g,y+g) + get(s,x+1,y) + get(s,x,y-1)) == 3 do  # P4/P2, P6, P8
0
else
next = for {i,j} <- @neighbours, do: get(s, x+i, y+j)
bp1 = Enum.sum(next)                                      # B(P1)
if bp1 in 2..6 do
ap1 = (next++[hd(next)]) |> Enum.chunk(2,1) |> Enum.count(fn [a,b] -> a<b end)  # A(P1)
if ap1 == 1, do: 1, else: 0
else
0
end
end
end

defp get(map, x, y), do: Map.get(map, {x,y}, 0)

defp range(map), do: range(Map.keys(map), 0, 0)
defp range([], xmax, ymax), do: {0 .. xmax, 0 .. ymax}
defp range([{x,y} | t], xmax, ymax), do: range(t, max(x,xmax), max(y,ymax))

@display  %{0 => " ", 1 => "#"}
defp print(map, xrange, yrange) do
Enum.each(xrange, fn x ->
IO.puts (for y <- yrange, do: @display[map[{x,y}]])
end)
end
end

str = """
...........................................................
.#################...................#############.........
.##################...............################.........
.###################............##################.........
.########.....#######..........###################.........
...######.....#######.........#######.......######.........
...######.....#######........#######.......................
...#################.........#######.......................
...###############...........#######.......................
...#################.........#######.......................
...######....########........#######.......................
...######.....#######........#######.......................
...######.....#######.........#######.......######.........
.########.....#######..........###################.........
.########.....#######..#####....##################.######..
.########.....#######..#####......################.######..
.########.....#######..#####.........#############.######..
...........................................................
"""
ZhangSuen.thinning(str)

str = """
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
"""
ZhangSuen.thinning(str, ?1)
```
Output:
```
#################                   #############
##################               ################
###################            ##################
########     #######          ###################
######     #######         #######       ######
######     #######        #######
#################         #######
###############           #######
#################         #######
######    ########        #######
######     #######        #######
######     #######         #######       ######
########     #######          ###################
########     #######  #####    ################## ######
########     #######  #####      ################ ######
########     #######  #####         ############# ######

# ##########                       #######
##        #                   ####       #
#          #                 ##
#          #                #
#          #                #
#          #                #
############               #
#          #               #
#          #                #
#          #                #
#          #                #
#                            ##
#                             ############
##                          ###

#########       ########
###   ####     ####  ####
###    ###     ###    ###
###   ####     ###
#########      ###
### ####       ###    ###
###  ####  ### ####  #### ###
###   #### ###  ########  ###

#######         ######
#     #        ##
#      #       #
#     #        #
##### #        #
##        #
#    #   ##    ##   #
#         ####

```

## Fortran

With F90 came standardisation of a variety of array manipulation facilities. Since the image array is to be inspected as a whole then adjusted rather than adjusted step-by-step as it is inspected, the first thought was to employ the special facility of the FOR ALL statement, which is that in an expression such as

`FOR ALL (i = 2:n - 1) A(i) = (A(i - 1) + A(i) + A(i + 1))/3`

all right-hand-side expressions will be evaluated with the original values of the array, while in the less special array assignment

```A(2:N - 1) = (A(1:N - 2) + A(2:N - 1) + A(3:N))/3
```

as in the case of the equivalent DO-loop, the processing will be with a mixture of old and new values as the loop proceeds. So, that suggests something like

```      FOR ALL (I = 2:N - 1, J = 2:M - 1)
WHERE(DOT(I,J) .NE. 0) DOT(I,J) = ADJUST(DOT,I,J)
```

This requires function ADJUST to be a "pure" function, and they are not supposed to perpetrate side effects, such as one reporting that any adjustment was made. Nor is it clear that array DOT must be presented as a parameter either as the entire array or as element DOT(i,j), or if not, that it can be global to function ADJUST - which would also be an impurity - and for that matter, variables I and J could be global also...

Instead, thought turned to more closely following the task specification, which involves producing a list of elements to be adjusted after an inspection pass. Given that array DOT is two-dimensional, it would be nice if an element could be indexed via an expression such as `DOT(INDEX)` where INDEX was an array of two elements with INDEX(1) = i, and INDEX(2) = j, so as to access DOT(i,j) If this were possible, then obviously one could hope that array INDEX could be extended so as to store the multiple elements of a list of such locations to access, with a view to `DOT(INDEX(1:n)) = 0` adjusting the image.

Alas, such a syntax form is not accommodated. However, F90 also introduced the ability to define and use compound data types, such as the type PLACE as used below. It is not possible to define a type of a special, recognised form, such as say "SUBSCRIPT LIST" that can be used as dreamt of above, so the components are just ordinary variables. Two ordinary arrays could be used, one for each of the two subscripts, or a compound type could be devised in a hint towards self-documentation. Thus,

```      DOT(WHACK(1:WHACKCOUNT).I,WHACK(1:WHACKCOUNT).J) = 0
```

But it doesn't work... After a fair amount of head scratching, not at all assisted by the woolly generalities and inane examples of the compiler's "help" collection, it became apparent that the expression did not work through a list of indices as anticipated, but instead, for each value of the first index, all the values of the second index were selected. Thus, instead of the first change being DOT(WHACK(1).I,WHACK(1).J) only, it was DOT(WHACK(1).I,WHACK(1:WHACKCOUNT).J) that were being cleared. Accordingly, the fancy syntax has to be abandoned in favour of a specific DO-loop.

```      MODULE ZhangSuenThinning	!Image manipulation.
CONTAINS
SUBROUTINE ZST(DOT)	!Attempts to thin out thick lines.
INTEGER DOT(:,:)	!The image in an array, rows down the page.
TYPE PLACE		!This records an array location.
INTEGER I			!Via its
INTEGER J			!Indices.
END TYPE PLACE	!A lot of baggage.
TYPE(PLACE) WHACK(UBOUND(DOT,DIM = 1)*UBOUND(DOT,DIM = 2))	!Allow a whack for every dot.
INTEGER WHACKCOUNT	!Counts up those to be wiped out.
LOGICAL WHACKED	!Notes if any have been.
INTEGER STEP,I,N,J,M	!Assistants.
INTEGER D9(9)		!Holds a 3x3 portion.
INTEGER HIT1(3,2),HIT2(3,2)	!Lists of elements to inspect for certain tests.
PARAMETER (HIT1 = (/2,6,8, 4,2,6/))	!Two stages.
PARAMETER (HIT2 = (/4,8,6, 2,4,8/))	!Each with two hit lists.
N = UBOUND(DOT,DIM = 1)	!Number of rows.
M = UBOUND(DOT,DIM = 2)	!Number of columns.
Commence a pass.
10     WHACKED = .FALSE.	!No damage so far.
DO STEP = 1,2		!Each pass is in two stages.
WHACKCOUNT = 0	!No dots have been selected for whitewashing.
DO I = 2,N - 1	!Scan down the rows.
DO J = 2,M - 1	!And the columns. Interior dots only.
IF (DOT(I,J).NE.0) THEN	!Rule 0: Is the dot black? Eight neighbours are present due to loop control.
D9(1:3) = DOT(I - 1,J - 1:J + 1)	!Yes. Form a 3x3 mesh.	1 2 3  not  9 2 3
D9(4:6) = DOT(I    ,J - 1:J + 1)	!As a 1-D array.	4 5 6       8 1 4
D9(7:9) = DOT(I + 1,J - 1:J + 1)	!For eased access.	7 8 9       7 6 5
CALL INSPECT(D9,HIT1(1,STEP),HIT2(1,STEP))	!Apply rules one to four, as specified.
END IF			!So much for a black dot.
END DO		!On to the next column.
END DO		!On to the next row.
IF (WHACKCOUNT.GT.0) THEN	!Are any to be wiped out?
DO I = 1,WHACKCOUNT		!Yes!
DOT(WHACK(I).I,WHACK(I).J) = 0		!One by one.
END DO				!On to the next victim.
Can't use     DOT(WHACK(1:WHACKCOUNT).I,WHACK(1:WHACKCOUNT).J) = 0
WHACKED = .TRUE.			!There has been a change.
END IF			!So much for changes.
END DO		!On to the second stage.
IF (WHACKED) GO TO 10	!If there had been changes, perhaps there will be more.
CONTAINS	!Some helpers.
SUBROUTINE INSPECT(BLOB,HIT1,HIT2)	!Inspect a 3x3 piece according to the four levels of tests as specified.
INTEGER BLOB(9)		!The piece. BLOB(5) is DOT(I,J), and is expected to be 1.
INTEGER HIT1(3),HIT2(3)	!Two hit lists.
INTEGER TWIRL(9)		!traces the periphery of the piece.
PARAMETER (TWIRL = (/2,3,6,9,8,7,4,1,2/))	!Cycle around the periphery.
INTEGER B	!A counter.			!Rule:
B = SUM(BLOB) - BLOB(5)			!1: Count the neighbours having one, not zero.
IF (2 <= B .AND. B <= 6) THEN		!   The test. Can't have 2 <= B <= 6, alas.
IF (COUNT(BLOB(TWIRL(1:8))		!2: Counting transitions.
*              .LT.BLOB(TWIRL(2:9))) .EQ.1) THEN	!   The test of 0 --> positive.
IF (ANY(BLOB(HIT1).EQ.0)) THEN		!3: At least one must be white.
IF (ANY(BLOB(HIT2).EQ.0)) THEN	!4: Of two sets of three.
WHACKCOUNT = WHACKCOUNT + 1			!Another one down!
WHACK(WHACKCOUNT) = PLACE(I,J)		!This is the place.
END IF				!Now back out of the nested IF-statements.
END IF				!Since the tests must all be passed
END IF			!Rather than say three out of four.
END IF		!For the given method.
END SUBROUTINE INSPECT!That was weird.
END SUBROUTINE ZST	!But so it goes.

SUBROUTINE SHOW(A)	!Display an image array on the standard output.
INTEGER A(:,:)		!Values are expected to be zero and one.
CHARACTER*1 HIC(0:1)	!But I don't want to look at wads of digits.
PARAMETER (HIC = (/".","#"/))	!These offer better contrast.
INTEGER I		!A stepper.
DO I = 1,UBOUND(A,DIM = 1)	!Work down the given number of rows.
WRITE (6,"(666A1)") HIC(A(I,:))	!Roll a translated line.
END DO				!Hopefully, no more than 666 to a line.
END SUBROUTINE SHOW	!That was straightforward.
END MODULE ZhangSuenThinning

PROGRAM POKE	!Just set up the example.
USE ZhangSuenThinning
INTEGER N,M		!Parameters for the example.
PARAMETER (N = 10,M = 32)	!Rows and columns.
CHARACTER*(M) CANVAS(N)	!Rather than some monster DATA statement,
PARAMETER (CANVAS = (/	!It is easier to prepare a worksheet.
1 "                                ",
2 " 111111111       11111111       ",
3 " 111   1111     1111  1111      ",
4 " 111    111     111    111      ",
5 " 111   1111     111             ",
6 " 111111111      111             ",
7 " 111 1111       111    111      ",
8 " 111  1111  111 1111  1111 111  ",
9 " 111   1111 111  11111111  111  ",
o "                                "/))
INTEGER IMAGE(N,M)	!The image array. Exactly the required size.
INTEGER I		!A stepper.

DO I = 1,N		!Read the rows.
READ (CANVAS(I),"(666I1)") IMAGE(I,:)	!Presumably, 666 will suffice.
END DO			!A blank is taken as a zero with formatted input.

WRITE (6,*) "The initial image..."
CALL SHOW(IMAGE)
WRITE (6,*)

CALL ZST(IMAGE)
WRITE (6,*) "And after 'thinning'..."
CALL SHOW(IMAGE)

END PROGRAM POKE
```

Output:

``` The initial image...
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................

