Iccanobif primes are prime numbers that, when reversed, are a Fibonacci number.

Task
Iccanobif primes
You are encouraged to solve this task according to the task description, using any language you may know.


Task
  • Find and display the first 10 iccanobif primes.


Stretch
  • Find and display the digit count of the next 15 iccanobif primes.


See also


ALGOL 68

BEGIN # show the first 10 prime Iccanobif (reversed Fibonacci) numbers       #
    # returns n with the digits reversed                                     #
    OP REVERSE = ( INT n )INT:
       BEGIN
            INT reverse := 0;
            INT v       := ABS n;
            WHILE v > 0 DO
                reverse *:= 10 +:= v MOD 10;
                v OVERAB 10
            OD;
            IF n < 0 THEN - reverse ELSE reverse FI
       END # REVERSE # ;
    # returns TRUE if n is prime, FALSE otherwise - uses trial division      #
    PROC is prime = ( LONG INT n )BOOL:
         IF   n < 3       THEN n = 2
         ELIF n MOD 3 = 0 THEN n = 3
         ELIF NOT ODD n   THEN FALSE
         ELSE
             BOOL is a prime := TRUE;
             INT  f          := 5;
             INT  f2         := 25;
             INT  to next    := 24;
             WHILE f2 <= n AND is a prime DO
                 is a prime := n MOD f /= 0;
                 f         +:= 2;
                 f2        +:= to next;
                 to next   +:= 8
             OD;
             is a prime
         FI # is prime # ;
    # task                                                                   #
    INT p count := 0;
    INT prev    := 0;
    INT curr    := 1;
    WHILE p count < 10 DO
        INT next = prev + curr;
        prev    := curr;
        curr    := next;
        INT rev := REVERSE curr;
        IF is prime( rev ) THEN
            # have a prime iccanobif number #
            p count +:= 1;
            print( ( " ", whole( rev, 0 ) ) )
        FI
    OD
END
Output:
 2 3 5 31 43 773 7951 64901 52057 393121

ALGOL W

Translation of: ALGOL 68
begin % show the first 10 prime Iccanobif (reversed Fibonacci) numbers       %

    % returns n with the digits reversed                                     %
    integer procedure reverse ( integer value n ) ;
    begin
        integer rev, v;
        rev := 0;
        v   := abs n;
        while v > 0 do begin
            rev := ( rev * 10 ) + ( v rem 10 );
            v   := v div 10
        end while_v_gt_0 ;
        if n < 0 then - rev else rev
    end reverse ;

    % returns true if n is prime, false otherwise, uses trial division       %
    logical procedure isPrime ( integer value n ) ;
        if      n < 3        then n = 2
        else if n rem 3 = 0  then n = 3
        else if not odd( n ) then false
        else begin
            logical prime;
            integer f, f2, toNext;
            prime  := true;
            f      := 5;
            f2     := 25;
            toNext := 24;           % note: ( 2n + 1 )^2 - ( 2n - 1 )^2 = 8n %
            while f2 <= n and prime do begin
                prime  := n rem f not = 0;
                f      := f + 2;
                f2     := toNext;
                toNext := toNext + 8
             end while_f2_le_n_and_prime ;
             prime
        end isPrime ;

    begin % task                                                             %
        integer pCount, curr, prev, next, rev;
        pCount := 0;
        prev   := 0;
        curr   := 1;
        while pCount < 10 do begin
            next := prev + curr;
            prev := curr;
            curr := next;
            rev  := reverse( curr );
            if isPrime( rev ) then begin
                % have a prime iccanobif number                              %
                pCount := pCount + 1;
                writeon( i_w := 1, s_w := 0, " ", rev )
            end if_isPrime_rev
        end while_pCount_lt_10
    end
end.
Output:
 2 3 5 31 43 773 7951 64901 52057 393121

Arturo

summarize: function [n :string][
    ;; description: « returns a summary of a numeric string
    s: size n
    if s > 20 -> n: ((take n 10)++"...")++drop.times:s-10 n
    n ++ ~" (|s| digits)"
]

[a b count]: [0 1 0]
print "First 27 Iccanobif primes:"
while -> count < 27 [
    if prime? to :integer r: <= reverse ~"|a|" [
        print [pad ~"|count+1|" 2 "->" summarize r]
        inc 'count
    ]
    [a b]: @[b a+b]
]
Output:
First 27 Iccanobif primes:
 1 -> 2 (1 digits) 
 2 -> 3 (1 digits) 
 3 -> 5 (1 digits) 
 4 -> 31 (2 digits) 
 5 -> 43 (2 digits) 
 6 -> 773 (3 digits) 
 7 -> 7951 (4 digits) 
 8 -> 64901 (5 digits) 
 9 -> 52057 (5 digits) 
10 -> 393121 (6 digits) 
11 -> 56577108676171 (14 digits) 
12 -> 9406476074...3258103531 (21 digits) 
13 -> 5237879497...9575442761 (37 digits) 
14 -> 9026258083...2307801963 (40 digits) 
15 -> 1990033567...3266446403 (80 digits) 
16 -> 7784113736...3685331923 (104 digits) 
17 -> 3772258590...2830756131 (137 digits) 
18 -> 7573619389...4714305761 (330 digits) 
19 -> 1789033684...5235035913 (406 digits) 
20 -> 9232716310...6047302507 (409 digits) 
21 -> 5042015781...7362214481 (503 digits) 
22 -> 3051101247...1330018201 (888 digits) 
23 -> 4681854704...4645856321 (1020 digits) 
24 -> 8710134785...8865227391 (1122 digits) 
25 -> 1745165602...1843652461 (1911 digits) 
26 -> 4898934056...4215909399 (1947 digits) 
27 -> 1274692768...7994940101 (2283 digits)

