# Smallest power of 6 whose decimal expansion contains n

Smallest power of 6 whose decimal expansion contains n is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Show the smallest (non-negative integer) power of   6   whose decimal expansion contains   n,     where   n   <   22

## 11l

Translation of: Python
```F smallest_six(n)
V p = BigInt(1)
L String(n) !C String(p)
p *= 6
R p

L(n) 22
print(‘#2: #.’.format(n, smallest_six(n)))```
Output:
``` 0: 10077696
1: 1
2: 216
3: 36
4: 46656
5: 46656
6: 6
7: 7776
8: 2176782336
9: 1296
10: 10077696
11: 2821109907456
12: 1296
13: 13060694016
14: 6140942214464815497216
15: 101559956668416
16: 216
17: 60466176
18: 470184984576
19: 21936950640377856
20: 170581728179578208256
21: 216
```

## ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32

Uses ALGOL 68G's LONG LONG INT large integers, the default precision is sufficient for this task. Also uses the ALGOL 68G specific string in string procedure.

```BEGIN # find the smallest k such that the decimal representation of 6^k contains n for 0 <= n <= 21 #
# returns s blank-padded on the right to at least len characters #
PROC right pad = ( STRING s, INT len )STRING:
BEGIN
INT s len = ( UPB s - LWB s ) + 1;
IF s len >= len THEN s ELSE s + ( len - s len ) * " " FI
END # right pad # ;
# returns s blank-padded on the left to at least len characters #
PROC left pad = ( STRING s, INT len )STRING:
BEGIN
INT s len = ( UPB s - LWB s ) + 1;
IF s len >= len THEN s ELSE ( ( len - s len ) * " " ) + s FI
END # left pad # ;
# returns a string representation of unformatted with space separators                    #
PROC space separate = ( STRING unformatted )STRING:
BEGIN
STRING result      := "";
INT    ch count    := 0;
FOR c FROM UPB unformatted BY -1 TO LWB unformatted DO
IF   ch count <= 2 THEN ch count +:= 1
ELSE                    ch count  := 1; " " +=: result
FI;
unformatted[ c ] +=: result
OD;
result
END # space separate # ;
# start with powers up to 6^12, if this proves insufficient, the kk array will be extended #
FLEX[ 0 : 12 ]STRING kk;
FOR k FROM LWB kk TO UPB kk DO kk[ k ] := whole( LONG LONG INT( 6 ) ^ k, 0 ) OD;
# find the numbers #
FOR i FROM 0 TO 21 DO
STRING n      = whole( i, 0 );
BOOL try again := TRUE;
WHILE try again DO
try again := FALSE;
BOOL   found := FALSE;
FOR k FROM LWB kk TO UPB kk WHILE NOT found DO
IF string in string( n, NIL, kk[ k ] ) THEN
found := TRUE;
print( ( whole( i, -2 ), right pad( ": 6^" + whole( k, 0 ), 8 ), " ", left pad( space separate( kk[ k ] ), 30 ), newline ) )
FI
OD;
# haven't got enough k^k values - get some more #
kk := HEAP[ 1 : UPB kk * 2 ]STRING;
FOR k FROM LWB kk TO UPB kk DO kk[ k ] := whole( LONG LONG INT( 6 ) ^ k, 0 ) OD;
try again := TRUE
FI
OD
OD
END```
Output:
``` 0: 6^9                        10 077 696
1: 6^0                                 1
2: 6^3                               216
3: 6^2                                36
4: 6^6                            46 656
5: 6^6                            46 656
6: 6^1                                 6
7: 6^5                             7 776
8: 6^12                    2 176 782 336
9: 6^4                             1 296
10: 6^9                        10 077 696
11: 6^16                2 821 109 907 456
12: 6^4                             1 296
13: 6^13                   13 060 694 016
14: 6^28    6 140 942 214 464 815 497 216
15: 6^18              101 559 956 668 416
16: 6^3                               216
17: 6^10                       60 466 176
18: 6^15                  470 184 984 576
19: 6^21           21 936 950 640 377 856
20: 6^26      170 581 728 179 578 208 256
21: 6^3                               216
```

## ALGOL W

Algol W doesn't have integers larger than 32 bits, however we can handle the required numbers with arrays of digits.

```begin % find the smallest power of 6 that contains n for 0 <= n <= 21       %
% we assume that powers of 6 upto 6^32 will be sufficient               %
% as Algol W does not have integers longer than 32 bits, the powers     %
% will be held in an array where each element is a single digit of the  %
% power, the least significant digit of 6^n is in powers( n, 1 )        %
integer array powers ( 0 :: 32, 1 :: 32 ); % the powers                 %
integer array digits ( 0 :: 32 ); % the number of digits in each power  %
integer array lowest ( 0 :: 21 ); % the lowest power containing the idx %
for n := 0 until 21 do lowest( n ) := -1;
% 6^0 = 1, which is the lowest power containing 1                       %
lowest( 1 )    := 0;
powers( 0, 1 ) := 1;
for d := 2 until 32 do powers( 0, d ) := 0;
digits( 0 ) := 1;
% calculate the remaining powers and find the numbers 0..21             %
for p := 1 until 32 do begin
integer carry, dPos, dMax;
dPos  := 1;
dMax  := digits( p - 1 );
carry := 0;
% compute the power p and find the single digit numbers             %
while dPos <= dMax do begin
integer d;
d                 := carry + ( powers( p - 1, dPos ) * 6 );
carry             := d div 10;
d                 := d rem 10;
if lowest( d ) < 0 then lowest( d ) := p;
powers( p, dPos ) := d;
dPos              := dPos + 1
end while_dPos_le_dMax ;
if   carry = 0
then digits( p ) := dMax
else begin
% the power p has one more digit than the previous              %
digits( p )       := dPos;
powers( p, dPos ) := carry;
if lowest( carry ) < 0 then lowest( carry ) := p;
end if_carry_eq_0__ ;
% find the two digit numbers                                        %
for n := 10 until 21 do begin
if lowest( n ) < 0 then begin
integer h, l;
h := n div 10;
l := n rem 10;
for d := digits( p ) - 1 step -1 until 1 do begin
if powers( p, d ) = l and powers( p, d + 1 ) = h then lowest( n ) := p
end for_d
end if_lowest_n_lt_0
end for_n
end for_p ;
% show the lowest powers that contain the numbers 0..21                  %
for n := 0 until 21 do begin
integer p;
p := lowest( n );
write( i_w := 2, s_w := 0, n, " in 6^", p, ": " );
for d := digits( p ) step -1 until 1 do writeon( i_w := 1, s_w := 0, powers( p, d ) )
end for_n
end.```
Output:
``` 0 in 6^ 9: 10077696
1 in 6^ 0: 1
2 in 6^ 3: 216
3 in 6^ 2: 36
4 in 6^ 6: 46656
5 in 6^ 6: 46656
6 in 6^ 1: 6
7 in 6^ 5: 7776
8 in 6^12: 2176782336
9 in 6^ 4: 1296
10 in 6^ 9: 10077696
11 in 6^16: 2821109907456
12 in 6^ 4: 1296
13 in 6^13: 13060694016
14 in 6^28: 6140942214464815497216
15 in 6^18: 101559956668416
16 in 6^ 3: 216
17 in 6^10: 60466176
18 in 6^15: 470184984576
19 in 6^21: 21936950640377856
20 in 6^26: 170581728179578208256
21 in 6^ 3: 216
```

## Arturo

