Orbital elements

Revision as of 11:31, 13 July 2022 by Rdm (talk | contribs) (→‎{{header|J}}: put that comma where it was originally supposed to be)

When neglecting the influence of other objects, two celestial bodies orbit one another along a conic trajectory. In the orbital plane, the radial equation is thus:

Orbital elements is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

  r = L/(1 + e cos(angle))

L , e and angle are respectively called semi-latus rectum, eccentricity and true anomaly. The eccentricity and the true anomaly are two of the six so-called orbital elements often used to specify an orbit and the position of a point on this orbit.

The four other parameters are the semi-major axis, the longitude of the ascending node, the inclination and the argument of periapsis. An other parameter, called the gravitational parameter, along with dynamical considerations described further, also allows for the determination of the speed of the orbiting object.

The semi-major axis is half the distance between perihelion and aphelion. It is often noted a, and it's not too hard to see how it's related to the semi-latus-rectum:

  a = L/(1 - e2)

The longitude of the ascending node, the inclination and the argument of the periapsis specify the orientation of the orbiting plane with respect to a reference plane defined with three arbitrarily chosen reference distant stars.

The gravitational parameter is the coefficent GM in Newton's gravitational force. It is sometimes noted µ and will be chosen as one here for the sake of simplicity:

  µ = GM = 1

As mentioned, dynamical considerations allow for the determination of the speed. They result in the so-called vis-viva equation:

 v2 = GM(2/r - 1/a)

This only gives the magnitude of the speed. The direction is easily determined since it's tangent to the conic.

Those parameters allow for the determination of both the position and the speed of the orbiting object in cartesian coordinates, those two vectors constituting the so-called orbital state vectors.

Task

Show how to perform this conversion from orbital elements to orbital state vectors in your programming language.

TODO: pick an example from a reputable source, and bring the algorithm description onto this site. (Restating those pages in concise a fashion comprehensible to the coders and readers of this site will be a good exercise.)

11l

Translation of: Python

<lang 11l>F mulAdd(v1, x1, v2, x2)

  R v1 * x1 + v2 * x2

F rotate(i, j, alpha)

  R [mulAdd(i, cos(alpha), j, sin(alpha)), mulAdd(i, -sin(alpha), j, cos(alpha))]

F orbitalStateVectors(semimajorAxis, eccentricity, inclination, longitudeOfAscendingNode, argumentOfPeriapsis, trueAnomaly)

  V i = (1.0, 0.0, 0.0)
  V j = (0.0, 1.0, 0.0)
  V k = (0.0, 0.0, 1.0)
  V p = rotate(i, j, longitudeOfAscendingNode)
  i = p[0]
  j = p[1]
  p = rotate(j, k, inclination)
  j = p[0]
  p = rotate(i, j, argumentOfPeriapsis)
  i = p[0]
  j = p[1]
  V l = I (eccentricity == 1.0) {2.0} E 1.0 - eccentricity * eccentricity
  l *= semimajorAxis
  V c = cos(trueAnomaly)
  V s = sin(trueAnomaly)
  V r = 1 / (1.0 + eccentricity * c)
  V rprime = s * r * r / l
  V position = mulAdd(i, c, j, s) * r
  V speed = mulAdd(i, rprime * c - r * s, j, rprime * s + r * c)
  speed = normalize(speed) * sqrt(2.0 / r - 1.0 / semimajorAxis)
  R [position, speed]

V ps = orbitalStateVectors(1.0, 0.1, 0.0, 355.0 / (113.0 * 6.0), 0.0, 0.0) print(‘Position : ’ps[0]) print(‘Speed  : ’ps[1])</lang>

Output:
Position : (0.787295801, 0.45454549, 0)
Speed    : (-0.5477226, 0.948683274, 0)

Ada

Translation of: Kotlin

<lang Ada>with Ada.Text_IO; use Ada.Text_IO; with Ada.Numerics.Generic_Real_Arrays; with Ada.Numerics.Generic_Elementary_Functions;

procedure Orbit is

  type Real is new Long_Float;
  package Real_Arrays is
     new Ada.Numerics.Generic_Real_Arrays (Real => Real);
  use Real_Arrays;
  package Math is
     new Ada.Numerics.Generic_Elementary_Functions (Float_Type => Real);
  subtype Vector_3D is Real_Vector (1 .. 3);
  procedure Put (V : Vector_3D) is
     package Real_IO is
       new Ada.Text_Io.Float_IO (Num => Real);
  begin
     Put ("(");
     Real_IO.Put (V (1), Exp => 0, Aft => 6);  Put (",");
     Real_IO.Put (V (2), Exp => 0, Aft => 6);  Put (",");
     Real_IO.Put (V (3), Exp => 0, Aft => 6);  Put (")");
  end Put;
  function Mul_Add (V1 : Vector_3D;
                    X1 : Real;
                    V2 : Vector_3D;
                    X2 : Real)
                   return Vector_3D is
  begin
     return V1 * X1 + V2 * X2;
  end Mul_Add;
  procedure Rotate (R1    : out Vector_3D;
                    R2    : out Vector_3D;
                    I     :     Vector_3D;
                    J     :     Vector_3D;
                    Alpha :     Real) is
  begin
     R1 := Mul_Add (I, +Math.Cos (Alpha), J, Math.Sin (Alpha));
     R2 := Mul_Add (I, -Math.Sin (Alpha), J, Math.Cos (Alpha));
  end Rotate;
  type Orbital_State_Vectors is record
     Position : Vector_3D;
     Speed    : Vector_3D;
  end record;
  function Calculate_Orbital_State
     (Semimajor_Axis             : Real;
     Eccentricity                : Real;
     Inclination                 : Real;
     Longitude_Of_Ascending_Node : Real;
     Argument_Of_Periapsis       : Real;
     True_Anomaly                : Real)
    return Orbital_State_Vectors
  is
     I : Vector_3D := (1.0, 0.0, 0.0);
     J : Vector_3D := (0.0, 1.0, 0.0);
     K : constant Vector_3D := (0.0, 0.0, 1.0);
     P_R1, P_R2 : Vector_3D;
     State    : Orbital_State_Vectors;
     Position : Vector_3D renames State.Position;
     Speed    : Vector_3D renames State.Speed;
  begin
     Rotate (P_R1, P_R2, I, J, Longitude_Of_Ascending_Node);
     I := P_R1; J := P_R2;
     Rotate (P_R1, P_R2, J, K, Inclination);
     J := P_R1;
     Rotate (P_R1, P_R2, I, J, Argument_Of_Periapsis);
     I := P_R1; J := P_R2;
     declare
        L : constant Real :=
          Semimajor_Axis * (if (Eccentricity = 1.0) then 2.0
          else (1.0 - Eccentricity * Eccentricity));
        C : constant Real := Math.Cos (True_Anomaly);
        S : constant Real := Math.Sin (True_Anomaly);
        R : constant Real := L / (1.0 + Eccentricity * C);
        Rprime   : constant Real      := S * R * R / L;
     begin
        Position := Mul_Add (I, C, J, S) * R;
        Speed    := Mul_Add (I, Rprime * C - R * S,
                             J, Rprime * S + R * C);
        Speed := Speed / abs (Speed);
        Speed := Speed * Math.Sqrt (2.0 / R - 1.0 / Semimajor_Axis);
     end;
     return State;
  end Calculate_Orbital_State;
  Longitude : constant Real := 355.000 / (113.000 * 6.000);
  State     : constant Orbital_State_Vectors :=
    Calculate_Orbital_State
      (Semimajor_Axis              => 1.000,
       Eccentricity                => 0.100,
       Inclination                 => 0.000,
       Longitude_Of_Ascending_Node => Longitude,
       Argument_Of_Periapsis       => 0.000,
       True_Anomaly                => 0.000);

begin

  Put ("Position : "); Put (State.Position); New_Line;
  Put ("Speed    : "); Put (State.Speed);    New_Line;

end Orbit;</lang>

Output:
Position : ( 0.779423, 0.450000, 0.000000)
Speed    : (-0.552771, 0.957427, 0.000000)

ALGOL W

Translation of: C

(which is a translation of Kotlin which is a translation of ...).