BASIC

BASIC256

Translation of: FreeBASIC
#include "isprime.kbs"

cnt = 0 : prev = 0 : curr = 1

print "First 10 iccanobiF primes:"
while cnt < 10
	sgte = prev + curr
	prev = curr
	curr = sgte
	rev = reverseNumber(curr)
	if isPrime(rev) then
		# have a prime iccanobif number
		cnt += 1
		print rev; " ";
	end if
end while
end

function reverseNumber(num)
	if num < 10 then return num
	reverse = 0
	while num > 0
		reverse = 10 * reverse + num mod 10
		num = int(num / 10)
	end while
	return reverse
end function


FreeBASIC

Translation of: ALGOL 68
#include "isprime.bas"

' returns num with the digits reversed
Function reverseNumber(num As Uinteger) As Uinteger
    If num < 10 Then Return num
    Dim As Integer reverse = 0
    While num > 0
        reverse = 10 * reverse + (num Mod 10)
        num \= 10
    Wend
    Return reverse
End Function

Dim As Byte cnt = 0
Dim As Uinteger prev = 0, curr = 1
Dim As Uinteger sgte, rev
Print "First 11 iccanobiF primes:"
While cnt < 11
    sgte = prev + curr
    prev = curr
    curr = sgte
    rev = reverseNumber(curr)
    If isPrime(rev) Then
        ' have a prime iccanobif number
        cnt += 1
        Print rev; " ";
    End If
Wend

Sleep
Output:
First 11 iccanobiF primes:
 2  3  5  31  43  773  7951  64901  52057  393121  56577108676171

Gambas

Translation of: FreeBASIC
Public Sub Main()  
  
  Dim cnt As Short = 0, prev As Long = 0, curr As Long = 1 
  Dim sgte As Long, rev As Long
  
  Print "First 11 iccanobiF primes:" 
  While cnt < 11 
    sgte = prev + curr 
    prev = curr 
    curr = sgte 
    rev = reverseNumber(curr) 
    If isPrime(rev) Then 
      ' have a prime iccanobif number
      cnt += 1 
      Print rev; " "; 
    End If 
  Wend
  Print

End

Function reverseNumber(num As Long) As Long 
  
  If num < 10 Then Return num 
  Dim reverse As Long = 0 
  While num > 0 
    reverse = 10 * reverse + (num Mod 10) 
    num \= 10 
  Wend 
  Return reverse 
  
End Function

Sub isPrime(ValorEval As Long) As Boolean 
  
  If ValorEval < 2 Then Return False 
  If ValorEval Mod 2 = 0 Then Return ValorEval = 2 
  If ValorEval Mod 3 = 0 Then Return ValorEval = 3 
  Dim d As Long = 5
  While d * d <= ValorEval
    If ValorEval Mod d = 0 Then Return False Else d += 2
  Wend 
  Return True
  
End Function
Output:
Same as FreeBASIC entry.

Run BASIC

Works with: Just BASIC
Works with: Liberty BASIC
Translation of: FreeBASIC
cnt = 0
prev = 0
curr = 1
print "First 11 iccanobiF primes:"
while cnt < 11
  sgte = prev + curr
  prev = curr
  curr = sgte
  rev = reverseNumber(curr)
  if isPrime(rev) then
    ' have a prime iccanobif number
    cnt = cnt + 1
    print rev; " ";
  end if
wend
end

function isPrime(n)
if n < 2       then isPrime = 0 : goto [exit]
if n = 2       then isPrime = 1 : goto [exit]
if n mod 2 = 0 then isPrime = 0 : goto [exit]
isPrime = 1
for i = 3 to int(n^.5) step 2
  if n mod i = 0 then isPrime = 0 : goto [exit]
next i
[exit]
end function

function reverseNumber(num)
if num < 10 then reverseNumber = num: goto [exit]
reverse = 0
while num > 0
  reverse = 10 * reverse + (num mod 10)
  num = int(num / 10)
wend
reverseNumber = reverse
[exit]
end function
Output:
Same as FreeBASIC entry.

PureBasic

Translation of: FreeBASIC
XIncludeFile "isprime.pb"

Procedure.i reverseNumber(num.i)
  If num < 10 : ProcedureReturn num : EndIf
  reverse.i = 0
  While num > 0
    reverse = 10 * reverse + num % 10
    num = Int(num / 10)
  Wend
  ProcedureReturn reverse
EndProcedure

OpenConsole()
cnt.b = 0 : prev.i = 0 : curr.i = 1

PrintN("First 11 iccanobiF primes:")
While cnt < 11
  sgte = prev + curr
  prev = curr
  curr = sgte
  rev = reverseNumber(curr)
  If isPrime(rev):
    ; have a prime iccanobif number
    cnt + 1
    Print(Str(rev) + " ")
  EndIf
Wend

Input()
CloseConsole()
Output:
Same as FreeBASIC entry.

Yabasic

Translation of: FreeBASIC
//import isprime

cnt = 0 : prev = 0 : curr = 1
print "First 10 iccanobiF primes:"
while cnt < 10
	sgte = prev + curr
	prev = curr
	curr = sgte
	rev = reverseNumber(curr)
	if isPrime(rev) then
		// have a prime iccanobif number
		cnt = cnt + 1
		print rev, " ";
	fi
wend
print
end

sub reverseNumber(num)
    local revers
	
	if num < 10  return num
	revers = 0
	while num > 0
		revers = 10 * revers + mod(num, 10)
		num = int(num / 10)
	wend
	return revers
end sub

C

Translation of: Wren
Library: GMP

There's a big jump in digit count between the 29th and 30th numbers and consequently the latter is very slow indeed to emerge.

