Solve equations with substitution method
- Task
Let given equations:
3x + y = -1 and 2x - 3y = -19
Solve it with substitution method.
- See related
ALGOL 68
BEGIN # solve equations using the substitution method - translation of Phix #
PROC solve2 = ( []REAL e1, e2 )[]REAL:
BEGIN
REAL a1 = e1[ 1 ], b1 = e1[ 2 ], c1 = e1[ 3 ];
REAL a2 = e2[ 1 ], b2 = e2[ 2 ], c2 = e2[ 3 ];
REAL x = (b2*c1 - b1*c2) / (b2*a1 - b1*a2);
REAL y = (a1*x - c1)/-b1;
( x, y )
END # solve2 # ;
OP FMT = ( REAL v )STRING: # prints v with at most 3 decimal places #
BEGIN
STRING result := fixed( ABS v, 0, 3 );
IF result[ LWB result ] = "." THEN "0" +=: result FI;
WHILE result[ UPB result ] = "0" DO result := result[ : UPB result - 1 ] OD;
IF result[ UPB result ] = "." THEN result := result[ : UPB result - 1 ] FI;
IF v < 0 THEN "-" ELSE "" FI + result
END # FMT # ;
[]REAL xy = solve2( ( 3, 1, -1 ), ( 2, -3, -19 ) );
print( ( "x = ", FMT xy[ 1 ], ", y = ", FMT xy[ 2 ], newline ) )
END
- Output:
x = -2, y = 5
AWK
# syntax: GAWK -f SOLVE_EQUATIONS_WITH_SUBSTITUTION_METHOD.AWK
BEGIN {
main("3,1,-1","2,-3,-19")
exit(0)
}
function main(s1,s2, arr,e1,e2,result_x,result_y,r1,r2,x1,x2,y1,y2) {
split(s1,e1,",")
split(s2,e2,",")
x1 = e1[1]
y1 = e1[2]
r1 = e1[3]
x2 = e2[1]
y2 = e2[2]
r2 = e2[3]
arr[1] = x1
arr[2] = -y1
arr[3] = r1
result_y = ((arr[1]*r2) - (x2*arr[3])) / ((x2*arr[2]) + (arr[1]*y2))
result_x = (r1 - (y1*result_y)) / x1
printf("x = %g\ny = %g\n",result_x,result_y)
}
- Output:
x = -2 y = 5
BASIC
BASIC256
arraybase 1
dim firstEquation(3)
firstEquation[1] = 3
firstEquation[2] = 1
firstEquation[3] = -1
dim secondEquation(3)
secondEquation[1] = 2
secondEquation[2] = -3
secondEquation[3] = -19
subroutine getCrossingPoint(firstEquation, secondEquation)
x1 = firstEquation[1]
y1 = firstEquation[2]
r1 = firstEquation[3]
x2 = secondEquation[1]
y2 = secondEquation[2]
r2 = secondEquation[3]
dim temp(3)
temp[1] = x1
temp[2] = -y1
temp[3] = r1
resultY = ((temp[1]*r2) - (x2*temp[3])) / ((x2*temp[2]) + (temp[1]*y2))
resultX = (r1 - (y1*resultY)) / x1
print "x = "; resultX
print "y = "; resultY
end subroutine
call getCrossingPoint(firstEquation, secondEquation)
end
- Output:
Igual que la entrada de FreeBASIC.