<lang algolw>begin

   % compute orbital elements                                               %
   % 3-element vector                                                       %
   record Vector( real x, y, z );
   % prints the components of the vector v                                  %
   procedure writeOnVector( reference(Vector) value v ) ;
       writeon( r_format := "A", r_w := 10, r_d := 6, s_w := 0, "( ", x(v), ", ", y(v), ", ", z(v), " )" );
   % returns a vector whose elements are the sum of the elements of v & w   %
   reference(Vector) procedure add( reference(Vector) value v, w ) ;
       Vector( x(v) + x(w), y(v) + y(w), z(v) + z(w) );
   % returns a vector whose elements are those of v multiplied by m         %
   reference(Vector) procedure mul( reference(Vector) value v
                                  ; real              value m
                                  ) ;
       Vector( x(v) * m, y(v) * m, z(v) * m );
   % returns a vector whose elements are those of v divided by d            %
   reference(Vector) procedure divVR( reference(Vector) value v
                                    ; real              value d
                                    ) ;
       mul( v, 1 / d );
   % returns the norm of the vector v                                       %
   real procedure vabs( reference(Vector) value v ) ;
       sqrt( ( x(v) * x(v) ) + y(v) * y(v) + z(v) * z(v) );
   % returns the sum of v1 * x1 and v2 * x2                                 %
   reference(Vector) procedure mulAdd( reference(Vector) value v1, v2
                                     ; real              value x1, x2
                                     ) ;
       add( mul( v1, x1 ), mul( v2, x2 ) );
   % sets ps to rotations of i and j by alpha                               %
   procedure rotate( reference(Vector) value i, j
                   ; real              value alpha
                   ; reference(Vector) array ps ( * )
                   ) ;
   begin
       ps( 0 ) := mulAdd( i, j,  cos( alpha ), sin( alpha ) );
       ps( 1 ) := mulAdd( i, j, -sin( alpha ), cos( alpha ) )
   end rotate ;
   % sets position and speed vectors from the supplied elements             %
   procedure orbitalStateVectors( real              value  semimajorAxis
                                ,                          eccentricity
                                ,                          inclination
                                ,                          longitudeOfAscendingNode
                                ,                          argumentOfPeriapsis
                                ,                          trueAnomaly
                                ; reference(Vector) result position
                                ,                          speed
                                ) ;
   begin
       reference(Vector) i, j, k;
       reference(Vector) array qs ( 0 :: 1 );
       real              L, c, s, r, rprime;
       i        := Vector( 1.0, 0.0, 0.0 );
       j        := Vector( 0.0, 1.0, 0.0 );
       k        := Vector( 0.0, 0.0, 1.0 );
       L        := 2.0;
       rotate( i, j, longitudeOfAscendingNode, qs );
       i        := qs( 0 );
       j        := qs( 1 );
       rotate( j, k, inclination, qs );
       j        := qs( 0 );
       rotate( i, j, argumentOfPeriapsis, qs );
       i        := qs( 0 );
       j        := qs( 1 );
       if eccentricity not = 1 then L := 1 - eccentricity * eccentricity;
       l        := L * semimajorAxis;
       c        := cos( trueAnomaly );
       s        := sin( trueAnomaly );
       r        := L / ( 1.0 + eccentricity * c );
       rprime   := s * r * r / L;
       position := mulAdd( i, j, c, s );
       position := mul( position, r ) ;
       speed    := mulAdd( i, j, rprime * c - r * s, rprime * s + r * c );
       speed    := divVR( speed, vabs( speed ) );
       speed    := mul( speed, sqrt( 2 / r - 1 / semimajorAxis ) );
   end orbitalStateVectors ;
   % test the orbitalStateVectors routine                                   %
   begin
       real longitude;
       reference(Vector) position, speed;
       longitude := 355.0 / ( 113.0 * 6.0 );
       orbitalStateVectors( 1.0, 0.1, 0.0, longitude, 0.0, 0.0, position, speed );
       write( "Position : " ); writeOnVector( position );
       write( "Speed    : " ); writeOnVector( speed    )
   end

end.</lang>

Output:
Position : (   0.779422,   0.450000,   0.000000 )
Speed    : (  -0.552770,   0.957427,   0.000000 )

C

Translation of: Kotlin

<lang c>#include <stdio.h>

  1. include <math.h>

typedef struct {

   double x, y, z;

} vector;

vector add(vector v, vector w) {

   return (vector){v.x + w.x, v.y + w.y, v.z + w.z};

}

vector mul(vector v, double m) {

   return (vector){v.x * m, v.y * m, v.z * m};

}

vector div(vector v, double d) {

   return mul(v, 1.0 / d);

}

double vabs(vector v) {

   return sqrt(v.x * v.x + v.y * v.y + v.z * v.z);

}

vector mulAdd(vector v1, vector v2, double x1, double x2) {

   return add(mul(v1, x1), mul(v2, x2)); 

}

void vecAsStr(char buffer[], vector v) {

   sprintf(buffer, "(%.17g, %.17g, %.17g)", v.x, v.y, v.z);

}

void rotate(vector i, vector j, double alpha, vector ps[]) {

   ps[0] = mulAdd(i, j, cos(alpha), sin(alpha));
   ps[1] = mulAdd(i, j, -sin(alpha), cos(alpha));

}

void orbitalStateVectors(

   double semimajorAxis, double eccentricity, double inclination,
   double longitudeOfAscendingNode, double argumentOfPeriapsis,
   double trueAnomaly, vector ps[]) {
   vector i = {1.0, 0.0, 0.0};
   vector j = {0.0, 1.0, 0.0};
   vector k = {0.0, 0.0, 1.0};
   double l = 2.0, c, s, r, rprime;
   vector qs[2];
   rotate(i, j, longitudeOfAscendingNode, qs);
   i = qs[0]; j = qs[1];
   rotate(j, k, inclination, qs);
   j = qs[0];
   rotate(i, j, argumentOfPeriapsis, qs);
   i = qs[0]; j = qs[1];
   if (eccentricity != 1.0)  l = 1.0 - eccentricity * eccentricity;
   l *= semimajorAxis;
   c = cos(trueAnomaly);
   s = sin(trueAnomaly);
   r = l / (1.0 + eccentricity * c);
   rprime = s * r * r / l;
   ps[0] = mulAdd(i, j, c, s);
   ps[0] = mul(ps[0], r);
   ps[1] = mulAdd(i, j, rprime * c - r * s, rprime * s + r * c);
   ps[1] = div(ps[1], vabs(ps[1]));
   ps[1] = mul(ps[1], sqrt(2.0 / r - 1.0 / semimajorAxis));

}

int main() {

   double longitude = 355.0 / (113.0 * 6.0);
   vector ps[2];
   char buffer[80];
   orbitalStateVectors(1.0, 0.1, 0.0, longitude, 0.0, 0.0, ps);
   vecAsStr(buffer, ps[0]);
   printf("Position : %s\n", buffer);
   vecAsStr(buffer, ps[1]);
   printf("Speed    : %s\n", buffer);
   return 0;

}</lang>

Output:
Position : (0.77942284339867973, 0.45000003465368416, 0)
Speed    : (-0.55277084096044382, 0.95742708317976177, 0)

C#

Translation of: D

<lang csharp>using System;

namespace OrbitalElements {

   class Vector {
       public Vector(double x, double y, double z) {
           X = x;
           Y = y;
           Z = z;
       }
       public double X { get; set; }
       public double Y { get; set; }
       public double Z { get; set; }
       public double Abs() {
           return Math.Sqrt(X * X + Y * Y + Z * Z);
       }
       public static Vector operator +(Vector lhs, Vector rhs) {
           return new Vector(lhs.X + rhs.X, lhs.Y + rhs.Y, lhs.Z + rhs.Z);
       }
       public static Vector operator *(Vector self, double m) {
           return new Vector(self.X * m, self.Y * m, self.Z * m);
       }
       public static Vector operator /(Vector self, double m) {
           return new Vector(self.X / m, self.Y / m, self.Z / m);
       }
       public override string ToString() {
           return string.Format("({0}, {1}, {2})", X, Y, Z);
       }
   }
   class Program {
       static Tuple<Vector, Vector> OrbitalStateVectors(
           double semiMajorAxis,
           double eccentricity,
           double inclination,
           double longitudeOfAscendingNode,
           double argumentOfPeriapsis,
           double trueAnomaly
       ) {
           Vector mulAdd(Vector v1, double x1, Vector v2, double x2) {
               return v1 * x1 + v2 * x2;
           }
           Tuple<Vector, Vector> rotate(Vector iv, Vector jv, double alpha) {
               return new Tuple<Vector, Vector>(
                   mulAdd(iv, +Math.Cos(alpha), jv, Math.Sin(alpha)),
                   mulAdd(iv, -Math.Sin(alpha), jv, Math.Cos(alpha))
               );
           }
           var i = new Vector(1, 0, 0);
           var j = new Vector(0, 1, 0);
           var k = new Vector(0, 0, 1);
           var p = rotate(i, j, longitudeOfAscendingNode);
           i = p.Item1; j = p.Item2;
           p = rotate(j, k, inclination);
           j = p.Item1;
           p = rotate(i, j, argumentOfPeriapsis);
           i = p.Item1; j = p.Item2;
           var l = semiMajorAxis * ((eccentricity == 1.0) ? 2.0 : (1.0 - eccentricity * eccentricity));
           var c = Math.Cos(trueAnomaly);
           var s = Math.Sin(trueAnomaly);
           var r = l / (1.0 + eccentricity * c);
           var rprime = s * r * r / l;
           var position = mulAdd(i, c, j, s) * r;
           var speed = mulAdd(i, rprime * c - r * s, j, rprime * s + r * c);
           speed /= speed.Abs();
           speed *= Math.Sqrt(2.0 / r - 1.0 / semiMajorAxis);
           return new Tuple<Vector, Vector>(position, speed);
       }
       static void Main(string[] args) {
           var res = OrbitalStateVectors(1.0, 0.1, 0.0, 355.0 / (113.0 * 6.0), 0.0, 0.0);
           Console.WriteLine("Position : {0}", res.Item1);
           Console.WriteLine("Speed    : {0}", res.Item2);
       }
   }

}</lang>

Output:
Position : (0.77942284339868, 0.450000034653684, 0)
Speed    : (-0.552770840960444, 0.957427083179762, 0)

C++

Translation of: C#

<lang cpp>#include <iostream>

  1. include <tuple>

class Vector { private:

   double _x, _y, _z;

public:

   Vector(double x, double y, double z) : _x(x), _y(y), _z(z) {
       // empty
   }
   double getX() {
       return _x;
   }
   double getY() {
       return _y;
   }
   double getZ() {
       return _z;
   }
   double abs() {
       return sqrt(_x * _x + _y * _y + _z * _z);
   }
   Vector operator+(const Vector& rhs) const {
       return Vector(_x + rhs._x, _y + rhs._y, _z + rhs._z);
   }
   Vector operator*(double m) const {
       return Vector(_x * m, _y * m, _z * m);
   }
   Vector operator/(double m) const {
       return Vector(_x / m, _y / m, _z / m);
   }
   friend std::ostream& operator<<(std::ostream& os, const Vector& v);

};

std::ostream& operator<<(std::ostream& os, const Vector& v) {

   return os << '(' << v._x << ", " << v._y << ", " << v._z << ')';

}

std::pair<Vector, Vector> orbitalStateVectors(

   double semiMajorAxis,
   double eccentricity,
   double inclination,
   double longitudeOfAscendingNode,
   double argumentOfPeriapsis,
   double trueAnomaly

