Nonogram solver
You are encouraged to solve this task according to the task description, using any language you may know.
A nonogram is a puzzle that provides numeric clues used to fill in a grid of cells, establishing for each cell whether it is filled or not. The puzzle solution is typically a picture of some kind.
Each row and column of a rectangular grid is annotated with the lengths of its distinct runs of occupied cells. Using only these lengths you should find one valid configuration of empty and occupied cells, or show a failure message.
- Example
Problem: Solution: . . . . . . . . 3 . # # # . . . . 3 . . . . . . . . 2 1 # # . # . . . . 2 1 . . . . . . . . 3 2 . # # # . . # # 3 2 . . . . . . . . 2 2 . . # # . . # # 2 2 . . . . . . . . 6 . . # # # # # # 6 . . . . . . . . 1 5 # . # # # # # . 1 5 . . . . . . . . 6 # # # # # # . . 6 . . . . . . . . 1 . . . . # . . . 1 . . . . . . . . 2 . . . # # . . . 2 1 3 1 7 5 3 4 3 1 3 1 7 5 3 4 3 2 1 5 1 2 1 5 1
The problem above could be represented by two lists of lists:
x = [[3], [2,1], [3,2], [2,2], [6], [1,5], [6], [1], [2]] y = [[1,2], [3,1], [1,5], [7,1], [5], [3], [4], [3]]
A more compact representation of the same problem uses strings, where the letters represent the numbers, A=1, B=2, etc:
x = "C BA CB BB F AE F A B" y = "AB CA AE GA E C D C"
- Task
For this task, try to solve the 4 problems below, read from a “nonogram_problems.txt” file that has this content (the blank lines are separators):
C BA CB BB F AE F A B AB CA AE GA E C D C F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF AAAAD BDG CEF CBDB BBB FC E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM
Extra credit: generate nonograms with unique solutions, of desired height and width.
This task is the problem n.98 of the "99 Prolog Problems" (archived) by Werner Hett (also thanks to Paul Singleton for the idea and the examples).
- Related tasks
- See also
- Arc Consistency Algorithm
- http://www.haskell.org/haskellwiki/99_questions/Solutions/98 (Haskell)
- http://twanvl.nl/blog/haskell/Nonograms (Haskell)
- http://picolisp.com/5000/!wiki?99p98 (PicoLisp)
11l
F gen_row(w, s)
‘Create all patterns of a row or col that match given runs.’
F gen_seg([[Int]] o, Int sp) -> [[Int]]
I o.empty
R [[2] * sp]
[[Int]] r
L(x) 1 .< sp - o.len + 2
L(tail) @gen_seg(o[1..], sp - x)
r [+]= [2] * x [+] o[0] [+] tail
R r
R gen_seg(s.map(i -> [1] * i), w + 1 - sum(s)).map(x -> x[1..])
F deduce(hr, vr)
‘Fix inevitable value of cells, and propagate.’
F allowable(row)
R row.reduce((a, b) -> zip(a, b).map((x, y) -> x [|] y))
F fits(a, b)
R all(zip(a, b).map((x, y) -> x [&] y))
V (w, h) = (vr.len, hr.len)
V rows = hr.map(x -> gen_row(@w, x))
V cols = vr.map(x -> gen_row(@h, x))
V can_do = rows.map(allowable)
V mod_rows = Set[Int]()
V mod_cols = Set(0 .< w)
F fix_col(n)
‘See if any value in a given column is fixed;
if so, mark its corresponding row for future fixup.’
V c = @can_do.map(x -> x[@n])
@cols[n] = @cols[n].filter(x -> @@fits(x, @c))
L(x) @allowable(@cols[n])
V i = L.index
I x != @can_do[i][n]
@mod_rows.add(i)
@can_do[i][n] [&]= x
F fix_row(n)
‘Ditto, for rows.’
V c = @can_do[n]
@rows[n] = @rows[n].filter(x -> @@fits(x, @c))
L(x) @allowable(@rows[n])
V i = L.index
I x != @can_do[n][i]
@mod_cols.add(i)
@can_do[n][i] [&]= x
F show_gram(m)
L(x) m
print(x.map(i -> ‘x#.?’[i]).join(‘ ’))
print()
L !mod_cols.empty
L(i) mod_cols
fix_col(i)
mod_cols.clear()
L(i) mod_rows
fix_row(i)
mod_rows.clear()
I all(multiloop((0 .< w), (0 .< h), (j, i) -> @can_do[i][j] C (1, 2)))
print(‘Solution would be unique’)
E
print(‘Solution may not be unique, doing exhaustive search:’)
V out = [[Int]()] * h
F try_all(Int n) -> Int
I n >= @h
L(j) 0 .< @w
I @out.map(x -> x[@j]) !C @cols[j]
R 0
@show_gram(@out)
R 1
V sol = 0
L(x) @rows[n]
@out[n] = x
sol += @try_all(n + 1)
R sol
V n = try_all(0)
I n == 0
print(‘No solution.’)
E I n == 1
print(‘Unique solution.’)
E
print(n‘ solutions.’)
print()
F solve(p, show_runs = 1B)
[[[Int]]] s
L(l) p.split("\n")
s [+]= l.split(‘ ’).map(w -> w.map(c -> c.code - ‘A’.code + 1))
I show_runs
print(‘Horizontal runs: ’s[0])
print(‘Vertical runs: ’s[1])
deduce(s[0], s[1])
L(p) File(‘nonogram_problems.txt’).read().split("\n\n")
solve(p)
print(‘Extra example not solvable by deduction alone:’)
solve("B B A A\nB B A A")
print(‘Extra example where there is no solution:’)
solve("B A A\nA A A")
- Output:
Horizontal runs: [[3], [2, 1], [3, 2], [2, 2], [6], [1, 5], [6], [1], [2]] Vertical runs: [[1, 2], [3, 1], [1, 5], [7, 1], [5], [3], [4], [3]] Solution would be unique . # # # . . . . # # . # . . . . . # # # . . # # . . # # . . # # . . # # # # # # # . # # # # # . # # # # # # . . . . . . # . . . . . . # # . . . Unique solution. (... etc. ...)
C#
using System;
using System.Collections.Generic;
using static System.Linq.Enumerable;
public static class NonogramSolver
{
public static void Main2() {
foreach (var (x, y) in new [] {
("C BA CB BB F AE F A B", "AB CA AE GA E C D C"),
("F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC",
"D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA"),
("CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC",
"BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF AAAAD BDG CEF CBDB BBB FC"),
("E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G",
"E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM")
})
{
Solve(x, y);
Console.WriteLine();
}
}
static void Solve(string rowLetters, string columnLetters) {
var r = rowLetters.Split(" ").Select(row => row.Select(s => s - 'A' + 1).ToArray()).ToArray();
var c = columnLetters.Split(" ").Select(column => column.Select(s => s - 'A' + 1).ToArray()).ToArray();
Solve(r, c);
}
static void Solve(int[][] rowRuns, int[][] columnRuns) {
int len = columnRuns.Length;
var rows = rowRuns.Select(row => Generate(len, row)).ToList();
var columns = columnRuns.Select(column => Generate(rowRuns.Length, column)).ToList();
Reduce(rows, columns);
foreach (var list in rows) {
if (list.Count != 1) Console.WriteLine(Repeat('?', len).Spaced());
else Console.WriteLine(list[0].ToString().PadLeft(len, '0').Replace('1', '#').Replace('0', '.').Reverse().Spaced());
}
}
static List<BitSet> Generate(int length, params int[] runs) {
var list = new List<BitSet>();
BitSet initial = BitSet.Empty;
int[] sums = new int[runs.Length];
sums[0] = 0;
for (int i = 1; i < runs.Length; i++) sums[i] = sums[i - 1] + runs[i - 1] + 1;
for (int r = 0; r < runs.Length; r++) initial = initial.AddRange(sums[r], runs[r]);
Generate(list, BitSet.Empty.Add(length), runs, sums, initial, 0, 0);
return list;
}
static void Generate(List<BitSet> result, BitSet max, int[] runs, int[] sums, BitSet current, int index, int shift) {
if (index == runs.Length) {
result.Add(current);
return;
}
while (current.Value < max.Value) {
Generate(result, max, runs, sums, current, index + 1, shift);
current = current.ShiftLeftAt(sums[index] + shift);
shift++;
}
}
static void Reduce(List<List<BitSet>> rows, List<List<BitSet>> columns) {
for (int count = 1; count > 0; ) {
foreach (var (rowIndex, row) in rows.WithIndex()) {
var allOn = row.Aggregate((a, b) => a & b);
var allOff = row.Aggregate((a, b) => a | b);
foreach (var (columnIndex, column) in columns.WithIndex()) {
count = column.RemoveAll(c => allOn.Contains(columnIndex) && !c.Contains(rowIndex));
count += column.RemoveAll(c => !allOff.Contains(columnIndex) && c.Contains(rowIndex));
}
}
foreach (var (columnIndex, column) in columns.WithIndex()) {
var allOn = column.Aggregate((a, b) => a & b);
var allOff = column.Aggregate((a, b) => a | b);
foreach (var (rowIndex, row) in rows.WithIndex()) {
count += row.RemoveAll(r => allOn.Contains(rowIndex) && !r.Contains(columnIndex));
count += row.RemoveAll(r => !allOff.Contains(rowIndex) && r.Contains(columnIndex));
}
}
}
}
static IEnumerable<(int index, T element)> WithIndex<T>(this IEnumerable<T> source) {
int i = 0;
foreach (T element in source) {
yield return (i++, element);
}
}
static string Reverse(this string s) {
char[] array = s.ToCharArray();
Array.Reverse(array);
return new string(array);
}
static string Spaced(this IEnumerable<char> s) => string.Join(" ", s);
struct BitSet //Unused functionality elided.
{
public static BitSet Empty => default;
private readonly int bits;
public int Value => bits;
private BitSet(int bits) => this.bits = bits;
public BitSet Add(int item) => new BitSet(bits | (1 << item));
public BitSet AddRange(int start, int count) => new BitSet(bits | (((1 << (start + count)) - 1) - ((1 << start) - 1)));
public bool Contains(int item) => (bits & (1 << item)) != 0;
public BitSet ShiftLeftAt(int index) => new BitSet((bits >> index << (index + 1)) | (bits & ((1 << index) - 1)));
public override string ToString() => Convert.ToString(bits, 2);
public static BitSet operator &(BitSet a, BitSet b) => new BitSet(a.bits & b.bits);
public static BitSet operator |(BitSet a, BitSet b) => new BitSet(a.bits | b.bits);
}
}
- Output:
. # # # . . . . # # . # . . . . . # # # . . # # . . # # . . # # . . # # # # # # # . # # # # # . # # # # # # . . . . . . # . . . . . . # # . . . . . . . . . . . . . # # # # # # . . . . . . . . . . . . # # # . # . . # # # . . . . . # . . # # # . . . # . . . . # # # . . # # # . # # # # # # # # # # # # # # . . . # . . # . . . . . . . . . . . . # . . # . # . # # . . . . . . . . . . # # # # # # # . . # # . . . . . . . . # # . # # # # # . . . # . . . . . . . . # . . # # # # # . . # # # . # # # . # # # . . # # # # # # # # . # # # . # # # . # # # . . . . # # # . # . . . . . . . . . . . . . . . # # . # # # # . # . . . . . . . . . . . # . # # # . # # # . . . . . . . . . # # . # # # # . . . . . . . . . . . . # # # . # # # . # . . . . # # # . . . # # # . . # # . # # . . . # . # # # . . # # . . # # . # # . . . . # # . # # . . . . . . # # . # . # . . # # . # . # . . . . . . # . # # . # . . . # # # # . . . . . . . # . # . # # . . . . . # # . . . . . . . . # # . # # . . # # # # # # # # . . . . # # . # # . . . # # . . # # # # . . . . # . # # . # # . # . . . # . . # # # # . . # # # . # # # # # . . . . . # # . # . # # # . # . . . . # . . . . # # # # . . # # # . # . . . . # # # . # # # . # . # # # . # # . # # # # # # # # . . . # # # # . # # # . # # # # # # # # . . . . . # . # # # # . # # . # # # # # . . . . . # . # # # # . # # . . . # # . . . . . . . # # # # . . # # . . . # # # # # . . . # # # # # . # # # . . . # # # # # . . . # # # # . # . . . . . . . . . . # . . # # # # . # # . . . . . . . . . . . . . # # # . # # # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # # # # # . . # # . . . . . . . . . . . . . . # # # . . # # . # # . . . . . . . . . . . . . . # # # # # . . # # # . . . . . . . . . . . . . # # # # # # # # . . # # . . . . # # # # # . # # # # # # # # # # # . . # . # . . # # . . . . # . . . . # # # # # # . . . # . . # # . . . . . # . . . . . . . # # # . . . . # # . . . . . . . . # . . . . . . . . . . . . . # . # # . . . . . # # # # # # . . . . . . . . . # # . . # # # # # # # # # # # # # # # . . . . # # # # . . . . . # # # # # # # # # # . . # # # # # # # # . . . . # # . # . # # # # . # # # . . # # # # # # . . . . . . . . # # # # # # # # # # # # # # # # # . . . . . . . . # # # # # # # # # # # # # # # # # . . . . . . . # # # # # # # # # # # # # # # # # # . . . . . . . # . . . # # # # # # # # # # # # # # . . . . . . . # . # . # # # # # # # # # # # # # # . . . . . . . . # # # # # . . . # # # # # # # # # . . . . . . . . . . . . . . . . . # # # # # # # # . . . . . . . . . . . . . . . . . . # # # # # # #
C++
The Solver
// A class to solve Nonogram (Hadje) Puzzles
// Nigel Galloway - January 23rd., 2017
template<uint _N, uint _G> class Nonogram {
enum class ng_val : char {X='#',B='.',V='?'};
template<uint _NG> struct N {
N() {}
N(std::vector<int> ni,const int l) : X{},B{},Tx{},Tb{},ng(ni),En{},gNG(l){}
std::bitset<_NG> X, B, T, Tx, Tb;
std::vector<int> ng;
int En, gNG;
void fn (const int n,const int i,const int g,const int e,const int l){
if (fe(g,l,false) and fe(g+l,e,true)){
if ((n+1) < ng.size()) {if (fe(g+e+l,1,false)) fn(n+1,i-e-1,g+e+l+1,ng[n+1],0);}
else {
if (fe(g+e+l,gNG-(g+e+l),false)){Tb &= T.flip(); Tx &= T.flip(); ++En;}
}}
if (l<=gNG-g-i-1) fn(n,i,g,e,l+1);
}
void fi (const int n,const bool g) {X.set(n,g); B.set(n, not g);}
ng_val fg (const int n) const{return (X.test(n))? ng_val::X : (B.test(n))? ng_val::B : ng_val::V;}
inline bool fe (const int n,const int i, const bool g){
for (int e = n;e<n+i;++e) if ((g and fg(e)==ng_val::B) or (!g and fg(e)==ng_val::X)) return false; else T[e] = g;
return true;
}
int fl (){
if (En == 1) return 1;
Tx.set(); Tb.set(); En=0;
fn(0,std::accumulate(ng.cbegin(),ng.cend(),0)+ng.size()-1,0,ng[0],0);
return En;
}}; // end of N
std::vector<N<_G>> ng;
std::vector<N<_N>> gn;
int En, zN, zG;
void setCell(uint n, uint i, bool g){ng[n].fi(i,g); gn[i].fi(n,g);}
public:
Nonogram(const std::vector<std::vector<int>>& n,const std::vector<std::vector<int>>& i,const std::vector<std::string>& g = {}) : ng{}, gn{}, En{}, zN(n.size()), zG(i.size()) {
for (int n=0; n<zG; n++) gn.push_back(N<_N>(i[n],zN));
for (int i=0; i<zN; i++) {
ng.push_back(N<_G>(n[i],zG));
if (i < g.size()) for(int e=0; e<zG or e<g[i].size(); e++) if (g[i][e]=='#') setCell(i,e,true);
}}
bool solve(){
int i{}, g{};
for (int l = 0; l<zN; l++) {
if ((g = ng[l].fl()) == 0) return false; else i+=g;
for (int i = 0; i<zG; i++) if (ng[l].Tx[i] != ng[l].Tb[i]) setCell (l,i,ng[l].Tx[i]);
}
for (int l = 0; l<zG; l++) {
if ((g = gn[l].fl()) == 0) return false; else i+=g;
for (int i = 0; i<zN; i++) if (gn[l].Tx[i] != gn[l].Tb[i]) setCell (i,l,gn[l].Tx[i]);
}
if (i == En) return false; else En = i;
if (i == zN+zG) return true; else return solve();
}
const std::string toStr() const {
std::ostringstream n;
for (int i = 0; i<zN; i++){for (int g = 0; g<zG; g++){n << static_cast<char>(ng[i].fg(g));}n<<std::endl;}
return n.str();
}};
The Task
// For the purpose of this task I provide a little code to read from a file in the required format
// Note though that Nonograms may contain blank lines and values greater than 24
int main(){
std::ifstream n ("nono.txt");
if (!n) {
std::cerr << "Unable to open nono.txt.\n";
exit(EXIT_FAILURE);
}
std::string i;
getline(n,i);
std::istringstream g(i);
std::string e;
std::vector<std::vector<int>> N;
while (g >> e) {
std::vector<int> G;
for (char l : e) G.push_back((int)l-64);
N.push_back(G);
}
getline(n,i);
std::istringstream gy(i);
std::vector<std::vector<int>> G;
while (gy >> e) {
std::vector<int> N;
for (char l : e) N.push_back((int)l-64);
G.push_back(N);
}
Nonogram<32,32> myN(N,G);
if (!myN.solve()) std::cout << "I don't believe that this is a nonogram!" << std::endl;
std::cout << "\n" << myN.toStr() << std::endl;
}
- Output:
C BA CB BB F AE F A B AB CA AE GA E C D C .###.... ##.#.... .###..## ..##..## ..###### #.#####. ######.. ....#... ...##... F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA ..........######.... ........###.#..###.. ...#..###...#....### ..###.############## ...#..#............# ..#.#.##..........## #####..##........##. #####...#........#.. #####..###.###.###.. ########.###.###.### CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF AAAAD BDG CEF CBDB BBB FC ....###.#........... ....##.####.#....... ....#.###.###....... ..##.####........... .###.###.#....###... ###..##.##...#.###.. ##..##.##....##.##.. ....##.#.#..##.#.#.. ....#.##.#...####... ....#.#.##.....##... .....##.##..######## ....##.##...##..#### ....#.##.##.#...#..# ###..###.#####.....# #.#.###.#....#....## ##..###.#....###.### .#.###.##.########.. .####.###.########.. ...#.####.##.#####.. ...#.####.##...##... ....####..##...##### ...#####.###...##### ...####.#..........# ..####.##........... ..###.###........... E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM ....................##### ..##..............###..## .##..............#####..# ##.............########.. ##....#####.###########.. #.#..##....#....######... #..##.....#.......###.... ##........#.............# .##.....######.........## ..###############....#### .....##########..######## ....##.#.####.###..###### ........################# ........################# .......################## .......#...############## .......#.#.############## ........#####...######### .................######## ..................#######
Bonus GCHQ Xmas Puzzle
[GCHQ Xmas Puzzle] is a Nonogram. They say "We pre-shaded a few cells to help people get started. Without this, the puzzle would have been slightly ambiguous, though the error correction used in QR codes means that the URL would have been recovered anyway. As a small Easter egg, the pre-shaded cells spell out “GCHQ” in Morse code."
int main(){
const std::vector<std::vector<int>> Ngchq={{ 7,3,1, 1,7},
{ 1,1,2,2, 1,1},
{ 1,3,1,3,1,1, 3,1},
{ 1,3,1,1,6,1, 3,1},
{ 1,3,1,5,2,1, 3,1},
{ 1,1,2, 1,1},
{ 7,1,1,1,1, 1,7},
{ 3,3},
{1,2,3,1,1,3,1, 1,2},
{ 1,1,3,2, 1,1},
{ 4,1,4,2, 1,2},
{ 1,1,1,1,1,4, 1,3},
{ 2,1,1,1, 2,5},
{ 3,2,2,6, 3,1},
{ 1,9,1,1, 2,1},
{ 2,1,2,2, 3,1},
{ 3,1,1,1,1, 5,1},
{ 1,2, 2,5},
{ 7,1,2,1,1, 1,3},
{ 1,1,2,1,2, 2,1},
{ 1,3,1,4, 5,1},
{ 1,3,1,3,10,2},
{ 1,3,1,1, 6,6},
{ 1,1,2,1, 1,2},
{ 7,2,1, 2,5}};
const std::vector<std::vector<int>> Ggchq={{ 7,2,1,1,7},
{ 1,1,2,2,1,1},
{1,3,1,3,1,3,1,3,1},
{ 1,3,1,1,5,1,3,1},
{ 1,3,1,1,4,1,3,1},
{ 1,1,1,2,1,1},
{ 7,1,1,1,1,1,7},
{ 1,1,3},
{ 2,1,2,1,8,2,1},
{ 2,2,1,2,1,1,1,2},
{ 1,7,3,2,1},
{ 1,2,3,1,1,1,1,1},
{ 4,1,1,2,6},
{ 3,3,1,1,1,3,1},
{ 1,2,5,2,2},
{2,2,1,1,1,1,1,2,1},
{ 1,3,3,2,1,8,1},
{ 6,2,1},
{ 7,1,4,1,1,3},
{ 1,1,1,1,4},
{ 1,3,1,3,7,1},
{1,3,1,1,1,2,1,1,4},
{ 1,3,1,4,3,3},
{ 1,1,2,2,2,6,1},
{ 7,1,3,2,1,1}};
std::vector<std::string> n = {"",
"",
"",
"...##.......##.......#",
"",
"",
"",
"",
"......##..#...##..#",
"",
"",
"",
"",
"",
"",
"",
"......#....#....#...#",
"",
"",
"",
"",
"...##....##....#....##"};
Nonogram<25,25> myN(Ngchq,Ggchq,n);
if (!myN.solve()) std::cout << "I don't believe that this is a nonogram!" << std::endl;
std::cout << "\n" << myN.toStr() << std::endl;
}
- Output:
#######.###...#.#.####### #.....#.##.##.....#.....# #.###.#.....###.#.#.###.# #.###.#.#..######.#.###.# #.###.#..#####.##.#.###.# #.....#..##.......#.....# #######.#.#.#.#.#.####### ........###...###........ #.##.###..#.#.###.#..#.## #.#......###.##....#...#. .####.#.####.##.#....##.. .#.#...#...#.#.####.#.### ..##..#.#.#......##.##### ...###.##.##.######.###.# #.#########.#.#..##....#. .##.#..##...##.###.....#. ###.#.#.#..#....#####.#.. ........#...##.##...##### #######.#..##...#.#.#.### #.....#.##..#..##...##.#. #.###.#...####..#####..#. #.###.#.###.##########.## #.###.#.#..######.######. #.....#..##......#.#.##.. #######.##...#.##...#####
Common Lisp
(defpackage :ac3
(:use :cl)
(:export :var
:domain
:satisfies-p
:constraint-possible-p
:ac3)
(:documentation "Implements the AC3 algorithm. Extend VAR with the variable
types for your particular problem and implement SATISFIES-P and
CONSTRAINT-POSSIBLE-P for your variables. Initialize the DOMAIN of your variables
with unary constraints already satisfied and then pass them to AC3 in a list."))
