Set right-adjacent bits

From Rosetta Code
Task
Set right-adjacent bits
You are encouraged to solve this task according to the task description, using any language you may know.

Given a left-to-right ordered collection of e bits, b, where 1 <= e <= 10000, and a zero or more integer n :

  • Output the result of setting the n bits to the right of any set bit in b

(if those bits are present in b and therefore also preserving the width, e).

Some examples:

   Set of examples showing how one bit in a nibble gets changed:
       
       n = 2; Width e = 4:
       
            Input b: 1000
             Result: 1110
       
            Input b: 0100
             Result: 0111
       
            Input b: 0010
             Result: 0011
       
            Input b: 0000
             Result: 0000
   
   Set of examples with the same input with set bits of varying distance apart:
   
       n = 0; Width e = 66:
       
            Input b: 010000000000100000000010000000010000000100000010000010000100010010
             Result: 010000000000100000000010000000010000000100000010000010000100010010
       
       n = 1; Width e = 66:
       
            Input b: 010000000000100000000010000000010000000100000010000010000100010010
             Result: 011000000000110000000011000000011000000110000011000011000110011011
       
       n = 2; Width e = 66:
       
            Input b: 010000000000100000000010000000010000000100000010000010000100010010
             Result: 011100000000111000000011100000011100000111000011100011100111011111
       
       n = 3; Width e = 66:
       
            Input b: 010000000000100000000010000000010000000100000010000010000100010010
             Result: 011110000000111100000011110000011110000111100011110011110111111111


Task:

  • Implement a routine to perform the setting of right-adjacent bits on representations of bits that will scale over the given range of input width e.
  • Use it to show, here, the results for the input examples above.
  • Print the output aligned in a way that allows easy checking by eye of the binary input vs output.

11l

Translation of: Python
F set_right_adjacent_bits_list(Int n, [Int] b) -> [Int]
   R (0 .< b.len).map(i -> Int(any(@b[max(0, i - @n) .. i])))

F _list2bin([Int] b) -> String
   R b.map(x -> String(x)).join(‘’)

F _to_list(String bits) -> [Int]
   R bits.map(char -> Int(char))

print("SAME n & Width.\n")
V n = 2
V bits_s = ‘1000 0100 0010 0000’
V first = 1B
L(b_str) bits_s.split(‘ ’)
   V b = _to_list(b_str)
   V e = b_str.len
   I first
      first = 0B
      print(‘n = ’n‘; Width e = ’e":\n")
   V result = set_right_adjacent_bits_list(n, b)
   print(‘     Input b: ’_list2bin(b))
   print(‘      Result: ’_list2bin(result)"\n")

print("SAME Input & Width.\n")
bits_s = ‘01’(10.<0).step(-1).map(x -> ‘0’ * x).join(‘1’)
L(n) 4
   first = 1B
   L(b_str) bits_s.split(‘ ’)
      V b = _to_list(b_str)
      V e = b_str.len
      I first
         first = 0B
         print(‘n = ’n‘; Width e = ’e":\n")
      V result = set_right_adjacent_bits_list(n, b)
      print(‘     Input b: ’_list2bin(b))
      print(‘      Result: ’_list2bin(result)"\n")
Output:
SAME n & Width.

n = 2; Width e = 4:

     Input b: 1000
      Result: 1110

     Input b: 0100
      Result: 0111

     Input b: 0010
      Result: 0011

     Input b: 0000
      Result: 0000

SAME Input & Width.

n = 0; Width e = 66:

     Input b: 010000000000100000000010000000010000000100000010000010000100010010
      Result: 010000000000100000000010000000010000000100000010000010000100010010

n = 1; Width e = 66:

     Input b: 010000000000100000000010000000010000000100000010000010000100010010
      Result: 011000000000110000000011000000011000000110000011000011000110011011

n = 2; Width e = 66:

     Input b: 010000000000100000000010000000010000000100000010000010000100010010
      Result: 011100000000111000000011100000011100000111000011100011100111011111

n = 3; Width e = 66:

     Input b: 010000000000100000000010000000010000000100000010000010000100010010
      Result: 011110000000111100000011110000011110000111100011110011110111111111

Ada

with Ada.Text_IO;

procedure Set_Right_Bits is

   type Bit_Number is new Positive range 1 .. 10_000;
   type Bit        is new Boolean;
   type Bit_Collection is array (Bit_Number range <>) of Bit
     with Pack;

   function Right_Adjacent (B : Bit_Collection;
                            N : Natural) return Bit_Collection
   is
      Result : Bit_Collection := B;
      Mask   : Bit_Collection := B;
   begin
      for A in 1 .. N loop
         Mask   := False & Mask (Mask'First .. Mask'Last - 1);
         --  Shift Mask by appending False/0 in front of slice.

         Result := Result or Mask;
      end loop;
      return Result;
   end Right_Adjacent;

   procedure Put (Collection : Bit_Collection) is
      use Ada.Text_IO;
   begin
      for Bit of Collection loop
         Put ((if Bit then '1' else '0'));
      end loop;
   end Put;

   function Value (Item : String) return Bit_Collection
   is
      Length : constant Bit_Number := Item'Length;
      Result : Bit_Collection (1 .. Length);
      Index  : Natural := Item'First;
   begin
      for R of Result loop
         R := (case Item (Index) is
                  when '0' | 'F' | 'f' => False,
                  when '1' | 'T' | 't' => True,
                  when others =>
                     raise Constraint_Error with "invalid input");
         Index := Index + 1;
      end loop;
      return Result;
   end Value;

   procedure Show (Bit_String : String; N : Natural)
   is
      B      : constant Bit_Collection := Value (Bit_String);
      R      : constant Bit_Collection := Right_Adjacent (B, N);
      Prefix : constant String         := "        ";
      use Ada.Text_IO;
   begin
      Put ("n =");          Put (N'Image);
      Put ("; Width e =");  Put (Bit_String'Length'Image);
      Put (":");            New_Line;
      Put (Prefix);  Put ("Input B: ");  Put (B);  New_Line;
      Put (Prefix);  Put ("Result : ");  Put (R);  New_Line;
      New_Line;
   end Show;

begin
   Show ("1000", 2);
   Show ("0100", 2);
   Show ("0010", 2);
   Show ("0000", 2);

   Show ("010000000000100000000010000000010000000100000010000010000100010010", 0);
   Show ("010000000000100000000010000000010000000100000010000010000100010010", 1);
   Show ("010000000000100000000010000000010000000100000010000010000100010010", 2);
   Show ("010000000000100000000010000000010000000100000010000010000100010010", 3);
end Set_Right_Bits;
Output:
n = 2; Width e = 4:
        Input B: 1000
        Result : 1110

n = 2; Width e = 4:
        Input B: 0100
        Result : 0111

n = 2; Width e = 4:
        Input B: 0010
        Result : 0011

n = 2; Width e = 4:
        Input B: 0000
        Result : 0000

n = 0; Width e = 66:
        Input B: 010000000000100000000010000000010000000100000010000010000100010010
        Result : 010000000000100000000010000000010000000100000010000010000100010010

n = 1; Width e = 66:
        Input B: 010000000000100000000010000000010000000100000010000010000100010010
        Result : 011000000000110000000011000000011000000110000011000011000110011011

n = 2; Width e = 66:
        Input B: 010000000000100000000010000000010000000100000010000010000100010010
        Result : 011100000000111000000011100000011100000111000011100011100111011111

n = 3; Width e = 66:
        Input B: 010000000000100000000010000000010000000100000010000010000100010010
        Result : 011110000000111100000011110000011110000111100011110011110111111111