) {

   auto mulAdd = [](const Vector& v1, double x1, const Vector& v2, double x2) {
       return v1 * x1 + v2 * x2;
   };
   auto rotate = [mulAdd](const Vector& iv, const Vector& jv, double alpha) {
       return std::make_pair(
           mulAdd(iv, +cos(alpha), jv, sin(alpha)),
           mulAdd(iv, -sin(alpha), jv, cos(alpha))
       );
   };
   Vector i(1, 0, 0);
   Vector j(0, 1, 0);
   Vector k(0, 0, 1);
   auto p = rotate(i, j, longitudeOfAscendingNode);
   i = p.first; j = p.second;
   p = rotate(j, k, inclination);
   j = p.first;
   p = rotate(i, j, argumentOfPeriapsis);
   i = p.first; j = p.second;
   auto l = semiMajorAxis * ((eccentricity == 1.0) ? 2.0 : (1.0 - eccentricity * eccentricity));
   auto c = cos(trueAnomaly);
   auto s = sin(trueAnomaly);
   auto r = l / (1.0 + eccentricity * c);;
   auto rprime = s * r * r / l;
   auto position = mulAdd(i, c, j, s) * r;
   auto speed = mulAdd(i, rprime * c - r * s, j, rprime * s + r * c);
   speed = speed / speed.abs();
   speed = speed * sqrt(2.0 / r - 1.0 / semiMajorAxis);
   return std::make_pair(position, speed);

}

int main() {

   auto res = orbitalStateVectors(1.0, 0.1, 0.0, 355.0 / (113.0 * 6.0), 0.0, 0.0);
   std::cout << "Position : " << res.first << '\n';
   std::cout << "Speed    : " << res.second << '\n';
   return 0;

}</lang>

Output:
Position : (0.779423, 0.45, 0)
Speed    : (-0.552771, 0.957427, 0)

D

Translation of: Kotlin

<lang D>import std.math; import std.stdio; import std.typecons;

struct Vector {

   double x, y, z;
   auto opBinary(string op : "+")(Vector rhs) {
       return Vector(x+rhs.x, y+rhs.y, z+rhs.z);
   }
   auto opBinary(string op : "*")(double m) {
       return Vector(x*m, y*m, z*m);
   }
   auto opOpAssign(string op : "*")(double m) {
       this.x *= m;
       this.y *= m;
       this.z *= m;
       return this;
   }
   auto opBinary(string op : "/")(double d) {
       return Vector(x/d, y/d, z/d);
   }
   auto opOpAssign(string op : "/")(double m) {
       this.x /= m;
       this.y /= m;
       this.z /= m;
       return this;
   }
   auto abs() {
       return sqrt(x * x + y * y + z * z);
   }
   void toString(scope void delegate(const(char)[]) sink) const {
       import std.format;
       sink("(");
       formattedWrite(sink, "%.16f", x);
       sink(", ");
       formattedWrite(sink, "%.16f", y);
       sink(", ");
       formattedWrite(sink, "%.16f", z);
       sink(")");
   }

}

auto orbitalStateVectors(

   double semiMajorAxis,
   double eccentricity,
   double inclination,
   double longitudeOfAscendingNode,
   double argumentOfPeriapsis,
   double trueAnomaly

) {

   auto i = Vector(1.0, 0.0, 0.0);
   auto j = Vector(0.0, 1.0, 0.0);
   auto k = Vector(0.0, 0.0, 1.0);
   auto mulAdd = (Vector v1, double x1, Vector v2, double x2) => v1 * x1 + v2 * x2;
   auto rotate = (Vector i, Vector j, double alpha) =>
       tuple(mulAdd(i, +cos(alpha), j, sin(alpha)),
             mulAdd(i, -sin(alpha), j, cos(alpha)));
   auto p = rotate(i, j, longitudeOfAscendingNode);
   i = p[0]; j = p[1];
   p = rotate(j, k, inclination);
   j = p[0];
   p = rotate(i, j, argumentOfPeriapsis);
   i = p[0]; j = p[1];
   auto l = semiMajorAxis * ((eccentricity == 1.0) ? 2.0 : (1.0 - eccentricity * eccentricity));
   auto c = cos(trueAnomaly);
   auto s = sin(trueAnomaly);
   auto r = l / (1.0 + eccentricity * c);
   auto rprime = s * r * r / l;
   auto position = mulAdd(i, c, j, s) * r;
   auto speed = mulAdd(i, rprime * c - r * s, j, rprime * s + r * c);
   speed /= speed.abs();
   speed *= sqrt(2.0 / r - 1.0 / semiMajorAxis);
   return tuple(position, speed);

}

void main() {

   auto res = orbitalStateVectors(1.0, 0.1, 0.0, 355.0 / (113.0 * 6.0), 0.0, 0.0);
   writeln("Position : ", res[0]);
   writeln("Speed    : ", res[1]);

}</lang>

Output:
Position : (0.7794228433986798, 0.4500000346536842, 0.0000000000000000)
Speed    : (-0.5527708409604437, 0.9574270831797614, 0.0000000000000000)

Go

Translation of: Kotlin

<lang go>package main

import (

   "fmt"
   "math"

)

type vector struct{ x, y, z float64 }

func (v vector) add(w vector) vector {

   return vector{v.x + w.x, v.y + w.y, v.z + w.z}

}

func (v vector) mul(m float64) vector {

   return vector{v.x * m, v.y * m, v.z * m}

}

func (v vector) div(d float64) vector {

   return v.mul(1.0 / d)

}

func (v vector) abs() float64 {

   return math.Sqrt(v.x*v.x + v.y*v.y + v.z*v.z)

}

func (v vector) String() string {

   return fmt.Sprintf("(%g, %g, %g)", v.x, v.y, v.z)

}

func orbitalStateVectors(

   semimajorAxis, eccentricity, inclination, longitudeOfAscendingNode,
   argumentOfPeriapsis, trueAnomaly float64) (position vector, speed vector) {
   i := vector{1, 0, 0}
   j := vector{0, 1, 0}
   k := vector{0, 0, 1}
   mulAdd := func(v1, v2 vector, x1, x2 float64) vector {
       return v1.mul(x1).add(v2.mul(x2))
   }
   rotate := func(i, j vector, alpha float64) (vector, vector) {
       return mulAdd(i, j, math.Cos(alpha), math.Sin(alpha)),
           mulAdd(i, j, -math.Sin(alpha), math.Cos(alpha))
   }
   i, j = rotate(i, j, longitudeOfAscendingNode)
   j, _ = rotate(j, k, inclination)
   i, j = rotate(i, j, argumentOfPeriapsis)
   l := 2.0
   if eccentricity != 1.0 {
       l = 1.0 - eccentricity*eccentricity
   }
   l *= semimajorAxis
   c := math.Cos(trueAnomaly)
   s := math.Sin(trueAnomaly)
   r := l / (1.0 + eccentricity*c)
   rprime := s * r * r / l
   position = mulAdd(i, j, c, s).mul(r)
   speed = mulAdd(i, j, rprime*c-r*s, rprime*s+r*c)
   speed = speed.div(speed.abs())
   speed = speed.mul(math.Sqrt(2.0/r - 1.0/semimajorAxis))
   return

}

func main() {

   long := 355.0 / (113.0 * 6.0)
   position, speed := orbitalStateVectors(1.0, 0.1, 0.0, long, 0.0, 0.0)
   fmt.Println("Position :", position)
   fmt.Println("Speed    :", speed)

}</lang>

Output:
Position : (0.7794228433986797, 0.45000003465368416, 0)
Speed    : (-0.5527708409604438, 0.9574270831797618, 0)

J

Translation of: Raku

<lang J>NB. euler rotation matrix, left hand rule

NB. x: axis (0, 1 or 2), y: angle in radians R=: Template:((2 1,:1 2) o.(,-)y* 1^2 X=: +/ .* NB. inner product norm=: % %:@X~

orbitalStateVectors=: {{ 'a e i Om w f'=. y

 NB.  a: semi-major axis
 NB.  e: eccentricity
 NB.  i: inclination
 NB. Om: Longitude of the ascending node
 NB.  w: argument of Periapsis (the other "omega")
 NB.  f: true anomaly
 L=. a*2:`]@.*1-*:e
 'c s'=. 2{.,F=. 2 R f
 ra=. L % 1+ e*c
 rp=. s*ra*ra%L
 ijk=. F X (2 R w)X(0 R i)X(2 R Om)
 position=. ra*{.ijk
 speed=. (%:(2%ra)-%a)*norm(rp,ra,0) X ijk
 position,:speed

}}</lang>

Task example:<lang J> orbitalStateVectors 1 0.1 0 355r678 0 0

0.779423     0.45 0

_0.552771 0.957427 0</lang>

Java

Translation of: Kotlin

<lang Java>public class OrbitalElements {

   private static class Vector {
       private double x, y, z;

       public Vector(double x, double y, double z) {
           this.x = x;
           this.y = y;
           this.z = z;
       }

       public Vector plus(Vector rhs) {
           return new Vector(x + rhs.x, y + rhs.y, z + rhs.z);
       }

       public Vector times(double s) {
           return new Vector(s * x, s * y, s * z);
       }

       public Vector div(double d) {
           return new Vector(x / d, y / d, z / d);
       }

       public double abs() {
           return Math.sqrt(x * x + y * y + z * z);
       }

       @Override
       public String toString() {
           return String.format("(%.16f, %.16f, %.16f)", x, y, z);
       }
   }

   private static Vector mulAdd(Vector v1, Double x1, Vector v2, Double x2) {
       return v1.times(x1).plus(v2.times(x2));
   }

   private static Vector[] rotate(Vector i, Vector j, double alpha) {
       return new Vector[]{
           mulAdd(i, Math.cos(alpha), j, Math.sin(alpha)),
           mulAdd(i, -Math.sin(alpha), j, Math.cos(alpha))
       };
   }

   private static Vector[] orbitalStateVectors(
       double semimajorAxis, double eccentricity, 
       double inclination, double longitudeOfAscendingNode, 
       double argumentOfPeriapsis, double trueAnomaly
   ) {
       Vector i = new Vector(1, 0, 0);
       Vector j = new Vector(0, 1, 0);
       Vector k = new Vector(0, 0, 1);

