A truth table is a display of the inputs to, and the output of a Boolean function organized as a table where each row gives one combination of input values and the corresponding value of the function.

Task
Truth table
You are encouraged to solve this task according to the task description, using any language you may know.


Task
  1. Input a Boolean function from the user as a string then calculate and print a formatted truth table for the given function.
    (One can assume that the user input is correct).
  2. Print and show output for Boolean functions of two and three input variables, but any program should not be limited to that many variables in the function.
  3. Either reverse-polish or infix notation expressions are allowed.


Related tasks


See also



11l

T Symbol
   String id
   Int lbp
   Int nud_bp
   Int led_bp
   (ASTNode -> ASTNode) nud
   ((ASTNode, ASTNode) -> ASTNode) led

   F set_nud_bp(nud_bp, nud)
      .nud_bp = nud_bp
      .nud = nud

   F set_led_bp(led_bp, led)
      .led_bp = led_bp
      .led = led

T Var
   String name
   Int value
   F (name)
      .name = name
[Var] vars

T ASTNode
   Symbol& symbol
   Int var_index
   ASTNode? first_child
   ASTNode? second_child

   F eval()
      S .symbol.id
         ‘(var)’
            R :vars[.var_index].value
         ‘|’
            R .first_child.eval() [|] .second_child.eval()
         ‘^’
            R .first_child.eval() (+) .second_child.eval()
         ‘&’
            R .first_child.eval() [&] .second_child.eval()
         ‘!’
            R ~.first_child.eval() [&] 1
         ‘(’
            R .first_child.eval()
         E
            assert(0B)
            R 0

[String = Symbol] symbol_table
[String] tokens
V tokeni = -1
ASTNode token_node

F advance(sid = ‘’)
   I sid != ‘’
      assert(:token_node.symbol.id == sid)
   :tokeni++
   :token_node = ASTNode()
   I :tokeni == :tokens.len
      :token_node.symbol = :symbol_table[‘(end)’]
      R
   V token = :tokens[:tokeni]
   I token[0].is_alpha()
      :token_node.symbol = :symbol_table[‘(var)’]
      L(v) :vars
         I v.name == token
            :token_node.var_index = L.index
            L.break
      L.was_no_break
         :token_node.var_index = :vars.len
         :vars.append(Var(token))
   E
      :token_node.symbol = :symbol_table[token]

F expression(rbp = 0)
   ASTNode t = move(:token_node)
   advance()
   V left = t.symbol.nud(move(t))
   L rbp < :token_node.symbol.lbp
      t = move(:token_node)
      advance()
      left = t.symbol.led(t, move(left))
   R left

F parse(expr_str) -> ASTNode
   :tokens = re:‘\s*(\w+|.)’.find_strings(expr_str)
   :tokeni = -1
   :vars.clear()
   advance()
   R expression()

F symbol(id, bp = 0) -> &
   I id !C :symbol_table
      V s = Symbol()
      s.id = id
      s.lbp = bp
      :symbol_table[id] = s
   R :symbol_table[id]

F infix(id, bp)
   F led(ASTNode self, ASTNode left)
      self.first_child = left
      self.second_child = expression(self.symbol.led_bp)
      R self
   symbol(id, bp).set_led_bp(bp, led)

F prefix(id, bp)
   F nud(ASTNode self)
      self.first_child = expression(self.symbol.nud_bp)
      R self
   symbol(id).set_nud_bp(bp, nud)

infix(‘|’, 1)
infix(‘^’, 2)
infix(‘&’, 3)
prefix(‘!’, 4)

F nud(ASTNode self)
   R self
symbol(‘(var)’).nud = nud
symbol(‘(end)’)

F nud_parens(ASTNode self)
   V expr = expression()
   advance(‘)’)
   R expr
symbol(‘(’).nud = nud_parens
symbol(‘)’)

L(expr_str) [‘!A | B’, ‘A ^ B’, ‘S | ( T ^ U )’, ‘A ^ (B ^ (C ^ D))’]
   print(‘Boolean expression: ’expr_str)
   print()
   ASTNode p = parse(expr_str)
   print(vars.map(v -> v.name).join(‘ ’)‘ : ’expr_str)
   L(i) 0 .< (1 << vars.len)
      L(v) vars
         v.value = (i >> (vars.len - 1 - L.index)) [&] 1
         print(v.value, end' ‘ ’)
      print(‘: ’p.eval())
   print()
Output:
Boolean expression: !A | B

A B : !A | B
0 0 : 1
0 1 : 1
1 0 : 0
1 1 : 1

Boolean expression: A ^ B

A B : A ^ B
0 0 : 0
0 1 : 1
1 0 : 1
1 1 : 0

Boolean expression: S | ( T ^ U )

S T U : S | ( T ^ U )
0 0 0 : 0
0 0 1 : 1
0 1 0 : 1
0 1 1 : 0
1 0 0 : 1
1 0 1 : 1
1 1 0 : 1
1 1 1 : 1

Boolean expression: A ^ (B ^ (C ^ D))

A B C D : A ^ (B ^ (C ^ D))
0 0 0 0 : 0
0 0 0 1 : 1
0 0 1 0 : 1
0 0 1 1 : 0
0 1 0 0 : 1
0 1 0 1 : 0
0 1 1 0 : 0
0 1 1 1 : 1
1 0 0 0 : 1
1 0 0 1 : 0
1 0 1 0 : 0
1 0 1 1 : 1
1 1 0 0 : 0
1 1 0 1 : 1
1 1 1 0 : 1
1 1 1 1 : 0

8080 Assembly

This program runs under CP/M and takes the Boolean expression on the command line.

	;;;	CP/M truth table generator
	;;;	Supported operators:
	;;;	~ (not), & (and), | (or), ^ (xor) and => (implies)
	;;;	Variables are A-Z, constants are 0 and 1.
putch:	equ	2
puts:	equ	9	
TVAR:	equ	32
TCONST:	equ	64
TOP:	equ	96
TPAR:	equ	128
TMASK:	equ	31
TTYPE:	equ	224
	org	100h
	lxi	h,80h	; Have we got a command line argument?
	mov	a,m
	ana	a
	lxi	d,noarg	; If not, print error message and stop.
	mvi	c,puts
	jz	5
	add 	l	; Otherwise, 0-terminate the argument string
	inr	a
	mov	l,a
	mvi	m,0
	inx	h
	mvi	m,'$'	; And $-terminate it also for error messages
	lxi	h,opstk	; Pointer to operator stack on the system stack
	push	h
	lxi	h,80h	; Start of command line
	lxi	b,expr	; Start of expression (output queue for shunting yard)
parse:	inx	h
	mvi	a,' '	; Ignore all whitespace
	cmp	m
	jz	parse
	mov	a,m 	; Load current character
	ana	a	; Done?
	jz	pdone
	mov	d,a	; Store copy in D
	ori	32	; Check for variable
	sui	'a'
	cpi	26	
	jnc	pconst	; If not variable, go check constants
	ori	TVAR	; It _is_ a variable
	stax	b	; Store token
	inx	b
	jmp	parse	; Next token
pconst:	mov	a,d	; Restore character
	sui	'0'	; 0 or 1 are constants
	cpi	2
	jnc	pparen	; If not constant, go check parenthesis
	ori	TCONST	; It _is_ a constant
	stax	b	; Store token
	inx	b
	jmp	parse
pparen:	mov	a,d	; Restore character
	sui	'('	; ( and ) are parentheses
	jz	ppopen	; Open parenthesis 
	dcr	a
	jnz	poper	; If not ( or ), check operators
	xthl		; Closing parenthesis - get operator stack
closep:	mov 	a,l	; If at beginning, missing ( - give error
	ana	a
	jz	emiss
	dcx	h	; Back up pointer
	mov	a,m	; Found it?
	cpi	TPAR
	jnz	closes	; If not, keep scanning
	xthl		; Get input string back
	jmp	parse	; Keep parsing
closes:	stax	b	; Not parenthesis - put token in output queue
	inx	b
	jmp	closep	; And keep going
ppopen:	xthl		; Get operator stack
	mvi	m,TPAR	; Store open parenthesis
	inx	h
	xthl		; Get input string
	jmp	parse
poper:	push	h	; Check tokens - keep input string
	mvi	e,0	; Counter
	lxi	h,opers	; Operator pointer
opscan:	mov	a,m	; Check against character
	cmp	d	; Found it?
	jz	opfind
	inr	e	; Increment counter
	ana	a	; Otherwise, is it zero?
	inx	h
	jnz	opscan	; If not, keep scanning
eparse:	lxi 	d,pserr	; It is zero - print a parse error
	mvi	c,puts
	call	5
	pop	d
	mvi	c,puts
	call 	5
	rst	0 
opfind: cpi 	'='	; Special case - is it '='?
	jnz	opfin2	; If so it should be followed by '>'
	xthl
	inx	h
	mov	a,m
	xthl
	cpi	'>'
	jnz	eparse	; '=' not part of '=>' is parse error
opfin2:	mvi	d,0	; Look up the precedence for this operator
	lxi	h,prec
	dad	d
	mov	d,m	; Store it in D (D=prec E=operator number)
	pop	h	; Restore input string
	xthl		; Get operator stack pointer
oppop:	mov	a,l	; At beginning of operator stack?
	ana	a
	jz 	oppush	; Then done - push current operator
	dcx	h	; Check what's on top
	mov	a,m
	inx	h
	cpi	TPAR	; Parenthesis?
	jz 	oppush	; Then done - push current operator
	push	b	; Store output pointer for a while
	push	h	; As well as operator stack pointer
	mvi	b,0	; Get index of operator from stack
	ani	TMASK
	mov	c,a
	lxi	h,prec	; Find precedence
	dad	b
	mov	a,m 	; Load precedence into A
	pop	h	; Restore operator stack pointer
	pop	b	; As well as output pointer
	cmp	d	; Compare to operator from input
	jc	oppush	; If input precedence higher, then push operator
	dcx	h	; Otherwise, pop from operator stack,
	mov	a,m
	stax	b	; And store in output queue
	inx	b		
	jmp	oppop	; Keep popping from operator stack
oppush:	mov	a,e	; Get input operator 
	ori	TOP
	mov	m,a	; Store on operator stack
	inx	h
	xthl		; Switch to input string
	jmp	parse
emiss:	lxi	d,missp	; Error message for missing parentheses
	mvi	c,puts
	call	5
	rst	0
pdone:	pop	h	; Get operator stack pointer
ppop:	mov	a,l	; Pop whatever is left off
	ana	a
	jz	cntvar	
	dcx	h
	mov	a,m	; Get value
	cpi	TPAR	; If we find a paranthesis then the parentheses
	jz	emiss 	; don't match
	stax	b	; Store in output queue
	inx	b
	jmp 	ppop
cntvar:	stax	b	; Zero-terminate the expression
	lxi	h,vused+25	; See which variables are used in the expr
	xra	a
vzero:	mov	m,a
	dcr	l
	jp	vzero
	lxi	d,expr
vscan:	ldax	d	; Load expression element
	inx	d	; Next one next time
	ana	a	; Was it zero?
	jz	vdone	; Then we're done
	mov	b,a	; Store copy
	ani	TTYPE	; Is it a variable?
	cpi	TVAR
	jnz	vscan	; If not, ignore it
	mov	a,b
	ani	TMASK
	mov	l,a	; If so, mark it
	inr	m
	jmp	vscan
vdone:	call	eval	; Run the evaluation once to catch errors
	lxi	h,vused ; Print header
	mvi	b,0	; Character counter
varhdr:	mov	a,m	; Current variable used?
	ana	a
	jz	varnxt	; If not, skip it
	inr	b	; Two characters
	inr	b
	push	h	; Keep registers
	push	b
	mvi	c,putch	; Print letter 
	mov	a,l
	adi	'A'
	mov	e,a
	call	5
	mvi	c,putch	; Print space
	mvi	e,' '
	call 	5
	pop	b	; Restore registers
	pop	h
varnxt: inr	l
	mov	a,l
	cpi	26
	jnz	varhdr
	inr	b	; Two characters for "| "
	inr	b
	push 	b
	lxi	d,dvdr
	mvi	c,puts
	call	5
	pop 	b
	lxi	h,81h	; Print expression
exhdr:	inr	b	; One character 
	push	b
	push	h
	mov	e,m
	mvi	c,putch
	call 	5
	pop	h
	pop 	b
	mov	a,m	; Until zero reached
	ana	a
	inx	h
	jnz	exhdr
	push	b	; Keep count
	lxi	d,nwln	; Print newline
	mvi	c,puts
	call	5
	pop	b
linhdr:	push 	b	; Print dashes	
	mvi	c,putch
	mvi	e,'-'
	call	5
	pop 	b
	dcr 	b
	jnz	linhdr
	lxi	h,vars	; Set all variables to 0
	xra	a
zero:	mov	m,a
	inr	l
	jnz	zero
mloop:	lxi	d,nwln	; Print newline
	mvi	c,puts
	call	5
	lxi	h,vars	; Print current state 
	lxi	d,vused
	lxi	b,1A00h
pstate:	ldax	d	; Is variable in use?
	ana	a
	jz	pnext	; If not, try next one
	mov	c,e	; Keep highest used variable
	mov	a,m	; Otherwise, get value
	ani	1	; 0 or 1
	ori	'0'
	push	b	; Keep state
	push 	d
	push	h
	mvi	c,putch	; Print variable
	mov	e,a	
	call	5
	mvi	c,putch	; And space
	mvi	e,' '	
	call 	5
	pop	h	; Restore state
	pop	d
	pop 	b
pnext:	inx	h	; Print next one
	inx	d
	dcr	b
	jnz	pstate
	push	b	; Keep last variable
	lxi	d,dvdr	; Print "| "
	mvi	c,puts
	call	5
	call 	eval	; Evaluate expr using current state
	ani	1	; Print result
	ori	'0'
	mvi	c,putch
	mov	e,a
	call	5
	pop	b	; Restore last used variable
	inr	c
	lxi	h,vars	; Find next state
	lxi	d,vused
istate:	ldax	d	; Is variable in use?
	ana	a
	jz	inext	; If not, try next one
	mov	a,m	; Otherwise, get value
	ana	a	; Is it zero?
	jnz	iinc	; If not, keep going,
	inr	m 	; But if so, set it to one
	jmp 	mloop	; And print next state
iinc:	dcr	m	; If one, set it to zero
inext:	inx	d	; And try next variable
	inx	h
	dcr	c	; Test if we have variables left
	jnz	istate	; If not, try next one
	rst	0	; But if so, we're done
eval:	lxi	b,expr	; Evaluate the expression
	lxi	h,opstk	; Evaluation stack
eloop:	ldax	b	; Load expression element	
	inx	b
	ana	a	; Done?
	jz	edone
	mov	d,a	; Keep copy
	ani 	TTYPE
	cpi	TCONST	; Constant?
	jz	econst
	cpi	TVAR	; Variable?
	jz	evar
	mov	a,d	; Otherwise it's an operator
	ani	TMASK
	mov 	d,a
	ana	a	; Not?
	jnz	e2
	dcr	l	; Error if stack empty
	jm	errop
	mov	a,m	; Not
	cma
	mov	m,a
	inr	l 
	jmp 	eloop
e2: 	dcr	l	; 2 values needed - error if stack empty
	mov	e,m	; Right hand value
	dcr	l
	mov	a,m	; Left hand value
	jm 	errop
	dcr	d 	; And?
	jz 	eand
	dcr 	d	; Or?
	jz 	eor
	dcr	d	; Xor?
	jz	exor
eimpl:	ana 	a	; Implies - if A=1 then E else 1
	jnz	e_lde
	mvi	m,-1
	inr	l
	jmp	eloop
e_lde:	mov	m,e
	inr	l 
	jmp	eloop
exor:	xra	e
	jmp	estore
eor:	ora	e
	jmp	estore
eand:	ana 	e
estore:	mov	m,a
	inr	l
	jmp 	eloop
econst:	mov	a,d	; Constant
	ani	TMASK
	mov	m,a
	inr	l
	jmp	eloop
evar:	mov	a,d	; Variable
	ani	TMASK
	push	h
	mvi	h,vars/256
	mov	l,a
	mov	a,m
	pop	h
	mov	m,a
	inr	l
	jmp	eloop
edone:	dcr	l	; Should be at 0
	mov	a,m
	rz 
	lxi	d,mop	; Missing operator (not all values used)
	jmp	errop+3
errop:	lxi	d,mval	; Missing operand (stack underflow)
	mvi	c,puts
	call	5
	rst	0
nwln:	db	13,10,'$'
dvdr:	db	'| $'
noarg:	db	'Please enter a boolean expression on the command line.$'
missp:	db	'Missing parenthesis.$'
pserr:	db	'Parse error at: $'
mval:	db	'Missing operand.$'
mop:	db	'Missing operator.$'
opers:	db	'~&|^=',0	; Operators - note that impl is actually =>
prec:	db	4,3,2,2,1	; Precedence
opstk:	equ	($/256)*256+256	; Operator stack (for shunting yard)
vars:	equ	opstk+256	; Space for variables
vused:	equ	vars+256	; Marks which variables are used
expr:	equ	vused+26	; Parsed expression is stored here
Output:
A>truth80 A & B
A B |  A & B
-------------
0 0 | 0
1 0 | 0
0 1 | 0
1 1 | 1
A>truth80 (S=>H) & (H=>M) => (S=>M)
H M S |  (S=>H) & (H=>M) => (S=>M)
-----------------------------------
0 0 0 | 1
1 0 0 | 1
0 1 0 | 1
1 1 0 | 1
0 0 1 | 1
1 0 1 | 1
0 1 1 | 1
1 1 1 | 1

ALGOL 68

Works with: ALGOL 68G version Any - tested with release 3.4.6 (Win32)

Uses the Algol 68G specific evaluate procedure to evaluate the Boolean expressions. The expressions must therefore be infix and valid Algol 68 boolean expressions.

# prints the truth table of a boolean expression composed of the 26 lowercase variables a..z, #
# the boolean operators AND, OR, XOR and NOT and the literal values TRUE and FALSE            #
# The evaluation is done with the Algol 68G evaluate function which is an extension           #
PROC print truth table = ( STRING expr )VOID:
     BEGIN

        # recursively prints the truth table #
        PROC print line = ( INT lv )VOID:
             IF lv > UPB bv
             THEN
                 # at the end of the variables - print the line #
                 FOR le TO UPB bv DO
                     IF used[ le ] THEN print( ( " ", bv[ le ], " " ) ) FI
                 OD;
                 print( ( "     ", evaluate( expr ), newline ) )
             ELIF used[ lv ]
             THEN
                 # have another variable #
                 bv[ lv ] := TRUE;
                 print line( lv + 1 );
                 bv[ lv ] := FALSE;
                 print line( lv + 1 )
             ELSE
                 # this variable is not used #
                 print line( lv + 1 )
             FI # print line # ;

        # returns the name of the variable number #
        PROC variable name = ( INT number )CHAR: REPR ( number + ( ABS "a" - 1 ) );

        # the 26 boolean variables #
        BOOL a := FALSE, b := FALSE, c := FALSE, d := FALSE, e := FALSE, f := FALSE;
        BOOL g := FALSE, h := FALSE, i := FALSE, j := FALSE, k := FALSE, l := FALSE;
        BOOL m := FALSE, n := FALSE, o := FALSE, p := FALSE, q := FALSE, r := FALSE;
        BOOL s := FALSE, t := FALSE, u := FALSE, v := FALSE, w := FALSE, x := FALSE;
        BOOL y := FALSE, z := FALSE;
        # table of the variables allowng access by number #
        []REF BOOL bv = ( a, b, c, d, e, f, g, h, i, j, k, l, m
                        , n, o, p, q, r, s, t, u, v, w, x, y, z
                        );
        [ 26 ]BOOL used;
        BOOL at least one variable := FALSE;
        # determine which variables are used in the expression #
        FOR iv TO UPB bv DO
            used[ iv ] := char in string( variable name( iv ), NIL, expr );
            IF used[ iv ]THEN at least one variable := TRUE FI
        OD;
        # print truth table headings #
        print( ( expr, ":", newline ) );
        FOR iv TO UPB bv DO
            IF used[ iv ] THEN print( ( " ", variable name( iv ), " " ) ) FI
        OD;
        print( ( " value", newline ) );
        FOR iv TO UPB bv DO
            IF used[ iv ] THEN print( ( " - " ) ) FI
        OD;
        print( ( " -----", newline ) );
        # evaluate the expression for each cobination of variables # 
        IF at least one variable
        THEN
             # the expression does not consist of literals only #
             FOR iv TO UPB bv DO bv[ iv ] := FALSE OD;
             print line( LWB bv )
        ELSE
             # the expression is constant #
             print( ( "     ", evaluate( expr ), newline ) )
        FI
     END # print truth table # ;

# print truth tables from the user's expressions #
print( ( "Please enter Boolean expressions using variables a, b, c, ..., z,",                  newline ) );
print( ( "operators AND, OR, NOT and XOR and literals TRUE and FALSE",                         newline ) );
print( ( "(Note operators and TRUE/FALSE must be uppercase and variables must be lower case)", newline ) );
print( ( "Enter a blank line to quit",                                                         newline ) );
WHILE
    STRING expr;
    print( ( "expression> " ) );
    read( ( expr, newline ) );
    expr /= ""
DO
    print truth table( expr )
OD
Output:
Please enter Boolean expressions using variables a, b, c, ..., z,
operators AND, OR, NOT and XOR and literals TRUE and FALSE
(Note operators and TRUE/FALSE must be uppercase and variables must be lower case)
Enter a blank line to quit
expression> a OR b
a OR b:
 a  b  value
 -  -  -----
 T  T      T
 T  F      T
 F  T      T
 F  F      F
expression> a AND ( b OR f )
a AND ( b OR f ):
 a  b  f  value
 -  -  -  -----
 T  T  T      T
 T  T  F      T
 T  F  T      T
 T  F  F      F
 F  T  T      F
 F  T  F      F
 F  F  T      F
 F  F  F      F
expression> ( NOT a ) OR ( b AND c )
( NOT a ) OR ( b AND c ):
 a  b  c  value
 -  -  -  -----
 T  T  T      T
 T  T  F      F
 T  F  T      F
 T  F  F      F
 F  T  T      T
 F  T  F      T
 F  F  T      T
 F  F  F      T
expression>

Amazing Hopper

Hopper can be converted into a dedicated application, making use of macro substitution.

Main program:

#include basica/booleanos.h

#include <basico.h>


algoritmo 

    variables( R0,R1,R2,R3,R4,T0,T1,T2,T3,T4,T5,T6 )

    VARS=3
    preparar valores de verdad

    preparar cabecera {
         
         "A","B","C","|","[A=>B","&","B=>C]","=>","A=>C"

    } enlistar en 'cabecera'

    expresión lógica a evaluar {

         OP=>( A, B ),   :: 'R1'
         OP=>( B, C ),   :: 'R2'
         OP&( R1, R2 ),  :: 'R0'
         OP=>( A, C ),   :: 'R3'
         OP=>( R0, R3 )

    } :: 'R4'

    unir columnas( tabla, tabla, separador tabla, R1, R0, R2, R4, R3 )

    insertar cabecera y desplegar tabla
 
 /* =============== otro ================== */
 
    VARS=2, preparar valores de verdad

    preparar cabecera {
         "A","B","|","value: A=>B <=> ~AvB"
    } enlistar en 'cabecera'
    
    expresión lógica a evaluar {
         OP<=>( OP=>(A,B), OP|(OP~(A), B) )

    } :: 'R0'
    
    unir columnas( tabla, tabla, separador tabla, R0 )

    insertar cabecera y desplegar tabla

 /* =============== otro ================== */
 
    VARS=4, preparar valores de verdad
    
    preparar cabecera {
         "A","B","C","D","|","[~AvB","&","A=>C","&","(B","=>","(C=>D))]","=>","A=>C"
    } enlistar en 'cabecera'
    expresión lógica a evaluar {
         
         OP|( OP~(A), B)     :: 'R0'
         OP=>(A,C)           :: 'R1'
         OP&( R0, R1 )       :: 'T0'
         OP=>( C,D )         :: 'R2'
         OP=>( B, R2 )       :: 'T2'
         OP&( T0, T2 )       :: 'T3'
         OP=>( T3, R1)

    } :: 'T4'
    
    unir columnas( tabla, tabla, separador tabla, R0, T0,R1, T3, B, T2, R2, T4, R1)

    insertar cabecera y desplegar tabla

 /* =============== otro ================== */

    VARS=2, preparar valores de verdad
    preparar cabecera {
         "A","B","~A","~B","A&B","AvB","A^B","A=>B","A<=>B","A~&B","A~vB"
    } enlistar en 'cabecera'
    
    expresión lógica a evaluar {
         
         OP~(A)             :: 'R0'
         OP~(B)             :: 'R1'
         OP&(A,B)           :: 'T0'
         OP|(A,B)           :: 'T1'
         OP^(A,B)           :: 'T2'
         OP=>(A,B)          :: 'T3'
         OP<=>(A,B)         :: 'T4'
         OP~&(A,B)          :: 'T5'
         OP~|(A,B)          :: 'T6'

    }
    
    unir columnas( tabla, tabla, R0,R1,T0,T1,T2,T3,T4, T5, T6)

    insertar cabecera y desplegar tabla

 /* =============== otro ================== */
 
    VARS=1, preparar valores de verdad
    preparar cabecera { "A","~A" } enlistar en 'cabecera'
    
    unir columnas( tabla, tabla, OP~(A) )

    insertar cabecera y desplegar tabla
terminar

"booleano.h" header file:

/* BOOLEANOS.H */
#context-free  preparaciondedatos
    fijar separador (NULO)

    c=""
    tamaño binario (VARS)
    
    #( lpad("0",VARS,"0") ), separar para (tabla)
    #( TOTCOMB = 2^VARS )
    iterar para (i=1, #(i< TOTCOMB), ++i)
         
         i, cambiar a base(2), quitar laterales, mover a 'c',
         #( lpad("0",VARS,c) ); separar para (fila)
         unir filas ( tabla, tabla, fila )

    siguiente
    
    replicar( "|", TOTCOMB ), separar para (separador tabla)

retornar\\

#define A                  V(1)
#define B                  V(2)
#define C                  V(3)
#define D                  V(4)
#define E                  V(5)
#define F                  V(6)
#define G                  V(7)
#define H                  V(8)
// etcétera
#define V(_X_)             {1}{_X_}loc2;{TOTCOMB}{0}offset2;get(tabla);xtonum

#define-a       ::         mov  

#defn    OP<=>(_X_,_Y_)     #RAND; _V1_#RNDV_=0;_V2_#RNDV_=0;#ATOM#CMPLX;\
                            cpy(_V1_#RNDV_);\
                            #ATOM#CMPLX;cpy(_V2_#RNDV_);and;{_V1_#RNDV_}not;\
                            {_V2_#RNDV_}not;and;or; %RAND;
#defn    OP=>(_X_,_Y_)      #ATOM#CMPLX;not;#ATOM#CMPLX;or;
#defn    OP&(_X_,_Y_)       #ATOM#CMPLX;#ATOM#CMPLX;and;
#defn    OP|(_X_,_Y_)       #ATOM#CMPLX;#ATOM#CMPLX;or;
#defn    OP^(_X_,_Y_)       #ATOM#CMPLX;#ATOM#CMPLX;xor;
#defn    OP~&(_X_,_Y_)      #ATOM#CMPLX;#ATOM#CMPLX;nand;
#defn    OP~|(_X_,_Y_)      #ATOM#CMPLX;#ATOM#CMPLX;nor;
#defn    OP~(_X_)           #ATOM#CMPLX;not;