And after 'thinning'...
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................
```

## Go

```package main

import (
"bytes"
"fmt"
"strings"
)

var in = `
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000`

func main() {
b := wbFromString(in, '1')
b.zhangSuen()
fmt.Println(b)
}

const (
white = 0
black = 1
)

type wbArray [][]byte // elements are white or black.

// parameter blk is character to read as black.  otherwise kinda rigid,
// expects ascii, leading newline, no trailing newline,
// takes color from low bit of character.
func wbFromString(s string, blk byte) wbArray {
lines := strings.Split(s, "\n")[1:]
b := make(wbArray, len(lines))
for i, sl := range lines {
bl := make([]byte, len(sl))
for j := 0; j < len(sl); j++ {
bl[j] = sl[j] & 1
}
b[i] = bl
}
return b
}

// rigid again, hard coded to output space for white, # for black,
// no leading or trailing newline.
var sym = [2]byte{
white: ' ',
black: '#',
}

func (b wbArray) String() string {
b2 := bytes.Join(b, []byte{'\n'})
for i, b1 := range b2 {
if b1 > 1 {
continue
}
b2[i] = sym[b1]
}
return string(b2)
}

// neighbor offsets
var nb = [...][2]int{
2: {-1, 0}, // p2 offsets
3: {-1, 1}, // ...
4: {0, 1},
5: {1, 1},
6: {1, 0},
7: {1, -1},
8: {0, -1},
9: {-1, -1}, // p9 offsets
}

func (b wbArray) reset(en []int) (rs bool) {
var r, c int
var p [10]byte

for nx := 1; nx <= 9; nx++ {
n := nb[nx]
p[nx] = b[r+n[0]][c+n[1]]
}
}

n := nb[3]
p[9], p[2], p[3] = p[2], p[3], b[r+n[0]][c+n[1]]
n = nb[4]
p[8], p[1], p[4] = p[1], p[4], b[r+n[0]][c+n[1]]
n = nb[5]
p[7], p[6], p[5] = p[6], p[5], b[r+n[0]][c+n[1]]
}

// returns "A", count of white->black transitions in circuit of neighbors
// of an interior pixel b[r][c]
countA := func() (ct byte) {
bit := p[9]
for nx := 2; nx <= 9; nx++ {
last := bit
bit = p[nx]
if last == white {
ct += bit
}
}
return ct
}

// returns "B", count of black pixels neighboring interior pixel b[r][c].
countB := func() (ct byte) {
for nx := 2; nx <= 9; nx++ {
ct += p[nx]
}
return ct
}

lastRow := len(b) - 1
lastCol := len(b[0]) - 1

mark := make([][]bool, lastRow)
for r = range mark {
mark[r] = make([]bool, lastCol)
}

for r = 1; r < lastRow; r++ {
c = 1
for { // column loop
m := false
// test for failure of any of the five conditions,
if !(p[1] == black) {
goto markDone
}
if b1 := countB(); !(2 <= b1 && b1 <= 6) {
goto markDone
}
if !(countA() == 1) {
goto markDone
}
{
e1, e2 := p[en[1]], p[en[2]]
if !(p[en[0]]&e1&e2 == 0) {
goto markDone
}
if !(e1&e2&p[en[3]] == 0) {
goto markDone
}
}
// no conditions failed, mark this pixel for reset
m = true
rs = true // and mark that image changes
markDone:
mark[r][c] = m
c++
if c == lastCol {
break
}
}
}
if rs {
for r = 1; r < lastRow; r++ {
for c = 1; c < lastCol; c++ {
if mark[r][c] {
b[r][c] = white
}
}
}
}
return rs
}

var step1 = []int{2, 4, 6, 8}
var step2 = []int{4, 2, 8, 6}

func (b wbArray) zhangSuen() {
for {
rs1 := b.reset(step1)
rs2 := b.reset(step2)
if !rs1 && !rs2 {
break
}
}
}
```
Output:
```
#######         ######
#     #        ##
#      #       #
#     #        #
##### #        #
##        #
#    #   ##    ##   #
#         ####

```

## Groovy

```def zhangSuen(text) {
def image = text.split('\n').collect { line -> line.collect { it == '#' ? 1 : 0} }
def p2, p3, p4, p5, p6, p7, p8, p9
def step1 = { (p2 * p4 * p6 == 0) && (p4 * p6 * p8 == 0) }
def step2 = { (p2 * p4 * p8 == 0) && (p2 * p6 * p8 == 0) }
def reduce = { step ->
def toWhite = []
image.eachWithIndex{ line, y ->
line.eachWithIndex{ pixel, x ->
if (!pixel) return
(p2, p3, p4, p5, p6, p7, p8, p9) = [image[y-1][x], image[y-1][x+1], image[y][x+1], image[y+1][x+1], image[y+1][x], image[y+1][x-1], image[y][x-1], image[y-1][x-1]]
def a = [[p2,p3],[p3,p4],[p4,p5],[p5,p6],[p6,p7],[p7,p8],[p8,p9],[p9,p2]].collect { a1, a2 -> (a1 == 0 && a2 ==1) ? 1 : 0 }.sum()
def b = [p2, p3, p4, p5, p6, p7, p8, p9].sum()
if (a != 1 || b < 2 || b > 6) return

if (step.call()) toWhite << [y,x]
}
}
toWhite.each { y, x -> image[y][x] = 0 }
!toWhite.isEmpty()
}

while (reduce(step1) | reduce(step2));
image.collect { line -> line.collect { it ? '#' : '.' }.join('') }.join('\n')
}
```

Testing:

```def small = """\
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................""".stripIndent()

def large = """\
...........................................................
.#################...................#############.........
.##################...............################.........
.###################............##################.........
.########.....#######..........###################.........
...######.....#######.........#######.......######.........
...######.....#######........#######.......................
...#################.........#######.......................
...################..........#######.......................
...#################.........#######.......................
...######.....#######........#######.......................
...######.....#######........#######.......................
...######.....#######.........#######.......######.........
.########.....#######..........###################.........
.########.....#######.######....##################.######..
.########.....#######.######......################.######..
.########.....#######.######.........#############.######..
...........................................................""".stripIndent()

[small, large].each {
println "From:"
println it
println "To:"
println zhangSuen(it)
println()
}
```

Output:

```From:
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................
To:
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................

From:
...........................................................
.#################...................#############.........
.##################...............################.........
.###################............##################.........
.########.....#######..........###################.........
...######.....#######.........#######.......######.........
...######.....#######........#######.......................
...#################.........#######.......................
...################..........#######.......................
...#################.........#######.......................
...######.....#######........#######.......................
...######.....#######........#######.......................
...######.....#######.........#######.......######.........
.########.....#######..........###################.........
.########.....#######.######....##################.######..
.########.....#######.######......################.######..
.########.....#######.######.........#############.######..
...........................................................
To:
...........................................................
...........................................................
....#.##########.......................#######.............
.....##........#...................####.......#............
.....#..........#.................##.......................
.....#..........#................#.........................
.....#..........#................#.........................
.....#..........#................#.........................
.....############...............#..........................
.....#..........#...............#..........................
.....#..........#................#.........................
.....#..........#................#.........................
.....#..........#................#.........................
.....#............................##.......................
.....#.............................############............
.......................###..........................###....
...........................................................
...........................................................```

```import Data.Array
import qualified Data.List as List

data BW = Black | White
deriving (Eq, Show)

type Index = (Int, Int)
type BWArray = Array Index BW

toBW :: Char -> BW
toBW '0' = White
toBW '1' = Black
toBW ' ' = White
toBW '#' = Black
toBW _   = error "toBW: illegal char"

toBWArray :: [String] -> BWArray
toBWArray strings = arr
where
height = length strings
width  = minimum \$ map length strings
arr    = listArray ((0, 0), (width - 1, height - 1))
. map toBW . concat . List.transpose \$ map (take width) strings

toChar :: BW -> Char
toChar White = ' '
toChar Black = '#'

chunksOf :: Int -> [a] -> [[a]]
chunksOf _ [] = []
chunksOf n xs = take n xs : (chunksOf n \$ drop n xs)

showBWArray :: BWArray -> String
showBWArray arr =
List.intercalate "\n" . List.transpose
. chunksOf (height + 1) . map toChar \$ elems arr
where
(_, (_, height)) = bounds arr

add :: Num a => (a, a) -> (a, a) -> (a, a)
add (a, b) (x, y) = (a + x, b + y)

within :: Ord a => ((a, a), (a, a)) -> (a, a) -> Bool
within ((a, b), (c, d)) (x, y) =
a <= x && x <= c &&
b <= y && y <= d

p2, p3, p4, p5, p6, p7, p8, p9 :: Index
p2 = ( 0, -1)
p3 = ( 1, -1)
p4 = ( 1,  0)
p5 = ( 1,  1)
p6 = ( 0,  1)
p7 = (-1,  1)
p8 = (-1,  0)
p9 = (-1, -1)

ixamap :: Ix i => ((i, a) -> b) -> Array i a -> Array i b
ixamap f a = listArray (bounds a) \$ map f \$ assocs a

thin :: BWArray -> BWArray
thin arr =
if pass2 == arr then pass2 else thin pass2
where
(low, high)     = bounds arr
lowB            = low `add` (1, 1)
highB           = high `add` (-1, -1)
isInner         = within (lowB, highB)
offs p          = map (add p) [p2, p3, p4, p5, p6, p7, p8, p9]
trans c (a, b)  = if a == White && b == Black then c + 1 else c
zipshift xs     = zip xs (drop 1 xs ++ xs)
transitions a   = (== (1 :: Int)) . foldl trans 0 . zipshift . map (a !) . offs
within2to6 n    = 2 <= n && n <= 6
blacks a p      = within2to6 . length . filter ((== Black) . (a !)) \$ offs p
oneWhite xs a p = any ((== White) . (a !) . add p) xs
oneRight        = oneWhite [p2, p4, p6]
oneDown         = oneWhite [p4, p6, p8]
oneUp           = oneWhite [p2, p4, p8]
oneLeft         = oneWhite [p2, p6, p8]
precond a p     = (a ! p == Black) && isInner p && blacks a p && transitions a p
stage1 a p      = precond a p && oneRight a p && oneDown a p
stage2 a p      = precond a p && oneUp a p && oneLeft a p
stager f (p, d) = if f p then White else d
pass1           = ixamap (stager \$ stage1 arr) arr
pass2           = ixamap (stager \$ stage2 pass1) pass1

sampleExA :: [String]
sampleExA =
["00000000000000000000000000000000"
,"01111111110000000111111110000000"
,"01110001111000001111001111000000"
,"01110000111000001110000111000000"
,"01110001111000001110000000000000"
,"01111111110000001110000000000000"
,"01110111100000001110000111000000"
,"01110011110011101111001111011100"
,"01110001111011100111111110011100"
,"00000000000000000000000000000000"]

sampleExB :: [String]
sampleExB =
["                                                          "
," #################                   #############        "
," ##################               ################        "
," ###################            ##################        "
," ########     #######          ###################        "
,"   ######     #######         #######       ######        "
,"   ######     #######        #######                      "
,"   #################         #######                      "
,"   ################          #######                      "
,"   #################         #######                      "
,"   ######     #######        #######                      "
,"   ######     #######        #######                      "
,"   ######     #######         #######       ######        "
," ########     #######          ###################        "
," ########     ####### ######    ################## ###### "
," ########     ####### ######      ################ ###### "
," ########     ####### ######         ############# ###### "
,"                                                          "]

main :: IO ()
main = mapM_ (putStrLn . showBWArray . thin . toBWArray) [sampleExA, sampleExB]
```
Output:
```  #######         ######
#     #        ##
#      #       #
#     #        #
##### #        #
##        #
#    #   ##    ##   #
#         ####

# ##########                       #######
##        #                   ####       #
#          #                 ##
#          #                #
#          #                #
#          #                #
############               #
#          #               #
#          #                #
#          #                #
#          #                #
#                            ##
#                             ############
###                          ###
```