Arturo

setBits: function [inp, n][
    e: size inp
    print "n = " ++ (to :string n) ++ "; Width e = " ++ (to :string e) ++ ":"

    result: new ø
    if? or? zero? e n =< 0 -> result: inp
    else [
        result: split inp
        loop 0..e-1 'i [
            if inp\[i] = `1` [
                j: i + 1
                while [and? j =< i+n j < e][
                    result\[j]: `1`
                    j: j + 1
                ]
            ]
        ]
        result: join result
    ]

    print ["\tinput  :" inp]
    print ["\tresult :" result]
]

setBits "1000" 2
setBits "0100" 2
setBits "0010" 2
setBits "0000" 2

setBits "010000000000100000000010000000010000000100000010000010000100010010" 0
setBits "010000000000100000000010000000010000000100000010000010000100010010" 1
setBits "010000000000100000000010000000010000000100000010000010000100010010" 2
setBits "010000000000100000000010000000010000000100000010000010000100010010" 3
Output:
n = 2; Width e = 4:
	input  : 1000 
	result : 1110 
n = 2; Width e = 4:
	input  : 0100 
	result : 0111 
n = 2; Width e = 4:
	input  : 0010 
	result : 0011 
n = 2; Width e = 4:
	input  : 0000 
	result : 0000 
n = 0; Width e = 66:
	input  : 010000000000100000000010000000010000000100000010000010000100010010 
	result : 010000000000100000000010000000010000000100000010000010000100010010 
n = 1; Width e = 66:
	input  : 010000000000100000000010000000010000000100000010000010000100010010 
	result : 011000000000110000000011000000011000000110000011000011000110011011 
n = 2; Width e = 66:
	input  : 010000000000100000000010000000010000000100000010000010000100010010 
	result : 011100000000111000000011100000011100000111000011100011100111011111 
n = 3; Width e = 66:
	input  : 010000000000100000000010000000010000000100000010000010000100010010 
	result : 011110000000111100000011110000011110000111100011110011110111111111

AutoHotkey

setRight(num, n){
    x := StrSplit(num)
    for i, v in StrSplit(num)
        if v
            loop, % n
                x[i+A_Index] := 1
    Loop % n
        x.removeAt(StrLen(num)+1)
    for i, v in x
        res .= v
    return res
}

Examples:

test1 := [
(join,
"1000"
"0100"
"0010"
"0000"
)]

test2 := [
(join,
"010000000000100000000010000000010000000100000010000010000100010010"
"010000000000100000000010000000010000000100000010000010000100010010"
"010000000000100000000010000000010000000100000010000010000100010010"
"010000000000100000000010000000010000000100000010000010000100010010"
)]

for i, num in test1
    result .= "n=2; Width e = 4:`nInput :`t" num "`nResult :`t" setRight(num, 2) "`n`n"

for i, num in test2
    result .= "n=" i-1 "; Width e = 66:`nInput :`t" num "`nResult :`t" setRight(num, i-1) "`n`n"

MsgBox % result
return
Output:
n=2; Width e = 4:
Input :		1000
Result :	1110

n=2; Width e = 4:
Input :		0100
Result :	0111

n=2; Width e = 4:
Input :		0010
Result :	0011

n=2; Width e = 4:
Input :		0000
Result :	0000

n=0; Width e = 66:
Input :		010000000000100000000010000000010000000100000010000010000100010010
Result :	010000000000100000000010000000010000000100000010000010000100010010

n=1; Width e = 66:
Input :		010000000000100000000010000000010000000100000010000010000100010010
Result :	011000000000110000000011000000011000000110000011000011000110011011

n=2; Width e = 66:
Input :		010000000000100000000010000000010000000100000010000010000100010010
Result :	011100000000111000000011100000011100000111000011100011100111011111

n=3; Width e = 66:
Input :		010000000000100000000010000000010000000100000010000010000100010010
Result :	011110000000111100000011110000011110000111100011110011110111111111

BASIC

PureBasic

Translation of: FreeBASIC
Global Dim bits.i(1)

Procedure setRightBits(Array bits(1), e, n)
  Protected.i i, j
  
  If e = 0 Or n <= 0: ProcedureReturn: EndIf
  Dim bits2(e)
  For i = 0 To e - 1 : bits2(i) = bits(i) : Next 
  For i = 0 To e - 2
    If bits(i) = 1
      j = i + 1
      While j <= i + n And j < e
        bits2(j) = 1
        j + 1
      Wend
    EndIf
  Next i
  For i = 0 To e - 1 : bits(i) = bits2(i) : Next
EndProcedure

OpenConsole()
Define.i i, k, ub, n
Define b.s = "010000000000100000000010000000010000000100000010000010000100010010"
Dim tests.s(8, 2)
tests(0, 0) = "1000": tests(0, 1) = "2"
tests(1, 0) = "0100": tests(1, 1) = "2"
tests(2, 0) = "0010": tests(2, 1) = "2"
tests(3, 0) = "0000": tests(3, 1) = "2"
tests(4, 0) = b: tests(4, 1) = "0"
tests(5, 0) = b: tests(5, 1) = "1"
tests(6, 0) = b: tests(6, 1) = "2"
tests(7, 0) = b: tests(7, 1) = "3"

For k = 0 To 7
  ReDim bits(Len(tests(k, 0)))
  For i = 0 To Len(tests(k, 0)) - 1
    bits(i) = Val(Mid(tests(k, 0), i + 1, 1))
  Next i
  ub = ArraySize(bits())
  n = Val(tests(k, 1))
  PrintN("n = " + Str(n) + "; Width e = " + Str(ub))
  Print("    Input b: " + tests(k, 0))
  setRightBits(bits(), ub, n)
  PrintN("")
  Print("     Result: ")
  For i = 0 To ub - 1
    Print(Str(bits(i)));
  Next i
  PrintN(Chr(10))
Next k
PrintN(#CRLF$ + "Press ENTER to exit"): Input()
CloseConsole()
Output:
Same as FreeBASIC entry.

QBasic

Translation of: FreeBASIC
Works with: QBasic version 1.1
Works with: QuickBasic version 4.5
SUB setRightBits (bits(), e, n)
    IF e = 0 OR n <= 0 THEN EXIT SUB
    DIM bits2(1 TO e)
    FOR i = 1 TO e: bits2(i) = bits(i): NEXT
    FOR i = 1 TO e - 1
        IF bits(i) = 1 THEN
            j = i + 1
            WHILE j <= i + n AND j <= e
                bits2(j) = 1
                j = j + 1
            WEND
        END IF
    NEXT i
    FOR i = 1 TO e: bits(i) = bits2(i): NEXT
END SUB

b$ = "010000000000100000000010000000010000000100000010000010000100010010"
DIM tests$(8, 2)
tests$(1, 1) = "1000": tests$(1, 2) = "2"
tests$(2, 1) = "0100": tests$(2, 2) = "2"
tests$(3, 1) = "0010": tests$(3, 2) = "2"
tests$(4, 1) = "0000": tests$(4, 2) = "2"
tests$(5, 1) = b$: tests$(5, 2) = "0"
tests$(6, 1) = b$: tests$(6, 2) = "1"
tests$(7, 1) = b$: tests$(7, 2) = "2"
tests$(8, 1) = b$: tests$(8, 2) = "3"
FOR k = 1 TO 8
    REDIM bits(1 TO LEN(tests$(k, 1)))
    FOR i = 1 TO LEN(tests$(k, 1))
        bits(i) = VAL(MID$(tests$(k, 1), i, 1))
    NEXT i
    ub = UBOUND(bits)
    n = VAL(tests$(k, 2))
    PRINT USING "n = #; Width e = ##:"; n; ub
    PRINT "    Input b: "; tests$(k, 1)
    CALL setRightBits(bits(), ub, n)
    PRINT "     Result:";
    FOR i = 1 TO ub
        PRINT bits(i);
    NEXT i
    PRINT CHR$(10)
NEXT k
END