       Vector[] p = rotate(i, j, longitudeOfAscendingNode);
       i = p[0];
       j = p[1];
       p = rotate(j, k, inclination);
       j = p[0];
       p = rotate(i, j, argumentOfPeriapsis);
       i = p[0];
       j = p[1];

       double l = (eccentricity == 1.0) ? 2.0 : 1.0 - eccentricity * eccentricity;
       l *= semimajorAxis;
       double c = Math.cos(trueAnomaly);
       double s = Math.sin(trueAnomaly);
       double r = l / (1.0 + eccentricity * c);
       double rprime = s * r * r / l;
       Vector position = mulAdd(i, c, j, s).times(r);
       Vector speed = mulAdd(i, rprime * c - r * s, j, rprime * s + r * c);
       speed = speed.div(speed.abs());
       speed = speed.times(Math.sqrt(2.0 / r - 1.0 / semimajorAxis));

       return new Vector[]{position, speed};
   }

   public static void main(String[] args) {
       Vector[] ps = orbitalStateVectors(1.0, 0.1, 0.0, 355.0 / (113.0 * 6.0), 0.0, 0.0);
       System.out.printf("Position : %s\n", ps[0]);
       System.out.printf("Speed : %s\n", ps[1]);
   }

}</lang>

Output:
Position : (0.7794228433986797, 0.4500000346536842, 0.0000000000000000)
Speed : (-0.5527708409604438, 0.9574270831797618, 0.0000000000000000)

jq

Translation of: Wren
Works with: jq

Works with gojq, the Go implementation of jq <lang jq># Array/vector operations def addVectors: transpose | map(add);

def multiply($m): map(. * $m);

def divide($d): map(1/$d);

def abs: map(.*.) | add | sqrt;


def orbitalStateVectors(semimajorAxis; eccentricity; inclination;

     longitudeOfAscendingNode; argumentOfPeriapsis; trueAnomaly):
 def mulAdd($v1; $x1; $v2; $x2):
   [($v1|multiply($x1)), ($v2|multiply($x2))] | addVectors;

 def rotate($i; $j; $alpha):
   [mulAdd($i;  $alpha|cos; $j; $alpha|sin),
    mulAdd($i; -$alpha|sin; $j; $alpha|cos)];
 [1, 0, 0] as $i
 | [0, 1, 0] as $j
 | [0, 0, 1] as $k
 | rotate($i; $j; longitudeOfAscendingNode) as [$i, $j]
 | rotate($j; $k; inclination) as [$j, $_]
 | rotate($i; $j; argumentOfPeriapsis) as [$i, $j]
 | (semimajorAxis * (if (eccentricity == 1) then 2 else (1 - eccentricity * eccentricity) end)) as $l
 | (trueAnomaly|cos) as $c
 | (trueAnomaly|sin) as $s
 | ($l / (1 + eccentricity * $c)) as $r
 | ($s * $r * $r / $l) as $rprime
 | mulAdd($i; $c; $j; $s) | multiply($r) as $position
 | mulAdd($i; $rprime * $c - $r * $s; $j; $rprime * $s + $r * $c)
 | divide(abs)
 | multiply( ((2 / $r) - (1 / semimajorAxis))|sqrt) as $speed
 | [$position, $speed] ;</lang>

The Task <lang jq>orbitalStateVectors(1; 0.1; 0; 355 / (113 * 6); 0; 0) | "Position : \(.[0])",

 "Speed    : \(.[1])"</lang>
Output:
Position : [0.7794228433986797,0.45000003465368416,0]
Speed    : [1.228379551983482,1.228379551983482,1.228379551983482]

Julia

Translation of: Kotlin

<lang julia>using GeometryTypes import Base.abs, Base.print

Vect = Point3 Base.abs(p::Vect) = sqrt(sum(x -> x*x, p)) Base.print(io::IO, p::Vect) = print(io, "(", p[1], ", ", p[2], ", ", p[3], ")") muladd(v1, x1, v2, x2) = v1 * x1 + v2 * x2 rotate(i, j, a) = Pair(muladd(i, cos(a), j, sin(a)), muladd(i, -sin(a), j, cos(a)))

function orbitalStateVectors(semimajorAxis, eccentricity, inclination,

   longitudeOfAscendingNode, argumentOfPeriapsis, trueAnomaly)
   
   i, j, k = Vect(1.0, 0.0, 0.0), Vect(0.0, 1.0, 0.0), Vect(0.0, 0.0, 1.0)
   p = rotate(i, j, longitudeOfAscendingNode)
   i, j = p
   p = rotate(j, k, inclination)
   p = rotate(i, p[1], argumentOfPeriapsis)
   i, j = p

   l = semimajorAxis * (eccentricity == 1.0 ? 2.0 : (1.0 - eccentricity * eccentricity))
   c, s = cos(trueAnomaly), sin(trueAnomaly)
   r = l / (1.0 + eccentricity * c)
   rprime, position = s * r * r / l, muladd(i, c, j, s) * r
   speed = muladd(i, rprime * c - r * s, j, rprime * s + r * c)
   speed /= abs(speed)
   speed *= sqrt(2.0 / r - 1.0 / semimajorAxis)
   return Pair(position, speed)

end

function testorbitalmath()

   (position, speed) = orbitalStateVectors(1.0, 0.1, 0.0, 355.0 / (113.0 * 6.0), 0.0, 0.0)
   println("Position : $position\nSpeed    : $speed")

end

testorbitalmath()

</lang>

Output:
Position : (0.7794228433986797, 0.45000003465368416, 0.0)
Speed    : (-0.5527708409604438, 0.9574270831797618, 0.0)

Kotlin

Translation of: Sidef

<lang scala>// version 1.1.4-3

class Vector(val x: Double, val y: Double, val z: Double) {

   operator fun plus(other: Vector) = Vector(x + other.x, y + other.y, z + other.z)
   
   operator fun times(m: Double) = Vector(x * m, y * m, z * m)
   operator fun div(d: Double) = this * (1.0 / d)
   fun abs() = Math.sqrt(x * x + y * y + z * z)
   override fun toString() = "($x, $y, $z)"

}

fun orbitalStateVectors(

   semimajorAxis: Double,
   eccentricity: Double,
   inclination: Double,
   longitudeOfAscendingNode: Double,
   argumentOfPeriapsis: Double,
   trueAnomaly: Double

): Pair<Vector, Vector> {

   var i = Vector(1.0, 0.0, 0.0)
   var j = Vector(0.0, 1.0, 0.0)
   var k = Vector(0.0, 0.0, 1.0)
   fun mulAdd(v1: Vector, x1: Double, v2: Vector, x2: Double) = v1 * x1 + v2 * x2
   fun rotate(i: Vector, j: Vector, alpha: Double) = 
       Pair(mulAdd(i, +Math.cos(alpha), j, Math.sin(alpha)),
            mulAdd(i, -Math.sin(alpha), j, Math.cos(alpha)))
   var p = rotate(i, j, longitudeOfAscendingNode)
   i = p.first; j = p.second
   p = rotate(j, k, inclination)
   j = p.first
   p = rotate(i, j, argumentOfPeriapsis)
   i = p.first; j = p.second
   val l = semimajorAxis * (if (eccentricity == 1.0) 2.0 else (1.0 - eccentricity * eccentricity))
   val c = Math.cos(trueAnomaly)
   val s = Math.sin(trueAnomaly)
   val r = l / (1.0 + eccentricity * c)
   val rprime = s * r * r / l
   val position = mulAdd(i, c, j, s) * r
   var speed = mulAdd(i, rprime * c - r * s, j, rprime * s + r * c)
   speed /= speed.abs()
   speed *= Math.sqrt(2.0 / r - 1.0 / semimajorAxis)
   return Pair(position, speed)

}

fun main(args: Array<String>) {

   val (position, speed) = orbitalStateVectors(
       semimajorAxis = 1.0,
       eccentricity = 0.1,
       inclination = 0.0,
       longitudeOfAscendingNode = 355.0 / (113.0 * 6.0),
       argumentOfPeriapsis = 0.0,
       trueAnomaly = 0.0
   ) 
   println("Position : $position")
   println("Speed    : $speed")

}</lang>

Output:
Position : (0.7794228433986797, 0.45000003465368416, 0.0)
Speed    : (-0.5527708409604438, 0.9574270831797618, 0.0)

Nim

Translation of: Kotlin

<lang Nim>import math, strformat

type Vector = tuple[x, y, z: float]

func `+`(v1, v2: Vector): Vector = (v1.x + v2.x, v1.y + v2.y, v1.z + v2.z) func `*`(v: Vector; m: float): Vector = (v.x * m, v.y * m, v.z * m) func `*=`(v: var Vector; m: float) = v.x *= m; v.y *= m; v.z *= m func `/=`(v: var Vector; d: float) = v.x /= d; v.y /= d; v.z /= d func abs(v: Vector): float = sqrt(v.x * v.x + v.y * v.y + v.z * v.z) func `$`(v: Vector): string = &"({v.x}, {v.y}, {v.z})"

func orbitalStateVectors(semimajorAxis: float,

                        eccentricity: float,
                        inclination: float,
                        longitudeOfAscendingNode: float,
                        argumentOfPeriapsis: float,
                        trueAnomaly: float): tuple[position, speed: Vector] =
 var
   i: Vector = (1.0, 0.0, 0.0)
   j: Vector = (0.0, 1.0, 0.0)
   k: Vector = (0.0, 0.0, 1.0)


