Set right-adjacent bits
You are encouraged to solve this task according to the task description, using any language you may know.
Given a left-to-right ordered collection of e
bits, b
, where 1 <= e <= 10000
,
and a zero or more integer n
:
- Output the result of setting the
n
bits to the right of any set bit inb
(if those bits are present in b and therefore also preserving the width, e
).
Some examples:
Set of examples showing how one bit in a nibble gets changed: n = 2; Width e = 4: Input b: 1000 Result: 1110 Input b: 0100 Result: 0111 Input b: 0010 Result: 0011 Input b: 0000 Result: 0000 Set of examples with the same input with set bits of varying distance apart: n = 0; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 010000000000100000000010000000010000000100000010000010000100010010 n = 1; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011000000000110000000011000000011000000110000011000011000110011011 n = 2; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011100000000111000000011100000011100000111000011100011100111011111 n = 3; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011110000000111100000011110000011110000111100011110011110111111111
Task:
- Implement a routine to perform the setting of right-adjacent bits on representations of bits that will scale over the given range of input width
e
. - Use it to show, here, the results for the input examples above.
- Print the output aligned in a way that allows easy checking by eye of the binary input vs output.
11l
F set_right_adjacent_bits_list(Int n, [Int] b) -> [Int]
R (0 .< b.len).map(i -> Int(any(@b[max(0, i - @n) .. i])))
F _list2bin([Int] b) -> String
R b.map(x -> String(x)).join(‘’)
F _to_list(String bits) -> [Int]
R bits.map(char -> Int(char))
print("SAME n & Width.\n")
V n = 2
V bits_s = ‘1000 0100 0010 0000’
V first = 1B
L(b_str) bits_s.split(‘ ’)
V b = _to_list(b_str)
V e = b_str.len
I first
first = 0B
print(‘n = ’n‘; Width e = ’e":\n")
V result = set_right_adjacent_bits_list(n, b)
print(‘ Input b: ’_list2bin(b))
print(‘ Result: ’_list2bin(result)"\n")
print("SAME Input & Width.\n")
bits_s = ‘01’(10.<0).step(-1).map(x -> ‘0’ * x).join(‘1’)
L(n) 4
first = 1B
L(b_str) bits_s.split(‘ ’)
V b = _to_list(b_str)
V e = b_str.len
I first
first = 0B
print(‘n = ’n‘; Width e = ’e":\n")
V result = set_right_adjacent_bits_list(n, b)
print(‘ Input b: ’_list2bin(b))
print(‘ Result: ’_list2bin(result)"\n")
- Output:
SAME n & Width. n = 2; Width e = 4: Input b: 1000 Result: 1110 Input b: 0100 Result: 0111 Input b: 0010 Result: 0011 Input b: 0000 Result: 0000 SAME Input & Width. n = 0; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 010000000000100000000010000000010000000100000010000010000100010010 n = 1; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011000000000110000000011000000011000000110000011000011000110011011 n = 2; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011100000000111000000011100000011100000111000011100011100111011111 n = 3; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011110000000111100000011110000011110000111100011110011110111111111
Ada
with Ada.Text_IO;
procedure Set_Right_Bits is
type Bit_Number is new Positive range 1 .. 10_000;
type Bit is new Boolean;
type Bit_Collection is array (Bit_Number range <>) of Bit
with Pack;
function Right_Adjacent (B : Bit_Collection;
N : Natural) return Bit_Collection
is
Result : Bit_Collection := B;
Mask : Bit_Collection := B;
begin
for A in 1 .. N loop
Mask := False & Mask (Mask'First .. Mask'Last - 1);
-- Shift Mask by appending False/0 in front of slice.
Result := Result or Mask;
end loop;
return Result;
end Right_Adjacent;
procedure Put (Collection : Bit_Collection) is
use Ada.Text_IO;
begin
for Bit of Collection loop
Put ((if Bit then '1' else '0'));
end loop;
end Put;
function Value (Item : String) return Bit_Collection
is
Length : constant Bit_Number := Item'Length;
Result : Bit_Collection (1 .. Length);
Index : Natural := Item'First;
begin
for R of Result loop
R := (case Item (Index) is
when '0' | 'F' | 'f' => False,
when '1' | 'T' | 't' => True,
when others =>
raise Constraint_Error with "invalid input");
Index := Index + 1;
end loop;
return Result;
end Value;
procedure Show (Bit_String : String; N : Natural)
is
B : constant Bit_Collection := Value (Bit_String);
R : constant Bit_Collection := Right_Adjacent (B, N);
Prefix : constant String := " ";
use Ada.Text_IO;
begin
Put ("n ="); Put (N'Image);
Put ("; Width e ="); Put (Bit_String'Length'Image);
Put (":"); New_Line;
Put (Prefix); Put ("Input B: "); Put (B); New_Line;
Put (Prefix); Put ("Result : "); Put (R); New_Line;
New_Line;
end Show;
begin
Show ("1000", 2);
Show ("0100", 2);
Show ("0010", 2);
Show ("0000", 2);
Show ("010000000000100000000010000000010000000100000010000010000100010010", 0);
Show ("010000000000100000000010000000010000000100000010000010000100010010", 1);
Show ("010000000000100000000010000000010000000100000010000010000100010010", 2);
Show ("010000000000100000000010000000010000000100000010000010000100010010", 3);
end Set_Right_Bits;
- Output:
n = 2; Width e = 4: Input B: 1000 Result : 1110 n = 2; Width e = 4: Input B: 0100 Result : 0111 n = 2; Width e = 4: Input B: 0010 Result : 0011 n = 2; Width e = 4: Input B: 0000 Result : 0000 n = 0; Width e = 66: Input B: 010000000000100000000010000000010000000100000010000010000100010010 Result : 010000000000100000000010000000010000000100000010000010000100010010 n = 1; Width e = 66: Input B: 010000000000100000000010000000010000000100000010000010000100010010 Result : 011000000000110000000011000000011000000110000011000011000110011011 n = 2; Width e = 66: Input B: 010000000000100000000010000000010000000100000010000010000100010010 Result : 011100000000111000000011100000011100000111000011100011100111011111 n = 3; Width e = 66: Input B: 010000000000100000000010000000010000000100000010000010000100010010 Result : 011110000000111100000011110000011110000111100011110011110111111111
Arturo
setBits: function [inp, n][
e: size inp
print "n = " ++ (to :string n) ++ "; Width e = " ++ (to :string e) ++ ":"
result: new ø
if? or? zero? e n =< 0 -> result: inp
else [
result: split inp
loop 0..e-1 'i [
if inp\[i] = `1` [
j: i + 1
while [and? j =< i+n j < e][
result\[j]: `1`
j: j + 1
]
]
]
result: join result
]
print ["\tinput :" inp]
print ["\tresult :" result]
]
setBits "1000" 2
setBits "0100" 2
setBits "0010" 2
setBits "0000" 2