#defn    variables(*)      #GENCODE $$$*$$$ #LIST={#VOID};#ENDGEN

#define  expresiónlógicaaevaluar      {1}do
#synon   expresiónlógicaaevaluar      prepararcabecera

#define  centrar                      ;padcenter;

#define  insertarcabeceraydesplegartabla     {cabecera}length;\
                        mov(LENTABLA); \
                        dim (LENTABLA) matriz rellena ("-----",vsep),\
                        unir filas ( cabecera, cabecera, vsep,tabla ) \
                        {" ",7,cabecera}, convertir a cadena, centrar,\
                        mover a 'cabecera'\
                        transformar("1","T", transformar("0","F", cabecera)) \
                        guardar en 'cabecera',\
                        imprimir( cabecera, NL )

#define  prepararvaloresdeverdad    decimales '0' \
                        tabla={#VOID}, fila={#VOID}, separador tabla={#VOID},\
                        cabecera={#VOID}, TOTCOMB=0, LENTABLA=0,\
                        preparacion de datos

/* EOF */
Output:
   A      B      C      |    [A=>B    &    B=>C]   =>    A=>C  
 -----  -----  -----  -----  -----  -----  -----  -----  ----- 
   F      F      F      |      T      T      T      T      T   
   F      F      T      |      T      T      T      T      T   
   F      T      F      |      T      F      F      T      T   
   F      T      T      |      T      T      T      T      T   
   T      F      F      |      F      F      T      T      F   
   T      F      T      |      F      F      T      T      T   
   T      T      F      |      T      F      F      T      F   
   T      T      T      |      T      T      T      T      T   

   A      B      |   value: A=>B <=> ~AvB
 -----  -----  -----  ----- 
   F      F      |      T   
   F      T      |      T   
   T      F      |      T   
   T      T      |      T   

   A      B      C      D      |    [~AvB    &    A=>C     &     (B     =>   (C=>D))]  =>    A=>C  
 -----  -----  -----  -----  -----  -----  -----  -----  -----  -----  -----  -----  -----  ----- 
   F      F      F      F      |      T      T      T      T      F      T      T      T      T   
   F      F      F      T      |      T      T      T      T      F      T      T      T      T   
   F      F      T      F      |      T      T      T      T      F      T      F      T      T   
   F      F      T      T      |      T      T      T      T      F      T      T      T      T   
   F      T      F      F      |      T      T      T      T      T      T      T      T      T   
   F      T      F      T      |      T      T      T      T      T      T      T      T      T   
   F      T      T      F      |      T      T      T      F      T      F      F      T      T   
   F      T      T      T      |      T      T      T      T      T      T      T      T      T   
   T      F      F      F      |      F      F      F      F      F      T      T      T      F   
   T      F      F      T      |      F      F      F      F      F      T      T      T      F   
   T      F      T      F      |      F      F      T      F      F      T      F      T      T   
   T      F      T      T      |      F      F      T      F      F      T      T      T      T   
   T      T      F      F      |      T      F      F      F      T      T      T      T      F   
   T      T      F      T      |      T      F      F      F      T      T      T      T      F   
   T      T      T      F      |      T      T      T      F      T      F      F      T      T   
   T      T      T      T      |      T      T      T      T      T      T      T      T      T   

   A      B     ~A     ~B     A&B    AvB    A^B   A=>B   A<=>B  A~&B   A~vB  
 -----  -----  -----  -----  -----  -----  -----  -----  -----  -----  ----- 
   F      F      T      T      F      F      F      T      T      T      T   
   F      T      T      F      F      T      T      T      F      T      F   
   T      F      F      T      F      T      T      F      F      T      F   
   T      T      F      F      T      T      F      T      T      F      F  

   A     ~A   
 -----  ----- 
   F      T   
   T      F   

APL

Works with: Dyalog APL

This is an APL function that returns a formatted truth table. Variables are single letters, and the operators are:

  • : and
  • : or
  • ~: not
  • : xor
  • : implies

Except for , these are the operators normally used in APL. The notation is infix, with the normal boolean precedence rules (unlike normal APL, which evaluates right-to-left).

truth{
    op⍉↑'~∧∨≠→('(4 3 2 2 1 0)
    order⍬⍬{
        out stk
        0=≢⍵:out,⌽stk
        c rst() (1)
        c⎕A:((out,c)stk)rst
        c'01':((out,⍎c)stk)rst
        (c'(')(op)nop[;1]c:rstout{
            cnd⌽∧\('(')op[op[;1];2]op[n;2]
            (,⌽cnd/)(((~cnd)/),c)
        }stk
        c='(':(out(stk,c))rst
        c=')':rstout{
            par'('=⍵:'Missing ('⎕SIGNAL 11
            n/par
            (,n)((n-1))
        }stk
        ('Invalid character ',c)⎕SIGNAL 11
    }1(819)~4⎕TC
    '('order:'Missing )'⎕SIGNAL 11
    nvarvars(order⎕A)/order
    eval{
        
        0=≢⍵:{
            1≠≢⍵:'Missing operator'⎕SIGNAL 11  
        }
        c rst() (1)
        c⎕A:(⍺⍺[varsc],)rst
        c0 1:(c,)rst
        c='~':(1 0)rst  'Missing operand'⎕SIGNAL(0=≢)/11
        cop[;1]:({
            2>≢⍵:'Missing operand'⎕SIGNAL 11
            c='→':(/2),2
            ((c)/2),2
        })rst
    }
    _(nvar/0) eval order
    confs(nvar/2)¯1+⍳2*nvar
    tab'FT│'[1+(confs,2),{ eval order}¨confs]
    tab↑,/ ' ',¨tab
    hdr((∊,/(' ',¨vars),' '),[0.5]'─'),⍪'│┼'
    hdrhdr,(' ',,' '),[0.5]'─'
    hdr(,' '(⊃⊃-/1¨¨hdr tab))tab
}
Output:
      truth 'A'
 A │ A 
───┼───
 F │ F 
 T │ T 

      truth 'A∧B ∨ P∧Q'
 A B P Q │ A∧B ∨ P∧Q 
─────────┼───────────
 F F F F │ F         
 F F F T │ F         
 F F T F │ F         
 F F T T │ T         
 F T F F │ F         
 F T F T │ F         
 F T T F │ F         
 F T T T │ T         
 T F F F │ F         
 T F F T │ F         
 T F T F │ F         
 T F T T │ T         
 T T F F │ T         
 T T F T │ T         
 T T T F │ T         
 T T T T │ T         

      truth '(H→M) ∧ (S→H) → (S→M)'
 H M S │ (H→M) ∧ (S→H) → (S→M) 
───────┼───────────────────────
 F F F │ T                     
 F F T │ T                     
 F T F │ T                     
 F T T │ T                     
 T F F │ T                     
 T F T │ T                     
 T T F │ T                     
 T T T │ T   


BASIC

10 DEFINT A-Z: DATA "~",4,"&",3,"|",2,"^",2,"=>",1
20 DIM V(26),E(255),S(255),C(5),C$(5)
30 FOR I=1 TO 5: READ C$(I),C(I): NEXT
40 PRINT "Boolean expression evaluator"
50 PRINT "----------------------------"
60 PRINT "Operators are: ~ (not), & (and), | (or), ^ (xor), => (implies)."
70 PRINT "Variables are A-Z. Constant False and True are 0 and 1."
100 FOR I=1 TO 26: V(I)=0: NEXT
110 PRINT: LINE INPUT "Enter an expression: ";A$
120 E$="": E=0: S=0
130 FOR I=1 TO LEN(A$)
140 I$=MID$(A$,I,1)
150 IF I$<>" " THEN E$=E$+I$
160 NEXT
170 IF E$="" THEN END ELSE Y$=E$
180 IF E$="" THEN 330
190 A$=LEFT$(E$,1): A=ASC(A$) OR 32: B$=RIGHT$(E$,LEN(E$)-1)
200 IF A>=97 AND A<=122 THEN E(E)=A-33: E=E+1: E$=B$: GOTO 180
210 IF A$="0" OR A$="1" THEN E(E)=VAL(A$)+32: E=E+1: E$=B$: GOTO 180
220 IF A$="(" THEN S(S)=97: S=S+1: E$=B$: GOTO 180
225 IF A$=")" THEN E$=B$: GOTO 300
227 I=1
230 IF LEFT$(E$,LEN(C$(I)))=C$(I) THEN 250 ELSE I=I+1: IF I<6 THEN 230
240 PRINT "Parse error at: ";E$: PRINT: GOTO 100
250 A$=C$(I): E$=RIGHT$(E$,LEN(E$)-LEN(A$))
260 IF I=1 THEN S(S)=1: S=S+1: GOTO 180
270 IF S=0 THEN 290
275 IF S(S-1)<>97 AND C(S(S-1) AND 31)>=C(I) THEN 280 ELSE 290
280 S=S-1: E(E)=S(S): E=E+1: GOTO 270
290 S(S)=I: S=S+1: GOTO 180
300 IF S=0 THEN PRINT "Error: missing (!": GOTO 100
310 IF S(S-1)<>97 THEN S=S-1: E(E)=S(S): E=E+1: GOTO 300
320 S=S-1: GOTO 180
330 IF S=0 THEN 350 ELSE S=S-1
335 IF S(S)=97 THEN PRINT "Error: missing )!": GOTO 100
340 E(E)=S(S): E=E+1: GOTO 330
350 V$=""
360 FOR I=0 TO E-1
370 IF (E(I) AND 224)<>64 THEN 390
380 A$=CHR$(E(I)+1): IF INSTR(V$,A$)=0 THEN V$=V$+A$
390 NEXT
400 GOSUB 600
410 FOR I=1 TO LEN(V$): PRINT MID$(V$,I,1);" ";: NEXT
420 PRINT "| ";Y$
430 PRINT STRING$(2+2*LEN(V$)+LEN(Y$),"-")
440 FOR J=1 TO 2^LEN(V$)
450 FOR I=1 TO LEN(V$)
460 IF V(I) THEN PRINT "T "; ELSE PRINT "F ";
470 NEXT
480 PRINT "| ";: GOSUB 600: IF S(0) THEN PRINT "T" ELSE PRINT "F"
490 I=1
500 IF V(I) THEN V(I)=0: I=I+1: GOTO 500 ELSE V(I)=1
510 NEXT
520 GOTO 100
600 S=0
610 FOR I=0 TO E-1: T=E(I) AND 224: V=E(I) AND 31
620 IF T=0 THEN ON V GOTO 700,710,720,730,740
630 IF T=32 THEN S(S)=-V: S=S+1: GOTO 650
640 IF T=64 THEN S(S)=V(INSTR(V$,CHR$(V+65))): S=S+1: GOTO 650
650 NEXT
660 IF S<>1 THEN PRINT "Missing operator": GOTO 100
670 RETURN
700 IF S<1 THEN 770 ELSE S(S-1)=1-S(S-1): GOTO 650
710 IF S<2 THEN 770 ELSE S=S-1:S(S-1)=S(S-1) AND S(S): GOTO 650
720 IF S<2 THEN 770 ELSE S=S-1:S(S-1)=S(S-1) OR S(S): GOTO 650
730 IF S<2 THEN 770 ELSE S=S-1:S(S-1)=S(S-1) XOR S(S): GOTO 650
740 IF S<2 THEN 770 ELSE S=S-1
750 IF S(S-1) THEN S(S-1)=S(S) ELSE S(S-1)=-1
760 GOTO 650
770 PRINT "Missing operand": GOTO 100
Output:
Boolean expression evaluator
----------------------------
Operators are: ~ (not), & (and), | (or), ^ (xor), => (implies).
Variables are A-Z. Constant False and True are 0 and 1.

Enter an expression: A
A | A
-----
F | F
T | T

Enter an expression: X & ~Y
X Y | X&~Y
----------
F F | F
T F | T
F T | F
T T | F

Enter an expression: ~(A & B)
A B | ~(A&B)
------------
F F | T
T F | T
F T | T
T T | F

Enter an expression: (H => M) & (S => H) => (S => M)
H M S | (H=>M)&(S=>H)=>(S=>M)
-----------------------------
F F F | T
T F F | T
F T F | T
T T F | T
F F T | T
T F T | T
F T T | T
T T T | T

Enter an expression: A&B | P&Q
A B P Q | A&B|P&Q
-----------------
F F F F | F
T F F F | F
F T F F | F
T T F F | T
F F T F | F
T F T F | F
F T T F | F
T T T F | T
F F F T | F
T F F T | F
F T F T | F
T T F T | T
F F T T | T
T F T T | T
F T T T | T
T T T T | T

Enter an expression:
Ok

C

Translation of: D
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define TRUE 1
#define FALSE 0
#define STACK_SIZE 80
#define BUFFER_SIZE 100

typedef int bool;

typedef struct {
    char name;
    bool val;
} var;

typedef struct {
    int top;
    bool els[STACK_SIZE];
} stack_of_bool;

char expr[BUFFER_SIZE];
int expr_len;
var vars[24];
int vars_len;

/* stack manipulation functions */

bool is_full(stack_of_bool *sp) {
    return sp->top == STACK_SIZE - 1;
}

bool is_empty(stack_of_bool *sp) {
    return sp->top == -1;
}

bool peek(stack_of_bool *sp) {
    if (!is_empty(sp))
        return sp->els[sp->top];
    else {
        printf("Stack is empty.\n");
        exit(1);
    }
}

void push(stack_of_bool *sp, bool val) {
    if (!is_full(sp)) {
        sp->els[++(sp->top)] = val;
    }
    else {
        printf("Stack is full.\n");
        exit(1);
    }
}

bool pop(stack_of_bool *sp) {
    if (!is_empty(sp))
        return sp->els[(sp->top)--];
    else {
        printf("\nStack is empty.\n");
        exit(1);
    }
}

void make_empty(stack_of_bool *sp) {
    sp->top = -1;  
}

int elems_count(stack_of_bool *sp) {
    return (sp->top) + 1;  
}

bool is_operator(const char c) {
   return c == '&' || c == '|' || c == '!' || c == '^';
}

int vars_index(const char c) {
   int i;
   for (i = 0; i < vars_len; ++i) {
       if (vars[i].name == c) return i;
   }
   return -1;
}

bool eval_expr() {
    int i, vi;
    char e;
    stack_of_bool s;
    stack_of_bool *sp = &s;
    make_empty(sp);
    for (i = 0; i < expr_len; ++i) {
        e = expr[i];
        if (e == 'T')
            push(sp, TRUE);
        else if (e == 'F')
            push(sp, FALSE);
        else if((vi = vars_index(e)) >= 0) {
            push(sp, vars[vi].val);
        }
        else switch(e) {
            case '&':
                push(sp, pop(sp) & pop(sp));
                break;
            case '|':
                push(sp, pop(sp) | pop(sp));
                break;
            case '!':
                push(sp, !pop(sp));
                break;
            case '^':
                push(sp, pop(sp) ^ pop(sp));
                break;
            default:
                printf("\nNon-conformant character '%c' in expression.\n", e);
                exit(1);
        }
    }
    if (elems_count(sp) != 1) {
        printf("\nStack should contain exactly one element.\n");
        exit(1);
    }
    return peek(sp);
}

void set_vars(int pos) {
    int i;
    if (pos > vars_len) {
        printf("\nArgument to set_vars can't be greater than the number of variables.\n");
        exit(1);
    }
    else if (pos == vars_len) {
        for (i = 0; i < vars_len; ++i) {
            printf((vars[i].val) ? "T  " : "F  ");
        }
        printf("%c\n", (eval_expr()) ? 'T' : 'F');
    }
    else {
        vars[pos].val = FALSE;
        set_vars(pos + 1);
        vars[pos].val = TRUE;
        set_vars(pos + 1);
    }
}

/* removes whitespace and converts to upper case */
void process_expr() {
    int i, count = 0;
    for (i = 0; expr[i]; ++i) {
        if (!isspace(expr[i])) expr[count++] = toupper(expr[i]);
    }
    expr[count] = '\0';
}

int main() {
    int i, h;
    char e;
    printf("Accepts single-character variables (except for 'T' and 'F',\n");
    printf("which specify explicit true or false values), postfix, with\n");
    printf("&|!^ for and, or, not, xor, respectively; optionally\n");
    printf("seperated by whitespace. Just enter nothing to quit.\n");

    while (TRUE) {
        printf("\nBoolean expression: ");
        fgets(expr, BUFFER_SIZE, stdin);
        fflush(stdin);       
        process_expr();
        expr_len = strlen(expr);    
        if (expr_len == 0) break;
        vars_len = 0;
        for (i = 0; i < expr_len; ++i) {
            e = expr[i];
            if (!is_operator(e) && e != 'T' && e != 'F' && vars_index(e) == -1) {
                vars[vars_len].name = e;
                vars[vars_len].val = FALSE;
                vars_len++;
            }
        }
        printf("\n");
        if (vars_len == 0) {
            printf("No variables were entered.\n");
        } 
        else {
            for (i = 0; i < vars_len; ++i)
                printf("%c  ", vars[i].name);
            printf("%s\n", expr);
            h = vars_len * 3 + expr_len;
            for (i = 0; i < h; ++i) printf("=");
            printf("\n");
            set_vars(0);
        }
    }
    return 0;
}
Output:
Accepts single-character variables (except for 'T' and 'F',
which specify explicit true or false values), postfix, with
&|!^ for and, or, not, xor, respectively; optionally
seperated by whitespace. Just enter nothing to quit.

Boolean expression: A B ^

A  B  AB^
=========
F  F  F
F  T  T
T  F  T
T  T  F

Boolean expression: A B C ^ |

A  B  C  ABC^|
==============
F  F  F  F
F  F  T  T
F  T  F  T
F  T  T  F
T  F  F  T
T  F  T  T
T  T  F  T
T  T  T  T

Boolean expression: A B C D ^ ^ ^

A  B  C  D  ABCD^^^
===================
F  F  F  F  F
F  F  F  T  T
F  F  T  F  T
F  F  T  T  F
F  T  F  F  T
F  T  F  T  F
F  T  T  F  F
F  T  T  T  T
T  F  F  F  T
T  F  F  T  F
T  F  T  F  F
T  F  T  T  T
T  T  F  F  F
T  T  F  T  T
T  T  T  F  T
T  T  T  T  F

Boolean expression:

C++

Translation of: C
#include <iostream>
#include <stack>
#include <string>
#include <sstream>
#include <vector>

struct var {
    char name;
    bool value;
};
std::vector<var> vars;

template<typename T>
T pop(std::stack<T> &s) {
    auto v = s.top();
    s.pop();
    return v;
}

bool is_operator(char c) {
    return c == '&' || c == '|' || c == '!' || c == '^';
}

bool eval_expr(const std::string &expr) {
    std::stack<bool> sob;
    for (auto e : expr) {
        if (e == 'T') {
            sob.push(true);
        } else if (e == 'F') {
            sob.push(false);
        } else {
           auto it = std::find_if(vars.cbegin(), vars.cend(), [e](const var &v) { return v.name == e; });
           if (it != vars.cend()) {
               sob.push(it->value);
           } else {
               int before = sob.size();
               switch (e) {
               case '&':
                   sob.push(pop(sob) & pop(sob));
                   break;
               case '|':
                   sob.push(pop(sob) | pop(sob));
                   break;
               case '!':
                   sob.push(!pop(sob));
                   break;
               case '^':
                   sob.push(pop(sob) ^ pop(sob));
                   break;
               default:
                   throw std::exception("Non-conformant character in expression.");
               }
           }
        }
    }
    if (sob.size() != 1) {
        throw std::exception("Stack should contain exactly one element.");
    }
    return sob.top();
}

void set_vars(int pos, const std::string &expr) {
    if (pos > vars.size()) {
        throw std::exception("Argument to set_vars can't be greater than the number of variables.");
    }
    if (pos == vars.size()) {
        for (auto &v : vars) {
            std::cout << (v.value ? "T  " : "F  ");
        }
        std::cout << (eval_expr(expr) ? 'T' : 'F') << '\n'; //todo implement evaluation
    } else {
        vars[pos].value = false;
        set_vars(pos + 1, expr);
        vars[pos].value = true;
        set_vars(pos + 1, expr);
    }
}

/* removes whitespace and converts to upper case */
std::string process_expr(const std::string &src) {
    std::stringstream expr;

    for (auto c : src) {
        if (!isspace(c)) {
            expr << (char)toupper(c);
        }
    }

    return expr.str();
}

int main() {
    std::cout << "Accepts single-character variables (except for 'T' and 'F',\n";
    std::cout << "which specify explicit true or false values), postfix, with\n";
    std::cout << "&|!^ for and, or, not, xor, respectively; optionally\n";
    std::cout << "seperated by whitespace. Just enter nothing to quit.\n";

    while (true) {
        std::cout << "\nBoolean expression: ";

        std::string input;
        std::getline(std::cin, input);

        auto expr = process_expr(input);
        if (expr.length() == 0) {
            break;
        }

        vars.clear();
        for (auto e : expr) {
            if (!is_operator(e) && e != 'T' && e != 'F') {
                vars.push_back({ e, false });
            }
        }
        std::cout << '\n';
        if (vars.size() == 0) {
            std::cout << "No variables were entered.\n";
        } else {
            for (auto &v : vars) {
                std::cout << v.name << "  ";
            }
            std::cout << expr << '\n';

            auto h = vars.size() * 3 + expr.length();
            for (size_t i = 0; i < h; i++) {
                std::cout << '=';
            }
            std::cout << '\n';

            set_vars(0, expr);
        }
    }

    return 0;
}
Output:
Accepts single-character variables (except for 'T' and 'F',
which specify explicit true or false values), postfix, with
&|!^ for and, or, not, xor, respectively; optionally
seperated by whitespace. Just enter nothing to quit.

Boolean expression: A B ^

A  B  AB^
=========
F  F  F
F  T  T
T  F  T
T  T  F

Boolean expression: A B C ^ |

A  B  C  ABC^|
==============
F  F  F  F
F  F  T  T
F  T  F  T
F  T  T  F
T  F  F  T
T  F  T  T
T  T  F  T
T  T  T  T

Boolean expression: A B C D ^ ^ ^

A  B  C  D  ABCD^^^
===================
F  F  F  F  F
F  F  F  T  T
F  F  T  F  T
F  F  T  T  F
F  T  F  F  T
F  T  F  T  F
F  T  T  F  F
F  T  T  T  T
T  F  F  F  T
T  F  F  T  F
T  F  T  F  F
T  F  T  T  T
T  T  F  F  F
T  T  F  T  T
T  T  T  F  T
T  T  T  T  F

C#

Works with: C sharp version 7

This implementation allows the user to define the characters for true/false and the operators.
To not make it too complicated, operators are limited to a single character.
Either postfix or infix expressions are allowed. Infix expressions are converted to postfix.

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;

public class TruthTable
{
    enum TokenType { Unknown, WhiteSpace, Constant, Operand, Operator, LeftParenthesis, RightParenthesis }

    readonly char trueConstant, falseConstant;
    readonly IDictionary<char, Operator> operators = new Dictionary<char, Operator>();

    public TruthTable(char falseConstant, char trueConstant)
    {
        this.trueConstant = trueConstant;
        this.falseConstant = falseConstant;
        Operators = new OperatorCollection(operators);
    }

    public OperatorCollection Operators { get; }

    public void PrintTruthTable(string expression, bool isPostfix = false)
    {
        try {
            foreach (string line in GetTruthTable(expression, isPostfix)) {
                Console.WriteLine(line);
            }
        } catch (ArgumentException ex) {
            Console.WriteLine(expression + "   " + ex.Message);
        }
    }

    public IEnumerable<string> GetTruthTable(string expression, bool isPostfix = false)
    {
        if (string.IsNullOrWhiteSpace(expression)) throw new ArgumentException("Invalid expression.");
        //Maps parameters to an index in BitSet
        //Makes sure they appear in the truth table in the order they first appear in the expression
        var parameters = expression
            .Where(c => TypeOf(c) == TokenType.Operand)
            .Distinct()
            .Reverse()
            .Select((c, i) => (symbol: c, index: i))
            .ToDictionary(p => p.symbol, p => p.index);

        int count = parameters.Count;
        if (count > 32) throw new ArgumentException("Cannot have more than 32 parameters.");
        string header = count == 0 ? expression : string.Join(" ",
            parameters.OrderByDescending(p => p.Value).Select(p => p.Key)) + " " + expression;

        if (!isPostfix) expression = ConvertToPostfix(expression);

        var values = default(BitSet);
        var stack = new Stack<char>(expression.Length);
        for (int loop = 1 << count; loop > 0; loop--) {
            foreach (char token in expression) stack.Push(token);
            bool result = Evaluate(stack, values, parameters);
            if (header != null) {
                if (stack.Count > 0) throw new ArgumentException("Invalid expression.");
                yield return header;
                header = null;
            }
            string line = (count == 0 ? "" : " ") + (result ? trueConstant : falseConstant);
            line = string.Join(" ", Enumerable.Range(0, count)
                .Select(i => values[count - i - 1] ? trueConstant : falseConstant)) + line;
            yield return line;
            values++;
        }
    }

    public string ConvertToPostfix(string infix)
    {
        var stack = new Stack<char>();
        var postfix = new StringBuilder();
        foreach (char c in infix) {
            switch (TypeOf(c)) {
            case TokenType.WhiteSpace:
                continue;
            case TokenType.Constant:
            case TokenType.Operand:
                postfix.Append(c);
                break;
            case TokenType.Operator:
                int precedence = Precedence(c);
                while (stack.Count > 0 && Precedence(stack.Peek()) > precedence) {
                    postfix.Append(stack.Pop());
                }
                stack.Push(c);
                break;
            case TokenType.LeftParenthesis:
                stack.Push(c);
                break;
            case TokenType.RightParenthesis:
                char top = default(char);
                while (stack.Count > 0) {
                    top = stack.Pop();
                    if (top == '(') break;
                    else postfix.Append(top);
                }
                if (top != '(') throw new ArgumentException("No matching left parenthesis.");
                break;
            default:
                throw new ArgumentException("Invalid character: " + c);
            }
        }
        while (stack.Count > 0) {
            char top = stack.Pop();
            if (top == '(') throw new ArgumentException("No matching right parenthesis.");
            postfix.Append(top);
        }
        return postfix.ToString();
    }

    private bool Evaluate(Stack<char> expression, BitSet values, IDictionary<char, int> parameters)
    {
        if (expression.Count == 0) throw new ArgumentException("Invalid expression.");
        char c = expression.Pop();
        TokenType type = TypeOf(c);
        while (type == TokenType.WhiteSpace) type = TypeOf(c = expression.Pop());
        switch (type) {
        case TokenType.Constant:
            return c == trueConstant;
        case TokenType.Operand:
            return values[parameters[c]];
        case TokenType.Operator:
            bool right = Evaluate(expression, values, parameters);
            Operator op = operators[c];
            if (op.Arity == 1) return op.Function(right, right);
            bool left = Evaluate(expression, values, parameters);
            return op.Function(left, right);
        default:
            throw new ArgumentException("Invalid character: " + c);
        }
    }

    private TokenType TypeOf(char c)
    {
        if (char.IsWhiteSpace(c)) return TokenType.WhiteSpace;
        if (c == '(') return TokenType.LeftParenthesis;
        if (c == ')') return TokenType.RightParenthesis;
        if (c == trueConstant || c == falseConstant) return TokenType.Constant;
        if (operators.ContainsKey(c)) return TokenType.Operator;
        if (char.IsLetter(c)) return TokenType.Operand;
        return TokenType.Unknown;
    }

    private int Precedence(char op) => operators.TryGetValue(op, out var o) ? o.Precedence : int.MinValue;
}

struct Operator
{
    public Operator(char symbol, int precedence, Func<bool, bool> function) : this(symbol, precedence, 1, (l, r) => function(r)) { }

    public Operator(char symbol, int precedence, Func<bool, bool, bool> function) : this(symbol, precedence, 2, function) { }

    private Operator(char symbol, int precedence, int arity, Func<bool, bool, bool> function) : this()
    {
        Symbol = symbol;
        Precedence = precedence;
        Arity = arity;
        Function = function;
    }

    public char Symbol { get; }
    public int Precedence { get; }
    public int Arity { get; }
    public Func<bool, bool, bool> Function { get; }
}

public class OperatorCollection : IEnumerable
{
    readonly IDictionary<char, Operator> operators;

    internal OperatorCollection(IDictionary<char, Operator> operators) {
        this.operators = operators;
    }

    public void Add(char symbol, int precedence, Func<bool, bool> function)
        => operators[symbol] = new Operator(symbol, precedence, function);
    public void Add(char symbol, int precedence, Func<bool, bool, bool> function)
        => operators[symbol] = new Operator(symbol, precedence, function);

    public void Remove(char symbol) => operators.Remove(symbol);

    IEnumerator IEnumerable.GetEnumerator() => operators.Values.GetEnumerator();
}

struct BitSet
{
    private int bits;

    private BitSet(int bits) { this.bits = bits; }

    public static BitSet operator ++(BitSet bitSet) => new BitSet(bitSet.bits + 1);

    public bool this[int index] => (bits & (1 << index)) != 0;
}

class Program
{
    public static void Main() {
        TruthTable tt = new TruthTable('F', 'T') {
            Operators = {
                { '!', 6, r => !r },
                { '&', 5, (l, r) => l && r },
                { '^', 4, (l, r) => l ^ r },
                { '|', 3, (l, r) => l || r }
            }
        };
        //Add a crazy operator:
        var rng = new Random();
        tt.Operators.Add('?', 6, r => rng.NextDouble() < 0.5);
        string[] expressions = {
            "!!!T",
            "?T",
            "F & x | T",
            "F & (x | T",
            "F & x | T)",
            "a ! (a & a)",
            "a | (a * a)",
            "a ^ T & (b & !c)",
        };
        foreach (string expression in expressions) {
            tt.PrintTruthTable(expression);
            Console.WriteLine();
        }

        //Define a different language
        tt = new TruthTable('0', '1') {
            Operators = {
                { '-', 6, r => !r },
                { '^', 5, (l, r) => l && r },
                { 'v', 3, (l, r) => l || r },
                { '>', 2, (l, r) => !l || r },
                { '=', 1, (l, r) => l == r },
            }
        };
        expressions = new[] {
            "-X v 0 = X ^ 1",
            "(H > M) ^ (S > H) > (S > M)"
        };
        foreach (string expression in expressions) {
            tt.PrintTruthTable(expression);
            Console.WriteLine();
        }
    }
}
Output:
!!!T
F

?T
F    //Could be T or F

x F & x | T
F T
T T

F & (x | T   No matching right parenthesis.