(in-package :ac3)
(defclass var ()
((domain :initarg :domain :accessor domain))
(:documentation "The base variable type from which all other
variables should extend."))
(defgeneric satisfies-p (a b va vb)
(:documentation "Determine if constrainted variables A and B are
satisfied by the instantiation of their respective values VA and VB."))
(defgeneric constraint-possible-p (a b)
(:documentation "Determine if variables A and B can even be
checked for a binary constraint."))
(defun arc-reduce (a b)
"Assuming A and B truly form a constraint, prune all values
from A that do not satisfy any value in B. Return T if the domain
of A changed by any amount, NIL otherwise."
(let (change)
(setf (domain a)
(loop for va in (domain a)
when (loop for vb in (domain b)
do (when (satisfies-p a b va vb)
(return t))
finally (setf change t) (return nil))
collect va))
change))
(defun binary-constraint-p (a b)
"Check if variables A and B could form a constraint, then return T
if any of their values form a contradiction, NIL otherwise."
(when (constraint-possible-p a b)
(block found
(loop for va in (domain a)
do (loop for vb in (domain b)
do (unless (satisfies-p a b va vb)
(return-from found t)))))))
(defun ac3 (vars)
"Run the Arc Consistency 3 algorithm on the given set of variables.
Assumes unary constraints have already been satisfied."
;; Form a worklist of the constraints of every variable to every other variable.
(let ((worklist (loop for x in vars
append (loop for y in vars
when (and (not (eq x y))
(binary-constraint-p x y))
collect (cons x y)))))
;; Prune the worklist of satisfied arcs until it is empty.
(loop while worklist
do (destructuring-bind (x . y) (pop worklist)
(when (arc-reduce x y)
(if (domain x)
;; If the current arc's domain was reduced, then append any arcs it
;; is still constrained with to the end of the worklist, as they
;; need to be rechecked.
(setf worklist (nconc worklist (loop for z in vars
when (and (not (eq x z))
(not (eq y z))
(binary-constraint-p x z))
collect (cons z x))))
(error "No values left in ~a" x))))
finally (return vars))))
(defpackage :nonogram
(:use :cl :ac3)
(:documentation "Utilize the AC3 package to solve nonograms."))
(in-package :nonogram)
(defclass line (var)
((depth :initarg :depth :accessor depth))
(:documentation "A LINE is a variable that represents either a
column or row of cells and all of the permutations of values those
cells can assume"))
(defmethod print-object ((o line) s)
(print-unreadable-object (o s :type t)
(with-slots (depth domain) o
(format s ":depth ~a :domain ~a" depth domain))))
(defclass row (line) ())
(defclass col (line) ())
(defmethod satisfies-p ((a line) (b line) va vb)
(eq (aref va (depth b))
(aref vb (depth a))))
(defmethod constraint-possible-p ((a line) (b line))
(not (eq (type-of a) (type-of b))))
(defun make-line-domain (runs length &optional (start 0) acc)
"Enumerate all valid permutations of a line's values."
(if runs
(loop for i from start
to (- length
(reduce #'+ (cdr runs))
(length (cdr runs))
(car runs))
append (make-line-domain (cdr runs) length (+ 1 i (car runs)) (cons i acc)))
(list (reverse acc))))
(defun make-line (type runs depth length)
"Create and initialize a ROW or COL instance."
(make-instance
type :depth depth :domain
(loop for value in (make-line-domain runs length)
collect (let ((arr (make-array length :initial-element nil)))
(loop for pos in value
for run in runs
do (loop for i from pos below (+ pos run)
do (setf (aref arr i) t)))
arr))))
(defun make-lines (type run-set length)
"Initialize a set of lines."
(loop for runs across run-set
for depth from 0
collect (make-line type runs depth length)))
(defun nonogram (problem)
"Given a nonogram problem description, solve it and print the result."
(let* ((nrows (length (aref problem 0)))
(ncols (length (aref problem 1)))
(vars (ac3 (append (make-lines 'row (aref problem 0) ncols)
(make-lines 'col (aref problem 1) nrows)))))
(loop for var in vars
while (eq 'row (type-of var))
do (terpri)
(loop for cell across (car (domain var))
do (format t "~a " (if cell #\# #\.))))))
(defparameter *test-set*
'("C BA CB BB F AE F A B"
"AB CA AE GA E C D C"))
;; Helper functions to read and parse problems from a file.
(defun parse-word (word)
(map 'list (lambda (c) (- (digit-char-p c 36) 9)) word))
(defun parse-line (line)
(map 'vector #'parse-word (uiop:split-string (string-upcase line))))
(defun parse-nonogram (rows columns)
(vector (parse-line rows)
(parse-line columns)))
(defun read-until-line (stream)
(loop (let ((line (read-line stream)))
(when (> (length (string-trim '(#\space) line)) 0)
(print line)
(return line)))))
(defun solve-from-file (file)
(handler-case
(with-open-file (s file)
(loop
(terpri)
(nonogram (parse-nonogram (read-until-line s)
(read-until-line s)))))
(end-of-file ())))
- Output:
CL-USER> (time (nonogram::solve-from-file "c:/Users/cro/Dropbox/Projects/rosetta-code/nonogram_problems.txt")) "C BA CB BB F AE F A B" "AB CA AE GA E C D C" . # # # . . . . # # . # . . . . . # # # . . # # . . # # . . # # . . # # # # # # # . # # # # # . # # # # # # . . . . . . # . . . . . . # # . . . "F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC" "D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA" . . . . . . . . . . # # # # # # . . . . . . . . . . . . # # # . # . . # # # . . . . . # . . # # # . . . # . . . . # # # . . # # # . # # # # # # # # # # # # # # . . . # . . # . . . . . . . . . . . . # . . # . # . # # . . . . . . . . . . # # # # # # # . . # # . . . . . . . . # # . # # # # # . . . # . . . . . . . . # . . # # # # # . . # # # . # # # . # # # . . # # # # # # # # . # # # . # # # . # # # "CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC" "BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF AAAAD BDG CEF CBDB BBB FC" . . . . # # # . # . . . . . . . . . . . . . . . # # . # # # # . # . . . . . . . . . . . # . # # # . # # # . . . . . . . . . # # . # # # # . . . . . . . . . . . . # # # . # # # . # . . . . # # # . . . # # # . . # # . # # . . . # . # # # . . # # . . # # . # # . . . . # # . # # . . . . . . # # . # . # . . # # . # . # . . . . . . # . # # . # . . . # # # # . . . . . . . # . # . # # . . . . . # # . . . . . . . . # # . # # . . # # # # # # # # . . . . # # . # # . . . # # . . # # # # . . . . # . # # . # # . # . . . # . . # # # # . . # # # . # # # # # . . . . . # # . # . # # # . # . . . . # . . . . # # # # . . # # # . # . . . . # # # . # # # . # . # # # . # # . # # # # # # # # . . . # # # # . # # # . # # # # # # # # . . . . . # . # # # # . # # . # # # # # . . . . . # . # # # # . # # . . . # # . . . . . . . # # # # . . # # . . . # # # # # . . . # # # # # . # # # . . . # # # # # . . . # # # # . # . . . . . . . . . . # . . # # # # . # # . . . . . . . . . . . . . # # # . # # # . . . . . . . . . . . "E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G" "E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM" . . . . . . . . . . . . . . . . . . . . # # # # # . . # # . . . . . . . . . . . . . . # # # . . # # . # # . . . . . . . . . . . . . . # # # # # . . # # # . . . . . . . . . . . . . # # # # # # # # . . # # . . . . # # # # # . # # # # # # # # # # # . . # . # . . # # . . . . # . . . . # # # # # # . . . # . . # # . . . . . # . . . . . . . # # # . . . . # # . . . . . . . . # . . . . . . . . . . . . . # . # # . . . . . # # # # # # . . . . . . . . . # # . . # # # # # # # # # # # # # # # . . . . # # # # . . . . . # # # # # # # # # # . . # # # # # # # # . . . . # # . # . # # # # . # # # . . # # # # # # . . . . . . . . # # # # # # # # # # # # # # # # # . . . . . . . . # # # # # # # # # # # # # # # # # . . . . . . . # # # # # # # # # # # # # # # # # # . . . . . . . # . . . # # # # # # # # # # # # # # . . . . . . . # . # . # # # # # # # # # # # # # # . . . . . . . . # # # # # . . . # # # # # # # # # . . . . . . . . . . . . . . . . . # # # # # # # # . . . . . . . . . . . . . . . . . . # # # # # # # Evaluation took: 0.906 seconds of real time 0.906250 seconds of total run time (0.890625 user, 0.015625 system) 100.00% CPU 1 form interpreted 59 lambdas converted 2,979,778,058 processor cycles 58,974,976 bytes consed
D
import std.stdio, std.range, std.file, std.algorithm, std.string;
/// Create all patterns of a row or col that match given runs.
auto genRow(in int w, in int[] s) pure nothrow @safe {
static int[][] genSeg(in int[][] o, in int sp) pure nothrow @safe {
if (o.empty)
return [[2].replicate(sp)];
typeof(return) result;
foreach (immutable x; 1 .. sp - o.length + 2)
foreach (const tail; genSeg(o[1 .. $], sp - x))
result ~= [2].replicate(x) ~ o[0] ~ tail;
return result;
}
const ones = s.map!(i => [1].replicate(i)).array;
return genSeg(ones, w + 1 - s.sum).map!dropOne;
}
/// Fix inevitable value of cells, and propagate.
void deduce(in int[][] hr, in int[][] vr) {
static int[] allowable(in int[][] row) pure nothrow @safe {
//return row.dropOne.fold!q{ a[] |= b[] }(row[0].dup);
return reduce!q{ a[] |= b[] }(row[0].dup, row.dropOne);
}
static bool fits(in int[] a, in int[] b)
pure /*nothrow*/ @safe /*@nogc*/ {
return zip(a, b).all!(xy => xy[0] & xy[1]);
}
immutable int w = vr.length,
h = hr.length;
auto rows = hr.map!(x => genRow(w, x).array).array;
auto cols = vr.map!(x => genRow(h, x).array).array;
auto canDo = rows.map!allowable.array;
// Initially mark all columns for update.
bool[uint] modRows, modCols;
modCols = true.repeat.enumerate!uint.take(w).assocArray;
/// See if any value a given column is fixed; if so,
/// mark its corresponding row for future fixup.
void fixCol(in int n) /*nothrow*/ @safe {
const c = canDo.map!(x => x[n]).array;
cols[n] = cols[n].remove!(x => !fits(x, c)); // Throws.
foreach (immutable i, immutable x; allowable(cols[n]))
if (x != canDo[i][n]) {
modRows[i] = true;
canDo[i][n] &= x;
}
}
/// Ditto, for rows.
void fixRow(in int n) /*nothrow*/ @safe {
const c = canDo[n];
rows[n] = rows[n].remove!(x => !fits(x, c)); // Throws.
foreach (immutable i, immutable x; allowable(rows[n]))
if (x != canDo[n][i]) {
modCols[i] = true;
canDo[n][i] &= x;
}
}
void showGram(in int[][] m) {
// If there's 'x', something is wrong.
// If there's '?', needs more work.
m.each!(x => writefln("%-(%c %)", x.map!(i => "x#.?"[i])));
writeln;
}
while (modCols.length > 0) {
modCols.byKey.each!fixCol;
modCols = null;
modRows.byKey.each!fixRow;
modRows = null;
}
if (cartesianProduct(h.iota, w.iota)
.all!(ij => canDo[ij[0]][ij[1]] == 1 || canDo[ij[0]][ij[1]] == 2))
"Solution would be unique".writeln;
else
"Solution may not be unique, doing exhaustive search:".writeln;
// We actually do exhaustive search anyway. Unique
// solution takes no time in this phase anyway.
auto out_ = new const(int)[][](h);
uint tryAll(in int n = 0) {
if (n >= h) {
foreach (immutable j; 0 .. w)
if (!cols[j].canFind(out_.map!(x => x[j]).array))
return 0;
showGram(out_);
return 1;
}
typeof(return) sol = 0;
foreach (const x; rows[n]) {
out_[n] = x;
sol += tryAll(n + 1);
}
return sol;
}
immutable n = tryAll;
switch (n) {
case 0: "No solution.".writeln; break;
case 1: "Unique solution.".writeln; break;
default: writeln(n, " solutions."); break;
}
writeln;
}
void solve(in string p, in bool showRuns=true) {
immutable s = p.splitLines.map!(l => l.split.map!(w =>
w.map!(c => int(c - 'A' + 1)).array).array).array;
//w.map!(c => c - 'A' + 1))).to!(int[][][]);
if (showRuns) {
writeln("Horizontal runs: ", s[0]);
writeln("Vertical runs: ", s[1]);
}
deduce(s[0], s[1]);
}
void main() {
// Read problems from file.
immutable fn = "nonogram_problems.txt";
fn.readText.split("\n\n").filter!(p => !p.strip.empty).each!(p => p.strip.solve);
"Extra example not solvable by deduction alone:".writeln;
"B B A A\nB B A A".solve;
"Extra example where there is no solution:".writeln;
"B A A\nA A A".solve;
}
- Output:
Horizontal runs: [[3], [2, 1], [3, 2], [2, 2], [6], [1, 5], [6], [1], [2]] Vertical runs: [[1, 2], [3, 1], [1, 5], [7, 1], [5], [3], [4], [3]] Solution would be unique . # # # . . . . # # . # . . . . . # # # . . # # . . # # . . # # . . # # # # # # # . # # # # # . # # # # # # . . . . . . # . . . . . . # # . . . Unique solution. Horizontal runs: [[6], [3, 1, 3], [1, 3, 1, 3], [3, 14], [1, 1, 1], [1, 1, 2, 2], [5, 2, 2], [5, 1, 1], [5, 3, 3, 3], [8, 3, 3, 3]] Vertical runs: [[4], [4], [1, 5], [3, 4], [1, 5], [1], [4, 1], [2, 2, 2], [3, 3], [1, 1, 2], [2, 1, 1], [1, 1, 2], [4, 1], [1, 1, 2], [1, 1, 1], [2, 1, 2], [1, 1, 1], [3, 4], [2, 2, 1], [4, 1]] Solution would be unique . . . . . . . . . . # # # # # # . . . . . . . . . . . . # # # . # . . # # # . . . . . # . . # # # . . . # . . . . # # # . . # # # . # # # # # # # # # # # # # # . . . # . . # . . . . . . . . . . . . # . . # . # . # # . . . . . . . . . . # # # # # # # . . # # . . . . . . . . # # . # # # # # . . . # . . . . . . . . # . . # # # # # . . # # # . # # # . # # # . . # # # # # # # # . # # # . # # # . # # # Unique solution. Horizontal runs: [[3, 1], [2, 4, 1], [1, 3, 3], [2, 4], [3, 3, 1, 3], [3, 2, 2, 1, 3], [2, 2, 2, 2, 2], [2, 1, 1, 2, 1, 1], [1, 2, 1, 4], [1, 1, 2, 2], [2, 2, 8], [2, 2, 2, 4], [1, 2, 2, 1, 1, 1], [3, 3, 5, 1], [1, 1, 3, 1, 1, 2], [2, 3, 1, 3, 3], [1, 3, 2, 8], [4, 3, 8], [1, 4, 2, 5], [1, 4, 2, 2], [4, 2, 5], [5, 3, 5], [4, 1, 1], [4, 2], [3, 3]] Vertical runs: [[2, 3], [3, 1, 3], [3, 2, 1, 2], [2, 4, 4], [3, 4, 2, 4, 5], [2, 5, 2, 4, 6], [1, 4, 3, 4, 6, 1], [4, 3, 3, 6, 2], [4, 2, 3, 6, 3], [1, 2, 4, 2, 1], [2, 2, 6], [1, 1, 6], [2, 1, 4, 2], [4, 2, 6], [1, 1, 1, 1, 4], [2, 4, 7], [3, 5, 6], [3, 2, 4, 2], [2, 2, 2], [6, 3]] Solution would be unique . . . . # # # . # . . . . . . . . . . . . . . . # # . # # # # . # . . . . . . . . . . . # . # # # . # # # . . . . . . . . . # # . # # # # . . . . . . . . . . . . # # # . # # # . # . . . . # # # . . . # # # . . # # . # # . . . # . # # # . . # # . . # # . # # . . . . # # . # # . . . . . . # # . # . # . . # # . # . # . . . . . . # . # # . # . . . # # # # . . . . . . . # . # . # # . . . . . # # . . . . . . . . # # . # # . . # # # # # # # # . . . . # # . # # . . . # # . . # # # # . . . . # . # # . # # . # . . . # . . # # # # . . # # # . # # # # # . . . . . # # . # . # # # . # . . . . # . . . . # # # # . . # # # . # . . . . # # # . # # # . # . # # # . # # . # # # # # # # # . . . # # # # . # # # . # # # # # # # # . . . . . # . # # # # . # # . # # # # # . . . . . # . # # # # . # # . . . # # . . . . . . . # # # # . . # # . . . # # # # # . . . # # # # # . # # # . . . # # # # # . . . # # # # . # . . . . . . . . . . # . . # # # # . # # . . . . . . . . . . . . . # # # . # # # . . . . . . . . . . . Unique solution. Horizontal runs: [[5], [2, 3, 2], [2, 5, 1], [2, 8], [2, 5, 11], [1, 1, 2, 1, 6], [1, 2, 1, 3], [2, 1, 1], [2, 6, 2], [15, 4], [10, 8], [2, 1, 4, 3, 6], [17], [17], [18], [1, 14], [1, 1, 14], [5, 9], [8], [7]] Vertical runs: [[5], [3, 2], [2, 1, 2], [1, 1, 1], [1, 1, 1], [1, 3], [2, 2], [1, 3, 3], [1, 3, 3, 1], [1, 7, 2], [1, 9, 1], [1, 10], [1, 10], [1, 3, 5], [1, 8], [2, 1, 6], [3, 1, 7], [4, 1, 7], [6, 1, 8], [6, 10], [7, 10], [1, 4, 11], [1, 2, 11], [2, 12], [3, 13]] Solution would be unique . . . . . . . . . . . . . . . . . . . . # # # # # . . # # . . . . . . . . . . . . . . # # # . . # # . # # . . . . . . . . . . . . . . # # # # # . . # # # . . . . . . . . . . . . . # # # # # # # # . . # # . . . . # # # # # . # # # # # # # # # # # . . # . # . . # # . . . . # . . . . # # # # # # . . . # . . # # . . . . . # . . . . . . . # # # . . . . # # . . . . . . . . # . . . . . . . . . . . . . # . # # . . . . . # # # # # # . . . . . . . . . # # . . # # # # # # # # # # # # # # # . . . . # # # # . . . . . # # # # # # # # # # . . # # # # # # # # . . . . # # . # . # # # # . # # # . . # # # # # # . . . . . . . . # # # # # # # # # # # # # # # # # . . . . . . . . # # # # # # # # # # # # # # # # # . . . . . . . # # # # # # # # # # # # # # # # # # . . . . . . . # . . . # # # # # # # # # # # # # # . . . . . . . # . # . # # # # # # # # # # # # # # . . . . . . . . # # # # # . . . # # # # # # # # # . . . . . . . . . . . . . . . . . # # # # # # # # . . . . . . . . . . . . . . . . . . # # # # # # # Unique solution. Extra example not solvable by deduction alone: Horizontal runs: [[2], [2], [1], [1]] Vertical runs: [[2], [2], [1], [1]] Solution may not be unique, doing exhaustive search: # # . . # # . . . . # . . . . # # # . . # # . . . . . # . . # . . # # . # # . . # . . . . . . # 3 solutions. Extra example where there is no solution: Horizontal runs: [[2], [1], [1]] Vertical runs: [[1], [1], [1]] Solution may not be unique, doing exhaustive search: No solution.