setBits "010000000000100000000010000000010000000100000010000010000100010010" 0
setBits "010000000000100000000010000000010000000100000010000010000100010010" 1
setBits "010000000000100000000010000000010000000100000010000010000100010010" 2
setBits "010000000000100000000010000000010000000100000010000010000100010010" 3
- Output:
n = 2; Width e = 4: input : 1000 result : 1110 n = 2; Width e = 4: input : 0100 result : 0111 n = 2; Width e = 4: input : 0010 result : 0011 n = 2; Width e = 4: input : 0000 result : 0000 n = 0; Width e = 66: input : 010000000000100000000010000000010000000100000010000010000100010010 result : 010000000000100000000010000000010000000100000010000010000100010010 n = 1; Width e = 66: input : 010000000000100000000010000000010000000100000010000010000100010010 result : 011000000000110000000011000000011000000110000011000011000110011011 n = 2; Width e = 66: input : 010000000000100000000010000000010000000100000010000010000100010010 result : 011100000000111000000011100000011100000111000011100011100111011111 n = 3; Width e = 66: input : 010000000000100000000010000000010000000100000010000010000100010010 result : 011110000000111100000011110000011110000111100011110011110111111111
AutoHotkey
setRight(num, n){
x := StrSplit(num)
for i, v in StrSplit(num)
if v
loop, % n
x[i+A_Index] := 1
Loop % n
x.removeAt(StrLen(num)+1)
for i, v in x
res .= v
return res
}
Examples:
test1 := [
(join,
"1000"
"0100"
"0010"
"0000"
)]
test2 := [
(join,
"010000000000100000000010000000010000000100000010000010000100010010"
"010000000000100000000010000000010000000100000010000010000100010010"
"010000000000100000000010000000010000000100000010000010000100010010"
"010000000000100000000010000000010000000100000010000010000100010010"
)]
for i, num in test1
result .= "n=2; Width e = 4:`nInput :`t" num "`nResult :`t" setRight(num, 2) "`n`n"
for i, num in test2
result .= "n=" i-1 "; Width e = 66:`nInput :`t" num "`nResult :`t" setRight(num, i-1) "`n`n"
MsgBox % result
return
- Output:
n=2; Width e = 4: Input : 1000 Result : 1110 n=2; Width e = 4: Input : 0100 Result : 0111 n=2; Width e = 4: Input : 0010 Result : 0011 n=2; Width e = 4: Input : 0000 Result : 0000 n=0; Width e = 66: Input : 010000000000100000000010000000010000000100000010000010000100010010 Result : 010000000000100000000010000000010000000100000010000010000100010010 n=1; Width e = 66: Input : 010000000000100000000010000000010000000100000010000010000100010010 Result : 011000000000110000000011000000011000000110000011000011000110011011 n=2; Width e = 66: Input : 010000000000100000000010000000010000000100000010000010000100010010 Result : 011100000000111000000011100000011100000111000011100011100111011111 n=3; Width e = 66: Input : 010000000000100000000010000000010000000100000010000010000100010010 Result : 011110000000111100000011110000011110000111100011110011110111111111
BASIC
PureBasic
Global Dim bits.i(1)
Procedure setRightBits(Array bits(1), e, n)
Protected.i i, j
If e = 0 Or n <= 0: ProcedureReturn: EndIf
Dim bits2(e)
For i = 0 To e - 1 : bits2(i) = bits(i) : Next
For i = 0 To e - 2
If bits(i) = 1
j = i + 1
While j <= i + n And j < e
bits2(j) = 1
j + 1
Wend
EndIf
Next i
For i = 0 To e - 1 : bits(i) = bits2(i) : Next
EndProcedure
OpenConsole()
Define.i i, k, ub, n
Define b.s = "010000000000100000000010000000010000000100000010000010000100010010"
Dim tests.s(8, 2)
tests(0, 0) = "1000": tests(0, 1) = "2"
tests(1, 0) = "0100": tests(1, 1) = "2"
tests(2, 0) = "0010": tests(2, 1) = "2"
tests(3, 0) = "0000": tests(3, 1) = "2"
tests(4, 0) = b: tests(4, 1) = "0"
tests(5, 0) = b: tests(5, 1) = "1"
tests(6, 0) = b: tests(6, 1) = "2"
tests(7, 0) = b: tests(7, 1) = "3"
For k = 0 To 7
ReDim bits(Len(tests(k, 0)))
For i = 0 To Len(tests(k, 0)) - 1
bits(i) = Val(Mid(tests(k, 0), i + 1, 1))
Next i
ub = ArraySize(bits())
n = Val(tests(k, 1))
PrintN("n = " + Str(n) + "; Width e = " + Str(ub))
Print(" Input b: " + tests(k, 0))
setRightBits(bits(), ub, n)
PrintN("")
Print(" Result: ")
For i = 0 To ub - 1
Print(Str(bits(i)));
Next i
PrintN(Chr(10))
Next k
PrintN(#CRLF$ + "Press ENTER to exit"): Input()
CloseConsole()
- Output:
Same as FreeBASIC entry.
QBasic
SUB setRightBits (bits(), e, n)
IF e = 0 OR n <= 0 THEN EXIT SUB
DIM bits2(1 TO e)
FOR i = 1 TO e: bits2(i) = bits(i): NEXT
FOR i = 1 TO e - 1
IF bits(i) = 1 THEN
j = i + 1
WHILE j <= i + n AND j <= e
bits2(j) = 1
j = j + 1
WEND
END IF
NEXT i
FOR i = 1 TO e: bits(i) = bits2(i): NEXT
END SUB
b$ = "010000000000100000000010000000010000000100000010000010000100010010"
DIM tests$(8, 2)
tests$(1, 1) = "1000": tests$(1, 2) = "2"
tests$(2, 1) = "0100": tests$(2, 2) = "2"
tests$(3, 1) = "0010": tests$(3, 2) = "2"
tests$(4, 1) = "0000": tests$(4, 2) = "2"
tests$(5, 1) = b$: tests$(5, 2) = "0"
tests$(6, 1) = b$: tests$(6, 2) = "1"
tests$(7, 1) = b$: tests$(7, 2) = "2"
tests$(8, 1) = b$: tests$(8, 2) = "3"
FOR k = 1 TO 8
REDIM bits(1 TO LEN(tests$(k, 1)))
FOR i = 1 TO LEN(tests$(k, 1))
bits(i) = VAL(MID$(tests$(k, 1), i, 1))
NEXT i
ub = UBOUND(bits)
n = VAL(tests$(k, 2))
PRINT USING "n = #; Width e = ##:"; n; ub
PRINT " Input b: "; tests$(k, 1)
CALL setRightBits(bits(), ub, n)
PRINT " Result:";
FOR i = 1 TO ub
PRINT bits(i);
NEXT i
PRINT CHR$(10)
NEXT k
END
True BASIC
SUB setrightbits (bits(),e,n)
IF e = 0 OR n <= 0 THEN EXIT SUB
DIM bits2(0)
MAT REDIM bits2(1 TO e)
FOR i = 1 TO e
LET bits2(i) = bits(i)
NEXT i
FOR i = 1 TO e-1
IF bits(i) = 1 THEN
LET j = i+1
DO WHILE j <= i+n AND j <= e
LET bits2(j) = 1
LET j = j+1
LOOP
END IF
NEXT i
FOR i = 1 TO e
LET bits(i) = bits2(i)
NEXT i
END SUB
LET b$ = "010000000000100000000010000000010000000100000010000010000100010010"
DIM tests$(8, 2)
LET tests$(1, 1) = "1000"
LET tests$(1, 2) = "2"
LET tests$(2, 1) = "0100"
LET tests$(2, 2) = "2"
LET tests$(3, 1) = "0010"
LET tests$(3, 2) = "2"
LET tests$(4, 1) = "0000"
LET tests$(4, 2) = "2"
LET tests$(5, 1) = b$
LET tests$(5, 2) = "0"
LET tests$(6, 1) = b$
LET tests$(6, 2) = "1"
LET tests$(7, 1) = b$
LET tests$(7, 2) = "2"
LET tests$(8, 1) = b$
LET tests$(8, 2) = "3"
FOR k = 1 TO 8
DIM bits(1)
MAT REDIM bits(1 TO LEN(tests$(k, 1)))
FOR i = 1 TO LEN(tests$(k, 1))
LET bits(i) = VAL((tests$(k, 1))[i:i+1-1])
NEXT i
LET ub = UBOUND(bits)
LET n = VAL(tests$(k, 2))
PRINT USING "n = #; Width e = ##:": n, ub
PRINT " Input b: "; tests$(k, 1)
CALL setrightbits (bits(), ub, n)
PRINT " Result: ";
FOR i = 1 TO ub
PRINT STR$(bits(i));
NEXT i
PRINT
PRINT
NEXT k
END
- Output:
Same as FreeBASIC entry.