F & x | T)   No matching left parenthesis.

a ! (a & a)   Invalid expression.

a | (a * a)   Invalid character: *

a b c a ^ T & (b & !c)
F F F F
F F T F
F T F T
F T T F
T F F T
T F T T
T T F F
T T T T

X -X v 0 = -(X ^ 1)
0 1
1 1

H M S (H > M) ^ (S > H) > (S > M)
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Clojure

 (ns clojure-sandbox.truthtables
  (:require [clojure.string :as s]
            [clojure.pprint :as pprint]))

;; Definitions of the logical operators
(defn !op [expr]
  (not expr))

(defn |op [e1 e2]
  (not (and (not e1)
            (not e2))))

(defn &op [e1 e2]
  (and e1 e2))

(defn ->op [e1 e2]
  (if e1
    e2
    true))

(def operators {"!" !op
                "|" |op
                "&" &op
                "->" ->op})

;; The evaluations of expressions always call the value method on sub-expressions
(defn evaluate-unary [operator operand valuemap]
  (let [operand-value (value operand valuemap)
        operator (get operators operator)]
    (operator operand-value)))

(defn evaluate-binary [o1 op o2 valuemap]
  (let [op1-value (value o1 valuemap)
        op2-value (value o2 valuemap)
        operator (get operators op)]
    (operator op1-value op2-value)))

;; Protocol to handle all kinds of expressions : unary (!x), binary (x & y), symbolic (x)
(defprotocol Expression
  (value [_ valuemap] "Returns boolean value of expression")) ;; this value map specifies the variables' truth values

(defrecord UnaryExpression [operator operand]
  Expression
  (value [self valuemap] (evaluate-unary operator operand valuemap)))

(defrecord BinaryExpression [op1 operator op2]
  Expression
  (value [self valuemap] (evaluate-binary op1 operator op2 valuemap)))

(defrecord SymbolExpression [operand]
  Expression
  (value [self valuemap] (get valuemap operand)))


;; Recursively create the right kind of boolean expression, evaluating from the right
(defn expression [inputs]
  (if (contains? operators (first inputs))
    (->UnaryExpression (first inputs) (expression (rest inputs)))
    (if (= 1 (count inputs))
      (->SymbolExpression (first inputs))
      (->BinaryExpression (->SymbolExpression (first inputs)) (nth inputs 1) (expression (nthrest inputs (- (count inputs) 1)))))))

;; This won't handle brackets, so it is all evaluated right to left
(defn parse [input-str]
  (-> input-str
      s/trim ;; remove leading/trailing space
      (s/split #"\s+"))) ;;remove intermediate spaces

(defn extract-var-names [inputs]
  "Get a list of variables that can have truth value"
  (->> inputs
       (filter (fn[i] (not (contains? operators i))))
       set))

(defn all-var-values [inputs]
  "Returns a list of all potential variable assignments"
  (let [vars (extract-var-names inputs)]
    (loop [vars-left vars
           outputs []]
      (if (empty? vars-left)
        outputs
        (let [this-var (first vars-left)]
          (if (empty? outputs)
            (recur (rest vars-left) [{this-var true} {this-var false}])
            (recur (rest vars-left)
                   (concat (map (fn[x] (assoc x this-var true)) outputs)
                           (map (fn[x] (assoc x this-var false)) outputs)))))))))

(defn truth-table [input]
  "Print out the truth table for an input string"
  (let [input-values (parse input)
        value-maps (all-var-values input-values)
        expression (expression input-values)]
    (value expression (first value-maps))
    (->> value-maps
         (map (fn [x] (assoc x input (value expression x))))
         pprint/print-table)))

(truth-table "! a | b") ;; interpreted as ! (a | b)
Output:
|     a |     b | ! a | b |
|-------+-------+---------|
|  true |  true |   false |
| false |  true |   false |
|  true | false |   false |
| false | false |    true |

Cowgol

# Truth table generator in Cowgol
# -
# This program will generate a truth table for the Boolean expression
# given on the command line. 
#
# The expression is in infix notation, and operator precedence is impemented,
# i.e., the following expression:
#       A & B | C & D => E
# is parsed as:
#       ((A & B) | (C & D)) => E.
#
# Syntax: 
#   * Variables are single letters (A-Z). They are case-insensitive.
#   * 0 and 1 can be used as constant true or false.
#   * Operators are ~ (not), & (and), | (or), ^ (xor), and => (implies).
#   * Parentheses may be used to override the normal precedence.

include "cowgol.coh";
include "strings.coh";
include "argv.coh";
ArgvInit();

# Concatenate all command line arguments together, skipping whitespace
var code: uint8[512];
var codeptr := &code[0];
loop
    var argmt := ArgvNext();
    if argmt == 0 as [uint8] then break; end if;
    loop
        var char := [argmt];
        argmt := @next argmt;
        if char == 0 then break;
        elseif char == ' ' then continue;
        end if;
        [codeptr] := char;
        codeptr := @next codeptr;
    end loop;
end loop;
[codeptr] := 0;

# If no code given, print an error and stop
if StrLen(&code[0]) == 0 then
    print("Error: no boolean expression given\n");
    ExitWithError();
end if;

interface TokenReader(str: [uint8]): (next: [uint8], tok: uint8);

# Operators
interface OpFn(l: uint8, r: uint8): (v: uint8);
sub And  implements OpFn is v := l & r; end sub;
sub Or   implements OpFn is v := l | r; end sub;
sub Xor  implements OpFn is v := l ^ r; end sub;
sub Not  implements OpFn is v := ~l; end sub;
sub Impl implements OpFn is
    if l == 0 then v := 1;
    else v := r;
    end if;
end sub;
record Operator is  
    fn: OpFn;
    name: [uint8];
    val: uint8;
    prec: uint8;
end record;
var ops: Operator[] := {
    {Not,  "~",  1, 5},
    {And,  "&",  2, 4},
    {Or,   "|",  2, 3},
    {Xor,  "^",  2, 3},
    {Impl, "=>", 2, 2}
};

const TOKEN_MASK := (1<<5)-1;
const TOKEN_OP := 1<<5;
sub ReadOp implements TokenReader is
    tok := 0;
    next := str;
    while tok < @sizeof ops loop
        var find := ops[tok].name;
        while [find] == [next] loop
            next := @next next;
            find := @next find;
        end loop;
        if [find] == 0 then
            tok := tok | TOKEN_OP;
            return;
        end if;
        next := str;
        tok := tok + 1;
    end loop;
    tok := 0;
end sub;


# Values (constants, variables)
const TOKEN_VAR := 2<<5;
const TOKEN_CONST := 3<<5;
const CONST_TRUE := 0;
const CONST_FALSE := 1;
sub ReadValue implements TokenReader is
    var cur := [str];
    next := str;
    tok := 0;
    if cur == '0' or cur == '1' then
        next := @next str;
        tok := TOKEN_CONST | cur - '0';
    elseif (cur >= 'A' and cur <= 'Z') or (cur >= 'a' and cur <= 'z') then
        next := @next str;
        tok := TOKEN_VAR | (cur | 32) - 'a';
    end if;
end sub;

# Parentheses
const TOKEN_PAR := 4<<5;
const PAR_OPEN := 0;
const PAR_CLOSE := 1;
sub ReadParen implements TokenReader is
    case [str] is
        when '(': next := @next str; tok := TOKEN_PAR | PAR_OPEN;
        when ')': next := @next str; tok := TOKEN_PAR | PAR_CLOSE;
        when else: next := str; tok := 0;
    end case;
end sub;

# Read next token
sub NextToken(str: [uint8]): (next: [uint8], tok: uint8) is
    var toks: TokenReader[] := {ReadOp, ReadValue, ReadParen};
    var i: uint8 := 0;
    while i < @sizeof toks loop
        (next, tok) := (toks[i]) (str);
        if tok != 0 then return; end if;
        i := i + 1;
    end loop;
    # Invalid token
    print("cannot tokenize: ");
    print(str);
    print_nl();
    ExitWithError();
end sub;

# Use shunting yard algorithm to parse the input
var expression: uint8[512];
var oprstack: uint8[512];
var expr_ptr := &expression[0];
var ostop := &oprstack[0];
var varmask: uint32 := 0; # mark which variables are in use
var one: uint32 := 1; # cannot shift constant by variable

sub GetOp(o: uint8): (r: [Operator]) is
    r := &ops[o];
end sub;

codeptr := &code[0];
while [codeptr] != 0 loop
    var tok: uint8;
    (codeptr, tok) := NextToken(codeptr);
    var toktype := tok & ~TOKEN_MASK;
    var tokval := tok & TOKEN_MASK;
    case toktype is
        # constants and variables get pushed to output queue
        when TOKEN_CONST: 
            [expr_ptr] := tok; expr_ptr := @next expr_ptr;
        when TOKEN_VAR: 
            [expr_ptr] := tok; expr_ptr := @next expr_ptr;
            varmask := varmask | one << tokval; 
        # operators
        when TOKEN_OP:
            if ops[tokval].val == 1 then
                # unary operator binds immediately
                [ostop] := tok; ostop := @next ostop;
            else
                while ostop > &oprstack[0] 
                and   [@prev ostop] != TOKEN_PAR|PAR_OPEN
                and   [GetOp([@prev ostop] & TOKEN_MASK)].prec  
                   >= ops[tokval].prec
                loop
                    ostop := @prev ostop;
                    [expr_ptr] := [ostop];
                    expr_ptr := @next expr_ptr;
                end loop;
                [ostop] := tok;
                ostop := @next ostop;
            end if;
        # parenthesis
        when TOKEN_PAR:
            if tokval == PAR_OPEN then
                # push left parenthesis onto operator stack
                [ostop] := tok; ostop := @next ostop;
            else
                # pop whole operator stack until left parenthesis
                while ostop > &oprstack[0]
                and   [@prev ostop] != TOKEN_PAR|PAR_OPEN
                loop
                    ostop := @prev ostop;
                    [expr_ptr] := [ostop];
                    expr_ptr := @next expr_ptr;
                end loop;
                # if we run out of stack, mismatched parenthesis
                if ostop == &oprstack[0] then
                   print("Error: missing (");
                   print_nl();
                   ExitWithError();
                else
                   ostop := @prev ostop;
                end if;
            end if;
    end case;
end loop;

# push remaining operators onto expression
while ostop != &oprstack[0] loop
    ostop := @prev ostop;
    [expr_ptr] := [ostop];
    if [expr_ptr] & ~TOKEN_MASK == TOKEN_PAR then
        print("Error: missing )");
        print_nl();
        ExitWithError();
    end if;
    expr_ptr := @next expr_ptr;
end loop;

# terminate expression
[expr_ptr] := 0;

# Evaluate expression given set of variables
sub Eval(varset: uint32): (r: uint8) is
    # We can reuse the operator stack as the evaluation stack
    var ptr := &oprstack[0];
    var exp := &expression[0];
    var one: uint32 := 1; 
    
    while [exp] != 0 loop
        var toktype := [exp] & ~TOKEN_MASK;
        var tokval := [exp] & TOKEN_MASK;
        case toktype is
            when TOKEN_CONST: 
                [ptr] := tokval; 
                ptr := @next ptr;
            when TOKEN_VAR:
                [ptr] := ((varset & (one << tokval)) >> tokval) as uint8;
                ptr := @next ptr;
            when TOKEN_OP:
                var op := GetOp(tokval);
                ptr := ptr - ([op].val as intptr);
                if ptr < &oprstack[0] then
                    # not enough values on the stack
                    print("Missing operand\n");
                    ExitWithError();
                end if;
                [ptr] := ([op].fn)([ptr], [@next ptr]) & 1;
                ptr := @next ptr;
            when else:
                # wrong token left in the expression
                print("invalid expression token ");
                print_hex_i8([exp]);
                print_nl();
                ExitWithError();
        end case;
        exp := @next exp;
    end loop;
    
    # There should be exactly one item on the stack
    ptr := @prev ptr;
    if ptr != &oprstack[0] then
        print("Too many operands\n");
        ExitWithError();
    else
        r := [ptr];
    end if;
end sub;
               
var v := Eval(0); # evaluate once to catch errors

# Print header and count variables
var ch: uint8 := 'A';
var vcount: uint8 := 0;
var vars := varmask;

while vars != 0 loop
    if vars & 1 != 0 then
        print_char(ch);
        print_char(' ');
        vcount := vcount + 1;
    end if;
    ch := ch + 1;
    vars := vars >> 1;
end loop;
print("| ");
print(&code[0]);
print_nl();

ch := 2 + vcount * 2 + StrLen(&code[0]) as uint8;
while ch != 0 loop
    print_char('-');
    ch := ch - 1;
end loop;
print_nl();

# Given configuration number, generate variable configuration
sub distr(val: uint32): (r: uint32) is
    var vars := varmask;
    r := 0;
    var n: uint8 := 0;
    while vars != 0 loop
        r := r >> 1;
        if vars & 1 != 0 then
            r := r | ((val & 1) << 31);
            val := val >> 1;
        end if;
        vars := vars >> 1;
        n := n + 1;
    end loop;
    r := r >> (32-n);
end sub;

vars := 0; # start with F F F F F
var bools: uint8[] := {'F', 'T'};
while vars != one << vcount loop
    var dist := distr(vars);
    var rslt := Eval(dist);
    
    # print configuration
    var vmask := varmask;
    while vmask != 0 loop
        if vmask & 1 != 0 then
            print_char(bools[(dist & 1) as uint8]);
            print_char(' ');
        end if;
        vmask := vmask >> 1;
        dist := dist >> 1;
    end loop;
    
    # print result
    print("| ");
    print_char(bools[rslt]);
    print_nl();
    
    # next configuration
    vars := vars + 1;
end loop;
Output:
$ ./truth.386 'X & ~Y'
X Y | X&~Y
----------
F F | F
T F | T
F T | F
T T | F
$ ./truth.386 '~(A | B)'
A B | ~(A|B)
------------
F F | T
T F | F
F T | F
T T | F
$ ./truth.386 '(H => M) & (S => H) => (S => M)'
H M S | (H=>M)&(S=>H)=>(S=>M)
-----------------------------
F F F | T
T F F | T
F T F | T
T T F | T
F F T | T
T F T | T
F T T | T
T T T | T
$ ./truth.386 'A&B | P&Q'
A B P Q | A&B|P&Q
-----------------
F F F F | F
T F F F | F
F T F F | F
T T F F | T
F F T F | F
T F T F | F
F T T F | F
T T T F | T
F F F T | F
T F F T | F
F T F T | F
T T F T | T
F F T T | T
T F T T | T
F T T T | T
T T T T | T



D

Translation of: JavaScript
import std.stdio, std.string, std.array, std.algorithm, std.typecons;

struct Var {
    const char name;
    bool val;
}
const string expr;
Var[] vars;

bool pop(ref bool[] arr) pure nothrow {
    const last = arr.back;
    arr.popBack;
    return last;
}

enum isOperator = (in char c) pure => "&|!^".canFind(c);

enum varsCountUntil = (in char c) nothrow =>
    .vars.map!(v => v.name).countUntil(c).Nullable!(int, -1);

bool evalExp() {
    bool[] stack;

    foreach (immutable e; .expr) {
        if (e == 'T')
            stack ~= true;
        else if (e == 'F')
            stack ~= false;
        else if (!e.varsCountUntil.isNull)
            stack ~= .vars[e.varsCountUntil.get].val;
        else switch (e) {
            case '&':
                stack ~= stack.pop & stack.pop;
                break;
            case '|':
                stack ~= stack.pop | stack.pop;
                break;
            case '!':
                stack ~= !stack.pop;
                break;
            case '^':
                stack ~= stack.pop ^ stack.pop;
                break;
            default:
                throw new Exception("Non-conformant character '" ~
                                    e ~ "' in expression.");
        }
    }

    assert(stack.length == 1);
    return stack.back;
}

void setVariables(in size_t pos)
in {
    assert(pos <= .vars.length);
} body {
    if (pos == .vars.length)
        return writefln("%-(%s %) %s",
                        .vars.map!(v => v.val ? "T" : "F"),
                        evalExp ? "T" : "F");

    .vars[pos].val = false;
    setVariables(pos + 1);
    .vars[pos].val = true;
    setVariables(pos + 1);
}

static this() {
"Accepts single-character variables (except for 'T' and 'F',
which specify explicit true or false values), postfix, with
&|!^ for and, or, not, xor, respectively; optionally
seperated by whitespace.".writeln;

    "Boolean expression: ".write;
    .expr = readln.split.join;
}

void main() {
    foreach (immutable e; expr)
        if (!e.isOperator && !"TF".canFind(e) &&
            e.varsCountUntil.isNull)
            .vars ~= Var(e);
    if (.vars.empty)
        return;

    writefln("%-(%s %) %s", .vars.map!(v => v.name), .expr);
    setVariables(0);
}
Output:
Accepts single-character variables (except for 'T' and 'F',
which specify explicit true or false values), postfix, with
&|!^ for and, or, not, xor, respectively; optionally
seperated by whitespace.
Boolean expression: A B ^
A B AB^
F F F
F T T
T F T
T T F

...
Boolean expression: A B C ^ |
A B C ABC^|
F F F F
F F T T
F T F T
F T T F
T F F T
T F T T
T T F T
T T T T

...
Boolean expression: A B C D ^ ^ ^
A B C D ABCD^^^
F F F F F
F F F T T
F F T F T
F F T T F
F T F F T
F T F T F
F T T F F
F T T T T
T F F F T
T F F T F
T F T F F
T F T T T
T T F F F
T T F T T
T T T F T
T T T T F

Déjà Vu

This example is incorrect. Please fix the code and remove this message.

Details: User input is not arbitrary but fixed to the three examples shown

print-line lst end:
    for v in reversed copy lst:
        print\( v chr 9 )
    print end

(print-truth-table) t n func:
    if n:
        (print-truth-table) push-through copy t 0 -- n @func
        (print-truth-table) push-through copy t 1 -- n @func
    else:
        print-line t func for in copy t

print-truth-table vars name func:
    print-line vars name
    (print-truth-table) [] len vars @func
    print "" # extra new line

stu s t u:
    or s /= t u

abcd a b c d:
    /= a /= b /= c d

print-truth-table [ "A" "B" ] "A ^ B" @/=
print-truth-table [ "S" "T" "U" ] "S | (T ^ U)" @stu
print-truth-table [ "A" "B" "C" "D" ] "A ^ (B ^ (C ^ D))" @abcd
Output:
A  B   A ^ B
0   0   0
0   1   1
1   0   1
1   1   0

S   T   U   S | (T ^ U)
0   0   0   0
0   0   1   1
0   1   0   1
0   1   1   0
1   0   0   1
1   0   1   1
1   1   0   1
1   1   1   1

A   B   C   D   A ^ (B ^ (C ^ D))
0   0   0   0   0
0   0   0   1   1
0   0   1   0   1
0   0   1   1   0
0   1   0   0   1
0   1   0   1   0
0   1   1   0   0
0   1   1   1   1
1   0   0   0   1
1   0   0   1   0
1   0   1   0   0
1   0   1   1   1
1   1   0   0   0
1   1   0   1   1
1   1   1   0   1
1   1   1   1   0

Factor

Postfix is a natural choice. That way, we can use (eval) to to evaluate the expressions without much fuss.

USING: arrays combinators eval formatting io kernel listener
math.combinatorics prettyprint qw sequences splitting
vocabs.parser ;
IN: rosetta-code.truth-table

: prompt ( -- str )
    "Please enter a boolean expression using 1-long" print
    "variable names and postfix notation. Available" print
    "operators are and, or, not, and xor. Example:"  print
    "> a b and"                                      print nl
    "> " write readln nl ;

: replace-var ( str -- str' )
    dup length 1 = [ drop "%s" ] when ;
    
: replace-vars ( str -- str' )
    " " split [ replace-var ] map " " join ;
    
: extract-vars ( str -- seq )
    " " split [ length 1 = ] filter ;
    
: count-vars ( str -- n )
    " " split [ "%s" = ] count ;
    
: truth-table ( n -- seq )
    qw{ t f } swap selections ;
    
: print-row ( seq -- )
    [ write bl ] each ;
    
: print-table ( seq -- )
    [ print-row nl ] each ;
    
! Adds a column to the end of a two-dimensional array.
: add-col ( seq col -- seq' )
    [ flip ] dip 1array append flip ;
    
: header ( str -- )
    [ extract-vars ] [ ] bi
    [ print-row "| " write ] [ print ] bi*
    "=================" print ;

: solve-expr ( seq str -- ? )
    vsprintf [ "kernel" use-vocab ( -- x ) (eval) ]
    with-interactive-vocabs ;
    
: results ( str -- seq )
    replace-vars dup count-vars truth-table
    [ swap solve-expr unparse ] with map ;
    
: main ( -- )
    prompt
    [ header t ]
    [ replace-vars count-vars truth-table ]
    [ results [ "| " prepend ] map ] tri
    add-col print-table drop ;
    
MAIN: main
Output:
Please enter a boolean expression using 1-long
variable names and postfix notation. Available
operators are and, or, not, and xor. Example:
> a b and

> a b or

a b | a b or
=================
t t | t
t f | t
f t | t
f f | f


Please enter a boolean expression using 1-long
variable names and postfix notation. Available
operators are and, or, not, and xor. Example:
> a b and

> x y and z xor not

x y z | x y and z xor not
=================
t t t | t
t t f | f
t f t | f
t f f | t
f t t | f
f t f | t
f f t | f
f f f | t

Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website.

In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.

Solution

 

Test case 1

The following example produces the logical negation table:

 

 

Test case 2

The following example produces the logical conjunction table:

 

 

Test case 3

Because there is no restrictions about the mapping expression, it can be an array of expressions involving the arguments.