The output is the same as the Python entry. The run-time with ldc2 compiler is about 0.29 seconds.
F#
(*
I define a discriminated union to provide Nonogram Solver functionality.
Nigel Galloway May 28th., 2016
*)
type N =
|X |B |V
static member fn n i =
let fn n i = [for g = 0 to i-n do yield Array.init (n+g) (fun e -> if e >= g then X else B)]
let rec fi n i = [
match n with
| h::t -> match t with
| [] -> for g in fn h i do yield Array.append g (Array.init (i-g.Length) (fun _ -> B))
| _ -> for g in fn h ((i-List.sum t)+t.Length) do for a in fi t (i-g.Length-1) do yield Array.concat[g;[|B|];a]
| [] -> yield Array.init i (fun _ -> B)
]
fi n i
static member fi n i = Array.map2 (fun n g -> match (n,g) with |X,X->X |B,B->B |_->V) n i
static member fg (n: N[]) (i: N[][]) g = n |> Seq.mapi (fun e n -> i.[e].[g] = n || i.[e].[g] = V) |> Seq.forall (fun n -> n)
static member fe (n: N[][]) = n|> Array.forall (fun n -> Array.forall (fun n -> n <> V) n)
static member fl n = n |> Array.Parallel.map (fun n -> Seq.reduce (fun n g -> N.fi n g) n)
static member fa (nga: list<N []>[]) ngb = Array.Parallel.mapi (fun i n -> List.filter (fun n -> N.fg n ngb i) n) nga
static member fo n i g e =
let na = N.fa n e
let ia = N.fl na
let ga = N.fa g ia
(na, ia, ga, (N.fl ga))
static member toStr n = match n with |X->"X"|B->"."|V->"?"
static member presolve ((na: list<N []>[]), (ga: list<N []>[])) =
let nb = N.fl na
let x = N.fa ga nb
let rec fn n i g e l =
let na,ia,ga,ea = N.fo n i g e
let el = ((Array.map (fun n -> List.length n) na), (Array.map (fun n -> List.length n) ga))
if ((fst el) = (fst l)) && ((snd el) = (snd l)) then (n,i,g,e,(Array.forall (fun n -> n = 1) (fst l))) else fn na ia ga ea el
fn na nb x (N.fl x) ((Array.map (fun n -> List.length n) na), (Array.map (fun n -> List.length n) ga))
For the purposes of this task I provide a little code to read the input from a file
let fe (n : array<string>) i = n |> Array.collect (fun n -> [|N.fn [for g in n -> ((int)g-64)] i|])
let fl (n : array<string>) (i : array<string>) = (fe n i.Length), (fe i n.Length)
let rFile =
try
use file = File.OpenText @"nonogram.txt"
Some(fl (file.ReadLine().Split ' ') (file.ReadLine().Split ' '))
with | _ -> printfn "Error reading file" ; None
This may be used:
let n,i,g,e,l = N.presolve rFile.Value
if l then i |> Array.iter (fun n -> n |> Array.iter (fun n -> printf "%s" (N.toStr n));printfn "") else printfn "No unique solution"
- Output:
C BA CB BB F AE F A B AB CA AE GA E C D C .XXX.... XX.X.... .XXX..XX ..XX..XX ..XXXXXX X.XXXXX. XXXXXX.. ....X... ...XX... F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA ..........XXXXXX.... ........XXX.X..XXX.. ...X..XXX...X....XXX ..XXX.XXXXXXXXXXXXXX ...X..X............X ..X.X.XX..........XX XXXXX..XX........XX. XXXXX...X........X.. XXXXX..XXX.XXX.XXX.. XXXXXXXX.XXX.XXX.XXX CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF AAAAD BDG CEF CBDB BBB FC ....XXX.X........... ....XX.XXXX.X....... ....X.XXX.XXX....... ..XX.XXXX........... .XXX.XXX.X....XXX... XXX..XX.XX...X.XXX.. XX..XX.XX....XX.XX.. ....XX.X.X..XX.X.X.. ....X.XX.X...XXXX... ....X.X.XX.....XX... .....XX.XX..XXXXXXXX ....XX.XX...XX..XXXX ....X.XX.XX.X...X..X XXX..XXX.XXXXX.....X X.X.XXX.X....X....XX XX..XXX.X....XXX.XXX .X.XXX.XX.XXXXXXXX.. .XXXX.XXX.XXXXXXXX.. ...X.XXXX.XX.XXXXX.. ...X.XXXX.XX...XX... ....XXXX..XX...XXXXX ...XXXXX.XXX...XXXXX ...XXXX.X..........X ..XXXX.XX........... ..XXX.XXX........... E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM ....................XXXXX ..XX..............XXX..XX .XX..............XXXXX..X XX.............XXXXXXXX.. XX....XXXXX.XXXXXXXXXXX.. X.X..XX....X....XXXXXX... X..XX.....X.......XXX.... XX........X.............X .XX.....XXXXXX.........XX ..XXXXXXXXXXXXXXX....XXXX .....XXXXXXXXXX..XXXXXXXX ....XX.X.XXXX.XXX..XXXXXX ........XXXXXXXXXXXXXXXXX ........XXXXXXXXXXXXXXXXX .......XXXXXXXXXXXXXXXXXX .......X...XXXXXXXXXXXXXX .......X.X.XXXXXXXXXXXXXX ........XXXXX...XXXXXXXXX .................XXXXXXXX ..................XXXXXXX
Go
package main
import (
"fmt"
"strings"
)
type BitSet []bool
func (bs BitSet) and(other BitSet) {
for i := range bs {
if bs[i] && other[i] {
bs[i] = true
} else {
bs[i] = false
}
}
}
func (bs BitSet) or(other BitSet) {
for i := range bs {
if bs[i] || other[i] {
bs[i] = true
} else {
bs[i] = false
}
}
}
func iff(cond bool, s1, s2 string) string {
if cond {
return s1
}
return s2
}
func newPuzzle(data [2]string) {
rowData := strings.Fields(data[0])
colData := strings.Fields(data[1])
rows := getCandidates(rowData, len(colData))
cols := getCandidates(colData, len(rowData))
for {
numChanged := reduceMutual(cols, rows)
if numChanged == -1 {
fmt.Println("No solution")
return
}
if numChanged == 0 {
break
}
}
for _, row := range rows {
for i := 0; i < len(cols); i++ {
fmt.Printf(iff(row[0][i], "# ", ". "))
}
fmt.Println()
}
fmt.Println()
}
// collect all possible solutions for the given clues
func getCandidates(data []string, le int) [][]BitSet {
var result [][]BitSet
for _, s := range data {
var lst []BitSet
a := []byte(s)
sumBytes := 0
for _, b := range a {
sumBytes += int(b - 'A' + 1)
}
prep := make([]string, len(a))
for i, b := range a {
prep[i] = strings.Repeat("1", int(b-'A'+1))
}
for _, r := range genSequence(prep, le-sumBytes+1) {
bits := []byte(r[1:])
bitset := make(BitSet, len(bits))
for i, b := range bits {
bitset[i] = b == '1'
}
lst = append(lst, bitset)
}
result = append(result, lst)
}
return result
}
func genSequence(ones []string, numZeros int) []string {
le := len(ones)
if le == 0 {
return []string{strings.Repeat("0", numZeros)}
}
var result []string
for x := 1; x < numZeros-le+2; x++ {
skipOne := ones[1:]
for _, tail := range genSequence(skipOne, numZeros-x) {
result = append(result, strings.Repeat("0", x)+ones[0]+tail)
}
}
return result
}
/* If all the candidates for a row have a value in common for a certain cell,
then it's the only possible outcome, and all the candidates from the
corresponding column need to have that value for that cell too. The ones
that don't, are removed. The same for all columns. It goes back and forth,
until no more candidates can be removed or a list is empty (failure).
*/
func reduceMutual(cols, rows [][]BitSet) int {
countRemoved1 := reduce(cols, rows)
if countRemoved1 == -1 {
return -1
}
countRemoved2 := reduce(rows, cols)
if countRemoved2 == -1 {
return -1
}
return countRemoved1 + countRemoved2
}
func reduce(a, b [][]BitSet) int {
countRemoved := 0
for i := 0; i < len(a); i++ {
commonOn := make(BitSet, len(b))
for j := 0; j < len(b); j++ {
commonOn[j] = true
}
commonOff := make(BitSet, len(b))
// determine which values all candidates of a[i] have in common
for _, candidate := range a[i] {
commonOn.and(candidate)
commonOff.or(candidate)
}
// remove from b[j] all candidates that don't share the forced values
for j := 0; j < len(b); j++ {
fi, fj := i, j
for k := len(b[j]) - 1; k >= 0; k-- {
cnd := b[j][k]
if (commonOn[fj] && !cnd[fi]) || (!commonOff[fj] && cnd[fi]) {
lb := len(b[j])
copy(b[j][k:], b[j][k+1:])
b[j][lb-1] = nil
b[j] = b[j][:lb-1]
countRemoved++
}
}
if len(b[j]) == 0 {
return -1
}
}
}
return countRemoved
}
func main() {
p1 := [2]string{"C BA CB BB F AE F A B", "AB CA AE GA E C D C"}
p2 := [2]string{
"F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC",
"D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA",
}
p3 := [2]string{
"CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH " +
"BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC",
"BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF " +
"AAAAD BDG CEF CBDB BBB FC",
}
p4 := [2]string{
"E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G",
"E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ " +
"ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM",
}
for _, puzzleData := range [][2]string{p1, p2, p3, p4} {
newPuzzle(puzzleData)
}
}
- Output:
. # # # . . . . # # . # . . . . . # # # . . # # . . # # . . # # . . # # # # # # # . # # # # # . # # # # # # . . . . . . # . . . . . . # # . . . . . . . . . . . . . # # # # # # . . . . . . . . . . . . # # # . # . . # # # . . . . . # . . # # # . . . # . . . . # # # . . # # # . # # # # # # # # # # # # # # . . . # . . # . . . . . . . . . . . . # . . # . # . # # . . . . . . . . . . # # # # # # # . . # # . . . . . . . . # # . # # # # # . . . # . . . . . . . . # . . # # # # # . . # # # . # # # . # # # . . # # # # # # # # . # # # . # # # . # # # . . . . # # # . # . . . . . . . . . . . . . . . # # . # # # # . # . . . . . . . . . . . # . # # # . # # # . . . . . . . . . # # . # # # # . . . . . . . . . . . . # # # . # # # . # . . . . # # # . . . # # # . . # # . # # . . . # . # # # . . # # . . # # . # # . . . . # # . # # . . . . . . # # . # . # . . # # . # . # . . . . . . # . # # . # . . . # # # # . . . . . . . # . # . # # . . . . . # # . . . . . . . . # # . # # . . # # # # # # # # . . . . # # . # # . . . # # . . # # # # . . . . # . # # . # # . # . . . # . . # # # # . . # # # . # # # # # . . . . . # # . # . # # # . # . . . . # . . . . # # # # . . # # # . # . . . . # # # . # # # . # . # # # . # # . # # # # # # # # . . . # # # # . # # # . # # # # # # # # . . . . . # . # # # # . # # . # # # # # . . . . . # . # # # # . # # . . . # # . . . . . . . # # # # . . # # . . . # # # # # . . . # # # # # . # # # . . . # # # # # . . . # # # # . # . . . . . . . . . . # . . # # # # . # # . . . . . . . . . . . . . # # # . # # # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # # # # # . . # # . . . . . . . . . . . . . . # # # . . # # . # # . . . . . . . . . . . . . . # # # # # . . # # # . . . . . . . . . . . . . # # # # # # # # . . # # . . . . # # # # # . # # # # # # # # # # # . . # . # . . # # . . . . # . . . . # # # # # # . . . # . . # # . . . . . # . . . . . . . # # # . . . . # # . . . . . . . . # . . . . . . . . . . . . . # . # # . . . . . # # # # # # . . . . . . . . . # # . . # # # # # # # # # # # # # # # . . . . # # # # . . . . . # # # # # # # # # # . . # # # # # # # # . . . . # # . # . # # # # . # # # . . # # # # # # . . . . . . . . # # # # # # # # # # # # # # # # # . . . . . . . . # # # # # # # # # # # # # # # # # . . . . . . . # # # # # # # # # # # # # # # # # # . . . . . . . # . . . # # # # # # # # # # # # # # . . . . . . . # . # . # # # # # # # # # # # # # # . . . . . . . . # # # # # . . . # # # # # # # # # . . . . . . . . . . . . . . . . . # # # # # # # # . . . . . . . . . . . . . . . . . . # # # # # # #
Haskell
import Control.Applicative ((<|>))
import Control.Monad
import Control.Monad.CSP
import Data.List (transpose)
import System.Environment (getArgs)
import Text.ParserCombinators.ReadP (ReadP)
import qualified Text.ParserCombinators.ReadP as P
import Text.Printf (printf)
main :: IO ()
main = do
file <- parseArgs
printf "reading problem file from %s\n" file
ps <- parseProblems file
forM_ ps $ \p -> do
print p
putStrLn ""
printSolution $ solve p
putStrLn ""
-------------------------------------------------------------------------------
-- parsing
-------------------------------------------------------------------------------
parseArgs :: IO FilePath
parseArgs = do
args <- getArgs
case args of
[file] -> return file
_ -> ioError $ userError "expected exactly one command line argument, the name of the problem file"
data Problem = Problem
{ rows :: [[Int]]
, cols :: [[Int]]
} deriving (Show, Read, Eq, Ord)
entryP :: ReadP Int
entryP = do
n <- fromEnum <$> P.get
if n < 65 || n > 90
then P.pfail
else return $ n - 64
blankP, eolP :: ReadP Char
blankP = P.char ' '
eolP = P.char '\n'
entriesP :: ReadP [Int]
entriesP = ([] <$ blankP) <|> P.many1 entryP
lineP :: ReadP [[Int]]
lineP = P.sepBy1 entriesP blankP <* eolP
problemP :: ReadP Problem
problemP = Problem <$> lineP <*> lineP
problemsP :: ReadP [Problem]
problemsP = P.sepBy1 problemP (P.many blankP <* eolP) <* P.eof
parseProblems :: FilePath -> IO [Problem]
parseProblems file = do
s <- readFile file
case P.readP_to_S problemsP s of
[(ps, "")] -> return ps
_ -> ioError $ userError $ "error parsing file " <> file
-------------------------------------------------------------------------------
-- CSP
-------------------------------------------------------------------------------
solve :: Problem -> [[Bool]]
solve = oneCSPSolution . problemCSP
problemCSP :: Problem -> CSP r [[DV r Bool]]
problemCSP p = do
let rowCount = length $ rows p
colCount = length $ cols p
cells <- replicateM rowCount
$ replicateM colCount
$ mkDV [False, True]
forM_ (zip cells $ rows p) $ uncurry rowOrColCSP
forM_ (zip (transpose cells) $ cols p) $ uncurry rowOrColCSP
return cells
rowOrColCSP :: [DV r Bool] -> [Int] -> CSP r ()
rowOrColCSP ws [] = forM_ ws $ constraint1 not
rowOrColCSP ws xs = do
let vs = zip [0 ..] ws
n = length ws
blocks <- forM xs $ \x ->
mkDV [(i, i + x - 1) | i <- [0 .. n - x]] -- the blocks, given by first and last index
-- blocks must be separate and not overlapping
f blocks
-- cells in blocks are set
forM_ blocks $ \x ->
forM_ vs $ \(i, y) ->
constraint2 (\(x1, x2) b -> i < x1 || i > x2 || b) x y
-- cells before the first block are not set
forM_ vs $ \(i, y) ->
constraint2 (\(y', _) b -> i >= y' || not b) (head blocks) y
-- cells after the last block are not set
forM_ vs $ \(i, y) ->
constraint2 (\(_, y') b -> i <= y' || not b) (last blocks) y
-- cells between blocks are not set
forM_ (zip blocks $ tail blocks) $ \(x, y) ->
forM_ vs $ \(i, z) ->
constraint3 (\(_, x') (y', _) b -> i <= x' || i >= y' || not b) x y z
where
f :: [DV r (Int, Int)] -> CSP r ()
f (u : v : bs) = do
constraint2 (\(_, u') (v', _) -> v' >= u' + 2) u v
f $ v : bs
f _ = return ()
-------------------------------------------------------------------------------
-- printing
-------------------------------------------------------------------------------
printSolution :: [[Bool]] -> IO ()
printSolution bss =
forM_ bss $ \bs -> do
forM_ bs $ \b ->
putChar $ if b then '#' else '.'
