Triangular numbers

You are encouraged to solve this task according to the task description, using any language you may know.
A triangular number is a count of objects arranged into an equilateral triangle. Much like how a square number is a count of objects arranged into a square.
The nth triangular number is the sum of the first n non-negative integers.
Triangular numbers may be calculated by the explicit formulas:
where is the binomial coefficient "n plus one choose two".
Analogous to square roots, we may also calculate a triangular root. Numbers that have an integer triangular
root are triangular numbers.
The real triangular root of a number x may be found using:
Similar to how cubic numbers are square numbers extended into a third dimension, triangular numbers extended into a third dimension are known as tetrahedral numbers.
The nth tetrahedral number is the sum of the first n triangular numbers.
Or, may be calculated directly: (Binomial "n plus two choose three".)
One may find the real tetrahedral root of x using the formula:
Depending on the math precision of your particular language, may need to be rounded to the nearest 1e-16 or so.
Extending into a fourth dimension we get pentatopic numbers.
Again, the nth pentatope is the sum of the first n tetrahedral numbers,
or explicitly: (Binomial "n plus three choose four".)
The pentatopic real root of x may be found using:
In general, these all belong to the class figurate numbers as they are
based on r dimensional geometric figures. Sometimes they are referred to as r-simplex
numbers. In geometry a simplex is the simplest possible r-dimensional
object.
You may easily extend to an arbitrary dimension r using binomials. Each term n in dimension r is
There is no known general formula to find higher r-simplex roots.
- Task
- Find and display the first 30 triangular numbers (r = 2).
- Find and display the first 30 tetrahedral numbers (r = 3).
- Find and display the first 30 pentatopic numbers (r = 4).
- Find and display the first 30 12-simplex numbers (r = 12).
- Find and display the triangular root, the tetrahedral root, and the pentatopic root for the integers:
- 7140
- 21408696
- 26728085384
- 14545501785001
- See also
- Wikipedia: Triangular numbers
- Wikipedia: Tetrahedral numbers
- Wikipedia: Pentatopic numbers
- Wikipedia: Figurate numbers
- Wikipedia: Simplex(geometry)
- OEIS:A000217 - Triangular numbers: a(n) = binomial(n+1,2)
- OEIS:A000292 - Tetrahedral numbers: a(n) = binomial(n+2,3)
- OEIS:A000332 - Pentatope numbers: a(n) = binomial(n+3,4)
- Related task: Evaluate binomial coefficients
- Related task: Pascal's triangle
ALGOL 68
Assumes LONG INT is at least 64 bits.
Some roots that should be integers have non-integral values when calculated by the formulae in the task.
To get the correct values (if possible), the root procedures used here calculate float value and then use the nearest integer or nearest integer + 1 if they are exact.
BEGIN # show some triangular, tetrahedral, ... numbers and roots #
# prints a row of LONG INTs, with a title, newlines after every per-line #
# and each number in the specified width #
PROC show values = ( STRING title, []LONG INT v, INT per line, INT width )VOID:
BEGIN
print( ( title, ":", newline ) );
INT on line := 0;
FOR i FROM LWB v TO UPB v DO
print( ( whole( v[ i ], -width ) ) );
IF ( on line +:= 1 ) = per line THEN
print( ( newline ) );
on line := 0
FI
OD;
IF on line /= 0 THEN print( ( newline ) ) FI;
print( ( newline ) )
END # show values # ;
# calculate the first 30 triangular, tetrahedral, etc. numbers #
[ 1 : 30 ]LONG INT triangular; triangular[ 1 ] := 0;
[ 1 : 30 ]LONG INT tetrahedral; tetrahedral[ 1 ] := 0;
[ 1 : 30 ]LONG INT pentatopic; pentatopic[ 1 ] := 0;
[ 1 : 30 ]LONG INT simplex12; simplex12[ 1 ] := 0;
FOR i FROM 2 TO 30 DO
triangular[ i ] := triangular[ i - 1 ] + i - 1;
tetrahedral[ i ] := tetrahedral[ i - 1 ] + triangular[ i ];
pentatopic[ i ] := pentatopic[ i - 1 ] + tetrahedral[ i ];
simplex12[ i ] := pentatopic[ i ]
OD;
FROM 5 TO 12 DO
FOR i FROM 2 TO 30 DO
simplex12[ i ] +:= simplex12[ i - 1 ]
OD
OD;
show values( "First 30 Triangular numbers", triangular, 6, 4 );
show values( "First 30 Tetrahedral numbers", tetrahedral, 6, 5 );
show values( "First 30 Pentatopic numbers", pentatopic, 6, 6 );
show values( "First 30 12-Simplex numbers", simplex12, 6, 12 );
# show some triangular, tetrahedral, etc. roots #
# returns the cube root of x #
PROC long crt = ( LONG REAL x )LONG REAL: long exp( long ln( x ) / 3 );
# returns a LONG REAL approximation to the triangular root of x #
PROC real triangular root = ( LONG INT x )LONG REAL: ( long sqrt( ( 8 * x ) + 1 ) - 1 ) / 2;
# returns a LONG REAL approximation to the tetrahedral root of x #
PROC real tetrahedral root = ( LONG INT x )LONG REAL:
BEGIN
LONG REAL t = long sqrt( ( 9 * x * x ) - ( 1 / 27 ) );
long crt( ( 3 * x ) + t ) + long crt( ( 3 * x ) - t ) - 1
END # tetrahedral root # ;
# returns a LONG REAL approximation to the pentatopic root of x #
PROC real pentatopic root = ( LONG INT x )LONG REAL:
( long sqrt( 5 + ( 4 * long sqrt( ( 24 * x ) + 1 ) ) ) - 3 ) / 2;
# returns an integer root of x, if the approximation (possibly + 1 ) = x #
# the approximation otherwise #
PROC try integer root = ( LONG INT x, LONG REAL real root, PROC( LONG INT )LONG INT f )LONG REAL:
IF LONG INT ir = ENTIER real root;
f( ir ) = x
THEN ir
ELIF f( ir + 1 ) = x
THEN ir + 1
ELSE real root
FI # try integer root # ;
# returns the triangular root of x #
PROC triangular root = ( LONG INT x )LONG REAL:
try integer root( x
, real triangular root( x )
, ( LONG INT n )LONG INT: ( n * ( n + 1 ) ) OVER 2
);
# returns the tetrahedral root of x #
PROC tetrahedral root = ( LONG INT x )LONG REAL:
try integer root( x
, real tetrahedral root( x )
, ( LONG INT n )LONG INT: ( n * ( n + 1 ) * ( n + 2 ) ) OVER 6
);
# returns the pentatopic root of x #
PROC pentatopic root = ( LONG INT x )LONG REAL:
try integer root( x
, real pentatopic root( x )
, ( LONG INT n )LONG INT: ( n * ( n + 1 ) * ( n + 2 ) * ( n + 3 ) ) OVER 24
);
[]LONG INT root test = ( 7140, 21408696, 26728085384, 14545501785001 );
FOR i FROM LWB root test TO UPB root test DO
PROC show = ( LONG REAL x )STRING:
IF ENTIER x = x THEN whole( x, -6 ) + " " ELSE fixed( x, -12, 5 ) FI;
print( ( "Roots of ", whole( root test[ i ], 0 ), newline, " " ) );
print( ( " triangular: ", show( triangular root( root test[ i ] ) ) ) );
print( ( " tetrahedral: ", show( tetrahedral root( root test[ i ] ) ) ) );
print( ( " pentatopic: ", show( pentatopic root( root test[ i ] ) ) ) );
print( ( newline ) )
OD
END
- Output:
First 30 Triangular numbers: 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 First 30 Tetrahedral numbers: 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 3276 3654 4060 4495 First 30 Pentatopic numbers: 0 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985 7315 8855 10626 12650 14950 17550 20475 23751 27405 31465 35960 First 30 12-Simplex numbers: 0 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078 2704156 5200300 9657700 17383860 30421755 51895935 86493225 141120525 225792840 354817320 548354040 834451800 1251677700 1852482996 2707475148 3910797436 5586853480 Roots of 7140 triangular: 119 tetrahedral: 34 pentatopic: 18.87665 Roots of 21408696 triangular: 6543 tetrahedral: 503.56183 pentatopic: 149.06095 Roots of 26728085384 triangular: 231205.40557 tetrahedral: 5432 pentatopic: 893.44246 Roots of 14545501785001 triangular: 5393607.1581 tetrahedral: 44355.77738 pentatopic: 4321
AppleScript
on rSimplexNumber(r, n)
set n to n - 1 -- "nth" is 0-based in the formula!