```loop 0..22 'n [
ns: to :string n
print [pad to :string n 2 "->" 6 ^ first select.first 0..∞ 'x -> contains? to :string 6^x ns]
]
```
Output:
``` 0 -> 10077696
1 -> 1
2 -> 216
3 -> 36
4 -> 46656
5 -> 46656
6 -> 6
7 -> 7776
8 -> 2176782336
9 -> 1296
10 -> 10077696
11 -> 2821109907456
12 -> 1296
13 -> 13060694016
14 -> 6140942214464815497216
15 -> 101559956668416
16 -> 216
17 -> 60466176
18 -> 470184984576
19 -> 21936950640377856
20 -> 170581728179578208256
21 -> 216
22 -> 131621703842267136```

## AWK

```# syntax: GAWK -f SMALLEST_POWER_OF_6_WHOSE_DECIMAL_EXPANSION_CONTAINS_N.AWK
BEGIN {
printf(" n power %30s\n","smallest power of 6")
for (n=0; n<22; n++) {
p = 1
power = 0
while (p !~ n) {
p *= 6
power++
}
printf("%2d %5d %'30d\n",n,power,p)
}
exit(0)
}
```
Output:
``` n power            smallest power of 6
0     9                     10,077,696
1     0                              1
2     3                            216
3     2                             36
4     6                         46,656
5     6                         46,656
6     1                              6
7     5                          7,776
8    12                  2,176,782,336
9     4                          1,296
10     9                     10,077,696
11    16              2,821,109,907,456
12     4                          1,296
13    13                 13,060,694,016
14    28  6,140,942,214,464,815,497,216
15    18            101,559,956,668,416
16     3                            216
17    10                     60,466,176
18    15                470,184,984,576
19    21         21,936,950,640,377,856
20    26    170,581,728,179,578,208,256
21     3                            216
```

## C

```#include <stdio.h>
#include <string.h>
#include <gmp.h>

char *power_of_six(unsigned int n, char *buf) {
mpz_t p;
mpz_init(p);
mpz_ui_pow_ui(p, 6, n);
mpz_get_str(buf, 10, p);
mpz_clear(p);
return buf;
}

char *smallest_six(unsigned int n) {
static char nbuf[32], powbuf[1024];
unsigned int p = 0;

do {
sprintf(nbuf, "%u", n);
power_of_six(p++, powbuf);
} while (!strstr(powbuf, nbuf));

return powbuf;
}

int main() {
unsigned int i;

for (i=0; i<22; i++) {
printf("%d: %s\n", i, smallest_six(i));
}

return 0;
}
```
Output:
```0: 10077696
1: 1
2: 216
3: 36
4: 46656
5: 46656
6: 6
7: 7776
8: 2176782336
9: 1296
10: 10077696
11: 2821109907456
12: 1296
13: 13060694016
14: 6140942214464815497216
15: 101559956668416
16: 216
17: 60466176
18: 470184984576
19: 21936950640377856
20: 170581728179578208256
21: 216```

## C++

```#include <iostream>
#include <iomanip>
#include <string>
#include <gmpxx.h>

std::string smallest_six(unsigned int n) {
mpz_class pow = 1;
std::string goal = std::to_string(n);

while (pow.get_str().find(goal) == std::string::npos) {
pow *= 6;
}

return pow.get_str();
}

int main() {
for (unsigned int i=0; i<22; i++) {
std::cout << std::setw(2) << i << ": "
<< smallest_six(i) << std::endl;
}
return 0;
}
```
Output:
``` 0: 10077696
1: 1
2: 216
3: 36
4: 46656
5: 46656
6: 6
7: 7776
8: 2176782336
9: 1296
10: 10077696
11: 2821109907456
12: 1296
13: 13060694016
14: 6140942214464815497216
15: 101559956668416
16: 216
17: 60466176
18: 470184984576
19: 21936950640377856
20: 170581728179578208256
21: 216```

## CLU

```% This program uses the bigint type that comes with PCLU.
% It is in "misc.lib"
%
% pclu -merge \$CLUHOME/lib/misc.lib -compile n6_contains_6.clu

smallest_power_6 = proc (n: int) returns (int, bigint)
n_str: string := int\$unparse(n)
six_power: bigint := bigint\$i2bi(1)
six: bigint := bigint\$i2bi(6)
n_power: int := 0

while true do
pow_str: string := bigint\$unparse(six_power)
if string\$indexs(n_str, pow_str) ~= 0 then
return(n_power, six_power)
end
six_power := six_power * six
n_power := n_power + 1
end
end smallest_power_6

start_up = proc ()
po: stream := stream\$primary_output()

for n: int in int\$from_to(0, 21) do
p: int  val: bigint
stream\$putright(po, int\$unparse(n), 2)
stream\$puts(po, ": 6^")
p, val := smallest_power_6(n)
stream\$putleft(po, int\$unparse(p), 2)
stream\$puts(po, " = ")
stream\$putright(po, bigint\$unparse(val), 30)
stream\$putl(po, "")
end
end start_up```
Output:
``` 0: 6^9  =                       10077696
1: 6^0  =                              1
2: 6^3  =                            216
3: 6^2  =                             36
4: 6^6  =                          46656
5: 6^6  =                          46656
6: 6^1  =                              6
7: 6^5  =                           7776
8: 6^12 =                     2176782336
9: 6^4  =                           1296
10: 6^9  =                       10077696
11: 6^16 =                  2821109907456
12: 6^4  =                           1296
13: 6^13 =                    13060694016
14: 6^28 =         6140942214464815497216
15: 6^18 =                101559956668416
16: 6^3  =                            216
17: 6^10 =                       60466176
18: 6^15 =                   470184984576
19: 6^21 =              21936950640377856
20: 6^26 =          170581728179578208256
21: 6^3  =                            216```