The following example produces the truth table for logical conjunction, disjunction, conditional, equivalence and exclusive disjunction:

 

 

Test case 4

In the following example, the truth table is used to show that a boolean formula is a tautology:

 

 

FreeBASIC

Translation of: BASIC

But, extended with the converse operator '<='

Dim Shared As Integer Variables(26)
Dim Shared As Integer ExprStack(255)
Dim Shared As Integer OpStack(255)
Dim Shared As Integer OpPrecedence(6)
Dim Shared As String Operators(6)
Dim Shared As String VarList
Dim Shared As Integer exprPos, stackPos, idx, combos

' Initialize operator data with aliases
Operators(1) = "!"   : OpPrecedence(1) = 4 ' NOT (both ~ and !)
Operators(2) = "&"   : OpPrecedence(2) = 3 ' AND
Operators(3) = "|"   : OpPrecedence(3) = 2 ' OR
Operators(4) = "^"   : OpPrecedence(4) = 2 ' XOR
Operators(5) = "=>"  : OpPrecedence(5) = 1 ' IMPLIES
Operators(6) = "<="  : OpPrecedence(6) = 1 ' CONVERSE

Sub EvaluateExpression()
    Dim As Integer typeFlag, value
    stackPos = 0
    
    For idx = 0 To exprPos-1
        typeFlag = ExprStack(idx) And 224
        value = ExprStack(idx) And 31
        
        Select Case typeFlag
        Case 0  ' Operator
            Select Case value
            Case 1  ' NOT
                If stackPos < 1 Then Print "Missing operand": Exit Sub
                OpStack(stackPos-1) = 1 - OpStack(stackPos-1)
            Case 2  ' AND
                If stackPos < 2 Then Print "Missing operand": Exit Sub
                stackPos -= 1
                OpStack(stackPos-1) = OpStack(stackPos-1) And OpStack(stackPos)
            Case 3  ' OR
                If stackPos < 2 Then Print "Missing operand": Exit Sub
                stackPos -= 1
                OpStack(stackPos-1) = OpStack(stackPos-1) Or OpStack(stackPos)
            Case 4  ' XOR
                If stackPos < 2 Then Print "Missing operand": Exit Sub
                stackPos -= 1
                OpStack(stackPos-1) = OpStack(stackPos-1) Xor OpStack(stackPos)
            Case 5  ' IMPLIES
                If stackPos < 2 Then Print "Missing operand": Exit Sub
                stackPos -= 1
                OpStack(stackPos-1) = Iif(OpStack(stackPos-1), OpStack(stackPos), -1)
            Case 6  ' CONVERSE
                If stackPos < 2 Then Print "Missing operand": Exit Sub
                stackPos -= 1
                OpStack(stackPos-1) = Iif(OpStack(stackPos), OpStack(stackPos-1), -1)
            End Select
        Case 32  ' Constant
            OpStack(stackPos) = -value
            stackPos += 1
        Case 64  ' Variable
            OpStack(stackPos) = Variables(Instr(VarList, Chr(value + 65)))
            stackPos += 1
        End Select
    Next
    
    If stackPos <> 1 Then Print "Missing operator": Exit Sub
End Sub

Sub ProcessRemainingOperators()
    While stackPos > 0
        stackPos -= 1
        Select Case OpStack(stackPos)
        Case 97
            Print "Error: missing )!": Exit Sub
        Case Else
            ExprStack(exprPos) = OpStack(stackPos)
            exprPos += 1
        End Select
    Wend
End Sub

Sub BuildVariableList()
    VarList = ""
    For idx = 0 To exprPos-1
        If (ExprStack(idx) And 224) = 64 Then
            Dim As String tmpChar = Chr(ExprStack(idx) + 1)
            If Instr(VarList, tmpChar) = 0 Then VarList &= tmpChar
        End If
    Next
End Sub

Sub PrintRow()
    For idx = 1 To Len(VarList)
        Print Iif(Variables(idx), "T ", "F ");
    Next
    Print "| ";
    
    EvaluateExpression()
    Print Iif(OpStack(0), "T", "F")
End Sub

Sub GenerateNextCombination()
    idx = 1
    While idx <= Len(VarList)
        Select Case Variables(idx)
        Case 1
            Variables(idx) = 0
            idx += 1
        Case 0
            Variables(idx) = 1
            Exit While
        End Select
    Wend
End Sub

Sub PrintTruthTable(originalExpr As String)
    For idx = 1 To Len(VarList)
        Print Mid(VarList, idx, 1); " ";
    Next
    Print "| "; originalExpr
    Print String(2 + 2*Len(VarList) + Len(originalExpr), "-")
    
    For combos = 1 To 2^Len(VarList)
        PrintRow()
        GenerateNextCombination()
    Next
End Sub


'Main program
Print "Boolean expression evaluator"
Print String(28, "-")
Print "Accepts single-character variables (a-z, A-Z), postfix or infix."
Print "Operators: ! (not), & (and), | (or), ^ (xor), => (implies), <= (converse)"
Print "Optionally seperated by whitespace. Just enter nothing to quit."

Dim As String inputExpr, cleanExpr, originalExpr, remainExpr, currentChar
Dim As Integer asciiVal
Dim As Boolean operatorFound

Do
    For idx = 1 To 26: Variables(idx) = 0: Next
    
    Print : Input "Boolean expression: ", inputExpr
    If inputExpr = "" Then Exit Do
    
    cleanExpr = ""
    exprPos = 0
    stackPos = 0
    
    ' Remove spaces
    For idx = 1 To Len(inputExpr)
        currentChar = Mid(inputExpr, idx, 1)
        If currentChar <> " " Then cleanExpr &= currentChar
    Next
    
    originalExpr = cleanExpr
    
    While cleanExpr <> ""
        currentChar = Left(cleanExpr, 1)
        asciiVal = Asc(currentChar) Or 32
        remainExpr = Right(cleanExpr, Len(cleanExpr) - 1)
        
        Select Case True
        Case asciiVal >= 97 Andalso asciiVal <= 122
            ExprStack(exprPos) = asciiVal - 33
            exprPos += 1
            
        Case currentChar = "0" Orelse currentChar = "1"
            ExprStack(exprPos) = Val(currentChar) + 32
            exprPos += 1
            
        Case (currentChar = "(")
            OpStack(stackPos) = 97
            stackPos += 1
            
        Case (currentChar = ")")
            While stackPos > 0 And OpStack(stackPos-1) <> 97
                ExprStack(exprPos) = OpStack(stackPos-1)
                exprPos += 1
                stackPos -= 1
            Wend
            If stackPos > 0 Then stackPos -= 1
            
        Case Else
            operatorFound = False
            For idx = 1 To 6 '7
                If Left(cleanExpr, Len(Operators(idx))) = Operators(idx) Orelse _
                    (Operators(idx) = "~" Andalso Left(cleanExpr, 1) = "!") Then
                    
                    operatorFound = True
                    cleanExpr = Right(cleanExpr, Len(cleanExpr) - Len(Operators(idx)))
                    
                    While stackPos > 0 Andalso OpStack(stackPos-1) <> 97 Andalso _
                        OpPrecedence(OpStack(stackPos-1) And 31) >= OpPrecedence(idx)
                        ExprStack(exprPos) = OpStack(stackPos-1)
                        exprPos += 1
                        stackPos -= 1
                    Wend
                    
                    OpStack(stackPos) = idx
                    stackPos += 1
                    Exit For
                End If
            Next
            
            If Not operatorFound Then
                Print "Parse error at: "; cleanExpr
                Print
                Exit Do
            End If
            Continue While
        End Select
        
        cleanExpr = remainExpr
    Wend
    
    ' Process remaining operators and build variable list
    ProcessRemainingOperators()
    BuildVariableList()
    PrintTruthTable(originalExpr)
Loop

Sleep
Output:
Boolean expression evaluator
----------------------------
Accepts single-character variables (a-z, A-Z), postfix or infix.
Operators: ! (not), & (and), | (or), ^ (xor), => (implies), <= (converse)
Optionally seperated by whitespace. Just enter nothing to quit.

Boolean expression: A
A | A
-----
F | F
T | T

Boolean expression: X & ~Y
X Y | X&~Y
----------
F F | F
T F | T
F T | F
T T | F

Boolean expression: !(A & B)
A B | !(A&B)
------------
F F | T
T F | T
F T | T
T T | F

Boolean expression: (H => M) & (S => H) => (S => M)
H M S | (H=>M)&(S=>H)=>(S=>M)
-----------------------------
F F F | T
T F F | T
F T F | T
T T F | T
F F T | T
T F T | T
F T T | T
T T T | T

Boolean expression: A&B | P&Q
A B P Q | A&B|P&Q
-----------------
F F F F | F
T F F F | F
F T F F | F
T T F F | T
F F T F | F
T F T F | F
F T T F | F
T T T F | T
F F F T | F
T F F T | F
F T F T | F
T T F T | T
F F T T | T
T F T T | T
F T T T | T
T T T T | T

Boolean expression:

Go

Expression parsing and evaluation taken from the Arithmetic evaluation task. Operator precedence and association are that of the Go language, and are determined by the library parser. The unary ^ is first, then &, then | and ^ associating left to right. Note also that the symbols &, |, and ^ operate bitwise on integer types in Go, but here since we implement our own evaluator we can apply them to the type of bool.

package main

import (
    "bufio"
    "errors"
    "fmt"
    "go/ast"
    "go/parser"
    "go/token"
    "os"
    "reflect"
)

func main() {
    in := bufio.NewScanner(os.Stdin)
    for {
        fmt.Print("Expr:  ")
        in.Scan()
        if err := in.Err(); err != nil {
            fmt.Println(err)
            return
        }
        if !tt(in.Text()) {
            return
        }
    }
}

func tt(expr string) bool {
    // call library parser
    tree, err := parser.ParseExpr(expr)
    if err != nil {
        fmt.Println(err)
        return false
    }
    // create handy object to pass around
    e := &evaluator{nil, map[string]bool{}, tree}
    // library tree traversal function calls e.Visit for each node.
    // use this to collect variables of the expression.
    ast.Walk(e, tree)
    // print headings for truth table
    for _, n := range e.names {
        fmt.Printf("%-6s", n)
    }
    fmt.Println(" ", expr)
    // start recursive table generation function on first variable
    e.evalVar(0)
    return true
}

type evaluator struct {
    names []string        // variables, in order of appearance
    val   map[string]bool // map variables to boolean values
    tree  ast.Expr        // parsed expression as ast
}

// visitor function called by library Walk function.
// builds a list of unique variable names.
func (e *evaluator) Visit(n ast.Node) ast.Visitor {
    if id, ok := n.(*ast.Ident); ok {
        if !e.val[id.Name] {
            e.names = append(e.names, id.Name)
            e.val[id.Name] = true
        }
    }
    return e
}

// method recurses for each variable of the truth table, assigning it to
// false, then true.  At bottom of recursion, when all variables are
// assigned, it evaluates the expression and outputs one line of the
// truth table
func (e *evaluator) evalVar(nx int) bool {
    if nx == len(e.names) {
        // base case
        v, err := evalNode(e.tree, e.val)
        if err != nil {
            fmt.Println(" ", err)
            return false
        }
        // print variable values
        for _, n := range e.names {
            fmt.Printf("%-6t", e.val[n])
        }
        // print expression value
        fmt.Println(" ", v)
        return true
    }
    // recursive case
    for _, v := range []bool{false, true} {
        e.val[e.names[nx]] = v
        if !e.evalVar(nx + 1) {
            return false
        }
    }
    return true
}

// recursively evaluate ast
func evalNode(nd ast.Node, val map[string]bool) (bool, error) {
    switch n := nd.(type) {
    case *ast.Ident:
        return val[n.Name], nil
    case *ast.BinaryExpr:
        x, err := evalNode(n.X, val)
        if err != nil {
            return false, err
        }
        y, err := evalNode(n.Y, val)
        if err != nil {
            return false, err
        }
        switch n.Op {
        case token.AND:
            return x && y, nil
        case token.OR:
            return x || y, nil
        case token.XOR:
            return x != y, nil
        default:
            return unsup(n.Op)
        }
    case *ast.UnaryExpr:
        x, err := evalNode(n.X, val)
        if err != nil {
            return false, err
        }
        switch n.Op {
        case token.XOR:
            return !x, nil
        default:
            return unsup(n.Op)
        }
    case *ast.ParenExpr:
        return evalNode(n.X, val)
    }
    return unsup(reflect.TypeOf(nd))
}

func unsup(i interface{}) (bool, error) {
    return false, errors.New(fmt.Sprintf("%v unsupported", i))
}

Output:

Expr:  A ^ B
A     B       A ^ B
false false   false
false true    true
true  false   true
true  true    false
Expr:  S | ( T ^ U )
S     T     U       S | ( T ^ U )
false false false   false
false false true    true
false true  false   true
false true  true    false
true  false false   true
true  false true    true
true  true  false   true
true  true  true    true
Expr:  d^b&(c^d)
d     b     c       d^b&(c^d)
false false false   false
false false true    false
false true  false   false
false true  true    true
true  false false   true
true  false true    true
true  true  false   false
true  true  true    true

Haskell

Reverse Polish Notation

Accepts expressions given in RPN, tokenized by whitespace. Uses operators "&", "|", "!", "^" (xor), "=>" (implication); all other words are interpreted as variable names.

import Control.Monad (mapM, foldM, forever)
import Data.List (unwords, unlines, nub)
import Data.Maybe (fromJust)

truthTable expr = let
    tokens = words expr
    operators = ["&", "|", "!", "^", "=>"]
    variables = nub $ filter (not . (`elem` operators)) tokens
    table = zip variables <$> mapM (const [True,False]) variables
    results = map (\r -> (map snd r) ++ (calculate tokens) r) table
    header = variables ++ ["result"]
    in
      showTable $ header : map (map show) results

-- Performs evaluation of token sequence in a given context.
-- The context is an assoc-list, which binds variable and it's value.
-- Here the monad is simple ((->) r).
calculate :: [String] -> [(String, Bool)] -> [Bool]
calculate = foldM interprete []
  where
    interprete (x:y:s) "&"  = (: s) <$> pure (x && y)
    interprete (x:y:s) "|"  = (: s) <$> pure (x || y)
    interprete (x:y:s) "^"  = (: s) <$> pure (x /= y)
    interprete (x:y:s) "=>" = (: s) <$> pure (not y || x)
    interprete (x:s)   "!"  = (: s) <$> pure (not x)
    interprete s var        = (: s) <$> fromJust . lookup var
 
-- pretty printing
showTable tbl = unlines $ map (unwords . map align) tbl
  where
    align txt = take colWidth $ txt ++ repeat ' '
    colWidth = max 6 $ maximum $ map length (head tbl)
 
main = forever $ getLine >>= putStrLn . truthTable
Output:
λ> main
x !
x      result
True   False 
False  True 

A B &
A      B      result
True   True   True  
True   False  False 
False  True   False 
False  False  False 

x1 x2 ! ^ x2 &
x1     x2     result
True   True   True  
True   False  False 
False  True   False 
False  False  False 

Infix Notation

Translation from infix notation to RPN using Parsec:

{-# LANGUAGE FlexibleContexts #-}
import Text.Parsec

toRPN = parse impl "expression" . filter (/= ' ')
  where
    impl = chainl1 disj (op2 "=>")
    disj = chainl1 conj (op2 "|"  <|>  op2 "^")
    conj = chainl1 term (op2 "&")
    term = string "(" *> impl <* string ")" <|>
           op1 "!" <*> term <|>
           many1 alphaNum
    op1 s = (\x -> unwords [x, s])      <$ string s
    op2 s = (\x y -> unwords [x, y, s]) <$ string s
Output:
λ> putStr $ truthTable $ toRPN "(Human => Mortal) & (Socratus => Human) => (Socratus => Mortal)"

Human  Mortal Socratus result
True   True   True     True  
True   True   False    True  
True   False  True     True  
True   False  False    True  
False  True   True     True  
False  True   False    True  
False  False  True     True  
False  False  False    True

J

Implementation:

truthTable=:3 :0
  assert. -. 1 e. 'data expr names table' e.&;: y
  names=. ~. (#~ _1 <: nc) ;:expr=. y
  data=. #:i.2^#names
  (names)=. |:data
  (' ',;:inv names,<expr),(1+#@>names,<expr)":data,.".expr
)

The argument is expected to be a valid boolean J sentence which, among other things, does not use any of the words used within this implementation (but any single-character name is valid).

Example use:

   truthTable '-.b'
 b -.b
 0   1
 1   0
   truthTable 'a*b'
 a b a*b
 0 0   0
 0 1   0
 1 0   0
 1 1   1
   truthTable 'a+.b'
 a b a+.b
 0 0    0
 0 1    1
 1 0    1
 1 1    1
   truthTable 'a<:b'
 a b a<:b
 0 0    1
 0 1    1
 1 0    0
 1 1    1
   truthTable '(a*bc)+.d'
 a bc d (a*bc)+.d
 0  0 0         0
 0  0 1         1
 0  1 0         0
 0  1 1         1
 1  0 0         0
 1  0 1         1
 1  1 0         1
 1  1 1         1

Java

Works with: Java version 1.8+

This takes an expression from the command line in reverse Polish notation. The supported operators are & | ^ ! and you probably need to escape them so that your shell doesn't interpret them. As an exercise for the reader, you could make it prompt the user for input (which would avoid the escaping issue), or accept infix expressions (see other examples here for how to turn infix into RPN).

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.Stack;

public class TruthTable {
    public static void main( final String... args ) {
        System.out.println( new TruthTable( args ) );
    }

    private interface Operator {
        boolean evaluate( Stack<Boolean> s );
    }

    /**
     * Supported operators and what they do. For more ops, add entries here.
     */
    private static final Map<String,Operator> operators = new HashMap<String,Operator>() {{
        // Can't use && or || because shortcut evaluation may mean the stack is not popped enough
        put( "&", stack -> Boolean.logicalAnd( stack.pop(), stack.pop() ) );
        put( "|", stack -> Boolean.logicalOr( stack.pop(), stack.pop() ) );
        put( "!", stack -> ! stack.pop() );
        put( "^", stack -> ! stack.pop().equals ( stack.pop() ) );
    }};

    private final List<String> variables;
    private final String[]     symbols;

    /**
     * Constructs a truth table for the symbols in an expression.
     */
    public TruthTable( final String... symbols ) {
        final Set<String> variables = new LinkedHashSet<>();

        for ( final String symbol : symbols ) {
            if ( ! operators.containsKey( symbol ) ) {
                variables.add( symbol );
            }
        }
        this.variables = new ArrayList<>( variables );
        this.symbols = symbols;
    }

    @Override
    public String toString () {
        final StringBuilder result = new StringBuilder();

        for ( final String variable : variables ) {
            result.append( variable ).append( ' ' );
        }
        result.append( ' ' );
        for ( final String symbol : symbols ) {
            result.append( symbol ).append ( ' ' );
        }
        result.append( '\n' );
        for ( final List<Boolean> values : enumerate( variables.size () ) ) {
            final Iterator<String> i = variables.iterator();

            for ( final Boolean value : values ) {
                result.append(
                    String.format(
                        "%-" + i.next().length() + "c ",
                        value ? 'T' : 'F'
                    )
                );
            }
            result.append( ' ' )
                .append( evaluate( values ) ? 'T' : 'F' )
                .append( '\n' );
        }

        return result.toString ();
    }

    /**
     * Recursively generates T/F values
     */
    private static List<List<Boolean>> enumerate( final int size ) {
        if ( 1 == size )
            return new ArrayList<List<Boolean>>() {{
                add( new ArrayList<Boolean>() {{ add(false); }} );
                add( new ArrayList<Boolean>() {{ add(true);  }} );
            }};

        return new ArrayList<List<Boolean>>() {{
            for ( final List<Boolean> head : enumerate( size - 1 ) ) {
                add( new ArrayList<Boolean>( head ) {{ add(false); }} );
                add( new ArrayList<Boolean>( head ) {{ add(true);  }} );
            }
        }};
    }

    /**
     * Evaluates the expression for a set of values.
     */
    private boolean evaluate( final List<Boolean> enumeration ) {
        final Iterator<Boolean>   i      = enumeration.iterator();
        final Map<String,Boolean> values = new HashMap<>();
        final Stack<Boolean>      stack  = new Stack<>();

        variables.forEach ( v -> values.put( v, i.next() ) );
        for ( final String symbol : symbols ) {
            final Operator op = operators.get ( symbol );

            // Reverse Polish notation makes this bit easy
            stack.push(
                null == op
                    ? values.get ( symbol )
                    : op.evaluate ( stack )
            );
        }
        return stack.pop();
    }
}
Output:

Note that the escape character is ^ for Windows

C:\rosettacode> java TruthTable a b c ^^ ^|
a b c  a b c ^ |
F F F  F
F F T  T
F T F  T
F T T  F
T F F  T
T F T  T
T T F  T
T T T  T

C:\rosettacode> java TruthTable Jim Spock Bones ^^ ^& Scotty ^|
Jim Spock Bones Scotty  Jim Spock Bones ^ & Scotty |
F   F     F     F       F
F   F     F     T       T
F   F     T     F       F
F   F     T     T       T
F   T     F     F       F
F   T     F     T       T
F   T     T     F       F
F   T     T     T       T
T   F     F     F       F
T   F     F     T       T
T   F     T     F       T
T   F     T     T       T
T   T     F     F       T
T   T     F     T       T
T   T     T     F       F
T   T     T     T       T

JavaScript

Actually a HTML document. Save as a .html document and double-click it. You should be fine.

<!DOCTYPE html><html><head><title>Truth table</title><script>
var elem,expr,vars;
function isboolop(chr){return "&|!^".indexOf(chr)!=-1;}
function varsindexof(chr){
    var i;
    for(i=0;i<vars.length;i++){if(vars[i][0]==chr)return i;}
    return -1;
}
function printtruthtable(){
    var i,str;
    elem=document.createElement("pre");
    expr=prompt("Boolean expression:\nAccepts single-character variables (except for \"T\" and \"F\", which specify explicit true or false values), postfix, with \"&|!^\" for and, or, not, xor, respectively; optionally seperated by whitespace.").replace(/\s/g,"");
    vars=[];
    for(i=0;i<expr.length;i++)if(!isboolop(expr[i])&&expr[i]!="T"&&expr[i]!="F"&&varsindexof(expr[i])==-1)vars.push([expr[i],-1]);
    if(vars.length==0)return;
    str="";
    for(i=0;i<vars.length;i++)str+=vars[i][0]+" ";
    elem.innerHTML="<b>"+str+expr+"</b>\n";
    vars[0][1]=false;
    truthpartfor(1);
    vars[0][1]=true;
    truthpartfor(1);
    vars[0][1]=-1;
    document.body.appendChild(elem);
}
function truthpartfor(index){
    if(index==vars.length){
        var str,i;
        str="";
        for(i=0;i<index;i++)str+=(vars[i][1]?"<b>T</b>":"F")+" ";
        elem.innerHTML+=str+(parsebool()?"<b>T</b>":"F")+"\n";
        return;
    }
    vars[index][1]=false;
    truthpartfor(index+1);
    vars[index][1]=true;
    truthpartfor(index+1);
    vars[index][1]=-1;
}
function parsebool(){
    var stack,i,idx;
    console.log(vars);
    stack=[];
    for(i=0;i<expr.length;i++){
        if(expr[i]=="T")stack.push(true);
        else if(expr[i]=="F")stack.push(false);
        else if((idx=varsindexof(expr[i]))!=-1)stack.push(vars[idx][1]);
        else if(isboolop(expr[i])){
            switch(expr[i]){
                case "&":stack.push(stack.pop()&stack.pop());break;
                case "|":stack.push(stack.pop()|stack.pop());break;
                case "!":stack.push(!stack.pop());break;
                case "^":stack.push(stack.pop()^stack.pop());break;
            }
        } else alert("Non-conformant character "+expr[i]+" in expression. Should not be possible.");
        console.log(stack);
    }
    return stack[0];
}
</script></head><body onload="printtruthtable()"></body></html>
Output in browser window after entering "AB^":
A B AB^
F F F
F T T
T F T
T T F
Output in browser window after entering "ABC^|":
A B C ABC^|
F F F F
F F T T
F T F T
F T T F
T F F T
T F T T
T T F T
T T T T

jq

Works with: jq

Also works with gojq, the Go implementation of jq

This entry uses a PEG (Parsing Expression Grammar) approach to the task. In effect, a PEG grammar for logic expressions is transcribed into a jq program for parsing and evaluating the truth values of such expressions.

The PEG grammar for logic expressions used here is essentially as follows:

  expr    = (primary '=>' primary) / e1
  e1      = e2 (('or' / 'xor') e2)*
  e2      = e3 ('and' e3)*
  e3      = 'not'? primary
  primary =  Var / boolean / '(' expr ')'
  boolean = 'true' / 'false'

where Var is a string matching the regex ^[A-Z][a-zA-Z0-9]*$

Notice that this grammar binds '=>' most tightly, and uses `not` as a prefix operator.

The PEG grammar above is transcribed and elaborated in the jq function `expr` below. For details about this approach, see for example Compiler/Verifying_syntax#jq. That entry also contains the jq PEG library that is referenced in the 'include' statement at the beginning of the jq program shown below.

Parsing

include "peg"; # see [[:Category:jq/peg.jq]

def expr:
  
  def Var     :  parse("[A-Z][a-zA-Z0-9]*");

  def boolean :  (literal("true") // literal("false"))
                 | .result[-1] |= fromjson;

  def primary :  ws
                 | (Var
                    // boolean
                    // box(q("(") | expr | q(")"))
                   )
                 | ws;

  def e3      :  ws | (box(literal("not") | primary)  // primary);
  def e2      :  box(e3 | star(literal("and") | e3)) ;
  def e1      :  box(e2 | star((literal("or") // literal("xor")) | e2)) ;
  def e0      :  box(primary | literal("=>") | primary) // e1;

  ws | e0 | ws; 

def statement:
  {remainder: .} | expr | eos;

Evaluation

# Evaluate $Expr in the context of {A,B,....}
def eval($Expr):
  if   $Expr|type == "boolean" then $Expr
  elif $Expr|type == "string" then getpath([$Expr])
  elif $Expr|length == 1 then eval($Expr[0])
  elif $Expr|(length == 2 and first == "not") then eval($Expr[-1])|not
  elif $Expr|(length == 3 and .[1] == "or")  then eval($Expr[0]) or eval($Expr[2])
  elif $Expr|(length == 3 and .[1] == "xor")
  then eval($Expr[0]) as $x
  |    eval($Expr[2]) as $y
  | ($x and ($y|not)) or ($y and ($x|not))
  elif $Expr|(length == 3 and .[1] == "and") then  eval($Expr[0]) and eval($Expr[2])
  elif $Expr|(length == 3 and .[1] == "=>")  then (eval($Expr[0])|not) or eval($Expr[2])
  else $Expr | error
  end;

Truth Tables

# input: a list of strings
# output: a stream of objects representing all possible true/false combinations
# Each object has the keys specified in the input.
def vars2tf:
  if length == 0 then {}
  else .[0] as $k
  | ({} | .[$k] = (true,false)) + (.[1:] | vars2tf)
  end;

# If the input is a string, then echo it;
# otherwise emit T or F
def TF:
  if type == "string" then .
  elif . then "T"
  else "F"
  end;

# Extract the distinct variable names from the parse tree.
def vars: [.. | strings | select(test("^[A-Z]"))] | unique;

def underscore:
  ., (length * "_");

Examples

def tests:  [
  "A xor B",
  "notA",
  "A and B",
  "A and B or C",
  "A=>(notB)",
  "A=>(A => (B or A))",
  "A xor B and C"
];

def tables:
  tests[] as $test
  | ($test | statement | .result)
  | . as $result
  | vars as $vars
  | ($vars + [" ", $test] | join(" ") | underscore),
    (($vars | vars2tf)
     | ( [.[], " ", eval($result) | TF] | join(" ")) ),
    ""
   ;

tables
Output:
A B   A xor B
_____________
T T   F
F T   T
T F   T
F F   F

A   notA
________
T   F
F   T

A B   A and B
_____________
T T   T
F T   F
T F   F
F F   F

A B C   A and B or C
____________________
T T T   T
F T T   T
T F T   T
F F T   T
T T F   T
F T F   F
T F F   F
F F F   F

A B   A=>(notB)
_______________
T T   F
F T   T
T F   T
F F   T

A B   A=>(A => (B or A))
________________________
T T   T
F T   T
T F   T
F F   T

A B C   A xor B and C
_____________________
T T T   F
F T T   T
T F T   T
F F T   F
T T F   T
F T F   F
T F F   T
F F F   F

Julia

Module:

module TruthTable

using Printf
using MacroTools

isvariablename(::Any) = false
isvariablename(s::Symbol) = all(x -> isletter(x) || x == '_', string(s))

function table(expr)
    if !isvariablename(expr) && !Meta.isexpr(expr, :call)
        throw(ArgumentError("expr must be a boolean expression"))
    end

    exprstr = string(expr)
    # Collect variable names
    symset = Set{Symbol}()
    MacroTools.prewalk(expr) do node
        isvariablename(node) && push!(symset, node)
        return node
    end
    symlist = collect(symset)