#include <stdio.h>
#include <string.h>
#include <gmp.h>

char *reverse(char *s) {
    int i, j, len = strlen(s);
    char t;
    for (i = 0, j = len - 1; i < j; ++i, --j) {
         t = s[i];
         s[i] = s[j];
         s[j] = t;
    }
    return s;
}

int main() {
    int count = 0;
    size_t len;
    char *s, a[44];
    mpz_t fib, p, prev, curr;
    mpz_init(fib);
    mpz_init(p);
    mpz_init_set_ui(prev, 0);
    mpz_init_set_ui(curr, 1);
    printf("First 30 Iccanobif primes:\n");
    while (count < 30) {
        mpz_add(fib, curr, prev);
        s = mpz_get_str(NULL, 10, fib);
        mpz_set_str(p, reverse(s), 10);
        if (mpz_probab_prime_p(p, 15) > 0) {
            ++count;
            s = mpz_get_str(NULL, 10, p);
            len = strlen(s);
            if (len > 40) {
                strncpy(a, s, 20);
                strcpy(a + 20, "...");
                strncpy(a + 23, s + len - 20, 21);
            }
            printf("%2d: %s (%ld digits)\n", count, len <= 40 ? s : a, len);
        }
        mpz_set(prev, curr);
        mpz_set(curr, fib);
    }
    mpz_clear(fib);
    mpz_clear(p);
    mpz_clear(prev);
    mpz_clear(curr);
    return 0;
}
Output:
Same as Wren example.

C++

Library: GMP
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <string>

#include <gmpxx.h>

using big_int = mpz_class;

bool is_probably_prime(const big_int& n) {
    return mpz_probab_prime_p(n.get_mpz_t(), 15) != 0;
}

big_int reverse(const big_int& n) {
    auto str = n.get_str();
    std::reverse(str.begin(), str.end());
    return big_int(str, 10);
}

std::string to_string(const big_int& num, size_t max_digits) {
    std::string str = num.get_str();
    size_t len = str.size();
    if (len > max_digits) {
        str.replace(max_digits / 2, len - max_digits, "...");
        str += " (";
        str += std::to_string(len);
        str += " digits)";
    }
    return str;
}

int main() {
    big_int f0 = 0, f1 = 1;
    std::cout << "First 30 Iccanobif primes:\n";
    for (int count = 0; count < 30;) {
        big_int f = f0 + f1;
        auto p = reverse(f);
        if (is_probably_prime(p)) {
            ++count;
            std::cout << std::setw(2) << count << ": " << to_string(p, 40)
                      << '\n';
        }
        f0 = f1;
        f1 = f;
    }
}
Output:
First 30 Iccanobif primes:
 1: 2
 2: 3
 3: 5
 4: 31
 5: 43
 6: 773
 7: 7951
 8: 64901
 9: 52057
10: 393121
11: 56577108676171
12: 940647607443258103531
13: 5237879497657222310489731409575442761
14: 9026258083384996860449366072142307801963
15: 19900335674812302969...34431012073266446403 (80 digits)
16: 77841137362967479985...52312097783685331923 (104 digits)
17: 37722585901567604188...29174997072830756131 (137 digits)
18: 75736193894876131595...50767238644714305761 (330 digits)
19: 17890336847332837620...13175300695235035913 (406 digits)
20: 92327163101729115305...27061468856047302507 (409 digits)
21: 50420157810698056253...67335124247362214481 (503 digits)
22: 30511012474739380092...69296158361330018201 (888 digits)
23: 46818547042693694555...08664543144645856321 (1020 digits)
24: 87101347853037819884...20128396998865227391 (1122 digits)
25: 17451656022543765336...20100243761843652461 (1911 digits)
26: 48989340566288399474...02930339234215909399 (1947 digits)
27: 12746927684958209654...53436989647994940101 (2283 digits)
28: 35746826582658751012...25010735912438195633 (3727 digits)
29: 87987175281297657706...48748727893681871587 (4270 digits)
30: 81807376367113798363...13687506007959668569 (10527 digits)

EasyLang

fastfunc isprim num .
   if num < 2
      return 0
   .
   i = 2
   while i <= sqrt num
      if num mod i = 0
         return 0
      .
      i += 1
   .
   return 1
.
func reverse s .
   while s > 0
      e = e * 10 + s mod 10
      s = s div 10
   .
   return e
.
curr = 1
while cnt < 10
   next = prev + curr
   prev = curr
   curr = next
   if isprim reverse curr = 1
      cnt += 1
      write reverse curr & " "
   .
.
Output:
2 3 5 31 43 773 7951 64901 52057 393121 

FutureBasic

local fn IsPrime( n as NSUInteger ) as BOOL
  BOOL       isPrime = YES
  NSUInteger i
  
  if n < 2        then exit fn = NO
  if n = 2        then exit fn = YES
  if n mod 2 == 0 then exit fn = NO
  for i = 3 to int(n^.5) step 2
    if n mod i == 0 then exit fn = NO
  next
end fn = isPrime

local fn ReverseInteger( n as NSUInteger )
  NSUInteger reverse = 0, r
  
  while (n != 0)
    r = n mod 10
    reverse = reverse * 10 + r
    n /= 10
  wend
end fn = reverse

local fn IccanobifPrimes( limit as NSUInteger )
  NSUInteger cnt = 0, prev = 0, curr = 1, sgte, rev
  
  printf @"First 11 IccanobiF primes:"
  while (cnt < limit)
    sgte = prev + curr
    prev = curr
    curr = sgte
    rev = fn ReverseInteger(curr)
    if fn IsPrime(rev)
      // Iccanobif prime found
      cnt++
      printf @"%2lu. %lu", cnt, rev
    end if
  wend
end fn

fn IccanobifPrimes( 11 )

HandleEvents
Output:
First 11 Iccanobif primes:
 1. 2
 2. 3
 3, 5
 4. 31
 5. 43
 6, 773
 7. 7951
 8. 64901
 9. 52057
10. 393121
11. 56577108676171

J

Implementation:

   (#~ 1&p:) |.&.":"0 (, _2 +/@{. ])^:(70) 1
2 3 5 31 43 773 7951 64901 52057 393121 56577108676171

In other words: 70 numbers from the Fibonacci sequence, reverse their digits, and keep those which are prime.