set numerator to n
set denominator to 1
repeat with dimension from 2 to r
set numerator to numerator * (n + dimension - 1)
set denominator to denominator * dimension
end repeat
return numerator div denominator
end rSimplexNumber
on triangularRoot(x)
return ((8 * x + 1) ^ 0.5 - 1) / 2
end triangularRoot
on tetrahedralRoot(x)
-- NOT (((9 * (x ^ 2) - 1 / 27) ^ 0.5 + 3 * x) ^ (1 / 3)) * 2 - 1 !
return (((9 * (x ^ 2) - 1 / 27) ^ 0.5 + 3 * x) ^ (1 / 3)) - 1
end tetrahedralRoot
on pentatopicRoot(x)
return (((24 * x + 1) ^ 0.5 * 4 + 5) ^ 0.5 - 3) / 2
end pentatopicRoot
on intToText(int)
set txt to ""
repeat while (int > 99999999)
set txt to ((100000000 + int mod 100000000) as integer as text)'s text 2 thru 9 & txt
set int to int div 100000000
end repeat
return (int as text) & txt
end intToText
on join(lst, delim)
set astid to AppleScript's text item delimiters
set AppleScript's text item delimiters to delim
set txt to lst as text
set AppleScript's text item delimiters to astid
return txt
end join
on task()
set output to {}
set padding to " "
set columnWidth to (count intToText(rSimplexNumber(12, 30))) + 2
repeat with rt in {{2, "triangular"}, {3, "tetrahedral"}, {5, "pentatopic"}, {12, "12-simplex"}}
set {r, type} to rt
set end of output to linefeed & "First thirty " & type & " numbers:"
set these6 to {}
repeat with n from 1 to 30
set this to intToText(rSimplexNumber(r, n))
set these6's end to (padding & this)'s text -columnWidth thru -1
if (n mod 6 = 0) then
set end of output to join(these6, "")
set these6 to {}
end if
end repeat
end repeat
repeat with n in {7140, 21408696, 2.6728085384E+10, 1.4545501785001E+13}
set end of output to linefeed & "Roots of " & intToText(n) & ":"
set end of output to " Triangular root: " & triangularRoot(n)
set end of output to " Tetrahedral root: " & tetrahedralRoot(n)
set end of output to " Pentatopic root: " & pentatopicRoot(n)
end repeat
return join(output, linefeed)
end task
return task()
- Output:
"
First thirty triangular numbers:
0 1 3 6 10 15
21 28 36 45 55 66
78 91 105 120 136 153
171 190 210 231 253 276
300 325 351 378 406 435
First thirty tetrahedral numbers:
0 1 4 10 20 35
56 84 120 165 220 286
364 455 560 680 816 969
1140 1330 1540 1771 2024 2300
2600 2925 3276 3654 4060 4495
First thirty pentatopic numbers:
0 1 6 21 56 126
252 462 792 1287 2002 3003
4368 6188 8568 11628 15504 20349
26334 33649 42504 53130 65780 80730
98280 118755 142506 169911 201376 237336
First thirty 12-simplex numbers:
0 1 13 91 455 1820
6188 18564 50388 125970 293930 646646
1352078 2704156 5200300 9657700 17383860 30421755
51895935 86493225 141120525 225792840 354817320 548354040
834451800 1251677700 1852482996 2707475148 3910797436 5586853480
Roots of 7140:
Triangular root: 119.0
Tetrahedral root: 33.990473597552
Pentatopic root: 18.876646615928
Roots of 21408696:
Triangular root: 6543.0
Tetrahedral root: 503.561166334548
Pentatopic root: 149.060947375266
Roots of 26728085384:
Triangular root: 2.312054055653E+5
Tetrahedral root: 5431.99993864654
Pentatopic root: 893.442456751685
Roots of 14545501785001:
Triangular root: 5.393607158145E+6
Tetrahedral root: 4.435577737656E+4
Pentatopic root: 4321.0"
FreeBASIC
Dim As Integer n, r, t(0 To 30)
t(0) = 0
Print "The first 30 triangular numbers are:"
For n = 1 To 30
t(n) = t(n-1) + n - 1
If n Mod 6 = 0 Then Print Using "####"; t(n) Else Print Using "####"; t(n);
Next n
Print !"\nThe first 30 tetrahedral numbers are:"
For n = 1 To 30
t(n) += t(n-1)
Print Using "#####"; t(n);
If n Mod 6 = 0 Then Print
Next n
Print !"\nThe first 30 pentatopic numbers are:"
For n = 1 To 30
t(n) += t(n-1)
Print Using "######"; t(n);
If n Mod 6 = 0 Then Print
Next n
Print !"\nThe first 30 12-simplex numbers are:"
For r = 5 To 12
For n = 1 To 30
t(n) += t(n-1)
If r = 12 Then
Print Using "###########"; t(n);
If n Mod 6 = 0 Then Print
End If
Next n
Next r
#define cRec27 1/sqr(27)
Dim As Integer xs(1 To 4) = {7140, 21408696, 26728085384, 14545501785001}
Dim As Double x, y, z
For i As Byte = 1 To 4
z = xs(i)
Print !"\nRoots of"; xs(i); ":"
Print " triangular:"; (Sqr(8*z+1)-1)/2
y = 3*z
x = Sqr((y-cRec27)*(y+cRec27))
Print "tetrahedral:"; Iif(x < y, Exp(Log(y+x)/3)+Exp(Log(y-x)/3)-1, Exp(Log(6)/3)*Exp(Log(z)/3)-1)
Print " pentatopic:"; (Sqr(5+4*Sqr(24*z+1))-3)/2
Next i
Sleep
- Output:
The first 30 triangular numbers are: 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 The first 30 tetrahedral numbers are: 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 3276 3654 4060 4495 The first 30 pentatopic numbers are: 0 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985 7315 8855 10626 12650 14950 17550 20475 23751 27405 31465 35960 The first 30 12-simplex numbers are: 0 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078 2704156 5200300 9657700 17383860 30421755 51895935 86493225 141120525 225792840 354817320 548354040 834451800 1251677700 1852482996 2707475148 3910797436 5586853480 Roots of 7140: triangular: 119 tetrahedral: 34.00000000179027 pentatopic: 18.87664661592801 Roots of 21408696: triangular: 6543 tetrahedral: 503.5611663345483 pentatopic: 149.0609473752659 Roots of 26728085384: triangular: 231205.4055652559 tetrahedral: 5431.99993864654 pentatopic: 893.4424567516849 Roots of 14545501785001: triangular: 5393607.158145173 tetrahedral: 44355.77737655847 pentatopic: 4321
Go
I've had to use a third party library to calculate cube roots as the big.Float type in the standard library doesn't have a function for this. The results (to 24 d.p) are the same as the Raku example with the exception of the tetrahedral root for the largest integer which differs in the last three places.