    # Create assignment assertions + evaluate
    blocks = Vector{Expr}(undef, 2 ^ length(symlist) + 1)
    blocks[1] = quote
        println(join(lpad.($(symlist), 6), " | "), " || ", $exprstr)
    end
    for (i, tup) in enumerate(Iterators.product(Iterators.repeated((false, true), length(symlist))...))
        blocks[i + 1] = quote
            let $(Expr(:(=), Expr(:tuple, symlist...), Expr(:tuple, tup...)))
                println(join(lpad.($(Expr(:tuple, symlist...)), 6), " | "), " || ", lpad($expr, $(length(exprstr))))
            end
        end
    end

    return esc(Expr(:block, blocks...))
end

macro table(expr)
    return table(expr)
end

end  # module TruthTable

Main:

TruthTable.@table !a
TruthTable.@table a | b
TruthTable.@table (a  b) | (c & a)
TruthTable.@table (a & b) | (c  d)
Output:
     a || !a
 false || true
  true || false
     a |      b || a | b
 false |  false || false
  true |  false ||  true
 false |   true ||  true
  true |   true ||  true
     a |      b |      c || (a ⊻ b) | c & a
 false |  false |  false ||           false
  true |  false |  false ||            true
 false |   true |  false ||            true
  true |   true |  false ||           false
 false |  false |   true ||           false
  true |  false |   true ||            true
 false |   true |   true ||            true
  true |   true |   true ||            true
     a |      b |      d |      c || a & b | (c ⊻ d)
 false |  false |  false |  false ||           false
  true |  false |  false |  false ||           false
 false |   true |  false |  false ||           false
  true |   true |  false |  false ||            true
 false |  false |   true |  false ||            true
  true |  false |   true |  false ||            true
 false |   true |   true |  false ||            true
  true |   true |   true |  false ||            true
 false |  false |  false |   true ||            true
  true |  false |  false |   true ||            true
 false |   true |  false |   true ||            true
  true |   true |  false |   true ||            true
 false |  false |   true |   true ||           false
  true |  false |   true |   true ||           false
 false |   true |   true |   true ||           false
  true |   true |   true |   true ||            true

Kotlin

Translation of: D
// Version 1.2.31

import java.util.Stack

class Variable(val name: Char, var value: Boolean = false)

lateinit var expr: String
var variables = mutableListOf<Variable>()

fun Char.isOperator() = this in "&|!^"

fun Char.isVariable() = this in variables.map { it.name }

fun evalExpression(): Boolean {
    val stack = Stack<Boolean>()

    for (e in expr) {
        stack.push(
            if (e == 'T')
                true
            else if (e == 'F')
                false
            else if (e.isVariable())
                variables.single { it.name == e }.value
            else when (e) {
                '&'   -> stack.pop() and stack.pop()
                '|'   -> stack.pop() or  stack.pop()
                '!'   -> !stack.pop()
                '^'   -> stack.pop() xor stack.pop()
                else  -> throw RuntimeException("Non-conformant character '$e' in expression")
            }
        )
    }

    require(stack.size == 1)
    return stack.peek()
}

fun setVariables(pos: Int) {
    require(pos <= variables.size)
    if (pos == variables.size) {
        val vs = variables.map { if (it.value) "T" else "F" }.joinToString("  ")
        val es = if (evalExpression()) "T" else "F"
        return println("$vs  $es")
    }
    variables[pos].value = false
    setVariables(pos + 1)
    variables[pos].value = true
    setVariables(pos + 1)
}

fun main(args: Array<String>) {
    println("Accepts single-character variables (except for 'T' and 'F',")
    println("which specify explicit true or false values), postfix, with")
    println("&|!^ for and, or, not, xor, respectively; optionally")
    println("seperated by spaces or tabs. Just enter nothing to quit.")

    while (true) {
        print("\nBoolean expression: ")
        expr = readLine()!!.toUpperCase().replace(" ", "").replace("\t", "")
        if (expr == "") return
        variables.clear()
        for (e in expr) {
            if (!e.isOperator() && e !in "TF" && !e.isVariable()) variables.add(Variable(e))
        }
        if (variables.isEmpty()) return
        val vs = variables.map { it.name }.joinToString("  ")
        println("\n$vs  $expr")
        val h = vs.length + expr.length + 2
        repeat(h) { print("=") }
        println("\n")
        setVariables(0)
    }
}
Output:

Sample session:

Accepts single-character variables (except for 'T' and 'F',
which specify explicit true or false values), postfix, with
&|!^ for and, or, not, xor, respectively; optionally
seperated by spaces or tabs. Just enter nothing to quit.

Boolean expression: A B ^

A  B  AB^
=========

F  F  F
F  T  T
T  F  T
T  T  F

Boolean expression: A B C ^ |

A  B  C  ABC^|
==============

F  F  F  F
F  F  T  T
F  T  F  T
F  T  T  F
T  F  F  T
T  F  T  T
T  T  F  T
T  T  T  T

Boolean expression: A B C D ^ ^ ^

A  B  C  D  ABCD^^^
===================

F  F  F  F  F
F  F  F  T  T
F  F  T  F  T
F  F  T  T  F
F  T  F  F  T
F  T  F  T  F
F  T  T  F  F
F  T  T  T  T
T  F  F  F  T
T  F  F  T  F
T  F  T  F  F
T  F  T  T  T
T  T  F  F  F
T  T  F  T  T
T  T  T  F  T
T  T  T  T  F

Boolean expression:

Liberty BASIC

This at first seems trivial, given our lovely 'eval' function. However it is complicated by LB's use of 'non-zero' for 'true', and by the requirements of accepting different numbers and names of variables. My program assumes all space-separated words in the expression$ are either a logic-operator, bracket delimiter, or variable name. Since a truth table for 8 or more variables is of silly length, I regard that as a practical limit.

print
    print " TRUTH TABLES"
    print
    print " Input a valid Boolean expression for creating the truth table "
    print " Use lowercase 'and', 'or', 'xor', '(', 'not(' and ')'."
    print
    print " Take special care to precede closing bracket with a space."
    print
    print " You can use any alphanumeric variable names, but no spaces."
    print " You can refer again to a variable used already."
    print " Program assumes <8 variables will be used.."
    print
    print " eg 'A xor B and not( C or A )'"
    print " or 'Too_High xor not( Fuel_Out )'"

    print

 [start]
    input "        "; expression$
    if expression$ ="" then [start]

    print

    'used$           =""
    numVariables    =0  '   count of detected variable names
    variableNames$  ="" '   filled with detected variable names
    i               =1  '   index to space-delimited word in the expression$

  [parse]
    m$ =word$( expression$, i, " ")
    if m$ ="" then [analyse]
    '   is it a reserved word, or a variable name already met?
    if m$ <>"and" and m$ <>"or" and m$ <>"not(" and m$ <>")" and m$ <>"xor"_
     and not( instr( variableNames$, m$)) then
        variableNames$ =variableNames$ +m$ +" ": numVariables =numVariables +1
    end if

    i =i +1
    goto [parse]

  [analyse]
    for i =1 to numVariables
        ex$          =FindReplace$( expression$, word$( variableNames$, i, " "), chr$( 64 +i), 1)
        expression$  =ex$
    next i

    'print " "; numVariables; " variables, simplifying to "; expression$

    print ,;
    for j =1 to numVariables
        print word$( variableNames$, j, " "),
    next j
    print "Result"
    print

    for i =0 to ( 2^numVariables) -1
        print ,;
        A                         =i mod 2:          print A,
        if numVariables >1 then B =int( i /2) mod 2: print B,
        if numVariables >2 then C =int( i /4) mod 2: print C,
        if numVariables >3 then D =int( i /4) mod 2: print D,
        if numVariables >4 then E =int( i /4) mod 2: print E,
        if numVariables >5 then F =int( i /4) mod 2: print F,
        if numVariables >6 then G =int( i /4) mod 2: print G,
        '   .......................... etc

        'e =eval( expression$)
        if eval( expression$) <>0 then e$ ="1" else e$ ="0"
        print "==>  "; e$
    next i

    print

    goto [start]

    end

function FindReplace$( FindReplace$, find$, replace$, replaceAll)
    if ( ( FindReplace$ <>"") and ( find$ <>"")) then
        fLen = len( find$)
        rLen = len( replace$)
        do
            fPos            = instr( FindReplace$, find$, fPos)
            if not( fPos) then exit function
            pre$            = left$( FindReplace$, fPos -1)
            post$           =  mid$( FindReplace$, fPos +fLen)
            FindReplace$    = pre$ +replace$ +post$
            fPos            = fPos +(rLen -fLen) +1
        loop while ( replaceAll)
    end if
end function
        Too_High and Fuel_Out
              Too_High      Fuel_Out      Result

              0             0             ==>  0
              1             0             ==>  0
              0             1             ==>  0
              1             1             ==>  1

        Fat or Ugly and not( Rich )
              Fat           Ugly          Rich          Result

              0             0             0             ==>  0
              1             0             0             ==>  1
              0             1             0             ==>  1
              1             1             0             ==>  1
              0             0             1             ==>  0
              1             0             1             ==>  0
              0             1             1             ==>  0
              1             1             1             ==>  0

M2000 Interpreter

Works for maximum 26 inputs.

module TrueTable {
	Input "How many parameters:";N
	if N<1 then exit
	if N>26 then Restart
	print "Use of variables:", @(19),
	for i=1 to N
		print " "+chr$(i+64);
	next
	print
	print "Identifiers:", @(20), "NOT AND OR XOR TRUE FALSE"
	print "Symbols:", @(20), "( )"
	dim a(0 to N) as boolean
	a(N)=true
	input "boolean expression: ";E$
	E$=ucase$(E$)
	P$=E$
	E$=replace$("TRUE", "___", E$)
	E$=replace$("FALSE", "^^^", E$)	
	E$=replace$("AND", "%%%", E$)
	E$=replace$("XOR", "???", E$)
	E$=replace$("OR", "!!!", E$)
	E$=replace$("NOT", "^^^", E$)
	Z$=filter$(E$, "%?!^()_^")
	try ok {
		for i=0 to N-1
			Z$=filter$(Z$, chr$(i+65))
			if instr(E$,chr$(i+65))=0 then Error "Missing "+chr$(i+65)
			E$=replace$(chr$(i+65), "[]("+i+")", E$)
		next
	}
	if error or not ok then print "Error"+Error$ : restart
	if trim$(Z$)<>"" then print "FOUND:";Z$;"ILLEGAL CHARACTERS": restart
	E$=replace$("%%%","AND", E$)
	E$=replace$("???", "XOR", E$)
	E$=replace$( "!!!", "OR", E$)
	E$=replace$("^^^", "NOT", E$)
	E$=replace$("[]", "a", E$)
	E$=replace$("___", "TRUE",  E$)
	E$=replace$("^^^", "FALSE", E$)		
	S$=""
	H$=""
	B$=""
	for i=1 to N
		H$+="   "+chr$(i+64)+"   |"
		B$+="-------+"  
	next
	B$+=string$("-",len(P$))
	H$+=P$
	print H$
	S$=H$+{
	}
	try ok {
		do	L$=""
			for i=0 to N-1
				L$+=format$(" {0:5} |", a(i))
			next
			L$+=" "+Str$(Eval(E$))
			print B$
			print L$
			S$+=B$+{
			}+L$+{
			} 			
		when @PlayNext()
		clipboard S$
	}
	if error or not ok then print "Error"+Error$ : restart
	End
	function PlayNext()
		local i
		for i=0 to N
			a(i)=not a(i)
			if a(i) then exit for
		next
		=N>=i
	end function
}
TrueTable
Output:
How many parameters: 3
Use of variables:    A B C
Identifiers:         NOT AND OR XOR TRUE FALSE
Symbols:             ( )
   A   |   B   |   C   |A AND B OR C
-------+-------+-------+------------
 False | False | False | False
-------+-------+-------+------------
 True  | False | False | False
-------+-------+-------+------------
 False | True  | False | False
-------+-------+-------+------------
 True  | True  | False | True
-------+-------+-------+------------
 False | False | True  | True
-------+-------+-------+------------
 True  | False | True  | True
-------+-------+-------+------------
 False | True  | True  | True
-------+-------+-------+------------
 True  | True  | True  | True

Mathematica /Wolfram Language

VariableNames[data_] := Module[ {TokenRemoved},
 TokenRemoved = StringSplit[data,{"~And~","~Or~","~Xor~","!","(",")"}];
 Union[Select[Map[StringTrim,TokenRemoved] , Not[StringMatchQ[#,""]]&]]
]

TruthTable[BooleanEquation_] := Module[ {TestDataSet},
  TestDataSet = MapThread[Rule,{ToExpression@VariableNames[BooleanEquation],#}]&/@
     Tuples[{False,True}, Length[VariableNames[BooleanEquation]]];

  Join[List[Flatten[{VariableNames[BooleanEquation],BooleanEquation}]],
    Flatten[{#/.Rule[x_,y_] -> y,ReplaceAll[ToExpression[BooleanEquation],#]}]&/@TestDataSet]//Grid
]

Example usage:

TruthTable["V ~Xor~ (B ~Xor~ (K ~Xor~ D ) )"]

B   D   K   V   V ~Xor~ (B ~Xor~ (K ~Xor~ D ) )
False   False   False   False   False
False   False   False   True    True
False   False   True    False   True
False   False   True    True    False
False   True    False   False   True
False   True    False   True    False
False   True    True    False   False
False   True    True    True    True
True    False   False   False   True
True    False   False   True    False
True    False   True    False   False
True    False   True    True    True
True    True    False   False   False
True    True    False   True    True
True    True    True    False   True
True    True    True    True    False

Maxima

/* Maxima already has the following logical operators
          =, # (not equal), not, and, or
define some more and set 'binding power' (operator
precedence) for them
*/
infix("xor", 60)$
"xor"(A,B):= (A or B) and not(A and B)$

infix("=>", 59)$
"=>"(A,B):= not A or B$

/*
Substitute variables `r' in `e' with values taken from list `l' where
`e' is expression, `r' is a list of independent variables, `l' is a
list of the values
lsubst( '(A + B), ['A, 'B], [1, 2]);
1 + 2;
*/
lsubst(e, r, l):= ev(e, maplist( lambda([x, y], x=y), r, l), 'simp)$

/*
"Cartesian power" `n' of list `b'. Returns a list of lists of the form
[<x_1>, ..., <x_n>], were <x_1>, .. <x_n> are elements of list `b'
cartesian_power([true, false], 2);
[[true, true], [true, false], [false, true], [false, false]];
cartesian_power([true, false], 3);
[[true, true, true], [true, true, false], [true, false, true], 
[true, false, false], [false, true, true], [false, true, false], 
[false, false, true], [false, false, false]];
*/
cartesian_power(b, n) := block(
    [aux_lst: makelist(setify(b), n)],
    listify(apply(cartesian_product, aux_lst))
    )$

gen_table(expr):= block(
  [var_lst: listofvars(expr), st_lst, res_lst, m],
  st_lst: cartesian_power([true, false], length(var_lst)),
  res_lst: create_list(lsubst(expr, var_lst, val_lst), val_lst, st_lst),
  m      : apply('matrix, cons(var_lst, st_lst)),
  addcol(m, cons(expr, res_lst))
  );

/* examples */
gen_table('(not A));
gen_table('(A xor B));
gen_table('(Jim and (Spock xor Bones) or Scotty));
gen_table('(A => (B and A)));
gen_table('(V xor (B xor (K xor D ) )));

OUtput of the last example:

 
            [   V      B      K      D    V xor (B xor (K xor D)) ]
            [                                                     ]
            [ true   true   true   true            false          ]
            [                                                     ]
            [ true   true   true   false           true           ]
            [                                                     ]
            [ true   true   false  true            true           ]
            [                                                     ]
            [ true   true   false  false           false          ]
            [                                                     ]
            [ true   false  true   true            true           ]
            [                                                     ]
            [ true   false  true   false           false          ]
            [                                                     ]
            [ true   false  false  true            false          ]
            [                                                     ]
            [ true   false  false  false           true           ]
            [                                                     ]
            [ false  true   true   true            true           ]
            [                                                     ]
            [ false  true   true   false           false          ]
            [                                                     ]
            [ false  true   false  true            false          ]
            [                                                     ]
            [ false  true   false  false           true           ]
            [                                                     ]
            [ false  false  true   true            false          ]
            [                                                     ]
            [ false  false  true   false           true           ]
            [                                                     ]
            [ false  false  false  true            true           ]
            [                                                     ]
            [ false  false  false  false           false          ]

Nim

Translation of: Kotlin

This is an adaptation of Kotlin version, using the same rules and the same algorithm, but with a different representation of expressions. The result is identical.

import sequtils, strutils, sugar

# List of possible variables names.
const VarChars = {'A'..'E', 'G'..'S', 'U'..'Z'}

type

  Expression = object
    names: seq[char]    # List of variables names.
    values: seq[bool]   # Associated values.
    formula: string     # Formula as a string.


proc initExpression(str: string): Expression =
  ## Build an expression from a string.
  for ch in str:
    if ch in VarChars and ch notin result.names:
      result.names.add ch
  result.values.setLen(result.names.len)
  result.formula = str


template apply(stack: seq[bool]; op: (bool, bool) -> bool): bool =
  ## Apply an operator on the last two operands of an evaluation stack.
  ## Needed to make sure that pops are done (avoiding short-circuit optimization).
  let op2 = stack.pop()
  let op1 = stack.pop()
  op(op1, op2)


proc evaluate(expr: Expression): bool =
  ## Evaluate the current expression.

  var stack: seq[bool]  # Evaluation stack.

  for e in expr.formula:
    stack.add case e
              of 'T': true
              of 'F': false
              of '!': not stack.pop()
              of '&': stack.apply(`and`)
              of '|': stack.apply(`or`)
              of '^': stack.apply(`xor`)
              else:
                if e in VarChars: expr.values[expr.names.find(e)]
                else:
                  raise newException(
                    ValueError, "Non-conformant character in expression: '$#'.".format(e))

  if stack.len != 1:
    raise newException(ValueError, "Ill-formed expression.")
  result = stack[0]


proc setVariables(expr: var Expression; pos: Natural) =
  ## Recursively set the variables.
  ## When all the variables are set, launch the evaluation of the expression
  ## and print the result.

  assert pos <= expr.values.len

  if pos == expr.values.len:
    # Evaluate and display.
    let vs = expr.values.mapIt(if it: 'T' else: 'F').join("  ")
    let es = if expr.evaluate(): 'T' else: 'F'
    echo vs, "  ", es

  else:
    # Set values.
    expr.values[pos] = false
    expr.setVariables(pos + 1)
    expr.values[pos] = true
    expr.setVariables(pos + 1)


echo "Accepts single-character variables (except for 'T' and 'F',"
echo "which specify explicit true or false values), postfix, with"
echo "&|!^ for and, or, not, xor, respectively; optionally"
echo "seperated by spaces or tabs. Just enter nothing to quit."

while true:
  # Read formula and create expression.
  stdout.write "\nBoolean expression: "
  let line = stdin.readLine.toUpperAscii.multiReplace((" ", ""), ("\t", ""))
  if line.len == 0: break
  var expr = initExpression(line)
  if expr.names.len == 0: break

  # Display the result.
  let vs = expr.names.join("  ")
  echo '\n', vs, "  ", expr.formula
  let h = vs.len + expr.formula.len + 2
  echo repeat('=', h)
  expr.setVariables(0)
Output:

Sample session:

Accepts single-character variables (except for 'T' and 'F',
which specify explicit true or false values), postfix, with
&|!^ for and, or, not, xor, respectively; optionally
seperated by spaces or tabs. Just enter nothing to quit.

Boolean expression: A B ^

A  B  AB^
=========
F  F  F
F  T  T
T  F  T
T  T  F

Boolean expression: A B C ^ |

A  B  C  ABC^|
==============
F  F  F  F
F  F  T  T
F  T  F  T
F  T  T  F
T  F  F  T
T  F  T  T
T  T  F  T
T  T  T  T

Boolean expression: A B C D ^ ^ ^

A  B  C  D  ABCD^^^
===================
F  F  F  F  F
F  F  F  T  T
F  F  T  F  T
F  F  T  T  F
F  T  F  F  T
F  T  F  T  F
F  T  T  F  F
F  T  T  T  T
T  F  F  F  T
T  F  F  T  F
T  F  T  F  F
T  F  T  T  T
T  T  F  F  F
T  T  F  T  T
T  T  T  F  T
T  T  T  T  F

Boolean expression: 

PARI/GP

Uses infix Boolean expressions with + for OR, * for AND, and the constants 0 and 1 for FALSE and TRUE.

It would be easy to modify the program to take + for XOR instead.

vars(P)={
    my(v=List(),x);
    while(type(P)=="t_POL",
        x=variable(P);
        listput(v,x);
        P=subst(P,x,1)
    );
    Vec(v)
};
truthTable(P)={
    my(var=vars(P),t,b);
    for(i=0,2^#var-1,
        t=eval(P);
        for(j=1,#var,
            b=bittest(i,j-1);
            t=subst(t,var[j],b);
            print1(b)
        );
        print(!!t)
    );
};
truthTable("x+y") \\ OR
truthTable("x*y") \\ AND
Output:
000
101
011
111

000
100
010
111

Pascal

Translation of: C
Works with: Free Pascal
program TruthTables;
const
  StackSize = 80;

type
  TVariable = record
    Name: Char;
    Value: Boolean;
  end;

  TStackOfBool = record
    Top: Integer;
    Elements: array [0 .. StackSize - 1] of Boolean;
  end;

var
  Expression: string;
  Variables: array [0 .. 23] of TVariable;
  VariablesLength: Integer;
  i: Integer;
  e: Char;

// Stack manipulation functions
function IsFull(var s: TStackOfBool): Boolean;
begin
  IsFull := s.Top = StackSize - 1;
end;

function IsEmpty(var s: TStackOfBool): Boolean;
begin
  IsEmpty := s.Top = -1;
end;

function Peek(var s: TStackOfBool): Boolean;
begin
  if not IsEmpty(s) then
    Peek := s.Elements[s.Top]
  else
  begin
    Writeln('Stack is empty.');
    Halt;
  end;
end;

procedure Push(var s: TStackOfBool; val: Boolean);
begin
  if not IsFull(s) then
  begin
    Inc(s.Top);
    s.Elements[s.Top] := val;
  end
  else
  begin
    Writeln('Stack is full.');
    Halt;
  end
end;

function Pop(var s: TStackOfBool): Boolean;
begin
  if not IsEmpty(s) then
  begin
    Result := s.Elements[s.Top];
    Dec(s.Top);
  end
  else
  begin
    Writeln;
    Writeln('Stack is empty.');
    Halt;
  end
end;

procedure MakeEmpty(var s: TStackOfBool);
begin
  s.Top := -1;
end;

function ElementsCount(var s: TStackOfBool): Integer;
begin
  ElementsCount := s.Top + 1;
end;

function IsOperator(const c: Char): Boolean;
begin
  IsOperator := (c = '&') or (c = '|') or (c = '!') or (c = '^');
end;

function VariableIndex(const c: Char): Integer;
var
  i: Integer;
begin
  for i := 0 to VariablesLength - 1 do
    if Variables[i].Name = c then
    begin
      VariableIndex := i;
      Exit;
    end;
  VariableIndex := -1;
end;

function EvaluateExpression: Boolean;
var
  i, vi: Integer;
  e: Char;
  s: TStackOfBool;
begin
  MakeEmpty(s);
  for i := 1 to Length(Expression) do
  begin
    e := Expression[i];
    vi := VariableIndex(e);
    if e = 'T' then
      Push(s, True)
    else if e = 'F' then
      Push(s, False)
    else if vi >= 0 then
      Push(s, Variables[vi].Value)
    else
    begin
      {$B+} 
      case e of
        '&':
          Push(s, Pop(s) and Pop(s));
        '|':
          Push(s, Pop(s) or Pop(s));
        '!':
          Push(s, not Pop(s));
        '^':
          Push(s, Pop(s) xor Pop(s));
      else
        Writeln;
        Writeln('Non-conformant character ', e, ' in expression.');
        Halt;
      end;
      {$B-}
    end;
  end;
  if ElementsCount(s) <> 1 then
  begin
    Writeln;
    Writeln('Stack should contain exactly one element.');
    Halt;
  end;
  EvaluateExpression := Peek(s);
end;

procedure SetVariables(pos: Integer);
var
  i: Integer;
begin
  if pos > VariablesLength then
  begin
    Writeln;
    Writeln('Argument to SetVariables cannot be greater than the number of variables.');
    Halt;
  end
  else if pos = VariablesLength then
  begin
    for i := 0 to VariablesLength - 1 do
    begin
      if Variables[i].Value then
        Write('T  ')
      else
        Write('F  ');
    end;
    if EvaluateExpression then
      Writeln('T')
    else
      Writeln('F');
  end
  else
  begin
    Variables[pos].Value := False;
    SetVariables(pos + 1);
    Variables[pos].Value := True;
    SetVariables(pos + 1);
  end
end;

// removes space and converts to upper case
procedure ProcessExpression;
var
  i: Integer;
  exprTmp: string;
begin
  exprTmp := '';
  for i := 1 to Length(Expression) do
  begin
    if Expression[i] <> ' ' then
      exprTmp := Concat(exprTmp, UpCase(Expression[i]));
  end;
  Expression := exprTmp
end;

begin
  Writeln('Accepts single-character variables (except for ''T'' and ''F'',');
  Writeln('which specify explicit true or false values), postfix, with');
  Writeln('&|!^ for and, or, not, xor, respectively; optionally');
  Writeln('seperated by space. Just enter nothing to quit.');

  while (True) do
  begin
    Writeln;
    Write('Boolean expression: ');
    ReadLn(Expression);
    ProcessExpression;
    if Length(Expression) = 0 then
      Break;
    VariablesLength := 0;
    for i := 1 to Length(Expression) do
    begin
      e := Expression[i];
      if (not IsOperator(e)) and (e <> 'T') and (e <> 'F') and
        (VariableIndex(e) = -1) then
      begin
        Variables[VariablesLength].Name := e;
        Variables[VariablesLength].Value := False;
        Inc(VariablesLength);
      end;
    end;
    WriteLn;
    if VariablesLength = 0 then
      Writeln('No variables were entered.')
    else
    begin
      for i := 0 to VariablesLength - 1 do
        Write(Variables[i].Name, '  ');
      Writeln(Expression);
      Writeln(StringOfChar('=', VariablesLength * 3 + Length(Expression)));
      SetVariables(0);
    end;
  end;
end.
Output:
Accepts single-character variables (except for 'T' and 'F',
which specify explicit true or false values), postfix, with
&|!^ for and, or, not, xor, respectively; optionally
seperated by space. Just enter nothing to quit.

Boolean expression: A B ^

A  B  AB^
=========
F  F  F
F  T  T
T  F  T
T  T  F

Boolean expression: A B C ^ |

A  B  C  ABC^|
==============
F  F  F  F
F  F  T  T
F  T  F  T
F  T  T  F
T  F  F  T
T  F  T  T
T  T  F  T
T  T  T  T

Boolean expression: A B C D ^ ^ ^

A  B  C  D  ABCD^^^
===================
F  F  F  F  F
F  F  F  T  T
F  F  T  F  T
F  F  T  T  F
F  T  F  F  T
F  T  F  T  F
F  T  T  F  F
F  T  T  T  T
T  F  F  F  T
T  F  F  T  F
T  F  T  F  F
T  F  T  T  T
T  T  F  F  F
T  T  F  T  T
T  T  T  F  T
T  T  T  T  F

Boolean expression:

Perl

Note: can't process stuff like "X xor Y"; "xor" would be treated as a variable name here.