 func mulAdd(v1: Vector; x1: float; v2: Vector; x2: float): Vector = v1 * x1 + v2 * x2
 func rotate(a, b: Vector; alpha: float): (Vector, Vector) =
   (mulAdd(a, cos(alpha), b, sin(alpha)), mulAdd(a, -sin(alpha), b, cos(alpha)))
 var p = rotate(i, j, longitudeOfAscendingNode)
 (i, j) = p
 p = rotate(j, k, inclination)
 j = p[0]
 p = rotate(i, j, argumentOfPeriapsis)
 (i, j) = p
 let
   l = semimajorAxis * (if eccentricity == 1: 2.0 else: 1.0 - eccentricity * eccentricity)
   c = cos(trueAnomaly)
   s = sin(trueAnomaly)
   r = l / (1.0 + eccentricity * c)
   rprime = s * r * r / l
 result.position = mulAdd(i, c, j, s) * r
 result.speed = mulAdd(i, rprime * c - r * s, j, rprime * s + r * c)
 result.speed /= abs(result.speed)
 result.speed *= sqrt(2 / r - 1 / semimajorAxis)


let (position, speed) = orbitalStateVectors(semimajorAxis = 1.0,

                                           eccentricity = 0.1,
                                           inclination = 0.0,
                                           longitudeOfAscendingNode = 355.0 / (113.0 * 6.0),
                                           argumentOfPeriapsis = 0.0,
                                           trueAnomaly = 0.0)

echo "Position: ", position echo "Speed: ", speed</lang>

Output:
Position: (0.7794228433986797, 0.4500000346536842, 0.0)
Speed:    (-0.5527708409604438, 0.9574270831797618, 0.0)

ooRexx

Translation of: Java

<lang oorexx>/* REXX */ Numeric Digits 16 ps = orbitalStateVectors(1.0, 0.1, 0.0, 355.0 / (113.0 * 6.0), 0.0, 0.0) Say "Position :" ps~x~tostring Say "Speed  :" ps~y~tostring Say 'Raku:' pi=rxCalcpi(16) ps=orbitalStateVectors(1,.1,pi/18,pi/6,pi/4,0) /*Raku*/ Say "Position :" ps~x~tostring Say "Speed  :" ps~y~tostring

class v2
method init
 expose x y
 Use Arg x,y
attribute x
attribute y
class vector
method init
 expose x y z
 use strict arg x = 0, y = 0, z = 0  -- defaults to 0 for any non-specified coordinates
attribute x
attribute y
attribute z
method print
 expose x y z
 Numeric Digits 16
 Say 'Vector:'||x'/'y'/'z
method tostring
 expose x y z
 Return '('||x','y','z')'
method abs
 expose x y z
 Numeric Digits 16
 Return rxCalcsqrt(x**2+y**2+z**2,16)
method '*'
 expose x y z
 Parse Arg f
 Numeric Digits 16
 Return .vector~new(x*f,y*f,z*f)
method '/'
 expose x y z
 Parse Arg f
 Numeric Digits 16
 Return .vector~new(x/f,y/f,z/f)
method '+'
 expose x y z
 Use Arg v2
 Numeric Digits 16
 Return .vector~new(x+v2~x,y+v2~y,z+v2~z)
routine orbitalStateVectors

Use Arg semimajorAxis,,

        eccentricity,,
        inclination,,
        longitudeOfAscendingNode,,
        argumentOfPeriapsis,,
        trueAnomaly

Numeric Digits 16 i = .vector~new(1, 0, 0) j = .vector~new(0, 1, 0) k = .vector~new(0, 0, 1) p = rotate(i, j, longitudeOfAscendingNode) i = p~x j = p~y p = rotate(j, k, inclination) j = p~x p = rotate(i, j, argumentOfPeriapsis) i = p~x j = p~y If eccentricity=1 Then l=2 Else l=1-eccentricity*eccentricity l*=semimajorAxis c=rxCalccos(trueAnomaly,16,'R') s=rxCalcsin(trueAnomaly,16,'R') r=l/(1+eccentricity*c) rprime=s*r*r/l position=mulAdd(i,c,j,s)~'*'(r) speed=mulAdd(i,rprime*c-r*s,j,rprime*s+r*c) speed=speed~'/'(speed~abs) speed=speed~'*'(rxCalcsqrt(2.0/r-1.0/semimajorAxis,16)) Return .v2~new(position,speed)

routine muladd
 Use Arg v1,x1,v2,x2
 Numeric Digits 16
 w1=v1~'*'(x1)
 w2=v2~'*'(x2)
 Return w1~'+'(w2)
routine rotate
 Use Arg i,j,alpha
 Numeric Digits 16
 xx=mulAdd(i,rxCalccos(alpha,16,'R'),j,rxCalcsin(alpha,16,'R'))
 yy=mulAdd(i,-rxCalcsin(alpha,16,'R'),j,rxCalccos(alpha,16,'R'))
 res=.v2~new(xx,yy)
 Return res
requires 'rxmath' LIBRARY</lang>
Output:
Position : (0.7794228433986798,0.4500000346536842,0)
Speed    : (-0.5527708409604436,0.9574270831797613,0)
Raku:
Position : (0.2377712839822067,0.8609602616977158,0.1105090235720755)
Speed    : (-1.061933017480060,0.2758500205692495,0.1357470248655981)

Perl

Translation of: Raku

<lang perl>use strict; use warnings; use Math::Vector::Real;

sub orbital_state_vectors {

   my (
       $semimajor_axis,
       $eccentricity,
       $inclination,
       $longitude_of_ascending_node,
       $argument_of_periapsis,
       $true_anomaly
   ) = @_[0..5];
   my ($i, $j, $k) = (V(1,0,0), V(0,1,0), V(0,0,1));
   
   sub rotate {
       my $alpha = shift;
       @_[0,1] = (
           +cos($alpha)*$_[0] + sin($alpha)*$_[1],
           -sin($alpha)*$_[0] + cos($alpha)*$_[1]
       );
   }
   rotate $longitude_of_ascending_node, $i, $j;
   rotate $inclination,                 $j, $k;
   rotate $argument_of_periapsis,       $i, $j;
   my $l = $eccentricity == 1 ? # PARABOLIC CASE
       2*$semimajor_axis :
       $semimajor_axis*(1 - $eccentricity**2);
   my ($c, $s) = (cos($true_anomaly), sin($true_anomaly));
   my $r = $l/(1 + $eccentricity*$c);
   my $rprime = $s*$r**2/$l;
   my $position = $r*($c*$i + $s*$j);
   my $speed = 
   ($rprime*$c - $r*$s)*$i + ($rprime*$s + $r*$c)*$j;
   $speed /= abs($speed);
   $speed *= sqrt(2/$r - 1/$semimajor_axis);
   {
       position => $position,
       speed    => $speed
   }

}

use Data::Dumper;

print Dumper orbital_state_vectors

   1,                             # semimajor axis
   0.1,                           # eccentricity
   0,                             # inclination
   355/113/6,                     # longitude of ascending node
   0,                             # argument of periapsis
   0                              # true-anomaly
   ;</lang>
Output:
$VAR1 = {
          'position' => bless( [
                                 '0.77942284339868',
                                 '0.450000034653684',
                                 '0'
                               ], 'Math::Vector::Real' ),
          'speed' => bless( [
                              '-0.552770840960444',
                              '0.957427083179762',
                              '0'
                            ], 'Math::Vector::Real' )
        };

Phix

Translation of: Python
with javascript_semantics
function vabs(sequence v)
    return sqrt(sum(sq_power(v,2)))
end function 
 
function mulAdd(sequence v1, atom x1, sequence v2, atom x2)
    return sq_add(sq_mul(v1,x1),sq_mul(v2,x2))
end function
 
function rotate(sequence i, j, atom alpha)
    atom ca = cos(alpha),
         sa = sin(alpha)
    return {mulAdd(i,ca,j,sa),mulAdd(i,-sa,j,ca)}
end function
 
procedure orbitalStateVectors(atom semimajorAxis, eccentricity, inclination, longitudeOfAscendingNode, argumentOfPeriapsis, trueAnomaly)
    sequence i = {1, 0, 0},
             j = {0, 1, 0},
             k = {0, 0, 1}
 
    {i,j} = rotate(i, j, longitudeOfAscendingNode)
    {j} = rotate(j, k, inclination)
    {i,j} = rotate(i, j, argumentOfPeriapsis)
 
    atom l = iff(eccentricity=1?2:1-eccentricity*eccentricity)*semimajorAxis,
         c = cos(trueAnomaly),
         s = sin(trueAnomaly),
         r = 1 / (1+eccentricity*c),
         rprime = s * r * r / l
    sequence posn = sq_mul(mulAdd(i, c, j, s),r),
             speed = mulAdd(i, rprime*c-r*s, j, rprime*s+r*c)
    speed = sq_div(speed,vabs(speed))
    speed = sq_mul(speed,sqrt(2/r - 1/semimajorAxis))
 
    puts(1,"Position :") ?posn
    puts(1,"Speed    :") ?speed
end procedure
 
orbitalStateVectors(1.0, 0.1, 0.0, 355.0 / (113.0 * 6.0), 0.0, 0.0)
Output:
Position :{0.7872958014,0.4545454895,0}
Speed    :{-0.5477225997,0.9486832737,0}

Prolog

Translation of: C#

This implementation uses the CLP/R library of swi-prolog, but doesn't have to. This removes the need for a vector divide and has limited capability to reverse the functionality (eg: given the position/speed find some orbital elements).