package main
import (
"fmt"
"github.com/ALTree/bigfloat"
"math/big"
"rcu"
)
func main() {
t := make([]int, 30)
for n := 1; n < 30; n++ {
t[n] = t[n-1] + n
}
fmt.Println("The first 30 triangular numbers are:")
rcu.PrintTable(t, 6, 3, false)
for n := 1; n < 30; n++ {
t[n] += t[n-1]
}
fmt.Println("\nThe first 30 tetrahedral numbers are:")
rcu.PrintTable(t, 6, 4, false)
for n := 1; n < 30; n++ {
t[n] += t[n-1]
}
fmt.Println("\nThe first 30 pentatopic numbers are:")
rcu.PrintTable(t, 6, 5, false)
for r := 5; r <= 12; r++ {
for n := 1; n < 30; n++ {
t[n] += t[n-1]
}
}
fmt.Println("\nThe first 30 12-simplex numbers are:")
rcu.PrintTable(t, 6, 10, false)
const prec = 256
xs := []float64{7140, 21408696, 26728085384, 14545501785001}
root := new(big.Float)
temp := new(big.Float)
temp2 := new(big.Float)
one := big.NewFloat(1)
two := big.NewFloat(2)
three := big.NewFloat(3)
four := big.NewFloat(4)
five := big.NewFloat(5)
eight := big.NewFloat(8)
nine := big.NewFloat(9)
twentyFour := big.NewFloat(24)
twentySeven := big.NewFloat(27)
third := new(big.Float).SetPrec(prec).Quo(one, three)
for _, x := range xs {
bx := big.NewFloat(x).SetPrec(prec)
fmt.Printf("\nRoots of %d:\n", int(x))
root.Mul(bx, eight)
root.Add(root, one)
root.Sqrt(root)
root.Sub(root, one)
root.Quo(root, two)
fmt.Printf("%14s: %.24f\n", "triangular", root)
temp.Mul(bx, bx)
temp.Mul(temp, nine)
temp.Sub(temp, new(big.Float).SetPrec(prec).Quo(one, twentySeven))
temp.Sqrt(temp)
temp2.Mul(bx, three)
temp2.Sub(temp2, temp)
temp2 = bigfloat.Pow(temp2, third)
root.Mul(bx, three)
root.Add(root, temp)
root = bigfloat.Pow(root, third)
root.Add(root, temp2)
root.Sub(root, one)
fmt.Printf("%14s: %.24f\n", "tetrahedral", root)
root.Mul(bx, twentyFour)
root.Add(root, one)
root.Sqrt(root)
root.Mul(root, four)
root.Add(root, five)
root.Sqrt(root)
root.Sub(root, three)
root.Quo(root, two)
fmt.Printf("%14s: %.24f\n", "pentatonic", root)
}
}
- Output:
The first 30 triangular numbers are: 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 The first 30 tetrahedral numbers are: 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 3276 3654 4060 4495 The first 30 pentatopic numbers are: 0 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985 7315 8855 10626 12650 14950 17550 20475 23751 27405 31465 35960 The first 30 12-simplex numbers are: 0 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078 2704156 5200300 9657700 17383860 30421755 51895935 86493225 141120525 225792840 354817320 548354040 834451800 1251677700 1852482996 2707475148 3910797436 5586853480 Roots of 7140: triangular: 119.000000000000000000000000 tetrahedral: 34.000000000000000000000000 pentatonic: 18.876646615928006607901783 Roots of 21408696: triangular: 6543.000000000000000000000000 tetrahedral: 503.561826974636514048196130 pentatonic: 149.060947375265867484387575 Roots of 26728085384: triangular: 231205.405565255836957291031961 tetrahedral: 5432.000000000000000000000000 pentatonic: 893.442456751684869888466212 Roots of 14545501785001: triangular: 5393607.158145172316497304724655 tetrahedral: 44355.777384073256052620916889 pentatonic: 4321.000000000000000000000000
J
In J, it's usually more natural to start counting from 0 rather than 1. That shows up subtly in this task, since the specified roots assume counting starts from 1.
Anyways:
tri=: [!+
2 tri 1+i.5 6
3 6 10 15 21 28
36 45 55 66 78 91
105 120 136 153 171 190
210 231 253 276 300 325
351 378 406 435 465 496
3 tri 1+i.5 6
4 10 20 35 56 84
120 165 220 286 364 455
560 680 816 969 1140 1330
1540 1771 2024 2300 2600 2925
3276 3654 4060 4495 4960 5456
4 tri 1+i.5 6
5 15 35 70 126 210
330 495 715 1001 1365 1820
2380 3060 3876 4845 5985 7315
8855 10626 12650 14950 17550 20475
23751 27405 31465 35960 40920 46376
12 tri 1+i.10 3
13 91 455
1820 6188 18564
50388 125970 293930
646646 1352078 2704156
5200300 9657700 17383860
30421755 51895935 86493225
141120525 225792840 354817320
548354040 834451800 1251677700
1852482996 2707475148 3910797436
5586853480 7898654920 11058116888
And, for the roots:
r2=: 2 %~ _1 + 2 %: 1 8&p.
r3=: _1 + 0 3&p. (+ +&(3%:]) -) 2 %: _1r27 0 9&p.
r4=: 2 %~ _3 + 2 %: 5 + 4 * 2 %: 1 + 24 * ]
(r2,r3,r4) 7140
119 34 18.8766
(r2,r3,r4) 21408696
6543 503.564 149.061
(r2,r3,r4) 26728085384
231205 5432 893.442
(r2,r3,r4) 14545501785001
5.39361e6 44356.2 4321
jq
Also works with gojq and fq, the Go implementations of jq
The main point of interest in the following is probably `figurates/0`, which generates an indefinitely long stream of the $r-simplex numbers if $r >= 2, where $r is the input to the filter. For the sake of illustration, however, `tetrahedrals` and `pentatopics` are defined without reference to `figurates/0`.
