Free polyominoes enumeration

From Rosetta Code
Free polyominoes enumeration is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

A Polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge. Free polyominoes are distinct when none is a translation, rotation, reflection or glide reflection of another polyomino.

Task: generate all the free polyominoes with n cells.

You can visualize them just as a sequence of the coordinate pairs of their cells (rank 5):

[(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)]
[(0, 0), (0, 1), (0, 2), (0, 3), (1, 0)]
[(0, 0), (0, 1), (0, 2), (0, 3), (1, 1)]
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)]
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 2)]
[(0, 0), (0, 1), (0, 2), (1, 0), (2, 0)]
[(0, 0), (0, 1), (0, 2), (1, 1), (2, 1)]
[(0, 0), (0, 1), (0, 2), (1, 2), (1, 3)]
[(0, 0), (0, 1), (1, 1), (1, 2), (2, 1)]
[(0, 0), (0, 1), (1, 1), (1, 2), (2, 2)]
[(0, 0), (0, 1), (1, 1), (2, 1), (2, 2)]
[(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)]

But a better basic visualization is using ASCII art (rank 5):

#    ##   #    ##  ##  ###  #     #    #    #    #      #
#    #    ##   ##  #   #    ###   #    ###  ##   ###   ###
#    #    #    #   ##  #    #     ##    #    ##    #    #
#    #    #                        #
#

Or perhaps with corner characters (rank 5):

 ┌───┐   ┌─────┐     ┌─┐   ┌───┐   ┌───┐     ┌───┐     ┌───┐     ┌───┐   ┌─┐     ┌─────┐   ┌─┐     ┌─┐
 │   │   │ ┌───┘   ┌─┘ │   │ ┌─┘   │ ┌─┘   ┌─┘ ┌─┘     │ ┌─┘   ┌─┘ ┌─┘   │ └─┐   └─┐ ┌─┘   │ │   ┌─┘ └─┐
 │ ┌─┘   │ │       │ ┌─┘   │ │     │ └─┐   └─┐ │     ┌─┘ │     │ ┌─┘     │ ┌─┘     │ │     │ │   └─┐ ┌─┘
 └─┘     └─┘       │ │     │ │     └───┘     └─┘     └───┘     └─┘       │ │       └─┘     │ │     └─┘
                   └─┘     └─┘                                           └─┘               │ │
                                                                                           └─┘

For a slow but clear solution see this Haskell Wiki page: Generating Polyominoes


Bonus Task: you can create an alternative program (or specialize your first program) to generate very quickly just the number of distinct free polyominoes, and to show a sequence like:

1, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 3426576, ...

Number of free polyominoes (or square animals) with n cells: OEIS: A000105


Cf.

Pentomino tiling

C#

Translation of: D

Turns out the source for the counting only version of the D code example could be tweaked to show solutions as well. The max rank can be changed by supplying a command line parameter. The free polyominos of any rank can be displayed by changing the variable named target to a reasonable number. This program will also indicate the estimated times for larger ranks.

using System;
using System.Collections.Generic;
using System.Linq;

namespace cppfpe
{
    class Program
    {
        static int n, ns;               // rank, rank squared
        static long[] AnyR;             // Any Rotation count
        static long[] nFlip;            // Non-Flipped count
        static long[] Frees;            // Free Polyominoes count
        static int[] fChk, fCkR;        // field checks
        static int fSiz, fWid;          // field size, width
        static int[] dirs;              // directions
        static int[] rotO, rotX, rotY;  // rotations
        static List<string> polys;      // results
        static int target;              // rank to display
        static int clipAt;              // max columns for display

        static int Main(string[] args)
        {
            polys = new List<string>();
            n = 11; if (!(args.Length == 0)) int.TryParse(args[0], out n);
            if (n < 1 || n > 24) return 1;
            target = 5;
            Console.WriteLine("Counting polyominoes to rank {0}...", n);
            clipAt = 120;
            DateTime start = DateTime.Now;
            CountEm();
            TimeSpan ti = DateTime.Now - start;
            if (polys.Count > 0)
            {
                Console.WriteLine("Displaying rank {0}:", target);
                Console.WriteLine(Assemble(polys));
            }
            Console.WriteLine("Displaying results:");
            Console.WriteLine(" n      All Rotations     Non-Flipped      Free Polys");
            for (int i = 1; i <= n; i++)
                Console.WriteLine("{0,2} :{1,17}{2,16}{3,16}", i, AnyR[i], nFlip[i], Frees[i]);
            Console.WriteLine(string.Format("Elasped: {0,2}d {1,2}h {2,2}m {3:00}s {4:000}ms",
                              ti.Days, ti.Hours, ti.Minutes, ti.Seconds, ti.Milliseconds).Replace("  0d ", "")
                              .Replace(" 0h", "").Replace(" 0m", "").Replace(" 00s", ""));
            long ms = (long)ti.TotalMilliseconds, lim = int.MaxValue >> 2;
            if (ms > 250)
            {
                Console.WriteLine("Estimated completion times:");
                for (int i = n + 1; i <= n + 10; i++)
                {
                    if (ms >= lim) break; ms += 44; ms <<= 2; ti = TimeSpan.FromMilliseconds(ms);
                    Console.WriteLine("{0,2} : {1,2}d {2,2}h {3,2}m {4:00}.{5:000}s", i, 
                        ti.Days, ti.Hours, ti.Minutes, ti.Seconds, ti.Milliseconds);
                }
            }
            if (System.Diagnostics.Debugger.IsAttached) Console.ReadKey();
            return 0;
        }

        static void CountEm()
        {
            ns = n * n;
            AnyR = new long[n + 1];
            nFlip = new long[n + 1];
            Frees = new long[n + 1];
            fWid = n * 2 - 2;
            fSiz = (n - 1) * (n - 1) * 2 + 1;
            int[] pnField = new int[fSiz];
            int[] pnPutList = new int[fSiz];
            fChk = new int[ns];
            fCkR = new int[ns];
            dirs = new int[] { 1, fWid, -1, -fWid };
            rotO = new int[] { 0, n - 1, ns - 1, ns - n, n - 1, 0, ns - n, ns - 1 };
            rotX = new int[] { 1, n, -1, -n, -1, n, 1, -n };
            rotY = new int[] { n, -1, -n, 1, n, 1, -n, -1 };
            Recurse(0, pnField, pnPutList, 0, 1);
        }

        static void Recurse(int lv, int[] field, int[] putlist, int putno, int putlast)
        {
            CheckIt(field, lv);
            if (n == lv) return;
            int pos;
            for (int i = putno; i < putlast; i++)
            {
                field[pos = putlist[i]] |= 1;
                int k = 0;
                foreach (int dir in dirs)
                {
                    int pos2 = pos + dir;
                    if (0 <= pos2 && pos2 < fSiz && (field[pos2] == 0))
                    {
                        field[pos2] = 2;
                        putlist[putlast + k++] = pos2;
                    }
                }
                Recurse(lv + 1, field, putlist, i + 1, putlast + k);
                for (int j = 0; j < k; j++) field[putlist[putlast + j]] = 0;
                field[pos] = 2;
            }
            for (int i = putno; i < putlast; i++) field[putlist[i]] &= -2;
        }

        static void CheckIt(int[] field, int lv)
        {
            AnyR[lv]++;
            for (int i = 0; i < ns; i++) fChk[i] = 0;
            int x, y;
            for (x = n; x < fWid; x++)
                for (y = 0; y + x < fSiz; y += fWid)
                    if ((field[x + y] & 1) == 1) goto bail;
            bail:
            int x2 = n - x, t;
            for (int i = 0; i < fSiz; i++)
                if ((field[i] & 1) == 1) fChk[((t = (i + n - 2)) % fWid) + x2 + (t / fWid * n)] = 1;
            int of1; for (of1 = 0; of1 < fChk.Length && (fChk[of1] == 0); of1++) ;
            bool c = true; int r;
            for (r = 1; r < 8 && c; r++)
            {
                for (x = 0; x < n; x++) for (y = 0; y < n; y++)
                        fCkR[rotO[r] + rotX[r] * x + rotY[r] * y] = fChk[x + y * n];
                int of2; for (of2 = 0; of2 < fCkR.Length && (fCkR[of2] == 0); of2++) ;
                of2 -= of1;
                for (int i = of1; i < ns - ((of2 > 0) ? of2 : 0); i++)
                {
                    if (fChk[i] > fCkR[i + of2]) break;
                    if (fChk[i] < fCkR[i + of2]) { c = false; break; }
                }
            }
            if (r > 4) nFlip[lv]++;
            if (c)
            {
                if (lv == target) polys.Add(toStr(field.ToArray()));
                Frees[lv]++;
            }
        }

        static string toStr(int[] field) // converts field into a minimal string
        {
            char [] res = new string(' ', n * (fWid + 1) - 1).ToCharArray();
            for (int i = fWid; i < res.Length; i += fWid+1) res[i] = '\n';
            for (int i = 0, j = n - 2; i < field.Length; i++, j++)
            {
                if ((field[i] & 1) == 1) res[j] = '#';
                if (j % (fWid + 1) == fWid) i--;
            }
            List<string> t = new string(res).Split('\n').ToList();
            int nn = 100, m = 0, v, k = 0; // trim down
            foreach (string s in t)
            {
                if ((v = s.IndexOf('#')) < nn) if (v >= 0) nn = v;
                if ((v = s.LastIndexOf('#')) > m) if (v < fWid +1) m = v;
                if (v < 0) break; k++;
            }
            m = m - nn + 1; // convert difference to length
            for (int i = t.Count - 1; i >= 0; i--)
            {
                if (i >= k) t.RemoveAt(i);
                else t[i] = t[i].Substring(nn, m);
            }
            return String.Join("\n", t.ToArray());
        }

        // assembles string representation of polyominoes into larger horizontal band
        static string Assemble(List<string> p)
        {
            List<string> lines = new List<string>();
            for (int i = 0; i < target; i++) lines.Add(string.Empty);
            foreach (string poly in p)
            {
                List<string> t = poly.Split('\n').ToList();
                if (t.Count < t[0].Length) t = flipXY(t);
                for (int i = 0; i < lines.Count; i++)
                    lines[i] += (i < t.Count) ? ' ' + t[i] + ' ': new string(' ', t[0].Length + 2);
            }
            for (int i = lines.Count - 1; i > 0; i--)
                if (lines[i].IndexOf('#') < 0) lines.RemoveAt(i);
            if (lines[0].Length >= clipAt / 2-2) Wrap(lines, clipAt / 2-2);
            lines = Cornered(string.Join("\n", lines.ToArray())).Split('\n').ToList();
            return String.Join("\n", lines.ToArray());
        }

        static List<string> flipXY(List<string> p)  // flips a small string
        {
            List<string> res = new List<string>();
            for (int i = 0; i < p[0].Length; i++) res.Add(string.Empty);
            for (int i = 0; i < res.Count; i++)
                for(int j = 0; j < p.Count; j++) res[i] += p[j][i];
            return res;
        }

        static string DW(string s)  // double widths a string
        {
            string t = string.Empty;
            foreach (char c in s) t += string.Format("{0}{0}",c);
            return t;
        }

