Ultra useful primes
![Task](http://static.wikitide.net/rosettacodewiki/thumb/b/ba/Rcode-button-task-crushed.png/64px-Rcode-button-task-crushed.png)
You are encouraged to solve this task according to the task description, using any language you may know.
An ultra-useful prime is a member of the sequence where each a(n) is the smallest positive integer k such that 2(2n) - k is prime.
k must always be an odd number since 2 to any power is always even.
- Task
- Find and show here, on this page, the first 10 elements of the sequence.
- Stretch
- Find and show the next several elements. (The numbers get really big really fast. Only nineteen elements have been identified as of this writing.)
- See also
ALGOL 68
Uses Algol 68G's LONG LONG INT which has programmer-specifiable precision. Uses Miller Rabin primality testing.
BEGIN # find members of the sequence a(n) = smallest k such that 2^(2^n) - k is prime #
PR precision 650 PR # set number of digits for LONG LOMG INT #
# 2^(2^10) has 308 digits but we need more for #
# Miller Rabin primality testing #
PR read "primes.incl.a68" PR # include the prime related utilities #
FOR n TO 10 DO
LONG LONG INT two up 2 up n = LONG LONG INT( 2 ) ^ ( 2 ^ n );
FOR i BY 2
WHILE IF is probably prime( two up 2 up n - i ) THEN
# found a sequence member #
print( ( " ", whole( i, 0 ) ) );
FALSE # stop looking #
ELSE
TRUE # haven't found a sequence member yet #
FI
DO SKIP OD
OD
END
- Output:
1 3 5 15 5 59 159 189 569 105
Arturo
ultraUseful: function [n][
k: 1
p: (2^2^n) - k
while ø [
if prime? p -> return k
p: p-2
k: k+2
]
]
print [pad "n" 3 "|" pad.right "k" 4]
print repeat "-" 10
loop 1..10 'x ->
print [(pad to :string x 3) "|" (pad.right to :string ultraUseful x 4)]
- Output:
n | k ---------- 1 | 1 2 | 3 3 | 5 4 | 15 5 | 5 6 | 59 7 | 159 8 | 189 9 | 569 10 | 105
C
#include <stdio.h>
#include <gmp.h>
int a(unsigned int n) {
int k;
mpz_t p;
mpz_init_set_ui(p, 1);
mpz_mul_2exp(p, p, 1 << n);
mpz_sub_ui(p, p, 1);
for (k = 1; ; k += 2) {
if (mpz_probab_prime_p(p, 15) > 0) return k;
mpz_sub_ui(p, p, 2);
}
}
int main() {
unsigned int n;
printf(" n k\n");
printf("----------\n");
for (n = 1; n < 15; ++n) printf("%2d %d\n", n, a(n));
return 0;
}
- Output:
n k ---------- 1 1 2 3 3 5 4 15 5 5 6 59 7 159 8 189 9 569 10 105 11 1557 12 2549 13 2439 14 13797
C#
using System.Numerics;
using System.Security.Cryptography;
internal class Program
{
private static void Main(string[] args)
{
for (int i = 1; i <= 10; i++)
{
Console.WriteLine(GetUltraUsefulPrime(i));
}
}
public static int GetUltraUsefulPrime(int n)
{
int k = 1;
BigInteger num = BigInteger.Pow(2, (int)Math.Pow(2, n));
while (!IsProbablePrime(num - k, 20))
{
k += 2;
}
return k;
}
// Miller-Rabin primality from this site
public static bool IsProbablePrime(BigInteger source, int certainty)
{
if (source == 2 || source == 3)
return true;
if (source < 2 || source % 2 == 0)
return false;
BigInteger d = source - 1;
int s = 0;
while (d % 2 == 0)
{
d /= 2;
s += 1;
}
// There is no built-in method for generating random BigInteger values.
// Instead, random BigIntegers are constructed from randomly generated
// byte arrays of the same length as the source.