C++
#include <iostream>
#include <string>
void setRightAdjacent(std::string text, int32_t number) {
std::cout << "n = " << number << ", Width = " << text.size() << ", Input: " << text << std::endl;
std::string result = text;
for ( uint32_t i = 0; i < result.size(); i++ ) {
if ( text[i] == '1' ) {
for ( uint32_t j = i + 1; j <= i + number && j < result.size(); j++ ) {
result[j] = '1';
}
}
}
std::cout << std::string(16 + std::to_string(text.size()).size(), ' ') << "Result: " + result << "\n" << std::endl;
}
int main() {
setRightAdjacent("1000", 2);
setRightAdjacent("0100", 2);
setRightAdjacent("0010", 2);
setRightAdjacent("0000", 2);
std::string test = "010000000000100000000010000000010000000100000010000010000100010010";
setRightAdjacent(test, 0);
setRightAdjacent(test, 1);
setRightAdjacent(test, 2);
setRightAdjacent(test, 3);
}
- Output:
n = 2, Width = 4, Input: 1000 Result: 1110 n = 2, Width = 4, Input: 0100 Result: 0111 n = 2, Width = 4, Input: 0010 Result: 0011 n = 2, Width = 4, Input: 0000 Result: 0000 n = 0, Width = 66, Input: 010000000000100000000010000000010000000100000010000010000100010010 Result: 010000000000100000000010000000010000000100000010000010000100010010 n = 1, Width = 66, Input: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011000000000110000000011000000011000000110000011000011000110011011 n = 2, Width = 66, Input: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011100000000111000000011100000011100000111000011100011100111011111 n = 3, Width = 66, Input: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011110000000111100000011110000011110000111100011110011110111111111
EasyLang
proc adjacent txt$ n . .
print "n = " & n & ", width = " & len txt$
print "input: " & txt$
txt$[] = strchars txt$
res$[] = txt$[]
for i to len res$[]
if txt$[i] = "1"
for j = i + 1 to lower (i + n) len res$[]
res$[j] = "1"
.
.
.
res$ = strjoin res$[]
print "result: " & res$
print ""
.
adjacent "1000" 2
adjacent "0100" 2
adjacent "0010" 2
adjacent "0000" 2
test$ = "010000000000100000000010000000010000000100000010000010000100010010"
adjacent test$ 0
adjacent test$ 1
adjacent test$ 2
adjacent test$ 3
F#
// Set right-adjacent bits. Nigel Galloway: December 21st., 2021
let fN g l=let rec fG n g=[|match n,g with ('0'::t,0)->yield '0'; yield! fG t 0
|('0'::t,n)->yield '1'; yield! fG t (n-1)
|(_::t,_) ->yield '1'; yield! fG t l
|_ ->()|]
fG (g|>List.ofSeq) 0|>System.String
[("1000",2);("0100",2);("0010",2);("0001",2);("0000",2);("010000000000100000000010000000010000000100000010000010000100010010",0);("010000000000100000000010000000010000000100000010000010000100010010",1);("010000000000100000000010000000010000000100000010000010000100010010",2);("010000000000100000000010000000010000000100000010000010000100010010",3)]|>List.iter(fun(n,g)->printfn "%s\n%s" n (fN n g))
- Output:
1000 1110 0100 0111 0010 0011 0001 0001 0000 0000 010000000000100000000010000000010000000100000010000010000100010010 010000000000100000000010000000010000000100000010000010000100010010 010000000000100000000010000000010000000100000010000010000100010010 011000000000110000000011000000011000000110000011000011000110011011 010000000000100000000010000000010000000100000010000010000100010010 011100000000111000000011100000011100000111000011100011100111011111 010000000000100000000010000000010000000100000010000010000100010010 011110000000111100000011110000011110000111100011110011110111111111
Factor
USING: formatting io kernel math math.parser math.ranges
sequences ;
: set-rab ( n b -- result )
[0,b] [ neg shift ] with [ bitor ] map-reduce ;
:: show ( n b e -- )
b e "n = %d; width = %d\n" printf
n n b set-rab [ >bin e CHAR: 0 pad-head print ] bi@ ;
{ 0b1000 0b0100 0b0010 0b0000 } [ 2 4 show nl ] each
0x10020080404082112 4 <iota> [ 66 show nl ] with each
- Output:
n = 2; width = 4 1000 1110 n = 2; width = 4 0100 0111 n = 2; width = 4 0010 0011 n = 2; width = 4 0000 0000 n = 0; width = 66 010000000000100000000010000000010000000100000010000010000100010010 010000000000100000000010000000010000000100000010000010000100010010 n = 1; width = 66 010000000000100000000010000000010000000100000010000010000100010010 011000000000110000000011000000011000000110000011000011000110011011 n = 2; width = 66 010000000000100000000010000000010000000100000010000010000100010010 011100000000111000000011100000011100000111000011100011100111011111 n = 3; width = 66 010000000000100000000010000000010000000100000010000010000100010010 011110000000111100000011110000011110000111100011110011110111111111
FreeBASIC
Sub setRightBits(bits() As Integer, e As Integer, n As Integer)
Dim As Integer i, j
If e = 0 Or n <= 0 Then Exit Sub
Dim bits2(1 To e) As Integer
For i = 1 To e : bits2(i) = bits(i) : Next
For i = 1 To e - 1
If bits(i) = 1 Then
j = i + 1
While j <= i + n And j <= e
bits2(j) = 1
j += 1
Wend
End If
Next i
For i = 1 To e : bits(i) = bits2(i) : Next
End Sub
Dim As Integer i, k, ub, n
Dim As String b = "010000000000100000000010000000010000000100000010000010000100010010"
Dim tests(8, 2) As String
tests(1, 1) = "1000": tests(1, 2) = "2"
tests(2, 1) = "0100": tests(2, 2) = "2"
tests(3, 1) = "0010": tests(3, 2) = "2"
tests(4, 1) = "0000": tests(4, 2) = "2"
tests(5, 1) = b: tests(5, 2) = "0"
tests(6, 1) = b: tests(6, 2) = "1"
tests(7, 1) = b: tests(7, 2) = "2"
tests(8, 1) = b: tests(8, 2) = "3"
For k = 1 To 8
Dim bits(1 To Len(tests(k, 1))) As Integer
For i = 1 To Len(tests(k, 1))
bits(i) = Val(Mid(tests(k, 1), i, 1))
Next i
ub = Ubound(bits)
n = Val(tests(k, 2))
Print Using "n = #; Width e = ##:"; n; ub
Print " Input b: "; tests(k, 1)
setRightBits(bits(), ub, n)
Print " Result: ";
For i = 1 To ub
Print Str(bits(i));
Next i
Print Chr(10)
Next k
Sleep
- Output:
Same as Wren entry.