True BASIC

Translation of: FreeBASIC
SUB setrightbits (bits(),e,n)
    IF e = 0 OR n <= 0 THEN EXIT SUB
    DIM bits2(0)
    MAT REDIM bits2(1 TO e)
    FOR i = 1 TO e
        LET bits2(i) = bits(i)
    NEXT i
    FOR i = 1 TO e-1
        IF bits(i) = 1 THEN
            LET j = i+1
            DO WHILE j <= i+n AND j <= e
                LET bits2(j) = 1
                LET j = j+1
            LOOP
        END IF
    NEXT i
    FOR i = 1 TO e
        LET bits(i) = bits2(i)
    NEXT i
END SUB


LET b$ = "010000000000100000000010000000010000000100000010000010000100010010"
DIM tests$(8, 2)
LET tests$(1, 1) = "1000"
LET tests$(1, 2) = "2"
LET tests$(2, 1) = "0100"
LET tests$(2, 2) = "2"
LET tests$(3, 1) = "0010"
LET tests$(3, 2) = "2"
LET tests$(4, 1) = "0000"
LET tests$(4, 2) = "2"
LET tests$(5, 1) = b$
LET tests$(5, 2) = "0"
LET tests$(6, 1) = b$
LET tests$(6, 2) = "1"
LET tests$(7, 1) = b$
LET tests$(7, 2) = "2"
LET tests$(8, 1) = b$
LET tests$(8, 2) = "3"
FOR k = 1 TO 8
    DIM bits(1)
    MAT REDIM bits(1 TO LEN(tests$(k, 1)))
    FOR i = 1 TO LEN(tests$(k, 1))
        LET bits(i) = VAL((tests$(k, 1))[i:i+1-1])
    NEXT i
    LET ub = UBOUND(bits)
    LET n = VAL(tests$(k, 2))
    PRINT  USING "n = #; Width e = ##:": n, ub
    PRINT "    Input b: "; tests$(k, 1)
    CALL setrightbits (bits(), ub, n)
    PRINT "     Result: ";
    FOR i = 1 TO ub
        PRINT STR$(bits(i));
    NEXT i
    PRINT
    PRINT
NEXT k
END
Output:
Same as FreeBASIC entry.

C++

#include <iostream>
#include <string>

void setRightAdjacent(std::string text, int32_t number) {
	std::cout << "n = " << number << ", Width = " << text.size() << ", Input: " << text << std::endl;

	std::string result = text;
	for ( uint32_t i = 0; i < result.size(); i++ ) {
		if ( text[i] == '1' ) {
			for ( uint32_t j = i + 1; j <= i + number && j < result.size(); j++ ) {
				result[j] = '1';
			}
		}
	}

	std::cout << std::string(16 + std::to_string(text.size()).size(), ' ') << "Result: " + result << "\n" << std::endl;
}

int main() {
	setRightAdjacent("1000", 2);
	setRightAdjacent("0100", 2);
	setRightAdjacent("0010", 2);
	setRightAdjacent("0000", 2);

	std::string test = "010000000000100000000010000000010000000100000010000010000100010010";
	setRightAdjacent(test, 0);
	setRightAdjacent(test, 1);
	setRightAdjacent(test, 2);
	setRightAdjacent(test, 3);
}
Output:
n = 2, Width = 4, Input: 1000
                 Result: 1110

n = 2, Width = 4, Input: 0100
                 Result: 0111

n = 2, Width = 4, Input: 0010
                 Result: 0011

n = 2, Width = 4, Input: 0000
                 Result: 0000

n = 0, Width = 66, Input: 010000000000100000000010000000010000000100000010000010000100010010
                  Result: 010000000000100000000010000000010000000100000010000010000100010010

n = 1, Width = 66, Input: 010000000000100000000010000000010000000100000010000010000100010010
                  Result: 011000000000110000000011000000011000000110000011000011000110011011

n = 2, Width = 66, Input: 010000000000100000000010000000010000000100000010000010000100010010
                  Result: 011100000000111000000011100000011100000111000011100011100111011111

n = 3, Width = 66, Input: 010000000000100000000010000000010000000100000010000010000100010010
                  Result: 011110000000111100000011110000011110000111100011110011110111111111

EasyLang

Translation of: Java
proc adjacent txt$ n . .
   print "n = " & n & ", width = " & len txt$
   print "input:  " & txt$
   txt$[] = strchars txt$
   res$[] = txt$[]
   for i to len res$[]
      if txt$[i] = "1"
         for j = i + 1 to lower (i + n) len res$[]
            res$[j] = "1"
         .
      .
   .
   res$ = strjoin res$[]
   print "result: " & res$
   print ""
.
adjacent "1000" 2
adjacent "0100" 2
adjacent "0010" 2
adjacent "0000" 2
test$ = "010000000000100000000010000000010000000100000010000010000100010010"
adjacent test$ 0
adjacent test$ 1
adjacent test$ 2
adjacent test$ 3

F#

// Set right-adjacent bits. Nigel Galloway: December 21st., 2021
let fN g l=let rec fG n g=[|match n,g with ('0'::t,0)->yield '0'; yield! fG t 0 
                                          |('0'::t,n)->yield '1'; yield! fG t (n-1)
                                          |(_::t,_)  ->yield '1'; yield! fG t l
                                          |_         ->()|]
           fG (g|>List.ofSeq) 0|>System.String

[("1000",2);("0100",2);("0010",2);("0001",2);("0000",2);("010000000000100000000010000000010000000100000010000010000100010010",0);("010000000000100000000010000000010000000100000010000010000100010010",1);("010000000000100000000010000000010000000100000010000010000100010010",2);("010000000000100000000010000000010000000100000010000010000100010010",3)]|>List.iter(fun(n,g)->printfn "%s\n%s" n (fN n g))
Output:
1000
1110
0100
0111
0010
0011
0001
0001
0000
0000
010000000000100000000010000000010000000100000010000010000100010010
010000000000100000000010000000010000000100000010000010000100010010
010000000000100000000010000000010000000100000010000010000100010010
011000000000110000000011000000011000000110000011000011000110011011
010000000000100000000010000000010000000100000010000010000100010010
011100000000111000000011100000011100000111000011100011100111011111
010000000000100000000010000000010000000100000010000010000100010010
011110000000111100000011110000011110000111100011110011110111111111

Factor

Works with: Factor version 0.99 2021-06-02
USING: formatting io kernel math math.parser math.ranges
sequences ;

: set-rab ( n b -- result )
    [0,b] [ neg shift ] with [ bitor ] map-reduce ;

:: show ( n b e -- )
    b e "n = %d; width = %d\n" printf
    n n b set-rab [ >bin e CHAR: 0 pad-head print ] bi@ ;

{ 0b1000 0b0100 0b0010 0b0000 } [ 2 4 show nl ] each
0x10020080404082112 4 <iota> [ 66 show nl ] with each
Output:
n = 2; width = 4
1000
1110

n = 2; width = 4
0100
0111

n = 2; width = 4
0010
0011

n = 2; width = 4
0000
0000

n = 0; width = 66
010000000000100000000010000000010000000100000010000010000100010010
010000000000100000000010000000010000000100000010000010000100010010

n = 1; width = 66
010000000000100000000010000000010000000100000010000010000100010010
011000000000110000000011000000011000000110000011000011000110011011

n = 2; width = 66
010000000000100000000010000000010000000100000010000010000100010010
011100000000111000000011100000011100000111000011100011100111011111

n = 3; width = 66
010000000000100000000010000000010000000100000010000010000100010010
011110000000111100000011110000011110000111100011110011110111111111

FreeBASIC

Translation of: Wren
Sub setRightBits(bits() As Integer, e As Integer, n As Integer)
    Dim As Integer i, j
    
    If e = 0 Or n <= 0 Then Exit Sub
    Dim bits2(1 To e) As Integer
    For i = 1 To e : bits2(i) = bits(i) : Next 
    For i = 1 To e - 1
        If bits(i) = 1 Then
            j = i + 1
            While j <= i + n And j <= e
                bits2(j) = 1
                j += 1
            Wend
        End If
    Next i
    For i = 1 To e : bits(i) = bits2(i) : Next
End Sub