Stretch:

   #@":@> 10}. (#~ 1&p:) |.&.(10&#.inv)"0 (, _2 +/@{. ])^:20000]1x
14 21 37 40 80 104 137 330 406 409 503 888 1020 1122 1911 1947 2283 3727

For the stretch goal we use extended precision integers instead of the usual fixed width representation, and reverse the digits numerically rather than relying on the character representation of the numbers (though it's simplest to rely on the character representation for counting the digits of the resulting primes).

Java

import java.math.BigInteger;

public final class IccanobifPrimes {

	public static void main(String[] args) {
		System.out.println("The first 25 Iccanobif primes:");
		int count = 0;
		while ( count < 25 ) {
			BigInteger fibonacci = nextFibonacci();
			BigInteger reversed = reversed(fibonacci);
		    if ( reversed.isProbablePrime(20) ) {
		    	count += 1;
		    	String number = reversed.toString();
		    	System.out.println(
		    		String.format("%2d%s%s%s", count, ": ", compressed(number, 20), digitCount(number)));
		    }
		}
	}
	
	private static BigInteger nextFibonacci() {
		current = current.add(previous);
		previous = current.subtract(previous);
		return current;
	}
	
	private static String compressed(String number, int size) {
		if ( number.length() <= 2 * size ) {
			return number;
		}		
		return number.substring(0, size) + " ... " + number.substring(number.length() - size);
	}
	
	private static BigInteger reversed(BigInteger number) {
		String num = number.toString();
		String reversed = new StringBuilder(num).reverse().toString();
		return new BigInteger(reversed);
	}
	
	private static String digitCount(String number) {
		return " ( " + number.length() + ( number.length() == 1 ? " digit " : " digits " ) + ")";
	}
	
	private static BigInteger previous = BigInteger.ONE;
	private static BigInteger current = BigInteger.ONE;

}
Output:
The first 25 Iccanobif primes:
 1: 2 ( 1 digit )
 2: 3 ( 1 digit )
 3: 5 ( 1 digit )
 4: 31 ( 2 digits )
 5: 43 ( 2 digits )
 6: 773 ( 3 digits )
 7: 7951 ( 4 digits )
 8: 64901 ( 5 digits )
 9: 52057 ( 5 digits )
10: 393121 ( 6 digits )
11: 56577108676171 ( 14 digits )
12: 940647607443258103531 ( 21 digits )
13: 5237879497657222310489731409575442761 ( 37 digits )
14: 9026258083384996860449366072142307801963 ( 40 digits )
15: 19900335674812302969 ... 34431012073266446403 ( 80 digits )
16: 77841137362967479985 ... 52312097783685331923 ( 104 digits )
17: 37722585901567604188 ... 29174997072830756131 ( 137 digits )
18: 75736193894876131595 ... 50767238644714305761 ( 330 digits )
19: 17890336847332837620 ... 13175300695235035913 ( 406 digits )
20: 92327163101729115305 ... 27061468856047302507 ( 409 digits )
21: 50420157810698056253 ... 67335124247362214481 ( 503 digits )
22: 30511012474739380092 ... 69296158361330018201 ( 888 digits )
23: 46818547042693694555 ... 08664543144645856321 ( 1020 digits )
24: 87101347853037819884 ... 20128396998865227391 ( 1122 digits )
25: 17451656022543765336 ... 20100243761843652461 ( 1911 digits )

jq

Works with jq and gojq, the C and Go implementations of jq

The following program will also work using jaq, the Rust implementation of jq, provided the adjustments described in the Addendum are made.

gojq supports infinite-precision integer arithmetic, but the `sqrt` algorithm presented here is insufficient for computing the 12th Iccanobif prime in a reasonable time.

def is_prime:
  . as $n
  | if ($n < 2)         then false
    elif ($n % 2 == 0)  then $n == 2
    elif ($n % 3 == 0)  then $n == 3
    elif ($n % 5 == 0)  then $n == 5
    elif ($n % 7 == 0)  then $n == 7
    elif ($n % 11 == 0) then $n == 11
    elif ($n % 13 == 0) then $n == 13
    elif ($n % 17 == 0) then $n == 17
    elif ($n % 19 == 0) then $n == 19
    else
      ($n | sqrt) as $rt
      | 23
      | until( . > $rt or ($n % . == 0); .+2)
      | . > $rt
    end;

# Output: an indefinitely long stream of fibonacci numbers subject to
# integer arithmetic limitations if any
def fib: [0,1]|while(1;[last,add])[1];

def reverseNumber: tostring | explode | reverse | implode | tonumber;

"First 11 Iccanobif primes:",
limit(11; fib | tostring | reverseNumber | select(is_prime))
Output:
First 11 Iccanobif primes:
2
3
5
31
43
773
7951
64901
52057
393121
56577108676171

Addendum: jaq version

jaq does not have indefinite-precision integer arithmetic, so here we'll just briefly summarize the tweaks needed:

(1) Use `isqrt` as defined at Isqrt_(integer_square_root)_of_X#jq but with the addition of `floor` at the end of the def of `idivide`.