## J

Solution:

```isBlackPx=: '1'&=;._2             NB. boolean array of black pixels
toImage=: [: , LF ,.~ '01' {~ ]   NB. convert to original representation
frameImg=: 0 ,. 0 , >:@\$ {. ]     NB. adds border of 0's to image

neighbrs=: 1 :'(1 1 ,: 3 3)&(u;._3)'  NB. applies verb u to neighbourhoods

Bdry=: 1 2 5 8 7 6 3 0 1          NB. map pixel index to neighbour order
getPx=: { ,                       NB. get desired pixels from neighbourhood
Ap1=: [: +/ 2 </\ Bdry&getPx      NB. count 0->1 transitions
Bp1=: [: +/ [: }. Bdry&getPx      NB. count black neighbours

c11=: (2&<: *. <:&6)@Bp1          NB. step 1, condition 1
c12=: 1 = Ap1                     NB. ...
c13=: 0 e. 1 5 7&getPx
c14=: 0 e. 5 7 3&getPx
c23=: 0 e. 1 5 3&getPx            NB. step2, condition 3
c24=: 0 e. 1 7 3&getPx

cond1=: c11 *. c12 *. c13 *. c14  NB. step1 conditions
cond2=: c11 *. c12 *. c23 *. c24  NB. step2 conditions
whiten=: [ * -.@:*.               NB. make black pixels white
step1=: whiten frameImg@(cond1 neighbrs)
step2=: whiten frameImg@(cond2 neighbrs)

zhangSuen=: [: toImage [: step2@step1^:_ isBlackPx
```

Alternative, explicit representation of last verb above

```zhangSuenX=: verb define
img=. isBlackPx y
whilst. 0 < +/ , msk1 +.&-. msk2 do.
msk1=. (-.@:*. [: frameImg cond1 neighbrs) img
img=. msk1 * img
msk2=. (-.@:*. [: frameImg cond2 neighbrs) img
img=. msk2 * img
end.
toImage img
)
```

Example Use:

```toASCII=: ' #' {~ '1'&=;._2       NB. convert to ASCII representation

ExampleImg=: noun define
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
)

toASCII zhangSuen ExampleImg

#######         ######
#     #        ##
#      #       #
#     #        #
##### #        #
##        #
#    #   ##    ##   #
#         ####
```

## Java

Works with: Java version 7
```import java.awt.Point;
import java.util.*;

public class ZhangSuen {

final static String[] image = {
"                                                          ",
" #################                   #############        ",
" ##################               ################        ",
" ###################            ##################        ",
" ########     #######          ###################        ",
"   ######     #######         #######       ######        ",
"   ######     #######        #######                      ",
"   #################         #######                      ",
"   ################          #######                      ",
"   #################         #######                      ",
"   ######     #######        #######                      ",
"   ######     #######        #######                      ",
"   ######     #######         #######       ######        ",
" ########     #######          ###################        ",
" ########     ####### ######    ################## ###### ",
" ########     ####### ######      ################ ###### ",
" ########     ####### ######         ############# ###### ",
"                                                          "};

final static int[][] nbrs = {{0, -1}, {1, -1}, {1, 0}, {1, 1}, {0, 1},
{-1, 1}, {-1, 0}, {-1, -1}, {0, -1}};

final static int[][][] nbrGroups = {{{0, 2, 4}, {2, 4, 6}}, {{0, 2, 6},
{0, 4, 6}}};

static List<Point> toWhite = new ArrayList<>();
static char[][] grid;

public static void main(String[] args) {
grid = new char[image.length][];
for (int r = 0; r < image.length; r++)
grid[r] = image[r].toCharArray();

thinImage();
}

static void thinImage() {
boolean firstStep = false;
boolean hasChanged;

do {
hasChanged = false;
firstStep = !firstStep;

for (int r = 1; r < grid.length - 1; r++) {
for (int c = 1; c < grid[0].length - 1; c++) {

if (grid[r][c] != '#')
continue;

int nn = numNeighbors(r, c);
if (nn < 2 || nn > 6)
continue;

if (numTransitions(r, c) != 1)
continue;

if (!atLeastOneIsWhite(r, c, firstStep ? 0 : 1))
continue;

hasChanged = true;
}
}

for (Point p : toWhite)
grid[p.y][p.x] = ' ';
toWhite.clear();

} while (firstStep || hasChanged);

printResult();
}

static int numNeighbors(int r, int c) {
int count = 0;
for (int i = 0; i < nbrs.length - 1; i++)
if (grid[r + nbrs[i][1]][c + nbrs[i][0]] == '#')
count++;
return count;
}

static int numTransitions(int r, int c) {
int count = 0;
for (int i = 0; i < nbrs.length - 1; i++)
if (grid[r + nbrs[i][1]][c + nbrs[i][0]] == ' ') {
if (grid[r + nbrs[i + 1][1]][c + nbrs[i + 1][0]] == '#')
count++;
}
return count;
}

static boolean atLeastOneIsWhite(int r, int c, int step) {
int count = 0;
int[][] group = nbrGroups[step];
for (int i = 0; i < 2; i++)
for (int j = 0; j < group[i].length; j++) {
int[] nbr = nbrs[group[i][j]];
if (grid[r + nbr[1]][c + nbr[0]] == ' ') {
count++;
break;
}
}
return count > 1;
}

static void printResult() {
for (char[] row : grid)
System.out.println(row);
}
}
```

Output:

```
# ##########                       #######
##        #                   ####       #
#          #                 ##
#          #                #
#          #                #
#          #                #
############               #
#          #               #
#          #                #
#          #                #
#          #                #
#                            ##
#                             ############
###                          ###   ```

## JavaScript

Translation of: Java
```function Point(x, y) {
this.x = x;
this.y = y;
}
var ZhangSuen = (function () {
function ZhangSuen() {
}
ZhangSuen.image =
["                                                          ",
" #################                   #############        ",
" ##################               ################        ",
" ###################            ##################        ",
" ########     #######          ###################        ",
"   ######     #######         #######       ######        ",
"   ######     #######        #######                      ",
"   #################         #######                      ",
"   ################          #######                      ",
"   #################         #######                      ",
"   ######     #######        #######                      ",
"   ######     #######        #######                      ",
"   ######     #######         #######       ######        ",
" ########     #######          ###################        ",
" ########     ####### ######    ################## ###### ",
" ########     ####### ######      ################ ###### ",
" ########     ####### ######         ############# ###### ",
"                                                          "];

ZhangSuen.nbrs = [[0, -1], [1, -1], [1, 0], [1, 1], [0, 1], [-1, 1], [-1, 0], [-1, -1], [0, -1]];

ZhangSuen.nbrGroups = [[[0, 2, 4], [2, 4, 6]], [[0, 2, 6], [0, 4, 6]]];

ZhangSuen.toWhite = new Array();
;
ZhangSuen.main = function (args) {
ZhangSuen.grid = new Array(ZhangSuen.image.length);
for (var r = 0; r < ZhangSuen.image.length; r++)
ZhangSuen.grid[r] = (ZhangSuen.image[r]).split('');
ZhangSuen.thinImage();
};
ZhangSuen.thinImage = function () {
var firstStep = false;
var hasChanged;
do {
hasChanged = false;
firstStep = !firstStep;
for (var r = 1; r < ZhangSuen.grid.length - 1; r++) {
for (var c = 1; c < ZhangSuen.grid[0].length - 1; c++) {
if (ZhangSuen.grid[r][c] !== '#')
continue;
var nn = ZhangSuen.numNeighbors(r, c);
if (nn < 2 || nn > 6)
continue;
if (ZhangSuen.numTransitions(r, c) !== 1)
continue;
if (!ZhangSuen.atLeastOneIsWhite(r, c, firstStep ? 0 : 1))
continue;
ZhangSuen.toWhite.push(new Point(c, r));
hasChanged = true;
}
}
for (let i = 0; i < ZhangSuen.toWhite.length; i++) {
var p = ZhangSuen.toWhite[i];
ZhangSuen.grid[p.y][p.x] = ' ';
}
ZhangSuen.toWhite = new Array();
} while ((firstStep || hasChanged));
ZhangSuen.printResult();
};
ZhangSuen.numNeighbors = function (r, c) {
var count = 0;
for (var i = 0; i < ZhangSuen.nbrs.length - 1; i++)
if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === '#')
count++;
return count;
};
ZhangSuen.numTransitions = function (r, c) {
var count = 0;
for (var i = 0; i < ZhangSuen.nbrs.length - 1; i++)
if (ZhangSuen.grid[r + ZhangSuen.nbrs[i][1]][c + ZhangSuen.nbrs[i][0]] === ' ') {
if (ZhangSuen.grid[r + ZhangSuen.nbrs[i + 1][1]][c + ZhangSuen.nbrs[i + 1][0]] === '#')
count++;
}
return count;
};
ZhangSuen.atLeastOneIsWhite = function (r, c, step) {
var count = 0;
var group = ZhangSuen.nbrGroups[step];
for (var i = 0; i < 2; i++)
for (var j = 0; j < group[i].length; j++) {
var nbr = ZhangSuen.nbrs[group[i][j]];
if (ZhangSuen.grid[r + nbr[1]][c + nbr[0]] === ' ') {
count++;
break;
}
}
return count > 1;
};
ZhangSuen.printResult = function () {
for (var i = 0; i < ZhangSuen.grid.length; i++) {
var row = ZhangSuen.grid[i];
console.log(row.join(''));
}
};
return ZhangSuen;
}());
ZhangSuen.main(null);
```

Output:

```
# ##########                       #######
##        #                   ####       #
#          #                 ##
#          #                #
#          #                #
#          #                #
############               #
#          #               #
#          #                #
#          #                #
#          #                #
#                            ##
#                             ############
###                          ###    ```

## Julia

```const pixelstring =
"00000000000000000000000000000000" *
"01111111110000000111111110000000" *
"01110001111000001111001111000000" *
"01110000111000001110000111000000" *
"01110001111000001110000000000000" *
"01111111110000001110000000000000" *
"01110111100000001110000111000000" *
"01110011110011101111001111011100" *
"01110001111011100111111110011100" *
"00000000000000000000000000000000"
const pixels = reshape([UInt8(c- 48) for c in pixelstring], (32,10))'

function surroundtesting(px, i, j, step)
if px[i,j] == 0
return false
end
isize, jsize = size(px)
if i < 1 || j < 1 || i == isize || j == jsize                         # criteria 0.both
return false
end
s = Array{Int,1}(9)
s[1] = s[9] = px[i-1,j]; s[2] = px[i-1,j+1]; s[3] = px[i,j+1]; s[4] = px[i+1,j+1]
s[5] = px[i+1,j]; s[6] = px[i+1,j-1]; s[7] = px[i,j-1]; s[8] = px[i-1,j-1]
b = sum(s[1:8])
if b < 2 || b > 6                                                     # criteria 1.both
return false
end
if sum([(s[i] == 0 && s[i+1] == 1) for i in 1:length(s)-1]) != 1      # criteria 2.both
return false
end
if step == 1
rightwhite = s[1] == 0 || s[3] == 0 || s[5] == 0                  # 1.3
downwhite = s[3] == 0 || s[5] == 0 || s[7] == 0                   # 1.4
return rightwhite && downwhite
end
upwhite = s[1] == 0 || s[3] == 0 || s[7] == 0                         # 2.3
leftwhite = s[1] == 0 || s[5] == 0 || s[7] == 0                       # 2.4
return upwhite && leftwhite
end

function zsthinning(mat)
retmat = copy(mat)
testmat = zeros(Int, size(mat))
isize, jsize = size(testmat)
needredo = true
loops = 0
while(needredo)
loops += 1
println("loop number \$loops")
needredo = false
for n in 1:2
for i in 1:isize, j in 1:jsize
testmat[i,j] = surroundtesting(retmat, i, j, n) ? 1 : 0
end
for i in 1:isize, j in 1:jsize
if testmat[i,j] == 1
retmat[i,j] = 0
needredo = true
end
end
end
end
retmat
end

function asciiprint(mat)
for i in 1:size(mat)[1]
println(join(map(i -> i == 1 ? '#' : ' ', mat[i,:])))
end
end

asciiprint(zsthinning(pixels))
```
Output:
```
loop number 1
loop number 2
loop number 3

#######         ######
#     #        ##
#      #       #
#     #        #
##### #        #
##        #
#    #   ##    ##   #
#         ####