Dim As Integer i, k, ub, n
Dim As String b = "010000000000100000000010000000010000000100000010000010000100010010"
Dim tests(8, 2) As String
tests(1, 1) = "1000": tests(1, 2) = "2"
tests(2, 1) = "0100": tests(2, 2) = "2"
tests(3, 1) = "0010": tests(3, 2) = "2"
tests(4, 1) = "0000": tests(4, 2) = "2"
tests(5, 1) = b: tests(5, 2) = "0"
tests(6, 1) = b: tests(6, 2) = "1"
tests(7, 1) = b: tests(7, 2) = "2"
tests(8, 1) = b: tests(8, 2) = "3"
For k = 1 To 8
    Dim bits(1 To Len(tests(k, 1))) As Integer
    For i = 1 To Len(tests(k, 1))
        bits(i) = Val(Mid(tests(k, 1), i, 1))
    Next i
    ub = Ubound(bits)
    n = Val(tests(k, 2))
    Print Using "n = #; Width e = ##:"; n; ub
    Print "    Input b: "; tests(k, 1)
    setRightBits(bits(), ub, n)
    Print "     Result: ";
    For i = 1 To ub
        Print Str(bits(i));
    Next i
    Print Chr(10)
Next k

Sleep
Output:
Same as Wren entry.

Go

Translation of: Wren
package main

import (
    "fmt"
    "strings"
)

type test struct {
    bs string
    n  int
}

func setRightBits(bits []byte, e, n int) []byte {
    if e == 0 || n <= 0 {
        return bits
    }
    bits2 := make([]byte, len(bits))
    copy(bits2, bits)
    for i := 0; i < e-1; i++ {
        c := bits[i]
        if c == 1 {
            j := i + 1
            for j <= i+n && j < e {
                bits2[j] = 1
                j++
            }
        }
    }
    return bits2
}

func main() {
    b := "010000000000100000000010000000010000000100000010000010000100010010"
    tests := []test{
        test{"1000", 2}, test{"0100", 2}, test{"0010", 2}, test{"0000", 2},
        test{b, 0}, test{b, 1}, test{b, 2}, test{b, 3},
    }
    for _, test := range tests {
        bs := test.bs
        e := len(bs)
        n := test.n
        fmt.Println("n =", n, "\b; Width e =", e, "\b:")
        fmt.Println("    Input b:", bs)
        bits := []byte(bs)
        for i := 0; i < len(bits); i++ {
            bits[i] = bits[i] - '0'
        }
        bits = setRightBits(bits, e, n)
        var sb strings.Builder
        for i := 0; i < len(bits); i++ {
            sb.WriteByte(bits[i] + '0')
        }
        fmt.Println("    Result :", sb.String())
    }
}
Output:
n = 2; Width e = 4:
    Input b: 1000
    Result : 1110
n = 2; Width e = 4:
    Input b: 0100
    Result : 0111
n = 2; Width e = 4:
    Input b: 0010
    Result : 0011
n = 2; Width e = 4:
    Input b: 0000
    Result : 0000
n = 0; Width e = 66:
    Input b: 010000000000100000000010000000010000000100000010000010000100010010
    Result : 010000000000100000000010000000010000000100000010000010000100010010
n = 1; Width e = 66:
    Input b: 010000000000100000000010000000010000000100000010000010000100010010
    Result : 011000000000110000000011000000011000000110000011000011000110011011
n = 2; Width e = 66:
    Input b: 010000000000100000000010000000010000000100000010000010000100010010
    Result : 011100000000111000000011100000011100000111000011100011100111011111
n = 3; Width e = 66:
    Input b: 010000000000100000000010000000010000000100000010000010000100010010
    Result : 011110000000111100000011110000011110000111100011110011110111111111

J

Implementation:

smearright=: {{ +./ (-i.1+x) |.!.0"0 1/ y }}

Here, we use J's bit array structure, so e is implicit in the length of the list.

Task examples:

b=: '1'&= :.(' '-.~":)
task=: {{y,:x&smearright&.:b y}}

   0 task '010000000000100000000010000000010000000100000010000010000100010010'
010000000000100000000010000000010000000100000010000010000100010010
010000000000100000000010000000010000000100000010000010000100010010
   1 task '010000000000100000000010000000010000000100000010000010000100010010'
010000000000100000000010000000010000000100000010000010000100010010
011000000000110000000011000000011000000110000011000011000110011011
   2 task '010000000000100000000010000000010000000100000010000010000100010010'
010000000000100000000010000000010000000100000010000010000100010010
011100000000111000000011100000011100000111000011100011100111011111
   3 task '010000000000100000000010000000010000000100000010000010000100010010'
010000000000100000000010000000010000000100000010000010000100010010
011110000000111100000011110000011110000111100011110011110111111111

b converts from character list to bit list (and its obverse converts back to character list, for easy viewing). task uses b on the right argument to smearright and its obverse on the result, which it provides with the original value (again, for easy viewing).

Java

public final class SetRightAdjacentBits {

	public static void main(String[] aArgs) {
		setRightAdjacent("1000", 2);
		setRightAdjacent("0100", 2);
		setRightAdjacent("0010", 2);
		setRightAdjacent("0000", 2);
		
		String test = "010000000000100000000010000000010000000100000010000010000100010010";
		setRightAdjacent(test, 0);
		setRightAdjacent(test, 1);
		setRightAdjacent(test, 2);
		setRightAdjacent(test, 3);
	}	
	
	private static void setRightAdjacent(String aText, int aNumber) {
		System.out.println("n = " + aNumber + ", Width = " + aText.length() + ", Input: " + aText);	
		
		char[] text = aText.toCharArray();
		char[] result = aText.toCharArray();
	    for ( int i = 0; i < result.length; i++ ) {
	    	if ( text[i] == '1' ) {	    		
	    		for ( int j = i + 1; j <= i + aNumber && j < result.length; j++ ) {
	    			result[j] = '1';
	    		}
	    	}
	    }
	    
	    String spaces = " ".repeat(16 + String.valueOf(aText.length()).length());
		System.out.println(spaces + "Result: " + new String(result) + System.lineSeparator());
	}

}
Output:
n = 2, Width = 4, Input: 1000
                 Result: 1110

n = 2, Width = 4, Input: 0100
                 Result: 0111

n = 2, Width = 4, Input: 0010
                 Result: 0011

n = 2, Width = 4, Input: 0000
                 Result: 0000

n = 0, Width = 66, Input: 010000000000100000000010000000010000000100000010000010000100010010
                  Result: 010000000000100000000010000000010000000100000010000010000100010010

n = 1, Width = 66, Input: 010000000000100000000010000000010000000100000010000010000100010010
                  Result: 011000000000110000000011000000011000000110000011000011000110011011

n = 2, Width = 66, Input: 010000000000100000000010000000010000000100000010000010000100010010
                  Result: 011100000000111000000011100000011100000111000011100011100111011111

n = 3, Width = 66, Input: 010000000000100000000010000000010000000100000010000010000100010010
                  Result: 011110000000111100000011110000011110000111100011110011110111111111

jq

Adapted from Wren

Works with jq, the C implementation of jq

Works with gojq, the Go implementation of jq

With a few small tweaks, the program shown below also works with jaq, the Rust implementation of jq.