(2) Replace reverseNumber so that leading 0s do not appear in the reversed string:

# Input: an array of codepoints
# 48 is the codepoint of "0"
def rmLeadingZeros:
  if .[0] == 48 then .[1:] | rmLeadingZeros else . end;
  
def reverseNumber: tostring | explode | reverse | rmLeadingZeros | implode | tonumber;

Julia

Translation of: Python
using Primes

""" Print the series of iccanobif prime numbers up to wanted """
function iccanobifs(wanted)
    digbuf = zeros(Int, 11000)
    fib, prev, prevprev, fcount = big"0", big"1", big"0", 0
    println("First $wanted Iccanobif primes:")
    while fcount < wanted
        fib = prev + prevprev
        prevprev = prev
        prev = fib
        digits!(digbuf, fib)
        candidate = evalpoly(big"10", reverse(digbuf[begin:findlast(!iszero, digbuf)]))
        if isprime(candidate)
            fcount += 1
            dlen = ndigits(candidate)
            if dlen < 90
                println(candidate, " ($dlen digit$(dlen == 1 ? "" : "s"))")
            else
                s = string(candidate)
                println(s[1:30], " ... ", s[end-29:end], " ($dlen digits)")
            end
        end
    end
end

iccanobifs(30)
Output:
First 30 Iccanobif primes:
2 (1 digit)
3 (1 digit)
5 (1 digit)
31 (2 digits)
43 (2 digits)
773 (3 digits)
7951 (4 digits)
64901 (5 digits)
52057 (5 digits)
393121 (6 digits)
56577108676171 (14 digits)
940647607443258103531 (21 digits)
5237879497657222310489731409575442761 (37 digits)
9026258083384996860449366072142307801963 (40 digits)
19900335674812302969315720344396951060628175943800862267761734431012073266446403 (80 digits)
778411373629674799853537498387 ... 906414225852312097783685331923 (104 digits)
377225859015676041888905465423 ... 942640418929174997072830756131 (137 digits)
757361938948761315956093082097 ... 105343825250767238644714305761 (330 digits)
178903368473328376208382371633 ... 139766460613175300695235035913 (406 digits)
923271631017291153059188123189 ... 439342926827061468856047302507 (409 digits)
504201578106980562530763299184 ... 034364678167335124247362214481 (503 digits)
305110124747393800923565587415 ... 827995099969296158361330018201 (888 digits)
468185470426936945550027667953 ... 673037342708664543144645856321 (1020 digits)
871013478530378198843208828928 ... 472170748420128396998865227391 (1122 digits)
174516560225437653361964336594 ... 630820185220100243761843652461 (1911 digits)
489893405662883994748316933771 ... 474664296802930339234215909399 (1947 digits)
127469276849582096547381559312 ... 119580690153436989647994940101 (2283 digits)
357468265826587510126602192036 ... 869346589325010735912438195633 (3727 digits)
879871752812976577066489068488 ... 466056251048748727893681871587 (4270 digits)
818073763671137983636050093057 ... 882798314213687506007959668569 (10527 digits)

Lua

isPrime routine from the Primality by trial division task.

function isPrime( n )
    if n <= 1 or ( n ~= 2 and n % 2 == 0 ) then
        return false
    end

    for i = 3, math.sqrt(n), 2 do
        if n % i == 0 then
            return false
        end
    end

    return true
end

function reverseDigits( n )
    return tonumber( string.reverse( tostring( n ) ) )
end

do
    local pCount = 0
    local prev   = 0
    local curr   = 1
    while pCount < 10 do
        local nextF = prev + curr
        prev        = curr
        curr        = nextF
        local rev  = reverseDigits( curr )
        if isPrime( rev ) then
            pCount = pCount + 1
            io.write( " ", rev )
        end
    end
end
Output:
 2 3 5 31 43 773 7951 64901 52057 393121

MiniScript

Translation of: Lua

Using code frommthe Reverse a string task.

isPrime = function ( n )
    if n <= 1 or ( n != 2 and n % 2 == 0 ) then
        return false
    end if

    for i in range(3, sqrt(n), 2)
        if n % i == 0 then
            return false
        end if
    end for

    return true
end function

reverseString = function( str )
    revStr = ""
    for i in range(str.len-1, 0)
        revStr = revStr + str[i]
    end for
    return revStr
end function
    
reverseDigits = function( n )
    return val( reverseString( str( n ) ) )
end function

pCount = 0
prev   = 0
curr   = 1
out    = []
while pCount < 10
    nextF = prev + curr
    prev  = curr
    curr  = nextF
    rev  = reverseDigits( curr )
    if isPrime( rev ) then
        pCount = pCount + 1
        out.push( rev )
    end if
end while
print out.join
Output:
2 3 5 31 43 773 7951 64901 52057 393121

Nim

Library: Nim-Integers
import std/strformat
import integers

func reversed(n: Integer): Integer =
  ## Return the "reversed" value of "n".
  result = newInteger()
  var n = n
  while n != 0:
    result = 10 * result + n mod 10
    n = n div 10

iterator fib(): Integer =
  ## Yield the successive values of Fibonacci sequence.
  var prev, curr = newInteger(1)
  yield prev
  while true:
    yield curr
    swap curr, prev
    curr += prev

func compressed(str: string; size: int): string =
  ## Return a compressed value for long strings of digits.
  if str.len <= 2 * size: str
  else: &"{str[0..<size]}...{str[^size..^1]}"

func digitCount(s: string): string =
  ## Return the string which describes the number of digits.
  result = $s.len & " digit"
  if s.len > 1: result.add 's'

echo "First 25 Iccanobif primes:"
var count = 0
for n in fib():
  let r = reversed(n)
  if r.isPrime:
    inc count
    let s = $r
    echo &"{count:>2}: {s.compressed(20)} ({s.digitCount()})"
    if count == 25: break
Output:
First 25 Iccanobif primes:
 1: 2 (1 digit)
 2: 3 (1 digit)
 3: 5 (1 digit)
 4: 31 (2 digits)
 5: 43 (2 digits)
 6: 773 (3 digits)
 7: 7951 (4 digits)
 8: 64901 (5 digits)
 9: 52057 (5 digits)
10: 393121 (6 digits)
11: 56577108676171 (14 digits)
12: 940647607443258103531 (21 digits)
13: 5237879497657222310489731409575442761 (37 digits)
14: 9026258083384996860449366072142307801963 (40 digits)
15: 19900335674812302969...34431012073266446403 (80 digits)
16: 77841137362967479985...52312097783685331923 (104 digits)
17: 37722585901567604188...29174997072830756131 (137 digits)
18: 75736193894876131595...50767238644714305761 (330 digits)
19: 17890336847332837620...13175300695235035913 (406 digits)
20: 92327163101729115305...27061468856047302507 (409 digits)
21: 50420157810698056253...67335124247362214481 (503 digits)
22: 30511012474739380092...69296158361330018201 (888 digits)
23: 46818547042693694555...08664543144645856321 (1020 digits)
24: 87101347853037819884...20128396998865227391 (1122 digits)
25: 17451656022543765336...20100243761843652461 (1911 digits)