## F#

```// Nigel Galloway. April 9th., 2021
let rec fN i g e l=match l%i=g,l/10I with (true,_)->e |(_,l) when l=0I->fN i g (e*6I) (e*6I) |(_,l)->fN i g e l
[0I..99I]|>Seq.iter(fun n->printfn "%2d %A" (int n)(fN(if n>9I then 100I else 10I) n 1I 1I))
```
Output:
``` 0 10077696
1 1
2 216
3 36
4 46656
5 46656
6 6
7 7776
8 2176782336
9 1296
10 10077696
11 2821109907456
12 1296
13 13060694016
14 6140942214464815497216
15 101559956668416
16 216
17 60466176
18 470184984576
19 21936950640377856
20 170581728179578208256
21 216
22 131621703842267136
23 2176782336
24 1023490369077469249536
25 170581728179578208256
26 16926659444736
27 279936
28 2821109907456
29 1296
30 13060694016
31 131621703842267136
32 4738381338321616896
33 2176782336
34 1023490369077469249536
35 609359740010496
36 36
37 21936950640377856
38 131621703842267136
39 221073919720733357899776
40 13060694016
41 78364164096
42 131621703842267136
43 28430288029929701376
44 16926659444736
45 470184984576
46 46656
47 470184984576
48 6140942214464815497216
49 470184984576
50 21936950640377856
51 1326443518324400147398656
52 623673825204293256669089197883129856
53 789730223053602816
54 6140942214464815497216
55 101559956668416
56 46656
57 470184984576
58 3656158440062976
59 16926659444736
60 60466176
61 1679616
62 362797056
63 47751966659678405306351616
64 78364164096
65 46656
66 46656
67 1679616
68 101559956668416
69 10077696
70 362797056
71 131621703842267136
72 170581728179578208256
73 16926659444736
74 2821109907456
75 47751966659678405306351616
76 7776
77 7776
78 2176782336
79 279936
80 28430288029929701376
81 789730223053602816
82 2176782336
83 78364164096
84 470184984576
85 21936950640377856
86 36845653286788892983296
87 61886548790943213277031694336
88 28430288029929701376
89 789730223053602816
90 2821109907456
91 221073919720733357899776
92 16926659444736
93 279936
94 13060694016
95 101559956668416
96 1296
97 362797056
98 470184984576
99 279936
Real: 00:00:00.066
```

## Factor

Works with: Factor version 0.99 2021-02-05
```USING: formatting kernel lists lists.lazy math math.functions
present sequences tools.memory.private ;

: powers-of-6 ( -- list )
0 lfrom [ 6 swap ^ ] lmap-lazy ;

: smallest ( m -- n )
present powers-of-6 [ present subseq? ] with lfilter car ;

22 [ dup smallest commas "%2d   %s\n" printf ] each-integer
```
Output:
``` 0   10,077,696
1   1
2   216
3   36
4   46,656
5   46,656
6   6
7   7,776
8   2,176,782,336
9   1,296
10   10,077,696
11   2,821,109,907,456
12   1,296
13   13,060,694,016
14   6,140,942,214,464,815,497,216
15   101,559,956,668,416
16   216
17   60,466,176
18   470,184,984,576
19   21,936,950,640,377,856
20   170,581,728,179,578,208,256
21   216
```

## FreeBASIC

Translation of: Ring
```Print !"\ntrabajando...\n"
Print !"M¡nima potencia de 6 cuya expansi¢n decimal contiene n:\n"

Dim As Uinteger num = 0, limit = 200, m

For n As Ubyte = 0 To 21
Dim As String strn = Str(n)
For m = 0 To limit
Dim As String strpow = Str(6 ^ m)
Dim As Ulong ind = Instr(strpow,strn)
If ind > 0 Then
Print Using "##. 6^\\ = &"; n; Str(m); strpow
Exit For
End If
Next m
Next n

Sleep```

## Go

Translation of: Wren
```package main

import (
"fmt"
"math/big"
"strconv"
"strings"
)

// Adds thousand separators to an integral string.
func commatize(s string) string {
neg := false
if strings.HasPrefix(s, "-") {
s = s[1:]
neg = true
}
le := len(s)
for i := le - 3; i >= 1; i -= 3 {
s = s[0:i] + "," + s[i:]
}
if !neg {
return s
}
return "-" + s
}

func main() {
fmt.Println(" n  smallest power of 6 which contains n")
six := big.NewInt(6)
for n := 0; n <= 21; n++ {
ns := strconv.Itoa(n)
i := int64(0)
for {
bi := big.NewInt(i)
pow6 := bi.Exp(six, bi, nil).String()
if strings.Contains(pow6, ns) {
fmt.Printf("%2d  6^%-2d = %s\n", n, i, commatize(pow6))
break
}
i++
}
}
}
```
Output:
``` n  smallest power of 6 which contains n
0  6^9  = 10,077,696
1  6^0  = 1
2  6^3  = 216
3  6^2  = 36
4  6^6  = 46,656
5  6^6  = 46,656
6  6^1  = 6
7  6^5  = 7,776
8  6^12 = 2,176,782,336
9  6^4  = 1,296
10  6^9  = 10,077,696
11  6^16 = 2,821,109,907,456
12  6^4  = 1,296
13  6^13 = 13,060,694,016
14  6^28 = 6,140,942,214,464,815,497,216
15  6^18 = 101,559,956,668,416
16  6^3  = 216
17  6^10 = 60,466,176
18  6^15 = 470,184,984,576
19  6^21 = 21,936,950,640,377,856
20  6^26 = 170,581,728,179,578,208,256
21  6^3  = 216
```