Go
package main
import (
"fmt"
"strings"
)
type test struct {
bs string
n int
}
func setRightBits(bits []byte, e, n int) []byte {
if e == 0 || n <= 0 {
return bits
}
bits2 := make([]byte, len(bits))
copy(bits2, bits)
for i := 0; i < e-1; i++ {
c := bits[i]
if c == 1 {
j := i + 1
for j <= i+n && j < e {
bits2[j] = 1
j++
}
}
}
return bits2
}
func main() {
b := "010000000000100000000010000000010000000100000010000010000100010010"
tests := []test{
test{"1000", 2}, test{"0100", 2}, test{"0010", 2}, test{"0000", 2},
test{b, 0}, test{b, 1}, test{b, 2}, test{b, 3},
}
for _, test := range tests {
bs := test.bs
e := len(bs)
n := test.n
fmt.Println("n =", n, "\b; Width e =", e, "\b:")
fmt.Println(" Input b:", bs)
bits := []byte(bs)
for i := 0; i < len(bits); i++ {
bits[i] = bits[i] - '0'
}
bits = setRightBits(bits, e, n)
var sb strings.Builder
for i := 0; i < len(bits); i++ {
sb.WriteByte(bits[i] + '0')
}
fmt.Println(" Result :", sb.String())
}
}
- Output:
n = 2; Width e = 4: Input b: 1000 Result : 1110 n = 2; Width e = 4: Input b: 0100 Result : 0111 n = 2; Width e = 4: Input b: 0010 Result : 0011 n = 2; Width e = 4: Input b: 0000 Result : 0000 n = 0; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result : 010000000000100000000010000000010000000100000010000010000100010010 n = 1; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result : 011000000000110000000011000000011000000110000011000011000110011011 n = 2; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result : 011100000000111000000011100000011100000111000011100011100111011111 n = 3; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result : 011110000000111100000011110000011110000111100011110011110111111111
J
Implementation:
smearright=: {{ +./ (-i.1+x) |.!.0"0 1/ y }}
Here, we use J's bit array structure, so e is implicit in the length of the list.
Task examples:
b=: '1'&= :.(' '-.~":)
task=: {{y,:x&smearright&.:b y}}
0 task '010000000000100000000010000000010000000100000010000010000100010010'
010000000000100000000010000000010000000100000010000010000100010010
010000000000100000000010000000010000000100000010000010000100010010
1 task '010000000000100000000010000000010000000100000010000010000100010010'
010000000000100000000010000000010000000100000010000010000100010010
011000000000110000000011000000011000000110000011000011000110011011
2 task '010000000000100000000010000000010000000100000010000010000100010010'
010000000000100000000010000000010000000100000010000010000100010010
011100000000111000000011100000011100000111000011100011100111011111
3 task '010000000000100000000010000000010000000100000010000010000100010010'
010000000000100000000010000000010000000100000010000010000100010010
011110000000111100000011110000011110000111100011110011110111111111
b
converts from character list to bit list (and its obverse converts back to character list, for easy viewing).
task
uses b on the right argument to smearright
and its obverse on the result, which it provides with the original value (again, for easy viewing).
Java
public final class SetRightAdjacentBits {
public static void main(String[] aArgs) {
setRightAdjacent("1000", 2);
setRightAdjacent("0100", 2);
setRightAdjacent("0010", 2);
setRightAdjacent("0000", 2);
String test = "010000000000100000000010000000010000000100000010000010000100010010";
setRightAdjacent(test, 0);
setRightAdjacent(test, 1);
setRightAdjacent(test, 2);
setRightAdjacent(test, 3);
}
private static void setRightAdjacent(String aText, int aNumber) {
System.out.println("n = " + aNumber + ", Width = " + aText.length() + ", Input: " + aText);
char[] text = aText.toCharArray();
char[] result = aText.toCharArray();
for ( int i = 0; i < result.length; i++ ) {
if ( text[i] == '1' ) {
for ( int j = i + 1; j <= i + aNumber && j < result.length; j++ ) {
result[j] = '1';
}
}
}
String spaces = " ".repeat(16 + String.valueOf(aText.length()).length());
System.out.println(spaces + "Result: " + new String(result) + System.lineSeparator());
}
}
- Output:
n = 2, Width = 4, Input: 1000 Result: 1110 n = 2, Width = 4, Input: 0100 Result: 0111 n = 2, Width = 4, Input: 0010 Result: 0011 n = 2, Width = 4, Input: 0000 Result: 0000 n = 0, Width = 66, Input: 010000000000100000000010000000010000000100000010000010000100010010 Result: 010000000000100000000010000000010000000100000010000010000100010010 n = 1, Width = 66, Input: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011000000000110000000011000000011000000110000011000011000110011011 n = 2, Width = 66, Input: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011100000000111000000011100000011100000111000011100011100111011111 n = 3, Width = 66, Input: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011110000000111100000011110000011110000111100011110011110111111111
jq
Adapted from Wren
Works with jq, the C implementation of jq
Works with gojq, the Go implementation of jq
With a few small tweaks, the program shown below also works with jaq, the Rust implementation of jq.
# Input should be an array of 0s and 1s
def setRightBits($e; $n):
if $e == 0 or $n <= 0 then .
else . as $bits
| reduce range(0; $e - 1) as $i ({bits2: .};
$bits[$i] as $c
| if $c == 1
then .j = $i + 1
| until (.j > ($i + $n) or .j >= $e;
.bits2[.j] = 1
| .j += 1 )
end)
| .bits2
end;
def b:
"010000000000100000000010000000010000000100000010000010000100010010";
def tests:
[["1000", 2], ["0100", 2], ["0010", 2], ["0000", 2], [b, 0], [b, 1], [b, 2], [b, 3]];
tests[] as [$bits, $n]
| ($bits|length) as $e
| "n = \($n); Width e = \($e):",
" Input b: \($bits)",
( ($bits | [explode[] | . - 48]) as $b
| " Result: \($b | setRightBits($e; $n) | join(""))\n" )
- Output:
As shown at Wren.