FreeBASIC
Dim Shared As Integer firstEquation(1 To 3) = { 3, 1, -1}
Dim Shared As Integer secondEquation(1 To 3) = { 2,-3,-19}
Sub getCrossingPoint(firstEquation() As Integer, secondEquation() As Integer)
Dim As Integer x1 = firstEquation(1)
Dim As Integer y1 = firstEquation(2)
Dim As Integer r1 = firstEquation(3)
Dim As Integer x2 = secondEquation(1)
Dim As Integer y2 = secondEquation(2)
Dim As Integer r2 = secondEquation(3)
Dim As Integer temp(3)
temp(1) = x1
temp(2) = -y1
temp(3) = r1
Dim As Integer resultY = ((temp(1)* r2) - (x2 * temp(3))) / ((x2 * temp(2)) + (temp(1)*y2))
Dim As Integer resultX = (r1 - (y1*resultY)) / x1
Print "x = "; resultX
Print "y = "; resultY
End Sub
getCrossingPoint(firstEquation(), secondEquation())
Sleep
- Output:
x = -2 y = 5
QBasic
DIM firstEquation(3)
firstEquation(1) = 3
firstEquation(2) = 1
firstEquation(3) = -1
DIM secondEquation(3)
secondEquation(1) = 2
secondEquation(2) = -3
secondEquation(3) = -19
CALL getCrossingPoint(firstEquation(), secondEquation())
END
SUB getCrossingPoint (firstEquation(), secondEquation())
x1 = firstEquation(1)
y1 = firstEquation(2)
r1 = firstEquation(3)
x2 = secondEquation(1)
y2 = secondEquation(2)
r2 = secondEquation(3)
DIM temp(3)
temp(1) = x1
temp(2) = -y1
temp(3) = r1
resultY = ((temp(1) * r2) - (x2 * temp(3))) / ((x2 * temp(2)) + (temp(1) * y2))
resultX = (r1 - (y1 * resultY)) / x1
PRINT "x = "; resultX
PRINT "y = "; resultY
END SUB
- Output:
Igual que la entrada de FreeBASIC.
True BASIC
DIM firstequation(3)
LET firstequation(1) = 3
LET firstequation(2) = 1
LET firstequation(3) = -1
DIM secondequation(3)
LET secondequation(1) = 2
LET secondequation(2) = -3
LET secondequation(3) = -19
SUB getcrossingpoint (firstequation(),secondequation())
LET x1 = firstequation(1)
LET y1 = firstequation(2)
LET r1 = firstequation(3)
LET x2 = secondequation(1)
LET y2 = secondequation(2)
LET r2 = secondequation(3)
DIM temp(3)
LET temp(1) = x1
LET temp(2) = -y1
LET temp(3) = r1
LET resulty = ((temp(1)*r2)-(x2*temp(3)))/((x2*temp(2))+(temp(1)*y2))
LET resultx = (r1-(y1*resulty))/x1
PRINT "x = "; resultx
PRINT "y = "; resulty
END SUB
CALL getcrossingpoint (firstequation(), secondequation())
END
- Output:
Igual que la entrada de FreeBASIC.
Yabasic
dim firstEquation(3)
firstEquation(1) = 3
firstEquation(2) = 1
firstEquation(3) = -1
dim secondEquation(3)
secondEquation(1) = 2
secondEquation(2) = -3
secondEquation(3) = -19
sub getCrossingPoint(firstEquation(), secondEquation())
x1 = firstEquation(1)
y1 = firstEquation(2)
r1 = firstEquation(3)
x2 = secondEquation(1)
y2 = secondEquation(2)
r2 = secondEquation(3)
dim temp(3)
temp(1) = x1
temp(2) = -y1
temp(3) = r1
resultY = ((temp(1)*r2) - (x2*temp(3))) / ((x2*temp(2)) + (temp(1)*y2))
resultX = (r1 - (y1*resultY)) / x1
print "x = ", resultX
print "y = ", resultY
end sub
getCrossingPoint(firstEquation(), secondEquation())
end
- Output:
Igual que la entrada de FreeBASIC.
Delphi
Rather than just provide a one-off solution for this one problem, I've included code that will solve any system of equations with n-equations and n-unknowns. The code revolves around a matrix object, that contains an N by N matrix. The object can perform Gausian Elimination, which reduces the matrix to "Row Eschelon" format. From Row Eschelon format, you can back substitute and get the values for the unknowns. It also includes code to do "Gauss-Jordan" elimination, which eliminates the back substitution step. The object presented here is a subset of a more elaborate object that can perform all kinds of matrix operations.