Preliminaries
def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;
# Display a stream of items in Z-style, n per line
def neatly(s; $n; $width):
def p: lpad($width);
foreach s as $x ({n: 1, s:""};
if .n >= $n
then .emit = .s + " " + ($x|p)
| .s = null
| .n = 1
else .emit = null
| .s = .s + " " + ($x|p)
| .n += 1
end;
select(.emit).emit);
# nCk assuming n >= k
def binomial(n; k):
if k > n / 2 then binomial(n; n-k)
else reduce range(1; k+1) as $i (1; . * (n - $i + 1) / $i)
end;
def figurate($r; $n): binomial($n + $r -1; $r);
def triangular: binomial(.+1;2);
# r=2
def triangulars: foreach range(0; infinite) as $i (0; . + $i);
# r=3
def tetrahedrals: foreach triangulars as $t (0; . + $t);
# r=4
def pentatopics: foreach tetrahedrals as $t (0; . + $t);
# input: r
def figurates:
. as $r
| if $r == 2 then triangulars
else foreach ($r - 1 |figurates) as $t (0; . + $t)
end;
# r=12
def twelveSimplexes: 12 | figurates;
### r-simplex roots
def triangularRoot: ((8*. + 1 | sqrt) -1) /2;
def tetrahedralRoot:
def term(sign):
(3 * .) as $y
| ($y + sign * ( (($y*$y) - (1/27))|sqrt)) | cbrt;
term(1) + term(-1) -1;
def pentatopicRoot:
(((5 + 4 * (( 24*. + 1)|sqrt)) | sqrt) - 3) / 2;
def xs: [7140, 21408696, 26728085384, 14545501785001];
def tasks:
def round($ndec): pow(10;$ndec) as $p | . * $p | round / $p;
def r: round(4) | lpad(12);
def s(stream): limit(30; neatly(stream; 5; 8));
"The first 30 triangular numbers are:", s(triangulars),
"\nThe first 30 tetrahedral numbers are:", s(tetrahedrals),
"\nThe first 30 pentatopic numbers are:", s(pentatopics),
"\nThe first 30 12-simplex numbers are:", neatly(limit(30; twelveSimplexes); 5; 12),
"",
"Approximate r-simplex roots:",
"\("x "|lpad(15)) triangularRoot tetrahedralRoot pentatopicRoot",
(xs[]
| "\(lpad(15)): \(triangularRoot|r) \(tetrahedralRoot|r) \(pentatopicRoot|r)")
;
tasks
- Output:
The first 30 triangular numbers are: 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 465 496 528 561 595 630 666 703 741 780 820 861 903 946 990 1035 1081 1128 1176 1225 1275 1326 1378 1431 1485 1540 1596 1653 1711 1770 1830 1891 1953 2016 2080 2145 2211 2278 2346 2415 2485 2556 2628 2701 2775 2850 2926 3003 3081 3160 3240 3321 3403 3486 3570 3655 3741 3828 3916 4005 4095 4186 4278 4371 4465 4560 4656 4753 4851 4950 5050 5151 5253 5356 5460 5565 5671 5778 5886 5995 6105 6216 6328 6441 6555 6670 6786 6903 7021 7140 7260 7381 7503 7626 7750 7875 8001 8128 8256 8385 8515 8646 8778 8911 9045 9180 9316 9453 9591 9730 9870 10011 10153 10296 10440 10585 10731 10878 11026 11175 The first 30 tetrahedral numbers are: 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 3276 3654 4060 4495 4960 5456 5984 6545 7140 7770 8436 9139 9880 10660 11480 12341 13244 14190 15180 16215 17296 18424 19600 20825 22100 23426 24804 26235 27720 29260 30856 32509 34220 35990 37820 39711 41664 43680 45760 47905 50116 52394 54740 57155 59640 62196 64824 67525 70300 73150 76076 79079 82160 85320 88560 91881 95284 98770 102340 105995 109736 113564 117480 121485 125580 129766 134044 138415 142880 147440 152096 156849 161700 166650 171700 176851 182104 187460 192920 198485 204156 209934 215820 221815 227920 234136 240464 246905 253460 260130 266916 273819 280840 287980 295240 302621 310124 317750 325500 333375 341376 349504 357760 366145 374660 383306 392084 400995 410040 419220 428536 437989 447580 457310 467180 477191 487344 497640 508080 518665 529396 540274 551300 562475 The first 30 pentatopic numbers are: 0 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985 7315 8855 10626 12650 14950 17550 20475 23751 27405 31465 35960 40920 46376 52360 58905 66045 73815 82251 91390 101270 111930 123410 135751 148995 163185 178365 194580 211876 230300 249900 270725 292825 316251 341055 367290 395010 424270 455126 487635 521855 557845 595665 635376 677040 720720 766480 814385 864501 916895 971635 1028790 1088430 1150626 1215450 1282975 1353275 1426425 1502501 1581580 1663740 1749060 1837620 1929501 2024785 2123555 2225895 2331890 2441626 2555190 2672670 2794155 2919735 3049501 3183545 3321960 3464840 3612280 3764376 3921225 4082925 4249575 4421275 4598126 4780230 4967690 5160610 5359095 5563251 5773185 5989005 6210820 6438740 6672876 6913340 7160245 7413705 7673835 7940751 8214570 8495410 8783390 9078630 9381251 9691375 10009125 10334625 10668000 11009376 11358880 11716640 12082785 12457445 12840751 13232835 13633830 14043870 14463090 14891626 15329615 15777195 16234505 16701685 17178876 17666220 18163860 18671940 19190605 19720001 20260275 20811575 21374050 The first 30 12-simplex numbers are: 0 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078 2704156 5200300 9657700 17383860 30421755 51895935 86493225 141120525 225792840 354817320 548354040 834451800 1251677700 1852482996 2707475148 3910797436 5586853480 Approximate r-simplex roots: x triangularRoot tetrahedralRoot pentatopicRoot 7140: 119 34 18.8766 21408696: 6543 503.5612 149.0609 26728085384: 231205.4056 5431.9999 893.4425 14545501785001: 5393607.1581 44355.7774 4321
Julia
""" rosettacode.org task Triangular_numbers """
polytopic(r, range) = map(n -> binomial(n + r - 1, r), range)
triangular_root(x) = (sqrt(8x + 1) - 1) / 2
function tetrahedral_root(x)
return Float64(round((3x + sqrt(9 * x^big"2" - big"1"/27))^(big"1"/3) +
(3x - sqrt(9 * x^big"2" - big"1"/27))^(big"1"/3) - 1, digits=18))
end
pentatopic_root(x) = (sqrt(5 + 4 * sqrt(24x + 1)) - 3) / 2
function valuelisting(a, N=6)
c = maximum(length, string.(a)) + 1
return join([join([lpad(x, c) for x in v]) for v in Iterators.partition(a, N)], "\n")
end
for (r, name) in [[2, "triangular"], [3, "tetrahedral"], [4, "pentatopic"], [12, "12-simplex"]]
println("\nFirst 30 $name numbers:\n", valuelisting(polytopic(r, 0:29)))
end
for n in [7140, 21408696, 26728085384, 14545501785001]
println("\nRoots of $n:")
println(" triangular-root: ", triangular_root(n))
println(" tetrahedral-root: ", tetrahedral_root(n))
println(" pentatopic-root: ", pentatopic_root(n))
end
- Output:
First 30 triangular numbers: 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 First 30 tetrahedral numbers: 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 3276 3654 4060 4495 First 30 pentatopic numbers: 0 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985 7315 8855 10626 12650 14950 17550 20475 23751 27405 31465 35960 First 30 12-simplex numbers: 0 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078 2704156 5200300 9657700 17383860 30421755 51895935 86493225 141120525 225792840 354817320 548354040 834451800 1251677700 1852482996 2707475148 3910797436 5586853480 Roots of 7140: triangular-root: 119.0 tetrahedral-root: 34.0 pentatopic-root: 18.876646615928006 Roots of 21408696: triangular-root: 6543.0 tetrahedral-root: 503.5618269746365 pentatopic-root: 149.06094737526587 Roots of 26728085384: triangular-root: 231205.40556525585 tetrahedral-root: 5432.0 pentatopic-root: 893.4424567516849 Roots of 14545501785001: triangular-root: 5.3936071581451725e6 tetrahedral-root: 44355.777384073255 pentatopic-root: 4321.0