Julia
function setrightadj(s, n)
if n < 1
return s
else
arr = reverse(collect(s))
for (i, c) in enumerate(reverse(s))
if c == '1'
arr[max(1, i - n):i] .= '1'
end
end
return String(reverse(arr))
end
end
@show setrightadj("1000", 2)
@show setrightadj("0100", 2)
@show setrightadj("0010", 2)
@show setrightadj("0000", 2)
@show setrightadj("010000000000100000000010000000010000000100000010000010000100010010", 0)
@show setrightadj("010000000000100000000010000000010000000100000010000010000100010010", 1)
@show setrightadj("010000000000100000000010000000010000000100000010000010000100010010", 2)
@show setrightadj("010000000000100000000010000000010000000100000010000010000100010010", 3)
- Output:
setrightadj("1000", 2) = "1110" setrightadj("0100", 2) = "0111" setrightadj("0010", 2) = "0011" setrightadj("0000", 2) = "0000" setrightadj("010000000000100000000010000000010000000100000010000010000100010010", 0) = "010000000000100000000010000000010000000100000010000010000100010010" setrightadj("010000000000100000000010000000010000000100000010000010000100010010", 1) = "011000000000110000000011000000011000000110000011000011000110011011" setrightadj("010000000000100000000010000000010000000100000010000010000100010010", 2) = "011100000000111000000011100000011100000111000011100011100111011111" setrightadj("010000000000100000000010000000010000000100000010000010000100010010", 3) = "011110000000111100000011110000011110000111100011110011110111111111"
Mathematica /Wolfram Language
ClearAll[ShowSetRightBits]
ShowSetRightBits[b_String,n_Integer]:=Module[{poss,chars},
chars=Characters[b];
poss=Position[chars,"1"];
poss=Union[Flatten[Outer[Plus,poss,Range[n]]]];
{{"In :",b},{"Out:",StringJoin[ReplacePart[chars,(List/@poss)->"1"]]}}//Grid
]
ShowSetRightBits["1000",2]
ShowSetRightBits["0100",2]
ShowSetRightBits["0010",2]
ShowSetRightBits["0000",2]
ShowSetRightBits["010000000000100000000010000000010000000100000010000010000100010010",0]
ShowSetRightBits["010000000000100000000010000000010000000100000010000010000100010010",1]
ShowSetRightBits["010000000000100000000010000000010000000100000010000010000100010010",2]
ShowSetRightBits["010000000000100000000010000000010000000100000010000010000100010010",3]
- Output:
In : 1000 Out: 1110 In : 0100 Out: 0111 In : 0010 Out: 0011 In : 0000 Out: 0000 In : 010000000000100000000010000000010000000100000010000010000100010010 Out: 010000000000100000000010000000010000000100000010000010000100010010 In : 010000000000100000000010000000010000000100000010000010000100010010 Out: 011000000000110000000011000000011000000110000011000011000110011011 In : 010000000000100000000010000000010000000100000010000010000100010010 Out: 011100000000111000000011100000011100000111000011100011100111011111 In : 010000000000100000000010000000010000000100000010000010000100010010 Out: 011110000000111100000011110000011110000111100011110011110111111111
Nim
We define a typeBitString
similar to a Nim sequence and provide some basic operations; creating, indexing, setting and clearing a bit, iterating, parsing a string to a bit string and displaying a bit string. After that, solving the task is done by a simple procedure.
import std/[bitops, strformat]
type
# Bit string described by a length and a sequence of bytes.
BitString = object
len: Natural
data: seq[byte]
# Position composed of a byte number and
# a bit number in the byte (starting from the left).
Position = tuple[bytenum, bitnum: int]
func toPosition(n: Natural): Position =
## Convert an index to a Position.
(n div 8, 7 - n mod 8)
proc newBitString*(len: Natural): BitString =
## Create a bit string of length "len".
result.len = len
result.data = newSeq[byte]((len + 7) div 8)
func checkIndex(bits: BitString; n: Natural) =
## Check that the index "n" is not out of bounds.
if n >= bits.len:
raise newException(RangeDefect, &"index out of range: {n}.")
proc `[]`*(bits: BitString; n: Natural): bool =
## Return the bit at index "n" (as a boolean).
bits.checkIndex(n)
let pos = n.toPosition
result = bits.data[pos.bytenum].testBit(pos.bitnum)
func setBit*(bits: var BitString; n: Natural) =
## Set the bit at index "n".
bits.checkIndex(n)
let pos = n.toPosition
bits.data[pos.bytenum].setBit(pos.bitnum)
func clearBit*(bits: var BitString; n: Natural) =
## Clear the bit at index "n".
## Not used but provided for consistency.
bits.checkIndex(n)
let pos = n.toPosition
bits.data[pos.bytenum].clearBit(pos.bitnum)
iterator items*(bits: BitString): bool =
## Yield the successive bits of the bit string.
for n in 0..<bits.len:
yield bits[n]
func toBitString*(s: string): BitString =
## Convert a string of '0' and '1' to a bit string.
result = newBitString(s.len)
for n, val in s:
if val == '1':
result.setBit(n)
elif val != '0':
raise newException(ValueError, &"invalid bit value: {val}")
func `$`*(bits: BitString): string =
## Return the string representation of a bit string.
const BinDigits = [false: '0', true: '1']
for bit in bits.items:
result.add BinDigits[bit]