        static void Wrap(List<string> s, int w) // wraps a wide List<string>
        {
            int last = 0;
            while (s.Last().Length >= w)
            {
                int x = w, lim = s.Count; bool ok;
                do
                {
                    ok = true;
                    for (int i = last; i < lim; i++)
                        if (s[i][x] != ' ')
                        { ok = false; x--; break; }
                } while (!ok);
                for (int i = last; i < lim; i++)
                    if (s[i].Length > x) { s.Add(s[i].Substring(x)); s[i] = s[i].Substring(0, x + 1); }
                last = lim;
            }
            last = 0;
            for (int i = s.Count - 1; i > 0; i--)
                if ((last = (s[i].IndexOf('#') < 0) ? last + 1 : 0) > 1) s.RemoveAt(i + 1);
        }

        static string Cornered(string s)    // converts plain ascii art into cornered version
        {
            string[] lines = s.Split('\n');
            string res = string.Empty;
            string line = DW(new string(' ', lines[0].Length)), last;
            for (int i = 0; i < lines.Length; i++)
            {
                last = line; line = DW(lines[i]);
                res += Puzzle(last, line) + '\n';
            }
            res += Puzzle(line, DW(new string(' ', lines.Last().Length))) + '\n';
            return res;
        }

        static string Puzzle(string a, string b)    // tests each intersection to determine correct corner symbol
        {
            string res = string.Empty;
            if (a.Length > b.Length) b += new string(' ', a.Length - b.Length);
            if (a.Length < b.Length) a += new string(' ', b.Length - a.Length);
            for (int i = 0; i < a.Length - 1; i++)
                res += " 12└4┘─┴8│┌├┐┤┬┼"[(a[i] == a[i + 1] ? 0 : 1) + 
                                          (b[i + 1] == a[i + 1] ? 0 : 2) +
                                          (a[i] == b[i] ? 0 : 4) + 
                                          (b[i] == b[i + 1] ? 0 : 8)];
            return res;
        }
    }
}
Output:
Counting polyominoes to rank 11...
Displaying rank 5:
 ┌───┐   ┌─────┐     ┌─┐   ┌───┐   ┌───┐     ┌───┐     ┌───┐     ┌───┐   ┌─┐     ┌─────┐   ┌─┐     ┌─┐
 │   │   │ ┌───┘   ┌─┘ │   │ ┌─┘   │ ┌─┘   ┌─┘ ┌─┘     │ ┌─┘   ┌─┘ ┌─┘   │ └─┐   └─┐ ┌─┘   │ │   ┌─┘ └─┐
 │ ┌─┘   │ │       │ ┌─┘   │ │     │ └─┐   └─┐ │     ┌─┘ │     │ ┌─┘     │ ┌─┘     │ │     │ │   └─┐ ┌─┘
 └─┘     └─┘       │ │     │ │     └───┘     └─┘     └───┘     └─┘       │ │       └─┘     │ │     └─┘
                   └─┘     └─┘                                           └─┘               │ │
                                                                                           └─┘

Displaying results:
 n      All Rotations     Non-Flipped      Free Polys
 1 :                1               1               1
 2 :                2               1               1
 3 :                6               2               2
 4 :               19               7               5
 5 :               63              18              12
 6 :              216              60              35
 7 :              760             196             108
 8 :             2725             704             369
 9 :             9910            2500            1285
10 :            36446            9189            4655
11 :           135268           33896           17073
Elasped:  562ms
Estimated completion times:
12 :  0d  0h  0m 02.424s
13 :  0d  0h  0m 09.872s
14 :  0d  0h  0m 39.664s
15 :  0d  0h  2m 38.832s
16 :  0d  0h 10m 35.504s
17 :  0d  0h 42m 22.192s
18 :  0d  2h 49m 28.944s
19 :  0d 11h 17m 55.952s
20 :  1d 21h 11m 43.984s
21 :  7d 12h 46m 56.112s

D

Translation of: Haskell
import std.stdio, std.range, std.algorithm, std.typecons, std.conv;

alias Coord = byte;
alias Point = Tuple!(Coord,"x", Coord,"y");
alias Polyomino = Point[];

/// Finds the min x and y coordiate of a Polyomino.
enum minima = (in Polyomino poly) pure @safe =>
    Point(poly.map!q{ a.x }.reduce!min, poly.map!q{ a.y }.reduce!min);

Polyomino translateToOrigin(in Polyomino poly) {
    const minP = poly.minima;
    return poly.map!(p => Point(cast(Coord)(p.x - minP.x), cast(Coord)(p.y - minP.y))).array;
}

enum Point function(in Point p) pure nothrow @safe @nogc
    rotate90  = p => Point( p.y, -p.x),
    rotate180 = p => Point(-p.x, -p.y),
    rotate270 = p => Point(-p.y,  p.x),
    reflect   = p => Point(-p.x,  p.y);

/// All the plane symmetries of a rectangular region.
auto rotationsAndReflections(in Polyomino poly) pure nothrow {
    return only(poly,
                poly.map!rotate90.array,
                poly.map!rotate180.array,
                poly.map!rotate270.array,
                poly.map!reflect.array,
                poly.map!(pt => pt.rotate90.reflect).array,
                poly.map!(pt => pt.rotate180.reflect).array,
                poly.map!(pt => pt.rotate270.reflect).array);
}

enum canonical = (in Polyomino poly) =>
    poly.rotationsAndReflections.map!(pl => pl.translateToOrigin.sort().release).reduce!min;

auto unique(T)(T[] seq) pure nothrow {
    return seq.sort().uniq;
}

/// All four points in Von Neumann neighborhood.
enum contiguous = (in Point pt) pure nothrow @safe @nogc =>
    only(Point(cast(Coord)(pt.x - 1), pt.y), Point(cast(Coord)(pt.x + 1), pt.y),
         Point(pt.x, cast(Coord)(pt.y - 1)), Point(pt.x, cast(Coord)(pt.y + 1)));

/// Finds all distinct points that can be added to a Polyomino.
enum newPoints = (in Polyomino poly) nothrow =>
    poly.map!contiguous.joiner.filter!(pt => !poly.canFind(pt)).array.unique;

enum newPolys = (in Polyomino poly) =>
    poly.newPoints.map!(pt => canonical(poly ~ pt)).array.unique;

/// Generates polyominoes of rank n recursively.
Polyomino[] rank(in uint n) {
    static immutable Polyomino monomino = [Point(0, 0)];
    static Polyomino[] monominoes = [monomino]; // Mutable.
    if (n == 0) return [];
    if (n == 1) return monominoes;
    return rank(n - 1).map!newPolys.join.unique.array;
}

/// Generates a textual representation of a Polyomino.
char[][] textRepresentation(in Polyomino poly) pure @safe {
    immutable minPt = poly.minima;
    immutable maxPt = Point(poly.map!q{ a.x }.reduce!max, poly.map!q{ a.y }.reduce!max);
    auto table = new char[][](maxPt.y - minPt.y + 1, maxPt.x - minPt.x + 1);
    foreach (row; table)
        row[] = ' ';
    foreach (immutable pt; poly)
        table[pt.y - minPt.y][pt.x - minPt.x] = '#';
    return table;
}

void main(in string[] args) {
    iota(1, 11).map!(n => n.rank.length).writeln;

    immutable n = (args.length == 2) ? args[1].to!uint : 5;
    writefln("\nAll free polyominoes of rank %d:", n);

    foreach (const poly; n.rank)
        writefln("%-(%s\n%)\n", poly.textRepresentation);
}
Output:
[1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655]

All free polyominoes of rank 5:
#
#
#
#
#

##
#
#
#

#
##
#
#

##
##
#

##
#
##

###
#
#

#
###
#

#
#
##
 #

#
###
 #

#
##
 ##

#
###
  #

 #
###
 #

D: Count Only

Translated and modified from C code: http://www.geocities.jp/tok12345/countomino.txt

import core.stdc.stdio: printf;
import core.stdc.stdlib: atoi;

__gshared ulong[] g_pnCountNH;
__gshared uint[] g_pnFieldCheck, g_pnFieldCheckR;
__gshared uint g_nFieldSize, g_nFieldWidth;
__gshared uint[4] g_anLinkData;
__gshared uint[8] g_anRotationOffset, g_anRotationX, g_anRotationY;

void countMain(in uint n) nothrow {
    g_nFieldWidth = n * 2 - 2;
    g_nFieldSize = (n - 1) * (n - 1) * 2 + 1;
    g_pnCountNH = new ulong[n + 1];

    auto pnField = new uint[g_nFieldSize];
    auto pnPutList = new uint[g_nFieldSize];
    g_pnFieldCheck = new uint[n ^^ 2];
    g_pnFieldCheckR = new uint[n ^^ 2];
    g_anLinkData[0] = 1;
    g_anLinkData[1] = g_nFieldWidth;
    g_anLinkData[2] = -1;
    g_anLinkData[3] = -g_nFieldWidth;

    initOffset(n);

    countSub(n, 0, pnField, pnPutList, 0, 1);
}

void countSub(in uint n, in uint lv, uint[] field, uint[] putlist,
              in uint putno, in uint putlast) nothrow @nogc {
    check(field, n, lv);
    if (n == lv) {
        return;
    }

    foreach (immutable uint i; putno .. putlast) {
        immutable pos = putlist[i];
        field[pos] |= 1;
        uint k = 0;
        foreach (immutable uint j; 0 .. 4) {
            immutable pos2 = pos + g_anLinkData[j];
            if (0 <= pos2 && pos2 < g_nFieldSize && !field[pos2]) {
                field[pos2] = 2;
                putlist[putlast + k] = pos2;
                k++;
            }
        }
        countSub(n, lv + 1, field, putlist, i + 1, putlast + k);
        foreach (immutable uint j; 0 .. k)
            field[putlist[putlast + j]] = 0;
        field[pos] = 2;
    }

    foreach (immutable uint i; putno .. putlast) {
        immutable pos = putlist[i];
        field[pos] &= -2;
    }
}

void initOffset(in uint n) nothrow @nogc {
    g_anRotationOffset[0] = 0;
    g_anRotationX[0] = 1;
    g_anRotationY[0] = n;
    // 90
    g_anRotationOffset[1] = n - 1;
    g_anRotationX[1] = n;
    g_anRotationY[1] = -1;
    // 180
    g_anRotationOffset[2] = n ^^ 2 - 1;
    g_anRotationX[2] = -1;
    g_anRotationY[2] = -n;
    // 270
    g_anRotationOffset[3] = n ^^ 2 - n;
    g_anRotationX[3] = -n;
    g_anRotationY[3] = 1;

    g_anRotationOffset[4] = n - 1;
    g_anRotationX[4] = -1;
    g_anRotationY[4] = n;
    // 90
    g_anRotationOffset[5] = 0;
    g_anRotationX[5] = n;
    g_anRotationY[5] = 1;
    // 180
    g_anRotationOffset[6] = n ^^ 2 - n;
    g_anRotationX[6] = 1;
    g_anRotationY[6] = -n;
    // 270
    g_anRotationOffset[7] = n ^^ 2 - 1;
    g_anRotationX[7] = -n;
    g_anRotationY[7] = -1;
}

void check(in uint[] field, in uint n, in uint lv) nothrow @nogc {
    g_pnFieldCheck[0 .. n ^^ 2] = 0;

    uint x, y;
    outer:
    for (x = n; x < n * 2 - 2; x++)
        for (y = 0; y + x < g_nFieldSize; y += g_nFieldWidth)
            if (field[x + y] & 1)
                break outer;

    immutable uint x2 = n - x;
    foreach (immutable uint i; 0 .. g_nFieldSize) {
        x = (i + n - 2) % g_nFieldWidth;
        y = (i + n - 2) / g_nFieldWidth * n;
        if (field[i] & 1)
            g_pnFieldCheck[x + x2 + y] = 1;
    }