Mathematica /Wolfram Language
(* Polytopic number generation function *)
Polytopic[r_, range_] := Binomial[# + r - 1, r] & /@ range
(* Triangular root function *)
TriangularRoot[x_] := (Sqrt[8 x + 1] - 1)/2
(* Tetrahedral root function *)
TetrahedralRoot[x_] := N[((3 x + Sqrt[9 x^2 - 1/27])^(1/3) +
(3 x - Sqrt[9 x^2 - 1/27])^(1/3) - 1), 18]
(* Pentatopic root function *)
PentatopicRoot[x_] := (Sqrt[5 + 4 Sqrt[24 x + 1]] - 3)/2
(* Displaying polytopic numbers *)
Do[
name = Which[
r == 2, "triangular",
r == 3, "tetrahedral",
r == 4, "pentatopic",
r == 12, "12-simplex"
];
Print["\nFirst 30 ", name, " numbers:\n", Polytopic[r, Range[0, 29]]],
{r,{2,3,4,12}}
]
(* Displaying roots of specific numbers *)
nums = {7140, 21408696, 26728085384, 14545501785001};
For[i = 1, i <= Length[nums], i++,
n = nums[[i]];
Print["\nRoots of ", n, ":"];
Print[" triangular-root: ", N@TriangularRoot[n]];
Print[" tetrahedral-root: ", N@TetrahedralRoot[n]];
Print[" pentatopic-root: ", N@PentatopicRoot[n]]
]
- Output:
First 30 triangular numbers: {0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435} First 30 tetrahedral numbers: {0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, 1771, 2024, 2300, 2600, 2925, 3276, 3654, 4060, 4495} First 30 pentatopic numbers: {0, 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, 10626, 12650, 14950, 17550, 20475, 23751, 27405, 31465, 35960} First 30 12-simplex numbers: {0, 1, 13, 91, 455, 1820, 6188, 18564, 50388, 125970, 293930, 646646, 1352078, 2704156, 5200300, 9657700, 17383860, 30421755, 51895935, 86493225, 141120525, 225792840, 354817320, 548354040, 834451800, 1251677700, 1852482996, 2707475148, 3910797436, 5586853480} Roots of 7140: triangular-root: 119. tetrahedral-root: 34. pentatopic-root: 18.876646615928006 Roots of 21408696: triangular-root: 6543. tetrahedral-root: 503.5618269746365 pentatopic-root: 149.06094737526587 Roots of 26728085384: triangular-root: 231205.40556525585 tetrahedral-root: 5432. pentatopic-root: 893.4424567516849 Roots of 14545501785001: triangular-root: 5.3936071581451725*^6 tetrahedral-root: 44355.777384073255 pentatopic-root: 4321.
Nim
As described in the task presentation, we start the sequences at index 1.
import std/[math, strformat, strutils]
proc printNSimplexNumbers(r, count, width: Positive; title: string) =
## Print the first "count" terms of the "r-simplex" sequence
## using "width" characters.
echo title
for n in 1..count:
stdout.write align($binom(n + r - 1, r), width)
stdout.write if n mod 5 == 0: '\n' else: ' '
echo()
printNSimplexNumbers(2, 30, 3, "First 30 triangular numbers:")
printNSimplexNumbers(3, 30, 4, "First 30 tetrahedral numbers:")
printNSimplexNumbers(4, 30, 5, "First 30 pentatopic numbers:")
printNSimplexNumbers(12, 30, 10, "First 30 12-simplex numbers:")
func triangularRoot(x: float): float =
## Return the triangular root of "x".
(sqrt(8 * x + 1) - 1) * 0.5
func tetrahedralRoot(x: float): float =
## Return the tetrahedral root of "x".
let t1 = 3 * x
let t2 = sqrt(t1 * t1 - 1 / 27)
result = cbrt(t1 + t2) + cbrt(t1 - t2) - 1
func pentatopicRoot(x: float): float =
## Return the pentatopic root of "x".
(sqrt(5 + 4 * sqrt(24 * x + 1)) - 3) * 0.5
for n in [int64 7140, 21408696, 26728085384, 14545501785001]:
echo &"Roots of {n}:"
for (title, f) in {"triangular: ": triangularRoot,
"tetrahedral:": tetrahedralRoot,
"pentatopic: ": pentatopicRoot}:
echo &" {title} {f(n.float):.6f}"
echo()
- Output:
First 30 triangular numbers: 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 465 First 30 tetrahedral numbers: 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 3276 3654 4060 4495 4960 First 30 pentatopic numbers: 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985 7315 8855 10626 12650 14950 17550 20475 23751 27405 31465 35960 40920 First 30 12-simplex numbers: 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078 2704156 5200300 9657700 17383860 30421755 51895935 86493225 141120525 225792840 354817320 548354040 834451800 1251677700 1852482996 2707475148 3910797436 5586853480 7898654920 Roots of 7140: triangular: 119.000000 tetrahedral: 34.000000 pentatopic: 18.876647 Roots of 21408696: triangular: 6543.000000 tetrahedral: 503.561166 pentatopic: 149.060947 Roots of 26728085384: triangular: 231205.405565 tetrahedral: 5431.999939 pentatopic: 893.442457 Roots of 14545501785001: triangular: 5393607.158145 tetrahedral: 44355.777377 pentatopic: 4321.000000
PARI/GP
/* Polytopic number generation function */
polytopic(r, range) = {
vector(#range, i, binomial(range[i] + r - 1, r))
}
/* Triangular root function */
triangularRoot(x) = {
(sqrt(8*x + 1) - 1)/2
}
/* Tetrahedral root function */
tetrahedralRoot(x) = {
N = (3*x + sqrt(9*x^2 - 1/27))^(1/3) + (3*x - sqrt(9*x^2 - 1/27))^(1/3) - 1;
precision(N, 18)
}
/* Pentatopic root function */
pentatopicRoot(x) = {
(sqrt(5 + 4*sqrt(24*x + 1)) - 3)/2
}
{
/* Displaying polytopic numbers */
r_sel=[2,3,4,12];
for(i = 1, #r_sel,
r=r_sel[i];
casename="place_holder";
if(r == 2, casename="triangular"; ,
r == 3, casename="tetrahedral"; ,
r == 4, casename="pentatopic"; ,
r == 12, casename="12-simplex";
);
printf("\nFirst 30 %s numbers:\n %s\n" , Str(casename) , Str(polytopic(r, [0..29])) )
);
/* Displaying roots of specific numbers */
nums = [7140, 21408696, 26728085384, 14545501785001];
for(i = 1, #nums,
n = nums[i];
printf("\nRoots of %s:\n", Str(n));
printf(" triangular-root: %s\n", Str(triangularRoot(n)));
printf(" tetrahedral-root: %s\n", Str(tetrahedralRoot(n)));
printf(" pentatopic-root: %s\n", Str(pentatopicRoot(n)))
);
}
- Output:
First 30 triangular numbers: [0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435] First 30 tetrahedral numbers: [0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, 1771, 2024, 2300, 2600, 2925, 3276, 3654, 4060, 4495] First 30 pentatopic numbers: [0, 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, 10626, 12650, 14950, 17550, 20475, 23751, 27405, 31465, 35960] First 30 12-simplex numbers: [0, 1, 13, 91, 455, 1820, 6188, 18564, 50388, 125970, 293930, 646646, 1352078, 2704156, 5200300, 9657700, 17383860, 30421755, 51895935, 86493225, 141120525, 225792840, 354817320, 548354040, 834451800, 1251677700, 1852482996, 2707475148, 3910797436, 5586853480] Roots of 7140: triangular-root: 119.00000000000000000000000000000000000 tetrahedral-root: 34.00000000000000000 pentatopic-root: 18.876646615928006607901782826667566229 Roots of 21408696: triangular-root: 6543.0000000000000000000000000000000000 tetrahedral-root: 503.5618269746365141 pentatopic-root: 149.06094737526586748438757488471336807 Roots of 26728085384: triangular-root: 231205.40556525583695729103196069412230 tetrahedral-root: 5432.000000000000000 pentatopic-root: 893.44245675168486988846621152924537039 Roots of 14545501785001: triangular-root: 5393607.1581451723164973047246554846080 tetrahedral-root: 44355.77738407325605 pentatopic-root: 4321.0000000000000000000000000000000000
Pascal
Pascal
Using only extended isn't that precise for tetrahedral roots.