<lang Prolog>:- use_module(library(clpr)).

v3_add(v(X1,Y1,Z1),v(X2,Y2,Z2),v(X,Y,Z)) :- { X = X1 + X2 }, { Y = Y1 + Y2 }, { Z = Z1 + Z2 }.

v3_mul(v(X1,Y1,Z1),M,v(X,Y,Z)) :- { X = X1 * M }, { Y = Y1 * M }, { Z = Z1 * M }.

v3_muladd(V1,X1,V2,X2,R) :- v3_mul(V1,X1,V1X1), v3_mul(V2,X2,V2X2), v3_add(V1X1,V2X2,R).

v3_rotate(IV, JV, Alpha, R1, R2) :- { SinA = sin(Alpha) }, { CosA = cos(Alpha) }, { NegSinA = 0 - SinA }, v3_muladd(IV, CosA, JV, SinA, R1), v3_muladd(IV, NegSinA, JV, CosA, R2).

v3_abs(v(X,Y,Z), Abs) :- { Abs = (X * X + Y * Y + Z * Z) ^ 0.5 }.

orbital_state_vectors( o(SemiMajor,Ecc,Inc,LongAscNode,ArgPer,TrueAnon), Position, Speed) :-

v3_rotate(v(1,0,0),v(0,1,0),LongAscNode,I1,J1), v3_rotate(J1,v(0,0,1),Inc,J2,_), v3_rotate(I1,J2,ArgPer,I,J),

find_l(Ecc, SemiMajor, L),

{ C = cos(TrueAnon) }, { S = sin(TrueAnon) }, { R = L / (1.0 + Ecc * C ) }, { RPrime = S * R * R / L },

v3_muladd(I, C, J, S, P1), v3_mul(P1, R, Position),

{ SpeedIr = RPrime * C - R * S }, { SpeedJr = RPrime * S + R * C }, v3_muladd(I, SpeedIr, J, SpeedJr, SpeedA), v3_abs(SpeedA, SpeedAbs), v3_mul(SpeedDiv, SpeedAbs, SpeedA), { Sf = (2.0 / R - 1.0 / SemiMajor ) ^ 0.5 }, v3_mul(SpeedDiv, Sf, Speed).


find_l(1.0, SemiMajor, L) :- { L = SemiMajor * 2.0 }. find_l(Ecc, SemiMajor, L) :- dif(Ecc,1.0), { L = SemiMajor * (1.0 - Ecc * Ecc) }.</lang>

Output:
?- { T = 355 / (113 * 6) }, orbital_state_vectors(o(1.0,0.1,0.0,T,0,0), P, S).
T = 0.523598820058997,
P = v(0.7794228433986797, 0.45000003465368416, 0.0),
S = v(-0.5527708409604438, 0.9574270831797618, 0.0) .

?-

Python

<lang python>import math

class Vector:

   def __init__(self, x, y, z):
       self.x = x
       self.y = y
       self.z = z
   def __add__(self, other):
       return Vector(self.x + other.x, self.y + other.y, self.z + other.z)
   def __mul__(self, other):
       return Vector(self.x * other, self.y * other, self.z * other)
   def __div__(self, other):
       return Vector(self.x / other, self.y / other, self.z / other)
   def __str__(self):
       return '({x}, {y}, {z})'.format(x=self.x, y=self.y, z=self.z)
   def abs(self):
       return math.sqrt(self.x*self.x + self.y*self.y + self.z*self.z)

def mulAdd(v1, x1, v2, x2):

   return v1 * x1 + v2 * x2

def rotate(i, j, alpha):

   return [mulAdd(i,math.cos(alpha),j,math.sin(alpha)), mulAdd(i,-math.sin(alpha),j,math.cos(alpha))]

def orbitalStateVectors(semimajorAxis, eccentricity, inclination, longitudeOfAscendingNode, argumentOfPeriapsis, trueAnomaly):

   i = Vector(1, 0, 0)
   j = Vector(0, 1, 0)
   k = Vector(0, 0, 1)
   p = rotate(i, j, longitudeOfAscendingNode)
   i = p[0]
   j = p[1]
   p = rotate(j, k, inclination)
   j = p[0]
   p  =rotate(i, j, argumentOfPeriapsis)
   i = p[0]
   j = p[1]
   l = 2.0 if (eccentricity == 1.0) else 1.0 - eccentricity * eccentricity
   l *= semimajorAxis
   c = math.cos(trueAnomaly)
   s = math.sin(trueAnomaly)
   r = 1 / (1.0 + eccentricity * c)
   rprime = s * r * r / l
   position = mulAdd(i, c, j, s) * r
   speed = mulAdd(i, rprime * c - r * s, j, rprime * s + r * c)
   speed = speed / speed.abs()
   speed = speed * math.sqrt(2.0 / r - 1.0 / semimajorAxis)
   return [position, speed]

ps = orbitalStateVectors(1.0, 0.1, 0.0, 355.0 / (113.0 * 6.0), 0.0, 0.0) print "Position :", ps[0] print "Speed  :", ps[1]</lang>

Output:
Position : (0.787295801413, 0.454545489549, 0.0)
Speed    : (-0.547722599684, 0.948683273698, 0.0)

Raku

(formerly Perl 6) We'll use the Clifford geometric algebra library but only for the vector operations. <lang perl6>sub orbital-state-vectors(

   Real :$semimajor-axis where * >= 0,
   Real :$eccentricity   where * >= 0,
   Real :$inclination,
   Real :$longitude-of-ascending-node,
   Real :$argument-of-periapsis,
   Real :$true-anomaly

) {

   use Clifford;
   my ($i, $j, $k) = @e[^3];
   sub rotate($a is rw, $b is rw, Real \α) {
       ($a, $b) = cos(α)*$a + sin(α)*$b, -sin(α)*$a + cos(α)*$b;
   }
   rotate($i, $j, $longitude-of-ascending-node);
   rotate($j, $k, $inclination);
   rotate($i, $j, $argument-of-periapsis);
   my \l = $eccentricity == 1 ?? # PARABOLIC CASE
       2*$semimajor-axis !!
       $semimajor-axis*(1 - $eccentricity**2);
   my ($c, $s) = .cos, .sin given $true-anomaly;
   my \r = l/(1 + $eccentricity*$c);
   my \rprime = $s*r**2/l;
   my $position = r*($c*$i + $s*$j);
   my $speed = 
   (rprime*$c - r*$s)*$i + (rprime*$s + r*$c)*$j;
   $speed /= sqrt($speed**2);
   $speed *= sqrt(2/r - 1/$semimajor-axis);
   { :$position, :$speed }

}

say orbital-state-vectors

   semimajor-axis => 1,
   eccentricity => 0.1,
   inclination => pi/18,
   longitude-of-ascending-node => pi/6,
   argument-of-periapsis => pi/4,
   true-anomaly => 0;</lang>
Output:
{position => 0.237771283982207*e0+0.860960261697716*e1+0.110509023572076*e2, speed => -1.06193301748006*e0+0.27585002056925*e1+0.135747024865598*e2}

REXX

version 1

Translation of: Java

Vectors are represented by strings: 'x/y/z' <lang rexx>/* REXX */ Numeric Digits 16

 Parse Value orbitalStateVectors(1.0,0.1,0.0,355.0/(113.0*6.0),0.0,0.0),
     With position speed
 Say "Position :" tostring(position)
 Say "Speed    :" tostring(speed)
 Exit

orbitalStateVectors: Procedure

 Parse Arg semimajorAxis,,
           eccentricity,,
           inclination,,
           longitudeOfAscendingNode,,
           argumentOfPeriapsis,,
           trueAnomaly
 i='1/0/0'
 j='0/1/0'
 k='0/0/1'
 Parse Value rotate(i, j, longitudeOfAscendingNode) With i j
 Parse Value rotate(j, k, inclination) With j p
 Parse Value rotate(i, j, argumentOfPeriapsis) With i j
 If eccentricity=1 Then l=2
 Else l=1-eccentricity*eccentricity
 l=l*semimajorAxis
 c=my_cos(trueAnomaly,16)
 s=my_sin(trueAnomaly,16)
 r=l/(1+eccentricity*c)
 rprime=s*r*r/l
 position=vmultiply(mulAdd(i,c,j,s),r)
 speed=mulAdd(i,rprime*c-r*s,j,rprime*s+r*c)
 speed=vdivide(speed,abs(speed))
 speed=vmultiply(speed,my_sqrt(2.0/r-1.0/semimajorAxis,16))
 Return position speed

abs: Procedure

 Parse Arg v.x '/' v.y '/' v.z
 Return my_sqrt(v.x**2+v.y**2+v.z**2,16)

muladd: Procedure

 Parse Arg v1,x1,v2,x2
 Parse Var v1 v1.x '/' v1.y '/' v1.z
 Parse Var v2 v2.x '/' v2.y '/' v2.z
 z=(v1.x*x1+v2.x*x2)||'/'||(v1.y*x1+v2.y*x2)||'/'||(v1.z*x1+v2.z*x2)
 Return z

rotate: Procedure Parse Arg i,j,alpha

 xx=mulAdd(i,my_cos(alpha,16,'R'),j,my_sin(alpha,16))
 yy=mulAdd(i,-my_sin(alpha,16,'R'),j,my_cos(alpha,16))
 Return xx yy

vmultiply: Procedure

 Parse Arg v,d
 Parse Var v v.x '/' v.y '/' v.z
 Return (v.x*d)||'/'||(v.y*d)||'/'||(v.z*d)

vdivide: Procedure

 Parse Arg v,d
 Parse Var v v.x '/' v.y '/' v.z
 Return (v.x/d)||'/'||(v.y/d)||'/'||(v.z/d)

tostring:

 Parse Arg v.x '/' v.y '/' v.z
 Return '('v.x','v.y','v.z')'

my_sqrt: Procedure /* REXX ***************************************************************

  • EXEC to calculate the square root of a = 2 with high precision
                                                                                                                                            • /
 Parse Arg x,prec
 If prec<9 Then prec=9
 prec1=2*prec
 eps=10**(-prec1)
 k = 1
 Numeric Digits 3
 r0= x
 r = 1
 Do i=1 By 1 Until r=r0 | ('ABS'(r*r-x)<eps)
   r0 = r
   r  = (r + x/r) / 2
   k  = min(prec1,2*k)
   Numeric Digits (k + 5)
   End
 Numeric Digits prec
 Return r+0

my_sin: Procedure /* REXX ****************************************************************