{This code normally resides in a library, it is provided here for clarity}
type T2DMatrix = class(TObject)
private
FDoubleArray: array of double;
FRows,FColumns: integer;
procedure Put(Row,Col: integer; Item: double);
function Get(Row,Col: integer): double;
protected
public
constructor Create(Row,Col: integer);
property Rows: integer read FRows;
property Columns: integer read FColumns;
procedure SetDimensions(Row,Col: integer);
property Value[Row,Col: integer]: Double read Get write Put; default;
function BackSubstitute: TDoubleDynArray;
procedure GausianElimination;
function GaussBackSubsituation: TDoubleDynArray;
procedure GaussJordanElimination;
procedure ExchangeRows(R1, R2: integer);
function MatrixStr(Digits: integer): string;
end;
{ T2DMatrix }
procedure T2DMatrix.SetDimensions(Row, Col: integer);
begin
FRows:=Row; FColumns:=Col;
SetLength(FDoubleArray,Row * Col);
end;
constructor T2DMatrix.Create(Row, Col: integer);
begin
SetDimensions(Row, Col);
end;
procedure T2DMatrix.Put(Row,Col: integer; Item: double);
{Insert Double at index}
var Inx: integer;
begin
Inx:=(Col * Rows) + Row;
FDoubleArray[Inx]:=Item;
end;
function T2DMatrix.Get(Row,Col: integer): double;
{Get Double at the index}
var Inx: integer;
begin
Inx:=(Col * Rows) + Row;
Result:=FDoubleArray[Inx];
end;
{Matrix operations}
procedure T2DMatrix.ExchangeRows(R1,R2: integer);
{Exchange the specified Rows}
var Col: integer;
var T: double;
begin
for Col:=0 to Self.Columns-1 do
begin
T:=Self[R1,Col];
Self[R1,Col]:=Self[R2,Col];
Self[R2,Col]:=T;
end;
end;
procedure T2DMatrix.GausianElimination;
var I,K,J : Integer;
var S : double;
{Small value to prevent divide by zero}
const Epsilon = 5.0e-162;
begin
{Do gaussian elimination and convert Row Echelon}
K:=0;
while True do
begin
{If the pivot is zero, find another row with non-zero in the same column}
if Self[K,K]=0 then
begin
for I:=K+1 to Self.Rows-1 do
if Self[I,K]<>0 then
begin
Self.ExchangeRows(K,I);
break;
end;
end;
{Get pivot again}
S:=Self[K,K];
{if it is still zero, prevent divide by zero}
if S=0.0 then S:=Epsilon;
{Use "scaling primative row operation" to set pivot to one i.e divide each item by pivot}
for J:=K to Self.Columns-1 do Self[K,J]:=Self[K,J]/S;
{Exit if we are on the bottom row}
if K>=Self.Rows-1 then break;
{Now that the previous row has 1 in the leading coefficient (Pivot)}
{We convert all remaining columns below this item to zero }
{Using "pivot primative row operation" = Current Row - Pivot * Start Row}
for I:=K+1 to Self.Rows-1 do
{Do this to current column for all remaining rows}
begin
{Get the leading coefficient}
S:=Self[I,K];
{Use it to zero column and apply to all items in row}
for J:=K to Self.Columns-1 do Self[I,J]:=Self[I,J]-S*Self[K,J];
end;
{Point to next pivot}
K:=K+1;
end;
{Matrix is now in Row Echelon form }
end;
function T2DMatrix.BackSubstitute: TDoubleDynArray;
var Row,J: integer;
var Sum: double;
begin
SetLength(Result,Self.Rows);
for Row:=Self.Rows-1 downto 0 do
begin
Result[Row]:=Self[Row,Self.Columns-1];
Sum:=0;
for J:=Self.Rows-1 downto Row+1 do
Sum:=Sum + Result[J] * Self[Row,J];
Result[Row]:=Result[Row] - Sum;
end;
end;
function T2DMatrix.GaussBackSubsituation: TDoubleDynArray;
begin
Self.GausianElimination;
Result:=Self.BackSubstitute;
end;
procedure T2DMatrix.GaussJordanElimination;
{ Do Gauss Jordan Elimination }
var I,K,J : Integer;
var S : double;
var X,Y: integer;
var Str: string;
{Small value to prevent divide by zero}