RandomNumberGenerator rng = RandomNumberGenerator.Create();
byte[] bytes = new byte[source.ToByteArray().LongLength];
BigInteger a;
for (int i = 0; i < certainty; i++)
{
do
{
// This may raise an exception in Mono 2.10.8 and earlier.
// http://bugzilla.xamarin.com/show_bug.cgi?id=2761
rng.GetBytes(bytes);
a = new BigInteger(bytes);
}
while (a < 2 || a >= source - 2);
BigInteger x = BigInteger.ModPow(a, d, source);
if (x == 1 || x == source - 1)
continue;
for (int r = 1; r < s; r++)
{
x = BigInteger.ModPow(x, 2, source);
if (x == 1)
return false;
if (x == source - 1)
break;
}
if (x != source - 1)
return false;
}
return true;
}
}
- Output:
1 3 5 15 5 59 159 189 569 105
Craft Basic
for n = 1 to 10
let k = -1
do
let k = k + 2
wait
loop prime(2 ^ (2 ^ n) - k) = 0
print "n = ", n, " k = ", k
next n
Factor
USING: io kernel lists lists.lazy math math.primes prettyprint ;
: useful ( -- list )
1 lfrom
[ 2^ 2^ 1 lfrom [ - prime? ] with lfilter car ] lmap-lazy ;
10 useful ltake [ pprint bl ] leach nl
- Output:
1 3 5 15 5 59 159 189 569 105
FreeBASIC
#include "isprime.bas"
Dim As Longint n, k, limit = 10
Dim As ulongint num
For n = 1 To limit
k = -1
Do
k += 2
num = (2 ^ (2 ^ n)) - k
If isPrime(num) Then
Print "n = "; n; " k = "; k
Exit Do
End If
Loop
Next
Sleep
Go
package main
import (
"fmt"
big "github.com/ncw/gmp"
)
var two = big.NewInt(2)
func a(n uint) int {
one := big.NewInt(1)
p := new(big.Int).Lsh(one, 1 << n)
p.Sub(p, one)
for k := 1; ; k += 2 {
if p.ProbablyPrime(15) {
return k
}
p.Sub(p, two)
}
}
func main() {
fmt.Println(" n k")
fmt.Println("----------")
for n := uint(1); n < 14; n++ {
fmt.Printf("%2d %d\n", n, a(n))
}
}
- Output:
n k ---------- 1 1 2 3 3 5 4 15 5 5 6 59 7 159 8 189 9 569 10 105 11 1557 12 2549 13 2439
J
Implementation:
uup=: {{
ref=. 2^2x^y+1
k=. 1
while. -. 1 p: ref-k do. k=. k+2 end.
}}"0
I don't have the patience to get this little laptop to compute the first 10 such elements, so here I only show the first five:
uup i.10
1 3 5 15 5 59 159 189 569 105
Java
import java.math.BigInteger;
public final class UltraUsefulPrimes {
public static void main(String[] args) {
for ( int n = 1; n <= 10; n++ ) {
showUltraUsefulPrime(n);
}
}
private static void showUltraUsefulPrime(int n) {
BigInteger prime = BigInteger.ONE.shiftLeft(1 << n);
BigInteger k = BigInteger.ONE;
while ( ! prime.subtract(k).isProbablePrime(20) ) {
k = k.add(BigInteger.TWO);
}
System.out.print(k + " ");
}
}
- Output:
1 3 5 15 5 59 159 189 569 105
Julia
using Primes
nearpow2pow2prime(n) = findfirst(k -> isprime(2^(big"2"^n) - k), 1:10000)
@time println([nearpow2pow2prime(n) for n in 1:12])
- Output:
[1, 3, 5, 15, 5, 59, 159, 189, 569, 105, 1557, 2549] 3.896011 seconds (266.08 k allocations: 19.988 MiB, 1.87% compilation time)
M2000 Interpreter
Change 10 to 6 if you don't have time to spend...