```import Data.List (find, isInfixOf)
import Text.Printf (printf)

smallest :: Integer -> Integer
smallest n = d
where
Just d = find ((show n `isInfixOf`) . show) sixes

sixes :: [Integer]
sixes = iterate (* 6) 1

main :: IO ()
main =
putStr \$
[0 .. 21] >>= printf "%2d: %d\n" <*> smallest
```
Output:
``` 0: 10077696
1: 1
2: 216
3: 36
4: 46656
5: 46656
6: 6
7: 7776
8: 2176782336
9: 1296
10: 10077696
11: 2821109907456
12: 1296
13: 13060694016
14: 6140942214464815497216
15: 101559956668416
16: 216
17: 60466176
18: 470184984576
19: 21936950640377856
20: 170581728179578208256
21: 216```

## jq

Works with gojq, the Go implementation of jq

gojq provides unbounded-precision integer arithmetic and is therefore appropriate for this task.

```# To preserve precision:
def power(\$b): . as \$in | reduce range(0;\$b) as \$i (1; . * \$in);

range(0;22)
| . as \$in
| tostring as \$n
| first(range(0;infinite) as \$i | 6 | power(\$i) | . as \$p | tostring | (index(\$n) // empty)
| [\$in,\$i,\$p] )```
Output:
```[0,9,10077696]
[1,0,1]
[2,3,216]
[3,2,36]
[4,6,46656]
[5,6,46656]
[6,1,6]
[7,5,7776]
[8,12,2176782336]
[9,4,1296]
[10,9,10077696]
[11,16,2821109907456]
[12,4,1296]
[13,13,13060694016]
[14,28,6140942214464815497216]
[15,18,101559956668416]
[16,3,216]
[17,10,60466176]
[18,15,470184984576]
[19,21,21936950640377856]
[20,26,170581728179578208256]
[21,3,216]
```

## Julia

```using Formatting

digcontains(n, dig) = contains(String(Char.(digits(n))), String(Char.(dig)))

function findpow6containing(needle)
dig = digits(needle)
for i in 0:1000
p = big"6"^i
digcontains(p, dig) && return p
end
error("could not find a  power of 6 containing \$dig")
end

for n in 0:21
end
```
Output:
```0    10,077,696
1    1
2    216
3    36
4    46,656
5    46,656
6    6
7    7,776
8    2,176,782,336
9    1,296
10   10,077,696
11   2,821,109,907,456
12   1,296
13   13,060,694,016
14   6,140,942,214,464,815,497,216
15   101,559,956,668,416
16   216
17   60,466,176
18   470,184,984,576
19   21,936,950,640,377,856
20   170,581,728,179,578,208,256
21   216
```

## Mathematica/Wolfram Language

```ClearAll[SmallestPowerContainingN]
SmallestPowerContainingN[n_Integer] := Module[{i = 1, test},
While[True,
test = 6^i;
If[SequenceCount[IntegerDigits[test], IntegerDigits[n]] > 0,
Return[{n, i, test}]];
i++;
]
]
Grid[SmallestPowerContainingN /@ Range[0, 21]]
```
Output:
```0	9	10077696
1	3	216
2	3	216
3	2	36
4	6	46656
5	6	46656
6	1	6
7	5	7776
8	12	2176782336
9	4	1296
10	9	10077696
11	16	2821109907456
12	4	1296
13	13	13060694016
14	28	6140942214464815497216
15	18	101559956668416
16	3	216
17	10	60466176
18	15	470184984576
19	21	21936950640377856
20	26	170581728179578208256
21	3	216```

## Nim

Library: bignum
```import strformat, strutils
import bignum

var toFind = {0..21}
var results: array[0..21, (int, string)]
var p = newInt(1)
var k = 0
while toFind.card > 0:
let str = \$p
for n in toFind:
if str.find(\$n) >= 0:
results[n] = (k, str)
toFind.excl(n)
p *= 6
inc k

echo "Smallest values of k such that 6^k contains n:"
for n, (k, s) in results:
echo &"{n:2}:  6^{k:<2} = {s}"
```
Output:
```Smallest values of k such that 6^k contains n:
0:  6^9  = 10077696
1:  6^0  = 1
2:  6^3  = 216
3:  6^2  = 36
4:  6^6  = 46656
5:  6^6  = 46656
6:  6^1  = 6
7:  6^5  = 7776
8:  6^12 = 2176782336
9:  6^4  = 1296
10:  6^9  = 10077696
11:  6^16 = 2821109907456
12:  6^4  = 1296
13:  6^13 = 13060694016
14:  6^28 = 6140942214464815497216
15:  6^18 = 101559956668416
16:  6^3  = 216
17:  6^10 = 60466176
18:  6^15 = 470184984576
19:  6^21 = 21936950640377856
20:  6^26 = 170581728179578208256
21:  6^3  = 216```

## Pascal

### Free Pascal

Doing long multiplikation like in primorial task.
I used to check every numberstring one after the other on one 6^ n string.Gets really slow on high n
After a closer look into Smallest_power_of_6_whose_decimal_expansion_contains_n#Phix I applied a slghtly modified version of Pete.

```program PotOf6;
//First occurence of a numberstring with max decimal DIGTIS digits in 6^n
{\$IFDEF FPC}
{\$MODE DELPHI} {\$Optimization ON,ALL} {\$COPERATORS ON}{\$CODEALIGN proc=16}
{\$ENDIF}
{\$IFDEF WINDOWS}
{\$APPTYPE CONSOLE}
{\$ENDIF}

uses
sysutils;
const
//decimal places used by multiplication and for string  conversion
calcDigits = 8;
PowerBase  = 6;  // don't use 10^n  ;-)