```

## Kotlin

Translation of: Java
```// version 1.1.2

class Point(val x: Int, val y: Int)

val image = arrayOf(
"                                                          ",
" #################                   #############        ",
" ##################               ################        ",
" ###################            ##################        ",
" ########     #######          ###################        ",
"   ######     #######         #######       ######        ",
"   ######     #######        #######                      ",
"   #################         #######                      ",
"   ################          #######                      ",
"   #################         #######                      ",
"   ######     #######        #######                      ",
"   ######     #######        #######                      ",
"   ######     #######         #######       ######        ",
" ########     #######          ###################        ",
" ########     ####### ######    ################## ###### ",
" ########     ####### ######      ################ ###### ",
" ########     ####### ######         ############# ###### ",
"                                                          "
)

val nbrs = arrayOf(
intArrayOf( 0, -1), intArrayOf( 1, -1), intArrayOf( 1,  0),
intArrayOf( 1,  1), intArrayOf( 0,  1), intArrayOf(-1,  1),
intArrayOf(-1,  0), intArrayOf(-1, -1), intArrayOf( 0, -1)
)

val nbrGroups = arrayOf(
arrayOf(intArrayOf(0, 2, 4), intArrayOf(2, 4, 6)),
arrayOf(intArrayOf(0, 2, 6), intArrayOf(0, 4, 6))
)

val toWhite = mutableListOf<Point>()
val grid = Array(image.size) { image[it].toCharArray() }

fun thinImage() {
var firstStep = false
var hasChanged: Boolean
do {
hasChanged = false
firstStep = !firstStep
for (r in 1 until grid.size - 1) {
for (c in 1 until grid[0].size - 1) {
if (grid[r][c] != '#') continue
val nn = numNeighbors(r, c)
if (nn !in 2..6) continue
if (numTransitions(r, c) != 1) continue
val step = if (firstStep) 0 else 1
if (!atLeastOneIsWhite(r, c, step)) continue
hasChanged = true
}
}
for (p in toWhite) grid[p.y][p.x] = ' '
toWhite.clear()
}
while (firstStep || hasChanged)
for (row in grid) println(row)
}

fun numNeighbors(r: Int, c: Int): Int {
var count = 0
for (i in 0 until nbrs.size - 1) {
if (grid[r + nbrs[i][1]][c + nbrs[i][0]] == '#') count++
}
return count
}

fun numTransitions(r: Int, c: Int): Int {
var count = 0
for (i in 0 until nbrs.size - 1) {
if (grid[r + nbrs[i][1]][c + nbrs[i][0]] == ' ') {
if (grid[r + nbrs[i + 1][1]][c + nbrs[i + 1][0]] == '#') count++
}
}
return count
}

fun atLeastOneIsWhite(r: Int, c: Int, step: Int): Boolean {
var count = 0;
val group = nbrGroups[step]
for (i in 0..1) {
for (j in 0 until group[i].size) {
val nbr = nbrs[group[i][j]]
if (grid[r + nbr[1]][c + nbr[0]] == ' ') {
count++
break
}
}
}
return count > 1
}

fun main(args: Array<String>) {
thinImage()
}
```
Output:
```
# ##########                       #######
##        #                   ####       #
#          #                 ##
#          #                #
#          #                #
#          #                #
############               #
#          #               #
#          #                #
#          #                #
#          #                #
#                            ##
#                             ############
###                          ###

```

## Lua

```function zhangSuenThin(img)
local dirs={
{ 0,-1},
{ 1,-1},
{ 1, 0},
{ 1, 1},
{ 0, 1},
{-1, 1},
{-1, 0},
{-1,-1},
{ 0,-1},
}

local black=1
local white=0

function A(x, y)
local c=0
local current=img[y+dirs[1][2]][x+dirs[1][1]]
for i=2,#dirs do
local to_compare=img[y+dirs[i][2]][x+dirs[i][1]]
if current==white and to_compare==black then
c=c+1
end
current=to_compare
end
return c
end

function B(x, y)
local c=0
for i=2,#dirs do
local value=img[y+dirs[i][2]][x+dirs[i][1]]
if value==black then
c=c+1
end
end
return c
end

function common_step(x, y)
if img[y][x]~=black or x<=1 or x>=#img[y] or y<=1 or y>=#img then
return false
end

local b_value=B(x, y)
if b_value<2 or b_value>6 then
return false
end

local a_value=A(x, y)
if a_value~=1 then
return false
end
return true
end

function step_one(x, y)
if not common_step(x, y) then
return false
end
local p2=img[y+dirs[1][2]][x+dirs[1][1]]
local p4=img[y+dirs[3][2]][x+dirs[3][1]]
local p6=img[y+dirs[5][2]][x+dirs[5][1]]
local p8=img[y+dirs[7][2]][x+dirs[7][1]]

if p4==white or p6==white or p2==white and p8==white then
return true
end
return false
end

function step_two(x, y)
if not common_step(x, y) then
return false
end
local p2=img[y+dirs[1][2]][x+dirs[1][1]]
local p4=img[y+dirs[3][2]][x+dirs[3][1]]
local p6=img[y+dirs[5][2]][x+dirs[5][1]]
local p8=img[y+dirs[7][2]][x+dirs[7][1]]

if p2==white or p8==white or p4==white and p6==white then
return true
end
return false
end

function convert(to_do)
for k,v in pairs(to_do) do
img[v[2]][v[1]]=white
end
end

function do_step_on_all(step)
local to_convert={}
for y=1,#img do
for x=1,#img[y] do
if step(x, y) then
table.insert(to_convert, {x,y})
end
end
end
convert(to_convert)
return #to_convert>0
end

local continue=true
while continue do
continue=false
if do_step_on_all(step_one) then
continue=true
end

if do_step_on_all(step_two) then
continue=true
end
end

for y=1,#img do
for x=1,#img[y] do
io.write(img[y][x]==black and '#' or ' ')
end
io.write('\n')
end
end

local image = {
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0},
{0,1,1,1,0,0,0,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0},
{0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,0,0},
{0,1,1,1,0,0,0,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,0,0},
{0,1,1,1,0,0,1,1,1,1,0,0,1,1,1,0,1,1,1,1,0,0,1,1,1,1,0,1,1,1,0,0},
{0,1,1,1,0,0,0,1,1,1,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,0,0,1,1,1,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
}

zhangSuenThin(image)
```

Output:

```
#######         ######
#     #        ##
#      #       #
#     #        #
##### #        #
##        #
#    #   ##    ##   #
#         ####

```

## Mathematica/Wolfram Language

Mathematica supports directly the Thinning methods "Morphological" and "MedialAxis". The Zhang-Suen algorithm implementation could be done with:

```nB[mat_] := Delete[mat // Flatten, 5] // Total;

nA[mat_] := Module[{l},
l = Flatten[mat][[{2, 3, 6, 9, 8, 7, 4, 1, 2}]];
Total[Map[If[#[[1]] == 0 && #[[2]] == 1, 1, 0] &,
Partition[l, 2, 1]]]
];

iW1[mat_] :=
Module[{l = Flatten[mat]},
If[Apply[Times, l[[{2, 6, 8}]]] + Apply[Times, l[[{4, 6, 8}]]] ==
0, 0, 1]];
iW2[mat_] :=
Module[{l = Flatten[mat]},
If[Apply[Times, l[[{2, 6, 4}]]] + Apply[Times, l[[{4, 2, 8}]]] ==
0, 0, 1]];

check[i_, j_, dat_, t_] := Module[{mat, d = Dimensions[dat], r, c},
r = d[[1]];
c = d[[2]];
If[i > 1 && i < r && j > 1 && j < c,
mat = dat[[i - 1 ;; i + 1, j - 1 ;; j + 1]];
If[dat[[i, j]] == 1 && nA[mat] == 1 && 2 <= nB[mat] <= 6 &&
If[t == 1, iW1[mat], iW2[mat]] == 0, 0, dat[[i, j]]],
dat[[i, j]]
]];

iter[dat_] :=
Module[{i =
Flatten[Outer[List, Range[Dimensions[dat][[1]]],
Range[Dimensions[dat][[2]]]], 1], tmp},
tmp = Partition[check[#[[1]], #[[2]], dat, 1] & /@ i,
Dimensions[dat][[2]]];
Partition[check[#[[1]], #[[2]], tmp, 2] & /@ i,
Dimensions[tmp][[2]]]];

FixedPoint[iter, dat]
```

Which results in: (printMat is only defined to print an text output - the natural Mathemaica way would be to use ArrayPlot function, which create a graphic object which we can't paste into this wiki)

```
printMat[mat_] :=
StringReplace[
Riffle[Map[StringJoin, Map[ToString, mat, {2}]], "\n"] //
StringJoin, {"1" -> "#", "0" -> "."}];

dat1 = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0}, {0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1,
0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 0, 0, 0, 0, 1,
1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0,
0}, {0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0}, {0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0,
0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 0, 0, 1, 1, 1,
1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0,
0}, {0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1,
1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0}};

printMat[dat1]
printMat[FixedPoint[iter, dat1]]

................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................

dat2 = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0}, {0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0}, {0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1,
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 1, 1, 1, 1, 1, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0}, {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0}, {0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 1, 1, 1, 1, 1, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0}, {0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1,
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0}, {0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1,
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 1, 1, 1, 1, 1, 1, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 0, 0}, {0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0,
0}, {0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0}, {0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};

printMat[dat2]
printMat[FixedPoint[iter, dat2]]

...........................................................
.#################...................#############.........
.##################...............################.........
.###################............##################.........
.########.....#######..........###################.........
...######.....#######.........#######.......######.........
...######.....#######........#######.......................
...#################.........#######.......................
...################..........#######.......................
...#################.........#######.......................
...######.....#######........#######.......................
...######.....#######........#######.......................
...######.....#######.........#######.......######.........
.########.....#######..........###################.........
.########.....#######.######....##################.######..
.########.....#######.######......################.######..
.########.....#######.######.........#############.######..
...........................................................
...........................................................
...........................................................
....#.##########.......................#######.............
.....##........#...................####.......#............
.....#..........#.................##.......................
.....#..........#................#.........................
.....#..........#................#.........................
.....#..........#................#.........................
.....############...............#..........................
.....#..........#...............#..........................
.....#..........#................#.........................
.....#..........#................#.........................
.....#..........#................#.........................
.....#............................##.......................
.....#.............................############............
.......................###..........................###....
...........................................................
...........................................................```

## Nim

```import math, sequtils, strutils

type
Bit = 0..1
BitMatrix = seq[seq[Bit]]     # Two-dimensional array of 0/1.
Neighbors = array[2..9, Bit]  # Neighbor values.