sqrt(sqr(3x)+1/27) is nearly 3x for bigger x values.
program XangularNumbers;
const
MAXIDX = 29;
MAXLINECNT = 13;
cNames : array[0..4] of string =
('','','triangular','tetrahedral','pentatopic');
cCheckRootValues :array[0..3] of Uint64 =
(7140,21408696,26728085384,14545501785001) ;
type
tOneLine = array[0..MAXIDX+2] of Uint64;
tpOneLine = ^tOneLine;
tSimplexs = array[0..MAXLINECNT-1] of tOneLine;
procedure OutLine(var S:tSimplexs;idx: NativeInt);
const
cColCnt = 6;cColWidth = 80 DIV cColCnt;
var
i,colcnt : NativeInt;
begin
if idx > High(cNames) then
writeln('First ',MAXIDX+1,' ',idx,'-simplex numbers')
else
writeln('First ',MAXIDX+1,' ',cNames[idx],' numbers');
colcnt := cColCnt;
For i := 0 to MAXIDX do
begin
write(S[idx,i]:cColWidth);
dec(colCnt);
if ColCnt = 0 then
Begin
writeln;
ColCnt := cColCnt;
end;
end;
if ColCnt < cColCnt then
writeln;
writeln;
end;
procedure CalcNextLine(var S:tSimplexs;idx: NativeInt);
var
s1,s2: Uint64;
i : NativeInt;
begin
s1 := S[idx,0];
S[idx+1,0] := s1;
For i := 1 to MAXIDX do
begin
s2:= S[idx,i];
S[idx+1,i] := s1+s2;
inc(s1,s2);
end;
end;
procedure InitSimplexs(var S:tSimplexs);
var
i: NativeInt;
begin
fillChar(S,Sizeof(S),#0);
For i := 1 to MAXIDX do
S[0,i] := 1;
For i := 0 to MAXLINECNT-2 do
CalcNextLine(S,i);
end;
function TriangularRoot(n: Uint64): extended;
begin
if n < High(Uint64) DIV 8 then
TriangularRoot := (sqrt(8*n+1)-1) / 2
else
TriangularRoot := (sqrt(8)*sqrt(n)-1)/2;
end;
function tetrahedralRoot(n: Uint64): extended;
const
cRec27 = 1/sqrt(27);
var
x,y : extended;
begin
y := 3.0*n;
x := sqrt((y-cRec27)*(y+cRec27));//sqrt(sqr(3*n)-1/27)
if x < y then
tetrahedralRoot := exp(ln(y+x)/3.0)+exp(ln(y-x)/3.0)-1.0
else
//( 6*n)^(1/3)-1
tetrahedralRoot :=exp(ln(6)/3.0)*exp(ln(n)/3.0)-1.0; //6^(1/3)* n^(1/3)-1
end;
function PentatopicRoot(n: Uint64): extended;
begin
PentatopicRoot := (sqrt(5 + 4 * sqrt(24*n + 1)) - 3) / 2;
end;
var
Simplexs : tSimplexs;
n : Uint64;
i : NativeInt;
Begin
InitSimplexs(Simplexs);
OutLine(Simplexs,2);
OutLine(Simplexs,3);
OutLine(Simplexs,4);
OutLine(Simplexs,12);
For i := 0 to High(cCheckRootValues) do
begin
n := cCheckRootValues[i];
writeln('Roots of ',n,':');
writeln('triangular -root : ',TriangularRoot(n):20:12);
writeln('tetrahedral-root : ',tetrahedralRoot(n):20:12);
writeln('pentatopic -root : ',PentatopicRoot(n):20:12);
writeln;
end;
end.