    uint of1;
    for (of1 = 0; of1 < g_pnFieldCheck.length && !g_pnFieldCheck[of1]; of1++) {}

    bool c = true;
    for (uint r = 1; r < 8 && c; r++) {
        for (x = 0; x < n; x++) {
            for (y = 0; y < n; y++) {
                immutable pos = g_anRotationOffset[r] +
                                g_anRotationX[r] * x + g_anRotationY[r] * y;
                g_pnFieldCheckR[pos] = g_pnFieldCheck[x + y * n];
            }
        }

        uint of2;
        for (of2 = 0; of2 < g_pnFieldCheckR.length && !g_pnFieldCheckR[of2]; of2++) {}
        of2 -= of1;
        immutable ed = (of2 > 0) ? (n ^^ 2 - of2) : (n ^^ 2);

        foreach (immutable uint i; of1 .. ed) {
            if (g_pnFieldCheck[i] > g_pnFieldCheckR[i + of2])
                break;
            if (g_pnFieldCheck[i] < g_pnFieldCheckR[i + of2]) {
                c = false;
                break;
            }
        }
    }

    if (c) {
        uint parity;
        if (!(lv & 1)) {
            parity = (lv & 2) >> 1;
            for (x = 0; x < n; x++)
                for (y = 0; y < n; y++)
                    parity ^= (x + y) & g_pnFieldCheck[x + y * n];
            parity &= 1;
        } else
            parity = 0;

        g_pnCountNH[lv]++;
    }
}

int main(in string[] args) {
    immutable n = (args.length == 2) ? (args[1] ~ '\0').ptr.atoi : 11;
    if (n < 1)
        return 1;

    if (n == 1)
        countMain(2);
    else
        countMain(n);

    foreach (immutable i; 1 .. n + 1)
        printf("%llu\n", g_pnCountNH[i]);

    return 0;
}
Output:
1
1
2
5
12
35
108
369
1285
4655
17073

Output with n=14 (run-time about 36 seconds):

1
1
2
5
12
35
108
369
1285
4655
17073
63600
238591
901971

Elixir

Translation of: Ruby
defmodule Polyominoes do
  defp translate2origin(poly) do
    # Finds the min x and y coordiate of a Polyomino.
    minx = Enum.map(poly, &elem(&1,0)) |> Enum.min
    miny = Enum.map(poly, &elem(&1,1)) |> Enum.min
    Enum.map(poly, fn {x,y} -> {x - minx, y - miny} end) |> Enum.sort
  end
  
  defp rotate90({x, y}), do: {y, -x}
  defp reflect({x, y}), do: {-x, y}
  
  # All the plane symmetries of a rectangular region.
  defp rotations_and_reflections(poly) do
    poly1 = Enum.map(poly,  &rotate90/1)
    poly2 = Enum.map(poly1, &rotate90/1)
    poly3 = Enum.map(poly2, &rotate90/1)
    poly4 = Enum.map(poly3, &reflect/1)
    poly5 = Enum.map(poly4, &rotate90/1)
    poly6 = Enum.map(poly5, &rotate90/1)
    poly7 = Enum.map(poly6, &rotate90/1)
    [poly, poly1, poly2, poly3, poly4, poly5, poly6, poly7]
  end
  
  defp canonical(poly) do
    rotations_and_reflections(poly) |> Enum.map(&translate2origin/1)
  end
  
  # All four points in Von Neumann neighborhood.
  defp contiguous({x,y}) do
    [{x - 1, y}, {x + 1, y}, {x, y - 1}, {x, y + 1}]
  end
  
  # Finds all distinct points that can be added to a Polyomino.
  defp new_points(poly) do
    points = Enum.flat_map(poly, &contiguous/1)
    Enum.uniq(points) -- poly
  end
  
  defp new_polys(polys) do
    Enum.reduce(polys, {[], HashSet.new}, fn poly, {polyomino, pattern} ->
      Enum.reduce(new_points(poly), {polyomino, pattern}, fn point, {pol, pat} ->
        pl = translate2origin([point | poly])
        if pl in pat do
          {pol, pat}
        else
          canon = canonical(pl)
          {[Enum.min(canon) | pol], Enum.into(canon, pat)}
        end
      end)
    end)
    |> elem(0)
  end
  
  # Generates polyominoes of rank n recursively.
  def rank(0), do: [[]]
  def rank(1), do: [[{0,0}]]
  def rank(n), do: new_polys(rank(n-1))
  
  # Generates a textual representation of a Polyomino.
  def text_representation(poly) do
    table = Enum.map(poly, &{&1, "#"}) |> Enum.into(Map.new)
    maxx = Enum.map(poly, &elem(&1,0)) |> Enum.max
    maxy = Enum.map(poly, &elem(&1,1)) |> Enum.max
    Enum.map_join(0..maxx, "\n", fn x ->
      Enum.map_join(0..maxy, fn y -> Dict.get(table, {x,y}, " ") end)
    end)
  end
end

IO.inspect Enum.map(0..10, fn n -> length(Polyominoes.rank(n)) end)

n = if System.argv==[], do: 5, else: String.to_integer(hd(System.argv))
IO.puts "\nAll free polyominoes of rank #{n}:"
Enum.sort(Polyominoes.rank(n))
|> Enum.each(fn poly -> IO.puts "#{Polyominoes.text_representation(poly)}\n" end)
Output:
[1, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655]

All free polyominoes of rank 5:
#####

####
#

####
 #

###
##

###
# #

###
#
#

###
 #
 #

###
  ##

##
 ##
 #

##
 ##
  #

##
 #
 ##

 #
###
 #

Go

Translation of: Kotlin
package main

import (
    "fmt"
    "sort"
)

type point struct{ x, y int }
type polyomino []point
type pointset map[point]bool

func (p point) rotate90() point  { return point{p.y, -p.x} }
func (p point) rotate180() point { return point{-p.x, -p.y} }
func (p point) rotate270() point { return point{-p.y, p.x} }
func (p point) reflect() point   { return point{-p.x, p.y} }

func (p point) String() string { return fmt.Sprintf("(%d, %d)", p.x, p.y) }

// All four points in Von Neumann neighborhood
func (p point) contiguous() polyomino {
    return polyomino{point{p.x - 1, p.y}, point{p.x + 1, p.y},
        point{p.x, p.y - 1}, point{p.x, p.y + 1}}
}

// Finds the min x and y coordinates of a Polyomino.
func (po polyomino) minima() (int, int) {
    minx := po[0].x
    miny := po[0].y
    for i := 1; i < len(po); i++ {
        if po[i].x < minx {
            minx = po[i].x
        }
        if po[i].y < miny {
            miny = po[i].y
        }
    }
    return minx, miny
}

func (po polyomino) translateToOrigin() polyomino {
    minx, miny := po.minima()
    res := make(polyomino, len(po))
    for i, p := range po {
        res[i] = point{p.x - minx, p.y - miny}
    }
    sort.Slice(res, func(i, j int) bool {
        return res[i].x < res[j].x || (res[i].x == res[j].x && res[i].y < res[j].y)
    })
    return res
}

// All the plane symmetries of a rectangular region.
func (po polyomino) rotationsAndReflections() []polyomino {
    rr := make([]polyomino, 8)
    for i := 0; i < 8; i++ {
        rr[i] = make(polyomino, len(po))
    }
    copy(rr[0], po)
    for j := 0; j < len(po); j++ {
        rr[1][j] = po[j].rotate90()
        rr[2][j] = po[j].rotate180()
        rr[3][j] = po[j].rotate270()
        rr[4][j] = po[j].reflect()
        rr[5][j] = po[j].rotate90().reflect()
        rr[6][j] = po[j].rotate180().reflect()
        rr[7][j] = po[j].rotate270().reflect()
    }
    return rr
}

func (po polyomino) canonical() polyomino {
    rr := po.rotationsAndReflections()
    minr := rr[0].translateToOrigin()
    mins := minr.String()
    for i := 1; i < 8; i++ {
        r := rr[i].translateToOrigin()
        s := r.String()
        if s < mins {
            minr = r
            mins = s
        }
    }
    return minr
}

func (po polyomino) String() string {
    return fmt.Sprintf("%v", []point(po))
}

func (po polyomino) toPointset() pointset {
    pset := make(pointset, len(po))
    for _, p := range po {
        pset[p] = true
    }
    return pset
}

// Finds all distinct points that can be added to a Polyomino.
func (po polyomino) newPoints() polyomino {
    pset := po.toPointset()
    m := make(pointset) 
    for _, p := range po {
        pts := p.contiguous()
        for _, pt := range pts {
            if !pset[pt] {
                m[pt] = true // using an intermediate set is about 15% faster!
            }
        }
    }
    poly := make(polyomino, 0, len(m))
    for k := range m {
        poly = append(poly, k)
    }
    return poly
}

func (po polyomino) newPolys() []polyomino {
    pts := po.newPoints()
    res := make([]polyomino, len(pts))
    for i, pt := range pts {
        poly := make(polyomino, len(po))
        copy(poly, po)
        poly = append(poly, pt)
        res[i] = poly.canonical()
    }
    return res
}

var monomino = polyomino{point{0, 0}}
var monominoes = []polyomino{monomino}

// Generates polyominoes of rank n recursively.
func rank(n int) []polyomino {
    switch {
    case n < 0:
        panic("n cannot be negative. Program terminated.")
    case n == 0:
        return []polyomino{}
    case n == 1:
        return monominoes
    default:
        r := rank(n - 1)
        m := make(map[string]bool)
        var polys []polyomino
        for _, po := range r {
            for _, po2 := range po.newPolys() {
                if s := po2.String(); !m[s] {
                    polys = append(polys, po2)
                    m[s] = true
                }
            }
        }
        sort.Slice(polys, func(i, j int) bool {
            return polys[i].String() < polys[j].String()
        })
        return polys
    }
}

func main() {
    const n = 5
    fmt.Printf("All free polyominoes of rank %d:\n\n", n)
    for _, poly := range rank(n) {
        for _, pt := range poly {
            fmt.Printf("%s ", pt)
        }
        fmt.Println()
    }
    const k = 10
    fmt.Printf("\nNumber of free polyominoes of ranks 1 to %d:\n", k)
    for i := 1; i <= k; i++ {
        fmt.Printf("%d ", len(rank(i)))
    }
    fmt.Println()
}
Output:
All free polyominoes of rank 5:

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) 
(0, 0) (0, 1) (0, 2) (0, 3) (1, 0) 
(0, 0) (0, 1) (0, 2) (0, 3) (1, 1) 
(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) 
(0, 0) (0, 1) (0, 2) (1, 0) (1, 2) 
(0, 0) (0, 1) (0, 2) (1, 0) (2, 0) 
(0, 0) (0, 1) (0, 2) (1, 1) (2, 1) 
(0, 0) (0, 1) (0, 2) (1, 2) (1, 3) 
(0, 0) (0, 1) (1, 1) (1, 2) (2, 1) 
(0, 0) (0, 1) (1, 1) (1, 2) (2, 2) 
(0, 0) (0, 1) (1, 1) (2, 1) (2, 2) 
(0, 1) (1, 0) (1, 1) (1, 2) (2, 1) 

Number of free polyominoes of ranks 1 to 10:
1 1 2 5 12 35 108 369 1285 4655 

Haskell

This Haskell solution is relatively slow, it's meant to be readable and as manifestly correct as possible.