const Symbols = [Bit(0): '.', Bit(1): '#']

func toBitMatrix(s: openArray[string]): BitMatrix =
## Convert an array of 01 strings into a BitMatrix.
for row in s:
assert row.allCharsInSet({'0', '1'})

proc `\$`(m: BitMatrix): string =
## Return the string representation of a BitMatrix.
for row in m:
echo row.mapIt(Symbols[it]).join()

# Templates to allow using double indexing.
template `[]`(m: BitMatrix; i, j: Natural): Bit = m[i][j]
template `[]=`(m: var BitMatrix; i, j: Natural; val: Bit) = m[i][j] = val

func neighbors(m: BitMatrix; i, j: int): Neighbors =
## Return the array of neighbors.
[m[i-1, j], m[i-1, j+1], m[i, j+1], m[i+1, j+1],
m[i+1, j], m[i+1, j-1], m[i, j-1], m[i-1, j-1]]

func transitions(p: Neighbors): int =
## Return the numbers of transitions from P2 to P9.
for (i, j) in [(2, 3), (3, 4), (4, 5), (5, 6),
(6, 7), (7, 8), (8, 9), (9, 2)]:
result += ord(p[i] == 0 and p[j] == 1)

func thinned(m: BitMatrix): BitMatrix =
## Return a thinned version of "m".
const Pair1 = [2, 8]
const Pair2 = [4, 6]
let rowMax = m.high
let colMax = m[0].high
result = m

while true:
var changed = false

for step in 1..2:
let (p1, p2) = if step == 1: (Pair1, Pair2) else: (Pair2, Pair1)
var m = result
for i in 1..<rowMax:
for j in 1..<colMax:

# Check criteria.
if m[i, j] == 0:                            # criterion 0.
continue
let p = m.neighbors(i, j)
if sum(p) notin 2..6:                       # criterion 1.
continue
if transitions(p) != 1:                     # criterion 2.
continue
if p[p1[0]] + p[p2[0]] + p[p2[1]] == 3 or   # criterion 3.
p[p1[1]] + p[p2[0]] + p[p2[1]] == 3:     # criterion 4.
continue

# All criteria satisfied. Store a 0 in "result".
result[i, j] = 0
changed = true

if not changed: break

when isMainModule:

const Input = ["00000000000000000000000000000000",
"01111111110000000111111110000000",
"01110001111000001111001111000000",
"01110000111000001110000111000000",
"01110001111000001110000000000000",
"01111111110000001110000000000000",
"01110111100000001110000111000000",
"01110011110011101111001111011100",
"01110001111011100111111110011100",
"00000000000000000000000000000000"]

let input = Input.toBitMatrix()
let output = input.thinned()
echo "Input image:"
echo input
echo()
echo "Output image:"
echo output
```
Output:
```Input image:
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................

Output image:
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................```

## Perl

Translation of: Raku
```use v5.36.0;
no warnings 'uninitialized';
use List::Util qw(sum min);

\$source = <<'END';
............................................................
..#################...................#############.........
..##################...............################.........
..###################............##################.........
..########.....#######..........###################.........
....######.....#######.........#######.......######.........
....######.....#######........#######.......................
....#################.........#######.......................
....################..........#######.......................
....#################.........#######.......................
....######.....#######........#######.......................
....######.....#######........#######.......................
....######.....#######.........#######.......######.........
..########.....#######..........###################.........
..########.....#######.######....##################.######..
..########.....#######.######......################.######..
..########.....#######.######.........#############.######..
............................................................
END

for \$line (split "\n", \$source) {
push @lines, [map { 1 & ord \$_ } split '', \$line]
}

\$v = @lines;
\$h = @{\$lines[0]};
push @black, @\$_ for @lines;
@p8 = ((-\$h-1), (-\$h+0), (-\$h+1),                    # flatland distances to 8 neighbors.
0-1,              0+1,
\$h-1,    \$h+0,    \$h+1)[1,2,4,7,6,5,3,0];   # (in cycle order)

# Candidates have 8 neighbors and are known black
@cand = grep { \$black[\$_] } map { my \$x = \$_; map \$_*\$h + \$x, 1..\$v-2 } 1..\$h-2;

do {
sub seewhite (\$w1,\$w2) {
my @results;
sub cycles (@neighbors) { my \$c; \$c += \$neighbors[\$_] < \$neighbors[(\$_+1)%8] for 0..\$#neighbors; \$c }
sub blacks (@neighbors) { sum @neighbors }
@prior = @cand; @cand = ();
for \$p (@prior) {
@n = @black[map { \$_+\$p } @p8];
if (cycles(@n) == 1 and 2 <= sum(blacks(@n)) and sum(blacks(@n)) <= 6 and min(@n[@\$w1]) == 0 and min(@n[@\$w2]) == 0) {
push @results, \$p;
} else {
push @cand, \$p
}
}
@results
}

@goners1 = seewhite [0,2,4], [2,4,6]; @black[@goners1] = 0 x @goners1;
@goners2 = seewhite [0,2,6], [0,4,6]; @black[@goners2] = 0 x @goners2;
} while @goners1 or @goners2;

while (@black) { push @thinned, join '', qw<. #>[splice(@black,0,\$h)] }

say join "\n", @thinned;
```
Output:
```............................................................
............................................................
.....#.##########.......................#######.............
......##........#...................####.......#............
......#..........#.................##.......................
......#..........#................#.........................
......#..........#................#.........................
......#..........#................#.........................
......############...............#..........................
......#..........#...............#..........................
......#..........#................#.........................
......#..........#................#.........................
......#..........#................#.........................
......#............................##.......................
......#.............................############............
........................###..........................###....
............................................................
............................................................```

## Phix

```with javascript_semantics
constant n = {{-1,0},{-1,1},{0,1},{1,1},{1,0},{1,-1},{0,-1},{-1,-1},{-1,0}};

function AB(sequence text, integer y, x, step)
integer wtb = 0, bn = 0
integer prev = '#', next
string p2468 = ""
for i=1 to length(n) do
next = text[y+n[i][1]][x+n[i][2]]
wtb += (prev='.' and next<='#')
bn += (i>1 and next<='#')
if and_bits(i,1)=0 then p2468 = append(p2468,prev) end if
prev = next
end for
if step=2 then -- make it p6842
p2468 = p2468[3..4]&p2468[1..2]
end if
return {wtb,bn,p2468}
end function

procedure Zhang_Suen(sequence text)
integer wtb, bn, changed, changes
string p2468    -- (p6842 for step 2)
text = split(text,'\n')
while 1 do
changed = 0
for step=1 to 2 do
changes = 0
for y=2 to length(text)-1 do
for x=2 to length(text[y])-1 do
if text[y][x]='#' then
{wtb,bn,p2468} = AB(text,y,x,step)
if wtb=1
and bn>=2 and bn<=6
and find('.',p2468[1..3])
and find('.',p2468[2..4])then
changes = 1
text[y][x] = '!'    -- (logically still black)
end if
end if
end for
end for
if changes then
for y=2 to length(text)-1 do
text[y] = substitute(text[y],"!",".")
end for
changed = 1
end if
end for
if not changed then exit end if
end while
puts(1,join(text,"\n"))
end procedure

string small_rc = """
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................"""
Zhang_Suen(small_rc)
```
Output:
```................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................
```

## PL/I

```zhang: procedure options (main);        /* 8 July 2014 */

declare pic(10) bit(32) initial (
'00000000000000000000000000000000'b,
'01111111110000000111111110000000'b,
'01110001111000001111001111000000'b,
'01110000111000001110000111000000'b,
'01110001111000001110000000000000'b,
'01111111110000001110000000000000'b,
'01110111100000001110000111000000'b,
'01110011110011101111001111011100'b,
'01110001111011100111111110011100'b,
'00000000000000000000000000000000'b );
declare image  (10,32) bit(1) defined pic;
declare status (10,32) fixed decimal (1);
declare changes bit(1);
declare (i, j, k, m, n) fixed binary;

m = hbound(image,1); n = hbound(image,2);

call display;

/* Pixel labelling for pixels surrounding P1, co-ordinates (i,j). */
/* P9 P2 P3 */
/* P8 P1 P4 */
/* P7 P6 P5 */

do k = 1 to 10 until (^changes);
changes = '0'b;
/* Set conditions as follows: */
/*   (0) The pixel is black and has eight neighbours */
/*   (1) 2 < = B(P1) < = 6                           */
/*   (2) A(P1) = 1                                   */
/*   (3) At least one of P2 and P4 and P6 is white   */
/*   (4) At least one of P4 and P6 and P8 is white   */
status = -1;
do i = 2 to m-1;
do j = 2 to n-1;
if image(i,j) then
if B(i,j) >= 2 & B(i,j) <= 6 then
if A(i,j) = 1 then
if ^image(i-1,j) | ^image(i,j+1) | ^image(i+1,j) then
if ^image(i,j+1) | ^image(i+1,j) | ^image(i,j-1) then
status(i,j) = 4;
end;
end;
/* Having determined a status for every bit in the image,   */
/* change those bits to white.                              */
do i = 2 to m-1;
do j = 2 to n-1;
if status(i,j) ^= -1 then do; image(i,j) = '0'b; changes = '1'b; end;
end;
end;

/* Set conditions as follows: */
/*   (0) The pixel is black and has eight neighbours */
/*   (1) 2 < = B(P1) < = 6                           */
/*   (2) A(P1) = 1                                   */
/*   (3) At least one of P2 and P4 and P8 is white   */
/*   (4) At least one of P2 and P6 and P8 is white   */
status = -1;
do i = 2 to m-1;
do j = 2 to n-1;
if image(i,j) then
if B(i,j) >= 2 & B(i,j) <= 6 then
if A(i,j) = 1 then
if ^image(i-1,j) | ^image(i,j+1) | ^image(i,j-1) then
if ^image(i-1,j) | ^image(i+1,j) | ^image(i,j-1) then
status(i,j) = 4;
end;
end;
/* Having determined a status for every bit in the image,   */
/* change those bits to white.                              */
do i = 2 to m-1;
do j = 2 to n-1;
if status(i,j) ^= -1 then do; image(i,j) = '0'b; changes = '1'b; end;
end;
end;

end; /* of the "until" loop */

put skip list ('Final image after ' || trim(k) || ' iterations:');
call display;

display: procedure;
declare (i, j) fixed binary;
declare c character (1);

do i = 1 to m;
put skip edit ('row:', i) (A, F(3));
do j = 1 to n;
if image(i,j) then c = '.'; else c = ' ';
put edit (c) (A);
end;
end;
put skip;
end;

/* Returns the number of transitions from white to black from P2 through P9 and P2. */
A: procedure (i,j) returns (fixed binary);
declare (i,j) fixed binary nonassignable;
declare n(2:10) bit(1);

n(2)  = image(i-1,j);  n(3) = image(i-1,j+1);
n(4)  = image(i, j+1); n(5) = image(i+1,j+1);
n(6)  = image(i+1,j);  n(7) = image(i+1,j-1);
n(8)  = image(i,j-1);  n(9) = image(i-1,j-1);
n(10) = image(i-1,j);

return ( tally(string(n), '01'b) );
end A;

/* Count the pixel neighbors of P1 that are black */
B: procedure (i, j) returns (fixed binary);
declare (i,j) fixed binary nonassignable;
declare s fixed binary;

s = image(i-1,j-1) + image(i-1,j) + image(i-1,j+1);
s = s + image(i,j-1) + image(i,j+1);
return ( s + image(i+1,j-1) + image(i+1,j) + image(i+1,j+1) );
end B;

end zhang;```
```[Initial configuration:]
row:  1
row:  2 .........       ........
row:  3 ...   ....     ....  ....
row:  4 ...    ...     ...    ...
row:  5 ...   ....     ...
row:  6 .........      ...
row:  7 ... ....       ...    ...
row:  8 ...  ....  ... ....  .... ...
row:  9 ...   .... ...  ........  ...
row: 10

[Intermeduiate "images" omitted]

Final image after 3 iterations:
row:  1
row:  2  .......         ......
row:  3  .     .        ..
row:  4  .      .       .
row:  5  .     .        .
row:  6  ..... .        .
row:  7       ..        .
row:  8        .    .   ..    ..   .
row:  9         .         ....
row: 10

Second image:
Image to be thinned:
row  1:
row  2:  ...............
row  3: ..................
row  4:  ..................
row  5:     ....       .....
row  6:     ....        .....
row  7:     ....         .....
row  8:     ....         .....
row  9:     ....        ......
row 10:     ....        .....
row 11:     ....       .....
row 12:     ....      .....
row 13:     ....     .....
row 14:     .............
row 15:     ..............
row 16:     ...............
row 17:     ....      ......
row 18:     ....       ......
row 19:     ....        .....
row 20:     ....        ......
row 21:     ....         .....
row 22:     ....         .....
row 23:     ....        ......
row 24:     ....       ......
row 25:  ...................
row 26: ...................
row 27:  .................
row 28:

Final image after 3 iterations:
row  1:
row  2:
row  3:   ..............
row  4:      .          .
row  5:      .           .
row  6:      .            .
row  7:      .            .
row  8:      .            .
row  9:      .            .
row 10:      .           ..
row 11:      .           .
row 12:      .          .
row 13:      .          .
row 14:      .         .
row 15:      ...........
row 16:      .          .
row 17:      .          ..
row 18:      .           .
row 19:      .            .
row 20:      .            .
row 21:      .            .
row 22:      .            .
row 23:      .            .
row 24:      .           ..
row 25:      .          ..
row 26:   ... ...........
row 27:
row 28:```

## Python

Several input images are converted.