const Epsilon = 5.0e-162;
begin
{Do Gaussian Elimination to put matrix in Row Echelon format}
Self.GausianElimination;
{Now do the Jordan part to put it in Reduced Row Echelon form}
{Point K at the both the source row and target column (left part of matrix is square)}
K:=Self.Rows-1;
while K>0 do
begin
{Point I at the target row}
I:=K-1;
repeat
begin
{Get the coefficient of target column and row, the value we want to zero }
S:=Self[I,K];
{Multiply source row by the target coefficient and subtract from each item in the target row}
{Since the target column is one in the source row, this will zero out the target coefficient}
for J:=K to Self.Columns-1 do Self[I,J]:=Self[I,J]-S*Self[K,J];
{Point to previous row}
I:=I-1;
end
until I<0;
{Point to previous column}
K:=K-1;
end;
end;
function T2DMatrix.MatrixStr(Digits: integer): string;
var Row,Col: integer;
begin
Result:=IntToStr(Self.Rows)+'X'+IntToStr(Self.Columns)+CRLF_Char;
for Row:=0 to Self.Rows-1 do
begin
Result:=Result+'[';
for Col:=0 to Self.Columns-1 do
begin
if Col<>0 then Result:=Result+' ';
Result:=Result+FloatToStrF(Self[Row,Col],ffFixed,18,Digits);
end;
Result:=Result+']'+CRLF_Char;
end;
end;
{===============================================================================}
procedure SolveEquations(Memo: TMemo);
var Mat: T2DMatrix;
var DA: TDoubleDynArray;
var I: integer;
var S: string;
begin
Mat:=T2DMatrix.Create(2,3);
try
{3x + y = -1}
{2x - 3y = -19}
Mat[0,0]:=3; Mat[0,1]:=1; Mat[0,2]:=-1;
Mat[1,0]:=2; Mat[1,1]:=-3; Mat[1,2]:=-19;
Memo.Lines.Add('Solve with Gaussian Elimination and Substitution');
Memo.Lines.Add('------------------------------------------------');
Memo.Lines.Add(Mat.MatrixStr(1));
Mat.GausianElimination;
Memo.Lines.Add('Row Echelon after Gaussian Elimination');
Memo.Lines.Add(Mat.MatrixStr(1));
DA:=Mat.BackSubstitute;
Memo.Lines.Add('Matrix after Back Substitution');
Memo.Lines.Add(Mat.MatrixStr(1));
Memo.Lines.Add(Format('Solution: X=%2.2f, Y=%2.2f',[DA[0],DA[1]]));
Mat[0,0]:=3; Mat[0,1]:=1; Mat[0,2]:=-1;
Mat[1,0]:=2; Mat[1,1]:=-3; Mat[1,2]:=-19;
Memo.Lines.Add('');
Memo.Lines.Add('Solve with Gaussian Jordan elimination');
Memo.Lines.Add('--------------------------------------');
Memo.Lines.Add(Mat.MatrixStr(1));
Mat.GaussJordanElimination;
Memo.Lines.Add('Matrix after Gauss-Jordan');
Memo.Lines.Add(Mat.MatrixStr(1));
Memo.Lines.Add(Format('Solution: X=%2.2f, Y=%2.2f',[Mat[0,2],Mat[1,2]]));
finally Mat.Free; end;
end;
- Output:
Solve with Gaussian Elimination and Substitution ------------------------------------------------ 2X3 [3.0 1.0 -1.0] [2.0 -3.0 -19.0] Row Echelon after Gaussian Elimination 2X3 [1.0 0.3 -0.3] [0.0 1.0 5.0] Matrix after Back Substitution 2X3 [1.0 0.3 -0.3] [0.0 1.0 5.0] Solution: X=-2.00, Y=5.00 Solve with Gaussian Jordan elimination -------------------------------------- 2X3 [3.0 1.0 -1.0] [2.0 -3.0 -19.0] Matrix after Gauss-Jordan 2X3 [1.0 0.0 -2.0] [0.0 1.0 5.0] Solution: X=-2.00, Y=5.00 Elapsed Time: 21.255 ms.
EasyLang
func[] solve a[] b[] .
r[] &= (b[2] * a[3] - a[2] * b[3]) / (b[2] * a[1] - a[2] * b[1])
r[] &= (a[1] * r[1] - a[3]) / -a[2]
return r[]
.
print solve [ 3 1 -1 ] [ 2 -3 -19 ]
- Output:
[ -2 5 ]
jq
Works with jq, the C implementation of jq
Works with gojq, the Go implementation of jq
The solution presented here handles all the edge cases.
With trivial modifications, the following will also work with jaq, the Rust implementation of jq.