putChar '\n'
- Output:
time cabal run nonogram-solver -- nonogram-problems.txt reading problem file from nonogram-problems.txt Problem {rows = [[3],[2,1],[3,2],[2,2],[6],[1,5],[6],[1],[2]], cols = [[1,2],[3,1],[1,5],[7,1],[5],[3],[4],[3]]} .###.... ##.#.... .###..## ..##..## ..###### #.#####. ######.. ....#... ...##... Problem {rows = [[6],[3,1,3],[1,3,1,3],[3,14],[1,1,1],[1,1,2,2],[5,2,2],[5,1,1],[5,3,3,3],[8,3,3,3]], cols = [[4],[4],[1,5],[3,4],[1,5],[1],[4,1],[2,2,2],[3,3],[1,1,2],[2,1,1],[1,1,2],[4,1],[1,1,2],[1,1,1],[2,1,2],[1,1,1],[3,4],[2,2,1],[4,1]]} ..........######.... ........###.#..###.. ...#..###...#....### ..###.############## ...#..#............# ..#.#.##..........## #####..##........##. #####...#........#.. #####..###.###.###.. ########.###.###.### Problem {rows = [[3,1],[2,4,1],[1,3,3],[2,4],[3,3,1,3],[3,2,2,1,3],[2,2,2,2,2],[2,1,1,2,1,1],[1,2,1,4],[1,1,2,2],[2,2,8],[2,2,2,4],[1,2,2,1,1,1],[3,3,5,1],[1,1,3,1,1,2],[2,3,1,3,3],[1,3,2,8],[4,3,8],[1,4,2,5],[1,4,2,2],[4,2,5],[5,3,5],[4,1,1],[4,2],[3,3]], cols = [[2,3],[3,1,3],[3,2,1,2],[2,4,4],[3,4,2,4,5],[2,5,2,4,6],[1,4,3,4,6,1],[4,3,3,6,2],[4,2,3,6,3],[1,2,4,2,1],[2,2,6],[1,1,6],[2,1,4,2],[4,2,6],[1,1,1,1,4],[2,4,7],[3,5,6],[3,2,4,2],[2,2,2],[6,3]]} ....###.#........... ....##.####.#....... ....#.###.###....... ..##.####........... .###.###.#....###... ###..##.##...#.###.. ##..##.##....##.##.. ....##.#.#..##.#.#.. ....#.##.#...####... ....#.#.##.....##... .....##.##..######## ....##.##...##..#### ....#.##.##.#...#..# ###..###.#####.....# #.#.###.#....#....## ##..###.#....###.### .#.###.##.########.. .####.###.########.. ...#.####.##.#####.. ...#.####.##...##... ....####..##...##### ...#####.###...##### ...####.#..........# ..####.##........... ..###.###........... Problem {rows = [[5],[2,3,2],[2,5,1],[2,8],[2,5,11],[1,1,2,1,6],[1,2,1,3],[2,1,1],[2,6,2],[15,4],[10,8],[2,1,4,3,6],[17],[17],[18],[1,14],[1,1,14],[5,9],[8],[7]], cols = [[5],[3,2],[2,1,2],[1,1,1],[1,1,1],[1,3],[2,2],[1,3,3],[1,3,3,1],[1,7,2],[1,9,1],[1,10],[1,10],[1,3,5],[1,8],[2,1,6],[3,1,7],[4,1,7],[6,1,8],[6,10],[7,10],[1,4,11],[1,2,11],[2,12],[3,13]]} ....................##### ..##..............###..## .##..............#####..# ##.............########.. ##....#####.###########.. #.#..##....#....######... #..##.....#.......###.... ##........#.............# .##.....######.........## ..###############....#### .....##########..######## ....##.#.####.###..###### ........################# ........################# .......################## .......#...############## .......#.#.############## ........#####...######### .................######## ..................####### real 0m0,244s user 0m0,208s sys 0m0,031s
Java
import java.util.*;
import static java.util.Arrays.*;
import static java.util.stream.Collectors.toList;
public class NonogramSolver {
static String[] p1 = {"C BA CB BB F AE F A B", "AB CA AE GA E C D C"};
static String[] p2 = {"F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC", "D D AE "
+ "CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA"};
static String[] p3 = {"CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH "
+ "BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC",
"BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF "
+ "AAAAD BDG CEF CBDB BBB FC"};
static String[] p4 = {"E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q "
+ "R AN AAN EI H G", "E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ "
+ "ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM"};
public static void main(String[] args) {
for (String[] puzzleData : new String[][]{p1, p2, p3, p4})
newPuzzle(puzzleData);
}
static void newPuzzle(String[] data) {
String[] rowData = data[0].split("\\s");
String[] colData = data[1].split("\\s");
List<List<BitSet>> cols, rows;
rows = getCandidates(rowData, colData.length);
cols = getCandidates(colData, rowData.length);
int numChanged;
do {
numChanged = reduceMutual(cols, rows);
if (numChanged == -1) {
System.out.println("No solution");
return;
}
} while (numChanged > 0);
for (List<BitSet> row : rows) {
for (int i = 0; i < cols.size(); i++)
System.out.print(row.get(0).get(i) ? "# " : ". ");
System.out.println();
}
System.out.println();
}
// collect all possible solutions for the given clues
static List<List<BitSet>> getCandidates(String[] data, int len) {
List<List<BitSet>> result = new ArrayList<>();
for (String s : data) {
List<BitSet> lst = new LinkedList<>();
int sumChars = s.chars().map(c -> c - 'A' + 1).sum();
List<String> prep = stream(s.split(""))
.map(x -> repeat(x.charAt(0) - 'A' + 1, "1")).collect(toList());
for (String r : genSequence(prep, len - sumChars + 1)) {
char[] bits = r.substring(1).toCharArray();
BitSet bitset = new BitSet(bits.length);
for (int i = 0; i < bits.length; i++)
bitset.set(i, bits[i] == '1');
lst.add(bitset);
}
result.add(lst);
}
return result;
}
// permutation generator, translated from Python via D
static List<String> genSequence(List<String> ones, int numZeros) {
if (ones.isEmpty())
return asList(repeat(numZeros, "0"));
List<String> result = new ArrayList<>();
for (int x = 1; x < numZeros - ones.size() + 2; x++) {
List<String> skipOne = ones.stream().skip(1).collect(toList());
for (String tail : genSequence(skipOne, numZeros - x))
result.add(repeat(x, "0") + ones.get(0) + tail);
}
return result;
}
static String repeat(int n, String s) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++)
sb.append(s);
return sb.toString();
}
/* If all the candidates for a row have a value in common for a certain cell,
then it's the only possible outcome, and all the candidates from the
corresponding column need to have that value for that cell too. The ones
that don't, are removed. The same for all columns. It goes back and forth,
until no more candidates can be removed or a list is empty (failure). */
static int reduceMutual(List<List<BitSet>> cols, List<List<BitSet>> rows) {
int countRemoved1 = reduce(cols, rows);
if (countRemoved1 == -1)
return -1;
int countRemoved2 = reduce(rows, cols);
if (countRemoved2 == -1)
return -1;
return countRemoved1 + countRemoved2;
}
static int reduce(List<List<BitSet>> a, List<List<BitSet>> b) {
int countRemoved = 0;
for (int i = 0; i < a.size(); i++) {
BitSet commonOn = new BitSet();
commonOn.set(0, b.size());
BitSet commonOff = new BitSet();
// determine which values all candidates of ai have in common
for (BitSet candidate : a.get(i)) {
commonOn.and(candidate);
commonOff.or(candidate);
}
// remove from bj all candidates that don't share the forced values
for (int j = 0; j < b.size(); j++) {
final int fi = i, fj = j;
if (b.get(j).removeIf(cnd -> (commonOn.get(fj) && !cnd.get(fi))
|| (!commonOff.get(fj) && cnd.get(fi))))
countRemoved++;
if (b.get(j).isEmpty())
return -1;
}
}
return countRemoved;
}
}
. # # # . . . . # # . # . . . . . # # # . . # # . . # # . . # # . . # # # # # # # . # # # # # . # # # # # # . . . . . . # . . . . . . # # . . . . . . . . . . . . . # # # # # # . . . . . . . . . . . . # # # . # . . # # # . . . . . # . . # # # . . . # . . . . # # # . . # # # . # # # # # # # # # # # # # # . . . # . . # . . . . . . . . . . . . # . . # . # . # # . . . . . . . . . . # # # # # # # . . # # . . . . . . . . # # . # # # # # . . . # . . . . . . . . # . . # # # # # . . # # # . # # # . # # # . . # # # # # # # # . # # # . # # # . # # # . . . . # # # . # . . . . . . . . . . . . . . . # # . # # # # . # . . . . . . . . . . . # . # # # . # # # . . . . . . . . . # # . # # # # . . . . . . . . . . . . # # # . # # # . # . . . . # # # . . . # # # . . # # . # # . . . # . # # # . . # # . . # # . # # . . . . # # . # # . . . . . . # # . # . # . . # # . # . # . . . . . . # . # # . # . . . # # # # . . . . . . . # . # . # # . . . . . # # . . . . . . . . # # . # # . . # # # # # # # # . . . . # # . # # . . . # # . . # # # # . . . . # . # # . # # . # . . . # . . # # # # . . # # # . # # # # # . . . . . # # . # . # # # . # . . . . # . . . . # # # # . . # # # . # . . . . # # # . # # # . # . # # # . # # . # # # # # # # # . . . # # # # . # # # . # # # # # # # # . . . . . # . # # # # . # # . # # # # # . . . . . # . # # # # . # # . . . # # . . . . . . . # # # # . . # # . . . # # # # # . . . # # # # # . # # # . . . # # # # # . . . # # # # . # . . . . . . . . . . # . . # # # # . # # . . . . . . . . . . . . . # # # . # # # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # # # # # . . # # . . . . . . . . . . . . . . # # # . . # # . # # . . . . . . . . . . . . . . # # # # # . . # # # . . . . . . . . . . . . . # # # # # # # # . . # # . . . . # # # # # . # # # # # # # # # # # . . # . # . . # # . . . . # . . . . # # # # # # . . . # . . # # . . . . . # . . . . . . . # # # . . . . # # . . . . . . . . # . . . . . . . . . . . . . # . # # . . . . . # # # # # # . . . . . . . . . # # . . # # # # # # # # # # # # # # # . . . . # # # # . . . . . # # # # # # # # # # . . # # # # # # # # . . . . # # . # . # # # # . # # # . . # # # # # # . . . . . . . . # # # # # # # # # # # # # # # # # . . . . . . . . # # # # # # # # # # # # # # # # # . . . . . . . # # # # # # # # # # # # # # # # # # . . . . . . . # . . . # # # # # # # # # # # # # # . . . . . . . # . # . # # # # # # # # # # # # # # . . . . . . . . # # # # # . . . # # # # # # # # # . . . . . . . . . . . . . . . . . # # # # # # # # . . . . . . . . . . . . . . . . . . # # # # # # #
jq
Works with jq, the C implementation of jq
Works with gojq, the Go implementation of jq (*)
The following solution relies on jq's support for backtracking. It begins by determining the cells in the nonogram matrix that can be directly determined by the row and column constraints; this is followed by an iterative winnowing step (during which informative messages showing the reduction achieved are produced); finally, one or more solutions are found by maintaining arrays of possible solutions for each row and column.
Specifically, .rows[$i] keeps track of possible solutions for the i-th row of the nonogram, and .cols[$j] likewise keeps track of the possible solutions for the j-th column of the nonogram.
(*) jq's definition of transform/0 must be used. It is included here to avoid confusion.
Acknowledgement: genSequence/2 is translated from the Wren solution.
### For the sake of gojq
# This def of transpose can be omitted if using the C implementation of jq.
# Rows are padded with nulls so the result is always rectangular.
def transpose: [range(0; map(length)|max // 0) as $i | [.[][$i]]];
###############################################################################
### Generic functions
def array($n): [range(0;$n) as $i | .];
def inform(msg):
. as $in
| ("\(msg)\n" | stderr)
| $in;
def sum(stream): reduce stream as $x (0; . + $x);
def count(stream): sum(stream|1);
# null-based elementwise "or" for arrays
def or_array($b):
. as $a
| reduce range(0;length) as $i ([];
. + [if $a[$i] == null then $b[$i] else $a[$i] end]);
# null-based elementwise "or" for matrices
def or_matrix($b):
. as $a
| reduce range(0;length) as $i ([];
. + [$a[$i] | or_array($b[$i])] );
# Pretty-print the input, which must be an array but is normally a matrix.
# Notice that null nows and null values are handled specially.
def pp:
.[]
| if . == null then ""
else
reduce .[] as $x ("";
. + if $x == 0 then " ."
elif $x == null then " "
else " 1"
end )
end;
### Nonogram Solver
## Building blocks:
# $a and $b are normally arrays with $a | length <= $b | length
# Output: an array of the same length as $a, such that
# the element at $i is ( a[$i] == $b[$i] ? a[$i] : null )
def common($a; $b):
[ range(0;$a|length) as $i
| $a[$i]
| if . == $b[$i] then . else null end ];
# If `stream` is a stream of arrays, the output will be the reduction
# of the stream based on common/2, except that the output is null if
# the arrays have no elements in common.
# The implementation is intended to serve as the complete specification.
# Notice in particular the "short-circuit" semantics, and
# that an occurrence of null or [] in the stream will produce `null`
def common(stream):
def count: sum( .common[] | if . == null then 0 else 1 end );
first(
foreach (stream, null) as $x ({common: null, emit: 0};
if $x == null then .emit = .common
elif .common == null then .common = $x
else .common |= common(.; $x)
| if count == 0 then .emit=null end
end)
| select(.emit != 0).emit);
# $common should be null or an array. If $common is null, any input
# is agreeable. Otherwise, if the input is an array, then the output
# is true or false as the input is in point-wise agreement with
# $common in the sense that an occurrence of `null` in $common imposes
# no constraint on the corresponding item in the input.
# The implementation is intended to serve as the complete specification.
def agreeable($common):
if $common == null then true
else . as $in
| all( range(0; $common|length);
. as $i
| if $common[$i] == null then true
else $common[$i] == $in[$i]
end)
end;
# Convert an alphabetic specification of a sequence of runs
# to an array of integer arrays, e.g. "AB A" => [[1,2], [1]]
# Use _ for 0
def alphabet2runs:
split(" ")
| map( [explode[] | if . == 95 then 0 else . - 64 end]);
# A recursive helper function for runs2rows/2.
# Output: a stream of the rows with the required runs.
# Each row begins with a 0 for ensuring separation between the runs.
def genSequence($ones; $numZeros):
if $ones|length == 0 then (0|array($numZeros))
else range(1; $numZeros - ($ones|length) + 2) as $x
| genSequence($ones[1:]; $numZeros - $x) as $tail
| (0|array($x)) + $ones[0] + $tail
end;
# $rows should be an array of integers specifying the run lengths in a row of length $len.
# Output: a stream of arrays of length $len with the specified runs
def runs2rows($runs; $len):
($runs|map(select(. != 0))) as $runs # ignore 0s
| if ($runs|length) == 1 and $runs[0] == $len then 1|array($len)
else sum($runs[]) as $sum
| if $len - $sum <= 0
then empty
else
(reduce ($runs|map(select(. != 0)))[] as $run ([]; . + [1|array($run)] )) as $data
| genSequence($data; $len - $sum + 1)[1:]
end
end;
# Check the acceptability of . based on $common
def acceptable($common):
. as $in
| $common == null
or all( range(0;length); . as $i | $common[$i] | IN(null, $in[$i])) ;
# The rows that are acceptable w.r.t. $common
def runs2rows($runs; $len; $common):
runs2rows($runs; $len)
| select(acceptable($common));
# Setup {rows, cols, common} based on $rowruns and $colruns
def setup($rowruns; $colruns):
($rowruns | length) as $nrows
| ($colruns | length) as $ncols
| ($rowruns | map(common(runs2rows(.; $ncols)) ) ) as $commonRows
| ($colruns | map(common(runs2rows(.; $nrows)) ) ) as $commonCols
| ($commonCols | transpose | or_matrix($commonRows)) as $common
| ($common | transpose) as $ct
| { rows: [range(0; $nrows) as $i | [runs2rows($rowruns[$i]; $ncols; $common[$i]) ]],
cols: [range(0; $ncols) as $i | [runs2rows($colruns[$i]; $nrows; $ct[$i]) ]],
common: $common,
matrix: [],
};
# Winnow .rows and .cols based on point-wise commonality
def winnow:
.reduction = 0
| (.rows|length) as $nrows
| (.cols|length) as $ncols
# Winnow each row that has not already been fixed
| reduce range(0; $nrows) as $i (.;
if (.rows[$i] | length) != 1
then common(.rows[$i][]) as $common
| (.rows[$i] | length) as $before
| .rows[$i] |= map(select(agreeable($common)))
| .reduction += ((.rows[$i]|length) - $before)
end )
# Winnow each col that has not already been fixed
| reduce range(0; $ncols) as $i (.;
if (.cols[$i] | length) != 1
then common(.cols[$i][]) as $common
| (.cols[$i] | length) as $before
| .cols[$i] |= map(select(agreeable($common)))
| .reduction += ((.cols[$i]|length) - $before )
end)
| inform("reduction by \(.reduction)")
| if .reduction != 0 then winnow end ;
# Input: {rows, cols}
# If setting .matrix[$i] to $row is feasible,
# then winnow .cols accordingly and finally set .matrix[$i] to $row
def set($i; $row):
(.cols | length) as $ncols
| .cols as $cols
| if all(range(0; $ncols);
. as $j
| any( range(0; $cols[$j]|length);
$cols[$j][.][$i] == $row[$j] ) )
then foreach range(0; $ncols) as $j (.;
.cols[$j][] |= select( .[$i] == $row[$j] ) )
else empty
end
| .matrix[$i] = $row;
# Input: {rows, cols, matrix} where .matrix is the candidate matrix constructed so far
# After all the columnwise- and rowwise-constraints have been examined...
def solve($colruns):
(.rows|length) as $nrows
| (.cols|length) as $ncols
| (.matrix|length) as $m
| if $m == $nrows
then .
else range(0; .rows[$m]|length) as $p
| .rows[$m][$p] as $row
| set($m; $row)
| solve($colruns)
end ;
# Generate all solutions
def generate( $rowruns; $colruns ):
($rowruns | length) as $nrows
| ($colruns | length) as $ncols
| setup( $rowruns; $colruns )
| winnow
| solve($colruns);
# Generate a single solution
# Top-level: $p should be an array of two alphabetic ([A-Z_]) strings representing
# the row-wise and columnwise run lengths, respectively,
# with _ signifying 0, A signifying 1, etc.
def generate($p):
($p[0] | alphabet2runs) as $rowruns
| ($p[1] | alphabet2runs) as $colruns
| first( generate($rowruns; $colruns ) ) ;
# Top-level convenience function, where p is a puzzle specification in alphabetic form.
def puzzle($title; p):
$title,
( generate(p)
| .matrix
| pp ),
"";
def p0: [ "B A A", "B A A"];
def p1:
["C BA CB BB F AE F A B", "AB CA AE GA E C D C"];
def p2: [
"F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC",
"D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA"
];
def p3: [
"CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH " +
"BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC",
"BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF " +
"AAAAD BDG CEF CBDB BBB FC"
];
def p4: [
"E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G",
"E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ " +
"ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM"
];
puzzle("p1"; p1),
puzzle("p2"; p2),
puzzle("p3"; p3),
puzzle("p4"; p4)
- Output:
p1 reduction by 2 reduction by 0 . 1 1 1 . . . . 1 1 . 1 . . . . . 1 1 1 . . 1 1 . . 1 1 . . 1 1 1 1 1 1 1 1 . . 1 . 1 1 1 1 1 . . 1 1 1 1 1 1 . . 1 . . . . . . . . 1 1 . . . . p2 reduction by 4 reduction by 0 . . . . . . . . . 1 1 1 1 1 1 . . . . . . . . . . . 1 1 1 . 1 . 1 1 1 . . . . . . . . 1 . . 1 1 1 . 1 . . . . . . 1 1 1 . . 1 1 1 . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . . 1 . . 1 . 1 . . . . . . . . . . . . . 1 . 1 . 1 1 . 1 1 . . . . . . . . . 1 1 1 1 1 . . 1 1 . . . . . . . 1 1 . . 1 1 1 1 1 . . . 1 . . . . . . . . 1 . . 1 1 1 1 1 . . 1 1 1 . 1 1 1 . 1 1 1 . . 1 1 1 1 1 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 p3 reduction by 0 1 1 1 . 1 . . . . . . . . . . . . . . . 1 1 . 1 1 1 1 . 1 . . . . . . . . . . . . 1 . 1 1 1 . 1 1 1 . . . . . . . . . . 1 1 . . . 1 1 1 1 . . . . . . . . . . . 1 1 1 . 1 1 1 . 1 . 1 1 1 . . . . . . . 1 1 1 . . 1 1 . 1 1 . 1 . 1 1 1 . . . . . 1 1 . 1 1 . 1 1 . 1 1 . 1 1 . . . . . . . . . 1 1 . 1 . 1 . 1 1 . 1 . 1 . . . . 1 . 1 1 . 1 . 1 1 1 1 . . . . . . . . . 1 . 1 . 1 1 . 1 1 . . . . . . . . . . . 1 1 . 1 1 . 1 1 1 1 1 1 1 1 . . . . . . 1 1 . 1 1 . 1 1 . 1 1 1 1 . . . . . . . 1 . 1 1 . 1 1 . 1 . 1 . 1 . . . . . . . 1 1 1 . 1 1 1 . 1 1 1 1 1 . 1 . . . . . 1 . 1 . 1 1 1 . 1 . 1 . 1 1 . . . . . . 1 1 . 1 1 1 . 1 . 1 1 1 . 1 1 1 . . . . 1 . 1 1 1 . 1 1 . 1 1 1 1 1 1 1 1 . . . 1 1 1 1 . 1 1 1 . 1 1 1 1 1 1 1 1 . . . 1 . . 1 1 1 1 . 1 1 . 1 1 1 1 1 . . . . 1 . 1 1 1 1 . 1 1 . 1 1 . . . . . . . . . . 1 1 1 1 . 1 1 . . . . . 1 1 1 1 1 . . 1 1 1 1 1 . 1 1 1 . . . . 1 1 1 1 1 . . 1 1 1 1 . 1 . 1 . . . . . . . . . . . 1 1 1 1 . 1 1 . . . . . . . . . . . . . 1 1 1 . 1 1 1 . . . . . . . . . . . . p4 reduction by 4 reduction by 0 1 1 1 1 1 . . . . . . . . . . . . . . . . . . . . 1 1 . 1 1 1 . 1 1 . . . . . . . . . . . . . . . . 1 1 . 1 1 1 1 1 . . . . . . . . . . . . 1 . . . . 1 1 . . . . . . . . . . . . . 1 1 1 1 1 1 1 1 . . 1 1 . 1 1 1 1 1 . . . 1 1 1 1 1 1 1 1 1 1 1 . . . . 1 . 1 . 1 1 . 1 . . . . . . . 1 1 1 1 1 1 . . . . 1 . 1 1 . 1 . . . . . . . . . . . 1 1 1 . . . . . 1 1 . 1 . . . . . . . . . . . . . . . . . . . 1 . 1 1 . . . . . 1 1 1 1 1 1 . . . . . . . . . 1 1 . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . . . . 1 1 1 1 . . . . . 1 1 1 1 1 1 1 1 1 1 . . 1 1 1 1 1 1 1 1 . 1 1 . 1 . . . . 1 1 1 1 . 1 1 1 . . 1 1 1 1 1 1 . . . . . . . . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . . . . . . . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . . . . . . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 . . . . . . . . . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 . 1 . . . . . . . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1 1 . . . . . . . . . 1 1 1 1 1 1 1 1 1 . . . . . . . . . . . . . . . . . 1 1 1 1 1 1 1 1 . . . . . . . . . . . . . . . . . . 1 1 1 1 1 1 1 .