// for PowerBase = 2 maxvalues for POT_LIMIT and STRCOUNT
// DIGITS = 8;decLimit= 100*1000*1000;POT_LIMIT = 114715;STRCOUNT = 83789;
DIGITS = 7;decLimit=  10*1000*1000;POT_LIMIT =  32804;STRCOUNT = 24960;
// DIGITS = 6;decLimit=     1000*1000;POT_LIMIT =   9112;STRCOUNT =  7348;
// DIGITS = 5;decLimit=      100*1000;POT_LIMIT =   2750;STRCOUNT =  2148;
// DIGITS = 4;decLimit=       10*1000;POT_LIMIT =    809;STRCOUNT =   616;
// DIGITS = 3;decLimit=          1000;POT_LIMIT =    215;STRCOUNT =   175;
// DIGITS = 2;decLimit=           100;POT_LIMIT =     66;STRCOUNT =    45;

type
tMulElem = Uint32;
tMul = array of tMulElem;
tpMul = pUint32;
tPotArrN = array[0..1] of tMul;

tFound = record
foundIndex,
foundStrIdx : Uint32;
end;
var
{\$ALIGN 32}
PotArrN   : tPotArrN;
StrDec4Dgts  : array[0..9999] of String[4];
Str_Found : array of tFound;
FoundString : array of AnsiString;
CheckedNum : array of boolean;
Pot_N_str : AnsiString;
FirstMissing,
FoundIdx :NativeInt;
T0 : INt64;

procedure Init_StrDec4Dgts;
var
s : string[4];
i : integer;
a,b,c,d : char;
begin
i := 0;
s := '0000';
For a := '0' to '9' do
Begin
s[1] := a;
For b := '0' to '9' do
begin
s[2]:=b;
For c := '0' to '9' do
begin
s[3] := c;
For d := '0' to '9' do
begin
s[4] := d;
StrDec4Dgts[i]:= s;
inc(i);
end;
end;
end;
end;
end;

function Commatize(const s: AnsiString):AnsiString;
var
fromIdx,toIdx :Int32;
Begin
result := '';
fromIdx := length(s);
toIdx := fromIdx-1;
if toIdx < 3 then
Begin
result := s;
exit;
end;
toIdx := 4*(toIdx DIV 3)+toIdx MOD 3 +1 ;
setlength(result,toIdx);
repeat
result[toIdx]   := s[FromIdx];
result[toIdx-1] := s[FromIdx-1];
result[toIdx-2] := s[FromIdx-2];
result[toIdx-3] := ',';
dec(toIdx,4);
dec(FromIdx,3);
until FromIdx<=3;
while fromIdx>=1 do
Begin
result[toIdx] := s[FromIdx];
dec(toIdx);
dec(fromIdx);
end;
end;

procedure Init_Mul(number:NativeInt);
var
dgtCount,
MaxMulIdx : NativeInt;
Begin
dgtCount := trunc(POT_LIMIT*ln(number)/ln(10))+1;
MaxMulIdx := dgtCount DIV calcDigits +2;
setlength(PotArrN[0],MaxMulIdx);
setlength(PotArrN[1],MaxMulIdx);
PotArrN[0,0] := 1;
setlength(Pot_N_str,dgtCount);
end;

function Mul_PowerBase(var Mul1,Mul2:tMul;limit:Uint32):NativeInt;
//Mul2 = n*Mul1. n must be < LongWordDec !
const
LongWordDec = 100*1000*1000;
var
pM1,pM2 : tpMul;
carry,prod : Uint64;
begin
pM1 := @Mul1[0];
pM2 := @Mul2[0];
carry := 0;
result :=0;
repeat
prod  := PowerBase*pM1[result]+Carry;
Carry := prod Div LongWordDec;
pM2[result] := Prod - Carry*LongWordDec;
inc(result);
until result > limit;
IF Carry <> 0 then
pM2[result] := Carry
else
dec(result);
end;

procedure ConvToStr(var s:Ansistring;const Mul:tMul;i:NativeInt);
var
s8: string[calcDigits];
pS : pChar;
j,k,d,m : NativeInt;
begin
j := (i+1)*calcDigits;
setlength(s,j+1);
pS := @s[1];
m := Mul[i];
str(Mul[i],s8);
j := length(s8);
move(s8[1],pS[0],j);
k := j;
dec(i);
If i >= 0 then
repeat
m := MUL[i];
d := m div 10000;
m := m-10000*d;
move(StrDec4Dgts[d][1],pS[k],4);
move(StrDec4Dgts[m][1],pS[k+4],4);
inc(k,calcDigits);
dec(i);
until i<0;
setlength(s,k);
end;

function CheckOneString(const s:Ansistring;pow:NativeInt):NativeInt;
//check every possible number from one to DIGITS digits,
//if it is still missing in the list
var
pChecked : pBoolean;
i,k,lmt,num : NativeInt;
oneFound : boolean;
begin
pChecked := @CheckedNum[0];
result := 0;
oneFound := false;
lmt := length(s);
For i := 1 to lmt do
Begin
k := i;
num := 0;
repeat
num := num*10+ Ord(s[k])-Ord('0');
IF (num >= FirstMissing) AND Not(pChecked[num]) then
begin
//memorize that string commatized
if NOT(oneFound) then
Begin
oneFound := true;
FoundString[FoundIDX] := Commatize(s);
FoundIDX  += 1;
end;
pChecked[num]:= true;
with str_Found[num] do
Begin
foundIndex:= pow+1;
foundStrIdx:= FoundIDX-1;
end;
inc(result);
if num =FirstMissing then
repeat
inc(FirstMissing)
until str_Found[FirstMissing].foundIndex =0;
end;
inc(k)
until (k>lmt) or (k-i >DIGITS-1);
end;
end;

var
i,j,k,toggle,MaxMulIdx,found: Int32;
Begin
T0 := GetTickCount64;
setlength(Str_Found,decLimit);
setlength(CheckedNum,decLimit);
setlength(FoundString,STRCOUNT);
FirstMissing := 0;
FoundIdx  := 0;
Init_StrDec4Dgts;
Init_Mul(PowerBase);
writeln('Init in ',(GetTickCount64-T0)/1000:8:3,' secs');
T0 := GetTickCount64;
toggle := 0;
found := 0;
MaxMulIdx := 0;
k := 0;
For j := 0 to POT_LIMIT do
Begin
//    if j MOD 20 = 0 then  writeln;
ConvToStr(Pot_N_str,PotArrN[toggle],MaxMulIdx);
i := CheckOneString(Pot_N_str,j);
found += i;
if i <> 0 then
k += 1;
MaxMulIdx := Mul_PowerBase(PotArrN[toggle],PotArrN[1-toggle],MaxMulIdx);
toggle := 1-toggle;

if FirstMissing = decLimit then
Begin
writeln(#10,'Max power ',j,' with ',length(Pot_N_str),' digits');
break;
end;
//    if (j and 1023) = 0 then     write(#13,j:10,found:10,FirstMissing:10);
end;
writeln(#13#10,'Found: ',found,' in ',k,' strings. Time used ',(GetTickCount64-T0)/1000:8:3,' secs');
For i := 0 to 22 do//decLimit-1 do
with Str_Found[i] do
writeln(i:10,' ',PowerBase,'^',foundIndex-1:5,' ',(FoundString[foundStrIdx]):30);
end.
```
@TIO.RUN:
```Init in    0.062 secs