# The equation ax + by = c is represented by the array [a, b, c]
def solve( $e1; $e2 ):
$e1 as [$a1, $b1, $c1]
| $e2 as [$a2, $b2, $c2]
| ($b2 * $a1 - $b1 * $a2 ) as $d
| if $d == 0 then "there is no unique solution as the discriminant is 0" | error
else
{ x : (($b2 * $c1 - $b1 * $c2 ) / $d) }
| if $b1 != 0
then .y = ( $a1 * .x - $c1 ) / -$b1
else .y = ( $a2 * .x - $c2 ) / -$b2
end
end;
solve( [3,1,-1]; [2,-3,-19] )
- Output:
{ "x": -2, "y": 5 }
Julia
function parselinear(s)
ab, c = strip.(split(s, "="))
a, by = strip.(split(ab, "x"))
b = replace(by, r"[\sy]" => "")
b[end] in "-+" && (b *= "1")
b = replace(b, "--" => "")
return map(x -> parse(Float64, x == "" ? "1" : x), [a, b, c])
end
function solvetwolinear(s1, s2)
a1, b1, c1 = parselinear(s1)
a2, b2, c2 = parselinear(s2)
x = (b2 * c1 - b1 * c2) / (b2 * a1 - b1 * a2)
y = (a1 * x - c1 ) / -b1
return x, y
end
@show solvetwolinear("3x + y = -1", "2x - 3y = -19") # solvetwolinear("3x + y = -1", "2x - 3y = -19") = (-2.0, 5.0)
Nim
type Equation = tuple[cx, cy, cr: float] # cx.x + cy.y = cr.
func getCrossingPoint(firstEquation, secondEquation: Equation): tuple[x, y: float] =
let (x1, y1, r1) = firstEquation
let (x2, y2, r2) = secondEquation
let temp = (x1, -y1, r1)
result.y = ((temp[0] * r2) - (x2 * temp[2])) / ((x2 * temp[1]) + (temp[0] * y2))
result.x = (r1 - (y1 * result.y)) / x1
when isMainModule:
let firstEquation: Equation = (3, 1, -1)
let secondEquation: Equation = (2, -3, -19)
let (x, y) = getCrossingPoint(firstEquation, secondEquation)
echo "x = ", x
echo "y = ", y
- Output:
x = -2.0 y = 5.0
Perl
use strict;
use warnings;
use feature 'say';
sub parse {
my($e) = @_;
$e =~ s/ ([xy])/ 1$1/;
$e =~ s/[ =\+]//g;
split /[xy=]/, $e;
}
sub solve {
my($a1, $b1, $c1, $a2, $b2, $c2) = @_;
my $X = ( $b2 * $c1 - $b1 * $c2 )
/ ( $b2 * $a1 - $b1 * $a2 );
my $Y = ( $a1 * $X - $c1 ) / -$b1;
return $X, $Y;
}
say my $result = join ' ', solve( parse('3x + y = -1'), parse('2x - 3y = -19') );
- Output:
-2 5
Phix
Slightly modified copy of solveN() from Solving_coin_problems#Phix, admittedly a tad overkill for this task, as it takes any number of rules and any number of variables.
with javascript_semantics procedure solve(sequence rules, unknowns) -- -- Based on https://mathcs.clarku.edu/~djoyce/ma105/simultaneous.html -- aka the ancient Chinese Jiuzhang suanshu ~100 B.C. (!!) -- -- Example: -- rules = {{18,1,1},{38,1,5}}, ie 18==p+n, 38==p+5*n -- unknowns = {"pennies","nickels"} -- -- In the elimination phase, both p have multipliers of 1, so we can -- ignore those two sq_mul and just do (38=p+5n)-(18=p+n)==>(20=4n). -- Obviously therefore n is 5 and substituting backwards p is 13. -- string res sequence sentences = rules, ri, rj integer l = length(rules), rii, rji rules = deep_copy(rules) for i=1 to l do -- successively eliminate (grow lower left triangle of 0s) ri = rules[i] if length(ri)!=l+1 then ?9/0 end if rii = ri[i+1] if rii=0 then ?9/0 end if for j=i+1 to l do rj = rules[j] rji = rj[i+1] if rji!=0 then rj = sq_sub(sq_mul(rj,rii),sq_mul(ri,rji)) if rj[i+1]!=0 then ?9/0 end if -- (job done) rules[j] = rj end if end for end for for i=l to 1 by -1 do -- then substitute each backwards ri = rules[i] rii = ri[1]/ri[i+1] -- (all else should be 0) rules[i] = sprintf("%s = %d",{unknowns[i],rii}) for j=i-1 to 1 by -1 do rj = rules[j] rji = rj[i+1] if rji!=0 then rules[j] = 0 rj[1] -= rji*rii rj[i+1] = 0 rules[j] = rj end if end for end for res = join(rules,", ") printf(1,"%v ==> %s\n",{sentences,res}) end procedure --for 3x + y = -1 and 2x - 3y = -19: solve({{-1,3,1},{-19,2,-3}},{"x","y"})