```# -*- coding: utf-8 -*-

# Example from [http://nayefreza.wordpress.com/2013/05/11/zhang-suen-thinning-algorithm-java-implementation/ this blog post].
beforeTxt = '''\
1100111
1100111
1100111
1100111
1100110
1100110
1100110
1100110
1100110
1100110
1100110
1100110
1111110
0000000\
'''

# Thanks to [http://www.network-science.de/ascii/ this site] and vim for these next two examples
smallrc01 = '''\
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000\
'''

rc01 = '''\
00000000000000000000000000000000000000000000000000000000000
01111111111111111100000000000000000001111111111111000000000
01111111111111111110000000000000001111111111111111000000000
01111111111111111111000000000000111111111111111111000000000
01111111100000111111100000000001111111111111111111000000000
00011111100000111111100000000011111110000000111111000000000
00011111100000111111100000000111111100000000000000000000000
00011111111111111111000000000111111100000000000000000000000
00011111111111111110000000000111111100000000000000000000000
00011111111111111111000000000111111100000000000000000000000
00011111100000111111100000000111111100000000000000000000000
00011111100000111111100000000111111100000000000000000000000
00011111100000111111100000000011111110000000111111000000000
01111111100000111111100000000001111111111111111111000000000
01111111100000111111101111110000111111111111111111011111100
01111111100000111111101111110000001111111111111111011111100
01111111100000111111101111110000000001111111111111011111100
00000000000000000000000000000000000000000000000000000000000\
'''

def intarray(binstring):
'''Change a 2D matrix of 01 chars into a list of lists of ints'''
return [[1 if ch == '1' else 0 for ch in line]
for line in binstring.strip().split()]

def chararray(intmatrix):
'''Change a 2d list of lists of 1/0 ints into lines of 1/0 chars'''
return '\n'.join(''.join(str(p) for p in row) for row in intmatrix)

def toTxt(intmatrix):
'''Change a 2d list of lists of 1/0 ints into lines of '#' and '.' chars'''
return '\n'.join(''.join(('#' if p else '.') for p in row) for row in intmatrix)

def neighbours(x, y, image):
'''Return 8-neighbours of point p1 of picture, in order'''
i = image
x1, y1, x_1, y_1 = x+1, y-1, x-1, y+1
#print ((x,y))
return [i[y1][x],  i[y1][x1],   i[y][x1],  i[y_1][x1],  # P2,P3,P4,P5
i[y_1][x], i[y_1][x_1], i[y][x_1], i[y1][x_1]]  # P6,P7,P8,P9

def transitions(neighbours):
n = neighbours + neighbours[0:1]    # P2, ... P9, P2
return sum((n1, n2) == (0, 1) for n1, n2 in zip(n, n[1:]))

def zhangSuen(image):
changing1 = changing2 = [(-1, -1)]
while changing1 or changing2:
# Step 1
changing1 = []
for y in range(1, len(image) - 1):
for x in range(1, len(image[0]) - 1):
P2,P3,P4,P5,P6,P7,P8,P9 = n = neighbours(x, y, image)
if (image[y][x] == 1 and    # (Condition 0)
P4 * P6 * P8 == 0 and   # Condition 4
P2 * P4 * P6 == 0 and   # Condition 3
transitions(n) == 1 and # Condition 2
2 <= sum(n) <= 6):      # Condition 1
changing1.append((x,y))
for x, y in changing1: image[y][x] = 0
# Step 2
changing2 = []
for y in range(1, len(image) - 1):
for x in range(1, len(image[0]) - 1):
P2,P3,P4,P5,P6,P7,P8,P9 = n = neighbours(x, y, image)
if (image[y][x] == 1 and    # (Condition 0)
P2 * P6 * P8 == 0 and   # Condition 4
P2 * P4 * P8 == 0 and   # Condition 3
transitions(n) == 1 and # Condition 2
2 <= sum(n) <= 6):      # Condition 1
changing2.append((x,y))
for x, y in changing2: image[y][x] = 0
#print changing1
#print changing2
return image

if __name__ == '__main__':
for picture in (beforeTxt, smallrc01, rc01):
image = intarray(picture)
print('\nFrom:\n%s' % toTxt(image))
after = zhangSuen(image)
print('\nTo thinned:\n%s' % toTxt(after))
```
Output:

```From:
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................

To thinned:
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................```

## Racket

```#lang racket
(define (img-01string->vector str)
(define lines (regexp-split "\n" str))
(define h (length lines))
(define w (if (zero? h) 0 (string-length (car lines))))
(define v (for*/vector #:length (* w h)
((l (in-list lines)) (p (in-string l)))
(match p (#\0 0) (#\1 1) (#\# 1) (#\. 0))))
(values v h w))

; Task (2) asks for "or an ASCII-art image of space/non-space characters."
; Spaces don't really impress where the borders are, so we'll use a dot.
(define cell->display-char (match-lambda (0 ".") (1 "#") (else "?")))

(define (display-img v w)
(for ((p (in-vector v)) (col (in-naturals)))
(printf "~a" (cell->display-char p))
(when (= (modulo col w) (sub1 w)) (newline))))

; returns vector of ([P1's idx] P1 P2 ... P9)
(define (Pns v w r c)
(define i (+ c (* r w)))
(define-syntax-rule (vi+ x) (vector-ref v (+ i x)))
(define-syntax-rule (vi- x) (vector-ref v (- i x)))
(vector i (vi+ 0) (vi- w) (vi+ (- 1 w))
(vi+ 1) (vi+ (+ w 1)) (vi+ w)
(vi+ (- w 1)) (vi- 1) (vi- (+ w 1))))

; Second argument to in-vector is the start offset;
; We skip offset 0 (idx) and 1 (P1)
(define (B Ps) (for/sum ((Pn (in-vector Ps 2))) Pn))

(define (A Ps)
(define P2 (vector-ref Ps 2))
(define-values (rv _)
(for/fold ((acc 0) (Pn-1 P2))
((Pn (in-sequences (in-vector Ps 3) (in-value P2))))
(values (+ acc (if (and (= 0 Pn-1) (= 1 Pn)) 1 0)) Pn)))
rv)

(define-syntax-rule (not-all-black? Pa Pb Pc) (zero? (* Pa Pb Pc)))
(define (z-s-thin v h w)
; return idx when thin necessary, #f otherwise
(define (thin? Ps n/bour-check-1 n/bour-check-2)
(match-define (vector idx P1 P2 _ P4 _ P6 _ P8 _) Ps)
(and (= P1 1) (<= 2 (B Ps) 6) (= (A Ps) 1)
(n/bour-check-1 P2 P4 P6 P8)
(n/bour-check-2 P2 P4 P6 P8)
idx))

(define (has-white?-246 P2 P4 P6 P8) (not-all-black? P2 P4 P6))
(define (has-white?-468 P2 P4 P6 P8) (not-all-black? P4 P6 P8))
(define (has-white?-248 P2 P4 P6 P8) (not-all-black? P2 P4 P8))
(define (has-white?-268 P2 P4 P6 P8) (not-all-black? P2 P6 P8))
(define (step-n even-Pn-check-1 even-Pn-check-2)
(for*/list ((r (in-range 1 (- h 1)))
(c (in-range 1 (- w 1)))
(idx (in-value (thin? (Pns v w r c)
even-Pn-check-1
even-Pn-check-2)))
#:when idx) idx))

(define (step-1) (step-n has-white?-246 has-white?-468))
(define (step-2) (step-n has-white?-248 has-white?-268))
(define (inner-z-s-thin)
(define changed-list-1 (step-1))
(for ((idx (in-list changed-list-1))) (vector-set! v idx 0))
(define changed-list-2 (step-2))
(for ((idx (in-list changed-list-2))) (vector-set! v idx 0))
(unless (and (null? changed-list-1) (null? changed-list-2)) (inner-z-s-thin)))
(inner-z-s-thin))

(define-values (v h w) (img-01string->vector img-str))
(printf "Original image:~%") (display-img v w)
(z-s-thin v h w)
(printf "Thinned image:~%") (display-img v w))

(define e.g.-image #<<EOS
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
EOS
)

(define e.g.-image/2 #<<EOS
##..###
##..###
##..###
##..###
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
######.
.......
EOS
)

(module+ main
; (newline)
```
Output:

Only the requested image is output:

```Original image:
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................
Thinned image:
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................```

## Raku

(formerly Perl 6) Source image may be based on any characters whose low bits are 0 or 1 (which conveniently includes . and #).