- Output:
First 30 triangular numbers 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 First 30 tetrahedral numbers 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 3276 3654 4060 4495 First 30 pentatopic numbers 0 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985 7315 8855 10626 12650 14950 17550 20475 23751 27405 31465 35960 First 30 12-simplex numbers 0 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078 2704156 5200300 9657700 17383860 30421755 51895935 86493225 141120525 225792840 354817320 548354040 834451800 1251677700 1852482996 2707475148 3910797436 5586853480 Roots of 7140: triangular -root : 119.000000000000 tetrahedral-root : 34.000000000003 pentatopic -root : 18.876646615928 Roots of 21408696: triangular -root : 6543.000000000000 tetrahedral-root : 503.561826261328 pentatopic -root : 149.060947375266 Roots of 26728085384: triangular -root : 231205.405565255837 tetrahedral-root : 5431.999938646542 <<== pentatopic -root : 893.442456751685 Roots of 14545501785001: triangular -root : 5393607.158145172316 tetrahedral-root : 44355.777376558433 pentatopic -root : 4321.000000000000
Perl
use v5.36;
use experimental <builtin for_list>;
use Math::AnyNum <binomial cbrt max round>;
sub table { my $t = 6 * (my $c = 1 + length max @_); ( sprintf( ('%'.$c.'d')x@_, @_) ) =~ s/.{1,$t}\K/\n/gr }
sub triangular_root ($x) {
round( (sqrt(8 * $x + 1) - 1) / 2, -3);
}
sub tetrahedral_root ($x) {
round(
cbrt(3 * $x + sqrt 9 * $x**2 - 1/27) +
cbrt(3 * $x - sqrt 9 * $x**2 - 1/27) - 1,
-3)
}
sub pentatopic_root ($x) {
round( (sqrt(5 + 4 * sqrt 24 * $x + 1) - 3) / 2, -3)
}
sub polytopic ($r, @range) { map { binomial $_ + $r - 1, $r } @range }
for my($r,$label) (2, 'triangular', 3, 'tetrahedral', 4, 'pentatopic', 12, '12-simplex') {
say "First 30 $label numbers:\n" . table polytopic $r, 0..29
}
for (7140, 21408696, 26728085384, 14545501785001) {
printf "Roots of $_:
triangular-root: %s
tetrahedral-root: %s
pentatopic-root: %s\n\n",
triangular_root($_), tetrahedral_root($_), pentatopic_root($_);
}
- Output:
First 30 triangular numbers: 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 First 30 tetrahedral numbers: 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 3276 3654 4060 4495 First 30 pentatopic numbers: 0 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985 7315 8855 10626 12650 14950 17550 20475 23751 27405 31465 35960 First 30 12-simplex numbers: 0 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078 2704156 5200300 9657700 17383860 30421755 51895935 86493225 141120525 225792840 354817320 548354040 834451800 1251677700 1852482996 2707475148 3910797436 5586853480 Roots of 7140: triangular-root: 119 tetrahedral-root: 34 pentatopic-root: 18.877 Roots of 21408696: triangular-root: 6543 tetrahedral-root: 503.561 pentatopic-root: 149.061 Roots of 26728085384: triangular-root: 231205.406 tetrahedral-root: 5432 pentatopic-root: 893.442 Roots of 14545501785001: triangular-root: 5393607.158 tetrahedral-root: 44355.777 pentatopic-root: 4321
Phix
with javascript_semantics
sequence t = repeat(0,30)
for n=2 to 30 do t[n] = t[n-1] + n-1 end for
printf(1,"The first 30 triangular numbers are:\n%s\n",{join_by(t,1,6,fmt:="%3d")})
for n=2 to 30 do t[n] = t[n] + t[n-1] end for
printf(1,"The first 30 tetrahedral numbers are:\n%s\n",{join_by(t,1,6,fmt:="%4d")})
for n=2 to 30 do t[n] = t[n] + t[n-1] end for
printf(1,"The first 30 pentatopic numbers are:\n%s\n",{join_by(t,1,6,fmt:="%5d")})
for r=5 to 12 do
for n=2 to 30 do t[n] = t[n] + t[n-1] end for
end for
printf(1,"The first 30 12-simplex numbers are:\n%s\n",{join_by(t,1,6,fmt:="%10d")})
for x in {7140, 21408696, 26728085384, 14545501785001} do
printf(1,"\nRoots of %d:\n",x)
atom root = (sqrt(x*8 + 1)-1)/2
printf(1,"%14s: %f\n", {"triangular", root})
atom temp = sqrt(x*x*9 - 1/27)
root = power(x*3 + temp,1/3) + power(x*3 - temp,1/3) - 1
printf(1,"%14s: %f\n", {"tetrahedral", root})
root = (sqrt(sqrt(x*24 + 1)*4 + 5) - 3) / 2
printf(1,"%14s: %f\n", {"pentatopic", root})
end for
- Output:
The first 30 triangular numbers are: 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 The first 30 tetrahedral numbers are: 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 3276 3654 4060 4495 The first 30 pentatopic numbers are: 0 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985 7315 8855 10626 12650 14950 17550 20475 23751 27405 31465 35960 The first 30 12-simplex numbers are: 0 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078 2704156 5200300 9657700 17383860 30421755 51895935 86493225 141120525 225792840 354817320 548354040 834451800 1251677700 1852482996 2707475148 3910797436 5586853480 Roots of 7140: triangular: 119.000000 tetrahedral: 34.000000 pentatopic: 18.876647 Roots of 21408696: triangular: 6543.000000 tetrahedral: 503.561166 pentatopic: 149.060947 Roots of 26728085384: triangular: 231205.405565 tetrahedral: 5431.999939 pentatopic: 893.442457 Roots of 14545501785001: triangular: 5393607.158145 tetrahedral: 44355.777377 pentatopic: 4321.000000
Raku
use Math::Root:ver<0.0.4>;
sub binomial { [×] ($^n … 0) Z/ 1 .. $^p }
sub polytopic (Int $r, @range) { @range.map: { binomial $_ + $r - 1, $r } }
sub display (@values) {
my $c = @values.max.chars;
@values.batch(6)».fmt("%{$c}d").join: "\n";
}
for 2, 'triangular', 3, 'tetrahedral', 4, 'pentatopic', 12, '12-simplex'
-> $r, $name { say "\nFirst 30 $name numbers:\n" ~ display polytopic $r, ^30 }
say '';
my \ε = FatRat.new: 1, 10**24;
for 7140, 21408696, 26728085384, 14545501785001 {
say qq:to/R/;
Roots of $_:
triangular-root: {.&triangular-root.round: ε}
tetrahedral-root: {.&tetrahedral-root.round: ε}
pentatopic-root: {.&pentatopic-root.round: ε}
R
}
- Output:
First 30 triangular numbers: 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 First 30 tetrahedral numbers: 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 3276 3654 4060 4495 First 30 pentatopic numbers: 0 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985 7315 8855 10626 12650 14950 17550 20475 23751 27405 31465 35960 First 30 12-simplex numbers: 0 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078 2704156 5200300 9657700 17383860 30421755 51895935 86493225 141120525 225792840 354817320 548354040 834451800 1251677700 1852482996 2707475148 3910797436 5586853480 Roots of 7140: triangular-root: 119 tetrahedral-root: 34 pentatopic-root: 18.876646615928006607901783 Roots of 21408696: triangular-root: 6543 tetrahedral-root: 503.56182697463651404819613 pentatopic-root: 149.060947375265867484387575 Roots of 26728085384: triangular-root: 231205.405565255836957291031961 tetrahedral-root: 5432 pentatopic-root: 893.442456751684869888466212 Roots of 14545501785001: triangular-root: 5393607.158145172316497304724655 tetrahedral-root: 44355.777384073256052620916903 pentatopic-root: 4321
RPL
≪ DUP ROT + 1 - SWAP COMB ≫ 'SMPLX' STO ≪ 8 * 1 + √ 1 - 2 / ≫ 'TROOT' STO ≪ DUP SQ 9 * 27 INV - √ SWAP 3 * DUP2 + 3 INV ^ SWAP ROT - 3 INV ^ + 1 - ≫ 'TeROOT' STO ≪ 24 * 1 + √ 4 * 5 + √ 3 - 2 / ≫ 'PROOT' STO ≪ {} 1 30 FOR n n 3 PICK SMPLX + NEXT ≫ 'SPX30' STO ≪ {7140 21408696 26728085384 14545501785001} 1 4 FOR n DUP n GET {} OVER TROOT + OVER TeROOT + SWAP PROOT + SWAP NEXT DROP ≫ 'ROOTS' STO