Code updated and slightly improved from: http://www.haskell.org/haskellwiki/The_Monad.Reader/Issue5/Generating_Polyominoes

import System.Environment (getArgs)
import Control.Arrow ((***), first)
import Data.Set (toList, fromList)
import Data.List (sort)
import Data.Bool (bool)

type Coord = Int

type Point = (Coord, Coord)

type Polyomino = [Point]

-- Finds the min x and y coordiate of a Polyomino.
minima :: Polyomino -> Point
minima (p:ps) = foldr (\(x, y) (mx, my) -> (min x mx, min y my)) p ps

translateToOrigin :: Polyomino -> Polyomino
translateToOrigin p =
  let (minx, miny) = minima p
  in (subtract minx *** subtract miny) <$> p

rotate90, rotate180, rotate270, reflect :: Point -> Point
rotate90 = uncurry (flip (,) . negate)

rotate180 = negate *** negate

rotate270 = uncurry (flip ((,) . negate))

reflect = first negate

-- All the plane symmetries of a rectangular region.
rotationsAndReflections :: Polyomino -> [Polyomino]
rotationsAndReflections =
  (<*>)
    (fmap <$>
     [ id
     , rotate90
     , rotate180
     , rotate270
     , reflect
     , rotate90 . reflect
     , rotate180 . reflect
     , rotate270 . reflect
     ]) .
  return

canonical :: Polyomino -> Polyomino
canonical = minimum . map (sort . translateToOrigin) . rotationsAndReflections

unique
  :: (Ord a)
  => [a] -> [a]
unique = toList . fromList

-- All four points in Von Neumann neighborhood.
contiguous :: Point -> [Point]
contiguous (x, y) = [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)]

-- Finds all distinct points that can be added to a Polyomino.
newPoints :: Polyomino -> [Point]
newPoints p =
  let notInP = filter (not . flip elem p)
  in unique . notInP . concatMap contiguous $ p

newPolys :: Polyomino -> [Polyomino]
newPolys p = unique . map (canonical . flip (:) p) $ newPoints p

monomino = [(0, 0)]

monominoes = [monomino]

-- Generates polyominoes of rank n recursively.
rank :: Int -> [Polyomino]
rank 0 = []
rank 1 = monominoes
rank n = unique . concatMap newPolys $ rank (n - 1)

-- Generates a textual representation of a Polyomino.
textRepresentation :: Polyomino -> String
textRepresentation p =
  unlines
    [ [ bool ' ' '#' ((x, y) `elem` p)
      | x <- [0 .. maxx - minx] ]
    | y <- [0 .. maxy - miny] ]
  where
    maxima :: Polyomino -> Point
    maxima (p:ps) = foldr (\(x, y) (mx, my) -> (max x mx, max y my)) p ps
    (minx, miny) = minima p
    (maxx, maxy) = maxima p

main :: IO ()
main = do
  print $ map (length . rank) [1 .. 10]
  args <- getArgs
  let n = bool (read $ head args :: Int) 5 (null args)
  putStrLn ("\nAll free polyominoes of rank " ++ show n ++ ":")
  mapM_ (putStrLn . textRepresentation) (rank n)
Output:
[1,1,2,5,12,35,108,369,1285,4655]

All free polyominoes of rank 5:
#
#
#
#
#

##
# 
# 
# 

# 
##
# 
# 

##
##
# 

##
# 
##

###
#  
#  

#  
###
#  

# 
# 
##
 #

#  
###
 # 

#  
## 
 ##

#  
###
  #

 # 
###
 # 

J

Generating polyominoes as ascii art:

polyominoes=:verb define
  if. 1>y do. i.0 0 0 return.end.
  if. 1=y do. 1 1 1$'#' return.end.
  }.~.' ',simplify ,/extend"2 polyominoes y-1
)

extend=:verb define
  reps=. ' ',"1~~.all y
  simplify ,/extend1"2 reps
)

extend1=:verb define
  b=. (i.#y),._1|."1 '# ' E."1 y
  simplify ,/b extend2"1 _ y
)

extend2=:verb define
:
  row=.{.x
  mask=.}.x
  row mask extend3 y&>1+i.+/mask
)

extend3=:conjunction define
:
  '#' (<x,I.m*y=+/\m)} n
)

simplify=:verb define
  t=. ~.trim"2 y
  t #~ +./"1 ((2{.$) $ (i.@# = i.~)@(,/)) all@trim"2 t
)

flip=: |."_1
all=: , flip@|:, |.@flip, |.@|:, |., |.@flip@|:, flip,: |:

trim=:verb define&|:^:2
  y#~+./"1 y~:' '
)

Example use (boxing each pentomino for display purposes):

   <"2 polyominoes 5
┌─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┐
#######   #    ###  ##   ##   ###   ##   #    #    #    ##  
     #    ##   #    ##   #      ##  #    ##   #   ###  ##   
     #    #    #    #    ##        ##   ##   ###   #   #    
     #    #                                                 
└─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘

Java

Translation of Haskell via D

Works with: Java version 8
import java.awt.Point;
import java.util.*;
import static java.util.Arrays.asList;
import java.util.function.Function;
import static java.util.Comparator.comparing;
import static java.util.stream.Collectors.toList;

public class FreePolyominoesEnum {
    static final List<Function<Point, Point>> transforms = new ArrayList<>();

    static {
        transforms.add(p -> new Point(p.y, -p.x));
        transforms.add(p -> new Point(-p.x, -p.y));
        transforms.add(p -> new Point(-p.y, p.x));
        transforms.add(p -> new Point(-p.x, p.y));
        transforms.add(p -> new Point(-p.y, -p.x));
        transforms.add(p -> new Point(p.x, -p.y));
        transforms.add(p -> new Point(p.y, p.x));
    }

    static Point findMinima(List<Point> poly) {
        return new Point(
                poly.stream().mapToInt(a -> a.x).min().getAsInt(),
                poly.stream().mapToInt(a -> a.y).min().getAsInt());
    }

    static List<Point> translateToOrigin(List<Point> poly) {
        final Point min = findMinima(poly);
        poly.replaceAll(p -> new Point(p.x - min.x, p.y - min.y));
        return poly;
    }

    static List<List<Point>> rotationsAndReflections(List<Point> poly) {
        List<List<Point>> lst = new ArrayList<>();
        lst.add(poly);
        for (Function<Point, Point> t : transforms)
            lst.add(poly.stream().map(t).collect(toList()));
        return lst;
    }

    static Comparator<Point> byCoords = Comparator.<Point>comparingInt(p -> p.x)
            .thenComparingInt(p -> p.y);

    static List<Point> normalize(List<Point> poly) {
        return rotationsAndReflections(poly).stream()
                .map(lst -> translateToOrigin(lst))
                .map(lst -> lst.stream().sorted(byCoords).collect(toList()))
                .min(comparing(Object::toString)) // not efficient but simple
                .get();
    }

    static List<Point> neighborhoods(Point p) {
        return asList(new Point(p.x - 1, p.y), new Point(p.x + 1, p.y),
                new Point(p.x, p.y - 1), new Point(p.x, p.y + 1));
    }

    static List<Point> concat(List<Point> lst, Point pt) {
        List<Point> r = new ArrayList<>();
        r.addAll(lst);
        r.add(pt);
        return r;
    }

    static List<Point> newPoints(List<Point> poly) {
        return poly.stream()
                .flatMap(p -> neighborhoods(p).stream())
                .filter(p -> !poly.contains(p))
                .distinct()
                .collect(toList());
    }

    static List<List<Point>> constructNextRank(List<Point> poly) {
        return newPoints(poly).stream()
                .map(p -> normalize(concat(poly, p)))
                .distinct()
                .collect(toList());
    }

    static List<List<Point>> rank(int n) {
        if (n < 0)
            throw new IllegalArgumentException("n cannot be negative");

        if (n < 2) {
            List<List<Point>> r = new ArrayList<>();
            if (n == 1)
                r.add(asList(new Point(0, 0)));
            return r;
        }

        return rank(n - 1).stream()
                .parallel()
                .flatMap(lst -> constructNextRank(lst).stream())
                .distinct()
                .collect(toList());
    }

    public static void main(String[] args) {
        for (List<Point> poly : rank(5)) {
            for (Point p : poly)
                System.out.printf("(%d,%d) ", p.x, p.y);
            System.out.println();
        }
    }
}
(0,0) (0,1) (1,1) (1,2) (2,1) 
(0,0) (0,1) (0,2) (1,0) (1,1) 
(0,0) (0,1) (0,2) (0,3) (1,1) 
(0,1) (1,0) (1,1) (1,2) (2,1) 
(0,0) (0,1) (0,2) (1,1) (2,1) 
(0,0) (0,1) (1,1) (1,2) (2,2) 
(0,0) (0,1) (0,2) (1,2) (1,3) 
(0,0) (0,1) (1,1) (2,1) (2,2) 
(0,0) (0,1) (0,2) (1,0) (1,2) 
(0,0) (0,1) (0,2) (0,3) (1,0) 
(0,0) (0,1) (0,2) (1,0) (2,0) 
(0,0) (0,1) (0,2) (0,3) (0,4)

JavaScript

const width = window.innerWidth;
const height = window.innerHeight;
const p = Math.floor(width/140);
const verticalScrollbarWidth = 15;
const elementSize = 1;

let maxHeight;
let cellSize, xSpacing, ySpacing, xOffset, yOffset;
let test_poly, starting_poly;
let stored_polys;
let maxPolyLength;
let jsonData;
let polysFound;
let typeSelected, orderSelected, modeSelected, orderValue;

let canvas = document.createElement('canvas');
canvas.id = "myCanvas";
canvas.width = width;
canvas.height = height;
let parentDiv = document.getElementById("div_polys");
parentDiv.appendChild(canvas);
canvas.style.backgroundColor = "lightblue";
let ctx = canvas.getContext("2d"); // Get the 2D rendering context

let buttonBack = document.createElement("button");
buttonBack.innerHTML = "<b>Back</b>";
buttonBack.id = "back_button_id";
buttonBack.classList.add("back_button_class");
buttonBack.style.fontSize = (7*p).toString() + "px";
buttonBack.style.position = "absolute";
buttonBack.style.top = (3*p).toString() + "px";
buttonBack.style.right = (5*p).toString() + "px";
buttonBack.style.display = "none";
buttonBack.addEventListener("click", function() {
  canvas.height = height;
  document.getElementById("div_polys").style.display = "none";
  document.getElementById("div_menu").style.display = "block";
  window.scrollTo(0,0);
  stored_polys = null;
  jsonData = null;
});
document.getElementById("div_polys").style.display = "block";
parentDiv.appendChild(buttonBack);

let buttonBack2 = buttonBack.cloneNode(true);
buttonBack2.addEventListener("click", function() {
  canvas.height = height;
  document.getElementById("div_polys").style.display = "none";
  document.getElementById("div_menu").style.display = "block";
  window.scrollTo(0,0);
  stored_polys = null;
  jsonData = null;
});
parentDiv.appendChild(buttonBack2);