  • Return my_sin(x<,p>) -- with the specified precision
  • my_sin(x) = x-(x**3/3!)+(x**5/5!)-(x**7/7!)+-...
                                                                                                                                              • /
 Parse Arg x,prec
 If prec= Then prec=9
 Numeric Digits (2*prec)
 Numeric Fuzz   3
 pi=left('3.1415926535897932384626433832795028841971693993751058209749445923',2*prec+1)
 Do While x>pi
   x=x-pi
   End
 Do While x<-pi
   x=x+pi
   End
 o=x
 u=1
 r=x
 Do i=3 By 2
   ra=r
   o=-o*x*x
   u=u*i*(i-1)
   r=r+(o/u)
   If r=ra Then Leave
   End
 Numeric Digits prec
 Return r+0

my_cos: Procedure /* REXX ****************************************************************

  • Return my_cos(x) -- with specified precision
  • my_cos(x) = 1-(x**2/2!)+(x**4/4!)-(x**6/6!)+-...
                                                                                                                                              • /
 Parse Arg x,prec
 If prec= Then prec=9
 Numeric Digits (2*prec)
 Numeric Fuzz 3
 o=1
 u=1
 r=1
 Do i=1 By 2
   ra=r
   o=-o*x*x
   u=u*i*(i+1)
   r=r+(o/u)
   If r=ra Then Leave
   End
 Numeric Digits prec
 Return r+0</lang>
Output:
Position : (0.7794228433986798,0.4500000346536842,0)
Speed    : (-0.5527708409604436,0.9574270831797613,0)

version 2

Re-coding of REXX version 1,   but with greater decimal digits precision. <lang rexx>/*REXX pgm converts orbital elements ──► orbital state vectors (angles are in radians).*/ numeric digits length( pi() ) - length(.) /*limited to pi len, but show 1/3 digs.*/ call orbV 1, .1, 0, 355/113/6, 0, 0 /*orbital elements taken from: Java */ call orbV 1, .1, pi/18, pi/6, pi/4, 0 /* " " " " Perl 6 */ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ orbV: procedure; parse arg semiMaj, eccentricity, inclination, node, periapsis, anomaly

     say;     say center(' orbital elements ', 99, "═")
     say '            semi-major axis:'  fmt(semiMaj)
     say '               eccentricity:'  fmt(eccentricity)
     say '                inclination:'  fmt(inclination)
     say '   ascending node longitude:'  fmt(node)
     say '      argument of periapsis:'  fmt(periapsis)
     say '               true anomaly:'  fmt(anomaly)
     i= 1 0 0;          j= 0 1 0;        k= 0 0 1    /*define the  I,  J,  K   vectors.*/
     parse value rot(i, j, node)        with i '~' j /*rotate ascending node longitude.*/
     parse value rot(j, k, inclination) with j '~'   /*rotate the inclination.         */
     parse value rot(i, j, periapsis)   with i '~' j /*rotate the argument of periapsis*/
     if eccentricity=1  then L= 2
                        else L= 1 - eccentricity**2
     L= L * semiMaj                                  /*calculate the semi─latus rectum.*/
     c= cos(anomaly);               s= sin(anomaly)  /*calculate COS and SIN of anomaly*/
     r= L / (1 + eccentricity * c)
     @= s*r**2 / L;        speed= MA(i,  @*c - r*s,  j,   @*s + r*c)
     speed=    mulV( divV( speed, absV(speed) ), sqrt(2 / r  - 1 / semiMaj) )
     say '                   position:'  show( mulV( MA(i, c, j, s),  r) )
     say '                      speed:'  show( speed);            return

/*──────────────────────────────────────────────────────────────────────────────────────*/ absV: procedure; parse arg x y z; return sqrt(x**2 + y**2 + z**2) divV: procedure; parse arg x y z, div; return (x / div) (y / div) (z / div) mulV: procedure; parse arg x y z, mul; return (x * mul) (y * mul) (z * mul) show: procedure; parse arg a b c; return '('fmt(a)"," fmt(b)',' fmt(c)")" fmt: procedure; parse arg #; return strip( left( left(, #>=0)# / 1, digits() %3), 'T') MA: procedure; parse arg x y z,@,a b c,$; return (x*@ + a*$) (y*@ + b*$) (z*@ + c*$) pi: pi= 3.1415926535897932384626433832795028841971693993751058209749445923; return pi rot: procedure; parse arg i,j,$; return MA(i,cos($),j,sin($))'~'MA(i, -sin($), j, cos($)) r2r: return arg(1) // (pi() * 2) /*normalize radians ──► a unit circle*/ .sinCos: arg z 1 _,i; do k=2 by 2 until p=z; p=z; _= -_*$ /(k*(k+i)); z=z+_; end; return z /*──────────────────────────────────────────────────────────────────────────────────────*/ cos: procedure; arg x; x= r2r(x); if x=0 then return 1; a= abs(x); Hpi= pi * .5

     numeric fuzz min(6, digits() - 3);        if a=pi       then return -1
     if a=Hpi | a=Hpi*3  then return   0;      if a=pi / 3   then return .5
     if a=pi * 2 / 3     then return '-.5';    $= x * x;          return .sinCos(1, -1)

/*──────────────────────────────────────────────────────────────────────────────────────*/ sin: procedure; arg x; x= r2r(x); numeric fuzz min(5, max(1, digits() - 3) )

     if x=0  then return 0;   if x=pi*.5  then return 1;   if x==pi*1.5  then return -1
     if abs(x)=pi  then return 0;              $= x * x;          return .sinCos(x, 1)

/*──────────────────────────────────────────────────────────────────────────────────────*/ sqrt: procedure; arg x; if x=0 then return 0; d= digits(); numeric form; m.= 9; h= d+6

     numeric digits;  parse value format(x,2,1,,0) 'E0' with g 'E' _ .;  g= g *.5'e'_ % 2
       do j=0  while h>9;        m.j= h;              h= h % 2  +  1;    end
       do k=j+5  to 0  by '-1';  numeric digits m.k;  g= (g+x/g) * .5;   end;    return g</lang>
output   when using the default internal inputs:
════════════════════════════════════════ orbital elements ═════════════════════════════════════════
            semi-major axis:  1
               eccentricity:  0.1
                inclination:  0
   ascending node longitude:  0.523598820058997050
      argument of periapsis:  0
               true anomaly:  0
                   position: ( 0.779422843398679832,  0.450000034653684237,  0)
                      speed: (-0.552770840960443759,  0.957427083179761535,  0)

════════════════════════════════════════ orbital elements ═════════════════════════════════════════
            semi-major axis:  1
               eccentricity:  0.1
                inclination:  0.174532925199432957
   ascending node longitude:  0.523598775598298873
      argument of periapsis:  0.785398163397448309
               true anomaly:  0
                   position: ( 0.237771283982206547,  0.860960261697715834,  0.110509023572075562)
                      speed: (-1.061933017480060047,  0.275850020569249507,  0.135747024865598167) 

Scala

<lang Scala>import scala.language.existentials

object OrbitalElements extends App {

 private val ps = orbitalStateVectors(1.0, 0.1, 0.0, 355.0 / (113.0 * 6.0), 0.0, 0.0)
 println(f"Position : ${ps(0)}%s%nSpeed    : ${ps(1)}%s")
 private def orbitalStateVectors(semimajorAxis: Double,
                                 eccentricity: Double,
                                 inclination: Double,
                                 longitudeOfAscendingNode: Double,
                                 argumentOfPeriapsis: Double,
                                 trueAnomaly: Double) = {
   def mulAdd(v1: Vector, x1: Double, v2: Vector, x2: Double) = v1 * x1 + v2 * x2
   case class Vector(x: Double, y: Double, z: Double) {
     def +(term: Vector) =
       Vector(x + term.x, y + term.y, z + term.z)
     def *(factor: Double) = Vector(factor * x, factor * y, factor * z)
     def /(divisor: Double) = Vector(x / divisor, y / divisor, z / divisor)
     def abs: Double = math.sqrt(x * x + y * y + z * z)
     override def toString: String = f"($x%.16f, $y%.16f, $z%.16f)"
   }
   def rotate(i: Vector, j: Vector, alpha: Double) =
     Array[Vector](mulAdd(i, math.cos(alpha), j, math.sin(alpha)),
       mulAdd(i, -math.sin(alpha), j, math.cos(alpha)))
   val p = rotate(Vector(1, 0, 0), Vector(0, 1, 0), longitudeOfAscendingNode)
   val p2 = rotate(p(0),
     rotate(p(1), Vector(0, 0, 1), inclination)(0),
     argumentOfPeriapsis)
   val l = semimajorAxis *
     (if (eccentricity == 1.0) 2.0 else 1.0 - eccentricity * eccentricity)
   val (c, s) = (math.cos(trueAnomaly), math.sin(trueAnomaly))
   val r = l / (1.0 + eccentricity * c)
   val rprime = s * r * r / l
   val speed = mulAdd(p2(0), rprime * c - r * s, p2(1), rprime * s + r * c)
   Array[Vector](mulAdd(p(0), c, p2(1), s) * r,
     speed / speed.abs * math.sqrt(2.0 / r - 1.0 / semimajorAxis))
 }

}</lang>

Output:

Best seen running in your browser either by ScalaFiddle (ES aka JavaScript, non JVM) or Scastie (remote JVM).