#!/usr/bin/perl

sub truth_table {
    my $s = shift;
    my (%seen, @vars);
    for ($s =~ /([a-zA-Z_]\w*)/g) {
        $seen{$_} //= do { push @vars, $_; 1 };
    }

    print "\n", join("\t", @vars, $s), "\n", '-' x 40, "\n";
    @vars = map("\$$_", @vars);

    $s =~ s/([a-zA-Z_]\w*)/\$$1/g;
    $s = "print(".join(',"\t", ', map("($_?'T':'F')", @vars, $s)).",\"\\n\")";
    $s = "for my $_ (0, 1) { $s }" for (reverse @vars);
    eval $s;
}

truth_table 'A ^ A_1';
truth_table 'foo & bar | baz';
truth_table 'Jim & (Spock ^ Bones) | Scotty';
Output:

A A_1 A ^ A_1 ---------------------------------------- F F F F T T T F T T T F

foo bar baz foo & bar | baz ---------------------------------------- F F F F F F T T F T F F F T T T T F F F T F T T T T F T T T T T

Jim Spock Bones Scotty Jim & (Spock ^ Bones) | Scotty ---------------------------------------- F F F F F ...<snip for space -- not like you're gonna verify it anyway>... T T T T T

Phix

Expression parsing and evaluation similar to that in the Arithmetic evaluation task.

with javascript_semantics
constant bFT = false    -- true: use F/T, false: use 0/1, as next

function fmt(bool b)
    return iff(bFT?{"F","T"}:{"0","1"})[b+1]
end function

sequence opstack = {}
object token,
       op = 0   -- 0 = none
string s        -- the expression being parsed
integer sidx,   -- idx to ""
        ch      -- s[sidx]
 
procedure err(string msg)
    printf(1,"%s\n%s^ %s\n\nPressEnter...",{s,repeat(' ',sidx-1),msg})
    {} = wait_key()
    abort(0)
end procedure
 
procedure nxtch()
    sidx += 1
    ch = iff(sidx>length(s)?-1:s[sidx])
end procedure
 
procedure skipspaces()
    while find(ch," \t\r\n")!=0 do nxtch() end while
end procedure
 
procedure get_token()
    skipspaces()
    if find(ch,"()!") then
        token = s[sidx..sidx]
        nxtch()
    else
        integer tokstart = sidx
        if ch=-1 then token = "eof" return end if
        while 1 do
            nxtch()
            if ch<'A' then exit end if
        end while
        token = s[tokstart..sidx-1]
    end if
end procedure
 
procedure Match(string t)
    if token!=t then err(t&" expected") end if
    get_token()
end procedure
 
procedure PopFactor()
    object p2 = opstack[$]
    if op="not" then
        opstack[$] = {0,op,p2}
    else
        opstack = opstack[1..$-1]
        opstack[$] = {opstack[$],op,p2}
    end if
    op = 0
end procedure
 
sequence names, -- {"false","true",...}
         flags  -- {   0,     1,  ,...}
 
procedure PushFactor(string t)
    if op!=0 then PopFactor() end if
    integer k = find(t,names)
    if k=0 then
        names = append(names,t)
        k = length(names)
    end if
    opstack = append(opstack,k)
end procedure
 
procedure PushOp(string t)
    if op!=0 then PopFactor() end if
    op = t
end procedure
 
forward procedure Expr(integer p)

procedure Factor()
    if token="not"
    or token="!" then
        get_token()
        Factor()
        if op!=0 then PopFactor() end if
        PushOp("not")
    elsif token="(" then
        get_token()
        Expr(0)
        Match(")")
    elsif not find(token,{"and","or","xor"}) then
        PushFactor(token)
        if ch!=-1 then
            get_token()
        end if
    else
        err("syntax error")
    end if
end procedure
 
constant {operators,
          precedence} = columnize({{"not",6},
                                   {"and",5},
                                   {"xor",4},
                                   {"or",3}})
procedure Expr(integer p)
    Factor()
    while 1 do
        integer k = find(token,operators)
        if k=0 then exit end if
        integer thisp = precedence[k]
        if thisp<p then exit end if
        get_token()
        Expr(thisp)
        PushOp(operators[k])
    end while
end procedure
 
function evaluate(object s)
    if atom(s) then
        if s>=1 then s = flags[s] end if
        return s
    end if
    object {lhs,op,rhs} = s
    lhs = evaluate(lhs)
    rhs = evaluate(rhs)
    if op="and" then
        return lhs and rhs
    elsif op="or" then
        return lhs or rhs
    elsif op="xor" then
        return lhs xor rhs
    elsif op="not" then
        return not rhs
    else
        ?9/0
    end if
end function
 
function next_comb()
    integer fdx = length(flags)
    while flags[fdx]=1 do
        flags[fdx] = 0
        fdx -= 1
    end while
    if fdx<=2 then return false end if  -- all done
    flags[fdx] = 1
    return true
end function
 
procedure test(string expr)
    opstack = {}
    op = 0
    names = {"false","true"}
    s = expr
    sidx = 0
    nxtch()
    get_token()
    Expr(0)
    if op!=0 then PopFactor() end if
    if length(opstack)!=1 then err("some error") end if
    flags = repeat(0,length(names))
    flags[2] = 1 -- set "true" true
    printf(1,"%s  %s\n",{join(names[3..$]),s})
    while 1 do
        for i=3 to length(flags) do -- (skipping true&false)
            printf(1,"%s%s",{fmt(flags[i]),repeat(' ',length(names[i]))})
        end for
        printf(1," %s\n",{fmt(evaluate(opstack[1]))})
        if not next_comb() then exit end if
    end while
    puts(1,"\n")
end procedure
 
test("young and not (ugly or poor)")
if platform()!=JS then -- (no gets(0) in a browser)
    while 1 do
        puts(1,"input expression:")
        string t = trim(gets(0))
        puts(1,"\n")
        if t="" then exit end if
        test(t)
    end while
end if
Output:
young ugly poor  young and not (ugly or poor)
0     0    0     0
0     0    1     0
0     1    0     0
0     1    1     0
1     0    0     1
1     0    1     0
1     1    0     0
1     1    1     0

input expression:

PicoLisp

(de truthTable (Expr)
   (let Vars
      (uniq
         (make
            (setq Expr
               (recur (Expr)  # Convert infix to prefix notation
                  (cond
                     ((atom Expr) (link Expr))
                     ((== 'not (car Expr))
                        (list 'not (recurse (cadr Expr))) )
                     (T
                        (list
                           (cadr Expr)
                           (recurse (car Expr))
                           (recurse (caddr Expr)) ) ) ) ) ) ) )
      (for V Vars
         (prin (align -7 V)) )
      (prinl)
      (bind (mapcar cons Vars)
         (do (** 2 (length Vars))
            (for "V" Vars
               (space (if (print (val "V")) 6 4)) )
            (println (eval Expr))
            (find '(("V") (set "V" (not (val "V")))) Vars) ) ) ) )

Test:


: (truthTable (str "A and (B or C)"))
A      B      C
NIL    NIL    NIL    NIL
T      NIL    NIL    NIL
NIL    T      NIL    NIL
T      T      NIL    T
NIL    NIL    T      NIL
T      NIL    T      T
NIL    T      T      NIL
T      T      T      T

: (truthTable (str "not (Foo and (Bar or Mumble))"))
Foo    Bar    Mumble
NIL    NIL    NIL    T
T      NIL    NIL    T
NIL    T      NIL    T
T      T      NIL    NIL
NIL    NIL    T      T
T      NIL    T      NIL
NIL    T      T      T
T      T      T      NIL

: (truthTable (str "(A xor B) and (B or C)"))
A      B      C
NIL    NIL    NIL    NIL
T      NIL    NIL    NIL
NIL    T      NIL    T
T      T      NIL    NIL
NIL    NIL    T      NIL
T      NIL    T      T
NIL    T      T      T
T      T      T      NIL

: (truthTable (str "(A xor B) and ((not B) or C)"))
A      B      C
NIL    NIL    NIL    NIL
T      NIL    NIL    T
NIL    T      NIL    NIL
T      T      NIL    NIL
NIL    NIL    T      NIL
T      NIL    T      T
NIL    T      T      T
T      T      T      NIL

Prolog

Works with: SWI-Prolog version Any - tested with release 7.6.4
/*
    To evaluate the truth table a line of text is inputted and then there are three steps
    Let's say the expression is: 
    'not a and (b or c)'
    
    Step 1: tokenize into atoms and brackets
    eg: Tokenized = [ not, a, and, '(', b, or, c, ')' ].
    
    Step 2: convert to a term that can be evaluated, and get out the variables
    eg: Expression = op(and, op(not, a), op(or, b, c)), Variables = [ a, b, c ]
    
    Step 3: permeate over the variables, substituting the values for each var, and evaluate the expression for each permutation
    eg: [ 0, 0, 0]
        op(and, op(not, 0), op(or, 0, 0))
        op(and, 1, op(or, 0, 0))
        op(and, 1, 0)
        0
        
        [ 0, 0, 1]
        op(and, op(not, 0), op(or, 0, 1))
        op(and, 1, op(or, 0, 0))
        op(and, 1, 1)
        1
*/
truth_table :-
    current_input(In), 
    read_line_to_codes(In, Line),
    atom_codes(A, Line),
    atom_chars(A, Chars),

    % parse everything into the form we want
    phrase(tok(Tok), Chars, _),
    phrase(expr(Expr,Vars), Tok, _),
    list_to_set(Vars,VarSet),
        
    % evaluate
    print_expr(Expr, VarSet), !.

print_expr(Expr, Vars) :-
    % write the header (once)
    maplist(format('~p '), Vars),
    format('~n'),
    
    % write the results for as many times as there are rows
    eval_expr(Expr, Vars, Tvals, R),
    maplist(format('~p '), Tvals),
    format('~p~n', R),
    fail.   
print_expr(_, _).   
    
    
% Step 1 - tokenize the input into spaces, brackets and atoms
tok([A|As]) --> spaces(_), chars([X|Xs]), {atom_codes(A, [X|Xs])}, spaces(_), tok(As).
tok([A|As]) --> spaces(_), bracket(A), spaces(_), tok(As).
tok([]) --> [].
chars([X|Xs]) --> char(X), { dif(X, ')'), dif(X, '(') }, !, chars(Xs).
chars([]) --> [].
spaces([X|Xs]) --> space(X), !, spaces(Xs).
spaces([]) --> [].
bracket('(') --> ['('].
bracket(')') --> [')'].
    
    
% Step 2 - Parse the expression into an evaluable term
expr(op(I, E, E2), V) --> starter(E, V1), infix(I), expr(E2, V2), { append(V1, V2, V) }. 
expr(E, V) --> starter(E, V).

starter(op(not, E),V) --> [not], expr(E, V).
starter(E,V) --> ['('], expr(E,V), [')'].
starter(V,[V]) --> variable(V).

infix(or) --> [or].
infix(and) --> [and].
infix(xor) --> [xor].
infix(nand) --> [nand].

variable(V) --> [V], \+ infix(V), \+ bracket(V).
space(' ') --> [' ']. 
char(X) --> [X], { dif(X, ' ') }.   
    
    
% Step 3 - evaluate the parsed expression
eval_expr(Expr, Vars, Tvals, R) :-
    length(Vars,Len), 
    length(Tvals, Len), 
    maplist(truth_val, Tvals), 
    eval(Expr, [Tvals,Vars],R).

eval(X, [Vals,Vars], R) :- nth1(N,Vars,X), nth1(N,Vals,R).
eval(op(Op,A,B), V, R) :- eval(A,V,Ae), eval(B,V,Be), e(Op,Ae,Be,R).
eval(op(not,A), V, R) :- eval(A,V,Ae), e(not,Ae,R).

truth_val(0). truth_val(1).

e(or,0,0,0). e(or,0,1,1). e(or,1,0,1). e(or,1,1,1).
e(and,0,0,0). e(and,0,1,0). e(and,1,0,0). e(and,1,1,1).
e(xor,0,0,0). e(xor,0,1,1). e(xor,1,0,1). e(xor,1,1,0).
e(nand,0,0,1). e(nand,0,1,1). e(nand,1,0,1). e(nand,1,1,0).
e(not, 1, 0). e(not, 0, 1).
Output:
?- truth_table.
|: not a and (b or c)
a b c
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0
true.

?-

Python

This accepts correctly formatted Python boolean expressions.

from itertools import product

while True:
    bexp = input('\nBoolean expression: ')
    bexp = bexp.strip()
    if not bexp:
        print("\nThank you")
        break
    code = compile(bexp, '<string>', 'eval')
    names = code.co_names
    print('\n' + ' '.join(names), ':', bexp)
    for values in product(range(2), repeat=len(names)):
        env = dict(zip(names, values))
        print(' '.join(str(v) for v in values), ':', eval(code, env))
Sample output
Boolean expression: A ^ B

A B : A ^ B
0 0 : 0
0 1 : 1
1 0 : 1
1 1 : 0

Boolean expression: S | ( T ^ U )

S T U : S | ( T ^ U )
0 0 0 : 0
0 0 1 : 1
0 1 0 : 1
0 1 1 : 0
1 0 0 : 1
1 0 1 : 1
1 1 0 : 1
1 1 1 : 1

Boolean expression: A ^ (B ^ (C ^ D))

A B C D : A ^ (B ^ (C ^ D))
0 0 0 0 : 0
0 0 0 1 : 1
0 0 1 0 : 1
0 0 1 1 : 0
0 1 0 0 : 1
0 1 0 1 : 0
0 1 1 0 : 0
0 1 1 1 : 1
1 0 0 0 : 1
1 0 0 1 : 0
1 0 1 0 : 0
1 0 1 1 : 1
1 1 0 0 : 0
1 1 0 1 : 1
1 1 1 0 : 1
1 1 1 1 : 0

Boolean expression: 

Thank you

Quackery

  [ stack ]               is args         (     --> s   )
  [ stack ]               is results      (     --> s   )
  [ stack ]               is function     (     --> s   )
 
  [ args share times
      [ sp
        2 /mod iff
          [ char t ] 
        else 
          [ char f ] 
        emit ]
    drop
    say " | " ]           is echoargs     ( n   -->     )
 
  [ args share times 
      [ 2 /mod swap ]
    drop ]                is preparestack ( n   --> b*n )

  [ results share times 
      [ sp 
        iff
          [ char t ] 
        else 
          [ char f ] 
        emit ] ]          is echoresults  ( b*? -->     )
 
  [ say "Please input your function, preceded" cr 
      $ "by the number of arguments and results: " input
    trim nextword quackery args put
    trim nextword quackery results put
    trim build function put
    args share bit times
      [ cr
        i^ echoargs 
        i^ preparestack
        function share do
        echoresults ] 
     cr
     args release
     results release
     function release ]   is truthtable   (     -->     )
Output:

Testing in the Quackery shell.

/O> truthtable
... 
Please input your function, preceded
by the number of arguments and results: 2 1 or not 

 f f |  t
 t f |  f
 f t |  f
 t t |  f

Stack empty.

/O> truthtable
... 
Please input your function, preceded
by the number of arguments and results: 3 1 and or 

 f f f |  f
 t f f |  t
 f t f |  f
 t t f |  t
 f f t |  f
 t f t |  t
 f t t |  t
 t t t |  t

Stack empty.

/O> truthtable
... 
Please input your function, preceded
by the number of arguments and results: 2 2 2dup and unrot xor ( this is a half-adder )

 f f |  f f
 t f |  t f
 f t |  t f
 t t |  f t

Stack empty.

R

truth_table <- function(x) {
  vars <- unique(unlist(strsplit(x, "[^a-zA-Z]+")))
  vars <- vars[vars != ""]
  perm <- expand.grid(rep(list(c(FALSE, TRUE)), length(vars)))
  names(perm) <- vars
  perm[ , x] <- with(perm, eval(parse(text = x)))
  perm
}

"%^%" <- xor # define unary xor operator

truth_table("!A") # not
##       A    !A
## 1 FALSE  TRUE
## 2  TRUE FALSE

truth_table("A | B") # or
##       A     B A | B
## 1 FALSE FALSE FALSE
## 2  TRUE FALSE  TRUE
## 3 FALSE  TRUE  TRUE
## 4  TRUE  TRUE  TRUE

truth_table("A & B") # and
##       A     B A & B
## 1 FALSE FALSE FALSE
## 2  TRUE FALSE FALSE
## 3 FALSE  TRUE FALSE
## 4  TRUE  TRUE  TRUE

truth_table("A %^% B") # xor
##       A     B A %^% B
## 1 FALSE FALSE   FALSE
## 2  TRUE FALSE    TRUE
## 3 FALSE  TRUE    TRUE
## 4  TRUE  TRUE   FALSE

truth_table("S | (T %^% U)") # 3 variables with brackets
##       S     T     U S | (T %^% U)
## 1 FALSE FALSE FALSE         FALSE
## 2  TRUE FALSE FALSE          TRUE
## 3 FALSE  TRUE FALSE          TRUE
## 4  TRUE  TRUE FALSE          TRUE
## 5 FALSE FALSE  TRUE          TRUE
## 6  TRUE FALSE  TRUE          TRUE
## 7 FALSE  TRUE  TRUE         FALSE
## 8  TRUE  TRUE  TRUE          TRUE

truth_table("A %^% (B %^% (C %^% D))") # 4 variables with nested brackets
##        A     B     C     D A %^% (B %^% (C %^% D))
## 1  FALSE FALSE FALSE FALSE                   FALSE
## 2   TRUE FALSE FALSE FALSE                    TRUE
## 3  FALSE  TRUE FALSE FALSE                    TRUE
## 4   TRUE  TRUE FALSE FALSE                   FALSE
## 5  FALSE FALSE  TRUE FALSE                    TRUE
## 6   TRUE FALSE  TRUE FALSE                   FALSE
## 7  FALSE  TRUE  TRUE FALSE                   FALSE
## 8   TRUE  TRUE  TRUE FALSE                    TRUE
## 9  FALSE FALSE FALSE  TRUE                    TRUE
## 10  TRUE FALSE FALSE  TRUE                   FALSE
## 11 FALSE  TRUE FALSE  TRUE                   FALSE
## 12  TRUE  TRUE FALSE  TRUE                    TRUE
## 13 FALSE FALSE  TRUE  TRUE                   FALSE
## 14  TRUE FALSE  TRUE  TRUE                    TRUE
## 15 FALSE  TRUE  TRUE  TRUE                    TRUE
## 16  TRUE  TRUE  TRUE  TRUE                   FALSE

Racket

Since the requirement is to read an expression dynamically, eval is a natural choice. The following isn't trying to protect against bad inputs when doing that.

#lang racket

(define (collect-vars sexpr)
  (sort
   (remove-duplicates
    (let loop ([x sexpr])
      (cond [(boolean? x) '()]
            [(symbol? x) (list x)]
            [(list? x) (append-map loop (cdr x))]
            [else (error 'truth-table "Bad expression: ~e" x)])))
   string<? #:key symbol->string))

(define ns (make-base-namespace))

(define (truth-table sexpr)
  (define vars (collect-vars sexpr))
  (printf "~a => ~s\n" (string-join (map symbol->string vars)) sexpr)
  (for ([i (expt 2 (length vars))])
    (define vals
      (map (λ(x) (eq? #\1 x))
           (reverse (string->list (~r i #:min-width (length vars)
                                        #:pad-string "0"
                                        #:base 2)))))
    (printf "~a => ~a\n" (string-join (map (λ(b) (if b "T" "F")) vals))
            (if (eval `(let (,@(map list vars vals)) ,sexpr) ns) "T" "F"))))

(printf "Enter an expression: ")
(truth-table (read))

Sample run:

Enter an expression: (and (or z x) (or y (not z)))
x y z => (and (or z x) (or y (not z)))
F F F => F
T F F => T
F T F => F
T T F => T
F F T => F
T F T => F
F T T => T
T T T => T

Raku

(formerly Perl 6)

Works with: Rakudo version 2016.01
use MONKEY-SEE-NO-EVAL;

sub MAIN ($x) {
    my @n = $x.comb(/<ident>/);
    my &fun = EVAL "-> {('\\' «~« @n).join(',')} \{ [{ (|@n,"so $x").join(',') }] \}";

    say (|@n,$x).join("\t");
    .join("\t").say for map &fun, flat map { .fmt("\%0{+@n}b").comb».Int».so }, 0 ..^ 2**@n;
    say '';
}
Output:
$ truthtable 'A ^ B'
A   B   A ^ B
False   False   False
False   True    True
True    False   True
True    True    False

$ truthtable 'foo & bar | baz'
foo bar baz foo & bar | baz
False   False   False   False
False   False   True    True
False   True    False   False
False   True    True    True
True    False   False   False
True    False   True    True
True    True    False   True
True    True    True    True

$ truthtable 'Jim & (Spock ^ Bones) | Scotty'
Jim Spock   Bones   Scotty  Jim & (Spock ^ Bones) | Scotty
False   False   False   False   False
False   False   False   True    True
False   False   True    False   False
False   False   True    True    True
False   True    False   False   False
False   True    False   True    True
False   True    True    False   False
False   True    True    True    True
True    False   False   False   False
True    False   False   True    True
True    False   True    False   True
True    False   True    True    True
True    True    False   False   True
True    True    False   True    True
True    True    True    False   False
True    True    True    True    True

REXX

I had the thought that this program would just transform the boolean expression into what REXX approves of, and just step
through the 26 possible propositional constants (which makes a deeply nested DO construct, if nothing else, it looks pretty).
I later added support for all 16 boolean functions --- REXX natively supports three infix operators:

  •   &     (and)
  •   |       (or)
  •   &&     (xor)

and one prefix operator:

  •   ¬     (not,   negation).

Some REXX interpreters also (or instead) support:

  •   \     (backslash)
  •   /     (forward slash,   solidus)
  •   ~     (tilde)
  •   ^     (caret,   circumflex,   hat)

Also included is support for two boolean values: TRUE and FALSE which are part of boolean expressions.

/*REXX program displays a truth table of  variables and an expression.   Infix notation */
/*─────────────── is supported with one character propositional constants;  variables   */
/*─────────────── (propositional constants) that are allowed:  A──►Z,  a──►z   except u.*/
/*─────────────── All propositional constants are case insensitive (except lowercase u).*/

parse arg userText                               /*get optional expression from the CL. */
if userText\=''  then do                         /*Got one?   Then show user's stuff.   */
                      call truthTable userText   /*display truth table for the userText.*/
                      exit                       /*we're finished with the user's text. */
                      end

call truthTable  "G ^ H ; XOR"                   /*text after ; is echoed to the output.*/
call truthTable  "i | j ; OR"
call truthTable  "G nxor H ; NXOR"
call truthTable  "k ! t ; NOR"
call truthTable  "p & q ; AND"
call truthTable  "e ¡ f ; NAND"
call truthTable  "S | (T ^ U)"
call truthTable  "(p=>q) v (q=>r)"
call truthTable  "A ^ (B ^ (C ^ D))"
exit                                             /*quit while we're ahead,  by golly.   */

    /* ↓↓↓ no way, Jose. ↓↓↓ */                  /* [↓]  shows a 32,768 line truth table*/
call truthTable  "A^ (B^ (C^ (D^ (E^ (F^ (G^ (H^ (I^ (J^ (L^ (L^ (M^ (N^O)  ))))))))))))"
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
truthTable: procedure; parse arg $ ';' comm 1 $o;        $o=  strip($o);      hdrPCs=
               $= translate(strip($), '|', "v");         $u=  $;              upper $u
              $u= translate($u, '()()()', "[]{}«»");     $$.= 0;              PCs=
            @abc= 'abcdefghijklmnopqrstuvwxyz';          @abcU= @abc;         upper @abcU

/* ╔═════════════════════╦════════════════════════════════════════════════════════════╗
   ║                     ║                  bool(bitsA, bitsB, BF)                    ║
   ║                     ╟────────────────────────────────────────────────────────────╢
   ║                     ║ performs the boolean function  BF    ┌──────┬─────────┐    ║
   ║                     ║      on the   A   bitstring          │  BF  │ common  │    ║
   ║                     ║    with the   B   bitstring.         │ value│  name   │    ║
   ║                     ║                                      ├──────┼─────────┤    ║
   ║                     ║ BF   must be a  one to four bit      │ 0000 │boolfalse│    ║
   ║                     ║ value  (from  0000 ──► 1111),        │ 0001 │ and     │    ║
   ║  This boxed table   ║ leading zeroes can be omitted.       │ 0010 │ NaIMPb  │    ║
   ║ was re─constructed  ║                                      │ 0011 │ boolB   │    ║
   ║   from an old IBM   ║ BF   may have multiple values (one   │ 0100 │ NbIMPa  │    ║
   ║    publicastion:    ║ for each pair of bitstrings):        │ 0101 │ boolA   │    ║
   ║                     ║                                      │ 0110 │ xor     │    ║
   ║   "PL/I Language    ║  ┌──────┬──────┬───────────────┐     │ 0111 │ or      │    ║
   ║   Specifications"   ║  │ Abit │ Bbit │   returns     │     │ 1000 │ nor     │    ║
   ║                     ║  ├──────┼──────┼───────────────┤     │ 1001 │ nxor    │    ║
   ║                     ║  │   0  │   0  │ 1st bit in BF │     │ 1010 │ notB    │    ║
   ║                     ║  │   0  │   1  │ 2nd bit in BF │     │ 1011 │ bIMPa   │    ║
   ║   ─── March 1969.   ║  │   1  │   0  │ 3rd bit in BF │     │ 1100 │ notA    │    ║
   ║                     ║  │   1  │   1  │ 4th bit in BF │     │ 1101 │ aIMPb   │    ║
   ║                     ║  └──────┴──────┴───────────────┘     │ 1110 │ nand    │    ║
   ║                     ║                                      │ 1111 │booltrue │    ║
   ║                     ║                                   ┌──┴──────┴─────────┤    ║
   ║                     ║                                   │ A  0101           │    ║
   ║                     ║                                   │ B  0011           │    ║
   ║                     ║                                   └───────────────────┘    ║
   ╚═════════════════════╩════════════════════════════════════════════════════════════╝ */