module Ultra_Useful {
minusOne=biginteger("-1")
one=biginteger("1")
two=biginteger("2")
num=biginteger("0")
k=num
with num,"tostring" as numS
with k,"tostring" as kS
for n= 1 to 10
k=minusOne
kk=-1
n1=biginteger(str$(n,""))
method two,"intpower", n1 as n1
do
method k,"add", two as k
kk+=2
method two, "intpower", n1 as num
method num, "subtract", k as num
method num,"isProbablyPrime", 10 as ret
if ret then
Print n, kk : Refresh
exit
end if
always
next
}
Ultra_Useful
- Output:
1 1 2 3 3 5 4 15 5 5 6 59 7 159 8 189 9 569 10 105
Mathematica /Wolfram Language
ClearAll[FindUltraUsefulPrimeK]
FindUltraUsefulPrimeK[n_] := Module[{num, tmp},
num = 2^(2^n);
Do[
If[PrimeQ[num - k],
tmp = k;
Break[];
]
,
{k, 1, \[Infinity], 2}
];
tmp
]
res = FindUltraUsefulPrimeK /@ Range[13];
TableForm[res, TableHeadings -> Automatic]
- Output:
1 1 2 3 3 5 4 15 5 5 6 59 7 159 8 189 9 569 10 105 11 1557
Nim
import std/strformat
import integers
let One = newInteger(1)
echo " n k"
var count = 1
var n = 1
while count <= 13:
var k = 1
var p = One shl (1 shl n) - k
while not p.isPrime:
p -= 2
k += 2
echo &"{n:2} {k}"
inc n
inc count
- Output:
n k 1 1 2 3 3 5 4 15 5 5 6 59 7 159 8 189 9 569 10 105 11 1557 12 2549 13 2439
Perl
use strict;
use warnings;
use feature 'say';
use bigint;
use ntheory 'is_prime';
sub useful {
my @n = @_;
my @u;
for my $n (@n) {
my $p = 2**(2**$n);
LOOP: for (my $k = 1; $k < $p; $k += 2) {
is_prime($p-$k) and push @u, $k and last LOOP;
}
}
@u
}
say join ' ', useful 1..13;
- Output:
1 3 5 15 5 59 159 189 569 105 1557 2549 2439
Phix
with javascript_semantics atom t0 = time() include mpfr.e mpz p = mpz_init() function a(integer n) mpz_ui_pow_ui(p,2,power(2,n)) mpz_sub_si(p,p,1) integer k = 1 while not mpz_prime(p) do k += 2 mpz_sub_si(p,p,2) end while return k end function for i=1 to 10 do printf(1,"%d ",a(i)) end for if machine_bits()=64 then ?elapsed(time()-t0) for i=11 to 13 do printf(1,"%d ",a(i)) end for end if ?elapsed(time()-t0)
- Output:
1 3 5 15 5 59 159 189 569 105 "0.0s" 1557 2549 2439 "1 minute and 1s"
Raku
The first 10 take less than a quarter second. 11 through 13, a little under 30 seconds. Drops off a cliff after that.
sub useful ($n) {
(|$n).map: {
my $p = 1 +< ( 1 +< $_ );
^$p .first: ($p - *).is-prime
}
}
put useful 1..10;
put useful 11..13;
- Output:
1 3 5 15 5 59 159 189 569 105 1557 2549 2439
Python
# useful.py by xing216
from gmpy2 import is_prime
def useful(n):
k = 1
is_useful = False
while is_useful == False:
if is_prime(2**(2**n) - k):
is_useful = True
break
k += 2
return k
if __name__ == "__main__":
print("n | k")
for i in range(1,14):
print(f"{i:<4}{useful(i)}")
- Output:
n | K 1 1 2 3 3 5 4 15 5 5 6 59 7 159 8 189 9 569 10 105 11 1557 12 2549 13 2439
Quackery
prime
is defined at Miller–Rabin primality test#Quackery.