Sidef

Translation of: Perl

<lang ruby>func orbital_state_vectors(

   semimajor_axis,
   eccentricity,
   inclination,
   longitude_of_ascending_node,
   argument_of_periapsis,
   true_anomaly

) {

   var (i, j, k) = (
       Vector(1, 0, 0),
       Vector(0, 1, 0),
       Vector(0, 0, 1),
   )
   func muladd(v1, x1, v2, x2) {
       (v1 * x1) + (v2 * x2)
   }
   func rotate(Ref i, Ref j, α) {
       (*i, *j) = (
           muladd(*i, +cos(α), *j, sin(α)),
           muladd(*i, -sin(α), *j, cos(α)),
       )
   }
   rotate(\i, \j, longitude_of_ascending_node)
   rotate(\j, \k, inclination)
   rotate(\i, \j, argument_of_periapsis)
   var l = (eccentricity == 1 ? 2*semimajor_axis
                              : semimajor_axis*(1 - eccentricity**2))
   var (c, s) = with(true_anomaly) { (.cos, .sin) }
   var r = l/(1 + eccentricity*c)
   var rprime = (s * r**2 / l)
   var position = muladd(i, c, j, s)*r
   var speed = muladd(i, rprime*c - r*s, j, rprime*s + r*c)
   speed /= speed.abs
   speed *= sqrt(2/r - 1/semimajor_axis)
   struct Result { position, speed }
   Result(position, speed)

}

for args in ([

   [1, 0.1, 0, 355/(113*6), 0, 0],
   [1, 0.1, Num.pi/18, Num.pi/6, Num.pi/4, 0]

]) {

   var r = orbital_state_vectors(args...)
   say "Arguments: #{args}:"
   say "Position : #{r.position}"
   say "Speed    : #{r.speed}\n"

}</lang>

Output:
Arguments: [1, 1/10, 0, 355/678, 0, 0]:
Position : Vector(0.779422843398679832042176328223663037464703527986, 0.450000034653684237432302249506712706822033851071, 0)
Speed    : Vector(-0.552770840960443759673279062314259546277084494097, 0.957427083179761535246200368614952095349966503287, 0)

Arguments: [1, 1/10, 0.174532925199432957692369076848861271344287188854, 0.523598775598298873077107230546583814032861566563, 0.785398163397448309615660845819875721049292349844, 0]:
Position : Vector(0.23777128398220654779107184959165027147748809404, 0.860960261697715834668966272382699039216399966872, 0.110509023572075562109405412890808505271310143909)
Speed    : Vector(-1.06193301748006004757467368094494935655538772696, 0.275850020569249507846452830330085489348356659642, 0.135747024865598167166145512759280712986072818844)

Swift

Translation of: Kotlin

<lang swift>import Foundation

public struct Vector {

 public var x = 0.0
 public var y = 0.0
 public var z = 0.0
 public init(x: Double, y: Double, z: Double) {
   (self.x, self.y, self.z) = (x, y, z)
 }
 public func mod() -> Double {
   (x * x + y * y + z * z).squareRoot()
 }
 public static func + (lhs: Vector, rhs: Vector) -> Vector {
   return Vector(
     x: lhs.x + rhs.x,
     y: lhs.y + rhs.y,
     z: lhs.z + rhs.z
   )
 }
 public static func * (lhs: Vector, rhs: Double) -> Vector {
   return Vector(
     x: lhs.x * rhs,
     y: lhs.y * rhs,
     z: lhs.z * rhs
   )
 }
 public static func *= (lhs: inout Vector, rhs: Double) {
   lhs.x *= rhs
   lhs.y *= rhs
   lhs.z *= rhs
 }
 public static func / (lhs: Vector, rhs: Double) -> Vector {
   return lhs * (1 / rhs)
 }
 public static func /= (lhs: inout Vector, rhs: Double) {
   lhs = lhs * (1 / rhs)
 }

}

extension Vector: CustomStringConvertible {

 public var description: String {
   return String(format: "%.6f\t%.6f\t%.6f", x, y, z)
 }

}

private func mulAdd(v1: Vector, x1: Double, v2: Vector, x2: Double) -> Vector {

 return v1 * x1 + v2 * x2

}

private func rotate(_ i: Vector, _ j: Vector, alpha: Double) -> (Vector, Vector) {

 return (
   mulAdd(v1: i, x1: +cos(alpha), v2: j, x2: sin(alpha)),
   mulAdd(v1: i, x1: -sin(alpha), v2: j, x2: cos(alpha))
 )

}

public func orbitalStateVectors(

 semimajorAxis: Double,
 eccentricity: Double,
 inclination: Double,
 longitudeOfAscendingNode: Double,
 argumentOfPeriapsis: Double,
 trueAnomaly: Double

) -> (Vector, Vector) {

 var i = Vector(x: 1.0, y: 0.0, z: 0.0)
 var j = Vector(x: 0.0, y: 1.0, z: 0.0)
 let k = Vector(x: 0.0, y: 0.0, z: 1.0)
 (i, j) = rotate(i, j, alpha: longitudeOfAscendingNode)
 (j, _) = rotate(j, k, alpha: inclination)
 (i, j) = rotate(i, j, alpha: argumentOfPeriapsis)
 let l = eccentricity == 1.0 ? 2.0 : 1.0 - eccentricity * eccentricity
 let c = cos(trueAnomaly)
 let s = sin(trueAnomaly)
 let r = l / (1.0 + eccentricity * c)
 let rPrime = s * r * r / l
 let position = mulAdd(v1: i, x1: c, v2: j, x2: s) * r
 var speed = mulAdd(v1: i, x1: rPrime * c - r * s, v2: j, x2: rPrime * s + r * c)
 speed /= speed.mod()
 speed *= (2.0 / r - 1.0 / semimajorAxis).squareRoot()
 return (position, speed)

}

let (position, speed) = orbitalStateVectors(

 semimajorAxis: 1.0,
 eccentricity: 0.1,
 inclination: 0.0,
 longitudeOfAscendingNode: 355.0 / (113.0 * 6.0),
 argumentOfPeriapsis: 0.0,
 trueAnomaly: 0.0

)

print("Position: \(position); Speed: \(speed)")</lang>

Output:
Position: 0.779423	0.450000	0.000000; Speed: -0.552771	0.957427	0.000000

Wren

Translation of: Kotlin

<lang ecmascript>class Vector {

   construct new(x, y, z) {
       _x = x
       _y = y
       _z = z
   }
   x { _x }
   y { _y }
   z { _z }
   +(other) { Vector.new(_x + other.x, _y + other.y, _z + other.z) }
 
   *(m) { Vector.new(_x * m, _y * m, _z * m) }
   /(d) { this * (1/d) }
   abs { (_x *_x + _y *_y + _z * _z).sqrt }
   toString { "(%(_x), %(_y), %(_z))" }

}

var orbitalStateVectors = Fn.new { |semimajorAxis, eccentricity, inclination,

                                   longitudeOfAscendingNode, argumentOfPeriapsis, trueAnomaly|
   var i = Vector.new(1, 0, 0)
   var j = Vector.new(0, 1, 0)
   var k = Vector.new(0, 0, 1)
   var mulAdd = Fn.new { |v1, x1, v2, x2| v1 * x1 + v2 * x2 }
   var rotate = Fn.new { |i, j, alpha|
       return [mulAdd.call(i,  alpha.cos, j, alpha.sin), 
               mulAdd.call(i, -alpha.sin, j, alpha.cos)]
   }
   var p = rotate.call(i, j, longitudeOfAscendingNode)
   i = p[0]
   j = p[1]
   p = rotate.call(j, k, inclination)
   j = p[0]
   p = rotate.call(i, j, argumentOfPeriapsis)
   i = p[0]
   j = p[1]
   var l = semimajorAxis * ((eccentricity == 1) ? 2 : (1 - eccentricity * eccentricity))
   var c = trueAnomaly.cos
   var s = trueAnomaly.sin
   var r = l / (1 + eccentricity * c)
   var rprime = s * r * r / l
   var position = mulAdd.call(i, c, j, s) * r
   var speed = mulAdd.call(i, rprime * c - r * s, j, rprime * s + r * c)
   speed = speed / speed.abs
   speed = speed * (2 / r - 1 / semimajorAxis).sqrt
   return [position, speed]

}

var ps = orbitalStateVectors.call(1, 0.1, 0, 355 / (113 * 6), 0, 0) System.print("Position : %(ps[0])") System.print("Speed  : %(ps[1])")</lang>

Output:
Position : (0.77942284339868, 0.45000003465368, 0)
Speed    : (-0.55277084096044, 0.95742708317976, 0)

zkl

Translation of: Perl

<lang zkl>fcn orbital_state_vectors(semimajor_axis, eccentricity, inclination,

       longitude_of_ascending_node, argument_of_periapsis, true_anomaly){
  i,j,k:=T(1.0, 0.0, 0.0), T(0.0, 1.0, 0.0), T(0.0, 0.0, 1.0);

  vdot:=fcn(c,vector){ vector.apply('*,c) };
  vsum:=fcn(v1,v2)   { v1.zipWith('+,v2)  };
  rotate:='wrap(alpha, a,b){  // a&b are vectors: (x,y,z)
     return(vsum(vdot( alpha.cos(),a), vdot(alpha.sin(),b)), #cos(alpha)*a + sin(alpha)*b
            vsum(vdot(-alpha.sin(),a), vdot(alpha.cos(),b)));
  };
  i,j=rotate(longitude_of_ascending_node,i,j);
  j,k=rotate(inclination,		  j,k);
  i,j=rotate(argument_of_periapsis,      i,j);

  l:=if(eccentricity==1)   # PARABOLIC CASE
       semimajor_axis*2  else
       semimajor_axis*(1.0 - eccentricity.pow(2));;
  c,s,r:=true_anomaly.cos(), true_anomaly.sin(), l/(eccentricity*c + 1);
  rprime:=s*r.pow(2)/l;

  position:=vdot(r,vsum(vdot(c,i), vdot(s,j)));  #r*(c*i + s*j)

  speed:=vsum(vdot(rprime*c - r*s,i), vdot(rprime*s + r*c,j)); #(rprime*c - r*s)*i + (rprime*s + r*c)*j
  z:=speed.zipWith('*,speed).sum(0.0).sqrt();  #sqrt(speed**2)
  speed=vdot(1.0/z,speed);			#speed/z
  speed=vdot((2.0/r - 1.0/semimajor_axis).sqrt(),speed); #speed*sqrt(2/r - 1/semimajor_axis)

  return(position,speed);

}</lang> <lang zkl>orbital_state_vectors(

   1.0,                           # semimajor axis
   0.1,                           # eccentricity
   0.0,                           # inclination
   (0.0).pi/6,                    # longitude of ascending node
   0.0,                           # argument of periapsis
   0.0                            # true-anomaly

).println();</lang>

Output:
L(L(0.779423,0.45,0),L(-0.552771,0.957427,0))