  @= 'ff'x                                       /* [↓]  ───── infix operators (0──►15) */
  op.=                                           /*Note:   a  single quote  (')  wasn't */
                                                 /*            implemented for negation.*/
  op.0 = 'false  boolFALSE'                      /*unconditionally  FALSE               */
  op.1 = '&      and *'                          /* AND,  conjunction                   */
  op.2 = 'naimpb NaIMPb'                         /*not A implies B                      */
  op.3 = 'boolb  boolB'                          /*B  (value of)                        */
  op.4 = 'nbimpa NbIMPa'                         /*not B implies A                      */
  op.5 = 'boola  boolA'                          /*A  (value of)                        */
  op.6 = '&&     xor % ^'                        /* XOR,  exclusive OR                  */
  op.7 = '|      or + v'                         /*  OR,  disjunction                   */
  op.8 = 'nor    nor ! ↓'                        /* NOR,  not OR,  Pierce operator      */
  op.9 = 'xnor   xnor nxor'                      /*NXOR,  not exclusive OR,  not XOR    */
  op.10= 'notb   notB'                           /*not B  (value of)                    */
  op.11= 'bimpa  bIMPa'                          /*    B  implies A                     */
  op.12= 'nota   notA'                           /*not A  (value of)                    */
  op.13= 'aimpb  aIMPb'                          /*    A  implies B                     */
  op.14= 'nand   nand ¡ ↑'                       /*NAND,  not AND,  Sheffer operator    */
  op.15= 'true   boolTRUE'                       /*unconditionally   TRUE               */
                                                 /*alphabetic names that need changing. */
  op.16= '\   NOT ~ ─ . ¬'                       /* NOT,  negation                      */
  op.17= '>   GT'                                /*conditional                          */
  op.18= '>=  GE ─> => ──> ==>'   "1a"x          /*conditional;     (see note below.)──┐*/
  op.19= '<   LT'                                /*conditional                         │*/
  op.20= '<=  LE <─ <= <── <=='                  /*conditional                         │*/
  op.21= '\=  NE ~= ─= .= ¬='                    /*conditional                         │*/
  op.22= '=   EQ EQUAL EQUALS ='  "1b"x          /*bi─conditional;  (see note below.)┐ │*/
  op.23= '0   boolTRUE'                          /*TRUEness                          │ │*/
  op.24= '1   boolFALSE'                         /*FALSEness                         ↓ ↓*/
                                                 /* [↑] glphys  '1a'x  and  "1b"x  can't*/
                                                 /*     displayed under most DOS' & such*/
    do jj=0  while  op.jj\=='' | jj<16           /*change opers ──► into what REXX likes*/
    new= word(op.jj, 1)                          /*obtain the 1st token of  infex table.*/
                                                 /* [↓]  process the rest of the tokens.*/
      do kk=2  to words(op.jj)                   /*handle each of the tokens separately.*/
      _=word(op.jj, kk);          upper _        /*obtain another token from infix table*/
      if wordpos(_, $u)==0   then iterate        /*no such animal in this string.       */
      if datatype(new, 'm')  then new!= @        /*it            needs to be transcribed*/
                             else new!= new      /*it  doesn't   need   "  "     "      */
      $u= changestr(_, $u, new!)                 /*transcribe the function (maybe).     */
      if new!==@  then $u= changeFunc($u,@,new)  /*use the internal boolean name.       */
      end   /*kk*/
    end     /*jj*/

  $u=translate($u, '()', "{}")                   /*finish cleaning up the transcribing. */

        do jj=1  for length(@abcU)               /*see what variables are being used.   */
        _= substr(@abcU, jj, 1)                  /*use the available upercase aLphabet. */
        if pos(_,$u) == 0  then iterate          /*Found one?    No, then keep looking. */
        $$.jj= 1                                 /*found:  set upper bound for it.      */
          PCs= PCs _                             /*also, add to propositional constants.*/
        hdrPCs=hdrPCS center(_,length('false'))  /*build a PC header for transcribing.  */
        end   /*jj*/

  ptr= '_────►_'                                 /*a (text) pointer for the truth table.*/
   $u= PCs '('$u")"                              /*separate the  PCs  from expression.  */
  hdrPCs= substr(hdrPCs, 2)                      /*create a header for the  PCs.        */
  say hdrPCs left('', length(ptr) - 1)   $o      /*display  PC  header and expression.  */
  say copies('───── ', words(PCs))    left('', length(ptr) -2)  copies('─', length($o))
                                                 /*Note:  "true"s:  are right─justified.*/
                do a=0  to $$.1
                 do b=0  to $$.2
                  do c=0  to $$.3
                   do d=0  to $$.4
                    do e=0  to $$.5
                     do f=0  to $$.6
                      do g=0  to $$.7
                       do h=0  to $$.8
                        do i=0  to $$.9
                         do j=0  to $$.10
                          do k=0  to $$.11
                           do l=0  to $$.12
                            do m=0  to $$.13
                             do n=0  to $$.14
                              do o=0  to $$.15
                               do p=0  to $$.16
                                do q=0  to $$.17
                                 do r=0  to $$.18
                                  do s=0  to $$.19
                                   do t=0  to $$.20
                                    do u=0  to $$.21
                                     do !=0  to $$.22
                                      do w=0  to $$.23
                                       do x=0  to $$.24
                                        do y=0  to $$.25
                                         do z=0  to $$.26;         interpret   '_='   $u
 /*evaluate truth T.*/
                                         _= changestr(1, _, '_true') /*convert 1──►_true*/
                                         _= changestr(0, _, 'false') /*convert 0──►false*/
                                         _= insert(ptr,  _, wordindex(_, words(_) )  - 1)
                                         say translate(_, , '_')     /*display truth tab*/
                                         end   /*z*/
                                        end    /*y*/
                                       end     /*x*/
                                      end      /*w*/
                                     end       /*v*/
                                    end        /*u*/
                                   end         /*t*/
                                  end          /*s*/
                                 end           /*r*/
                                end            /*q*/
                               end             /*p*/
                              end              /*o*/
                             end               /*n*/
                            end                /*m*/
                           end                 /*l*/
                          end                  /*k*/
                         end                   /*j*/
                        end                    /*i*/
                       end                     /*h*/
                      end                      /*g*/
                     end                       /*f*/
                    end                        /*e*/
                   end                         /*d*/
                  end                          /*c*/
                 end                           /*b*/
                end                            /*a*/
  say;  say
  return
/*──────────────────────────────────────────────────────────────────────────────────────*/
scan: procedure; parse arg x,at;      L= length(x);   t=L;    Lp=0;    apost=0;    quote=0
      if at<0  then      do;   t=1;   x= translate(x, '()', ")(")
                         end                      /* [↓]  get 1 or 2 chars at location J*/

            do j=abs(at)  to t  by sign(at);      _=substr(x, j ,1);   __=substr(x, j, 2)
            if quote             then do;  if _\=='"'    then iterate
                                           if __=='""'   then do;  j= j+1;  iterate;  end
                                           quote=0;  iterate
                                      end
            if apost             then do;  if _\=="'"    then iterate
                                           if __=="''"   then do;  j= j+1;  iterate;  end
                                           apost=0;   iterate
                                      end
            if _== '"'           then do;  quote=1;   iterate;  end
            if _== "'"           then do;  apost=1;   iterate;  end
            if _== ' '           then iterate
            if _== '('           then do;  Lp= Lp+1;  iterate;  end
            if Lp\==0            then do;  if _==')'     then Lp= Lp-1;     iterate;  end
            if datatype(_, 'U')  then return j - (at<0)
            if at<0              then return j + 1              /*is   _    uppercase ? */
            end   /*j*/

      return min(j, L)
/*──────────────────────────────────────────────────────────────────────────────────────*/
changeFunc: procedure;  parse arg z, fC, newF ;           funcPos= 0

              do forever
              funcPos= pos(fC, z, funcPos + 1);           if funcPos==0  then return z
              origPos= funcPos
                    z= changestr(fC, z, ",'"newF"',") /*arg 3 ≡  ",'" || newF || "-',"  */
              funcPos= funcPos + length(newF) + 4
                where= scan(z, funcPos)       ;           z= insert(    '}',  z,  where)
                where= scan(z, 1 - origPos)   ;           z= insert('bool{',  z,  where)
              end   /*forever*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
bool: procedure; arg a,?,b                              /* ◄─── ARG uppercases all args.*/

                          select                        /*SELECT chooses which function.*/
                 /*0*/    when ? == 'FALSE'   then  return 0
                 /*1*/    when ? == 'AND'     then  return a & b
                 /*2*/    when ? == 'NAIMPB'  then  return \ (\a & \b)
                 /*3*/    when ? == 'BOOLB'   then  return b
                 /*4*/    when ? == 'NBIMPA'  then  return \ (\b & \a)
                 /*5*/    when ? == 'BOOLA'   then  return a
                 /*6*/    when ? == 'XOR'     then  return a && b
                 /*7*/    when ? == 'OR'      then  return a |  b
                 /*8*/    when ? == 'NOR'     then  return \ (a |  b)
                 /*9*/    when ? == 'XNOR'    then  return \ (a && b)
                 /*a*/    when ? == 'NOTB'    then  return \ b
                 /*b*/    when ? == 'BIMPA'   then  return \ (b & \a)
                 /*c*/    when ? == 'NOTA'    then  return \ a
                 /*d*/    when ? == 'AIMPB'   then  return \ (a & \b)
                 /*e*/    when ? == 'NAND'    then  return \ (a &  b)
                 /*f*/    when ? == 'TRUE'    then  return 1
                          otherwise                 return -13
                          end   /*select*/              /* [↑]  error, unknown function.*/

Some older REXXes don't have a   changestr   BIF, so one is included here   ──►   CHANGESTR.REX.

output   when using the default inputs:

(Output is shown at three-quarter size.)

  G     H          G ^ H ; XOR
───── ─────        ───────────
false false  ────► false
false  true  ────►  true
 true false  ────►  true
 true  true  ────► false


  I     J          i | j ; OR
───── ─────        ──────────
false false  ────► false
false  true  ────►  true
 true false  ────►  true
 true  true  ────►  true


  G     H          G nxor H ; NXOR
───── ─────        ───────────────
false false  ────►  true
false  true  ────► false
 true false  ────► false
 true  true  ────►  true


  K     T          k ! t ; NOR
───── ─────        ───────────
false false  ────►  true
false  true  ────► false
 true false  ────► false
 true  true  ────► false


  P     Q          p & q ; AND
───── ─────        ───────────
false false  ────► false
false  true  ────► false
 true false  ────► false
 true  true  ────►  true


  E     F          e ¡ f ; NAND
───── ─────        ────────────
false false  ────►  true
false  true  ────►  true
 true false  ────►  true
 true  true  ────► false


  S     T     U          S | (T ^ U)
───── ───── ─────        ───────────
false false false  ────► false
false false  true  ────►  true
false  true false  ────►  true
false  true  true  ────► false
 true false false  ────►  true
 true false  true  ────►  true
 true  true false  ────►  true
 true  true  true  ────►  true


  P     Q     R          (p=>q) v (q=>r)
───── ───── ─────        ───────────────
false false false  ────►  true
false false  true  ────►  true
false  true false  ────►  true
false  true  true  ────►  true
 true false false  ────►  true
 true false  true  ────►  true
 true  true false  ────►  true
 true  true  true  ────►  true


  A     B     C     D          A ^ (B ^ (C ^ D))
───── ───── ───── ─────        ─────────────────
false false false false  ────► false
false false false  true  ────►  true
false false  true false  ────►  true
false false  true  true  ────► false
false  true false false  ────►  true
false  true false  true  ────► false
false  true  true false  ────► false
false  true  true  true  ────►  true
 true false false false  ────►  true
 true false false  true  ────► false
 true false  true false  ────► false
 true false  true  true  ────►  true
 true  true false false  ────► false
 true  true false  true  ────►  true
 true  true  true false  ────►  true
 true  true  true  true  ────► false

Ruby

Uses eval, so blindly trusts the user's input. The core true and false objects understand the methods & (and), | (or), ! (not) and ^ (xor) -- [1]

loop do
  print "\ninput a boolean expression (e.g. 'a & b'): "
  expr = gets.strip.downcase 
  break if expr.empty?

  vars = expr.scan(/\p{Alpha}+/)
  if vars.empty?
    puts "no variables detected in your boolean expression"
    next
  end

  vars.each {|v| print "#{v}\t"}
  puts "| #{expr}"

  prefix = []
  suffix = []
  vars.each do |v|
    prefix << "[false, true].each do |#{v}|"
    suffix << "end"
  end

  body = vars.inject("puts ") {|str, v| str + "#{v}.to_s + '\t' + "} 
  body += '"| " + eval(expr).to_s'

  eval (prefix + [body] + suffix).join("\n")
end

Example

input a boolean expression (e.g. 'a & b'): !a
a       | !a
false   | true
true    | false

input a boolean expression (e.g. 'a & b'): a|!b
a       b       | a|!b
false   false   | true
false   true    | false
true    false   | true
true    true    | true

input a boolean expression (e.g. 'a & b'): ((a^b)^c)^d
a       b       c       d       | ((a^b)^c)^d
false   false   false   false   | false
false   false   false   true    | true
false   false   true    false   | true
false   false   true    true    | false
false   true    false   false   | true
false   true    false   true    | false
false   true    true    false   | false
false   true    true    true    | true
true    false   false   false   | true
true    false   false   true    | false
true    false   true    false   | false
true    false   true    true    | true
true    true    false   false   | false
true    true    false   true    | true
true    true    true    false   | true
true    true    true    true    | false

Rust

The solution accepts Boolean expressions in infix notation with priorities and parentheses. Operators NOT, AND, OR and XOR are supported and recognized in a few common notations (e.g., OR, or and | are equivalent). Non-word symbols does not have to be separated with spaces, for instance a|b&c is parsed correctly.

The implementation is mostly generic (tokenizer, infix-to-postfix translation and evaluation automaton) and not limited to Boolean expressions. There is no thorough verification that the tokens form an actual infix expression though. Therefore an invalid expression may be accepted if its evaluation finishes without an error. Extending the set of implemented operators should be almost trivial without any change of the logically more complex parts.

use std::{
    collections::HashMap,
    fmt::{Display, Formatter},
    iter::FromIterator,
};

// Generic expression evaluation automaton and expression formatting support

#[derive(Clone, Debug)]
pub enum EvaluationError<T> {
    NoResults,
    TooManyResults,
    OperatorFailed(T),
}

pub trait Operator<T> {
    type Err;

    fn execute(&self, stack: &mut Vec<T>) -> Result<(), Self::Err>;
}

#[derive(Clone, Copy, Debug)]
enum Element<O> {
    Operator(O),
    Variable(usize),
}

#[derive(Clone, Debug)]
pub struct Expression<O> {
    elements: Vec<Element<O>>,
    symbols: Vec<String>,
}

impl<O> Expression<O> {
    pub fn evaluate<T>(
        &self,
        mut bindings: impl FnMut(usize) -> T,
    ) -> Result<T, EvaluationError<O::Err>>
    where
        O: Operator<T>,
    {
        let mut stack = Vec::new();

        for element in self.elements.iter() {
            match element {
                Element::Variable(index) => stack.push(bindings(*index)),
                Element::Operator(op) => op
                    .execute(&mut stack)
                    .map_err(EvaluationError::OperatorFailed)?,
            }
        }

        match stack.pop() {
            Some(result) if stack.is_empty() => Ok(result),
            Some(_) => Err(EvaluationError::TooManyResults),
            None => Err(EvaluationError::NoResults),
        }
    }

    pub fn symbols(&self) -> &[String] {
        &self.symbols
    }

    pub fn formatted(&self) -> Result<String, EvaluationError<O::Err>>
    where
        O: Operator<Formatted>,
    {
        self.evaluate(|index| Formatted(self.symbols[index].clone()))
            .map(|formatted| formatted.0)
    }
}

#[derive(Clone, Debug)]
pub struct Formatted(pub String);

impl Display for Formatted {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl<O> Display for Expression<O>
where
    O: Operator<Formatted>,
{
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self.formatted() {
            Ok(result) => write!(f, "{}", result),
            Err(_) => write!(f, "<malformed expression>"),
        }
    }
}

// Generic parts of the parsing machinery

#[derive(Clone, Copy, Debug)]
pub enum Token<'a, O> {
    LBrace,
    RBrace,
    Operator(O),
    Variable(&'a str),
    Malformed(&'a str),
}

pub type Symbol<'a, O> = (&'a str, bool, Token<'a, O>);

#[derive(Debug)]
pub struct Tokens<'a, O> {
    source: &'a str,
    symbols: &'a [Symbol<'a, O>],
}

impl<'a, O> Tokens<'a, O> {
    pub fn new(source: &'a str, symbols: &'a [Symbol<'a, O>]) -> Self {
        Self { source, symbols }
    }
}

impl<'a, O: Clone> Iterator for Tokens<'a, O> {
    type Item = Token<'a, O>;

    fn next(&mut self) -> Option<Self::Item> {
        self.source = self.source.trim_start();

        let symbol = self.symbols.iter().find_map(|(symbol, word, token)| {
            if self.source.starts_with(symbol) {
                let end = symbol.len();

                if *word {
                    match &self.source[end..].chars().next() {
                        Some(c) if !c.is_whitespace() => return None,
                        _ => (),
                    }
                }

                Some((token, end))
            } else {
                None
            }
        });

        if let Some((token, end)) = symbol {
            self.source = &self.source[end..];
            Some(token.clone())
        } else {
            match self.source.chars().next() {
                Some(c) if c.is_alphabetic() => {
                    let end = self
                        .source
                        .char_indices()
                        .find_map(|(i, c)| Some(i).filter(|_| !c.is_alphanumeric()))
                        .unwrap_or_else(|| self.source.len());

                    let result = &self.source[0..end];
                    self.source = &self.source[end..];
                    Some(Token::Variable(result))
                }

                Some(c) => {
                    let end = c.len_utf8();
                    let result = &self.source[0..end];
                    self.source = &self.source[end..];
                    Some(Token::Malformed(result))
                }

                None => None,
            }
        }
    }
}

pub trait WithPriority {
    type Priority;

    fn priority(&self) -> Self::Priority;
}

impl<'a, O> FromIterator<Token<'a, O>> for Result<Expression<O>, Token<'a, O>>
where
    O: WithPriority,
    O::Priority: Ord,
{
    fn from_iter<T: IntoIterator<Item = Token<'a, O>>>(tokens: T) -> Self {
        let mut token_stack = Vec::new();
        let mut indices = HashMap::new();
        let mut symbols = Vec::new();
        let mut elements = Vec::new();

        'outer: for token in tokens {
            match token {
                Token::Malformed(_) => return Err(token),
                Token::LBrace => token_stack.push(token),
                Token::RBrace => {
                    // Flush all operators to the matching LBrace
                    while let Some(token) = token_stack.pop() {
                        match token {
                            Token::LBrace => continue 'outer,
                            Token::Operator(op) => elements.push(Element::Operator(op)),
                            _ => return Err(token),
                        }
                    }
                }

                Token::Variable(name) => {
                    let index = indices.len();
                    let symbol = name.to_string();
                    let index = *indices.entry(symbol.clone()).or_insert_with(|| {
                        symbols.push(symbol);
                        index
                    });

                    elements.push(Element::Variable(index));
                }

                Token::Operator(ref op) => {
                    while let Some(token) = token_stack.pop() {
                        match token {
                            Token::Operator(pop) if op.priority() < pop.priority() => {
                                elements.push(Element::Operator(pop));
                            }

                            Token::Operator(pop) => {
                                token_stack.push(Token::Operator(pop));
                                break;
                            }

                            _ => {
                                token_stack.push(token);
                                break;
                            }
                        }
                    }

                    token_stack.push(token);
                }
            }
        }

        // Handle leftovers
        while let Some(token) = token_stack.pop() {
            match token {
                Token::Operator(op) => elements.push(Element::Operator(op)),
                _ => return Err(token),
            }
        }

        Ok(Expression { elements, symbols })
    }
}

// Definition of Boolean operators

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Boolean {
    Or,
    Xor,
    And,
    Not,
}

impl Display for Boolean {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        let s = match self {
            Self::Or => "∨",
            Self::And => "∧",
            Self::Not => "¬",
            Self::Xor => "⩛",
        };

        write!(f, "{}", s)
    }
}

impl WithPriority for Boolean {
    type Priority = u8;

    fn priority(&self) -> u8 {
        match self {
            Self::Or => 0,
            Self::Xor => 1,
            Self::And => 2,
            Self::Not => 3,
        }
    }
}

#[derive(Clone, Debug)]
pub enum BooleanError {
    StackUnderflow,
}

impl Operator<bool> for Boolean {
    type Err = BooleanError;

    fn execute(&self, stack: &mut Vec<bool>) -> Result<(), Self::Err> {
        let mut pop = || stack.pop().ok_or(BooleanError::StackUnderflow);

        let result = match self {
            Boolean::Or => pop()? | pop()?,
            Boolean::And => pop()? & pop()?,
            Boolean::Xor => pop()? ^ pop()?,
            Boolean::Not => !pop()?,
        };

        stack.push(result);
        Ok(())
    }
}

impl Operator<Formatted> for Boolean {
    type Err = BooleanError;

    fn execute(&self, stack: &mut Vec<Formatted>) -> Result<(), Self::Err> {
        let mut pop = || stack.pop().ok_or(BooleanError::StackUnderflow);

        let result = match self {
            Boolean::Not => format!("{}{}", Boolean::Not, pop()?),

            binary_operator => {
                // The stack orders the operands backwards, so to format them
                // properly, we have to count with the reversed popping order
                let b = pop()?;
                let a = pop()?;
                format!("({} {} {})", a, binary_operator, b)
            }
        };

        stack.push(Formatted(result));
        Ok(())
    }
}

impl Boolean {
    // It is important for the tokens to be ordered by their parsing priority (if
    // some operator was a prefix of another operator, the prefix must come later)
    const SYMBOLS: [Symbol<'static, Boolean>; 18] = [
        ("(", false, Token::LBrace),
        (")", false, Token::RBrace),
        ("|", false, Token::Operator(Boolean::Or)),
        ("∨", false, Token::Operator(Boolean::Or)),
        ("or", true, Token::Operator(Boolean::Or)),
        ("OR", true, Token::Operator(Boolean::Or)),
        ("&", false, Token::Operator(Boolean::And)),
        ("∧", false, Token::Operator(Boolean::And)),
        ("and", true, Token::Operator(Boolean::And)),
        ("AND", true, Token::Operator(Boolean::And)),
        ("!", false, Token::Operator(Boolean::Not)),
        ("¬", false, Token::Operator(Boolean::Not)),
        ("not", true, Token::Operator(Boolean::Not)),
        ("NOT", true, Token::Operator(Boolean::Not)),
        ("^", false, Token::Operator(Boolean::Xor)),
        ("⩛", false, Token::Operator(Boolean::Xor)),
        ("xor", true, Token::Operator(Boolean::Xor)),
        ("XOR", true, Token::Operator(Boolean::Xor)),
    ];

    pub fn tokenize(s: &str) -> Tokens<'_, Boolean> {
        Tokens::new(s, &Self::SYMBOLS)
    }

    pub fn parse<'a>(s: &'a str) -> Result<Expression<Boolean>, Token<'a, Boolean>> {
        Self::tokenize(s).collect()
    }
}

// Finally the table printing

fn print_truth_table(s: &str) -> Result<(), std::borrow::Cow<'_, str>> {
    let expression = Boolean::parse(s).map_err(|e| format!("Parsing failed at token {:?}", e))?;

    let formatted = expression
        .formatted()
        .map_err(|_| "Malformed expression detected.")?;

    let var_count = expression.symbols().len();
    if var_count > 64 {
        return Err("Too many variables to list.".into());
    }

    let column_widths = {
        // Print header and compute the widths of columns
        let mut widths = Vec::with_capacity(var_count);

        for symbol in expression.symbols() {
            print!("{}  ", symbol);
            widths.push(symbol.chars().count() + 2); // Include spacing
        }

        println!("{}", formatted);
        let width = widths.iter().sum::<usize>() + formatted.chars().count();
        (0..width).for_each(|_| print!("-"));
        println!();

        widths
    };

    // Choose the bit extraction order for the more traditional table ordering
    let var_value = |input, index| (input >> (var_count - 1 - index)) & 1 ^ 1;
    // Use counter to enumerate all bit combinations
    for var_values in 0u64..(1 << var_count) {
        for (var_index, width) in column_widths.iter().enumerate() {
            let value = var_value(var_values, var_index);
            print!("{:<width$}", value, width = width);
        }

        match expression.evaluate(|var_index| var_value(var_values, var_index) == 1) {
            Ok(result) => println!("{}", if result { "1" } else { "0" }),
            Err(e) => println!("{:?}", e),
        }
    }

    println!();
    Ok(())
}

fn main() {
    loop {
        let input = {
            println!("Enter the expression to parse (or nothing to quit):");
            let mut input = String::new();
            std::io::stdin().read_line(&mut input).unwrap();
            println!();
            input
        };

        if input.trim().is_empty() {
            break;
        }

        if let Err(e) = print_truth_table(&input) {
            eprintln!("{}\n", e);
        }
    }
}
Output:
Enter the expression to parse (or nothing to quit):
Jim & (Spock xor Bones) | Scotty

Jim  Spock  Bones  Scotty  ((Jim ∧ (Spock ⩛ Bones)) ∨ Scotty)
-------------------------------------------------------------
1    1      1      1       1
1    1      1      0       0
1    1      0      1       1
1    1      0      0       1
1    0      1      1       1
1    0      1      0       1
1    0      0      1       1
1    0      0      0       0
0    1      1      1       1
0    1      1      0       0
0    1      0      1       1
0    1      0      0       0
0    0      1      1       1
0    0      1      0       0
0    0      0      1       1
0    0      0      0       0

Enter the expression to parse (or nothing to quit):

SETL

program truth_table;
    exprstr := "" +/ command_line;
    if exprstr = "" then
        print("Enter a Boolean expression on the command line.");
    else
        showtable(exprstr);
    end if;

    proc showtable(exprstr);
        if (toks := tokenize(exprstr)) = om then return; end if;
        if (bexp := parse(toks)) = om then return; end if;
        vars := [v : v in getvars(bexp)]; $ fix the variable order

        $ show table header
        tabh := "";
        loop for v in vars do
            tabh +:= v + " ";
        end loop;
        print(tabh +:= "| " + exprstr);
        print('-' * #tabh);

        $ show table rows
        loop for inst in instantiations(vars) do
            loop for v in vars do
                putchar(rpad(showbool(inst(v)), #v) + " ");
            end loop;
            print("| " + showbool(booleval(bexp, inst)));
        end loop;
    end proc;

    proc showbool(b); return if b then "1" else "0" end if; end proc;

    proc instantiations(vars);
        insts := [];
        loop for i in [0..2**#vars-1] do
            inst := {};
            loop for v in vars do
                inst(v) := i mod 2 /= 0;
                i div:= 2;
            end loop;
            insts with:= inst;
        end loop;
        return insts;
    end proc;

    proc booleval(tokens, inst);
        stack := [];
        loop for token in tokens do
            case token of
                ("~"): x frome stack; stack with:= not x;
                ("&"): y frome stack; x frome stack; stack with:= x and y;
                ("|"): y frome stack; x frome stack; stack with:= x or y;
                ("^"): y frome stack; x frome stack; stack with:= x /= y;
                ("=>"): y frome stack; x frome stack; stack with:= x impl y;
                ("0"): stack with:= false;
                ("1"): stack with:= true;
                else stack with:= inst(token);
            end case;
        end loop;
        answer frome stack;
        return answer;
    end proc;

    proc getvars(tokens);
        return {tok : tok in tokens | to_upper(tok(1)) in "ABCDEFGHIJKLMNOPQRSTUVWXYZ_"};
    end proc;

    proc parse(tokens);
        ops := {["~", 4], ["&", 3], ["|", 2], ["^", 2], ["=>", 1]};
        stack := [];
        queue := [];
        loop for token in tokens do
            if token in domain ops then
                loop while stack /= []
                       and (top := stack(#stack)) /= "("
                       and ops(top) > ops(token) do
                    oper frome stack;
                    queue with:= oper;
                end loop;
                stack with:= token;
            elseif token = "(" then
                stack with:= token;
            elseif token = ")" then
                loop doing
                    if stack = [] then
                        print("Missing (.");
                        return om;
                    end if;
                    oper frome stack;
                while oper /= "(" do
                    queue with:= oper;
                end loop;
            elseif token(1) in "23456789" then
                print("Invalid boolean ", token);
                return om;
            else
                queue with:= token;
            end if;
        end loop;

        loop while stack /= [] do
            oper frome stack;
            if oper = "(" then
                print("Missing ).");
                return om;
            end if;
            queue with:= oper;
        end loop;
        return queue;
    end proc;

    proc tokenize(s);
        varchars := "abcdefghijklmnopqrstuvwxyz";
        varchars +:= to_upper(varchars);
        varchars +:= "0123456789_";

        tokens := [];

        loop doing span(s, " \t\n"); while s /= "" do
            if (tok := any(s, "()&|~^")) /= ""      $ brackets/single char operators
            or (tok := match(s, "=>")) /= ""        $ implies (=>)
            or (tok := span(s, "0123456789")) /= "" $ numbers
            or (tok := span(s, varchars)) /= ""     $ variables
            then
                tokens with:= tok;
            else
                print("Parse error at", s);
                return om;
            end if;
        end loop;
        return tokens;
    end proc;
end program;
Output:
$ setl truth.setl '(human=>mortal) & (socrates=>human) => (socrates=>mortal)'
human mortal socrates | (human=>mortal) & (socrates=>human) => (socrates=>mortal)
---------------------------------------------------------------------------------
0     0      0        | 1
1     0      0        | 1
0     1      0        | 1
1     1      0        | 1
0     0      1        | 1
1     0      1        | 1
0     1      1        | 1
1     1      1        | 1

Sidef

Translation of: Ruby

A simple solution which accepts arbitrary user-input:

loop {
  var expr = Sys.readln("\nBoolean expression (e.g. 'a & b'): ").strip.lc
  break if expr.is_empty;

  var vars = expr.scan(/[[:alpha:]]+/)
  if (vars.is_empty) {
    say "no variables detected in your boolean expression"
    next
  }

  var prefix = [];
  var suffix = [];

  vars.each { |v|
    print "#{v}\t"
    prefix << "[false, true].each { |#{v}|"
    suffix << "}"
  }
  say "| #{expr}"

  var body = ("say (" + vars.map{|v| v+",'\t'," }.join + " '| ', #{expr})")
  eval(prefix + [body] + suffix -> join("\n"))
}
Output:
Boolean expression (e.g. 'a & b'): (a & b) | c
a   b   c   | (a & b) | c
false   false   false   | false
false   false   true    | true
false   true    false   | false
false   true    true    | true
true    false   false   | false
true    false   true    | true
true    true    false   | true
true    true    true    | true

Smalltalk

Works with: Smalltalk/X
[:repeat |
    expr := Stdin 
              request:'Enter boolean expression (name variables a,b,c...):' 
              defaultAnswer:'a|b'.
    ast := Parser parseExpression:expr inNameSpace:nil onError:repeat.
    "
     ensure that only boolean logic operations are inside (sandbox)
    "
    (ast messageSelectors asSet 
        conform:[:each | #( '|' '&' 'not' 'xor:' '==>' ) includes:each]) 
          ifFalse:repeat.
] valueWithRestart.