Max power 21798 with 16963 digits

Found: 10000000 in 15889 strings. Time used    8.114 secs

0 6^    9                     10,077,696
1 6^    0                              1
2 6^    3                            216
3 6^    2                             36
4 6^    6                         46,656
5 6^    6                         46,656
6 6^    1                              6
7 6^    5                          7,776
8 6^   12                  2,176,782,336
9 6^    4                          1,296
10 6^    9                     10,077,696
11 6^   16              2,821,109,907,456
12 6^    4                          1,296
13 6^   13                 13,060,694,016
14 6^   28  6,140,942,214,464,815,497,216
15 6^   18            101,559,956,668,416
16 6^    3                            216
17 6^   10                     60,466,176
18 6^   15                470,184,984,576
19 6^   21         21,936,950,640,377,856
20 6^   26    170,581,728,179,578,208,256
21 6^    3                            216
22 6^   22        131,621,703,842,267,136

Real time: 8.383 s User time: 8.133 s Sys. time: 0.185 s CPU share: 99.23 %
```

## Perl

```use strict;
use warnings;
use List::Util 'first';

sub comma { reverse ((reverse shift) =~ s/(.{3})/\$1,/gr) =~ s/^,//r }

for my \$n (0..21, 314159) {
my \$e = first { 6**\$_ =~ /\$n/ } 0..1000;
printf "%7d:  6^%-3s  %s\n", \$n, \$e, comma 6**\$e;
}
```
Output:
```      0:  6^9    10,077,696
1:  6^0    1
2:  6^3    216
3:  6^2    36
4:  6^6    46,656
5:  6^6    46,656
6:  6^1    6
7:  6^5    7,776
8:  6^12   2,176,782,336
9:  6^4    1,296
10:  6^9    10,077,696
11:  6^16   2,821,109,907,456
12:  6^4    1,296
13:  6^13   13,060,694,016
14:  6^28   6,140,942,214,464,815,497,216
15:  6^18   101,559,956,668,416
16:  6^3    216
17:  6^10   60,466,176
18:  6^15   470,184,984,576
19:  6^21   21,936,950,640,377,856
20:  6^26   170,581,728,179,578,208,256
21:  6^3    216
314159:  6^494  2,551,042,473,957,557,281,758,472,595,966,885,638,262,058,644,568,332,160,010,313,393,465,384,231,415,969,801,503,269,402,221,368,959,426,761,447,049,526,922,498,341,120,174,041,236,629,812,681,424,262,988,020,546,286,492,213,224,906,594,147,652,459,693,833,191,626,748,973,370,777,591,205,509,673,825,541,899,874,436,305,798,094,943,728,762,682,333,192,202,041,960,669,401,031,964,634,164,426,985,990,195,192,836,400,994,016,666,910,919,499,884,972,133,471,176,804,190,463,444,807,178,864,658,551,422,631,018,496```

## Phix

Another good opportunity to do some string math, this time with embedded commas. Scales effortlessly.

```constant lim = 22           -- (tested to 10,000,000)
atom t0 = time(), t1 = t0+1
sequence res = repeat(0,lim),
pwr = repeat(0,lim)
string p6 = "1"
res[2] = p6
integer found = 1, p = 0
while found<lim do
integer carry = 0
for i=length(p6) to 1 by -1 do
if p6[i]!=',' then
integer digit = (p6[i]-'0')*6+carry
p6[i] = remainder(digit,10)+'0'
carry = floor(digit/10)
end if
end for
if carry then
if remainder(length(p6)+1,4)=0 then
p6 = "," & p6
end if
p6 = carry+'0' & p6
end if
p += 1
for i=1 to length(p6) do
if p6[i]!=',' then
integer digit = 0, j = i
while j<=length(p6) and digit<=lim do
j += p6[j]=','
digit = digit*10+p6[j]-'0'
if digit<lim and res[digit+1]=0 then
res[digit+1] = p6
pwr[digit+1] = p
found += 1
end if
j += 1
end while
end if
end for
if time()>t1 then
progress("found %,d/%,d, at 6^%,d which has %,d digits (%s)",
{found,lim,p,length(p6)*3/4,elapsed(time()-t0)})
t1 = time()+1
end if
end while
papply(true,printf,{1,{"%2d  %29s = 6^%d\n"},shorten(columnize({tagset(lim-1,0),res,pwr}),"",10)})
```
Output:
``` 0                     10,077,696 = 6^9
1                              1 = 6^0
2                            216 = 6^3
3                             36 = 6^2
4                         46,656 = 6^6
5                         46,656 = 6^6
6                              6 = 6^1
7                          7,776 = 6^5
8                  2,176,782,336 = 6^12
9                          1,296 = 6^4
10                     10,077,696 = 6^9
11              2,821,109,907,456 = 6^16
12                          1,296 = 6^4
13                 13,060,694,016 = 6^13
14  6,140,942,214,464,815,497,216 = 6^28
15            101,559,956,668,416 = 6^18
16                            216 = 6^3
17                     60,466,176 = 6^10
18                470,184,984,576 = 6^15
19         21,936,950,640,377,856 = 6^21
20    170,581,728,179,578,208,256 = 6^26
21                            216 = 6^3
```

A limit of 10,000,000 takes 1 min 41s, reaches 6^21,798 which has 16,963 digits (not including commas) and is the first to contain 8091358, at offset 13,569.