//hide the info bubble when the user taps outside it on Safari browser
document.body.addEventListener("click", function(event) {
    const popUps = document.querySelectorAll(".pop-up");
    popUps.forEach(popUp => {
      if (popUp.style.display === "block") {
        popUp.style.display = "none";
      }
    });
});

function iOS() {
  return [
    'iPad Simulator',
    'iPhone Simulator',
    'iPod Simulator',
    'iPad',
    'iPhone',
    'iPod'
  ].includes(navigator.platform)
  // iPad on iOS 13 detection
  || (navigator.userAgent.includes("Mac") && "ontouchend" in document)
}

function showPolyDiv() {
  document.getElementById("div_menu").style.display = "none";
  document.getElementById("div_polys").style.display = "block";
  window.scrollTo(0,0);
  buttonBack.style.display = "none";
  buttonBack2.style.display = "none";
  ctx.clearRect(0, 0, canvas.width, canvas.height);
  typeSelected = document.querySelector('input[name="type"]:checked').value;
  orderSelected = document.querySelector('input[name="order"]:checked').value;
  orderValue = parseInt(orderSelected);
  modeSelected = document.querySelector('input[name="mode"]:checked').value;

  if (iOS()) {
    maxHeight = 16383;
  } else {
    maxHeight = 65535;
  }

  fetchPolys();
}

function fetchPolys() {
  if (orderValue === 1) modeSelected = "1"; // So that it doesn't create the order-one polyomino because it cannot start from the previous order.
  if (modeSelected === "2") {
    orderSelected--;
  }
  cellSize = (14/(orderValue*0.35))*p; // size of each cell of a polyomino when displayed on screen
  xSpacing = cellSize; ySpacing = cellSize; // horizontal and vertical spacing between polyominoes when they are displayed on screen
  xOffset = xSpacing; yOffset = 20*p; // spaces between the polys displayed
  canvas.width = width;
  canvas.height = maxHeight; // max height
  maxPolyLength = 0;
  stored_polys = new Set(); // because it is set to null after returning to the menu screen

  fetch(typeSelected + orderSelected + ".json")
    .then(response => response.json())
    .then(json => {
      jsonData = json;
      if (modeSelected === "1") displayPolys();
      else if (modeSelected === "2") createPolys();
      else console.log("no mode selected");
    })
    .catch(error => console.log(error));
}

function createJson(order, type, multitude, polys) {
  let content =
  {
    order:  order,
    type: type,
    multitude: multitude,
    polys:  polys
  };

  // ********** Save a JSON file with the FileSaver library (large files, more options) ************
  let jsonString = JSON.stringify(content);
  let blob = new Blob([jsonString], { type: "application/json;charset=utf-8" });
  saveAs(blob, type + order.toString()+".json");
}

function createPolys() {
  polysFound = 0;
  for (let i = 0; i < jsonData.polys.length; i++) {
    starting_poly = jsonData.polys[i];
    nextOrderPolys(starting_poly);
  }
  if (yOffset + 3*ySpacing > maxHeight) { // max height
    //canvas.height = maxHeight;
  } else {
    let imageData = ctx.getImageData(0, 0, canvas.width, yOffset + maxPolyLength*cellSize + ySpacing);
    canvas.height = yOffset + maxPolyLength*cellSize + ySpacing;
    ctx.putImageData(imageData, 0, 0);
  }
  ctx.fillStyle = "black";
  ctx.font = (5*p).toString() + "px Verdana";
  ctx.fillText(jsonData.type + " polyominoes of order " + orderValue + ": ", 6*p, 10*p);
  ctx.fillText(polysFound, 6*p, 17*p);
  console.log(jsonData.type + " polyominoes of order " + orderValue + " found: " + polysFound + ". Max canvas height: " + maxHeight);
  let stored_polys_array = new Uint8Array(elementSize);
  stored_polys_array = parseArray(stored_polys);
  buttonBack2.style.top = (canvas.height - 15*p).toString() + "px";
  buttonBack.style.display = "block";
  if (canvas.height > height) {
    buttonBack2.style.display = "block";
  }
  createJson(jsonData.order + 1, jsonData.type, polysFound, stored_polys_array);
}

function displayPolys() {
  for (let i = 0; i < jsonData.polys.length; i++) {
    starting_poly = jsonData.polys[i];
    showPoly(starting_poly);
  }
  if (yOffset + 3*ySpacing > maxHeight) { // max height
    //canvas.height = maxHeight;
  } else {
    let imageData = ctx.getImageData(0, 0, canvas.width, yOffset + maxPolyLength*cellSize + ySpacing);
    canvas.height = yOffset + maxPolyLength*cellSize + ySpacing;
    ctx.putImageData(imageData, 0, 0);
  }
  ctx.fillStyle = "black";
  ctx.font = (5*p).toString() + "px Verdana";
  ctx.fillText(jsonData.type + " polyominoes of order " + jsonData.order + ": ", 6*p, 10*p);
  ctx.fillText(jsonData.polys.length, 6*p, 17*p);
  console.log(jsonData.type + " polyominoes of order " + jsonData.order + ": " + jsonData.polys.length + ". Max canvas height: " + maxHeight);
  buttonBack2.style.top = (canvas.height - 15*p).toString() + "px";
  buttonBack.style.display = "block";
  if (canvas.height > height) {
    buttonBack2.style.display = "block";
  }
}

function parseArray(stored) {
  // gets a Set object of strings and returns an Array object of arrays
  let arrayOfArrays = new Uint8Array(elementSize);
  arrayOfArrays = [];
  let arrayOfStrings = Array.from(stored);
  for (let i = 0; i < arrayOfStrings.length; i++) {
    arrayOfArrays.push(JSON.parse(arrayOfStrings[i]));
  }
  return arrayOfArrays;
}

function nextOrderPolys(poly) {
  let poly1, poly2 = new Uint8Array(elementSize);
  poly1 = addBlanksAroundPoly(poly);

  for (let y = 0; y < poly1.length; y++) {
    for (let x = 0; x < poly1[y].length; x++) {
      if (poly1[y][x] === 0) {
        try {
          if (poly1[y+1][x] === 1) {
            checkPoly(poly1, y, x);
          }
        } catch (error) { }
        try {
          if (poly1[y][x-1] === 1) {
            checkPoly(poly1, y, x);
          }
        } catch (error) { }
        try {
          if (poly1[y-1][x] === 1) {
            checkPoly(poly1, y, x);
          }
        } catch (error) { }
        try {
          if (poly1[y][x+1] === 1) {
            checkPoly(poly1, y, x);
          }
        } catch (error) { }
      }
    }
  }

}

function checkPoly(poly, i, j) {
  let poly2, trunc_poly, rot_poly = new Uint8Array(elementSize);
  let r;
  poly2 = poly.map(subArray => subArray.slice()); //copies 2D array poly 1 to poly2
  poly2[i][j] = 1; //2D array poly1 is not affected by this operation
  trunc_poly = truncatePoly(poly2);

  if (jsonData.type === "fixed") {
    if (stored_polys.has(JSON.stringify(trunc_poly))) { // there is an identical poly in the Set
      return;
    }
  } else if (jsonData.type === "one-sided") {
    if (stored_polys.has(JSON.stringify(trunc_poly))) { // there is an identical poly in the Set
      return;
    }
    rot_poly = trunc_poly;
    for (r = 0; r < 3; r++) { // rotate the candidate poly 3 times and check if there is an identical poly in the Set
      rot_poly = rotateLeftPoly(rot_poly);
      if (stored_polys.has(JSON.stringify(rot_poly))) { // there is an identical poly in the Set
        return;
      }
    }
  } else if (jsonData.type === "free") {
    if (stored_polys.has(JSON.stringify(trunc_poly))) { // there is an identical poly in the Set
      return;
    }
    rot_poly = trunc_poly;
    for (r = 0; r < 3; r++) { // rotate the candidate poly 3 times and check if there is an identical poly in the Set
      rot_poly = rotateLeftPoly(rot_poly);
      if (stored_polys.has(JSON.stringify(rot_poly))) { // there is an identical poly in the Set
        return;
      }
    }
    rot_poly = mirrorXPoly(rot_poly); // mirror candidate poly and check again
    if (stored_polys.has(JSON.stringify(rot_poly))) { // there is an identical poly in the Set
      return;
    }
    for (r = 0; r < 3; r++) { // rotate the candidate poly 3 times and check if there is an identical poly in the Set
      rot_poly = rotateLeftPoly(rot_poly);
      if (stored_polys.has(JSON.stringify(rot_poly))) { // there is an identical poly in the Set
        return;
      }
    }
  }

  stored_polys.add(JSON.stringify(trunc_poly)); // The candidate poly is new. Store it in the Set
  polysFound++;
  showPoly(trunc_poly);
}

function showPoly(poly) {
  ctx.lineWidth = 0.5*p;

  //Check if the rightmost end of the new poly will be displayed outside the screen width and if yes, display the new poly in the next row
  if (xOffset + poly[0].length*cellSize + verticalScrollbarWidth + ySpacing > width) {
    xOffset = xSpacing;
    yOffset += maxPolyLength*cellSize + ySpacing;
    maxPolyLength = 0;
  }

  //display the new poly
  let randomColor = "rgb("+(Math.random()*215+40)+","+(Math.random()*215+40)+","+(Math.random()*215+40)+")";
  for (let y = 0; y < poly.length; y++) {
    for (let x = 0; x < poly[y].length; x++) {
      ctx.beginPath();
      if (poly[y][x] === 1) {
        ctx.fillStyle = randomColor;
        ctx.strokeStyle = "black";
      } else {
        //ctx.fillStyle = "white";
        ctx.fillStyle = "transparent";
        ctx.strokeStyle = "transparent";
      }
      ctx.rect(xOffset + x*cellSize, yOffset + y*cellSize, cellSize, cellSize);
      ctx.fill();
      ctx.stroke();
    }
  }

  xOffset += poly[0].length*cellSize + xSpacing; // set the left margin of the new poly to be displayed
  //sets the next row for the new poly to be displayed as the maximum height from the previous row
  if (poly.length > maxPolyLength) {
    maxPolyLength = poly.length;
  }
}

function truncatePoly(poly) {
  let x, y;
  let new_poly, transposedArray = new Uint8Array(elementSize);
  //truncate rows
  new_poly = [];
  for (y = 0; y < poly.length; y++) {
    for (x = 0; x < poly[y].length; x++) {
      if (poly[y][x] === 1) {
        new_poly.push(poly[y]); //copy this row to a new array
        break;
      }
    }
  }
  //reverse rows and columns of the trancated array
  transposedArray = new_poly[0].map((col, i) => new_poly.map(row => row[i]));
  //truncate rows of the new array, so that we have trancated both rows and columns
  new_poly = [];
  for (y = 0; y < transposedArray.length; y++) {
    for (x = 0; x < transposedArray[y].length; x++) {
      if (transposedArray[y][x] === 1) {
        new_poly.push(transposedArray[y]); //copy this row to a new array
        break;
      }
    }
  }
  //reverse rows and columns of the trancated array again, so that the new array has the same orientation with the original
  transposedArray = new_poly[0].map((col, i) => new_poly.map(row => row[i]));
  return transposedArray;
}

function rotateLeftPoly(poly) {
  let transposedArray = new Uint8Array(elementSize);
  //reverse rows and columns of the original array
  transposedArray = poly[0].map((col, i) => poly.map(row => row[i]));
  //mirrors the transposed array
  return transposedArray.slice().reverse();
}

function mirrorXPoly(poly) {
  let mirr_poly = new Uint8Array(elementSize);
  mirr_poly = poly.slice().reverse();
  return mirr_poly;
}

function mirrorYPoly(poly) {
  let mirr_poly = new Uint8Array(elementSize);
  mirr_poly = poly.map(subArr => subArr.slice().reverse());
  return mirr_poly;
}

function addBlanksAroundPoly(poly) {
  //creates a loop of blank cells around a poly, so that new filled cells can be placed in the next poly order
  let newLengthX = poly[0].length + 2;
  let newLengthY = poly.length + 2;
  let new_poly = new Uint8Array(elementSize);
  new_poly = Array.from({length: newLengthY}, () => Array(newLengthX).fill(0)); //creates a 2D array filled with zeros
  for (let y = 0; y < poly.length; y++) {
    for (let x = 0; x < poly[y].length; x++) {
      new_poly[y+1][x+1] = poly[y][x];
    }
  }
  return new_poly;
}
Output:

Julia

Translation of: Haskell
import Base.show, Base.==, Base.hash

struct Point x::Float64; y::Float64 end
hash(p::Point) = hash(p.x, hash(p.y))
==(p1::Point, p2::Point) = p1.x == p2.x && p1.y == p2.y 

pointsort!(pv) = sort!(pv, lt = (a, b) -> a.x == b.x ? a.y < b.y : a.x < b.x)

mutable struct Poly
    vp::Vector{Point}
    Poly(v::Vector{Point}) = new(pointsort!(unique(v)))
end
Poly(poly::Poly) = Poly(poly.vp)
Poly(poly::Poly, v::Vector{Point}) = Poly(vcat(poly.vp, v))
Poly(poly, f::Function) = Poly(pointsort!(map(p -> f(p), deepcopy(poly.vp))))
==(p1::Poly, p2::Poly) = length(p1.vp) == length(p2.vp) && 
    all(i -> p1.vp[i] == p2.vp[i], 1:length(p1.vp))
hash(p1::Poly) = reduce((x, y) -> hash(hash(x), hash(y)), p1.vp)

polysort!(polyarr) = sort!(polyarr, lt = (a, b) -> string(a.vp) < string(b.vp))

translate_to_origin(poly) = Poly(poly, p -> Point(p.x - minimum(p -> p.x, poly.vp),
    p.y - minimum(p -> p.y, poly.vp)))

function asciimatrix(poly)
    if length(poly.vp) == 0
        return reshape(Char[], 0, 0)
    elseif length(poly.vp) == 1
        return reshape([' '], 1, 1)
    end
    vp = translate_to_origin(poly).vp
    sz = Int.((maximum(p -> p.x, vp), maximum(p -> p.y, vp))) .+ 1
    txtmat = fill(' ', sz)
    for i in 1:sz[1], j in 1:sz[2]
        if Point(i-1, j-1) in vp
            txtmat[i, j] = '#'
        end
    end
    txtmat
end

rotate90(poly) = Poly(poly, p -> Point(p.y, -p.x))
rotate180(poly) = Poly(poly, p -> Point(-p.x, -p.y))
rotate270(poly) = Poly(poly, p -> Point(-p.y, p.x))
reflect(poly) = Poly(poly, p -> Point(-p.x, p.y))

rotations_and_reflections(poly) = [poly, rotate90(poly), rotate180(poly),
    rotate270(poly), reflect(poly), reflect(rotate90(poly)),
    reflect(rotate180(poly)), reflect(rotate270(poly))]

canonical(poly) = polysort!(map(translate_to_origin, rotations_and_reflections(poly)))

contiguous(p) = [Point(p.x - 1, p.y), Point(p.x + 1, p.y),
    Point(p.x, p.y - 1), Point(p.x, p.y + 1)]

adjacentpoints(poly) = unique(filter(p -> !(p in poly.vp),
    reduce(vcat, [contiguous(p) for p in poly.vp])))

nextrank_adjacentpolys(poly) = map(pv -> pv[1], unique(canonical.(
    [Poly(poly, [p]) for p in adjacentpoints(poly)])))

const nullmino = Poly[]
const monomino = Poly([Point(0, 0)])

rank(n) = @assert n >= 0 && return n == 0 ? nullmino : n == 1 ? [monomino] :
    unique(reduce(vcat, map(nextrank_adjacentpolys, rank(n - 1))))

function Base.show(io::IO, poly::Poly)
    txtmat = asciimatrix(poly)
    w, h = size(txtmat)
    for i in 1:w
        for j in 1:h
            print(txtmat[i, j])
        end
        println()
    end
end

function testpolys(N = 5)
    println([length(rank(n)) for n in 1:10])

    println("\nAll free polyominoes of rank $N:")

    for poly in rank(5)
        println(poly)
    end
end

testpolys()
Output:
[1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655]

All free polyominoes of rank 5:
##
 ##
 #

###
##

####
 #

 #
###
 #

###
 #
 #

##
 ##
  #

###
  ##

##
 #
 ##

###
# #

####
#

###
#
#

#####

Kotlin

Translation of: Python
// version 1.1.51

class Point(val x: Int, val y: Int) : Comparable<Point> {
    fun rotate90()  = Point( this.y, -this.x)
    fun rotate180() = Point(-this.x, -this.y)
    fun rotate270() = Point(-this.y,  this.x)
    fun reflect()   = Point(-this.x,  this.y)

    override fun equals(other: Any?): Boolean {
        if (other == null || other !is Point) return false
        return this.x == other.x && this.y == other.y
    }

    override fun compareTo(other: Point) =
        if (this == other ) 0
        else if (this.x < other.x || (this.x == other.x && this.y < other.y)) -1
        else 1

    override fun toString() = "($x, $y)"
}

typealias Polyomino = List<Point>

// Finds the min x and y coordinates of a Polyomino.
val Polyomino.minima get() = Pair(this.minBy { it.x }!!.x, this.minBy { it.y }!!.y)

fun Polyomino.translateToOrigin(): Polyomino {
    val (minX, minY) = this.minima
    return this.map { Point(it.x - minX, it.y - minY) }.sorted()
}

// All the plane symmetries of a rectangular region.
val Polyomino.rotationsAndReflections get() =
    listOf(
        this,
        this.map { it.rotate90() },
        this.map { it.rotate180() },
        this.map { it.rotate270() },
        this.map { it.reflect() },
        this.map { it.rotate90().reflect() },
        this.map { it.rotate180().reflect() },
        this.map { it.rotate270().reflect() }
    )

val Polyomino.canonical get() =
    this.rotationsAndReflections.map { it.translateToOrigin() }.minBy { it.toString() }!!

// All four points in Von Neumann neighborhood
val Point.contiguous get() =
    listOf(Point(x - 1, y), Point(x + 1, y), Point(x, y - 1), Point(x, y + 1))

// Finds all distinct points that can be added to a Polyomino.
val Polyomino.newPoints get() = this.flatMap { it.contiguous }.filter { it !in this }.distinct()

val Polyomino.newPolys get() = this.newPoints.map { (this + it).canonical }

val monomino = listOf(Point(0, 0))
val monominoes = listOf(monomino)

// Generates polyominoes of rank n recursively.
fun rank(n: Int): List<Polyomino> = when {
    n < 0  -> throw IllegalArgumentException("n cannot be negative")
    n == 0 -> emptyList<Polyomino>()
    n == 1 -> monominoes
    else   -> rank(n - 1).flatMap { it.newPolys }
                         .distinctBy { it.toString() }
                         .sortedBy { it.toString() }
}

fun main(args: Array<String>) {
    val n = 5
    println("All free polyominoes of rank $n:\n")
    for (poly in rank(n)) {
        for (pt in poly) print("$pt ")
        println()
    }
    val k = 10
    println("\nNumber of free polyominoes of ranks 1 to $k:")
    for (i in 1..k) print("${rank(i).size} ")
    println()
}
Output:
All free polyominoes of rank 5:

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) 
(0, 0) (0, 1) (0, 2) (0, 3) (1, 0) 
(0, 0) (0, 1) (0, 2) (0, 3) (1, 1) 
(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) 
(0, 0) (0, 1) (0, 2) (1, 0) (1, 2) 
(0, 0) (0, 1) (0, 2) (1, 0) (2, 0) 
(0, 0) (0, 1) (0, 2) (1, 1) (2, 1) 
(0, 0) (0, 1) (0, 2) (1, 2) (1, 3) 
(0, 0) (0, 1) (1, 1) (1, 2) (2, 1) 
(0, 0) (0, 1) (1, 1) (1, 2) (2, 2) 
(0, 0) (0, 1) (1, 1) (2, 1) (2, 2) 
(0, 1) (1, 0) (1, 1) (1, 2) (2, 1) 

Number of free polyominoes of ranks 1 to 10:
1 1 2 5 12 35 108 369 1285 4655 

Nim

Translation of: Kotlin
import algorithm, sequtils, strutils, sugar

type Point = tuple[x, y: int]

func rotate90(p: Point): Point = (p.y, -p.x)
func rotate180(p: Point): Point = (-p.x, -p.y)
func rotate270(p: Point): Point = (-p.y, p.x)
func reflect(p: Point): Point = (-p.x, p.y)

func `$`(p: Point): string = "($1, $2)".format(p.x, p.y)


type Polyomino = seq[Point]

func minima(poly: Polyomino): (int, int) =
  ## Finds the min x and y coordinates of a polyomino.
  (min(poly.mapIt(it.x)), min(poly.mapIt(it.y)))

func translateToOrigin(poly: Polyomino): Polyomino =
  let (minX, minY) = poly.minima
  result = sorted(poly.mapIt((it.x - minX, it.y - minY)))

func rotationsAndReflections(poly: Polyomino): seq[Polyomino] =
  @[poly,
    poly.mapIt(it.rotate90),
    poly.mapIt(it.rotate180),
    poly.mapIt(it.rotate270),
    poly.mapIt(it.reflect),
    poly.mapIt(it.rotate90.reflect),
    poly.mapIt(it.rotate180.reflect),
    poly.mapIt(it.rotate270.reflect)]

func canonical(poly: Polyomino): Polyomino =
  sortedByIt(poly.rotationsAndReflections.map(translateToOrigin), $it)[0]

func contiguous(p: Point): array[4, Point] =
  # Return all four points in Von Neumann neighborhood.
  [(p.x - 1, p.y), (p.x + 1, p.y), (p.x, p.y - 1), (p.x, p.y + 1)]

func newPoints(poly: Polyomino): seq[Point] =
  ## Return all distinct points that can be added to a Polyomino.
  result = collect(newSeq):
             for point in poly:
               for pt in point.contiguous():
                 if pt notin poly: pt
  result = result.deduplicate()

func newPolys(poly: Polyomino): seq[Polyomino] =
  collect(newSeq, for pt in poly.newPoints: canonical(poly & pt))

const Monominoes = @[@[(x: 0, y: 0)]]

func rank(n: Natural): seq[Polyomino] =
  if n == 0: return newSeq[Polyomino]()
  if n == 1: return Monominoes
  result = collect(newSeq):
             for poly in rank(n - 1):
               for p in poly.newPolys(): p
  result = sortedByIt(result, $it).deduplicate(true)

when isMainModule:

  let n = 5
  echo "All free polyominoes of rank $#:\n".format(n)
  for poly in rank(n): echo poly.join(" ")

  let k = 10
  echo "\nNumber of free polyominoes of ranks 1 to $#:".format(k)
  for i in 1..k: stdout.write rank(i).len, ' '
  echo()
Output:
All free polyominoes of rank 5:

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4)
(0, 0) (0, 1) (0, 2) (0, 3) (1, 0)
(0, 0) (0, 1) (0, 2) (0, 3) (1, 1)
(0, 0) (0, 1) (0, 2) (1, 0) (1, 1)
(0, 0) (0, 1) (0, 2) (1, 0) (1, 2)
(0, 0) (0, 1) (0, 2) (1, 0) (2, 0)
(0, 0) (0, 1) (0, 2) (1, 1) (2, 1)
(0, 0) (0, 1) (0, 2) (1, 2) (1, 3)
(0, 0) (0, 1) (1, 1) (1, 2) (2, 1)
(0, 0) (0, 1) (1, 1) (1, 2) (2, 2)
(0, 0) (0, 1) (1, 1) (2, 1) (2, 2)
(0, 1) (1, 0) (1, 1) (1, 2) (2, 1)

Number of free polyominoes of ranks 1 to 10:
1 1 2 5 12 35 108 369 1285 4655 

Perl

Only shows the polyominoes up to rank 5.