"
 extract variables from the AST as a collection 
 (i.e. if user entered 'a & (b | x)', we get #('a' 'b' 'x')
"
varNames := StringCollection streamContents:[:s | ast variableNodesDo:[:each | s nextPut:each name]].

" 
 generate code for a block (aka lambda) to evaluate it; this makes a string like:
   [:a :b :x | a & (b | x) ]
"
code := '[' , ((varNames collect:[:nm | ':',nm]) asString), ' | ' , expr , ']'.

"
 eval the code, to get the block
"
func := Parser evaluate:code.

'Truth table for %s:\n' printf:{expr} on:Stdout.
'===================\n' printf:{} on:Stdout.
(varNames,{' result'}) do:[:each | '|%6s' printf:{each} on:Stdout].
Stdout cr.
Stdout next:(varNames size + 1)*7 put:$-.
Stdout cr.

"
 now print with all combinations
"
allCombinationsDo :=
    [:remainingVars :valuesIn :func |
        remainingVars isEmpty ifTrue:[
            valuesIn do:[:each | '|%6s' printf:{each}on:Stdout].
            '|%6s\n' printf:{ func valueWithArguments:valuesIn} on:Stdout.
        ] ifFalse:[
            #(false true) do:[:each |    
                allCombinationsDo value:(remainingVars from:2)
                                  value:(valuesIn copyWith:each)    
                                  value:func.    
            ].
        ].
    ].

allCombinationsDo value:varNames value:#() value:func
Output:
Enter boolean expression (name variables a,b,c...): [[a|b]]:
a&b|c
Truth table for (a&b)|x:
===================
|     a|     b|     x| result
----------------------------
| false| false| false| false
| false| false|  true|  true
| false|  true| false| false
| false|  true|  true|  true
|  true| false| false| false
|  true| false|  true|  true
|  true|  true| false|  true
|  true|  true|  true|  true

Enter boolean expression (name variables a,b,c...): [a|b]: (a|b) ==> (c xor: d) 
Truth table for (a|b) ==> (c xor: d) :
===================
|     a|     b|     c|     d| result
-----------------------------------
| false| false| false| false|  true
| false| false| false|  true|  true
| false| false|  true| false|  true
| false| false|  true|  true|  true
| false|  true| false| false| false
| false|  true| false|  true|  true
| false|  true|  true| false|  true
| false|  true|  true|  true| false
|  true| false| false| false| false
|  true| false| false|  true|  true
|  true| false|  true| false|  true
|  true| false|  true|  true| false
|  true|  true| false| false| false
|  true|  true| false|  true|  true
|  true|  true|  true| false|  true
|  true|  true|  true|  true| false

Tcl

package require Tcl 8.5

puts -nonewline "Enter a boolean expression: "
flush stdout
set exp [gets stdin]

# Generate the nested loops as the body of a lambda term.
set vars [lsort -unique [regexp -inline -all {\$\w+} $exp]]
set cmd [list format [string repeat "%s\t" [llength $vars]]%s]
append cmd " {*}\[[list subst $vars]\] \[[list expr $exp]\]"
set cmd "puts \[$cmd\]"
foreach v [lreverse $vars] {
    set cmd [list foreach [string range $v 1 end] {0 1} $cmd]
}

puts [join $vars \t]\tResult
apply [list {} $cmd]

Sample run:

Enter a boolean expression: ($a&&$b)||$c
$a  $b  $c  Result
0   0   0   0
0   0   1   1
0   1   0   0
0   1   1   1
1   0   0   0
1   0   1   1
1   1   0   1
1   1   1   1

Visual Basic .NET

Translation of: C#
Imports System.Text

Module Module1
    Structure Operator_
        Public ReadOnly Symbol As Char
        Public ReadOnly Precedence As Integer
        Public ReadOnly Arity As Integer
        Public ReadOnly Fun As Func(Of Boolean, Boolean, Boolean)

        Public Sub New(symbol As Char, precedence As Integer, f As Func(Of Boolean, Boolean))
            Me.New(symbol, precedence, 1, Function(l, r) f(r))
        End Sub

        Public Sub New(symbol As Char, precedence As Integer, f As Func(Of Boolean, Boolean, Boolean))
            Me.New(symbol, precedence, 2, f)
        End Sub

        Public Sub New(symbol As Char, precedence As Integer, arity As Integer, fun As Func(Of Boolean, Boolean, Boolean))
            Me.Symbol = symbol
            Me.Precedence = precedence
            Me.Arity = arity
            Me.Fun = fun
        End Sub
    End Structure

    Public Class OperatorCollection
        Implements IEnumerable(Of Operator_)

        ReadOnly operators As IDictionary(Of Char, Operator_)

        Public Sub New(operators As IDictionary(Of Char, Operator_))
            Me.operators = operators
        End Sub

        Public Sub Add(symbol As Char, precedence As Integer, fun As Func(Of Boolean, Boolean))
            operators.Add(symbol, New Operator_(symbol, precedence, fun))
        End Sub
        Public Sub Add(symbol As Char, precedence As Integer, fun As Func(Of Boolean, Boolean, Boolean))
            operators.Add(symbol, New Operator_(symbol, precedence, fun))
        End Sub

        Public Sub Remove(symbol As Char)
            operators.Remove(symbol)
        End Sub

        Public Function GetEnumerator() As IEnumerator(Of Operator_) Implements IEnumerable(Of Operator_).GetEnumerator
            Return operators.Values.GetEnumerator
        End Function

        Private Function IEnumerable_GetEnumerator() As IEnumerator Implements IEnumerable.GetEnumerator
            Return GetEnumerator()
        End Function
    End Class

    Structure BitSet
        Private ReadOnly bits As Integer

        Public Sub New(bits As Integer)
            Me.bits = bits
        End Sub

        Public Shared Operator +(bs As BitSet, v As Integer) As BitSet
            Return New BitSet(bs.bits + v)
        End Operator

        Default Public ReadOnly Property Test(index As Integer) As Boolean
            Get
                Return (bits And (1 << index)) <> 0
            End Get
        End Property
    End Structure

    Public Class TruthTable
        Enum TokenType
            Unknown
            WhiteSpace
            Constant
            Operand
            Operator_
            LeftParenthesis
            RightParenthesis
        End Enum

        ReadOnly falseConstant As Char
        ReadOnly trueConstant As Char
        ReadOnly operatorDict As New Dictionary(Of Char, Operator_)

        Public ReadOnly Operators As OperatorCollection

        Sub New(falseConstant As Char, trueConstant As Char)
            Me.falseConstant = falseConstant
            Me.trueConstant = trueConstant
            Operators = New OperatorCollection(operatorDict)
        End Sub

        Private Function TypeOfToken(c As Char) As TokenType
            If Char.IsWhiteSpace(c) Then
                Return TokenType.WhiteSpace
            End If
            If c = "("c Then
                Return TokenType.LeftParenthesis
            End If
            If c = ")"c Then
                Return TokenType.RightParenthesis
            End If
            If c = trueConstant OrElse c = falseConstant Then
                Return TokenType.Constant
            End If
            If operatorDict.ContainsKey(c) Then
                Return TokenType.Operator_
            End If
            If Char.IsLetter(c) Then
                Return TokenType.Operand
            End If

            Return TokenType.Unknown
        End Function

        Private Function Precedence(op As Char) As Integer
            Dim o As New Operator_
            If operatorDict.TryGetValue(op, o) Then
                Return o.Precedence
            Else
                Return Integer.MinValue
            End If
        End Function

        Public Function ConvertToPostfix(infix As String) As String
            Dim stack As New Stack(Of Char)
            Dim postfix As New StringBuilder()
            For Each c In infix
                Dim type = TypeOfToken(c)
                Select Case type
                    Case TokenType.WhiteSpace
                        Continue For
                    Case TokenType.Constant, TokenType.Operand
                        postfix.Append(c)
                    Case TokenType.Operator_
                        Dim precedence_ = Precedence(c)
                        While stack.Count > 0 AndAlso Precedence(stack.Peek()) > precedence_
                            postfix.Append(stack.Pop())
                        End While
                        stack.Push(c)
                    Case TokenType.LeftParenthesis
                        stack.Push(c)
                    Case TokenType.RightParenthesis
                        Dim top As Char
                        While stack.Count > 0
                            top = stack.Pop()
                            If top = "("c Then
                                Exit While
                            Else
                                postfix.Append(top)
                            End If
                        End While
                        If top <> "("c Then
                            Throw New ArgumentException("No matching left parenthesis.")
                        End If
                    Case Else
                        Throw New ArgumentException("Invalid character: " + c)
                End Select
            Next
            While stack.Count > 0
                Dim top = stack.Pop()
                If top = "("c Then
                    Throw New ArgumentException("No matching right parenthesis.")
                End If
                postfix.Append(top)
            End While
            Return postfix.ToString
        End Function

        Private Function Evaluate(expression As Stack(Of Char), values As BitSet, parameters As IDictionary(Of Char, Integer)) As Boolean
            If expression.Count = 0 Then
                Throw New ArgumentException("Invalid expression.")
            End If
            Dim c = expression.Pop()
            Dim type = TypeOfToken(c)
            While type = TokenType.WhiteSpace
                c = expression.Pop()
                type = TypeOfToken(c)
            End While
            Select Case type
                Case TokenType.Constant
                    Return c = trueConstant
                Case TokenType.Operand
                    Return values(parameters(c))
                Case TokenType.Operator_
                    Dim right = Evaluate(expression, values, parameters)
                    Dim op = operatorDict(c)
                    If op.Arity = 1 Then
                        Return op.Fun(right, right)
                    End If

                    Dim left = Evaluate(expression, values, parameters)
                    Return op.Fun(left, right)
                Case Else
                    Throw New ArgumentException("Invalid character: " + c)
            End Select

            Return False
        End Function

        Public Iterator Function GetTruthTable(expression As String, Optional isPostfix As Boolean = False) As IEnumerable(Of String)
            If String.IsNullOrWhiteSpace(expression) Then
                Throw New ArgumentException("Invalid expression.")
            End If
            REM Maps parameters to an index in BitSet
            REM Makes sure they appear in the truth table in the order they first appear in the expression
            Dim parameters = expression _
                .Where(Function(c) TypeOfToken(c) = TokenType.Operand) _
                .Distinct() _
                .Reverse() _
                .Select(Function(c, i) Tuple.Create(c, i)) _
                .ToDictionary(Function(p) p.Item1, Function(p) p.Item2)

            Dim count = parameters.Count
            If count > 32 Then
                Throw New ArgumentException("Cannot have more than 32 parameters.")
            End If
            Dim header = If(count = 0, expression, String.Join(" ", parameters.OrderByDescending(Function(p) p.Value).Select(Function(p) p.Key)) & " " & expression)
            If Not isPostfix Then
                expression = ConvertToPostfix(expression)
            End If

            Dim values As BitSet
            Dim stack As New Stack(Of Char)(expression.Length)

            Dim loopy = 1 << count
            While loopy > 0
                For Each token In expression
                    stack.Push(token)
                Next
                Dim result = Evaluate(stack, values, parameters)
                If Not IsNothing(header) Then
                    If stack.Count > 0 Then
                        Throw New ArgumentException("Invalid expression.")
                    End If
                    Yield header
                    header = Nothing
                End If

                Dim line = If(count = 0, "", " ") + If(result, trueConstant, falseConstant)
                line = String.Join(" ", Enumerable.Range(0, count).Select(Function(i) If(values(count - i - 1), trueConstant, falseConstant))) + line
                Yield line
                values += 1
                ''''''''''''''''''''''''''''
                loopy -= 1
            End While
        End Function

        Public Sub PrintTruthTable(expression As String, Optional isPostfix As Boolean = False)
            Try
                For Each line In GetTruthTable(expression, isPostfix)
                    Console.WriteLine(line)
                Next
            Catch ex As ArgumentException
                Console.WriteLine(expression + "   " + ex.Message)
            End Try
        End Sub
    End Class

    Sub Main()
        Dim tt As New TruthTable("F"c, "T"c)
        tt.Operators.Add("!"c, 6, Function(r) Not r)
        tt.Operators.Add("&"c, 5, Function(l, r) l And r)
        tt.Operators.Add("^"c, 4, Function(l, r) l Xor r)
        tt.Operators.Add("|"c, 3, Function(l, r) l Or r)
        REM add a crazy operator
        Dim rng As New Random
        tt.Operators.Add("?"c, 6, Function(r) rng.NextDouble() < 0.5)
        Dim expressions() = {
            "!!!T",
            "?T",
            "F & x | T",
            "F & (x | T",
            "F & x | T)",
            "a ! (a & a)",
            "a | (a * a)",
            "a ^ T & (b & !c)"
        }
        For Each expression In expressions
            tt.PrintTruthTable(expression)
            Console.WriteLine()
        Next

        REM Define a different language
        tt = New TruthTable("0"c, "1"c)
        tt.Operators.Add("-"c, 6, Function(r) Not r)
        tt.Operators.Add("^"c, 5, Function(l, r) l And r)
        tt.Operators.Add("v"c, 3, Function(l, r) l Or r)
        tt.Operators.Add(">"c, 2, Function(l, r) Not l Or r)
        tt.Operators.Add("="c, 1, Function(l, r) l = r)
        expressions = {
            "-X v 0 = X ^ 1",
            "(H > M) ^ (S > H) > (S > M)"
        }
        For Each expression In expressions
            tt.PrintTruthTable(expression)
            Console.WriteLine()
        Next
    End Sub

End Module
Output:
!!!T
F

?T
T

x F & x | T
F T
T T

F & (x | T   No matching right parenthesis.

F & x | T)   No matching left parenthesis.

a ! (a & a)   Invalid expression.

a | (a * a)   Invalid character: *

a b c a ^ T & (b & !c)
F F F F
F F T F
F T F T
F T T F
T F F T
T F T T
T T F F
T T T T

X -X v 0 = X ^ 1
0 0
1 0

H M S (H > M) ^ (S > H) > (S > M)
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Wren

Translation of: Kotlin
Library: Wren-dynamic
Library: Wren-ioutil
Library: Wren-seq
Library: Wren-str
import "./dynamic" for Struct
import "./ioutil" for Input
import "./seq" for Stack
import "./str" for Str

var Variable = Struct.create("Variable", ["name", "value"])

// use integer constants as bools don't support bitwise operators
var FALSE = 0
var TRUE = 1

var expr = ""
var variables = []

var isOperator = Fn.new { |op| "&|!^".contains(op) }

var isVariable = Fn.new { |s| variables.map { |v| v.name }.contains(s) }

var evalExpression = Fn.new {
    var stack = Stack.new()
    for (e in expr) {
        var v
        if (e == "T") {
            v = TRUE
        } else if (e == "F") {
            v = FALSE
        } else if (isVariable.call(e)) {
            var vs = variables.where { |v| v.name == e }.toList
            if (vs.count != 1) Fiber.abort("Can only be one variable with name %(e).")
            v = vs[0].value
        } else if (e == "&") {
            v = stack.pop() & stack.pop()
        } else if (e == "|") {
            v = stack.pop() | stack.pop()
        } else if (e == "!") {
            v = (stack.pop() == TRUE) ? FALSE : TRUE
        } else if (e == "^") {
            v = stack.pop() ^ stack.pop()
        } else {
            Fiber.abort("Non-conformant character %(e) in expression")
        }
        stack.push(v)
    }
    if (stack.count != 1) Fiber.abort("Something went wrong!")
    return stack.peek()
}

var setVariables // recursive
setVariables = Fn.new { |pos|
    var vc = variables.count
    if (pos > vc) Fiber.abort("Argument cannot exceed %(vc).")
    if (pos == vc) {
        var vs = variables.map { |v| (v.value == TRUE) ? "T" : "F" }.toList
        var es = (evalExpression.call() == TRUE) ? "T" : "F"
        System.print("%(vs.join("  "))  %(es)")
        return
    }
    variables[pos].value = FALSE
    setVariables.call(pos + 1)
    variables[pos].value = TRUE
    setVariables.call(pos + 1)
}

System.print("Accepts single-character variables (except for 'T' and 'F',")
System.print("which specify explicit true or false values), postfix, with")
System.print("&|!^ for and, or, not, xor, respectively; optionally")
System.print("seperated by spaces or tabs. Just enter nothing to quit.")

while (true) {
    expr = Input.text("\nBoolean expression: ")
    if (expr == "") return
    expr = Str.upper(expr).replace(" ", "").replace("\t", "")
    variables.clear()
    for (e in expr) {
        if (!isOperator.call(e) && !"TF".contains(e) && !isVariable.call(e)) {
            variables.add(Variable.new(e, FALSE))
        }
    }
    if (variables.isEmpty) return
    var vs = variables.map { |v| v.name }.join("  ")
    System.print("\n%(vs)  %(expr)")
    var h = vs.count + expr.count + 2
    System.print("=" * h)
    setVariables.call(0)
}
Output:

Sample session:

Accepts single-character variables (except for 'T' and 'F',
which specify explicit true or false values), postfix, with
&|!^ for and, or, not, xor, respectively; optionally
seperated by spaces or tabs. Just enter nothing to quit.

Boolean expression: A B ^

A  B  AB^
=========
F  F  F
F  T  T
T  F  T
T  T  F

Boolean expression: A B C ^ |

A  B  C  ABC^|
==============
F  F  F  F
F  F  T  T
F  T  F  T
F  T  T  F
T  F  F  T
T  F  T  T
T  T  F  T
T  T  T  T

Boolean expression: A B C D ^ ^ ^

A  B  C  D  ABCD^^^
===================
F  F  F  F  F
F  F  F  T  T
F  F  T  F  T
F  F  T  T  F
F  T  F  F  T
F  T  F  T  F
F  T  T  F  F
F  T  T  T  T
T  F  F  F  T
T  F  F  T  F
T  F  T  F  F
T  F  T  T  T
T  T  F  F  F
T  T  F  T  T
T  T  T  F  T
T  T  T  T  F

Boolean expression: 

XBasic

Translation of: C
Works with: Windows XBasic
PROGRAM "truthtables"
VERSION "0.001"

$$MaxTop = 80

TYPE VARIABLE
  STRING*1 .name
  SBYTE .value
END TYPE

TYPE STACKOFBOOL
  SSHORT .top
  SBYTE .elements[$$MaxTop]
END TYPE

DECLARE FUNCTION Entry()
INTERNAL FUNCTION IsOperator(c$)
INTERNAL FUNCTION VariableIndex(c$)
INTERNAL FUNCTION SetVariables(pos%)
INTERNAL FUNCTION ProcessExpression()
INTERNAL FUNCTION EvaluateExpression()

' Stack manipulation functions
INTERNAL FUNCTION IsFull(STACKOFBOOL @s)
INTERNAL FUNCTION IsEmpty(STACKOFBOOL @s)
INTERNAL FUNCTION Peek(STACKOFBOOL @s)
INTERNAL FUNCTION Push(STACKOFBOOL @s, val@)
INTERNAL FUNCTION Pop(STACKOFBOOL @s)
INTERNAL FUNCTION MakeEmpty(STACKOFBOOL @s)
INTERNAL FUNCTION ElementsCount(STACKOFBOOL @s)

FUNCTION Entry()
  SHARED VARIABLE variables[]
  SHARED variablesLength%
  SHARED expression$

  DIM variables[23]
  PRINT "Accepts single-character variables (except for 'T' and 'F',"
  PRINT "which specify explicit true or false values), postfix, with"
  PRINT "&|!^ for and, or, not, xor, respectively; optionally"
  PRINT "seperated by space. Just enter nothing to quit."
  DO
    PRINT
    expression$ = INLINE$("Boolean expression: ")
    ProcessExpression()
    IF LEN(expression$) = 0 THEN
      EXIT DO
    END IF
    variablesLength% = 0
    FOR i% = 0 TO LEN(expression$) - 1
      e$ = CHR$(expression${i%})
      IF (!IsOperator(e$)) && (e$ <> "T") && (e$ <> "F") && (VariableIndex(e$) = -1) THEN
        variables[variablesLength%].name = LEFT$(e$, 1)
        variables[variablesLength%].value = $$FALSE
        INC variablesLength%
      END IF
    NEXT i%
    PRINT
    IF variablesLength% = 0 THEN
      PRINT "No variables were entered."
    ELSE
      FOR i% = 0 TO variablesLength% - 1
        PRINT variables[i%].name; "  ";
      NEXT i%
      PRINT expression$
      PRINT CHR$(ASC("="), variablesLength% * 3 + LEN(expression$))
      SetVariables(0)
    END IF
  LOOP
END FUNCTION

' Removes space and converts to upper case
FUNCTION ProcessExpression()
  SHARED expression$
  '
  exprTmp$ = ""
  FOR i% = 0 TO LEN(expression$) - 1
    IF CHR$(expression${i%}) <> " " THEN
      exprTmp$ = exprTmp$ + UCASE$(CHR$(expression${i%}))
    END IF
  NEXT i%
  expression$ = exprTmp$
END FUNCTION

FUNCTION IsOperator(c$)
  RETURN (c$ = "&") || (c$ = "|") || (c$ = "!") || (c$ = "^")
END FUNCTION

FUNCTION VariableIndex(c$)
  SHARED VARIABLE variables[]
  SHARED variablesLength%
  '
  FOR i% = 0 TO variablesLength% - 1
    IF variables[i%].name = c$ THEN
      RETURN i%
    END IF
  NEXT i%
  RETURN -1
END FUNCTION

FUNCTION SetVariables(pos%)
  SHARED VARIABLE variables[]
  SHARED variablesLength%
  '
  SELECT CASE TRUE
    CASE pos% > variablesLength%:
      PRINT
      PRINT "Argument to SetVariables cannot be greater than the number of variables."
      QUIT(1)
    CASE pos% = variablesLength%:
      FOR i% = 0 TO variablesLength% - 1
        IF variables[i%].value THEN
          PRINT "T  ";
        ELSE
          PRINT "F  ";
        END IF
      NEXT i%
      IF EvaluateExpression() THEN
        PRINT "T"
      ELSE
        PRINT "F"
      END IF
    CASE ELSE:
      variables[pos%].value = $$FALSE
      SetVariables(pos% + 1)
      variables[pos%].value = $$TRUE
      SetVariables(pos% + 1)
  END SELECT
END FUNCTION

FUNCTION EvaluateExpression()
  SHARED VARIABLE variables[]
  SHARED expression$
  STACKOFBOOL s
  '
  MakeEmpty(@s)
  FOR i% = 0 TO LEN(expression$) - 1
    e$ = CHR$(expression${i%})
    vi% = VariableIndex(e$)
    SELECT CASE TRUE
      CASE e$ = "T":
        Push(@s, $$TRUE)
      CASE e$ = "F":
        Push(@s, $$FALSE)
      CASE vi% >= 0:
        Push(@s, variables[vi%].value)
      CASE ELSE:
        SELECT CASE e$
          CASE "&":
            Push(@s, Pop(@s) & Pop(@s))
          CASE "|":
            Push(@s, Pop(@s) | Pop(@s))
          CASE "!":
            Push(@s, !Pop(@s))
          CASE "^":
            Push(@s, Pop(@s) ^ Pop(@s))
          CASE ELSE:
            PRINT
            PRINT "Non-conformant character "; e$; " in expression.";
            QUIT(1)
        END SELECT
    END SELECT
  NEXT i%
  IF ElementsCount(@s) <> 1 THEN
    PRINT
    PRINT "Stack should contain exactly one element."
    QUIT(1)
  END IF
  RETURN Peek(@s)
END FUNCTION

FUNCTION IsFull(STACKOFBOOL s)
  RETURN s.top = $$MaxTop
END FUNCTION

FUNCTION IsEmpty(STACKOFBOOL s)
  RETURN s.top = -1
END FUNCTION

FUNCTION Peek(STACKOFBOOL s)
  IF !IsEmpty(@s) THEN
    RETURN s.elements[s.top]
  ELSE
    PRINT "Stack is empty."
    QUIT(1)
  END IF
END FUNCTION

FUNCTION Push(STACKOFBOOL s, val@)
  IF !IsFull(@s) THEN
    INC s.top
    s.elements[s.top] = val@
  ELSE
    PRINT "Stack is full."
    QUIT