func setAdjacentBitString(bits: BitString; n: Natural): BitString =
## Set the "n" bits adjacent to a set bit.
result = bits
for i in 0..<bits.len:
if bits[i]:
for j in (i + 1)..(i + n):
if j < bits.len:
result.setBit(j)
let n = 2
echo &"n = {n}; Width e = 4\n"
for input in ["1000", "0100", "0010", "0000"]:
echo &"Input: {input}"
echo &"Result: {input.toBitString.setAdjacentBitString(n)}"
echo()
echo()
const BS66 = "010000000000100000000010000000010000000100000010000010000100010010".toBitString
for n in 0..3:
echo &"n = {n}; Width e = {BS66.len}\n"
echo "Input:"
echo BS66
echo "Result:"
echo BS66.setAdjacentBitString(n)
echo()
- Output:
n = 2; Width e = 4 Input: 1000 Result: 1110 Input: 0100 Result: 0111 Input: 0010 Result: 0011 Input: 0000 Result: 0000 n = 0; Width e = 66 Input: 010000000000100000000010000000010000000100000010000010000100010010 Result: 010000000000100000000010000000010000000100000010000010000100010010 n = 1; Width e = 66 Input: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011000000000110000000011000000011000000110000011000011000110011011 n = 2; Width e = 66 Input: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011100000000111000000011100000011100000111000011100011100111011111 n = 3; Width e = 66 Input: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011110000000111100000011110000011110000111100011110011110111111111
Perl
use strict;
use warnings;
use feature 'bitwise';
while( <DATA> ) {
my ($n, $input) = split;
my $width = length $input;
my $result = '';
$result |.= substr 0 x $_ . $input, 0, $width for 0..$n;
print "n = $n width = $width\n input $input\nresult $result\n\n";
}
__DATA__
2 1000
2 0100
2 0011
2 0000
0 010000000000100000000010000000010000000100000010000010000100010010
1 010000000000100000000010000000010000000100000010000010000100010010
2 010000000000100000000010000000010000000100000010000010000100010010
3 010000000000100000000010000000010000000100000010000010000100010010
- Output:
n = 2 width = 4 input 1000 result 1110 n = 2 width = 4 input 0100 result 0111 n = 2 width = 4 input 0011 result 0011 n = 2 width = 4 input 0000 result 0000 n = 0 width = 66 input 010000000000100000000010000000010000000100000010000010000100010010 result 010000000000100000000010000000010000000100000010000010000100010010 n = 1 width = 66 input 010000000000100000000010000000010000000100000010000010000100010010 result 011000000000110000000011000000011000000110000011000011000110011011 n = 2 width = 66 input 010000000000100000000010000000010000000100000010000010000100010010 result 011100000000111000000011100000011100000111000011100011100111011111 n = 3 width = 66 input 010000000000100000000010000000010000000100000010000010000100010010 result 011110000000111100000011110000011110000111100011110011110111111111
Phix
The basic idea is to create a mask of n 1s on the right and either shift that left or (a copy of) the input right, and use it to determine which bits of the result need to be set, in addition to the originals. The string version actually uses a count of 1s instead of an actual mask, and obviously the odd() and even() functions work just as well on the characters '0' and '1' as they do the numbers/bits 0 and 1. Note that both the string and mpz versions propagate any number of bits in a single pass, in other words explicitly iterating down all the input bits as opposed to implicitly setting all those bits n times, albeit the latter is probably a smidge faster.
string
with javascript_semantics function str_srb(string input, integer n) string res = input integer l = length(input), m = min(n,l), count = sum(sq_eq(input[-m..-1],'1')), k = l-n for i=l to 1 by -1 do integer bit = odd(input[i]) count += iff(k>0?odd(input[k]):0)-bit if count and not bit then res[i] = '1' end if k -= 1 end for assert(count=0) return res end function constant tests = {{"1000",2,2},{"0100",2,2},{"0010",2,2},{"0000",2,2}, {"010000000000100000000010000000010000000100000010000010000100010010",0,3}} for i=1 to length(tests) do {string input, integer l, integer m} = tests[i] printf(1,"input: %s (width %d)\n",{input,length(input)}) for n=l to m do printf(1,"n = %d: %s\n",{n,str_srb(input,n)}) end for end for
- Output:
input: 1000 (width 4) n = 2: 1110 input: 0100 (width 4) n = 2: 0111 input: 0010 (width 4) n = 2: 0011 input: 0000 (width 4) n = 2: 0000 input: 010000000000100000000010000000010000000100000010000010000100010010 (width 66) n = 0: 010000000000100000000010000000010000000100000010000010000100010010 n = 1: 011000000000110000000011000000011000000110000011000011000110011011 n = 2: 011100000000111000000011100000011100000111000011100011100111011111 n = 3: 011110000000111100000011110000011110000111100011110011110111111111
mpz
identical output
with javascript_semantics include mpfr.e function mpz_srb(string input, integer n) mpz res = mpz_init("0b"&input), tmp = mpz_init_set(res), bit = mpz_init(1), mask = mpz_init(power(2,n+1)-1), rask = mpz_init() -- (mask res) for i=1 to length(input) do -- (backward, actually) if mpz_even(tmp) then mpz_and(rask,tmp,mask) if mpz_cmp_si(rask,0)!=0 then mpz_add(res,res,bit) end if end if mpz_mul_2exp(bit, bit, 1) -- aka left shift mpz_fdiv_q_2exp(tmp, tmp, 1) -- aka right shift end for string ret = mpz_get_str(res,2) integer lz = length(input)-length(ret) if lz then ret = repeat('0',lz)&ret end if return ret end function --... printf(1,"n = %d: %s\n",{n,mpz_srb(input,n)})
hybrid
Makes it even simpler, again identical output
with javascript_semantics include mpfr.e function mpz_srb(string input, integer n) string res = input mpz tmp = mpz_init("0b"&input), mask = mpz_init(power(2,n+1)-1), rask = mpz_init() -- (mask res) for i=length(input) to 1 by -1 do if input[i]='0' then mpz_and(rask,tmp,mask) if mpz_cmp_si(rask,0)!=0 then res[i] = '1' end if end if mpz_fdiv_q_2exp(tmp, tmp, 1) -- aka right shift end for return res end function --... printf(1,"n = %d: %s\n",{n,mpz_srb(input,n)})
Python
Python: Using arbitrary precision ints.
The set_right_adjacent_bits
function does all the real work.
from operator import or_
from functools import reduce
def set_right_adjacent_bits(n: int, b: int) -> int:
return reduce(or_, (b >> x for x in range(n+1)), 0)
if __name__ == "__main__":
print("SAME n & Width.\n")
n = 2 # bits to the right of set bits, to also set
bits = "1000 0100 0010 0000"
first = True
for b_str in bits.split():
b = int(b_str, 2)
e = len(b_str)
if first:
first = False
print(f"n = {n}; Width e = {e}:\n")
result = set_right_adjacent_bits(n, b)
print(f" Input b: {b:0{e}b}")
print(f" Result: {result:0{e}b}\n")
print("SAME Input & Width.\n")
#bits = "01000010001001010110"
bits = '01' + '1'.join('0'*x for x in range(10, 0, -1))
for n in range(4):
first = True
for b_str in bits.split():
b = int(b_str, 2)
e = len(b_str)
if first:
first = False
print(f"n = {n}; Width e = {e}:\n")
result = set_right_adjacent_bits(n, b)
print(f" Input b: {b:0{e}b}")
print(f" Result: {result:0{e}b}\n")
- Output:
SAME n & Width. n = 2; Width e = 4: Input b: 1000 Result: 1110 Input b: 0100 Result: 0111 Input b: 0010 Result: 0011 Input b: 0000 Result: 0000 SAME Input & Width. n = 0; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 010000000000100000000010000000010000000100000010000010000100010010 n = 1; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011000000000110000000011000000011000000110000011000011000110011011 n = 2; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011100000000111000000011100000011100000111000011100011100111011111 n = 3; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011110000000111100000011110000011110000111100011110011110111111111
Python: Using a list of 0 or 1 ints.