Perl

Library: ntheory
use v5.36;
use ntheory qw<is_prime lucasu>;

sub abbr ($d,$w) { my $l = length $d; $l < $w+1 ? $d : substr($d,0,$w/2) . '..' . substr($d,-$w/2) . " ($l digits)" }

my($n,$cnt) = (0,0);
do {
    my $f = lucasu(1, -1, $n++);
    my $p = join '', reverse split '', $f;
    printf "%-2d: %s\n", ++$cnt, abbr($p,50) if is_prime $p;
} until $cnt == 25;
Output:
1 : 2
2 : 3
3 : 5
4 : 31
5 : 43
6 : 773
7 : 7951
8 : 64901
9 : 52057
10: 393121
11: 56577108676171
12: 940647607443258103531
13: 5237879497657222310489731409575442761
14: 9026258083384996860449366072142307801963
15: 1990033567481230296931572..7761734431012073266446403 (80 digits)
16: 7784113736296747998535374..4225852312097783685331923 (104 digits)
17: 3772258590156760418889054..0418929174997072830756131 (137 digits)
18: 7573619389487613159560930..3825250767238644714305761 (330 digits)
19: 1789033684733283762083823..6460613175300695235035913 (406 digits)
20: 9232716310172911530591881..2926827061468856047302507 (409 digits)
21: 5042015781069805625307632..4678167335124247362214481 (503 digits)
22: 3051101247473938009235655..5099969296158361330018201 (888 digits)
23: 4681854704269369455500276..7342708664543144645856321 (1020 digits)
24: 8710134785303781988432088..0748420128396998865227391 (1122 digits)
25: 1745165602254376533619643..0185220100243761843652461 (1911 digits)

Phix

Translation of: C
include mpfr.e
integer count = 0 
mpz {fib, p, prev, curr} = mpz_inits(4,{0,0,0,1})
printf(1,"First 30 Iccanobif primes:\n");
while count<30 do
    mpz_add(fib, curr, prev)
    string r = reverse(mpz_get_str(fib)), s
    mpz_set_str(p,r,10)
    if mpz_prime(p) then
        count += 1
        integer l = length(r)
        {r,s} = {shorten(r,""),iff(l<2?"":"s")}
        printf(1,"%2d: %s (%d digit%s)\n", {count,r,l,s})
    end if
    mpz_set(prev, curr)
    mpz_set(curr, fib)
end while
Output:
First 30 Iccanobif primes:
 1: 2 (1 digit)
 2: 3 (1 digit)
 3: 5 (1 digit)
 4: 31 (2 digits)
 5: 43 (2 digits)
 6: 773 (3 digits)
 7: 7951 (4 digits)
 8: 64901 (5 digits)
 9: 52057 (5 digits)
10: 393121 (6 digits)
11: 56577108676171 (14 digits)
12: 940647607443258103531 (21 digits)
13: 5237879497657222310489731409575442761 (37 digits)
14: 9026258083384996860449366072142307801963 (40 digits)
15: 19900335674812302969...34431012073266446403 (80 digits)
16: 77841137362967479985...52312097783685331923 (104 digits)
17: 37722585901567604188...29174997072830756131 (137 digits)
18: 75736193894876131595...50767238644714305761 (330 digits)
19: 17890336847332837620...13175300695235035913 (406 digits)
20: 92327163101729115305...27061468856047302507 (409 digits)
21: 50420157810698056253...67335124247362214481 (503 digits)
22: 30511012474739380092...69296158361330018201 (888 digits)
23: 46818547042693694555...08664543144645856321 (1020 digits)
24: 87101347853037819884...20128396998865227391 (1122 digits)
25: 17451656022543765336...20100243761843652461 (1911 digits)
26: 48989340566288399474...02930339234215909399 (1947 digits)
27: 12746927684958209654...53436989647994940101 (2283 digits)
28: 35746826582658751012...25010735912438195633 (3727 digits)
<killed>

Very slow, that's as far as I was prepared to listen to it whine away...

PL/M

Works with: 8080 PL/M Compiler

... under CP/M (or an emulator)

As 8080 PL/M only handles 8 and 16 bit unsigned integers, this stops when the reversed number would be over 65530 and so finds only 8 Iccanobif primes.

100H: /* SHOW SOME PRIME ICCANOBIF (REVERSED FIBONACCI) NUMBERS             */

   /* CP/M BDOS SYSTEM CALL AND I/O ROUTINES                                */
   BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5; END;
   PR$CHAR:   PROCEDURE( C ); DECLARE C BYTE;    CALL BDOS( 2, C );  END;
   PR$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S );  END;
   PR$NL:     PROCEDURE;   CALL PR$CHAR( 0DH ); CALL PR$CHAR( 0AH ); END;
   PR$NUMBER: PROCEDURE( N ); /* PRINTS A NUMBER IN THE MINIMUN FIELD WIDTH  */
      DECLARE N ADDRESS;
      DECLARE V ADDRESS, N$STR ( 6 )BYTE, W BYTE;
      V = N;
      W = LAST( N$STR );
      N$STR( W ) = '$';
      N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      DO WHILE( ( V := V / 10 ) > 0 );
         N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      END;
      CALL PR$STRING( .N$STR( W ) );
   END PR$NUMBER;