# Input should be an array of 0s and 1s
def setRightBits($e; $n):
  if $e == 0 or $n <= 0 then .
  else . as $bits
  | reduce range(0; $e - 1) as $i ({bits2: .};
         $bits[$i] as $c
         | if $c == 1
           then .j = $i + 1
           | until (.j > ($i + $n) or .j >= $e;
                .bits2[.j] = 1
                | .j += 1 )
           end)
  |  .bits2
  end;

def b:
  "010000000000100000000010000000010000000100000010000010000100010010";

def tests:
  [["1000", 2], ["0100", 2], ["0010", 2], ["0000", 2], [b, 0], [b, 1], [b, 2], [b, 3]];

tests[] as [$bits, $n]
| ($bits|length) as $e
| "n = \($n); Width e = \($e):",
  "    Input b: \($bits)",
  ( ($bits | [explode[] | . - 48]) as $b
    | "     Result: \($b | setRightBits($e; $n) | join(""))\n" )
Output:

As shown at Wren.

Julia

function setrightadj(s, n)
    if n < 1
        return s
    else
       arr = reverse(collect(s))
       for (i, c) in enumerate(reverse(s))
           if c == '1'
               arr[max(1, i - n):i] .= '1'
           end
       end
       return String(reverse(arr))
    end
end

@show setrightadj("1000", 2)
@show setrightadj("0100", 2)
@show setrightadj("0010", 2)
@show setrightadj("0000", 2)

@show setrightadj("010000000000100000000010000000010000000100000010000010000100010010", 0)
@show setrightadj("010000000000100000000010000000010000000100000010000010000100010010", 1)
@show setrightadj("010000000000100000000010000000010000000100000010000010000100010010", 2)
@show setrightadj("010000000000100000000010000000010000000100000010000010000100010010", 3)
Output:
setrightadj("1000", 2) = "1110"
setrightadj("0100", 2) = "0111"
setrightadj("0010", 2) = "0011"
setrightadj("0000", 2) = "0000"
setrightadj("010000000000100000000010000000010000000100000010000010000100010010", 0) =
            "010000000000100000000010000000010000000100000010000010000100010010"
setrightadj("010000000000100000000010000000010000000100000010000010000100010010", 1) =
            "011000000000110000000011000000011000000110000011000011000110011011"
setrightadj("010000000000100000000010000000010000000100000010000010000100010010", 2) =
            "011100000000111000000011100000011100000111000011100011100111011111"
setrightadj("010000000000100000000010000000010000000100000010000010000100010010", 3) =
            "011110000000111100000011110000011110000111100011110011110111111111"

Mathematica /Wolfram Language

ClearAll[ShowSetRightBits]
ShowSetRightBits[b_String,n_Integer]:=Module[{poss,chars},
 chars=Characters[b];
 poss=Position[chars,"1"];
 poss=Union[Flatten[Outer[Plus,poss,Range[n]]]];
 {{"In :",b},{"Out:",StringJoin[ReplacePart[chars,(List/@poss)->"1"]]}}//Grid
]
ShowSetRightBits["1000",2]
ShowSetRightBits["0100",2]
ShowSetRightBits["0010",2]
ShowSetRightBits["0000",2]
ShowSetRightBits["010000000000100000000010000000010000000100000010000010000100010010",0]
ShowSetRightBits["010000000000100000000010000000010000000100000010000010000100010010",1]
ShowSetRightBits["010000000000100000000010000000010000000100000010000010000100010010",2]
ShowSetRightBits["010000000000100000000010000000010000000100000010000010000100010010",3]
Output:
In :	1000
Out:	1110

In :	0100
Out:	0111

In :	0010
Out:	0011

In :	0000
Out:	0000

In :	010000000000100000000010000000010000000100000010000010000100010010
Out:	010000000000100000000010000000010000000100000010000010000100010010

In :	010000000000100000000010000000010000000100000010000010000100010010
Out:	011000000000110000000011000000011000000110000011000011000110011011

In :	010000000000100000000010000000010000000100000010000010000100010010
Out:	011100000000111000000011100000011100000111000011100011100111011111

In :	010000000000100000000010000000010000000100000010000010000100010010
Out:	011110000000111100000011110000011110000111100011110011110111111111

Nim

We define a typeBitString similar to a Nim sequence and provide some basic operations; creating, indexing, setting and clearing a bit, iterating, parsing a string to a bit string and displaying a bit string. After that, solving the task is done by a simple procedure.

import std/[bitops, strformat]

type
  # Bit string described by a length and a sequence of bytes.
  BitString = object
    len: Natural
    data: seq[byte]
  # Position composed of a byte number and
  # a bit number in the byte (starting from the left).
  Position = tuple[bytenum, bitnum: int]

func toPosition(n: Natural): Position =
  ## Convert an index to a Position.
  (n div 8, 7 - n mod 8)

proc newBitString*(len: Natural): BitString =
  ## Create a bit string of length "len".
  result.len = len
  result.data = newSeq[byte]((len + 7) div 8)

func checkIndex(bits: BitString; n: Natural) =
  ## Check that the index "n" is not out of bounds.
  if n >= bits.len:
    raise newException(RangeDefect, &"index out of range: {n}.")

proc `[]`*(bits: BitString; n: Natural): bool =
  ## Return the bit at index "n" (as a boolean).
  bits.checkIndex(n)
  let pos = n.toPosition
  result = bits.data[pos.bytenum].testBit(pos.bitnum)

func setBit*(bits: var BitString; n: Natural) =
  ## Set the bit at index "n".
  bits.checkIndex(n)
  let pos = n.toPosition
  bits.data[pos.bytenum].setBit(pos.bitnum)

func clearBit*(bits: var BitString; n: Natural) =
  ## Clear the bit at index "n".
  ## Not used but provided for consistency.
  bits.checkIndex(n)
  let pos = n.toPosition
  bits.data[pos.bytenum].clearBit(pos.bitnum)

iterator items*(bits: BitString): bool =
  ## Yield the successive bits of the bit string.
  for n in 0..<bits.len:
    yield bits[n]

func toBitString*(s: string): BitString =
  ## Convert a string of '0' and '1' to a bit string.
  result = newBitString(s.len)
  for n, val in s:
    if val == '1':
      result.setBit(n)
    elif val != '0':
      raise newException(ValueError, &"invalid bit value: {val}")

func `$`*(bits: BitString): string =
  ## Return the string representation of a bit string.
  const BinDigits = [false: '0', true: '1']
  for bit in bits.items:
    result.add BinDigits[bit]

func setAdjacentBitString(bits: BitString; n: Natural): BitString =
  ## Set the "n" bits adjacent to a set bit.
  result = bits
  for i in 0..<bits.len:
    if bits[i]:
      for j in (i + 1)..(i + n):
        if j < bits.len:
          result.setBit(j)

let n = 2
echo &"n = {n}; Width e = 4\n"
for input in ["1000", "0100", "0010", "0000"]:
  echo &"Input:  {input}"
  echo &"Result: {input.toBitString.setAdjacentBitString(n)}"
  echo()

echo()
const BS66 = "010000000000100000000010000000010000000100000010000010000100010010".toBitString
for n in 0..3:
  echo &"n = {n}; Width e = {BS66.len}\n"
  echo "Input:"
  echo BS66
  echo "Result:"
  echo BS66.setAdjacentBitString(n)
  echo()
Output:
n = 2; Width e = 4

Input:  1000
Result: 1110

Input:  0100
Result: 0111

Input:  0010
Result: 0011

Input:  0000
Result: 0000


n = 0; Width e = 66

Input:
010000000000100000000010000000010000000100000010000010000100010010
Result:
010000000000100000000010000000010000000100000010000010000100010010

n = 1; Width e = 66

Input:
010000000000100000000010000000010000000100000010000010000100010010
Result:
011000000000110000000011000000011000000110000011000011000110011011

n = 2; Width e = 66

Input:
010000000000100000000010000000010000000100000010000010000100010010
Result:
011100000000111000000011100000011100000111000011100011100111011111

n = 3; Width e = 66

Input:
010000000000100000000010000000010000000100000010000010000100010010
Result:
011110000000111100000011110000011110000111100011110011110111111111