#!/usr/bin/perl

use strict;
use warnings;

my @new = "#\n";

for my $N ( 2 .. 10 )
  {
  @new = find( @new );
  my %allbest;
  $allbest{best($_)}++ for @new;
  my @show = @new = sort keys %allbest;
  printf "rank: %2d  count: %d\n\n", $N, scalar @show;
  if( @show <= 12 )
    {
    my $fmt = join '', map({ /\n/; '%' . ($+[0] + 1) . 's' } @show), "\n";
    grep $_, @show and printf $fmt, map s/(.*)\n// && $1, @show for 0 .. $N;
    print "\n";
    }
  }

sub bare
  {
  local $_ = shift;
  s/^ *\n//gm;
  s/^ //gm until /^#/m;
  s/ $//gm until /#$/m;
  $_;
  }

sub transpose
  {
  local $_ = shift;
  my $t = '';
  $t .= "\n" while s/^./ $t .= $&; '' /gem;
  $t;
  }

sub rotate
  {
  local $_ = shift;
  my $t = '';
  $t .= "\n" while s/.$/ $t .= $&; '' /gem;
  $t;
  }

sub best
  {
  my %all = (shift, 1);
  for my $p (keys %all)
    {
    $all{ my $tmp = rotate $p }++;
    $all{ rotate $tmp }++;
    }
  $all{ transpose $_ }++ for keys %all;
  $all{ s/(.+)/reverse $1/ger }++ for keys %all;        # mirror
  (sort keys %all)[-1];
  }

sub find
  {
  my @before = @_;
  my %new;
  for my $p ( @before )
    {
    local $_ = $p;
    s/^/ /gm;
    s/\n/ \n/g;
    my $line = s/\n.*/\n/sr =~ tr/\n/ /cr;
    $_ = $line . $_ . $line;
    my $n = -1 + length $line;
    my $gap = qr/.{$n}/s;
    $new{ bare "$`#$'" }++ while / (?=#)/g;
    $new{ bare "$`#$'" }++ while / (?=$gap#)/g;
    $new{ bare "$`#$'" }++ while /(?<=#) /g;
    $new{ bare "$`#$'" }++ while /(?<=#$gap) /g;
    }
  keys %new;
  }
Output:
rank:  2  count: 1

  ##

rank:  3  count: 2

  ##  ###
  #      

rank:  4  count: 5

  ##  ##   ###  ###  ####
  ##   ##   #   #        

rank:  5  count: 12

   #   ##   ##   ##   ###  ###  ###  ###  ###   ####  ####  #####
  ###   #    ##   ##   #   #    # #  ##     ##   #    #          
   #    ##    #   #    #   #                                     

rank:  6  count: 35

rank:  7  count: 108

rank:  8  count: 369

rank:  9  count: 1285

rank: 10  count: 4655

Phix

Written for clarity over raw speed.

-- demo\rosetta\Polyominoes.exw
with javascript_semantics
function rotate90(integer x, y) return {y,-x} end function
function reflectx(integer x, y) return {-x,y} end function
function rotflect(integer fn, sequence xy) return call_func(fn,xy) end function

function rotationsAndReflections(sequence poly)
    -- All the plane symmetries of a rectangular region.
    -- (ie orig plus 3*90 plus reflect and another 3*90)
    sequence res = repeat(poly,8)
    for i=2 to 8 do
        integer fn = iff(i=5?reflectx:rotate90)
        res[i] = apply(true,rotflect,{fn,res[i-1]})
    end for
    return res
end function

function translateToOrigin(sequence poly)
    -- Ensure {minx,miny} is/move it to {1,1}
    integer minx = min(vslice(poly,1))-1,
            miny = min(vslice(poly,2))-1
    return unique(apply(true,sq_sub,{poly,{{minx,miny}}}))
end function

function canonical_poly(sequence poly)
    -- Returns unique/min representation, eg {{1,1},{1,2}} not {{1,1},{2,1}}
    return min(apply(rotationsAndReflections(poly),translateToOrigin))
end function

function contiguous(sequence pt)
    -- All four points in Von Neumann neighborhood
    integer {x,y} = pt
    return {{x-1,y},{x+1,y},{x,y-1},{x,y+1}}
end function

function new_points(sequence poly)
    -- Finds all distinct points that can be added to a Polyomino.
    sequence res = {}
    for i=1 to length(poly) do
        res &= contiguous(poly[i])
    end for
    res = unique(res)
    return res
end function
 
function new_polys(sequence p)
    -- Finds all polys that can be created by adding one more point.
    sequence pts = new_points(p),
             res = {}
    for i=1 to length(pts) do
        sequence pt = pts[i]
        if not find(pt,p) then
            sequence poly = append(deep_copy(p),pt)
            res = append(res,canonical_poly(poly))
        end if
    end for
    return res
end function

sequence ranks = {{{{1,1}}}}    -- (rank[1] = a single monomino)

function rank(integer n)
    if n=0 then return {} end if
    assert(n>=1)
    while n>length(ranks) do
        sequence r = ranks[$],  -- (extend last)
                 polys = {}
        for i=1 to length(r) do
            polys &= new_polys(r[i])
        end for
        polys = unique(polys)
        ranks = append(ranks,polys)
    end while
    return ranks[n]
end function

procedure print_polys(sequence p)
--  pp(p,{pp_Nest,1})
    integer n = length(p),
            l = length(p[1])
    sequence lines = repeat(repeat(' ',(l+1)*n+2),l)
    for i=1 to n do
        sequence pi = p[i]
        for j=1 to length(pi) do
            integer {x,y} = pi[j]
            lines[y][x+(i-1)*(l+1)+2] = '#'
        end for
    end for
    printf(1,"\n%s\n\n",{join(lines,"\n")})
end procedure

for i=1 to 10 do
    sequence ri = rank(i)
    printf(1,"rank:%d  count:%d\n",{i,length(ri)})
    if i>0 and i<=5 then print_polys(ri) end if
end for
Output:
rank:1  count:1

  # 

rank:2  count:1

  #  
  #  

rank:3  count:2

  #   ##  
  #   #   
  #       

rank:4  count:5

  #    ##   #    ##   #    
  #    #    ##   ##   ##   
  #    #    #          #   
  #                        

rank:5  count:12

  #     ##    #     ##    ##    ###   #     #     #     #     #      #    
  #     #     ##    ##    #     #     ###   #     ###   ##    ###   ###   
  #     #     #     #     ##    #     #     ##     #     ##     #    #    
  #     #     #                              #                            
  #                                                                       

rank:6  count:35
rank:7  count:108
rank:8  count:369
rank:9  count:1285
rank:10  count:4655

Python

Translation of: Haskell
from itertools import imap, imap, groupby, chain, imap
from operator import itemgetter
from sys import argv
from array import array

def concat_map(func, it):
    return list(chain.from_iterable(imap(func, it)))

def minima(poly):
    """Finds the min x and y coordiate of a Polyomino."""
    return (min(pt[0] for pt in poly), min(pt[1] for pt in poly))

def translate_to_origin(poly):
    (minx, miny) = minima(poly)
    return [(x - minx, y - miny) for (x, y) in poly]

rotate90   = lambda (x, y): ( y, -x)
rotate180  = lambda (x, y): (-x, -y)
rotate270  = lambda (x, y): (-y,  x)
reflect    = lambda (x, y): (-x,  y)

def rotations_and_reflections(poly):
    """All the plane symmetries of a rectangular region."""
    return (poly,
            map(rotate90, poly),
            map(rotate180, poly),
            map(rotate270, poly),
            map(reflect, poly),
            [reflect(rotate90(pt)) for pt in poly],
            [reflect(rotate180(pt)) for pt in poly],
            [reflect(rotate270(pt)) for pt in poly])

def canonical(poly):
    return min(sorted(translate_to_origin(pl)) for pl in rotations_and_reflections(poly))

def unique(lst):
    lst.sort()
    return map(next, imap(itemgetter(1), groupby(lst)))

# All four points in Von Neumann neighborhood.
contiguous = lambda (x, y): [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)]

def new_points(poly):
    """Finds all distinct points that can be added to a Polyomino."""
    return unique([pt for pt in concat_map(contiguous, poly) if pt not in poly])

def new_polys(poly):
    return unique([canonical(poly + [pt]) for pt in new_points(poly)])

monomino = [(0, 0)]
monominoes = [monomino]

def rank(n):
    """Generates polyominoes of rank n recursively."""
    assert n >= 0
    if n == 0: return []
    if n == 1: return monominoes
    return unique(concat_map(new_polys, rank(n - 1)))

def text_representation(poly):
    """Generates a textual representation of a Polyomino."""
    min_pt = minima(poly)
    max_pt = (max(p[0] for p in poly), max(p[1] for p in poly))
    table = [array('c', ' ') * (max_pt[1] - min_pt[1] + 1)
             for _ in xrange(max_pt[0] - min_pt[0] + 1)]
    for pt in poly:
        table[pt[0] - min_pt[0]][pt[1] - min_pt[1]] = '#'
    return "\n".join(row.tostring() for row in table)

def main():
    print [len(rank(n)) for n in xrange(1, 11)]

    n = int(argv[1]) if (len(argv) == 2) else 5
    print "\nAll free polyominoes of rank %d:" % n

    for poly in rank(n):
        print text_representation(poly), "\n"

main()
Output:
[1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655]

All free polyominoes of rank 5:
##### 

####
#    

####
 #   

###
##  

###
# # 

###
#  
#   

###
 # 
 #  

### 
  ## 

## 
 ##
 #  

## 
 ##
  # 

## 
 # 
 ## 

 # 
###
 #  

Racket

Uses Racket's arbitrary length integers as bit fields. It's not as compact as it possible could be (all numbers are "square" in shape), but it is correct.

Implemented in typed/racket. Don't balk at all the type annotations. In the right environment (DrRacket), they allow the developer to keep types in check.

Some functionality might be vestigial, or used in testing (test scripts not included in code below). But I think it's interesting nonetheless.