Julia
using Base.Iterators
struct NonogramPuzzle
nrows::Int
ncols::Int
xhints::Vector{Vector{Int}}
yhints::Vector{Vector{Int}}
solutions:: Vector{Any}
NonogramPuzzle(xh, yh) = new(length(xh), length(yh), xh, yh, Vector{NTuple{4,Array{Int64,1}}}())
end
ycols2xrows(ycols) = [[ycols[i][j] for i in eachindex(ycols)] for j in eachindex(ycols[1])]
function hintsfromcol(rowvec, col, nrows)
hints = Vector{Int}()
hintrun = 0
for row in rowvec
if row[col] != 0
hintrun += 1
if col == nrows
push!(hints, hintrun)
end
elseif hintrun > 0
push!(hints, hintrun)
hintrun = 0
end
end
hints
end
function nonoblocks(hints, len)
minsized(arr) = vcat(map(x -> vcat(fill(1, x), [0]), arr)...)[1:end-1]
minlen(arr) = sum(arr) + length(arr) - 1
if isempty(hints)
return fill(0, len)
elseif minlen(hints) == len
return minsized(hints)
end
possibilities = Vector{Vector{Int}}()
allbuthead = hints[2:end]
for leftspace in 0:(len - minlen(hints))
header = vcat(fill(0, leftspace), fill(1, hints[1]), [0])
rightspace = len - length(header)
if isempty(allbuthead)
push!(possibilities, rightspace <= 0 ? header[1:len] : vcat(header, fill(0, rightspace)))
elseif minlen(allbuthead) == rightspace
push!(possibilities, vcat(header, minsized(allbuthead)))
else
foreach(x -> push!(possibilities, vcat(header, x)), nonoblocks(allbuthead, rightspace))
end
end
possibilities
end
function exclude!(xchoices, ychoices)
andvec(a) = findall(x -> x == 1, foldl((x, y) -> [x[i] & y[i] for i in 1:length(x)], a))
orvec(a) = findall(x -> x == 0, foldl((x, y) -> [x[i] | y[i] for i in 1:length(x)], a))
filterbyval!(arr, val, pos) = if !isempty(arr) filter!(x -> x[pos] == val, arr); end
ensurevecvec(arr::Vector{Vector{Int}}) = arr
ensurevecvec(arr::Vector{Int}) = [arr]
function excl!(choices, otherchoices)
for i in 1:length(choices)
if length(choices[i]) > 0
all1 = andvec(choices[i])
all0 = orvec(choices[i])
foreach(n -> filterbyval!(otherchoices[n], 1, i), all1)
foreach(n -> filterbyval!(otherchoices[n], 0, i), all0)
end
end
end
xclude!(x, y) = (excl!(x, y); x = map(ensurevecvec, x); y = map(ensurevecvec, y); (x, y))
xlen, ylen = sum(map(length, xchoices)), sum(map(length, ychoices))
while true
ychoices, xchoices = xclude!(ychoices, xchoices)
if any(isempty, xchoices)
return
end
xchoices, ychoices = xclude!(xchoices, ychoices)
if any(isempty, ychoices)
return
end
newxlen, newylen = sum(map(length, xchoices)), sum(map(length, ychoices))
if newxlen == xlen && newylen == ylen
return
end
xlen, ylen = newxlen, newylen
end
end
function trygrids(nonogram)
xchoices = [nonoblocks(nonogram.xhints[i], nonogram.ncols) for i in 1:nonogram.nrows]
ychoices = [nonoblocks(nonogram.yhints[i], nonogram.nrows) for i in 1:nonogram.ncols]
exclude!(xchoices, ychoices)
if all(x -> length(x) == 1, xchoices)
println("Unique solution.")
push!(nonogram.solutions, [x[1] for x in xchoices])
elseif all(x -> length(x) == 1, ychoices)
println("Unique solution.")
ycols = [y[1] for y in ychoices]
push!(nonogram.solutions, ycols2xrows(ycols))
else
println("Brute force: $(prod(map(length, xchoices))) possibilities.")
for stack in product(xchoices...)
arr::Vector{Vector{Int}} = [i isa Vector ? i : [i] for i in stack]
if all(x -> length(x) == nonogram.ncols, arr) &&
all(y -> hintsfromcol(arr, y, nonogram.nrows) == nonogram.yhints[y], 1:nonogram.ncols)
push!(nonogram.solutions, arr)
end
end
nsoln = length(nonogram.solutions)
println(nsoln == 0 ? "No" : nsoln, " solutions.")
end
end
# The first puzzle below requires brute force, and the second has no solutions.
const testnonograms = """
B B A A
B B A A
B A A
A A A
C BA CB BB F AE F A B
AB CA AE GA E C D C
F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC
D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA
CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC
BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF AAAAD BDG CEF CBDB BBB FC
E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G
E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM
"""
function processtestpuzzles(txt)
solutiontxt(a) = (s = ""; for r in a for c in r; s *= (c == 0 ? "." : "#") end; s *= "\n" end; s)
txtline2ints(s) = [[UInt8(ch - 'A' + 1) for ch in r] for r in split(s, r"\s+")]
linepairs = uppercase.(string.(split(txt, "\n\n")))
pcount = 0
for xyhints in linepairs
xh, yh = map(x -> txtline2ints(strip(x)), split(xyhints, "\n"))
nonogram = NonogramPuzzle(xh, yh)
println("\nPuzzle $(pcount += 1):")
trygrids(nonogram)
foreach(x -> println(solutiontxt(x), "\n"), nonogram.solutions)
end
end
processtestpuzzles(testnonograms)
Puzzle 1: Brute force: 144 possibilities. 2 solutions. .##. ##.. #... ...# ##.. ##.. ..#. ...# Puzzle 2: Brute force: 8 possibilities. No solutions. Puzzle 3: Unique solution. .###.... ##.#.... .###..## ..##..## ..###### #.#####. ######.. ....#... ...##... Puzzle 4: Unique solution. ..........######.... ........###.#..###.. ...#..###...#....### ..###.############## ...#..#............# ..#.#.##..........## #####..##........##. #####...#........#.. #####..###.###.###.. ########.###.###.### Puzzle 5: Unique solution. ....###.#........... ....##.####.#....... ....#.###.###....... ..##.####........... .###.###.#....###... ###..##.##...#.###.. ##..##.##....##.##.. ....##.#.#..##.#.#.. ....#.##.#...####... ....#.#.##.....##... .....##.##..######## ....##.##...##..#### ....#.##.##.#...#..# ###..###.#####.....# #.#.###.#....#....## ##..###.#....###.### .#.###.##.########.. .####.###.########.. ...#.####.##.#####.. ...#.####.##...##... ....####..##...##### ...#####.###...##### ...####.#..........# ..####.##........... ..###.###........... Puzzle 6: Unique solution. ....................##### ..##..............###..## .##..............#####..# ##.............########.. ##....#####.###########.. #.#..##....#....######... #..##.....#.......###.... ##........#.............# .##.....######.........## ..###############....#### .....##########..######## ....##.#.####.###..###### ........################# ........################# .......################## .......#...############## .......#.#.############## ........#####...######### .................######## ..................#######
Kotlin
// version 1.2.0
import java.util.BitSet
typealias BitSets = List<MutableList<BitSet>>
val rx = Regex("""\s""")
fun newPuzzle(data: List<String>) {
val rowData = data[0].split(rx)
val colData = data[1].split(rx)
val rows = getCandidates(rowData, colData.size)
val cols = getCandidates(colData, rowData.size)
do {
val numChanged = reduceMutual(cols, rows)
if (numChanged == -1) {
println("No solution")
return
}
}
while (numChanged > 0)
for (row in rows) {
for (i in 0 until cols.size) {
print(if (row[0][i]) "# " else ". ")
}
println()
}
println()
}
// collect all possible solutions for the given clues
fun getCandidates(data: List<String>, len: Int): BitSets {
val result = mutableListOf<MutableList<BitSet>>()
for (s in data) {
val lst = mutableListOf<BitSet>()
val a = s.toCharArray()
val sumChars = a.sumBy { it - 'A' + 1 }
val prep = a.map { "1".repeat(it - 'A' + 1) }
for (r in genSequence(prep, len - sumChars + 1)) {
val bits = r.substring(1).toCharArray()
val bitset = BitSet(bits.size)
for (i in 0 until bits.size) bitset[i] = bits[i] == '1'
lst.add(bitset)
}
result.add(lst)
}
return result
}
fun genSequence(ones: List<String>, numZeros: Int): List<String> {
if (ones.isEmpty()) return listOf("0".repeat(numZeros))
val result = mutableListOf<String>()
for (x in 1 until numZeros - ones.size + 2) {
val skipOne = ones.drop(1)
for (tail in genSequence(skipOne, numZeros - x)) {
result.add("0".repeat(x) + ones[0] + tail)
}
}
return result
}
/* If all the candidates for a row have a value in common for a certain cell,
then it's the only possible outcome, and all the candidates from the
corresponding column need to have that value for that cell too. The ones
that don't, are removed. The same for all columns. It goes back and forth,
until no more candidates can be removed or a list is empty (failure).
*/
fun reduceMutual(cols: BitSets, rows: BitSets): Int {
val countRemoved1 = reduce(cols, rows)
if (countRemoved1 == -1) return -1
val countRemoved2 = reduce(rows, cols)
if (countRemoved2 == -1) return -1
return countRemoved1 + countRemoved2
}
fun reduce(a: BitSets, b: BitSets): Int {
var countRemoved = 0
for (i in 0 until a.size) {
val commonOn = BitSet()
commonOn[0] = b.size
val commonOff = BitSet()
// determine which values all candidates of a[i] have in common
for (candidate in a[i]) {
commonOn.and(candidate)
commonOff.or(candidate)
}
// remove from b[j] all candidates that don't share the forced values
for (j in 0 until b.size) {
val fi = i
val fj = j
if (b[j].removeIf { cnd ->
(commonOn[fj] && !cnd[fi]) ||
(!commonOff[fj] && cnd[fi]) }) countRemoved++
if (b[j].isEmpty()) return -1
}
}
return countRemoved
}
val p1 = listOf("C BA CB BB F AE F A B", "AB CA AE GA E C D C")
val p2 = listOf(
"F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC",
"D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA"
)
val p3 = listOf(
"CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH " +
"BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC",
"BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF " +
"AAAAD BDG CEF CBDB BBB FC"
)
val p4 = listOf(
"E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G",
"E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ " +
"ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM"
)
fun main(args: Array<String>) {
for (puzzleData in listOf(p1, p2, p3, p4)) {
newPuzzle(puzzleData)
}
}
- Output:
. # # # . . . . # # . # . . . . . # # # . . # # . . # # . . # # . . # # # # # # # . # # # # # . # # # # # # . . . . . . # . . . . . . # # . . . . . . . . . . . . . # # # # # # . . . . . . . . . . . . # # # . # . . # # # . . . . . # . . # # # . . . # . . . . # # # . . # # # . # # # # # # # # # # # # # # . . . # . . # . . . . . . . . . . . . # . . # . # . # # . . . . . . . . . . # # # # # # # . . # # . . . . . . . . # # . # # # # # . . . # . . . . . . . . # . . # # # # # . . # # # . # # # . # # # . . # # # # # # # # . # # # . # # # . # # # . . . . # # # . # . . . . . . . . . . . . . . . # # . # # # # . # . . . . . . . . . . . # . # # # . # # # . . . . . . . . . # # . # # # # . . . . . . . . . . . . # # # . # # # . # . . . . # # # . . . # # # . . # # . # # . . . # . # # # . . # # . . # # . # # . . . . # # . # # . . . . . . # # . # . # . . # # . # . # . . . . . . # . # # . # . . . # # # # . . . . . . . # . # . # # . . . . . # # . . . . . . . . # # . # # . . # # # # # # # # . . . . # # . # # . . . # # . . # # # # . . . . # . # # . # # . # . . . # . . # # # # . . # # # . # # # # # . . . . . # # . # . # # # . # . . . . # . . . . # # # # . . # # # . # . . . . # # # . # # # . # . # # # . # # . # # # # # # # # . . . # # # # . # # # . # # # # # # # # . . . . . # . # # # # . # # . # # # # # . . . . . # . # # # # . # # . . . # # . . . . . . . # # # # . . # # . . . # # # # # . . . # # # # # . # # # . . . # # # # # . . . # # # # . # . . . . . . . . . . # . . # # # # . # # . . . . . . . . . . . . . # # # . # # # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # # # # # . . # # . . . . . . . . . . . . . . # # # . . # # . # # . . . . . . . . . . . . . . # # # # # . . # # # . . . . . . . . . . . . . # # # # # # # # . . # # . . . . # # # # # . # # # # # # # # # # # . . # . # . . # # . . . . # . . . . # # # # # # . . . # . . # # . . . . . # . . . . . . . # # # . . . . # # . . . . . . . . # . . . . . . . . . . . . . # . # # . . . . . # # # # # # . . . . . . . . . # # . . # # # # # # # # # # # # # # # . . . . # # # # . . . . . # # # # # # # # # # . . # # # # # # # # . . . . # # . # . # # # # . # # # . . # # # # # # . . . . . . . . # # # # # # # # # # # # # # # # # . . . . . . . . # # # # # # # # # # # # # # # # # . . . . . . . # # # # # # # # # # # # # # # # # # . . . . . . . # . . . # # # # # # # # # # # # # # . . . . . . . # . # . # # # # # # # # # # # # # # . . . . . . . . # # # # # . . . # # # # # # # # # . . . . . . . . . . . . . . . . . # # # # # # # # . . . . . . . . . . . . . . . . . . # # # # # # #
Mathematica /Wolfram Language
ClearAll[VisualizeGrid, Possibilities, TryRow, TryColumn]
VisualizeGrid[candgrid_List] := StringRiffle[StringJoin/@Replace[candgrid,{{0}->" ",{1}->"#",{0,1}|{1,0}->"."},{2}],"\n"]
Possibilities[clues_List, len_Integer] := Module[{spaces, numclue, spacecands, cands},
numclue = Length[clues];
spaces = len - Total[clues];
spacecands = IntegerPartitions[spaces, {numclue - 1}];
spacecands = DeleteDuplicates[Catenate[Permutations /@ spacecands]];
cands = Catenate[Riffle[ConstantArray[1, #] & /@ clues, ConstantArray[0, #] & /@ #]] & /@ spacecands;
spacecands = IntegerPartitions[spaces, {numclue}];
spacecands = DeleteDuplicates[Catenate[Permutations /@ spacecands]];
cands = Join[cands, Catenate[Riffle[ConstantArray[1, #] & /@ clues, ConstantArray[0, #] & /@ #]] & /@ spacecands];
cands = Join[cands, Catenate[Riffle[ConstantArray[0, #] & /@ #, ConstantArray[1, #] & /@ clues]] & /@ spacecands];
spacecands = IntegerPartitions[spaces, {numclue + 1}];
spacecands = DeleteDuplicates[Catenate[Permutations /@ spacecands]];
cands = Join[cands, Catenate[Riffle[ConstantArray[0, #] & /@ #, ConstantArray[1, #] & /@ clues]] & /@ spacecands];
cands
]
TryRow[candgrid_List, i_Integer, hclues_List] := Module[{row, clue, len, poss, newgrid},
row = candgrid[[i]];
clue = hclues[[i]];
len = Length[row];
poss = Possibilities[clue, len];
poss //= Select[MatchQ[Alternatives @@@ row]];
poss //= Transpose;
poss //= Map[Union];
newgrid = candgrid;
newgrid[[i]] = poss;
newgrid
]
TryColumn[candgrid_List, i_Integer, hclues_List] := Transpose[TryRow[Transpose[candgrid], i, hclues]]
puzzles = "C BA CB BB F AE F A B
AB CA AE GA E C D C
F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC
D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA
CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC
BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF AAAAD BDG CEF CBDB BBB FC
E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G
E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM";
puzzles = StringSplit[puzzles, "\n\n"];
puzzles = StringSplit[#, "\n"] & /@ puzzles;
puzzles = Map[StringSplit[#, " "] &, puzzles, {2}];
puzzles = Map[Characters, puzzles, {3}];
puzzles = puzzles /. Thread[CharacterRange["A", "Z"] -> (ToString /@ Range[26])];
puzzles = Map[ToExpression, puzzles, {4}];
Do[
hclues = puzzles[[n, 1]];
vclues = puzzles[[n, 2]];
{hsize, vsize} = {vclues // Length, hclues // Length};
cand = ConstantArray[{0, 1}, {vsize, hsize}];
oldcand = {};
While[oldcand =!= cand,
oldcand = cand;
Do[cand = TryRow[cand, i, hclues], {i, Length[hclues]}];
Do[cand = TryColumn[cand, i, vclues], {i, Length[vclues]}];
];
Print@VisualizeGrid[cand]
,
{n, 4}
]
- Output:
### ## # ### ## ## ## ###### # ##### ###### # ## ###### ### # ### # ### # ### ### ############## # # # # # ## ## ##### ## ## ##### # # ##### ### ### ### ######## ### ### ### ### # ## #### # # ### ### ## #### ### ### # ### ### ## ## # ### ## ## ## ## ## ## # # ## # # # ## # #### # # ## ## ## ## ######## ## ## ## #### # ## ## # # # ### ### ##### # # # ### # # ## ## ### # ### ### # ### ## ######## #### ### ######## # #### ## ##### # #### ## ## #### ## ##### ##### ### ##### #### # # #### ## ### ### ##### ## ### ## ## ##### # ## ######## ## ##### ########### # # ## # ###### # ## # ### ## # # ## ###### ## ############### #### ########## ######## ## # #### ### ###### ################# ################# ################## # ############## # # ############## ##### ######### ######## #######
Nim
To generate the sequence, we use the Java algorithm modified to directly generate bit strings (as integers) rather than character strings.
import std/[bitops, math, sequtils, strutils]
type
# Lengths of distinct runs of occupied cells.
Lengths = seq[int]
# Possibility, i.e. sequence of bits managed as an integer.
Possibility = int
# Possibilities described by two masks and a list of integer values.
Possibilities = object
mask0: int # Mask indicating the positions of free cells.
mask1: int # Mask indicating the positions of occupied cells.
list: seq[int] # List of possibilities.
proc genSequence(ones: seq[int]; numZeroes: Natural): seq[Possibility] =
## Generate a sequence of possibilities.
if ones.len == 0: return @[0]
for x in 1..(numZeroes - ones.len + 1):
for tail in genSequence(ones[1..^1], numZeroes - x):
result.add (tail shl countSetBits(ones[0]) or ones[0]) shl x
proc initPossibilities(lengthsList: openArray[Lengths]; length: Positive): seq[Possibilities] =
## Initialize the list of possibilities from a list of lengths.
let initMask0 = 1 shl length - 1
for lengths in lengthsList:
let sumLengths = sum(lengths)
let prep = lengths.mapIt(1 shl it - 1)
let possList = genSequence(prep, length - sumLengths + 1).mapIt(it shr 1)
result.add Possibilities(mask0: initMask0, mask1: 0, list: possList)
func updateUnset(possList: var seq[Possibilities]; mask, rank: int) =
## Update the lists of possibilities keeping only those
## compatible with the mask (for bits not set only).
var mask = mask
for poss in possList.mitems:
if (mask and 1) == 0:
for i in countdown(poss.list.high, 0):
if poss.list[i].testBit(rank):
# Bit is set, so the value is not compatible: remove it.
poss.list.delete(i)
mask = mask shr 1
func updateSet(possList: var seq[Possibilities]; mask, rank: int) =
## Update the lists of possibilities keeping only those
## compatible with the mask (for bits set only).
var mask = mask
for poss in possList.mitems:
if (mask and 1) != 0:
for i in countdown(poss.list.high, 0):
if not poss.list[i].testBit(rank):
# Bit is not set, so the value is not compatible: remove it.
poss.list.delete(i)
mask = mask shr 1
proc process(poss1, poss2: var seq[Possibilities]): bool =
## Look at possibilities in list "poss1", compute the masks for
## bits unset and bits set and update "poss2" accordingly.
var num = 0
for poss in poss1.mitems:
# Check bits unset.
var mask = 0
for value in poss.list:
mask = mask or value
if mask != poss.mask0:
# Mask has changed: update.
result = true
poss2.updateUnset(mask, num)
poss.mask0 = mask
# Check bits set.
mask = 1 shl poss2.len - 1
for value in poss.list:
mask = mask and value
if mask != poss.mask1:
# Mask has changed: update.
result = true
poss2.updateSet(mask, num)
poss.mask1 = mask
inc num
proc solve(rowLengths, colLengths: openArray[Lengths]) =
## Solve nonogram defined by "rowLengths" and "colLengths".
var
rowPoss = initPossibilities(rowLengths, colLengths.len)
colPoss = initPossibilities(colLengths, rowLengths.len)
# Solve nonogram.
var hasChanged = true
while hasChanged:
hasChanged = process(rowPoss, colPoss) or process(colPoss, rowPoss)
# Check if solved.
for poss in rowPoss:
if poss.list.len != 1:
echo "Unable to solve the nonogram."
return
# Display the solution.
for poss in rowPoss:
var line = ""
var val = poss.list[0]
for i in 0..colPoss.high:
line.add if val.testBit(i): "# " else: " "
echo line
func expand(s: string): seq[Lengths] =
## Expand a compact description into a sequence of lengths.
for elem in s.splitWhitespace():
result.add elem.mapIt(ord(it) - ord('A') + 1)
proc solve(rows, cols: string) =
## Solve using compact description parameters.
solve(rows.expand(), cols.expand())
when isMainModule:
const
Data1 = ("C BA CB BB F AE F A B", "AB CA AE GA E C D C")
Data2 = ("F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC",
"D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA")
Data3 = ("CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC",
"BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF AAAAD BDG CEF CBDB BBB FC")
Data4 = ("E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G",
"E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM")
for (rows, cols) in [Data1, Data2, Data3, Data4]:
echo rows
echo cols
echo ""
solve(rows, cols)
echo ""
- Output:
C BA CB BB F AE F A B AB CA AE GA E C D C # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF AAAAD BDG CEF CBDB BBB FC # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
Ol
(import (owl parse))
; notation parser
(define (subA x) (- x #\A -1))
(define line
(let-parse* (
(words (greedy+ (let-parse* (
(* (greedy* (imm #\space)))
(word (greedy+ (byte-if (lambda (x) (<= #\A x #\Z))))))
(map subA word))))
(* (maybe (imm #\newline) #f)))
words))
(define nonogram-parser
(let-parse* (
(rows line)
(cols line))
(cons rows cols)))
; nonogram printer
(define (print-nonogram ng solve)
(for-each (lambda (row y)
(for-each (lambda (x)
(if (list-ref (list-ref (car solve) y) x)
(display "X ")
(display ". ")))
(iota (length (cdr ng))))
(for-each (lambda (i)
(display " ")
(display i))
row)
(print))
(car ng)
(iota (length (car ng))))
(for-each (lambda (i)
(for-each (lambda (col)
(let ((n (lref col i)))
(if n (display n) (display " ")))
(display " "))
(cdr ng))
(print))
(iota (fold (lambda (f col) (max f (length col))) 0 (cdr ng)) 0)))
; possible permutation generator
(define (permutate blacks len)
; empty cells distibutions (with minimal count)
(define whites (append '(0) (repeat 1 (- (length blacks) 1)) '(0)))
(define total (- len (apply + blacks))) ; total summ of empty cells
(define (combine whites blacks)
; size of whites is always equal to size of blacks+1
(let loop ((line #null) (v #f) (w (reverse whites)) (b (reverse blacks)))
(if (null? w)
line
else
(loop (append (repeat v (car w)) line)
(not v)
b
(cdr w)))))
(map (lambda (whites) (combine whites blacks))
(let loop ((ll whites) (max total))
(if (null? (cdr ll))
(list (list max))
else
(define sum (apply + ll))
(define left (- max sum))
(if (eq? left 0)
(list ll)
else
(define head (car ll))
(fold (lambda (f i)
(define sublist (loop (cdr ll) (- max head i)))
(fold (lambda (f x)
(cons (cons (+ head i) x) f))
f
sublist))
#null
(iota (+ left 1))))))))
; siever of impossible combinations
(define (sieve rows cols) ; -> new cols
(fold (lambda (cols i)
; for every cell define a "definitely black" and "definitely white" cells
(define blacks (fold (lambda (f x)
(map (lambda (a b) (and a b)) f x))
(repeat #t (length cols))
(list-ref rows i)))
(define whites (fold (lambda (f x)
(map (lambda (a b) (or a b)) f x))
(repeat #f (length cols))
(list-ref rows i)))
; now filter the second list
(map (lambda (cols j)
(filter (lambda (col)
(not (or
(and (list-ref blacks j) (not (list-ref col i)))
(and (not (list-ref whites j)) (list-ref col i)))))
cols))
cols
(iota (length cols))))
cols
(iota (length rows))))
; main solver cycle
(define (solve rows-permuted cols-permuted)
(let loop ((rows rows-permuted) (cols cols-permuted) (flip #f))
(define new-cols (sieve rows cols))
(define fail (fold (lambda (f l) (or f (null? l))) #f new-cols))
(define done (fold (lambda (f l) (and f (null? (cdr l)))) #t new-cols))
(cond
(fail
#false)
(done
(if flip
(cons (map car new-cols) (map car rows))
(cons (map car rows) (map car new-cols))))
(else
(loop new-cols rows (not flip))))))
; -=( main )=----------------------------------
(define first "C BA CB BB F AE F A B
AB CA AE GA E C D C")
(define second "F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC
D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA")
(define third "CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC
BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF AAAAD BDG CEF CBDB BBB FC")
(define fourth "E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G
E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM")
(for-each (lambda (str)
(print "nonogram:")
(print str) (print)
; decode nonogram notation
(define nonogram (parse nonogram-parser (str-iter str) #f #f #f))
; prepare arrays of all possible line b/w permutations
(define rows (car nonogram))
(define cols (cdr nonogram))
(define row-length (length cols))
(define col-length (length rows))
(define rows-permuted (map (lambda (x) (permutate x row-length)) rows))
(define cols-permuted (map (lambda (x) (permutate x col-length)) cols))
; solve nonogram
(define answer (solve rows-permuted cols-permuted))
; show the output
(if answer
(print-nonogram nonogram answer)
(print "Sorry, no aorrect answer found."))