## Python

```def smallest_six(n):
p = 1
while str(n) not in str(p): p *= 6
return p

for n in range(22):
print("{:2}: {}".format(n, smallest_six(n)))
```
Output:
``` 0: 10077696
1: 1
2: 216
3: 36
4: 46656
5: 46656
6: 6
7: 7776
8: 2176782336
9: 1296
10: 10077696
11: 2821109907456
12: 1296
13: 13060694016
14: 6140942214464815497216
15: 101559956668416
16: 216
17: 60466176
18: 470184984576
19: 21936950640377856
20: 170581728179578208256
21: 216```

## Quackery

```  [ 0 swap
[ dip 1+
10 /
dup 0 = until ]
drop ]                is digits   (   n --> n )

[ 10 over digits
** temp put
false unrot
[ over temp share mod
over = iff
[ rot not unrot ]
done
dip [ 10 / ]
over 0 = until ]
2drop
temp release ]        is contains ( n n --> b )

[ -1 swap
[ dip 1+
over 6 swap **
over contains
until ]
drop ]                is smallest (   n --> n )

22 times
[ i^ 10 < if sp
i^ echo
say " --> "
6 i^ smallest **
echo cr ]
cr
say "The smallest power of 6 whose decimal expansion contains 31415926 is 6^"
31415926 smallest echo say "." cr```
Output:
``` 0 --> 10077696
1 --> 1
2 --> 216
3 --> 36
4 --> 46656
5 --> 46656
6 --> 6
7 --> 7776
8 --> 2176782336
9 --> 1296
10 --> 10077696
11 --> 2821109907456
12 --> 1296
13 --> 13060694016
14 --> 6140942214464815497216
15 --> 101559956668416
16 --> 216
17 --> 60466176
18 --> 470184984576
19 --> 21936950640377856
20 --> 170581728179578208256
21 --> 216

The smallest power of 6 whose decimal expansion contains 31415926 is 6^4261.```

## Raku

```use Lingua::EN::Numbers;

my @po6 = ^Inf .map: *.exp: 6;

put join "\n", (flat ^22, 120).map: -> \$n {
sprintf "%3d: 6%-4s %s", \$n, .&super, comma @po6[\$_]
given @po6.first: *.contains(\$n), :k
};
```
Output:
```  0: 6⁹    10,077,696
1: 6⁰    1
2: 6³    216
3: 6²    36
4: 6⁶    46,656
5: 6⁶    46,656
6: 6¹    6
7: 6⁵    7,776
8: 6¹²   2,176,782,336
9: 6⁴    1,296
10: 6⁹    10,077,696
11: 6¹⁶   2,821,109,907,456
12: 6⁴    1,296
13: 6¹³   13,060,694,016
14: 6²⁸   6,140,942,214,464,815,497,216
15: 6¹⁸   101,559,956,668,416
16: 6³    216
17: 6¹⁰   60,466,176
18: 6¹⁵   470,184,984,576
19: 6²¹   21,936,950,640,377,856
20: 6²⁶   170,581,728,179,578,208,256
21: 6³    216
120: 6¹⁴⁷  2,444,746,349,972,956,194,083,608,044,935,243,159,422,957,210,683,702,349,648,543,934,214,737,968,217,920,868,940,091,707,112,078,529,114,392,164,827,136```

## REXX

```/*REXX pgm finds the smallest (decimal) power of  6  which contains  N,  where  N < 22. */
numeric digits 100                               /*ensure enough decimal digs for  6**N */
parse arg hi .                                   /*obtain optional argument from the CL.*/
if hi=='' | hi==","  then hi= 22                 /*Not specified?  Then use the default.*/
w= 50                                            /*width of a number in any column.     */
@smp6= ' smallest power of  six  (expressed in decimal)  which contains  N'
say '  N  │ power │'center(@smp6, 20 + w     )   /*display the   title   of the output. */
say '─────┼───────┼'center(""   , 20 + w, '─')   /*   "     "  separator  "  "     "    */

do j=0  for hi                             /*look for a power of 6 that contains N*/
do p=0;   x= 6**p           /*compute a power of six (in decimal). */
if pos(j, x)>0  then leave  /*does the power contain an   N ?      */
end   /*p*/
c= commas(x)                               /*maybe add commas to the powe of six. */
z= right(c, max(w, length(c) ) )           /*show a power of six, allow biger #s. */
say center(j, 5)'│'center(p, 7)"│"   z     /*display what we have so far  (cols). */
end   /*j*/

say '─────┴───────┴'center(""   , 20 + w, '─')   /*   "     "  separator  "  "     "    */
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?;  do jc=length(?)-3  to 1  by -3; ?=insert(',', ?, jc); end;  return ?
```
output   when using the default input:
```  N  │ power │   smallest power of  six  (expressed in decimal)  which contains  N
─────┼───────┼──────────────────────────────────────────────────────────────────────
0  │   9   │                                         10,077,696
1  │   0   │                                                  1
2  │   3   │                                                216
3  │   2   │                                                 36
4  │   6   │                                             46,656
5  │   6   │                                             46,656
6  │   1   │                                                  6
7  │   5   │                                              7,776
8  │  12   │                                      2,176,782,336
9  │   4   │                                              1,296
10  │   9   │                                         10,077,696
11  │  16   │                                  2,821,109,907,456
12  │   4   │                                              1,296
13  │  13   │                                     13,060,694,016
14  │  28   │                      6,140,942,214,464,815,497,216
15  │  18   │                                101,559,956,668,416
16  │   3   │                                                216
17  │  10   │                                         60,466,176
18  │  15   │                                    470,184,984,576
19  │  21   │                             21,936,950,640,377,856
20  │  26   │                        170,581,728,179,578,208,256
21  │   3   │                                                216
─────┴───────┴──────────────────────────────────────────────────────────────────────
```

## Ring

```load "stdlib.ring"

decimals(0)
see "working..." + nl
see "Smallest power of 6 whose decimal expansion contains n:" + nl

num = 0
limit = 200

for n = 1 to 21
strn = string(n)
for m = 0 to limit
strpow = string(pow(6,m))
ind = substr(strpow,strn)
if ind > 0
see "" + n + ". " + "6^" + m + " = " + strpow + nl
exit
ok
next
next

see "done..." + nl```
Output:
```working...
Smallest power of 6 whose decimal expansion contains n:
1. 6^0 = 1
2. 6^3 = 216
3. 6^2 = 36
4. 6^6 = 46656
5. 6^6 = 46656
6. 6^1 = 6
7. 6^5 = 7776
8. 6^12 = 2176782336
9. 6^4 = 1296
10. 6^9 = 10077696
11. 6^16 = 2821109907456
12. 6^4 = 1296
13. 6^13 = 13060694016
14. 6^28 = 6140942214464815497216
15. 6^18 = 101559956668416
16. 6^3 = 216
17. 6^10 = 60466176
18. 6^15 = 470184984576
19. 6^21 = 21936950640377856
20. 6^26 = 170581728179578208256
21. 6^3 = 216
done...

```

## RPL

1980s RPL can only handle 64-bit unsigned integers, which means a multi-precision multiplication is here required.

Works with: Halcyon Calc version 4.2.7
RPL code Comment
```  ≪ 1000000000 → x n p
≪ { } # 0d
x SIZE 1 FOR j
x j GET n * +
DUP p / SWAP OVER p * - ROT + SWAP
-1 STEP
IF DUP # 0d ≠ THEN SWAP + ELSE DROP END
≫ ≫ 'MMULT' STO