   /* RETURNS TRUE IF N IS PRIME, FALSE OTHERWISE, USES TRIAL DIVISION      */
   IS$PRIME: PROCEDURE( N )BYTE;
      DECLARE N ADDRESS;
      DECLARE PRIME BYTE;
      IF      N < 3       THEN PRIME = N = 2;
      ELSE IF N MOD 3 = 0 THEN PRIME = N = 3;
      ELSE IF N MOD 2 = 0 THEN PRIME = 0;
      ELSE DO;
         DECLARE ( F, F2, TO$NEXT ) ADDRESS;
         PRIME   = 1;
         F       = 5;
         F2      = 25;
         TO$NEXT = 24;            /* NOTE: ( 2N + 1 )^2 - ( 2N - 1 )^2 = 8N */
         DO WHILE F2 <= N AND PRIME;
            PRIME   = N MOD F <> 0;
            F       = F + 2;
            F2      = F2 + TO$NEXT;
            TO$NEXT = TO$NEXT + 8;
         END;
      END;
      RETURN PRIME;
   END IS$PRIME;

   /* TASK                                                                  */

   DECLARE ( PREV, CURR, NEXT, V, R ) ADDRESS;
   DECLARE MORE BYTE;

   PREV = 0;
   CURR = 1;
   MORE = 1;
   DO WHILE MORE;
      NEXT = PREV + CURR;
      /* REVERSE THE DIGITS OF NEXT, STOP IF THE RESULT WOULD BE > 65530    */
      R = 0;
      V = NEXT;
      DO WHILE V > 0 AND MORE;
         R = ( R * 10 ) + V MOD 10;
         V = V / 10;
         IF R > 6553 AND V <> 0 THEN MORE = 0;
      END;
      IF MORE THEN DO;
         /* THE REVERSE OF N WILL FIT 16 BITS                               */
         PREV = CURR;
         CURR = NEXT;
         IF IS$PRIME( R ) THEN DO;
            CALL PR$CHAR( ' ' );CALL PR$NUMBER( R );
         END;
      END;
   END;

EOF
Output:
 2 3 5 31 43 773 7951 64901

Python

Translation of: Wren
""" rosettacode.org/wiki/Iccanobif_primes """

from sympy import isprime


def iccanobifs(wanted):
    """ Print the series of iccanobif prime numbers up to wanted """
    fib, prev, prevprev, fcount = 0, 1, 0, 0
    print('First 30 Iccanobif primes:')
    while fcount < wanted:
        fib = prev + prevprev
        prevprev = prev
        prev = fib
        dig = [int(c) for c in str(fib)]
        candidate = sum(n * 10**i for i, n in enumerate(dig))
        if isprime(candidate):
            fcount += 1
            dlen = len(str(candidate))
            if dlen < 90:
                print(candidate, f"({dlen} digit{'' if dlen == 1 else 's'})")
            else:
                s = str(candidate)
                print(s[:30], "...", s[-29:], f'({dlen} digits)')


iccanobifs(30)
Output:
First 30 Iccanobif primes:
2 (1 digit)
3 (1 digit)
5 (1 digit)
31 (2 digits)
43 (2 digits)
773 (3 digits)
7951 (4 digits)
64901 (5 digits)
52057 (5 digits)
393121 (6 digits)
56577108676171 (14 digits)
940647607443258103531 (21 digits)
5237879497657222310489731409575442761 (37 digits)
9026258083384996860449366072142307801963 (40 digits)
19900335674812302969315720344396951060628175943800862267761734431012073266446403 (80 digits)
778411373629674799853537498387 ... 06414225852312097783685331923 (104 digits)
377225859015676041888905465423 ... 42640418929174997072830756131 (137 digits)
757361938948761315956093082097 ... 05343825250767238644714305761 (330 digits)
178903368473328376208382371633 ... 39766460613175300695235035913 (406 digits)
923271631017291153059188123189 ... 39342926827061468856047302507 (409 digits)
504201578106980562530763299184 ... 34364678167335124247362214481 (503 digits)
305110124747393800923565587415 ... 27995099969296158361330018201 (888 digits)
468185470426936945550027667953 ... 73037342708664543144645856321 (1020 digits)
871013478530378198843208828928 ... 72170748420128396998865227391 (1122 digits)
174516560225437653361964336594 ... 30820185220100243761843652461 (1911 digits)
489893405662883994748316933771 ... 74664296802930339234215909399 (1947 digits)
127469276849582096547381559312 ... 19580690153436989647994940101 (2283 digits)
357468265826587510126602192036 ... 69346589325010735912438195633 (3727 digits)
879871752812976577066489068488 ... 66056251048748727893681871587 (4270 digits)
^C (took too long)

Quackery

As with the other solutions, finds Fibonacci emirps (Fibonacci numbers which are primes when reversed) and reverses them.

isprime is defined at Primality by trial division#Quackery.

from, incr and end are defined at Loops/Increment loop index within loop body#Quackery.

  [ 0
    [ swap 10 /mod
      rot 10 * +
      over 0 = until ]
    nip ]              is revnum ( n --> n )

  [] 1 1 from
    [ dup revnum isprime if
        [ tuck revnum
          join swap ]
      index swap incr
      over size 10 = if end ]
  drop echo
Output:
[ 2 3 5 31 43 773 7951 64901 52057 393121 ]