(print))
(list first second third fourth))
- Output:
nonogram: C BA CB BB F AE F A B AB CA AE GA E C D C . X X X . . . . 3 X X . X . . . . 2 1 . X X X . . X X 3 2 . . X X . . X X 2 2 . . X X X X X X 6 X . X X X X X . 1 5 X X X X X X . . 6 . . . . X . . . 1 . . . X X . . . 2 1 3 1 7 5 3 4 3 2 1 5 1 nonogram: F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA . . . . . . . . . . . X X X X X X . . . 6 . . . . . . . . X X X . X . . X X X . . 3 1 3 . . . X . . X X X . . . X . . . . X X X 1 3 1 3 . . X X X . X X X X X X X X X X X X X X 3 14 . . . X . . X . . . . . . . . . . . . X 1 1 1 . . X . X . X X . . . . . . . . . . X X 1 1 2 2 X X X X X . . X X . . . . . . . . X X . 5 2 2 X X X X X . . . X . . . . . . . . X . . 5 1 1 X X X X X . . X X X . X X X . X X X . . 5 3 3 3 X X X X X X X X . X X X . X X X . X X X 8 3 3 3 4 4 1 3 1 1 4 2 3 1 2 1 4 1 1 2 1 3 2 4 5 4 5 1 2 3 1 1 1 1 1 1 1 1 4 2 1 2 2 1 2 2 1 2 1 1 nonogram: CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF AAAAD BDG CEF CBDB BBB FC . . . . X X X . X . . . . . . . . . . . 3 1 . . . . X X . X X X X . X . . . . . . . 2 4 1 . . . . X . X X X . X X X . . . . . . . 1 3 3 . . X X . X X X X . . . . . . . . . . . 2 4 . X X X . X X X . X . . . . X X X . . . 3 3 1 3 . X X X . X X . X X . . . X . X X X . . 3 2 2 1 3 . X X . X X . X X . . . . X X . X X . . 2 2 2 2 2 . . . . X X . X . X . . X X . X . X . . 2 1 1 2 1 1 . . . . X . X X . X . . . X X X X . . . 1 2 1 4 . . . . X . X . X X . . . . . X X . . . 1 1 2 2 . . . . . X X . X X . . X X X X X X X X 2 2 8 . . . . X X . X X . . . X X . . X X X X 2 2 2 4 . . . . X . X X . X X . X . . . X . . X 1 2 2 1 1 1 X X X . . X X X . X X X X X . . . . . X 3 3 5 1 X . X . X X X . X . . . . X . . . . X X 1 1 3 1 1 2 X X . . X X X . X . . . . X X X . X X X 2 3 1 3 3 . X . X X X . X X . X X X X X X X X . . 1 3 2 8 . X X X X . X X X . X X X X X X X X . . 4 3 8 . . . X . X X X X . X X . X X X X X . . 1 4 2 5 . . . X . X X X X . X X . . . X X . . . 1 4 2 2 . . . . X X X X . . X X . . . X X X X X 4 2 5 . . . X X X X X . X X X . . . X X X X X 5 3 5 . . . X X X X . X . . . . . . . . . . X 4 1 1 . . X X X X . X X . . . . . . . . . . . 4 2 . . X X X . X X X . . . . . . . . . . . 3 3 2 3 3 2 3 2 1 4 4 1 2 1 2 4 1 2 3 3 2 6 3 1 2 4 4 5 4 3 2 2 2 1 1 2 1 4 5 2 2 3 3 1 4 2 2 3 3 3 4 6 6 4 6 1 7 6 4 2 2 4 4 4 6 6 2 2 1 2 5 6 6 2 3 1 4 1 nonogram: E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM . . . . . . . . . . . . . . . . . . . . X X X X X 5 . . X X . . . . . . . . . . . . . . X X X . . X X 2 3 2 . X X . . . . . . . . . . . . . . X X X X X . . X 2 5 1 X X . . . . . . . . . . . . . X X X X X X X X . . 2 8 X X . . . . X X X X X . X X X X X X X X X X X . . 2 5 11 X . X . . X X . . . . X . . . . X X X X X X . . . 1 1 2 1 6 X . . X X . . . . . X . . . . . . . X X X . . . . 1 2 1 3 X X . . . . . . . . X . . . . . . . . . . . . . X 2 1 1 . X X . . . . . X X X X X X . . . . . . . . . X X 2 6 2 . . X X X X X X X X X X X X X X X . . . . X X X X 15 4 . . . . . X X X X X X X X X X . . X X X X X X X X 10 8 . . . . X X . X . X X X X . X X X . . X X X X X X 2 1 4 3 6 . . . . . . . . X X X X X X X X X X X X X X X X X 17 . . . . . . . . X X X X X X X X X X X X X X X X X 17 . . . . . . . X X X X X X X X X X X X X X X X X X 18 . . . . . . . X . . . X X X X X X X X X X X X X X 1 14 . . . . . . . X . X . X X X X X X X X X X X X X X 1 1 14 . . . . . . . . X X X X X . . . X X X X X X X X X 5 9 . . . . . . . . . . . . . . . . . X X X X X X X X 8 . . . . . . . . . . . . . . . . . . X X X X X X X 7 5 3 2 1 1 1 2 1 1 1 1 1 1 1 1 2 3 4 6 6 7 1 1 2 3 2 1 1 1 3 2 3 3 7 9 10 10 3 8 1 1 1 1 10 10 4 2 12 13 2 1 1 3 3 2 1 5 6 7 7 8 11 11
Perl
use strict;
use warnings;
my $file = 'nonogram_problems.txt';
open my $fd, '<', $file or die "$! opening $file";
while(my $row = <$fd> )
{
$row =~ /\S/ or next;
my $column = <$fd>;
my @rpats = makepatterns($row);
my @cpats = makepatterns($column);
my @rows = ( '.' x @cpats ) x @rpats;
for( my $prev = ''; $prev ne "@rows"; )
{
$prev = "@rows";
try(\@rows, \@rpats);
my @cols = map { join '', map { s/.//; $& } @rows } 0..$#cpats;
try(\@cols, \@cpats);
@rows = map { join '', map { s/.//; $& } @cols } 0..$#rpats;
}
print "\n", "@rows" =~ /\./ ? "Failed\n" : map { tr/01/.#/r, "\n" } @rows;
}
sub try
{
my ($lines, $patterns) = @_;
for my $i ( 0 .. $#$lines )
{
while( $lines->[$i] =~ /\./g )
{
for my $try ( 0, 1 )
{
$lines->[$i] =~ s/.\G/$try/r =~ $patterns->[$i] or
$lines->[$i] =~ s// 1 - $try /e;
}
}
}
}
sub makepatterns { # numbered to show the 'logical' order of operations
map { qr/^$_$/ # 7 convert strings to regex
} map { '[0.]*' # 6a prepend static pattern
. join('[0.]+', # 5 interleave with static pattern
map { "[1.]{$_}" # 4 require to match exactly 'n' times
} map { -64+ord # 3 convert letter value to repetition count 'n'
} split // # 2 for each letter in group
)
. '[0.]*' # 6b append static pattern
} split ' ', shift; # 1 for each letter grouping
}
- Output:
.###.... ##.#.... .###..## ..##..## ..###### #.#####. ######.. ....#... ...##... ..........######.... ........###.#..###.. ...#..###...#....### ..###.############## ...#..#............# ..#.#.##..........## #####..##........##. #####...#........#.. #####..###.###.###.. ########.###.###.### ....###.#........... ....##.####.#....... ....#.###.###....... ..##.####........... .###.###.#....###... ###..##.##...#.###.. ##..##.##....##.##.. ....##.#.#..##.#.#.. ....#.##.#...####... ....#.#.##.....##... .....##.##..######## ....##.##...##..#### ....#.##.##.#...#..# ###..###.#####.....# #.#.###.#....#....## ##..###.#....###.### .#.###.##.########.. .####.###.########.. ...#.####.##.#####.. ...#.####.##...##... ....####..##...##### ...#####.###...##### ...####.#..........# ..####.##........... ..###.###........... ....................##### ..##..............###..## .##..............#####..# ##.............########.. ##....#####.###########.. #.#..##....#....######... #..##.....#.......###.... ##........#.............# .##.....######.........## ..###############....#### .....##########..######## ....##.#.####.###..###### ........################# ........################# .......################## .......#...############## .......#.#.############## ........#####...######### .................######## ..................#######
Phix
Deduction only, no exhaustive search.
with javascript_semantics sequence x, y, grid integer unsolved function count_grid() integer res = length(x)*length(y) for i=1 to length(x) do for j=1 to length(y) do res -= grid[i][j]!='?' end for end for return res end function function match_mask(string neat, string mask, integer ms, integer me) for i=ms to me do if mask[i]!='?' then if mask[i]!=neat[i] then return 0 end if end if end for return 1 end function function innr(string mask, sequence blocks, integer mi=1, string res="", string neat=mask) if length(blocks)=0 then for i=mi to length(neat) do neat[i] = ' ' end for if match_mask(neat,mask,mi,length(mask)) then if length(res)=0 then res = neat else for i=1 to length(neat) do if neat[i]!=res[i] then res[i] = '?' end if end for end if end if else integer b = blocks[1] blocks = blocks[2..$] integer l = (sum(blocks)+length(blocks)-1), e = length(neat)-l-b for i=mi to e do for j=i to i+b-1 do neat[j] = '#' end for if i+b<=length(neat) then neat[i+b] = ' ' end if if match_mask(neat,mask,mi,min(i+b,length(mask))) then res = innr(mask,blocks,i+b+1,res,neat) end if neat[i] = ' ' end for end if return res end function function inner(string mask, sequence blocks) string res = innr(mask,blocks) return iff(length(res)?res:mask) end function global function vmask(sequence source, integer column) string res = repeat(' ',length(source)) for i=1 to length(source) do res[i] = source[i][column] end for return res end function function logic() integer wasunsolved = unsolved for i=1 to length(x) do grid[i] = inner(grid[i],x[i]) end for for j=1 to length(y) do string tmp = inner(vmask(grid,j),y[j]) for i=1 to length(tmp) do grid[i][j] = tmp[i] end for end for unsolved = count_grid() return wasunsolved!=unsolved end function sequence tests=split(""" C BA CB BB F AE F A B AB CA AE GA E C D C F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF AAAAD BDG CEF CBDB BBB FC E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM""",'\n') --Alternatively: --integer fn = open("nonogram_problems.txt","r") --tests = get_text(fn,GT_LF_STRIPPED) --close(fn) function unpack(string s) sequence res = split(s) for i=1 to length(res) do string ri = res[i] sequence r = {} for j=1 to length(ri) do r &= ri[j]-'A'+1 end for res[i] = r end for return res end function for i=1 to length(tests) by 3 do x = unpack(tests[i]) y = unpack(tests[i+1]) grid = repeat(repeat('?',length(y)),length(x)) unsolved = length(x)*length(y) while unsolved do if not logic() then ?"partial" exit end if end while puts(1,join(grid,"\n")&"\n") end for
- Output:
### ## # ### ## ## ## ###### # ##### ###### # ##
###### ### # ### # ### # ### ### ############## # # # # # ## ## ##### ## ## ##### # # ##### ### ### ### ######## ### ### ###
### # ## #### # # ### ### ## #### ### ### # ### ### ## ## # ### ## ## ## ## ## ## # # ## # # # ## # #### # # ## ## ## ## ######## ## ## ## #### # ## ## # # # ### ### ##### # # # ### # # ## ## ### # ### ### # ### ## ######## #### ### ######## # #### ## ##### # #### ## ## #### ## ##### ##### ### ##### #### # # #### ## ### ###
##### ## ### ## ## ##### # ## ######## ## ##### ########### # # ## # ###### # ## # ### ## # # ## ###### ## ############### #### ########## ######## ## # #### ### ###### ################# ################# ################## # ############## # # ############## ##### ######### ######## #######
Picat
import util, sat.
main =>
Hr = "E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G",
Hc = "E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM",
Lr = [token_to_hints(Token) : Token in split(Hr)],
Lc = [token_to_hints(Token) : Token in split(Hc)],
MaxR = len(Lr),
MaxC = len(Lc),
foreach (Hints in Lr)
constrain_starts(Hints,MaxC)
end,
foreach (Hints in Lc)
constrain_starts(Hints,MaxR)
end,
M = new_array(MaxR,MaxC),
M :: 0..1,
foreach ({R,Hints} in zip(1..MaxR, Lr))
sum([M[R,C] : C in 1..MaxC]) #= sum([Num : (Num,_) in Hints])
end,
foreach ({R,Hints} in zip(1..MaxR, Lr), (Num,Start) in Hints, C in 1..MaxC-Num+1)
Start #= C #=> sum([M[R,C+I] : I in 0..Num-1]) #= Num
end,
%
foreach ({C,Hints} in zip(1..MaxC, Lc))
sum([M[R,C] : R in 1..MaxR]) #= sum([Num : (Num,_) in Hints])
end,
foreach ({C,Hints} in zip(1..MaxC, Lc), (Num,Start) in Hints, R in 1..MaxR-Num+1)
Start #= R #=> sum([M[R+I,C] : I in 0..Num-1]) #= Num
end,
solve((Lr,Lc,M)),
foreach (R in 1..MaxR)
foreach (C in 1..MaxC)
printf("%2c", cond(M[R,C] == 1, '#', '.'))
end,
nl
end.
% convert "BCB" to [(2,_),(3,_),(2,_)]
% a hint is a pair (Num,Start), where Num is the length of the 1 segment and Start is the starting row number or column number
token_to_hints([]) = [].
token_to_hints([C|Cs]) = [(ord(C)-ord('A')+1, _)|token_to_hints(Cs)].
% there must be a gap between two neighboring segments
constrain_starts([(Num,Start)],Max) =>
Start :: 1..Max,
Start+Num-1 #<= Max.
constrain_starts([(Num1,Start1),(Num2,Start2)|L],Max) =>
Start1 :: 1..Max,
Start1+Num1 #< Start2,
constrain_starts([(Num2,Start2)|L],Max).
- Output:
. . . . . . . . . . . . . . . . . . . . # # # # # . . # # . . . . . . . . . . . . . . # # # . . # # . # # . . . . . . . . . . . . . . # # # # # . . # # # . . . . . . . . . . . . . # # # # # # # # . . # # . . . . # # # # # . # # # # # # # # # # # . . # . # . . # # . . . . # . . . . # # # # # # . . . # . . # # . . . . . # . . . . . . . # # # . . . . # # . . . . . . . . # . . . . . . . . . . . . . # . # # . . . . . # # # # # # . . . . . . . . . # # . . # # # # # # # # # # # # # # # . . . . # # # # . . . . . # # # # # # # # # # . . # # # # # # # # . . . . # # . # . # # # # . # # # . . # # # # # # . . . . . . . . # # # # # # # # # # # # # # # # # . . . . . . . . # # # # # # # # # # # # # # # # # . . . . . . . # # # # # # # # # # # # # # # # # # . . . . . . . # . . . # # # # # # # # # # # # # # . . . . . . . # . # . # # # # # # # # # # # # # # . . . . . . . . # # # # # . . . # # # # # # # # # . . . . . . . . . . . . . . . . . # # # # # # # # . . . . . . . . . . . . . . . . . . # # # # # # #
Prolog
module(clpfd) is written by Markus Triska
Solution written by Lars Buitinck
Module solve-nonogram.pl
/*
* Nonogram/paint-by-numbers solver in SWI-Prolog. Uses CLP(FD),
* in particular the automaton/3 (finite-state/RE) constraint.
* Copyright (c) 2011 Lars Buitinck.
* Do with this code as you like, but don't remove the copyright notice.
*/
:- use_module(library(clpfd)).
nono(RowSpec, ColSpec, Grid) :-
rows(RowSpec, Grid),
transpose(Grid, GridT),
rows(ColSpec, GridT).
rows([], []).
rows([C|Cs], [R|Rs]) :-
row(C, R),
rows(Cs, Rs).
row(Ks, Row) :-
sum(Ks, #=, Ones),
sum(Row, #=, Ones),
arcs(Ks, Arcs, start, Final),
append(Row, [0], RowZ),
automaton(RowZ, [source(start), sink(Final)], [arc(start,0,start) | Arcs]).
% Make list of transition arcs for finite-state constraint.
arcs([], [], Final, Final).
arcs([K|Ks], Arcs, CurState, Final) :-
gensym(state, NextState),
( K == 0
-> Arcs = [arc(CurState,0,CurState), arc(CurState,0,NextState) | Rest],
arcs(Ks, Rest, NextState, Final)
; Arcs = [arc(CurState,1,NextState) | Rest],
K1 #= K-1,
arcs([K1|Ks], Rest, NextState, Final)).
make_grid(Grid, X, Y, Vars) :-
length(Grid,X),
make_rows(Grid, Y, Vars).
make_rows([], _, []).
make_rows([R|Rs], Len, Vars) :-
length(R, Len),
make_rows(Rs, Len, Vars0),
append(R, Vars0, Vars).
print([]).
print([R|Rs]) :-
print_row(R),
print(Rs).
print_row([]) :- nl.
print_row([X|R]) :-
( X == 0
-> write(' ')
; write('x')),
print_row(R).
nonogram(Rows, Cols) :-
length(Rows, X),
length(Cols, Y),
make_grid(Grid, X, Y, Vars),
nono(Rows, Cols, Grid),
label(Vars),
print(Grid).
File nonogram.pl, used to read data in a file.
nonogram :-
open('C:/Users/Utilisateur/Documents/Prolog/Rosetta/nonogram/nonogram.txt',
read, In, []),
repeat,
read_line_to_codes(In, Line_1),
read_line_to_codes(In, Line_2),
compute_values(Line_1, [], [], Lines),
compute_values(Line_2, [], [], Columns),
nonogram(Lines, Columns) , nl, nl,
read_line_to_codes(In, end_of_file),
close(In).
compute_values([], Current, Tmp, R) :-
reverse(Current, R_Current),
reverse([R_Current | Tmp], R).
compute_values([32 | T], Current, Tmp, R) :-
!,
reverse(Current, R_Current),
compute_values(T, [], [R_Current | Tmp], R).
compute_values([X | T], Current, Tmp, R) :-
V is X - 64,
compute_values(T, [V | Current], Tmp, R).
Python
First fill cells by deduction, then search through all combinations. It could take up a huge amount of storage, depending on the board size.