The set_right_adjacent_bits_list
function does all the real work.
from typing import List
def set_right_adjacent_bits_list(n: int, b: List[int]) -> List[int]:
# [0]*x is padding b on the left.
# zip(*(list1, list2,..)) returns the n'th elements on list1, list2,...
# int(any(...)) or's them.
return [int(any(shifts))
for shifts in zip(*([0]*x + b for x in range(n+1)))]
def _list2bin(b: List[int]) -> str:
"List of 0/1 ints to bool string."
return ''.join(str(x) for x in b)
def _to_list(bits: str) -> List[int]:
return [int(char) for char in bits]
if __name__ == "__main__":
print("SAME n & Width.\n")
n = 2 # bits to the right of set bits, to also set
bits = "1000 0100 0010 0000"
first = True
for b_str in bits.split():
b = _to_list(b_str)
e = len(b_str)
if first:
first = False
print(f"n = {n}; Width e = {e}:\n")
result = set_right_adjacent_bits_list(n, b)
print(f" Input b: {_list2bin(b)}")
print(f" Result: {_list2bin(result)}\n")
print("SAME Input & Width.\n")
#bits = "01000010001001010110"
bits = '01' + '1'.join('0'*x for x in range(10, 0, -1))
for n in range(4):
first = True
for b_str in bits.split():
b = _to_list(b_str)
e = len(b_str)
if first:
first = False
print(f"n = {n}; Width e = {e}:\n")
result = set_right_adjacent_bits_list(n, b)
print(f" Input b: {_list2bin(b)}")
print(f" Result: {_list2bin(result)}\n")
- Output:
SAME n & Width. n = 2; Width e = 4: Input b: 1000 Result: 1110 Input b: 0100 Result: 0111 Input b: 0010 Result: 0011 Input b: 0000 Result: 0000 SAME Input & Width. n = 0; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 010000000000100000000010000000010000000100000010000010000100010010 n = 1; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011000000000110000000011000000011000000110000011000011000110011011 n = 2; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011100000000111000000011100000011100000111000011100011100111011111 n = 3; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011110000000111100000011110000011110000111100011110011110111111111
Quackery
bin
sprinkles a little syntactic sugar by extending the compiler to understand binary numbers.
[ 2 base put
nextword dup
$ '' = if
[ $ '"bin" needs a number after it.'
message put
bail ]
dup $->n iff
[ nip swap dip join ]
else
[ drop
char " swap join
$ '" is not binary.'
join message put
bail ]
base release ] builds bin ( [ $ --> [ $ )
[ [] unrot
times
[ dup 1 &
rot join swap
1 >> ]
drop
witheach echo ] is echobin ( n n --> )
[ dip dup times
[ 1 >> tuck | swap ]
drop ] is setrightbits ( n --> n )
say "n = 2; Width e = 4:"
cr cr
' [ bin 1000 bin 0100
bin 0010 bin 0001 ]
witheach
[ say "Input b: "
dup 4 echobin cr
say "Result: "
2 setrightbits
4 echobin cr cr ]
4 times
[ say "n = " i^ echo
say " Width e = 66:" cr
say "Input b: "
bin 010000000000100000000010000000010000000100000010000010000100010010
dup 66 echobin cr
say "Result: "
i^ setrightbits
66 echobin cr cr ]
- Output:
n = 2; Width e = 4: Input b: 1000 Result: 1110 Input b: 0100 Result: 0111 Input b: 0010 Result: 0011 Input b: 0001 Result: 0001 n = 0 Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 010000000000100000000010000000010000000100000010000010000100010010 n = 1 Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011000000000110000000011000000011000000110000011000011000110011011 n = 2 Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011100000000111000000011100000011100000111000011100011100111011111 n = 3 Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011110000000111100000011110000011110000111100011110011110111111111
Raku
A left-to-right ordered collection of bits is more commonly referred to as an Integer in Raku.
sub rab (Int $n, Int $b = 1) {
my $m = $n;
$m +|= ($n +> $_) for ^ $b+1;
$m
}
sub lab (Int $n, Int $b = 1) {
my $m = $n;
$m +|= ($n +< $_) for ^ $b+1;
$m
}
say "Powers of 2 ≤ 8, 0 - Right-adjacent-bits: 2";
.&rab(2).base(2).fmt('%04s').say for <8 4 2 1 0>;
# Test with a few integers.
for 8,4, 18455760086304825618,5, 5444684034376312377319904082902529876242,15 -> $integer, $bits {
say "\nInteger: $integer - Right-adjacent-bits: up to $bits";
.say for ^$bits .map: -> $b { $integer.&rab($b).base: 2 };
say "\nInteger: $integer - Left-adjacent-bits: up to $bits";
.say for ^$bits .map: -> $b { $integer.&lab($b).fmt("%{0~$bits+$integer.msb}b") };
}
- Output:
Powers of 2 ≤ 8, 0 - Right-adjacent-bits: 2 1110 0111 0011 0001 0000 Integer: 8 - Right-adjacent-bits: up to 4 1000 1100 1110 1111 Integer: 8 - Left-adjacent-bits: up to 4 0001000 0011000 0111000 1111000 Integer: 18455760086304825618 - Right-adjacent-bits: up to 5 10000000000100000000010000000010000000100000010000010000100010010 11000000000110000000011000000011000000110000011000011000110011011 11100000000111000000011100000011100000111000011100011100111011111 11110000000111100000011110000011110000111100011110011110111111111 11111000000111110000011111000011111000111110011111011111111111111 Integer: 18455760086304825618 - Left-adjacent-bits: up to 5 000010000000000100000000010000000010000000100000010000010000100010010 000110000000001100000000110000000110000001100000110000110001100110110 001110000000011100000001110000001110000011100001110001110011101111110 011110000000111100000011110000011110000111100011110011110111111111110 111110000001111100000111110000111110001111100111110111111111111111110 Integer: 5444684034376312377319904082902529876242 - Right-adjacent-bits: up to 15 1000000000000001000000000000010000000000000100000000000010000000000010000000000100000000010000000010000000100000010000010000100010010 1100000000000001100000000000011000000000000110000000000011000000000011000000000110000000011000000011000000110000011000011000110011011 1110000000000001110000000000011100000000000111000000000011100000000011100000000111000000011100000011100000111000011100011100111011111 1111000000000001111000000000011110000000000111100000000011110000000011110000000111100000011110000011110000111100011110011110111111111 1111100000000001111100000000011111000000000111110000000011111000000011111000000111110000011111000011111000111110011111011111111111111 1111110000000001111110000000011111100000000111111000000011111100000011111100000111111000011111100011111100111111011111111111111111111 1111111000000001111111000000011111110000000111111100000011111110000011111110000111111100011111110011111110111111111111111111111111111 1111111100000001111111100000011111111000000111111110000011111111000011111111000111111110011111111011111111111111111111111111111111111 1111111110000001111111110000011111111100000111111111000011111111100011111111100111111111011111111111111111111111111111111111111111111 1111111111000001111111111000011111111110000111111111100011111111110011111111110111111111111111111111111111111111111111111111111111111 1111111111100001111111111100011111111111000111111111110011111111111011111111111111111111111111111111111111111111111111111111111111111 1111111111110001111111111110011111111111100111111111111011111111111111111111111111111111111111111111111111111111111111111111111111111 1111111111111001111111111111011111111111110111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 1111111111111101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 Integer: 5444684034376312377319904082902529876242 - Left-adjacent-bits: up to 15 000000000000001000000000000001000000000000010000000000000100000000000010000000000010000000000100000000010000000010000000100000010000010000100010010 000000000000011000000000000011000000000000110000000000001100000000000110000000000110000000001100000000110000000110000001100000110000110001100110110 000000000000111000000000000111000000000001110000000000011100000000001110000000001110000000011100000001110000001110000011100001110001110011101111110 000000000001111000000000001111000000000011110000000000111100000000011110000000011110000000111100000011110000011110000111100011110011110111111111110 000000000011111000000000011111000000000111110000000001111100000000111110000000111110000001111100000111110000111110001111100111110111111111111111110 000000000111111000000000111111000000001111110000000011111100000001111110000001111110000011111100001111110001111110011111101111111111111111111111110 000000001111111000000001111111000000011111110000000111111100000011111110000011111110000111111100011111110011111110111111111111111111111111111111110 000000011111111000000011111111000000111111110000001111111100000111111110000111111110001111111100111111110111111111111111111111111111111111111111110 000000111111111000000111111111000001111111110000011111111100001111111110001111111110011111111101111111111111111111111111111111111111111111111111110 000001111111111000001111111111000011111111110000111111111100011111111110011111111110111111111111111111111111111111111111111111111111111111111111110 000011111111111000011111111111000111111111110001111111111100111111111110111111111111111111111111111111111111111111111111111111111111111111111111110 000111111111111000111111111111001111111111110011111111111101111111111111111111111111111111111111111111111111111111111111111111111111111111111111110 001111111111111001111111111111011111111111110111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110 011111111111111011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110
RPL
With the requirement of e value going up to 1000, the collection of bits must be provided as a string.