Raku

sub abbr ($_) { (.chars < 41 ?? $_ !! .substr(0,20) ~ '..' ~ .substr(*-20)) ~ " (digits: {.chars})" }

say (++$).fmt('%2d') ~ ': ' ~ .flip.&abbr for (lazy (1,1,*+*…*).hyper.grep: {.flip.is-prime})[^25];
Output:
 1: 2 (digits: 1)
 2: 3 (digits: 1)
 3: 5 (digits: 1)
 4: 31 (digits: 2)
 5: 43 (digits: 2)
 6: 773 (digits: 3)
 7: 7951 (digits: 4)
 8: 64901 (digits: 5)
 9: 52057 (digits: 5)
10: 393121 (digits: 6)
11: 56577108676171 (digits: 14)
12: 940647607443258103531 (digits: 21)
13: 5237879497657222310489731409575442761 (digits: 37)
14: 9026258083384996860449366072142307801963 (digits: 40)
15: 19900335674812302969..34431012073266446403 (digits: 80)
16: 77841137362967479985..52312097783685331923 (digits: 104)
17: 37722585901567604188..29174997072830756131 (digits: 137)
18: 75736193894876131595..50767238644714305761 (digits: 330)
19: 17890336847332837620..13175300695235035913 (digits: 406)
20: 92327163101729115305..27061468856047302507 (digits: 409)
21: 50420157810698056253..67335124247362214481 (digits: 503)
22: 30511012474739380092..69296158361330018201 (digits: 888)
23: 46818547042693694555..08664543144645856321 (digits: 1020)
24: 87101347853037819884..20128396998865227391 (digits: 1122)
25: 17451656022543765336..20100243761843652461 (digits: 1911)
26: 48989340566288399474..02930339234215909399 (digits: 1947)
27: 12746927684958209654..53436989647994940101 (digits: 2283)
28: 35746826582658751012..25010735912438195633 (digits: 3727)
29: 87987175281297657706..48748727893681871587 (digits: 4270)
30: 81807376367113798363..13687506007959668569 (digits: 10527)

RPL

Works with: HP version 49
≪ 0
   WHILE OVER REPEAT
      SWAP 10 IDIV2
      ROT 10 * +
   END NIP 
≫ 'REVINT' STO

≪ 2 * → max
≪ { } 0 1    
   DO 
      SWAP OVER + 
      DUP REVINT
      IF DUP ISPRIME? THEN 
         DUP →STR SIZE 5 ROLL ROT + SWAP + UNROT 
      ELSE DROP END
   UNTIL 3 PICK SIZE max ≥ END DROP2
≫ ≫ 'ICCAN' STO
15 ICCAN
Output:
1: {2 1. 3 1. 5 1. 31 2. 43 2. 773 3. 7951 4. 64901 5. 52057 5. 393121 6. 56577108676171 14. 940647607443258103531 21. 5237879497657222310489731409575442761 37. 9026258083384996860449366072142307801963 40. 19900335674812302969315720344396951060628175943800862267761734431012073266446403 80.}

Runs in 30 minutes on a HP-50g.

Sidef

var count = 25
var index = 0

for n in (1..Inf) {
    var t = n.fib.flip -> is_prob_prime || next
    var s = Str(t)
    s = "#{s.first(20)}..#{s.last(20)} (#{s.len} digits)" if (s.len>50)
    say "#{'%2d' % ++index}: #{s}"
    count == index && break
}
Output:
 1: 2
 2: 3
 3: 5
 4: 31
 5: 43
 6: 773
 7: 7951
 8: 64901
 9: 52057
10: 393121
11: 56577108676171
12: 940647607443258103531
13: 5237879497657222310489731409575442761
14: 9026258083384996860449366072142307801963
15: 19900335674812302969..34431012073266446403 (80 digits)
16: 77841137362967479985..52312097783685331923 (104 digits)
17: 37722585901567604188..29174997072830756131 (137 digits)
18: 75736193894876131595..50767238644714305761 (330 digits)
19: 17890336847332837620..13175300695235035913 (406 digits)
20: 92327163101729115305..27061468856047302507 (409 digits)
21: 50420157810698056253..67335124247362214481 (503 digits)
22: 30511012474739380092..69296158361330018201 (888 digits)
23: 46818547042693694555..08664543144645856321 (1020 digits)
24: 87101347853037819884..20128396998865227391 (1122 digits)
25: 17451656022543765336..20100243761843652461 (1911 digits)

Wren

Library: Wren-gmp
Library: Wren-fmt
import "./gmp" for Mpz
import "./fmt" for Fmt

var fib = Mpz.new()
var p = Mpz.new()
var prev = Mpz.zero
var curr = Mpz.one
var count = 0
System.print("First 30 Iccanobif primes:")
while (count < 30) {
    fib.add(curr, prev)
    var fs = fib.toString
    p.setStr(fs[-1..0])
    if (p.probPrime(15) > 0) {
        count =  count + 1
        var pc = p.toString.count
        Fmt.print("$2d: $20a ($d digits)", count, p, pc)
    }
    prev.set(curr)
    curr.set(fib)
}
Output:
First 30 Iccanobif primes:
 1: 2 (1 digits)
 2: 3 (1 digits)
 3: 5 (1 digits)
 4: 31 (2 digits)
 5: 43 (2 digits)
 6: 773 (3 digits)
 7: 7951 (4 digits)
 8: 64901 (5 digits)
 9: 52057 (5 digits)
10: 393121 (6 digits)
11: 56577108676171 (14 digits)
12: 940647607443258103531 (21 digits)
13: 5237879497657222310489731409575442761 (37 digits)
14: 9026258083384996860449366072142307801963 (40 digits)
15: 19900335674812302969...34431012073266446403 (80 digits)
16: 77841137362967479985...52312097783685331923 (104 digits)
17: 37722585901567604188...29174997072830756131 (137 digits)
18: 75736193894876131595...50767238644714305761 (330 digits)
19: 17890336847332837620...13175300695235035913 (406 digits)
20: 92327163101729115305...27061468856047302507 (409 digits)
21: 50420157810698056253...67335124247362214481 (503 digits)
22: 30511012474739380092...69296158361330018201 (888 digits)
23: 46818547042693694555...08664543144645856321 (1020 digits)
24: 87101347853037819884...20128396998865227391 (1122 digits)
25: 17451656022543765336...20100243761843652461 (1911 digits)
26: 48989340566288399474...02930339234215909399 (1947 digits)
27: 12746927684958209654...53436989647994940101 (2283 digits)
28: 35746826582658751012...25010735912438195633 (3727 digits)
29: 87987175281297657706...48748727893681871587 (4270 digits)
30: 81807376367113798363...13687506007959668569 (10527 digits)