- Input:
2 SPX30 3 SPX30 4 SPX30 12 SPX30 ROOTS
- Output:
8: { 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 465 } 7: { 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 3276 3654 4060 4495 4960 } 6: { 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985 7315 8855 10626 12650 14950 17550 20475 23751 27405 31465 35960 40920 } 5: { 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078 2704156 5200300 9657700 17383860 30421755 51895935 86493225 141120525 225792840 354817320 548354040 834451800 1251677700 1852482996 2707475148 3910797436 5586853480 7898654920 } 4: { 119 34.0000000018 18.8766466159 } 3: { 6543 503.561166335 149.060947375 } 2: { 231205.405565 5431.99993865 893.442456752 } 1: { 5393607.15814 44355.7773766 4321 }
Sidef
func pentatopic_root(x) {
(sqrt(5 + 4*sqrt(24*x + 1)) - 3)/2
}
func polytopic (r, range) {
range.map {|n| binomial(n + r - 1, r) }
}
[
2, 'triangular', 3, 'tetrahedral', 4, 'pentatopic', 12, '12-simplex'
].slices(2).each_2d {|r,label|
say "\nFirst 30 #{label} numbers:"
polytopic(r, ^30).slices(6).each{.join(' ').say}
}
for n in (7140, 21408696, 26728085384, 14545501785001) {
printf ("\nRoots of #{n}:
triangular-root: %s
tetrahedral-root: %s
pentatopic-root: %s\n",
polygonal_root(n,3), pyramidal_root(n,3), pentatopic_root(n))
}
- Output:
First 30 triangular numbers: 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 First 30 tetrahedral numbers: 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 3276 3654 4060 4495 First 30 pentatopic numbers: 0 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985 7315 8855 10626 12650 14950 17550 20475 23751 27405 31465 35960 First 30 12-simplex numbers: 0 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078 2704156 5200300 9657700 17383860 30421755 51895935 86493225 141120525 225792840 354817320 548354040 834451800 1251677700 1852482996 2707475148 3910797436 5586853480 Roots of 7140: triangular-root: 119 tetrahedral-root: 34 pentatopic-root: 18.8766466159280066079017828266675662291603339398 Roots of 21408696: triangular-root: 6543 tetrahedral-root: 503.56182697463651404819613028417773405650502954 pentatopic-root: 149.060947375265867484387574884713368069543117436 Roots of 26728085384: triangular-root: 231205.405565255836957291031960694122304324644392 tetrahedral-root: 5432 pentatopic-root: 893.442456751684869888466211529245370387840101701 Roots of 14545501785001: triangular-root: 5393607.1581451723164973047246554846079685622181 tetrahedral-root: 44355.7773840732560526209168894228874431786835756 pentatopic-root: 4321
Wren
import "./fmt" for Fmt
import "./big" for BigRat
var t = List.filled(30, 0)
for (n in 1..29) t[n] = t[n-1] + n
System.print("The first 30 triangular numbers are:")
Fmt.tprint("$3d", t, 6)
for (n in 1..29) t[n] = t[n] + t[n-1]
System.print("\nThe first 30 tetrahedral numbers are:")
Fmt.tprint("$4d", t, 6)
for (n in 1..29) t[n] = t[n] + t[n-1]
System.print("\nThe first 30 pentatopic numbers are:")
Fmt.tprint("$5d", t, 6)
for (r in 5..12) {
for (n in 1..29) t[n] = t[n] + t[n-1]
}
System.print("\nThe first 30 12-simplex numbers are:")
Fmt.tprint("$10d", t, 6)
var xs = [7140, 21408696, 26728085384, 14545501785001]
var digs = 16
for (x in xs) {
var bx = BigRat.new(x)
System.print("\nRoots of %(x):")
var root = ((bx*8 + 1).sqrt(digs) - 1)/2
Fmt.print("$14s: $s", "triangular", root.toDecimal(digs-5))
var temp = (bx*bx*9 - BigRat.new(1, 27)).sqrt(digs)
root = (bx*3 + temp).cbrt(digs) + (bx*3 - temp).cbrt(digs) - 1
Fmt.print("$14s: $s", "tetrahedral", root.toDecimal(digs-5))
root = (((bx*24 + 1).sqrt(digs)*4 + 5).sqrt(digs) - 3) / 2
Fmt.print("$14s: $s", "pentatopic", root.toDecimal(digs-5))
}
- Output:
The first 30 triangular numbers are: 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 The first 30 tetrahedral numbers are: 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 3276 3654 4060 4495 The first 30 pentatopic numbers are: 0 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985 7315 8855 10626 12650 14950 17550 20475 23751 27405 31465 35960 The first 30 12-simplex numbers are: 0 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078 2704156 5200300 9657700 17383860 30421755 51895935 86493225 141120525 225792840 354817320 548354040 834451800 1251677700 1852482996 2707475148 3910797436 5586853480 Roots of 7140: triangular: 119 tetrahedral: 34.00000000000 pentatopic: 18.87664661593 Roots of 21408696: triangular: 6543 tetrahedral: 503.56182697464 pentatopic: 149.06094737527 Roots of 26728085384: triangular: 231205.40556525584 tetrahedral: 5432.00000000000 pentatopic: 893.44245675168 Roots of 14545501785001: triangular: 5393607.15814517232 tetrahedral: 44355.77738407326 pentatopic: 4321
XPL0
Some "interesting" loss of precision in the Pow function....
real T(13, 30);
proc ShowRoots(X);
real X, SR, CR1, CR2;
[Format(1, 0);
Text(0, "Roots of "); RlOut(0, X); CrLf(0);
Format(7, 13);
Text(0, " triangular: ");
RlOut(0, (sqrt(8.*X + 1.) - 1.) / 2.);
Text(0, "^m^jtetrahedral: ");
SR:= sqrt(9.*X*X - 1./27.);
CR1:= Pow(3.*X + SR, 1./3.);
CR2:= Pow(3.*X - SR, 1./3.);
RlOut(0, CR1 + CR2 -1.);
Text(0, "^m^j pentatopic: ");
RlOut(0, (sqrt(5. + 4.*sqrt(24.*X + 1.)) - 3.) / 2.);
CrLf(0); CrLf(0);
];
proc Print(Str, Places, R);
int Str, Places, R, N;
[Text(0, Str); CrLf(0);
Format(Places, 0);
for N:= 0 to 29 do
[RlOut(0, T(R,N));
if rem(N/6) = 5 then CrLf(0);
];
CrLf(0);
];
int R, N;
[for N:= 0 to 29 do
T(1,N):= float(N);
for R:= 2 to 12 do
[T(R,0):= 0.;
for N:= 1 to 29 do
T(R,N):= T(R,N-1) + T(R-1,N);
];
Print("The first 30 triangular numbers are:", 4, 2);
Print("The first 30 tetrahedral numbers are:", 5, 3);
Print("The first 30 pentatopic numbers are:", 6, 4);
Print("The first 30 12-simplex numbers are:", 11, 12);
ShowRoots(7140.);
ShowRoots(21408696.);
ShowRoots(26728085384.);
ShowRoots(14_545_501_785_001.);
]
- Output:
The first 30 triangular numbers are: 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 The first 30 tetrahedral numbers are: 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 3276 3654 4060 4495 The first 30 pentatopic numbers are: 0 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876 4845 5985 7315 8855 10626 12650 14950 17550 20475 23751 27405 31465 35960 The first 30 12-simplex numbers are: 0 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078 2704156 5200300 9657700 17383860 30421755 51895935 86493225 141120525 225792840 354817320 548354040 834451800 1251677700 1852482996 2707475148 3910797436 5586853480 Roots of 7140 triangular: 119.0000000000000 tetrahedral: 34.0000000017903 pentatopic: 18.8766466159280 Roots of 21408696 triangular: 6543.0000000000000 tetrahedral: 503.5611663345480 pentatopic: 149.0609473752660 Roots of 26728085384 triangular: 231205.4055652560000 tetrahedral: 5431.9999386465400 pentatopic: 893.4424567516850 Roots of 14545501785001 triangular: 5393607.1581451700000 tetrahedral: 44355.7773765584000 pentatopic: 4321.0000000000000