Perl

use strict;
use warnings;
use feature 'bitwise';

while( <DATA> ) {
    my ($n, $input) = split;
    my $width = length $input;
    my $result = '';
    $result |.= substr 0 x $_ . $input, 0, $width for 0..$n;
    print "n = $n  width = $width\n input $input\nresult $result\n\n";
}

__DATA__
2 1000
2 0100
2 0011
2 0000
0 010000000000100000000010000000010000000100000010000010000100010010
1 010000000000100000000010000000010000000100000010000010000100010010
2 010000000000100000000010000000010000000100000010000010000100010010
3 010000000000100000000010000000010000000100000010000010000100010010
Output:
n = 2  width = 4
 input 1000
result 1110

n = 2  width = 4
 input 0100
result 0111

n = 2  width = 4
 input 0011
result 0011

n = 2  width = 4
 input 0000
result 0000

n = 0  width = 66
 input 010000000000100000000010000000010000000100000010000010000100010010
result 010000000000100000000010000000010000000100000010000010000100010010

n = 1  width = 66
 input 010000000000100000000010000000010000000100000010000010000100010010
result 011000000000110000000011000000011000000110000011000011000110011011

n = 2  width = 66
 input 010000000000100000000010000000010000000100000010000010000100010010
result 011100000000111000000011100000011100000111000011100011100111011111

n = 3  width = 66
 input 010000000000100000000010000000010000000100000010000010000100010010
result 011110000000111100000011110000011110000111100011110011110111111111

Phix

The basic idea is to create a mask of n 1s on the right and either shift that left or (a copy of) the input right, and use it to determine which bits of the result need to be set, in addition to the originals. The string version actually uses a count of 1s instead of an actual mask, and obviously the odd() and even() functions work just as well on the characters '0' and '1' as they do the numbers/bits 0 and 1. Note that both the string and mpz versions propagate any number of bits in a single pass, in other words explicitly iterating down all the input bits as opposed to implicitly setting all those bits n times, albeit the latter is probably a smidge faster.

string

with javascript_semantics
function str_srb(string input, integer n)
    string res = input
    integer l = length(input),
            m = min(n,l),
            count = sum(sq_eq(input[-m..-1],'1')),
            k = l-n
    for i=l to 1 by -1 do
        integer bit = odd(input[i])
        count += iff(k>0?odd(input[k]):0)-bit
        if count and not bit then res[i] = '1' end if
        k -= 1
    end for
    assert(count=0)
    return res
end function

constant tests = {{"1000",2,2},{"0100",2,2},{"0010",2,2},{"0000",2,2},
                  {"010000000000100000000010000000010000000100000010000010000100010010",0,3}}

for i=1 to length(tests) do
    {string input, integer l, integer m} = tests[i]
    printf(1,"input: %s (width %d)\n",{input,length(input)})
    for n=l to m do
        printf(1,"n = %d: %s\n",{n,str_srb(input,n)})
    end for
end for
Output:
input: 1000 (width 4)
n = 2: 1110
input: 0100 (width 4)
n = 2: 0111
input: 0010 (width 4)
n = 2: 0011
input: 0000 (width 4)
n = 2: 0000
input: 010000000000100000000010000000010000000100000010000010000100010010 (width 66)
n = 0: 010000000000100000000010000000010000000100000010000010000100010010
n = 1: 011000000000110000000011000000011000000110000011000011000110011011
n = 2: 011100000000111000000011100000011100000111000011100011100111011111
n = 3: 011110000000111100000011110000011110000111100011110011110111111111

mpz

identical output

with javascript_semantics
include mpfr.e
function mpz_srb(string input, integer n)
    mpz res = mpz_init("0b"&input),
        tmp = mpz_init_set(res),
        bit = mpz_init(1),
       mask = mpz_init(power(2,n+1)-1),
       rask = mpz_init() -- (mask res)
    for i=1 to length(input) do -- (backward, actually)
        if mpz_even(tmp) then
            mpz_and(rask,tmp,mask)
            if mpz_cmp_si(rask,0)!=0 then
                mpz_add(res,res,bit)
            end if
        end if
        mpz_mul_2exp(bit, bit, 1)    -- aka left shift
        mpz_fdiv_q_2exp(tmp, tmp, 1) -- aka right shift
    end for
    string ret = mpz_get_str(res,2)
    integer lz = length(input)-length(ret)
    if lz then ret = repeat('0',lz)&ret end if
    return ret
end function    
--...
        printf(1,"n = %d: %s\n",{n,mpz_srb(input,n)})

hybrid

Makes it even simpler, again identical output

with javascript_semantics
include mpfr.e
function mpz_srb(string input, integer n)
    string res = input
    mpz tmp = mpz_init("0b"&input),
       mask = mpz_init(power(2,n+1)-1),
       rask = mpz_init() -- (mask res)
    for i=length(input) to 1 by -1 do
        if input[i]='0' then
            mpz_and(rask,tmp,mask)
            if mpz_cmp_si(rask,0)!=0 then
                res[i] = '1'
            end if
        end if
        mpz_fdiv_q_2exp(tmp, tmp, 1) -- aka right shift
    end for
    return res
end function    
--...
        printf(1,"n = %d: %s\n",{n,mpz_srb(input,n)})

Python

Python: Using arbitrary precision ints.

The set_right_adjacent_bits function does all the real work.

from operator import or_
from functools import reduce

def set_right_adjacent_bits(n: int, b: int) -> int:
    return reduce(or_, (b >> x for x in range(n+1)), 0)


if __name__ == "__main__":
    print("SAME n & Width.\n")
    n = 2  # bits to the right of set bits, to also set
    bits = "1000 0100 0010 0000"
    first = True
    for b_str in bits.split():
        b = int(b_str, 2)
        e = len(b_str)
        if first:
            first = False
            print(f"n = {n}; Width e = {e}:\n")
        result = set_right_adjacent_bits(n, b)
        print(f"     Input b: {b:0{e}b}")
        print(f"      Result: {result:0{e}b}\n")
        
    print("SAME Input & Width.\n")
    #bits = "01000010001001010110"
    bits = '01' + '1'.join('0'*x for x in range(10, 0, -1))
    for n in range(4):
        first = True
        for b_str in bits.split():
            b = int(b_str, 2)
            e = len(b_str)
            if first:
                first = False
                print(f"n = {n}; Width e = {e}:\n")
            result = set_right_adjacent_bits(n, b)
            print(f"     Input b: {b:0{e}b}")
            print(f"      Result: {result:0{e}b}\n")
Output:
SAME n & Width.

n = 2; Width e = 4:

     Input b: 1000
      Result: 1110

     Input b: 0100
      Result: 0111

     Input b: 0010
      Result: 0011

     Input b: 0000
      Result: 0000

SAME Input & Width.

n = 0; Width e = 66:

     Input b: 010000000000100000000010000000010000000100000010000010000100010010
      Result: 010000000000100000000010000000010000000100000010000010000100010010

n = 1; Width e = 66:

     Input b: 010000000000100000000010000000010000000100000010000010000100010010
      Result: 011000000000110000000011000000011000000110000011000011000110011011

n = 2; Width e = 66:

     Input b: 010000000000100000000010000000010000000100000010000010000100010010
      Result: 011100000000111000000011100000011100000111000011100011100111011111

n = 3; Width e = 66:

     Input b: 010000000000100000000010000000010000000100000010000010000100010010
      Result: 011110000000111100000011110000011110000111100011110011110111111111

Python: Using a list of 0 or 1 ints.