```my \$source = qq:to/EOD/;
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................
EOD

my @lines = ([.ords X+& 1] for \$source.split("\n")); # The low bits Just Work.
my \v = +@lines;
my \h = +@lines[0];
my @black = flat @lines.map: *.values;   # Flatten to 1-dimensional.

my \p8 = [-h-1, -h+0, -h+1,         # Flatland distances to 8 neighbors.
0-1,        0+1,
h-1,  h+0,  h+1].[1,2,4,7,6,5,3,0];   # (in cycle order)

# Candidates have 8 neighbors and are known black
my @cand = grep { @black[\$_] }, do
for 1..v-2 X 1..h-2 -> (\y,\x) { y*h + x }

repeat while my @goners1 or my @goners2 {
sub seewhite (\w1,\w2) {
sub cycles (@neighbors) { [+] @neighbors Z< @neighbors[].rotate }
sub blacks (@neighbors) { [+] @neighbors }

my @prior = @cand; @cand = ();

gather for @prior -> \p {
my \n = @black[p8 X+ p];
if cycles(n) == 1 and 2 <= blacks(n) <= 6 and n[w1].any == 0 and n[w2].any == 0
{ take p }
else { @cand.push: p }
}
}

@goners1 = seewhite (0,2,4), (2,4,6);
@black[@goners1] = 0 xx *;
say "Ping: {[+] @black} remaining after removing ", @goners1;

@goners2 = seewhite (0,2,6), (0,4,6);
@black[@goners2] = 0 xx *;
say "Pong: {[+] @black} remaining after removing ", @goners2;
}

say @black.splice(0,h).join.trans('01' => '.#') while @black;
```
Output:
```Ping: 66 remaining after removing 33 41 49 56 67 71 74 80 83 86 89 99 106 114 119 120 121 131 135 138 146 169 178 195 197 210 215 217 227 230 233 236 238 240 243 246 249 251 253 257 258 259 263 264 266 268 269 270 273 274 279 280 283 284 285
Pong: 47 remaining after removing 65 73 88 97 104 112 129 137 144 161 167 176 193 198 208 216 225 226 231
Ping: 45 remaining after removing 87 194
Pong: 45 remaining after removing
Ping: 45 remaining after removing
Pong: 45 remaining after removing
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................```

## REXX

```/*REXX program thins a  NxM  character grid  using  the  Zhang-Suen thinning  algorithm.*/
parse arg iFID .;  if iFID==''  then iFID='ZHANG_SUEN.DAT'
white=' ';         @.=white                      /* [↓]  read the input character grid. */
do row=1  while lines(iFID)\==0;  _=linein(iFID)
_=translate(_,,.0);               cols.row=length(_)
do col=1  for cols.row;  @.row.col=substr(_,col,1)
end   /*col*/                     /* [↑]  assign whole row of characters.*/
end       /*row*/
rows=row-1                                       /*adjust ROWS because of the  DO loop. */
call show@ 'input file ' iFID  " contents:"      /*display show the input character grid*/

do  until  changed==0;    changed=0            /*keep slimming until we're finished.  */
do step=1  for 2                          /*keep track of  step one  or step two.*/
do     r=1  for rows                    /*process all the  rows  and  columns. */
do c=1  for cols.r;  !.r.c=@.r.c    /*assign an alternate grid.            */
if r==1|r==rows|c==1|c==cols.r  then iterate             /*is this an edge?*/
if @.r.c==white  then iterate       /*Is the character white?  Then skip it*/
call Ps; b=b()                      /*define   Ps   and also   "b".        */
if b<2 | b>6     then iterate       /*is   B   within the range ?          */
if a()\==1       then iterate       /*count the number of transitions.     */    /*  ╔══╦══╦══╗  */
if step==1       then if (p2 & p4 & p6)  |  p4 & p6 & p8  then iterate           /*  ║p9║p2║p3║  */
if step==2       then if (p2 & p4 & p8)  |  p2 & p6 & p8  then iterate           /*  ╠══╬══╬══╣  */
!.r.c=white                         /*set a grid character to  white.      */    /*  ║p8║p1║p4║  */
changed=1                           /*indicate a character was changed.    */    /*  ╠══╬══╬══╣  */
end   /*c*/                                                                      /*  ║p7║p6║p5║  */
end       /*r*/                                                                      /*  ╚══╩══╩══╝  */
call copy!                                /*copy the alternate to working grid.  */
end         /*step*/
end              /*until changed==0*/

call show@  'slimmed output:'                    /*display the slimmed character grid.  */
exit                                             /*stick a fork in it,  we're all done. */
/*─────────────────────────────────────────────────────────────────────────────────────────────────────────────*/
a: return (\p2==p3&p3)+(\p3==p4&p4)+(\p4==p5&p5)+(\p5==p6&p6)+(\p6==p7&p7)+(\p7==p8&p8)+(\p8==p9&p9)+(\p9==p2&p2)
b: return p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9
copy!:                        do r=1  for rows;       do c=1  for cols.r;        @.r.c=!.r.c;  end;  end;  return
show@: say; say arg(1); say;  do r=1  for rows; _=;   do c=1  for cols.r; _=_ || @.r.c; end;  say _; end;  return
/*──────────────────────────────────────────────────────────────────────────────────────*/
Ps:  rm=r-1;  rp=r+1;  cm=c-1;  cp=c+1                       /*calculate some shortcuts.*/
p2=@.rm.c\==white; p3=@.rm.cp\==white; p4=@.r.cp\==white; p5=@.rp.cp\==white
p6=@.rp.c\==white; p7=@.rp.cm\==white; p8=@.r.cm\==white; p9=@.rm.cm\==white; return
```

output   when using the default input:

```input file  ZHANG_SUEN.DAT  contents:

#################                   #############
##################               ################
###################            ##################
########     #######          ###################
######     #######         #######       ######
######     #######        #######
#################         #######
################          #######
#################         #######
######     #######        #######
######     #######        #######
######     #######         #######       ######
########     #######          ###################
########     ####### ######    ################## ######
########     ####### ######      ################ ######
########     ####### ######         ############# ######

slimmed output:

# ##########                       #######
##        #                   ####       #
#          #                 ##
#          #                #
#          #                #
#          #                #
############               #
#          #               #
#          #                #
#          #                #
#          #                #
#                            ##
#                             ############
###                          ###
```

output   when using the default input:   zhang_suen2.dat

```input file  zhang_suen2.dat  contents:

111111111       11111111
111   1111     1111  1111
111    111     111    111
111   1111     111
111111111      111
111 1111       111    111
111  1111  111 1111  1111 111
111   1111 111  11111111  111

slimmed output:

1111111         111111
1     1        11
1      1       1
1     1        1
11111 1        1
11        1
1    1   11    11   1
1         1111
```

## Ruby

First I define a function zs which given a point and its eight neighbours returns 1 if the point may be culled, 0 otherwise. g indicates if this is step 1 or step 2 in the task description. zs may be changed to remember the step independently if the reader does not wish to explore the algorithm.

```class ZhangSuen
NEIGHBOUR8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]]  # 8 neighbors
CIRCULARS = NEIGHBOUR8 + [NEIGHBOUR8.first]                       # P2, ... P9, P2
def initialize(str, black="#")
s1 = str.each_line.map{|line| line.chomp.each_char.map{|c| c==black ? 1 : 0}}
s2 = s1.map{|line| line.map{0}}
xrange = 1 ... s1.size-1
yrange = 1 ... s1[0].size-1
printout(s1)
begin
@r = 0
xrange.each{|x| yrange.each{|y| s2[x][y] = s1[x][y] - zs(s1,x,y,1)}}  # Step 1
xrange.each{|x| yrange.each{|y| s1[x][y] = s2[x][y] - zs(s2,x,y,0)}}  # Step 2
end until @r == 0
printout(s1)
end
def zs(ng,x,y,g)
return 0 if ng[x][y] == 0 or                                    # P1
(ng[x-1][y] + ng[x][y+1] + ng[x+g][y-1+g]) == 3 or   # P2, P4, P6/P8
(ng[x-1+g][y+g] + ng[x+1][y] + ng[x][y-1]) == 3      # P4/P2, P6, P8
bp1 = NEIGHBOUR8.inject(0){|res,(i,j)| res += ng[x+i][y+j]}     # B(P1)
return 0 if bp1 < 2 or 6 < bp1
ap1 = CIRCULARS.map{|i,j| ng[x+i][y+j]}.each_cons(2).count{|a,b| a<b}   # A(P1)
return 0 if ap1 != 1
@r = 1
end
def printout(image)
puts image.map{|row| row.map{|col| " #"[col]}.join}
end
end

str = <<EOS
...........................................................
.#################...................#############.........
.##################...............################.........
.###################............##################.........
.########.....#######..........###################.........
...######.....#######.........#######.......######.........
...######.....#######........#######.......................
...#################.........#######.......................
...################..........#######.......................
...#################.........#######.......................
...######.....#######........#######.......................
...######.....#######........#######.......................
...######.....#######.........#######.......######.........
.########.....#######..........###################.........
.########.....#######.######....##################.######..
.########.....#######.######......################.######..
.########.....#######.######.........#############.######..
...........................................................
EOS

ZhangSuen.new(str)

00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
EOS

```
Output:

(only the requested result is shown here)

```
#######         ######
#     #        ##
#      #       #
#     #        #
##### #        #
##        #
#    #   ##    ##   #
#         ####

```

## Sidef

Translation of: Ruby
```class ZhangSuen(str, black="1") {
const NEIGHBOURS = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]]  # 8 neighbors
const CIRCULARS = (NEIGHBOURS + [NEIGHBOURS.first])                         # P2, ... P9, P2

has r = 0
has image = [[]]

method init {
var s1 = str.lines.map{|line| line.chars.map{|c| c==black ? 1 : 0 }}
var s2 = s1.len.of { s1[0].len.of(0) }
var xr = range(1, s1.end-1)
var yr = range(1, s1[0].end-1)
do {
r = 0
xr.each{|x| yr.each{|y| s2[x][y] = (s1[x][y] - self.zs(s1,x,y,1)) }}  # Step 1
xr.each{|x| yr.each{|y| s1[x][y] = (s2[x][y] - self.zs(s2,x,y,0)) }}  # Step 2
} while !r.is_zero
image = s1
}

method zs(ng,x,y,g) {
(ng[x][y] == 0)                                   ->
|| (ng[x-1][y] + ng[x][y+1] + ng[x+g][y+g - 1] == 3) ->
|| (ng[x+g - 1][y+g] + ng[x+1][y] + ng[x][y-1] == 3) ->
&& return 0

var bp1 = NEIGHBOURS.map {|p| ng[x+p[0]][y+p[1]] }.sum  # B(P1)
return 0 if ((bp1 < 2) || (6 < bp1))

var ap1 = 0
CIRCULARS.map {|p| ng[x+p[0]][y+p[1]] }.each_cons(2, {|a,b|
++ap1 if (a < b)                                    # A(P1)
})

return 0 if (ap1 != 1)
r = 1
}

method display {
image.each{|row| say row.map{|col| col ? '#' : ' ' }.join }
}
}

var text = <<EOS
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
EOS

ZhangSuen.new(text, black: "1").display
```
Output:
```
#######         ######
#     #        ##
#      #       #
#     #        #
##### #        #
##        #
#    #   ##    ##   #
#         ####