Using e as a variable name is generally not recommended, as it can be confused with the base of natural logarithms. Nevertheless, we use it for clarity of task implementation.
« OVER SIZE "" 1 4 PICK START "1" + NEXT → n e ones « IF n THEN e 1 - 1 FOR j IF DUP j DUP SUB "1" == THEN j 1 + ones REPL 1 e SUB END -1 STEP END » » 'SETRIGHT' STO @ ( "bits" n → "bits" ) « { "1000" "0100" "0010" "0000" } 1 « 2 SETRIGHT » DOLIST « "010000000000100000000010000000010000000100000010000010000100010010" j SETRIGHT » 'j' 0 3 1 SEQ » 'TASK' STO
- Output:
2: { "1110" "0111" "0011" "0000" } 1: { "010000000000100000000010000000010000000100000010000010000100010010" "011000000000110000000011000000011000000110000011000011000110011011" "011100000000111000000011100000011100000111000011100011100111011111" "011110000000111100000011110000011110000111100011110011110111111111" }
Rust
use std::ops::{BitOrAssign, Shr};
fn set_right_adjacent_bits<E: Clone + BitOrAssign + Shr<usize, Output = E>>(b: &mut E, n: usize) {
for _ in 1..=n {
*b |= b.clone() >> 1;
}
}
macro_rules! test {
( $t:ident, $n:expr, $e:expr, $g:ty, $b:expr, $c:expr$(,)? ) => {
#[test]
fn $t() {
let n: usize = $n;
let e: usize = $e;
let b_original: $g = $b;
let mut b = b_original.clone();
set_right_adjacent_bits(&mut b, n);
println!("n = {n}; e = {e}:");
println!(" b = {:0>e$b}", b_original);
println!(" output = {:0>e$b}", b);
assert_eq!(b, $c);
}
};
}
test!(test_a1, 2, 4, u8, 0b1000, 0b1110);
test!(test_a2, 2, 4, u8, 0b0100, 0b0111);
test!(test_a3, 2, 4, u8, 0b0010, 0b0011);
test!(test_a4, 2, 4, u8, 0b0000, 0b0000);
test!(
test_b1, 0, 66, u128,
0b010000000000100000000010000000010000000100000010000010000100010010,
0b010000000000100000000010000000010000000100000010000010000100010010,
);
test!(
test_b2, 1, 66, u128,
0b010000000000100000000010000000010000000100000010000010000100010010,
0b011000000000110000000011000000011000000110000011000011000110011011,
);
test!(
test_b3, 2, 66, u128,
0b010000000000100000000010000000010000000100000010000010000100010010,
0b011100000000111000000011100000011100000111000011100011100111011111,
);
test!(
test_b4, 3, 66, u128,
0b010000000000100000000010000000010000000100000010000010000100010010,
0b011110000000111100000011110000011110000111100011110011110111111111,
);
- Output:
n = 2; e = 4: b = 1000 output = 1110 n = 2; e = 4: b = 0100 output = 0111 n = 2; e = 4: b = 0010 output = 0011 n = 2; e = 4: b = 0000 output = 0000 n = 0; e = 66: b = 010000000000100000000010000000010000000100000010000010000100010010 output = 010000000000100000000010000000010000000100000010000010000100010010 n = 1; e = 66: b = 010000000000100000000010000000010000000100000010000010000100010010 output = 011000000000110000000011000000011000000110000011000011000110011011 n = 2; e = 66: b = 010000000000100000000010000000010000000100000010000010000100010010 output = 011100000000111000000011100000011100000111000011100011100111011111 n = 3; e = 66: b = 010000000000100000000010000000010000000100000010000010000100010010 output = 011110000000111100000011110000011110000111100011110011110111111111
Wren
Using a list of 0's and 1's so we don't have to resort to BigInt.
var setRightBits = Fn.new { |bits, e, n|
if (e == 0 || n <= 0) return bits
var bits2 = bits.toList
for (i in 0...e - 1) {
var c = bits[i]
if (c == 1) {
var j = i + 1
while (j <= i + n && j < e) {
bits2[j] = 1
j = j + 1
}
}
}
return bits2
}
var b = "010000000000100000000010000000010000000100000010000010000100010010"
var tests = [["1000", 2], ["0100", 2], ["0010", 2], ["0000", 2], [b, 0], [b, 1], [b, 2], [b, 3]]
for (test in tests) {
var bits = test[0]
var e = bits.count
var n = test[1]
System.print("n = %(n); Width e = %(e):")
System.print(" Input b: %(bits)")
bits = bits.map { |c| c.bytes[0] - 48 }.toList
bits = setRightBits.call(bits, e, n)
System.print(" Result: %(bits.join())\n")
}
- Output:
n = 2; Width e = 4: Input b: 1000 Result: 1110 n = 2; Width e = 4: Input b: 0100 Result: 0111 n = 2; Width e = 4: Input b: 0010 Result: 0011 n = 2; Width e = 4: Input b: 0000 Result: 0000 n = 0; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 010000000000100000000010000000010000000100000010000010000100010010 n = 1; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011000000000110000000011000000011000000110000011000011000110011011 n = 2; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011100000000111000000011100000011100000111000011100011100111011111 n = 3; Width e = 66: Input b: 010000000000100000000010000000010000000100000010000010000100010010 Result: 011110000000111100000011110000011110000111100011110011110111111111