Python 2
from itertools import izip
def gen_row(w, s):
"""Create all patterns of a row or col that match given runs."""
def gen_seg(o, sp):
if not o:
return [[2] * sp]
return [[2] * x + o[0] + tail
for x in xrange(1, sp - len(o) + 2)
for tail in gen_seg(o[1:], sp - x)]
return [x[1:] for x in gen_seg([[1] * i for i in s], w + 1 - sum(s))]
def deduce(hr, vr):
"""Fix inevitable value of cells, and propagate."""
def allowable(row):
return reduce(lambda a, b: [x | y for x, y in izip(a, b)], row)
def fits(a, b):
return all(x & y for x, y in izip(a, b))
def fix_col(n):
"""See if any value in a given column is fixed;
if so, mark its corresponding row for future fixup."""
c = [x[n] for x in can_do]
cols[n] = [x for x in cols[n] if fits(x, c)]
for i, x in enumerate(allowable(cols[n])):
if x != can_do[i][n]:
mod_rows.add(i)
can_do[i][n] &= x
def fix_row(n):
"""Ditto, for rows."""
c = can_do[n]
rows[n] = [x for x in rows[n] if fits(x, c)]
for i, x in enumerate(allowable(rows[n])):
if x != can_do[n][i]:
mod_cols.add(i)
can_do[n][i] &= x
def show_gram(m):
# If there's 'x', something is wrong.
# If there's '?', needs more work.
for x in m:
print " ".join("x#.?"[i] for i in x)
print
w, h = len(vr), len(hr)
rows = [gen_row(w, x) for x in hr]
cols = [gen_row(h, x) for x in vr]
can_do = map(allowable, rows)
# Initially mark all columns for update.
mod_rows, mod_cols = set(), set(xrange(w))
while mod_cols:
for i in mod_cols:
fix_col(i)
mod_cols = set()
for i in mod_rows:
fix_row(i)
mod_rows = set()
if all(can_do[i][j] in (1, 2) for j in xrange(w) for i in xrange(h)):
print "Solution would be unique" # but could be incorrect!
else:
print "Solution may not be unique, doing exhaustive search:"
# We actually do exhaustive search anyway. Unique solution takes
# no time in this phase anyway, but just in case there's no
# solution (could happen?).
out = [0] * h
def try_all(n = 0):
if n >= h:
for j in xrange(w):
if [x[j] for x in out] not in cols[j]:
return 0
show_gram(out)
return 1
sol = 0
for x in rows[n]:
out[n] = x
sol += try_all(n + 1)
return sol
n = try_all()
if not n:
print "No solution."
elif n == 1:
print "Unique solution."
else:
print n, "solutions."
print
def solve(p, show_runs=True):
s = [[[ord(c) - ord('A') + 1 for c in w] for w in l.split()]
for l in p.splitlines()]
if show_runs:
print "Horizontal runs:", s[0]
print "Vertical runs:", s[1]
deduce(s[0], s[1])
def main():
# Read problems from file.
fn = "nonogram_problems.txt"
for p in (x for x in open(fn).read().split("\n\n") if x):
solve(p)
print "Extra example not solvable by deduction alone:"
solve("B B A A\nB B A A")
print "Extra example where there is no solution:"
solve("B A A\nA A A")
main()
- Output:
Horizontal runs: [[3], [2, 1], [3, 2], [2, 2], [6], [1, 5], [6], [1], [2]] Vertical runs: [[1, 2], [3, 1], [1, 5], [7, 1], [5], [3], [4], [3]] Solution would be unique . # # # . . . . # # . # . . . . . # # # . . # # . . # # . . # # . . # # # # # # # . # # # # # . # # # # # # . . . . . . # . . . . . . # # . . . Unique solution (... etc. ...)
Python 3
Above code altered to work with Python 3:
from functools import reduce
def gen_row(w, s):
"""Create all patterns of a row or col that match given runs."""
def gen_seg(o, sp):
if not o:
return [[2] * sp]
return [[2] * x + o[0] + tail
for x in range(1, sp - len(o) + 2)
for tail in gen_seg(o[1:], sp - x)]
return [x[1:] for x in gen_seg([[1] * i for i in s], w + 1 - sum(s))]
def deduce(hr, vr):
"""Fix inevitable value of cells, and propagate."""
def allowable(row):
return reduce(lambda a, b: [x | y for x, y in zip(a, b)], row)
def fits(a, b):
return all(x & y for x, y in zip(a, b))
def fix_col(n):
"""See if any value in a given column is fixed;
if so, mark its corresponding row for future fixup."""
c = [x[n] for x in can_do]
cols[n] = [x for x in cols[n] if fits(x, c)]
for i, x in enumerate(allowable(cols[n])):
if x != can_do[i][n]:
mod_rows.add(i)
can_do[i][n] &= x
def fix_row(n):
"""Ditto, for rows."""
c = can_do[n]
rows[n] = [x for x in rows[n] if fits(x, c)]
for i, x in enumerate(allowable(rows[n])):
if x != can_do[n][i]:
mod_cols.add(i)
can_do[n][i] &= x
def show_gram(m):
# If there's 'x', something is wrong.
# If there's '?', needs more work.
for x in m:
print(" ".join("x#.?"[i] for i in x))
print()
w, h = len(vr), len(hr)
rows = [gen_row(w, x) for x in hr]
cols = [gen_row(h, x) for x in vr]
can_do = list(map(allowable, rows))
# Initially mark all columns for update.
mod_rows, mod_cols = set(), set(range(w))
while mod_cols:
for i in mod_cols:
fix_col(i)
mod_cols = set()
for i in mod_rows:
fix_row(i)
mod_rows = set()
if all(can_do[i][j] in (1, 2) for j in range(w) for i in range(h)):
print("Solution would be unique") # but could be incorrect!
else:
print("Solution may not be unique, doing exhaustive search:")
# We actually do exhaustive search anyway. Unique solution takes
# no time in this phase anyway, but just in case there's no
# solution (could happen?).
out = [0] * h
def try_all(n = 0):
if n >= h:
for j in range(w):
if [x[j] for x in out] not in cols[j]:
return 0
show_gram(out)
return 1
sol = 0
for x in rows[n]:
out[n] = x
sol += try_all(n + 1)
return sol
n = try_all()
if not n:
print("No solution.")
elif n == 1:
print("Unique solution.")
else:
print(n, "solutions.")
print()
def solve(s, show_runs=True):
s = [[[ord(c) - ord('A') + 1 for c in w] for w in l.split()]
for l in p.splitlines()]
if show_runs:
print("Horizontal runs:", s[0])
print("Vertical runs:", s[1])
deduce(s[0], s[1])
Racket
Template:Example:Nonogram solver/Racket
Raku
Translation of Go
# 20220401 Raku programming solution
sub reduce(\a, \b) {
my \countRemoved = $ = 0;
for ^+a -> \i {
my \commonOn = @ = True xx b.elems;
my \commonOff = @ = False xx b.elems;
a[i].map: -> \candidate { commonOn <<?&=>> candidate ;
commonOff <<?|=>> candidate }
# remove from b[j] all candidates that don't share the forced values
for ^+b -> \j {
my (\fi,\fj) = i, j;
for ((+b[j])^...0) -> \k {
my \cnd = b[j][k];
if (commonOn[fj] ?& !cnd[fi]) ?| (!commonOff[fj] ?& cnd[fi]) {
b[j][k..*-2] = b[j][k+1..*-1];
b[j].pop;
countRemoved++
}
}
return -1 if b[j].elems == 0
}
}
return countRemoved
}
sub genSequence(\ones, \numZeros) {
if ( my \le = ones.elems ) == 0 { return [~] '0' xx numZeros }
my @result;
loop ( my $x = 1; $x < ( numZeros -le+2); $x++ ) {
my @skipOne = ones[1..*];
for genSequence(@skipOne, numZeros -$x) -> \tail {
@result.push: ( '0' x $x )~ones[0]~tail
}
}
return @result
}
# If all the candidates for a row have a value in common for a certain cell,
# then it's the only possible outcome, and all the candidates from the
# corresponding column need to have that value for that cell too. The ones
# that don't, are removed. The same for all columns. It goes back and forth,
# until no more candidates can be removed or a list is empty (failure).
sub reduceMutual(\cols, \rows) {
return -1 if ( my \countRemoved1 = reduce(cols, rows) ) == -1 ;
return -1 if ( my \countRemoved2 = reduce(rows, cols) ) == -1 ;
return countRemoved1 + countRemoved2
}
# collect all possible solutions for the given clues
sub getCandidates(@data, \len) {
return gather for @data -> \s {
my \sumBytes = [+] (my @a = s.ords)>>.&{ $_ - 'A'.ord + 1 }
my @prep = @a.values.map: { [~] '1' xx ($_ - 'A'.ord + 1) }
take ( gather for genSequence(@prep, len -sumBytes+1) -> \r {
my \bits = r.substr(1..*).ords;
take ( bits.values.map: *.chr == '1' ).Array
} ).Array
}
}
sub newPuzzle (@data) {
my (@rowData,@colData) := @data.map: *.split: ' ' ;
my \rows = getCandidates(@rowData, @colData.elems);
my \cols = getCandidates(@colData, @rowData.elems);
loop {
my \numChanged = reduceMutual(cols, rows);
given (numChanged) { when -1 { say "No solution" andthen return }
when 0 { last } }
}
for rows -> \row {
for ^+cols -> \k { print row[0][k] ?? '# ' !! '. ' }
print "\n"
}
print "\n"
}
newPuzzle $_ for (
( "C BA CB BB F AE F A B", "AB CA AE GA E C D C" ),
( "F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC",
"D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA" ),
( "CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH "
~"BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC",
"BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF "
~"AAAAD BDG CEF CBDB BBB FC" ),
( "E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G",
"E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ "
~"ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM" ),
);
Translation of Perl
for './nonogram_problems.txt'.IO.lines.rotor(3, :partial) {
my (@rpats,@cpats) := @_[0,1]>>.&makepatterns;
my @rows = ( '.' x +@cpats ) xx +@rpats ;
loop (my $prev = ''; $prev ne ~@rows; ) {
$prev = ~@rows;
try(@rows, @rpats);
my @cols = (^+@cpats).map: { [~] @rows.map: { ~ s/.// } }
try(@cols, @cpats);
@rows = (^+@rpats).map: { [~] @cols.map: { ~ s/.// } }
}
say();
@rows ~~ /\./ ?? say "Failed" !! say TR/01/.@/ for @rows
}
sub try(@lines, @patterns) {
for ^+@lines -> $i {
my $pos = 0;
while ( @lines[$i] ~~ m:g/\./ and $pos < @lines[$i].chars ) {
for 0, 1 -> $try {
with @lines[$i] { S:pos($pos)/\./$try/ ~~ /<{@patterns[$i]}>/ or
s:pos($pos)/./{ 1 - $try }/ }
}
$pos++;
}
}
}
sub makepatterns($input) {
$input ==> split( ' ' )
==> map( *.comb )
==> map( *>>.&{ .ord - 64 } )
==> map( '<[1.]>**' <<~<< * )
==> map( *.join: '<[0.]>+' )
==> map( '^<[0.]>*' ~ * ~ '<[0.]>*$' )
}
REXX
Nonogram Solver/Rexx:
/*REXX*/
Parse Arg fn
Parse Var fn ou'.'
maxpn = 10000 /* maximum possibilities to check through */
output = ou'.out.txt'
/* read row/col values into rowpp. and colpp. arrays */
cc = linein(fn)
rows = words(cc)
dd = linein(fn)
cols = words(dd)
char = '0ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijk'
cntr = 0
Do i = 1 To rows
rowpp.i = CV(cc,i)
cntr = cntr + sum
End
cntc = 0
Do i = 1 To cols
colpp.i = CV(dd,i)
cntc = cntc + sum
End
If (cntr <> cntc)|(cntr = 0) Then Do
Say 'error Sum of rows <> sum of cols'
Exit 999
End
Say cntr 'colored cells'
ar = copies('-',rows*cols)
/* values are -=unknown .=blank @=Color */
/* PREFILL array */
'erase' output
/**********COL PREFILL ************/
Do col = 1 To cols
r = colpp.col
Parse Var r z r
Do While r <> ''
Parse Var r q r
z = z + q + 1
End
result = copies('-',rows)
If z = rows Then result = FILL_LINE(colpp.col)
Else If z = 0 Then result = copies('.',rows)
Do row = 1 To rows
ar = overlay(substr(result,row,1),ar,(row-1)*cols+col)
End
End
/**********ROW PREFILL ************/
Do row = 1 To rows
c = rowpp.row
Parse Var c t c
Do While c <> ''
Parse Var c q c
t = t + q + 1
End
result = substr(ar,(row-1)*cols+1,cols)
If t = cols Then result = left(FILL_LINE(rowpp.row),cols)
Else If t = 0 Then result = copies('.',cols)
ar = overlay(result,ar,(row-1)*cols+1)
End
/********** ok here we loop ************/
cnttry = 1
nexttry = 2
next.cnttry = ar
sol = 0
Do label nextpos While cnttry < nexttry
Say 'trying' cnttry 'of' nexttry-1
ar = next.cnttry
cnttry = cnttry + 1
Do Until sar = ar
sar = ar
Do row = 1 To rows
/**********process rows ************/
rowcol = substr(ar,(row-1)*cols+1,cols)
pp = rowpp.row
If PROCESSROW() Then Iterate nextpos
Else ar = overlay(left(rowcol,cols),ar,(row-1)*cols+1)
End
Do col = 1 To cols
rowcol = ''
Do row = 1 To rows
rowcol = rowcol || substr(ar,(row-1)*cols+ col,1)
End
pp = colpp.col
If PROCESSROW() Then Iterate nextpos
Do row = 1 To rows
ar = overlay(substr(rowcol,row,1),ar,(row-1)*cols + col)
End
End
If pos('-',ar) = 0 Then Do /* hurray we have a solution */
/* at this point we need to verify solution */
If CHECKBOARD() Then Iterate nextpos /* too bad didn't match */
sol = sol + 1
Call LINEOUT output,'This is solution no:' sol
Call DUMPBOARD
Iterate nextpos
End
If sar = ar Then Do
fnd = pos('-',ar)
next.nexttry = overlay('.',ar,fnd)
nexttry = nexttry + 1
ar = overlay('@',ar,fnd)
End
End
End nextpos
If sol = 0 Then sol = 'No'
Say sol 'solutions found'
Exit
CHECKBOARD:
Do row = 1 To rows
/**********process rows ************/
rowcol = substr(ar,(row-1)*cols+1,cols)
pp = rowpp.row
If CHECKROW() Then Return 1
End
Do col = 1 To cols
rowcol = ''
Do row = 1 To rows
rowcol = rowcol || substr(ar,(row-1)*cols+ col,1)
End
pp = colpp.col
If CHECKROW() Then Return 1
End
Return 0 /* we did it */
CHECKROW:
len_item = length(rowcol)
st = 1
If pp = 0 Then Return rowcol <> copies('.',len_item)
Else If pp = len_item Then Return rowcol <> copies('@',len_item)
Do While (pp <> '') & (st <= len_item)
Parse Var pp p1 pp
of = pos('@',rowcol'@',st)
If of > len_item Then Return 1
If substr(rowcol,of,p1) <> copies('@',p1) Then Return 1
st = of + p1
If substr(rowcol'.',st,1) <> '.' Then Return 1
End
Return 0
DUMPBOARD:
Parse Arg qr
p = '..'
q = '..'
Do i = 1 To cols
n = right(i,2)
p = p left(n,1)
q = q right(n,1)
End
Call LINEOUT output, p
Call LINEOUT output, q
Do i = 1 To rows
o = right(i,2)
p = substr(ar,(i-1)*cols+1,cols)
Do j = 1 To cols
Parse Var p z +1 p
o = o z
End
Call LINEOUT output, o
End
Return
FILL_LINE:
Parse Arg items
oo = ''
Do While items <> ''
Parse Var items a items
oo = oo||copies('@',a)'.'
End
Return oo
CV:
Parse Arg cnts, rwcl
str = word(cnts,rwcl)
ret = ''
sum = 0
Do k = 1 To length(str)
this = pos(substr(str,k,1),char)-1
ret = ret this
sum = sum + this
End
Return space(ret)
PROCESSROW: /* rowcol pp in, rowcol pp of ol */
prerow = rowcol
len_item = length(rowcol)
If pos('-',rowcol) = 0 Then Do
pp = ''
Return 0
End
of = 1
kcnt = 0
/* reduce the left side with already populated values */
Do While (of < len_item) & (pp <> '')
kcnt = kcnt + 1
If kcnt > len_item Then Return 1
If substr(rowcol,of,1) = '.' Then Do
k = verify(substr(rowcol,of)'%','.')
of = of + k - 1
Iterate
End
nl = word(pp,1)
len = verify(substr(rowcol,of)'%','-@') - 1
If len < nl Then Do
rowcol = overlay(copies('.',len),rowcol,of)
of = of + len
Iterate
End
If (len = nl) & (pos('@',substr(rowcol,of,nl))>0) Then Do
rowcol = overlay(copies('@',nl),rowcol,of)
of = of + nl
pp = subword(pp,2)
Iterate
End
If substr(rowcol,of,1) = '@' Then Do
rowcol = overlay(copies('@',nl)'.',rowcol,of)
of = of + nl
pp = subword(pp,2)
Iterate
End
Leave
End
/* reduce the right side with already populated values */
ofm = len_item + 1 - of
ol = 1
kcnt = 0
Do While (ol < ofm) & (pp <> '')
kcnt = kcnt + 1
If kcnt > len_item Then Return 1
revrow = reverse(rowcol)
If substr(revrow,ol,1) = '.' Then Do
k = verify(substr(revrow,ol)'%','.')
ol = ol + k - 1
Iterate
End
nl = word(pp,words(pp))
len = verify(substr(revrow,ol)'%','-@') - 1
If len < nl Then Do
rowcol = overlay(copies('.',len),rowcol,len_item-ol-len+2)
ol = ol + len
Iterate
End
If (len = nl) & (pos('@',substr(revrow,ol,nl))>0) Then Do
rowcol = overlay(copies('@',nl),rowcol,len_item-ol-nl+2)
ol = ol + nl
pp = subword(pp,1,words(pp)-1)
Iterate
End
If substr(revrow,ol,1) = '@' Then Do
rowcol = overlay('.'copies('@',nl),rowcol,len_item-ol-nl+1)
ol = ol + nl
pp = subword(pp,1,words(pp)-1)
Iterate
End
Leave
End
If pp = 0 Then pp = ''
If pp = '' Then rowcol = changestr('-',rowcol,'.')