The set_right_adjacent_bits_list function does all the real work.

from typing import List


def set_right_adjacent_bits_list(n: int, b: List[int]) -> List[int]:
    #   [0]*x is padding b on the left.
    #   zip(*(list1, list2,..)) returns the n'th elements on list1, list2,...
    #   int(any(...)) or's them.
    return [int(any(shifts))
            for shifts in zip(*([0]*x + b for x in range(n+1)))]

def _list2bin(b: List[int]) -> str:
    "List of 0/1 ints to bool string."
    return ''.join(str(x) for x in b)

def _to_list(bits: str) -> List[int]:
    return [int(char) for char in bits]

if __name__ == "__main__":
    print("SAME n & Width.\n")
    n = 2  # bits to the right of set bits, to also set
    bits = "1000 0100 0010 0000"
    first = True
    for b_str in bits.split():
        b = _to_list(b_str)
        e = len(b_str)
        if first:
            first = False
            print(f"n = {n}; Width e = {e}:\n")
        result = set_right_adjacent_bits_list(n, b)
        print(f"     Input b: {_list2bin(b)}")
        print(f"      Result: {_list2bin(result)}\n")
        
    print("SAME Input & Width.\n")
    #bits = "01000010001001010110"
    bits = '01' + '1'.join('0'*x for x in range(10, 0, -1))
    for n in range(4):
        first = True
        for b_str in bits.split():
            b = _to_list(b_str)
            e = len(b_str)
            if first:
                first = False
                print(f"n = {n}; Width e = {e}:\n")
                result = set_right_adjacent_bits_list(n, b)
            print(f"     Input b: {_list2bin(b)}")
            print(f"      Result: {_list2bin(result)}\n")
Output:
SAME n & Width.

n = 2; Width e = 4:

     Input b: 1000
      Result: 1110

     Input b: 0100
      Result: 0111

     Input b: 0010
      Result: 0011

     Input b: 0000
      Result: 0000

SAME Input & Width.

n = 0; Width e = 66:

     Input b: 010000000000100000000010000000010000000100000010000010000100010010
      Result: 010000000000100000000010000000010000000100000010000010000100010010

n = 1; Width e = 66:

     Input b: 010000000000100000000010000000010000000100000010000010000100010010
      Result: 011000000000110000000011000000011000000110000011000011000110011011

n = 2; Width e = 66:

     Input b: 010000000000100000000010000000010000000100000010000010000100010010
      Result: 011100000000111000000011100000011100000111000011100011100111011111

n = 3; Width e = 66:

     Input b: 010000000000100000000010000000010000000100000010000010000100010010
      Result: 011110000000111100000011110000011110000111100011110011110111111111

Quackery

bin sprinkles a little syntactic sugar by extending the compiler to understand binary numbers.

  [ 2 base put
    nextword dup
    $ '' = if
      [ $ '"bin" needs a number after it.'
        message put
        bail ]
    dup $->n iff
      [ nip swap dip join ]
    else
      [ drop
        char " swap join
        $ '" is not binary.'
        join message put
        bail ]
    base release ]           builds bin          ( [ $ --> [ $ )

  [ [] unrot
    times
      [ dup 1 &
        rot join swap
        1 >> ]
    drop
    witheach echo ]              is echobin      ( n n -->     )


  [ dip dup times
      [ 1 >> tuck | swap ]
    drop ]                       is setrightbits (   n --> n   )

    say "n = 2; Width e = 4:"
  cr cr
  ' [ bin 1000 bin 0100
      bin 0010 bin 0001 ]
  witheach
    [ say "Input b: "
      dup 4 echobin cr
      say "Result:  "
      2 setrightbits
      4 echobin cr cr ]
  4 times
    [ say "n = " i^ echo
      say " Width e = 66:" cr
      say "Input b: "
      bin 010000000000100000000010000000010000000100000010000010000100010010
      dup 66 echobin cr
      say "Result:  "
      i^ setrightbits
      66 echobin cr cr ]
Output:
n = 2; Width e = 4:

Input b: 1000
Result:  1110

Input b: 0100
Result:  0111

Input b: 0010
Result:  0011

Input b: 0001
Result:  0001

n = 0 Width e = 66:
Input b: 010000000000100000000010000000010000000100000010000010000100010010
Result:  010000000000100000000010000000010000000100000010000010000100010010

n = 1 Width e = 66:
Input b: 010000000000100000000010000000010000000100000010000010000100010010
Result:  011000000000110000000011000000011000000110000011000011000110011011

n = 2 Width e = 66:
Input b: 010000000000100000000010000000010000000100000010000010000100010010
Result:  011100000000111000000011100000011100000111000011100011100111011111

n = 3 Width e = 66:
Input b: 010000000000100000000010000000010000000100000010000010000100010010
Result:  011110000000111100000011110000011110000111100011110011110111111111

Raku

A left-to-right ordered collection of bits is more commonly referred to as an Integer in Raku.

sub rab (Int $n, Int $b = 1) {
    my $m = $n;
    $m +|= ($n +> $_) for ^ $b+1;
    $m
}

sub lab (Int $n, Int $b = 1) {
    my $m = $n;
    $m +|= ($n +< $_) for ^ $b+1;
    $m
}

say "Powers of 2 ≤ 8, 0 - Right-adjacent-bits: 2";
.&rab(2).base(2).fmt('%04s').say for <8 4 2 1 0>;

# Test with a few integers.
for 8,4, 18455760086304825618,5, 5444684034376312377319904082902529876242,15 -> $integer, $bits {

    say "\nInteger: $integer - Right-adjacent-bits: up to $bits";

    .say for ^$bits .map: -> $b { $integer.&rab($b).base: 2 };

    say "\nInteger: $integer - Left-adjacent-bits: up to $bits";

    .say for ^$bits .map: -> $b { $integer.&lab($b).fmt("%{0~$bits+$integer.msb}b") };

}
Output:
Powers of 2 ≤ 8, 0 - Right-adjacent-bits: 2
1110
0111
0011
0001
0000

Integer: 8 - Right-adjacent-bits: up to 4
1000
1100
1110
1111

Integer: 8 - Left-adjacent-bits: up to 4
0001000
0011000
0111000
1111000

Integer: 18455760086304825618 - Right-adjacent-bits: up to 5
10000000000100000000010000000010000000100000010000010000100010010
11000000000110000000011000000011000000110000011000011000110011011
11100000000111000000011100000011100000111000011100011100111011111
11110000000111100000011110000011110000111100011110011110111111111
11111000000111110000011111000011111000111110011111011111111111111

Integer: 18455760086304825618 - Left-adjacent-bits: up to 5
000010000000000100000000010000000010000000100000010000010000100010010
000110000000001100000000110000000110000001100000110000110001100110110
001110000000011100000001110000001110000011100001110001110011101111110
011110000000111100000011110000011110000111100011110011110111111111110
111110000001111100000111110000111110001111100111110111111111111111110

Integer: 5444684034376312377319904082902529876242 - Right-adjacent-bits: up to 15
1000000000000001000000000000010000000000000100000000000010000000000010000000000100000000010000000010000000100000010000010000100010010
1100000000000001100000000000011000000000000110000000000011000000000011000000000110000000011000000011000000110000011000011000110011011
1110000000000001110000000000011100000000000111000000000011100000000011100000000111000000011100000011100000111000011100011100111011111
1111000000000001111000000000011110000000000111100000000011110000000011110000000111100000011110000011110000111100011110011110111111111
1111100000000001111100000000011111000000000111110000000011111000000011111000000111110000011111000011111000111110011111011111111111111
1111110000000001111110000000011111100000000111111000000011111100000011111100000111111000011111100011111100111111011111111111111111111
1111111000000001111111000000011111110000000111111100000011111110000011111110000111111100011111110011111110111111111111111111111111111
1111111100000001111111100000011111111000000111111110000011111111000011111111000111111110011111111011111111111111111111111111111111111
1111111110000001111111110000011111111100000111111111000011111111100011111111100111111111011111111111111111111111111111111111111111111
1111111111000001111111111000011111111110000111111111100011111111110011111111110111111111111111111111111111111111111111111111111111111
1111111111100001111111111100011111111111000111111111110011111111111011111111111111111111111111111111111111111111111111111111111111111
1111111111110001111111111110011111111111100111111111111011111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111001111111111111011111111111110111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