```

## Swift

Translation of: Python
```import UIKit

// testing examples
let beforeTxt = """
1100111
1100111
1100111
1100111
1100110
1100110
1100110
1100110
1100110
1100110
1100110
1100110
1111110
0000000
"""

let smallrc01 = """
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
"""

let rc01 = """
00000000000000000000000000000000000000000000000000000000000
01111111111111111100000000000000000001111111111111000000000
01111111111111111110000000000000001111111111111111000000000
01111111111111111111000000000000111111111111111111000000000
01111111100000111111100000000001111111111111111111000000000
00011111100000111111100000000011111110000000111111000000000
00011111100000111111100000000111111100000000000000000000000
00011111111111111111000000000111111100000000000000000000000
00011111111111111110000000000111111100000000000000000000000
00011111111111111111000000000111111100000000000000000000000
00011111100000111111100000000111111100000000000000000000000
00011111100000111111100000000111111100000000000000000000000
00011111100000111111100000000011111110000000111111000000000
01111111100000111111100000000001111111111111111111000000000
01111111100000111111101111110000111111111111111111011111100
01111111100000111111101111110000001111111111111111011111100
01111111100000111111101111110000000001111111111111011111100
00000000000000000000000000000000000000000000000000000000000
"""

// Zhang-Suen thinning algorithm in Swift
/// function to thin the image
func zhangSuen(image: inout [[Int]]) -> [[Int]] {
// array of x, y position where need to changed to be white
var changing1, changing2: [(Int, Int)]
repeat {
// set to empty array
changing1 = []
changing2 = []
// Step 1
// loop through row of image
for y in 1..<image.count-1 {
// loop through column of image
for x in 1..<image[0].count-1 {
// get neighbours of P1
var nb = neighbours(x: x, y: y, image: image)
// set P2, P4, P6, P8 from neighbours
let P2 = nb[0], P4 = nb[2], P6 = nb[4], P8 = nb[6]
// reference: https://www.hackingwithswift.com/example-code/language/how-to-sum-an-array-of-numbers-using-reduce
// reference: https://www.hackingwithswift.com/articles/90/how-to-check-whether-a-value-is-inside-a-range
if (image[y][x] == 1 &&                      // Condision 0
(2...6).contains(nb.reduce(0, +)) &&     // Condision 1
transitions(neighbours: &nb) == 1 &&     // Condision 2
P2 * P4 * P6 == 0 &&                     // Condision 3
P4 * P6 * P8 == 0                        // Condision 4
) {
// add to step1 changing1 list
changing1.append((x,y))
}
}
}
// loop through step1 changing1 list and change to white
for (x, y) in changing1 {
image[y][x] = 0
}
// Step 2
// loop through row of image
for y in 1..<image.count-1 {
// loop through column of image
for x in 1..<image[0].count-1 {
// get neighbours of P1
var nb = neighbours(x: x, y: y, image: image)
// set P2, P4, P6, P8 from neighbours
let P2 = nb[0], P4 = nb[2], P6 = nb[4], P8 = nb[6]
if (image[y][x] == 1 &&                      // Condision 0
(2...6).contains(nb.reduce(0, +)) &&     // Condision 1
transitions(neighbours: &nb) == 1 &&     // Condision 2
P2 * P4 * P8 == 0 &&                     // Condision 3
P2 * P6 * P8 == 0                        // Condision 4
) {
// add to step2 changing2 list
changing2.append((x,y))
}
}
}
// loop through step2 changing2 list and change to white
for (x, y) in changing2 {
image[y][x] = 0
}
// finish loop when there's no more place to change to white, when changing1, changing2 are empty
} while !changing1.isEmpty && !changing2.isEmpty
// return updated image
return image
}

/// function to convert multiline string of 1/0 into 2D Int array
func intarray(binstring: String) -> [[Int]] {
// reference: https://stackoverflow.com/questions/28611336/how-to-convert-a-string-numeric-in-a-int-array-in-swift
// map through each char of input String to convert to Int
return binstring.split(separator: "\n").map {\$0.compactMap{\$0.wholeNumberValue}}
}

/// function to convert 2D Int array of 1/0 into multiline String of ‘#’ and ‘.’
func toTxt(intmatrix: [[Int]]) -> String {
// map through each array of parent array and
// map through element of child array and convert to '#' when 1 and to '.' when 0
return intmatrix.map {\$0.map { \$0 == 1 ? "#" : "."}.joined(separator: "")}.joined(separator: "\n")
}

/// function to get neighbours of P1 = [P2,P3,P4,P5,P6,P7,P8,P9]
func neighbours(x: Int, y: Int, image: [[Int]]) -> [Int] {
let i = image
// set x, y positions of P1 neighbours
let x1 = x+1, y1 = y-1, x_1 = x-1, y_1 = y+1
// return neighbours of P1
return [i[y1][x],  i[y1][x1],   i[y][x1],  i[y_1][x1],  // P2,P3,P4,P5
i[y_1][x], i[y_1][x_1], i[y][x_1], i[y1][x_1]]  // P6,P7,P8,P9
}

/// function to get the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2.
func transitions(neighbours: inout [Int]) -> Int {
// add P2 at the end of neighbours array
let n = neighbours + [neighbours[0]]
var result = 0
// compare between each element of neightbour and next element of the element to check if the transition is 0 -> 1
for (n1, n2) in zip(n, n.suffix(n.count - 1)) {
// if the pattern matches, increament result to 1
if (n1, n2) == (0, 1) { result += 1 }
}
// return number of transitions from 0 to 1
return result
}

// run testing
// array of test examples
let testCases: [String] = [beforeTxt, smallrc01, rc01]
for picture in testCases {
// convert string to 2D Int array
var image = intarray(binstring: picture)
// print the result
print("\nFrom:\n\(toTxt(intmatrix: image))")
// run through Zhang-Suen thinning algorithm
let after = zhangSuen(image: &image)
// print the result
print("\nTo thinned:\n\(toTxt(intmatrix: after))")
}
```
Output:
```From:
##..###
##..###
##..###
##..###
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
##..##.
######.
.......

To thinned:
##..###
#.....#
#.....#
#...###
#...#..
#...#..
#...#..
#...#..
#...#..
#...#..
#...#..
#...#..
#####..
.......

From:
................................
.#########.......########.......
.###...####.....####..####......
.###....###.....###....###......
.###...####.....###.............
.#########......###.............
.###.####.......###....###......
.###..####..###.####..####.###..
.###...####.###..########..###..
................................

To thinned:
................................
..#######.........######........
..#.....#........##.............
..#......#.......#..............
..#.....#........#..............
..#####.#........#..............
.......##........#..............
........#....#...##....##...#...
.........#.........####.........
................................

From:
...........................................................
.#################...................#############.........
.##################...............################.........
.###################............##################.........
.########.....#######..........###################.........
...######.....#######.........#######.......######.........
...######.....#######........#######.......................
...#################.........#######.......................
...################..........#######.......................
...#################.........#######.......................
...######.....#######........#######.......................
...######.....#######........#######.......................
...######.....#######.........#######.......######.........
.########.....#######..........###################.........
.########.....#######.######....##################.######..
.########.....#######.######......################.######..
.########.....#######.######.........#############.######..
...........................................................

To thinned:
...........................................................
...........................................................
....#.##########.......................#######.............
.....##........#...................####.......#............
.....#..........#.................##.......................
.....#..........#................#.........................
.....#..........#................#.........................
.....#..........#................#.........................
.....############...............#..........................
.....#..........#...............#..........................
.....#..........#................#.........................
.....#..........#................#.........................
.....#..........#................#.........................
.....#............................##.......................
.....#.............................############............
.......................###..........................###....
...........................................................
...........................................................
```

## Tcl

Only the single image is converted.

```# -*- coding: utf-8 -*-

set data {
00000000000000000000000000000000
01111111110000000111111110000000
01110001111000001111001111000000
01110000111000001110000111000000
01110001111000001110000000000000
01111111110000001110000000000000
01110111100000001110000111000000
01110011110011101111001111011100
01110001111011100111111110011100
00000000000000000000000000000000
}
proc zhang-suen data {
set data [string trim \$data]
while 1 {
set n 0
incr n [step 1 data]
incr n [step 2 data]
if !\$n break
}
return \$data
}
proc step {number _data} {
upvar 1 \$_data data
set xmax [string length [lindex \$data 0]]
set ymax [llength \$data]
switch -- \$number {
1 {set cond {(!\$P2 || !\$P4 || !\$P6) && (!\$P4 || !\$P6 || !\$P8)}}
2 {set cond {(!\$P2 || !\$P4 || !\$P8) && (!\$P2 || !\$P6 || !\$P8)}}
}
set hits {}
for {set x 1} {\$x < \$xmax-1} {incr x} {
for {set y 1} {\$y < \$ymax-1} {incr y} {
if {[getpix \$data \$x \$y] == 1} {
set b [B \$data \$x \$y]
if {2 <= \$b && \$b <= 6} {
if {[A \$data \$x \$y] == 1} {
set P2 [getpix \$data \$x [expr \$y-1]]
set P4 [getpix \$data [expr \$x+1] \$y]
set P6 [getpix \$data \$x [expr \$y+1]]
set P8 [getpix \$data [expr \$x-1] \$y]
if \$cond {lappend hits \$x \$y}
}
}
}
}
}
foreach {x y} \$hits {set data [setpix \$data \$x \$y 0]}
return [llength \$hits]
}
proc A {data x y} {
set res 0
set last [getpix \$data \$x [expr \$y-1]]
foreach {dx dy} {1 -1  1 0  1 1  0 1  -1 1  -1 0  -1 -1  0 -1} {
set this [getpix \$data [expr \$x+\$dx] [expr \$y+\$dy]]
if {\$this > \$last} {incr res}
set last \$this
}
return \$res
}
proc B {data x y} {
set res 0
foreach {dx dy} {1 -1  1 0  1 1  0 1  -1 1  -1 0  -1 -1  0 -1} {
incr res [getpix \$data [expr \$x+\$dx] [expr \$y+\$dy]]
}
return \$res
}
proc getpix {data x y} {
string index [lindex \$data \$y] \$x
}
proc setpix {data x y val} {
set row [lindex \$data \$y]
lset data \$y [string replace \$row \$x \$x \$val]
return \$data
}
puts [string map {1 @ 0 .} [join [zhang-suen \$data] \n]]
```
Output:
```................................
..@@@@@@@.........@@@@@@........
..@.....@........@@.............
..@......@.......@..............
..@.....@........@..............
..@@@@@.@........@..............
.......@@........@..............
........@....@...@@....@@...@...
.........@.........@@@@.........
................................
```

## Wren

Translation of: Kotlin
```class Point {
construct new(x, y) {
_x = x
_y = y
}
x { _x }
y { _y }
}

var image = [
"                                                          ",
" #################                   #############        ",
" ##################               ################        ",
" ###################            ##################        ",
" ########     #######          ###################        ",
"   ######     #######         #######       ######        ",
"   ######     #######        #######                      ",
"   #################         #######                      ",
"   ################          #######                      ",
"   #################         #######                      ",
"   ######     #######        #######                      ",
"   ######     #######        #######                      ",
"   ######     #######         #######       ######        ",
" ########     #######          ###################        ",
" ########     ####### ######    ################## ###### ",
" ########     ####### ######      ################ ###### ",
" ########     ####### ######         ############# ###### ",
"                                                          "
]

var nbrs = [
[ 0, -1], [ 1, -1], [ 1,  0],
[ 1,  1], [ 0,  1], [-1,  1],
[-1,  0], [-1, -1], [ 0, -1]
]

var nbrGroups = [
[ [0, 2, 4], [2, 4, 6] ],
[ [0, 2, 6], [0, 4, 6] ]
]

var toWhite = []
var grid = List.filled(image.count, null)
for (i in 0...grid.count) grid[i] = image[i].toList

var numNeighbors = Fn.new { |r, c|
var count = 0
for (i in 0...nbrs.count - 1) {
if (grid[r + nbrs[i][1]][c + nbrs[i][0]] == "#") count = count + 1
}
return count
}

var numTransitions = Fn.new { |r, c|
var count = 0
for (i in 0...nbrs.count - 1) {
if (grid[r + nbrs[i][1]][c + nbrs[i][0]] == " ") {
if (grid[r + nbrs[i + 1][1]][c + nbrs[i + 1][0]] == "#") count = count + 1
}
}
return count
}

var atLeastOneIsWhite = Fn.new { |r, c, step|
var count = 0
var group = nbrGroups[step]
for (i in 0..1) {
for (j in 0...group[i].count) {
var nbr = nbrs[group[i][j]]
if (grid[r + nbr[1]][c + nbr[0]] == " ") {
count = count + 1
break
}
}
}
return count > 1
}

var thinImage = Fn.new {
var firstStep = false
var hasChanged
while (true) {
hasChanged = false
firstStep = !firstStep
for (r in 1...grid.count - 1) {
for (c in 1...grid[0].count - 1) {
if (grid[r][c] == "#") {
var nn = numNeighbors.call(r, c)
if ((2..6).contains(nn)) {
if (numTransitions.call(r, c) == 1) {
var step = firstStep ? 0 : 1
if (atLeastOneIsWhite.call(r, c, step)) {
hasChanged = true
}
}
}
}
}
}
for (p in toWhite) grid[p.y][p.x] = " "
toWhite.clear()
if (!firstStep && !hasChanged) break
}
for (row in grid) System.print(row.join())
}

thinImage.call()
```
Output:
```

# ##########                       #######
##        #                   ####       #
#          #                 ##
#          #                #
#          #                #
#          #                #
############               #
#          #               #
#          #                #
#          #                #
#          #                #
#                            ##
#                             ############
###                          ###

```