If pp <> '' Then Do
lv = len_item-of-ol+2
pos. = ''
pn = 0
pi = substr(rowcol,of,lv)
If (copies('-',length(pi)) = pi) Then Do
len = CNT(pp)
If (len + mx) <= lv Then Do
Return 0
End
End
/* oh oh need to check for posibilities */
Call TRY '',pp
If pn > maxpn Then Do
over = over + 1
Return 0
End
fnd = 0
fu = pos.1
Do z = 2 To pn
Do j = 1 To lv
If substr(fu,j,1) <> substr(pos.z,j,1) Then fu = overlay('-',fu,j)
End
End
Do z = 1 To lv
If substr(fu,z,1) <> '-' Then rowcol = overlay(substr(fu,z,1),rowcol,of+z-1)
End
End
Return 0
TRY: Procedure Expose pn pos. maxpn lv pi
Parse Arg prev,pp
If pp = '' Then Do
rem = substr(pi,length(prev)+1)
If translate(rem,'..','.-') <> copies('.',length(rem)) Then Return
prev = left(prev||copies('.',lv),lv)
pn = pn + 1
If pn > maxpn Then Return
pos.pn = prev
Return
End
Parse Var pp p1 pp
If length(prev)+p1 > lv Then Return
Do i = 0 To lv - length(prev)-p1
If translate(substr(pi,length(prev)+1,i),'..','.-') = copies('.',i) Then
If translate(substr(pi,length(prev)+i+1,p1),'@@','@-') = copies('@',p1) Then
If substr(pi,length(prev)+i+p1+1,1) <> '@' Then
Call TRY prev||copies('.',i)||copies('@',p1)'.',pp
End
Return
CNT: Procedure Expose mx
Parse Arg len items
mx = len
Do While items <> ''
Parse Var items ii items
len = len + ii + 1
If ii > mx Then mx = ii
End
Return len
- Output:
Puzzle C BA CB BB F AE F A B AB CA AE GA E C D C This is solution no: 1 .. .. 1 2 3 4 5 6 7 8 1 . @ @ @ . . . . 2 @ @ . @ . . . . 3 . @ @ @ . . @ @ 4 . . @ @ . . @ @ 5 . . @ @ @ @ @ @ 6 @ . @ @ @ @ @ . 7 @ @ @ @ @ @ . . 8 . . . . @ . . . 9 . . . @ @ . . . Puzzle F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA This is solution no: 1 .. 1 1 1 1 1 1 1 1 1 1 2 .. 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 . . . . . . . . . . @ @ @ @ @ @ . . . . 2 . . . . . . . . @ @ @ . @ . . @ @ @ . . 3 . . . @ . . @ @ @ . . . @ . . . . @ @ @ 4 . . @ @ @ . @ @ @ @ @ @ @ @ @ @ @ @ @ @ 5 . . . @ . . @ . . . . . . . . . . . . @ 6 . . @ . @ . @ @ . . . . . . . . . . @ @ 7 @ @ @ @ @ . . @ @ . . . . . . . . @ @ . 8 @ @ @ @ @ . . . @ . . . . . . . . @ . . 9 @ @ @ @ @ . . @ @ @ . @ @ @ . @ @ @ . . 10 @ @ @ @ @ @ @ @ . @ @ @ . @ @ @ . @ @ @ Puzzle CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF AAAAD BDG CEF CBDB BBB FC This is solution no: 1 .. 1 1 1 1 1 1 1 1 1 1 2 .. 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 . . . . @ @ @ . @ . . . . . . . . . . . 2 . . . . @ @ . @ @ @ @ . @ . . . . . . . 3 . . . . @ . @ @ @ . @ @ @ . . . . . . . 4 . . @ @ . @ @ @ @ . . . . . . . . . . . 5 . @ @ @ . @ @ @ . @ . . . . @ @ @ . . . 6 @ @ @ . . @ @ . @ @ . . . @ . @ @ @ . . 7 @ @ . . @ @ . @ @ . . . . @ @ . @ @ . . 8 . . . . @ @ . @ . @ . . @ @ . @ . @ . . 9 . . . . @ . @ @ . @ . . . @ @ @ @ . . . 10 . . . . @ . @ . @ @ . . . . . @ @ . . . 11 . . . . . @ @ . @ @ . . @ @ @ @ @ @ @ @ 12 . . . . @ @ . @ @ . . . @ @ . . @ @ @ @ 13 . . . . @ . @ @ . @ @ . @ . . . @ . . @ 14 @ @ @ . . @ @ @ . @ @ @ @ @ . . . . . @ 15 @ . @ . @ @ @ . @ . . . . @ . . . . @ @ 16 @ @ . . @ @ @ . @ . . . . @ @ @ . @ @ @ 17 . @ . @ @ @ . @ @ . @ @ @ @ @ @ @ @ . . 18 . @ @ @ @ . @ @ @ . @ @ @ @ @ @ @ @ . . 19 . . . @ . @ @ @ @ . @ @ . @ @ @ @ @ . . 20 . . . @ . @ @ @ @ . @ @ . . . @ @ . . . 21 . . . . @ @ @ @ . . @ @ . . . @ @ @ @ @ 22 . . . @ @ @ @ @ . @ @ @ . . . @ @ @ @ @ 23 . . . @ @ @ @ . @ . . . . . . . . . . @ 24 . . @ @ @ @ . @ @ . . . . . . . . . . . 25 . . @ @ @ . @ @ @ . . . . . . . . . . . Puzzle E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM This is solution no: 1 .. 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 .. 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 1 . . . . . . . . . . . . . . . . . . . . @ @ @ @ @ 2 . . @ @ . . . . . . . . . . . . . . @ @ @ . . @ @ 3 . @ @ . . . . . . . . . . . . . . @ @ @ @ @ . . @ 4 @ @ . . . . . . . . . . . . . @ @ @ @ @ @ @ @ . . 5 @ @ . . . . @ @ @ @ @ . @ @ @ @ @ @ @ @ @ @ @ . . 6 @ . @ . . @ @ . . . . @ . . . . @ @ @ @ @ @ . . . 7 @ . . @ @ . . . . . @ . . . . . . . @ @ @ . . . . 8 @ @ . . . . . . . . @ . . . . . . . . . . . . . @ 9 . @ @ . . . . . @ @ @ @ @ @ . . . . . . . . . @ @ 10 . . @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ . . . . @ @ @ @ 11 . . . . . @ @ @ @ @ @ @ @ @ @ . . @ @ @ @ @ @ @ @ 12 . . . . @ @ . @ . @ @ @ @ . @ @ @ . . @ @ @ @ @ @ 13 . . . . . . . . @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ 14 . . . . . . . . @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ 15 . . . . . . . @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ 16 . . . . . . . @ . . . @ @ @ @ @ @ @ @ @ @ @ @ @ @ 17 . . . . . . . @ . @ . @ @ @ @ @ @ @ @ @ @ @ @ @ @ 18 . . . . . . . . @ @ @ @ @ . . . @ @ @ @ @ @ @ @ @ 19 . . . . . . . . . . . . . . . . . @ @ @ @ @ @ @ @ 20 . . . . . . . . . . . . . . . . . . @ @ @ @ @ @ @ Puzzle GCAAG AABBAA ACACAACA ACAAFACA ACAEBACA AABAA GAAAAAG CC ABCAACAAB AACBAA DADBAB AAAAADAC BAAABE CBBFCA AIAABA BABBCA CAAAAEA ABBE GABAAAC AABABBA ACADEA ACACJB ACAAFF AABAAB GBABE GBAAG AABBAA ACACACACA ACAAEACA ACAADACA AAABAA GAAAAAG AAC BABAHBA BBABAAAB AGCBA ABCAAAAA DAABF CCAAACA ABEBB BBAAAAABA ACCBAHA FBA GADAAC AAAAD ACACGA ACAAABAAD ACADCC AABBBFA GACBAA This is solution no: 1 .. 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 .. 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 1 @ @ @ @ @ @ @ . @ @ @ . . . @ . @ . @ @ @ @ @ @ @ 2 @ . . . . . @ . @ @ . @ @ . . . . . @ . . . . . @ 3 @ . @ @ @ . @ . . . . . @ @ @ . @ . @ . @ @ @ . @ 4 @ . @ @ @ . @ . @ . . @ @ @ @ @ @ . @ . @ @ @ . @ 5 @ . @ @ @ . @ . . @ @ @ @ @ . @ @ . @ . @ @ @ . @ 6 @ . . . . . @ . . @ @ . . . . . . . @ . . . . . @ 7 @ @ @ @ @ @ @ . @ . @ . @ . @ . @ . @ @ @ @ @ @ @ 8 . . . . . . . . @ @ @ . . . @ @ @ . . . . . . . . 9 @ . @ @ . @ @ @ . . @ . @ . @ @ @ . @ . . @ . @ @ 10 @ . @ . . . . . . @ @ @ . @ @ . . . . @ . . . @ . 11 . @ @ @ @ . @ . @ @ @ @ . @ @ . @ . . . . @ @ . . 12 . @ . @ . . . @ . . . @ . @ . @ @ @ @ . @ . @ @ @ 13 . . @ @ . . @ . @ . @ . . . . . . @ @ . @ @ @ @ @ 14 . . . @ @ @ . @ @ . @ @ . @ @ @ @ @ @ . @ @ @ . @ 15 @ . @ @ @ @ @ @ @ @ @ . @ . @ . . @ @ . . . . @ . 16 . @ @ . @ . . @ @ . . @ @ . . @ @ @ . . . . . @ . 17 @ @ @ . @ . @ . @ . . . . @ . . @ @ @ @ @ . @ . . 18 . . . . . . . . @ . . @ @ . . @ @ . . . @ @ @ @ @ 19 @ @ @ @ @ @ @ . @ . . . @ @ . . @ . @ . @ . @ @ @ 20 @ . . . . . @ . @ @ . . @ . . @ @ . . . @ @ . @ . 21 @ . @ @ @ . @ . . . @ @ @ @ . . @ @ @ @ @ . . @ . 22 @ . @ @ @ . @ . @ @ @ . @ @ @ @ @ @ @ @ @ @ . @ @ 23 @ . @ @ @ . @ . @ . . @ @ @ @ @ @ . @ @ @ @ @ @ . 24 @ . . . . . @ . . @ @ . . . . . . @ . @ . @ @ . . 25 @ @ @ @ @ @ @ . @ @ . . . @ . @ @ . . . @ @ @ @ @ This is solution no: 2 .. 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 .. 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 1 @ @ @ @ @ @ @ . @ @ @ . . . @ . @ . @ @ @ @ @ @ @ 2 @ . . . . . @ . @ @ . @ @ . . . . . @ . . . . . @ 3 @ . @ @ @ . @ . . . . . @ @ @ . @ . @ . @ @ @ . @ 4 @ . @ @ @ . @ . @ . . @ @ @ @ @ @ . @ . @ @ @ . @ 5 @ . @ @ @ . @ . . @ @ @ @ @ . @ @ . @ . @ @ @ . @ 6 @ . . . . . @ . . @ @ . . . . . . . @ . . . . . @ 7 @ @ @ @ @ @ @ . @ . @ . @ . @ . @ . @ @ @ @ @ @ @ 8 . . . . . . . . @ @ @ . . . @ @ @ . . . . . . . . 9 @ . @ @ . @ @ @ . . @ . @ . @ @ @ . . @ . @ . @ @ 10 @ . @ . . . . . . @ @ @ . @ @ . . . @ . . . . @ . 11 . @ @ @ @ . @ . @ @ @ @ . @ @ . @ . . . . @ @ . . 12 . @ . @ . . . @ . . . @ . @ . @ @ @ @ . @ . @ @ @ 13 . . @ @ . . @ . @ . @ . . . . . . @ @ . @ @ @ @ @ 14 . . . @ @ @ . @ @ . @ @ . @ @ @ @ @ @ . @ @ @ . @ 15 @ . @ @ @ @ @ @ @ @ @ . @ . @ . . @ @ . . . . @ . 16 . @ @ . @ . . @ @ . . @ @ . . @ @ @ . . . . . @ . 17 @ @ @ . @ . @ . @ . . . . @ . . @ @ @ @ @ . @ . . 18 . . . . . . . . @ . . @ @ . . @ @ . . . @ @ @ @ @ 19 @ @ @ @ @ @ @ . @ . . . @ @ . . @ . @ . @ . @ @ @ 20 @ . . . . . @ . @ @ . . @ . . @ @ . . . @ @ . @ . 21 @ . @ @ @ . @ . . . @ @ @ @ . . @ @ @ @ @ . . @ . 22 @ . @ @ @ . @ . @ @ @ . @ @ @ @ @ @ @ @ @ @ . @ @ 23 @ . @ @ @ . @ . @ . . @ @ @ @ @ @ . @ @ @ @ @ @ . 24 @ . . . . . @ . . @ @ . . . . . . @ . @ . @ @ . . 25 @ @ @ @ @ @ @ . @ @ . . . @ . @ @ . . . @ @ @ @ @ This is solution no: 3 .. 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 .. 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 1 @ @ @ @ @ @ @ . @ @ @ . . . @ . @ . @ @ @ @ @ @ @ 2 @ . . . . . @ . @ @ . @ @ . . . . . @ . . . . . @ 3 @ . @ @ @ . @ . . . . . @ @ @ . @ . @ . @ @ @ . @ 4 @ . @ @ @ . @ . @ . . @ @ @ @ @ @ . @ . @ @ @ . @ 5 @ . @ @ @ . @ . . @ @ @ @ @ . @ @ . @ . @ @ @ . @ 6 @ . . . . . @ . . @ @ . . . . . . . @ . . . . . @ 7 @ @ @ @ @ @ @ . @ . @ . @ . @ . @ . @ @ @ @ @ @ @ 8 . . . . . . . . @ @ @ . . . @ @ @ . . . . . . . . 9 @ . @ @ . @ @ @ . . @ . @ . @ @ @ . @ . . @ . @ @ 10 @ . @ . . . . . . @ @ @ . @ @ . . . . @ . . . @ . 11 . @ @ @ @ . @ . @ @ @ @ . @ @ . @ . . . . @ @ . . 12 . @ . @ . . . @ . . . @ . @ . @ @ @ @ . @ . @ @ @ 13 . . @ @ . . @ . @ . @ . . . . . . @ @ . @ @ @ @ @ 14 . . . @ @ @ . @ @ . @ @ . @ @ @ @ @ @ . @ @ @ . @ 15 @ . @ @ @ @ @ @ @ @ @ . @ . @ . . @ @ . . . . @ . 16 . @ @ . @ . . @ @ . . . @ @ . @ @ @ . . . . . @ . 17 @ @ @ . @ . @ . @ . . @ . . . . @ @ @ @ @ . @ . . 18 . . . . . . . . @ . . . @ @ . @ @ . . . @ @ @ @ @ 19 @ @ @ @ @ @ @ . @ . . @ @ . . . @ . @ . @ . @ @ @ 20 @ . . . . . @ . @ @ . . @ . . @ @ . . . @ @ . @ . 21 @ . @ @ @ . @ . . . @ @ @ @ . . @ @ @ @ @ . . @ . 22 @ . @ @ @ . @ . @ @ @ . @ @ @ @ @ @ @ @ @ @ . @ @ 23 @ . @ @ @ . @ . @ . . @ @ @ @ @ @ . @ @ @ @ @ @ . 24 @ . . . . . @ . . @ @ . . . . . . @ . @ . @ @ . . 25 @ @ @ @ @ @ @ . @ @ . . . @ . @ @ . . . @ @ @ @ @ This is solution no: 4 .. 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 .. 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 1 @ @ @ @ @ @ @ . @ @ @ . . . @ . @ . @ @ @ @ @ @ @ 2 @ . . . . . @ . @ @ . @ @ . . . . . @ . . . . . @ 3 @ . @ @ @ . @ . . . . . @ @ @ . @ . @ . @ @ @ . @ 4 @ . @ @ @ . @ . @ . . @ @ @ @ @ @ . @ . @ @ @ . @ 5 @ . @ @ @ . @ . . @ @ @ @ @ . @ @ . @ . @ @ @ . @ 6 @ . . . . . @ . . @ @ . . . . . . . @ . . . . . @ 7 @ @ @ @ @ @ @ . @ . @ . @ . @ . @ . @ @ @ @ @ @ @ 8 . . . . . . . . @ @ @ . . . @ @ @ . . . . . . . . 9 @ . @ @ . @ @ @ . . @ . @ . @ @ @ . . @ . @ . @ @ 10 @ . @ . . . . . . @ @ @ . @ @ . . . @ . . . . @ . 11 . @ @ @ @ . @ . @ @ @ @ . @ @ . @ . . . . @ @ . . 12 . @ . @ . . . @ . . . @ . @ . @ @ @ @ . @ . @ @ @ 13 . . @ @ . . @ . @ . @ . . . . . . @ @ . @ @ @ @ @ 14 . . . @ @ @ . @ @ . @ @ . @ @ @ @ @ @ . @ @ @ . @ 15 @ . @ @ @ @ @ @ @ @ @ . @ . @ . . @ @ . . . . @ . 16 . @ @ . @ . . @ @ . . . @ @ . @ @ @ . . . . . @ . 17 @ @ @ . @ . @ . @ . . @ . . . . @ @ @ @ @ . @ . . 18 . . . . . . . . @ . . . @ @ . @ @ . . . @ @ @ @ @ 19 @ @ @ @ @ @ @ . @ . . @ @ . . . @ . @ . @ . @ @ @ 20 @ . . . . . @ . @ @ . . @ . . @ @ . . . @ @ . @ . 21 @ . @ @ @ . @ . . . @ @ @ @ . . @ @ @ @ @ . . @ . 22 @ . @ @ @ . @ . @ @ @ . @ @ @ @ @ @ @ @ @ @ . @ @ 23 @ . @ @ @ . @ . @ . . @ @ @ @ @ @ . @ @ @ @ @ @ . 24 @ . . . . . @ . . @ @ . . . . . . @ . @ . @ @ . . 25 @ @ @ @ @ @ @ . @ @ . . . @ . @ @ . . . @ @ @ @ @
Wren
import "./pattern" for Pattern
import "./math" for Nums, Boolean
var p = Pattern.new("/s")
var genSequence // recursive
genSequence = Fn.new { |ones, numZeros|
if (ones.isEmpty) return ["0" * numZeros]
var result = []
var x = 1
while (x < numZeros - ones.count + 2) {
var skipOne = ones.skip(1).toList
for (tail in genSequence.call(skipOne, numZeros - x)) {
result.add("0" * x + ones[0] + tail)
}
x = x + 1
}
return result
}
/* If all the candidates for a row have a value in common for a certain cell,
then it's the only possible outcome, and all the candidates from the
corresponding column need to have that value for that cell too. The ones
that don't, are removed. The same for all columns. It goes back and forth,
until no more candidates can be removed or a list is empty (failure).
*/
var reduce = Fn.new { |a, b|
var countRemoved = 0
for (i in 0...a.count) {
var commonOn = List.filled(b.count, true)
var commonOff = List.filled(b.count, false)
// determine which values all candidates of a[i] have in common
for (candidate in a[i]) {
for (i in 0...b.count) {
commonOn[i] = Boolean.and(commonOn[i], candidate[i])
commonOff[i] = Boolean.or(commonOff[i], candidate[i])
}
}
// remove from b[j] all candidates that don't share the forced values
for (j in 0...b.count) {
var fi = i
var fj = j
var removals = false
b[j].each { |cnd|
if ((commonOn[fj] && !cnd[fi]) || (!commonOff[fj] && cnd[fi])) {
b[j].remove(cnd)
removals = true
}
}
if (removals) countRemoved = countRemoved + 1
if (b[j].isEmpty) return -1
}
}
return countRemoved
}
var reduceMutual = Fn.new { |cols, rows|
var countRemoved1 = reduce.call(cols, rows)
if (countRemoved1 == -1) return -1
var countRemoved2 = reduce.call(rows, cols)
if (countRemoved2 == -1) return -1
return countRemoved1 + countRemoved2
}
// collect all possible solutions for the given clues
var getCandidates = Fn.new { |data, len|
var result = []
for (s in data) {
var lst = []
var a = s.bytes
var sumChars = Nums.sum(a.map { |b| b - 64 })
var prep = a.map { |b| "1" * (b - 64) }.toList
for (r in genSequence.call(prep, len - sumChars + 1)) {
var bits = r[1..-1].bytes
var len = bits.count
if (len % 64 != 0) len = (len/64).ceil * 64
var bitset = List.filled(len, false)
for (i in 0...bits.count.min(bitset.count)) bitset[i] = bits[i] == 49
lst.add(bitset)
}
result.add(lst)
}
return result
}
var newPuzzle = Fn.new { |data|
var rowData = p.splitAll(data[0])
var colData = p.splitAll(data[1])
var rows = getCandidates.call(rowData, colData.count)
var cols = getCandidates.call(colData, rowData.count)
while (true) {
var numChanged = reduceMutual.call(cols, rows)
if (numChanged == -1) {
System.print("No solution")
return
}
if (numChanged <= 0) break
}
for (row in rows) {
for (i in 0...cols.count) {
System.write(row[0][i] ? "# " : ". ")
}
System.print()
}
System.print()
}
var p1 = ["C BA CB BB F AE F A B", "AB CA AE GA E C D C"]
var p2 = [
"F CAC ACAC CN AAA AABB EBB EAA ECCC HCCC",
"D D AE CD AE A DA BBB CC AAB BAA AAB DA AAB AAA BAB AAA CD BBA DA"
]
var p3 = [
"CA BDA ACC BD CCAC CBBAC BBBBB BAABAA ABAD AABB BBH " +
"BBBD ABBAAA CCEA AACAAB BCACC ACBH DCH ADBE ADBB DBE ECE DAA DB CC",
"BC CAC CBAB BDD CDBDE BEBDF ADCDFA DCCFB DBCFC ABDBA BBF AAF BADB DBF " +
"AAAAD BDG CEF CBDB BBB FC"
]
var p4 = [
"E BCB BEA BH BEK AABAF ABAC BAA BFB OD JH BADCF Q Q R AN AAN EI H G",
"E CB BAB AAA AAA AC BB ACC ACCA AGB AIA AJ AJ " +
"ACE AH BAF CAG DAG FAH FJ GJ ADK ABK BL CM"
]
for (puzzleData in [p1, p2, p3, p4]) newPuzzle.call(puzzleData)
- Output:
. # # # . . . . # # . # . . . . . # # # . . # # . . # # . . # # . . # # # # # # # . # # # # # . # # # # # # . . . . . . # . . . . . . # # . . . . . . . . . . . . . # # # # # # . . . . . . . . . . . . # # # . # . . # # # . . . . . # . . # # # . . . # . . . . # # # . . # # # . # # # # # # # # # # # # # # . . . # . . # . . . . . . . . . . . . # . . # . # . # # . . . . . . . . . . # # # # # # # . . # # . . . . . . . . # # . # # # # # . . . # . . . . . . . . # . . # # # # # . . # # # . # # # . # # # . . # # # # # # # # . # # # . # # # . # # # . . . . # # # . # . . . . . . . . . . . . . . . # # . # # # # . # . . . . . . . . . . . # . # # # . # # # . . . . . . . . . # # . # # # # . . . . . . . . . . . . # # # . # # # . # . . . . # # # . . . # # # . . # # . # # . . . # . # # # . . # # . . # # . # # . . . . # # . # # . . . . . . # # . # . # . . # # . # . # . . . . . . # . # # . # . . . # # # # . . . . . . . # . # . # # . . . . . # # . . . . . . . . # # . # # . . # # # # # # # # . . . . # # . # # . . . # # . . # # # # . . . . # . # # . # # . # . . . # . . # # # # . . # # # . # # # # # . . . . . # # . # . # # # . # . . . . # . . . . # # # # . . # # # . # . . . . # # # . # # # . # . # # # . # # . # # # # # # # # . . . # # # # . # # # . # # # # # # # # . . . . . # . # # # # . # # . # # # # # . . . . . # . # # # # . # # . . . # # . . . . . . . # # # # . . # # . . . # # # # # . . . # # # # # . # # # . . . # # # # # . . . # # # # . # . . . . . . . . . . # . . # # # # . # # . . . . . . . . . . . . . # # # . # # # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # # # # # . . # # . . . . . . . . . . . . . . # # # . . # # . # # . . . . . . . . . . . . . . # # # # # . . # # # . . . . . . . . . . . . . # # # # # # # # . . # # . . . . # # # # # . # # # # # # # # # # # . . # . # . . # # . . . . # . . . . # # # # # # . . . # . . # # . . . . . # . . . . . . . # # # . . . . # # . . . . . . . . # . . . . . . . . . . . . . # . # # . . . . . # # # # # # . . . . . . . . . # # . . # # # # # # # # # # # # # # # . . . . # # # # . . . . . # # # # # # # # # # . . # # # # # # # # . . . . # # . # . # # # # . # # # . . # # # # # # . . . . . . . . # # # # # # # # # # # # # # # # # . . . . . . . . # # # # # # # # # # # # # # # # # . . . . . . . # # # # # # # # # # # # # # # # # # . . . . . . . # . . . # # # # # # # # # # # # # # . . . . . . . # . # . # # # # # # # # # # # # # # . . . . . . . . # # # # # . . . # # # # # # # # # . . . . . . . . . . . . . . . . . # # # # # # # # . . . . . . . . . . . . . . . . . . # # # # # # #