≪ "" SWAP
1 OVER SIZE FOR d
DUP d GET →STR 3 OVER SIZE 1 - SUB
IF d 1 ≠ THEN
WHILE DUP SIZE 9 < REPEAT "0" SWAP +
END END
ROT SWAP + SWAP
NEXT DROP
≫ 'M→STR' STO

≪
{ # 1d } SWAP
WHILE DUP REPEAT
SWAP 6 MMULT SWAP 1 - END
DROP M→STR
≫ 'POW6' STO

≪ DEC { }
0 21 FOR n
n →STR -1
DO 1 + DUP POW6
UNTIL 3 PICK POS END
POW6 ROT SWAP + SWAP DROP
NEXT
```
```MMULT ( { #multi #precision } n -- { #multi #precision } )
initialize stack with empty result number and carry
loop from the lowest digit block
multiply block by n, add carry
prepare carry for next block

if carry ≠ 0 then add it as a new block

M→STR ( { #multi #precision } -- "integer" )
for each digit block
turn it into string, remove both ends
if not the highest block
fill with "0"

POW6 ( n -- { #multi #precision } )
{ #1d } is 1 in multi-precision
multiply n times
by 6
make it a string

Forces decimal mode for integer display
for n < 22
turn n into string, initialize counter
get 6^n
until "n" in "6^n"
remake n a string and add it to result list

```
Output:
```1: { "10077696" "1" "216" "36" "46656" "46656" "6" "7776" "2176782336" "1296" "10077696" "2821109907456" "1296" "13060694016" "6140942214464815497216" "101559956668416" "216" "60466176" "470184984576" "21936950640377856" "170581728179578208256" "216" }
```

#### 2000s RPL version

Big integers are native in this version.

Works with: HP version 49
```≪ { }
0 21 FOR n
0
WHILE 6 OVER ^ →STR n →STR POS NOT
REPEAT 1 + END
"'6^" SWAP + STR→ +
NEXT
```
Output:
```1: { 6^9 6^0 6^3 6^2 6^6 6^6 6^1 6^5 6^12 6^4 6^9 6^16 6^4 6^13 6^28 6^18 6^3 6^10 6^15 6^21 6^26 6^3 }
```

## Ruby

```def smallest_6(n)
i = 1
c = 0
s = n.to_s
until i.to_s.match?(s)
c += 1
i *= 6
end
[n, c, i]
end

(0..21).each{|n| puts "%3d**%-3d: %d" %  smallest_6(n) }
```
Output:
```  0**9  : 10077696
1**0  : 1
2**3  : 216
3**2  : 36
4**6  : 46656
5**6  : 46656
6**1  : 6
7**5  : 7776
8**12 : 2176782336
9**4  : 1296
10**9  : 10077696
11**16 : 2821109907456
12**4  : 1296
13**13 : 13060694016
14**28 : 6140942214464815497216
15**18 : 101559956668416
16**3  : 216
17**10 : 60466176
18**15 : 470184984576
19**21 : 21936950640377856
20**26 : 170581728179578208256
21**3  : 216
```

## Uiua

```# Does number a contain subseq b? (a b) -> bool
Contains ← >0⧻⊚⌕:∩°⋕
# Repeatedly multiple by 6 until the result contains n.
FindN ← ⊙◌⍢(×6|¬ Contains) 1
# Work out what the power was :-)
∵(⊟⁅÷∩(ₙ10)6 .FindN) ⇡22```
Output:
```╭─
╷  9              10077696
0                     1
3                   216
2                    36
6                 46656
6                 46656
1                     6
5                  7776
12            2176782336
4                  1296
9              10077696
16         2821109907456
4                  1296
13           13060694016
22    131621703842267140
18       101559956668416
3                   216
10              60466176
15          470184984576
21     21936950640377856
26 170581728179578200000
3                   216
╯
```

## Wren

Library: Wren-big
Library: Wren-fmt
```import "./big" for BigInt
import "./fmt" for Fmt

System.print(" n  smallest power of 6 which contains n")
var six = BigInt.new(6)
for (n in 0..21) {
var i = 0
while (true) {
var pow6 = six.pow(i).toString
if (pow6.contains(n.toString)) {
Fmt.print("\$2d  6^\$-2d = \$,s", n, i, pow6)
break
}
i = i + 1
}
}
```
Output:
``` n  smallest power of 6 which contains n
0  6^9  = 10,077,696
1  6^0  = 1
2  6^3  = 216
3  6^2  = 36
4  6^6  = 46,656
5  6^6  = 46,656
6  6^1  = 6
7  6^5  = 7,776
8  6^12 = 2,176,782,336
9  6^4  = 1,296
10  6^9  = 10,077,696
11  6^16 = 2,821,109,907,456
12  6^4  = 1,296
13  6^13 = 13,060,694,016
14  6^28 = 6,140,942,214,464,815,497,216
15  6^18 = 101,559,956,668,416
16  6^3  = 216
17  6^10 = 60,466,176
18  6^15 = 470,184,984,576
19  6^21 = 21,936,950,640,377,856
20  6^26 = 170,581,728,179,578,208,256
21  6^3  = 216
```

## Yabasic

Translation of: Python
```// Rosetta Code problem: http://rosettacode.org/wiki/Smallest_power_of_6_whose_decimal_expansion_contains_n
// by Galileo, 05/2022

sub smallest_six(n)
local p, n\$

n\$ = str\$(n)
p = 1
while not instr(str\$(p, "%1.f"), n\$) p = p * 6 : wend
return p
end sub

for n = 0 to 21 : print n, ": ", str\$(smallest_six(n), "%1.f") : next```
Output:
```0: 10077696
1: 1
2: 216
3: 36
4: 46656
5: 46656
6: 6
7: 7776
8: 2176782336
9: 1296
10: 10077696
11: 2821109907456
12: 1296
13: 13060694016
14: 6140942214464815497216
15: 101559956668416
16: 216
17: 60466176
18: 470184984576
19: 21936950640377856
20: 170581728179578208256
21: 216
---Program done, press RETURN---```