12 times
[ i^ 1+ bit bit
1
[ 2dup -
prime not while
2 + again ]
echo sp drop ]
- Output:
1 3 5 15 5 59 159 189 569 105 1557 2549
Ring
see "works..." + nl
limit = 10
for n = 1 to limit
k = -1
while true
k = k + 2
num = pow(2,pow(2,n)) - k
if isPrime(num)
? "n = " + n + " k = " + k
exit
ok
end
next
see "done.." + nl
func isPrime num
if (num <= 1) return 0 ok
if (num % 2 = 0 and num != 2) return 0 ok
for i = 3 to floor(num / 2) -1 step 2
if (num % i = 0) return 0 ok
next
return 1
- Output:
works... n = 1 k = 1 n = 2 k = 3 n = 3 k = 5 n = 4 k = 15 n = 5 k = 5 n = 6 k = 59 n = 7 k = 159 n = 8 k = 189 n = 9 k = 569 n = 10 k = 105 done...
Ruby
The 'prime?' method in Ruby's OpenSSL (standard) lib is much faster than the 'prime' lib. 0.05 sec. for this, about a minute for the next three.
require 'openssl'
(1..10).each do |n|
pow = 2 ** (2 ** n)
print "#{n}:\t"
puts (1..).step(2).detect{|k| OpenSSL::BN.new(pow-k).prime?}
end
- Output:
1: 1 2: 3 3: 5 4: 15 5: 5 6: 59 7: 159 8: 189 9: 569 10: 105
Sidef
say(" n k")
say("----------")
for n in (1..13) {
var t = 2**(2**n)
printf("%2d %d\n", n, {|k| t - k -> is_prob_prime }.first)
}
- Output:
n k ---------- 1 1 2 3 3 5 4 15 5 5 6 59 7 159 8 189 9 569 10 105 11 1557 12 2549 13 2439
(takes ~20 seconds)
V (Vlang)
import math
fn main() {
limit := 10 // depending on computer, higher numbers = longer times
mut num, mut k := i64(0), i64(0)
println("n k\n-------")
for n in 1..limit {
k = -1
for n < limit {
k = k + 2
num = math.powi(2, math.powi(2 , n)) - k
if is_prime(num) == true {
println("${n} ${k}")
break
}
}
}
}
fn is_prime(num i64) bool {
if num <= 1 {return false}
if num % 2 == 0 && num != 2 {return false}
for idx := 3; idx <= math.floor(num / 2) - 1; idx += 2 {
if num % idx == 0 {return false}
}
return true
}
- Output:
n k ------- 1 1 2 3 3 5 4 15 5 5 6 59 7 159 8 189 9 569 10 105
Wren
CLI
Manages to find the first ten but takes 84 seconds to do so.
import "./big" for BigInt
import "./fmt" for Fmt
var one = BigInt.one
var two = BigInt.two
var a = Fn.new { |n|
var p = (BigInt.one << (1 << n)) - one
var k = 1
while (true) {
if (p.isProbablePrime(5)) return k
p = p - two
k = k + 2
}
}
System.print(" n k")
System.print("----------")
for (n in 1..10) Fmt.print("$2d $d", n, a.call(n))
- Output:
n k ---------- 1 1 2 3 3 5 4 15 5 5 6 59 7 159 8 189 9 569 10 105
Embedded
The following takes about 17 seconds to get to n = 13 but 7 minutes 10 seconds to reach n = 14. I didn't bother after that.
import "./gmp" for Mpz
import "./fmt" for Fmt
var one = Mpz.one
var two = Mpz.two
var a = Fn.new { |n|
var p = Mpz.one.lsh(1 << n).sub(one)
var k = 1
while (true) {
if (p.probPrime(15) > 0) return k
p.sub(two)
k = k + 2
}
}
System.print(" n k")
System.print("----------")
for (n in 1..14) Fmt.print("$2d $d", n, a.call(n))
- Output:
n k ---------- 1 1 2 3 3 5 4 15 5 5 6 59 7 159 8 189 9 569 10 105 11 1557 12 2549 13 2439 14 13797