- Output:
{{-1,3,1},{-19,2,-3}} ==> x = -2, y = 5
Alternatively, since I'm staring right at it, here's a
with javascript_semantics function solve2(sequence e1,e2) atom {a1,b1,c1} = e1, {a2,b2,c2} = e2, x = (b2*c1 - b1*c2) / (b2*a1 - b1*a2), y = (a1*x - c1)/-b1; return {x, y} end function printf(1,"x = %d, y = %d\n",solve2({3,1,-1},{2,-3,-19}))
- Output:
x = -2, y = 5
Python
#!/usr/bin/python
firstEquation = [ 3, 1, -1]
secondEquation = [ 2,-3,-19]
def getCrossingPoint(firstEquation, secondEquation):
x1 = firstEquation[0]
y1 = firstEquation[1]
r1 = firstEquation[2]
x2 = secondEquation[0]
y2 = secondEquation[1]
r2 = secondEquation[2]
temp = []
temp.append( x1)
temp.append(-y1)
temp.append( r1)
resultY = ((temp[0]*r2) - (x2*temp[2])) / ((x2*temp[1]) + (temp[0]*y2))
resultX = (r1 - (y1*resultY)) / x1
print("x = ", resultX)
print("y = ", resultY)
if __name__ == "__main__":
getCrossingPoint(firstEquation, secondEquation)
- Output:
x = -2.0 y = 5.0
Raku
sub solve-system-of-two-linear-equations ( [ \a1, \b1, \c1 ], [ \a2, \b2, \c2 ] ) {
my \X = ( b2 * c1 - b1 * c2 )
/ ( b2 * a1 - b1 * a2 );
my \Y = ( a1 * X - c1 ) / -b1;
return X, Y;
}
say solve-system-of-two-linear-equations( (3,1,-1), (2,-3,-19) );
- Output:
(-2 5)
Ring
firstEquation = [3.0,1.0,-1.0] secondEquation = [2.0,-3.0,-19.0]
getCrossingPoint(firstEquation,secondEquation)
func getCrossingPoint(firstEquation,secondEquation)
x1 = firstEquation[1] y1 = firstEquation[2] r1 = firstEquation[3] x2 = secondEquation[1] y2 = secondEquation[2] r2 = secondEquation[3]
temp = []
add(temp,x1) add(temp,-y1) add(temp,r1)
resultY = ((temp[1]* r2) - (x2 * temp[3])) / ((x2 * temp[2]) + (temp[1]*y2)) resultX = (r1 - (y1*resultY)) / x1
see "x = " + resultX + nl + "y = " + resultY + nl
- Output:
x = -2 y = 5
Wren
var solve = Fn.new { |e1, e2|
e2 = e2.toList
for (i in 1..2) e2[i] = e2[i] * e1[0] / e2[0]
var y = (e2[2] - e1[2]) / (e2[1] - e1[1])
var x = (e1[2] - e1[1] * y) / e1[0]
return [x, y]
}
var e1 = [3, 1, -1]
var e2 = [2, -3, -19]
var sol = solve.call(e1, e2)
System.print("x = %(sol[0]), y = %(sol[1])")
- Output:
x = -2, y = 5
XPL0
This shows the vector routines from xpllib.xpl.
func real VSub(A, B, C); \Subtract two 3D vectors
real A, B, C; \A:= B - C
[A(0):= B(0) - C(0); \VSub(A, A, C) => A:= A - C
A(1):= B(1) - C(1);
A(2):= B(2) - C(2);
return A;
]; \VSub
func real VMul(A, B, S); \Multiply 3D vector by a scalar
real A, B, S; \A:= B * S
[A(0):= B(0) * S; \VMul(A, A, S) => A:= A * S
A(1):= B(1) * S;
A(2):= B(2) * S;
return A;
]; \VMul
real E1, E2, X1, X2, X, Y;
[E1:= [3., 1., -1.];
E2:= [2., -3., -19.];
X1:= E1(0);
X2:= E2(0);
VMul(E1, E1, X2);
VMul(E2, E2, X1);
VSub(E1, E1, E2);
Y:= E1(2)/E1(1);
E2(1):= E2(1)*Y;
E2(2):= E2(2)-E2(1);
X:= E2(2)/E2(0);
Text(0, "x = "); RlOut(0, X); CrLf(0);
Text(0, "y = "); RlOut(0, Y); CrLf(0);
]
- Output:
x = -2.00000 y = 5.00000