Integer: 5444684034376312377319904082902529876242 - Left-adjacent-bits: up to 15
000000000000001000000000000001000000000000010000000000000100000000000010000000000010000000000100000000010000000010000000100000010000010000100010010
000000000000011000000000000011000000000000110000000000001100000000000110000000000110000000001100000000110000000110000001100000110000110001100110110
000000000000111000000000000111000000000001110000000000011100000000001110000000001110000000011100000001110000001110000011100001110001110011101111110
000000000001111000000000001111000000000011110000000000111100000000011110000000011110000000111100000011110000011110000111100011110011110111111111110
000000000011111000000000011111000000000111110000000001111100000000111110000000111110000001111100000111110000111110001111100111110111111111111111110
000000000111111000000000111111000000001111110000000011111100000001111110000001111110000011111100001111110001111110011111101111111111111111111111110
000000001111111000000001111111000000011111110000000111111100000011111110000011111110000111111100011111110011111110111111111111111111111111111111110
000000011111111000000011111111000000111111110000001111111100000111111110000111111110001111111100111111110111111111111111111111111111111111111111110
000000111111111000000111111111000001111111110000011111111100001111111110001111111110011111111101111111111111111111111111111111111111111111111111110
000001111111111000001111111111000011111111110000111111111100011111111110011111111110111111111111111111111111111111111111111111111111111111111111110
000011111111111000011111111111000111111111110001111111111100111111111110111111111111111111111111111111111111111111111111111111111111111111111111110
000111111111111000111111111111001111111111110011111111111101111111111111111111111111111111111111111111111111111111111111111111111111111111111111110
001111111111111001111111111111011111111111110111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110
011111111111111011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110

RPL

With the requirement of e value going up to 1000, the collection of bits must be provided as a string.

Using e as a variable name is generally not recommended, as it can be confused with the base of natural logarithms. Nevertheless, we use it for clarity of task implementation.

Works with: HP version 48G
« OVER SIZE
  "" 1 4 PICK START "1" + NEXT
  → n e ones 
  « IF n THEN
       e 1 - 1 FOR j
          IF DUP j DUP SUB "1" == THEN
             j 1 + ones REPL
             1 e SUB
          END
       -1 STEP
    END
» » 'SETRIGHT' STO     @ ( "bits" n → "bits" )

« { "1000" "0100" "0010" "0000" } 1 « 2 SETRIGHT » DOLIST
  « "010000000000100000000010000000010000000100000010000010000100010010" j SETRIGHT » 'j' 0 3 1 SEQ
» 'TASK' STO
Output:
2: { "1110" "0111" "0011" "0000" } 
1: { "010000000000100000000010000000010000000100000010000010000100010010" 
     "011000000000110000000011000000011000000110000011000011000110011011" 
     "011100000000111000000011100000011100000111000011100011100111011111" 
     "011110000000111100000011110000011110000111100011110011110111111111" } 

Rust

use std::ops::{BitOrAssign, Shr};

fn set_right_adjacent_bits<E: Clone + BitOrAssign + Shr<usize, Output = E>>(b: &mut E, n: usize) {
    for _ in 1..=n {
        *b |= b.clone() >> 1;
    }
}

macro_rules! test {
    ( $t:ident, $n:expr, $e:expr, $g:ty, $b:expr, $c:expr$(,)? ) => {
        #[test]
        fn $t() {
            let n: usize = $n;
            let e: usize = $e;
            let b_original: $g = $b;
            let mut b = b_original.clone();
            set_right_adjacent_bits(&mut b, n);
            println!("n = {n}; e = {e}:");
            println!("          b = {:0>e$b}", b_original);
            println!("     output = {:0>e$b}", b);
            assert_eq!(b, $c);
        }
    };
}

test!(test_a1, 2, 4, u8, 0b1000, 0b1110);
test!(test_a2, 2, 4, u8, 0b0100, 0b0111);
test!(test_a3, 2, 4, u8, 0b0010, 0b0011);
test!(test_a4, 2, 4, u8, 0b0000, 0b0000);
test!(
    test_b1, 0, 66, u128,
    0b010000000000100000000010000000010000000100000010000010000100010010,
    0b010000000000100000000010000000010000000100000010000010000100010010,
);
test!(
    test_b2, 1, 66, u128,
    0b010000000000100000000010000000010000000100000010000010000100010010,
    0b011000000000110000000011000000011000000110000011000011000110011011,
);
test!(
    test_b3, 2, 66, u128,
    0b010000000000100000000010000000010000000100000010000010000100010010,
    0b011100000000111000000011100000011100000111000011100011100111011111,
);
test!(
    test_b4, 3, 66, u128,
    0b010000000000100000000010000000010000000100000010000010000100010010,
    0b011110000000111100000011110000011110000111100011110011110111111111,
);
Output:
n = 2; e = 4:
          b = 1000
     output = 1110
n = 2; e = 4:
          b = 0100
     output = 0111
n = 2; e = 4:
          b = 0010
     output = 0011
n = 2; e = 4:
          b = 0000
     output = 0000
n = 0; e = 66:
          b = 010000000000100000000010000000010000000100000010000010000100010010
     output = 010000000000100000000010000000010000000100000010000010000100010010
n = 1; e = 66:
          b = 010000000000100000000010000000010000000100000010000010000100010010
     output = 011000000000110000000011000000011000000110000011000011000110011011
n = 2; e = 66:
          b = 010000000000100000000010000000010000000100000010000010000100010010
     output = 011100000000111000000011100000011100000111000011100011100111011111
n = 3; e = 66:
          b = 010000000000100000000010000000010000000100000010000010000100010010
     output = 011110000000111100000011110000011110000111100011110011110111111111

Wren

Using a list of 0's and 1's so we don't have to resort to BigInt.

var setRightBits = Fn.new { |bits, e, n|
    if (e == 0 || n <= 0) return bits
    var bits2 = bits.toList
    for (i in 0...e - 1) {
        var c = bits[i]
        if (c == 1) {
            var j = i + 1
            while (j <= i + n && j < e) {
                bits2[j] = 1
                j = j + 1
            }
        }
    }
    return bits2
}

var b = "010000000000100000000010000000010000000100000010000010000100010010"
var tests = [["1000", 2], ["0100", 2], ["0010", 2], ["0000", 2], [b, 0], [b, 1], [b, 2], [b, 3]]
for (test in tests) {
    var bits = test[0]
    var e = bits.count
    var n = test[1]
    System.print("n = %(n); Width e = %(e):")
    System.print("    Input b: %(bits)")
    bits = bits.map { |c| c.bytes[0] - 48 }.toList
    bits = setRightBits.call(bits, e, n)
    System.print("     Result: %(bits.join())\n")
}
Output:
n = 2; Width e = 4:
    Input b: 1000
     Result: 1110

n = 2; Width e = 4:
    Input b: 0100
     Result: 0111

n = 2; Width e = 4:
    Input b: 0010
     Result: 0011

n = 2; Width e = 4:
    Input b: 0000
     Result: 0000

n = 0; Width e = 66:
    Input b: 010000000000100000000010000000010000000100000010000010000100010010
     Result: 010000000000100000000010000000010000000100000010000010000100010010

n = 1; Width e = 66:
    Input b: 010000000000100000000010000000010000000100000010000010000100010010
     Result: 011000000000110000000011000000011000000110000011000011000110011011

n = 2; Width e = 66:
    Input b: 010000000000100000000010000000010000000100000010000010000100010010
     Result: 011100000000111000000011100000011100000111000011100011100111011111

n = 3; Width e = 66:
    Input b: 010000000000100000000010000000010000000100000010000010000100010010
     Result: 011110000000111100000011110000011110000111100011110011110111111111