#lang typed/racket
;; Inspired by C code in http://www.geocities.jp/tok12345/countomino.txt
;; but tries to take advantage of arbitrary width integers
(define-type Order Positive-Integer)
(define-type Shape Nonnegative-Integer)
;; "shape" functions are abbreviated s-...
(define-type Shapes (Listof Shape))
(define-type Shapes+ (Pairof Shape Shapes))
;; polynomino
;;  order: number of bits wide a row of the "shape" is
;;  shape: bit map (integer). bits set where the "animal" is
(struct polynominoes ([order : Order] [shapes : Shapes]))
(define-type shape-xform (Order Shape -> Shape))
(: s-reflect:y shape-xform)
(: s-reflect:x shape-xform)
(: s-reflect:xy shape-xform)
(: s-reflect:x=y shape-xform)
(: s-all-xforms (Order Shape #:bottom-mask Shape #:left-mask Shape -> Shapes))
(: s-grow+2 shape-xform)
(: s-shrink-1 shape-xform)
(: s-normalise (Order Shape #:bottom-mask Shape #:left-mask Shape -> Shape))
(: draw-shapes (Order Shapes -> Void))
(: draw-polynominoes (polynominoes -> Void))
(: polynominoes->string (polynominoes -> String))
(: order-1-polynominoes polynominoes)
(: shape-add-bit (Order Shape Nonnegative-Integer -> Shape))
(: s-add-all-edges
   (Order (Shape -> Shape) Shape #:bottom-mask Shape #:left-mask Shape (#:seen? (Shape -> Boolean))
          (#:seen! (Option (Shape -> Void))) -> Shapes))
(: s-least-xform (Order Shape #:bottom-mask Shape #:left-mask Shape
                        (#:seen? (Option (Shape -> Boolean))) -> (Option Shape)))
(: polynominoes-add-new-order (-> polynominoes polynominoes))
(: nth-order-polynominoes (-> Positive-Integer polynominoes))
(: s-identity shape-xform)
(: order->bottom-mask (Order -> Shape))
(: order->left-mask (Order -> Shape))

;; get in touch with your inner C programmer
(define << arithmetic-shift)
(define bits bitwise-bit-field)

(define (draw-shapes o sss)
  (let: loop ((need-newline? : Boolean #f) (sss sss))
    (define 10-or-sss-len (min (length sss) 10))
    (define ss (take sss 10-or-sss-len))
    (for ((y (in-range 0 o)))
      (for ((s (in-list ss)) (n (in-naturals)) #:when #t (x (in-range 0 o)))
        (match* (n y x)
          [(0 0 _) (void)] [(0 _ 0) (newline)] [(_ _ 0) (write-char #\space)] [(_ _ _) (void)])
        (write-char (cond [(bitwise-bit-set? s (+ x (* y o))) #\#] [else #\.]))))
    (newline)
    (define sss- (drop sss 10-or-sss-len))
    (unless (null? sss-) (when need-newline? (newline)) (loop #t sss-))))

(define (draw-polynominoes p)
  (draw-shapes (polynominoes-order p) (polynominoes-shapes p)))

(define (polynominoes->string p)
  (with-output-to-string (λ () (draw-polynominoes p))))

(define order-1-polynominoes (polynominoes 1 '(1)))

(define (shape-add-bit o s b)
  (bitwise-ior s (<< 1 b)))

(define (s-reflect:y o s)
  (let: loop ((s : Shape s) (s+ : Shape 0))
    (if (zero? s) s+ (loop (<< s (- o)) (bitwise-ior (bits s 0 o) (<< s+ o))))))

(define (s-reflect:x o s)
  (let y-loop ((s+ : Shape 0) (y : Nonnegative-Integer (- o 1)))
    (let x-loop ((s+ : Shape s+) (x : Nonnegative-Integer 0) (b (* o y)))
      (cond [(= o x) (if (= y 0) s+ (y-loop s+ (- y 1)))]
            [else (x-loop (bitwise-ior (<< s+ 1) (bits s b (+ b 1))) (+ x 1) (+ b 1))]))))

(define (s-reflect:xy o s) (s-reflect:x o (s-reflect:y o s)))

(define (s-reflect:x=y o s)
  (define o-1 (sub1 o))
  (let b-loop ((s+ : Shape 0) (w-y o-1) (w-x o-1))
    (cond [(< w-y 0) s+]
          [else (define r-bit (+ (* w-x o) w-y))
                (b-loop (bitwise-ior (<< s+ 1) (bits s r-bit (+ r-bit 1)))
                        (if (zero? w-x) (sub1 w-y) w-y)
                        (if (zero? w-x) o-1 (sub1 w-x)))])))

(define (s-identity o s) s)

(define (order->bottom-mask o) (- (expt 2 o) 1))

(define (order->left-mask o) (for/fold ((m : Shape 0)) ((i (in-range 0 o))) (bitwise-ior 1 (<< m o))))

(define (s-least-xform o s #:bottom-mask bm #:left-mask lm #:seen? (seen? #f))
  (: ss1 (Option Shapes))
  (define ss1
    (let loop : (Option Shapes)
      ((rv : (Option Shapes) null)
       (xs : (Listof shape-xform)
           (list s-identity s-reflect:y s-reflect:x s-reflect:xy)))
      (cond
        [(null? xs) rv]
        [(not rv) #f] ; option assures rv's type in else clause
        [else
         (define s_ (s-normalise o ((car xs) o s) #:bottom-mask bm #:left-mask lm))
         (if (and seen? (seen? s_)) #f (loop (cons s_ rv) (cdr xs)))])))
  
  (and ss1
       (let loop : (Option Shape)
         ((rv : (Option Shape) (sub1 (expt 2 (sqr o))))
          (ss : Shapes ss1))
         (cond
           [(null? ss) rv]
           [else
            (define s0 (car ss))
            (define s_ (s-normalise o (s-reflect:x=y o s0) #:bottom-mask bm #:left-mask lm))
            (define least-s (min s0 s_))
            (cond [(and seen? (seen? s_)) #f]
                  [else (and rv (loop (min rv least-s) (cdr ss)))])]))))

(define (s-all-xforms o s #:bottom-mask bm #:left-mask lm)
  (: s1 Shapes)
  (: s2 Shapes)
  (define s1
    (for/list : Shapes
      ((x : shape-xform (in-list (list s-reflect:y s-reflect:x s-reflect:xy))))
      (x o s)))
  (define s2
    (for/list : Shapes ((s+ : Shape (in-list (cons s s1))))
      (s-reflect:x=y o s+)))
  
  (for/list : Shapes ((s (in-list (append s1 s2))))
    (s-normalise o s #:bottom-mask bm #:left-mask lm)))

(define (s-grow+2 o s)
  (define o+2 (+ o 2))
  (define -o (- o))
  (define s+
    (let: loop : Shape ((s : Shape s) (shft : Nonnegative-Integer 0) (rv : Shape 0))
      (if (zero? s) rv
          (loop (<< s -o)
                (+ shft o+2)
                (bitwise-ior rv (<< (bits s 0 o) shft))))))
  (<< s+ (+ o+2 1))) ; centre it

(define (s-shrink-1 o s)
  (define o-1 (sub1 o))
  (define -o (- o))
  (let: loop : Shape ((s- : Shape s) (shft : Nonnegative-Integer 0) (rv : Shape 0))
    (if (zero? s-) rv (loop (<< s- -o) (+ shft o-1) (bitwise-ior rv (<< (bits s- 0 o) shft))))))

(define (s-normalise o s #:bottom-mask bm #:left-mask lm)
  (cond [(zero? s) s]; stop an infinte loop!
        [else
         (define -o (- o))  
         ;; if there are no bits in a mask, we need to pull some in from...
         (: s-down Shape)
         (define s-down (let: loop : Shape ((s : Shape s))
                          (if (zero? (bitwise-and s bm)) (loop (<< s -o)) s)))
         (let loop : Shape ((s : Shape s-down)) (if (zero? (bitwise-and s lm)) (loop (<< s -1)) s))]))

(define (s-add-all-edges o shrink s
                         #:bottom-mask bm #:left-mask lm
                         #:seen! (seen! #f) #:seen? (seen? #f))
  (define o+2 (+ o 2))
  (define s+ (s-grow+2 o s))
  ;; it will be of a new order with edges all round -- so expand it into that
  (define blur (bitwise-ior s+ (<< s+ 1) (<< s+ -1) (<< s+ o+2) (<< s+ (- o+2))))
  (let: loop : Shapes
    ((b : Nonnegative-Integer 0)
     (e : Shape (bitwise-xor blur s+)) ; the edge is the blur, less the original s+
     (rv : Shapes null))
    (match e
      [0 rv] ; run out of bits
      [(? even?) (loop (+ b 1) (<< e -1) rv)] ; bit 0 isn't
      [_ (define lsx (s-least-xform o+2 (shape-add-bit o+2 s+ b)
                                    #:bottom-mask bm #:left-mask lm #:seen? seen?))
         (loop (+ b 1) (<< e -1) (if lsx (begin0 (cons (shrink lsx) rv)
                                                 (when seen! (seen! lsx)))
                                     rv))])))

(define (polynominoes-add-new-order p)
  (match-define (polynominoes o ss) p)
  (: saae (Shape -> Shapes))
  (: seen? (Shape -> Boolean))
  (: seen! (Shape -> Void))
  
  (define bm (order->bottom-mask (+ 2 o)))
  (define lm (order->left-mask (+ 2 o)))
  (define shrink (curry s-shrink-1 (+ o 2)))
  (define (seen! s) (hash-set! all-seen-shapes s #t))
  (define (seen? s) (hash-ref all-seen-shapes s #f))
  (define (saae s) (s-add-all-edges o shrink s #:seen? seen? #:seen! seen!
                                    #:bottom-mask bm #:left-mask lm))
  (define all-seen-shapes #{(make-hash) :: (HashTable Shape Boolean)})
  (define all-new-shapes
    (for*/list : Shapes ((k : Shape (in-list ss)) (s : Shape (in-list (saae k)))) s))  
  (polynominoes (add1 o) all-new-shapes))

(define nth-order-polynominoes
  (let ((polynominoes-cache #{(make-hash) :: (HashTable Positive-Integer polynominoes)}))
    (hash-set! polynominoes-cache 1 order-1-polynominoes)
    (lambda (n)
      (hash-ref! polynominoes-cache n
                 (λ () (polynominoes-add-new-order
                        (nth-order-polynominoes (cast (sub1 n) Positive-Integer))))))))

(module+ main
  (time
   (for ((n : Positive-Integer (in-range 1 (add1 12))))
     (define p (time (nth-order-polynominoes n)))
     (printf "n: ~a~%" n)
     (when (< n 6) (draw-polynominoes p))
     (printf "count: ~a~%~%" (length (polynominoes-shapes p)))
     (flush-output))))
Output:

Output is done up to 13 (on my clockwork laptop... tomorrow, better results on a competent machine)

cpu time: 0 real time: 0 gc time: 0
n: 1
#
count: 1

cpu time: 0 real time: 0 gc time: 0
n: 2
##
..
count: 1

cpu time: 0 real time: 0 gc time: 0
n: 3
### ##.
... #..
... ...
count: 2

cpu time: 0 real time: 0 gc time: 0
n: 4
#### ###. ###. ##.. .##.
.... .#.. #... ##.. ##..
.... .... .... .... ....
.... .... .... .... ....
count: 5

cpu time: 0 real time: 0 gc time: 0
n: 5
##### ####. ####. #.... ###.. .#... .#... ###.. ###.. .###.
..... .#... #.... ###.. ##... ###.. ###.. #.... #.#.. ##...
..... ..... ..... #.... ..... .#... #.... #.... ..... .....
..... ..... ..... ..... ..... ..... ..... ..... ..... .....
..... ..... ..... ..... ..... ..... ..... ..... ..... .....
..#.. .##..
###.. ##...
#.... #....
..... .....
..... .....
count: 12

cpu time: 0 real time: 0 gc time: 0
n: 6
count: 35

cpu time: 0 real time: 0 gc time: 0
n: 7
count: 108

cpu time: 63 real time: 31 gc time: 0
n: 8
count: 369

cpu time: 187 real time: 94 gc time: 0
n: 9
count: 1285

cpu time: 735 real time: 360 gc time: 0
n: 10
count: 4655

cpu time: 3172 real time: 2189 gc time: 142
n: 11
count: 17073

cpu time: 9047 real time: 9048 gc time: 343
n: 12
count: 63600

cpu time: 75125 real time: 75508 gc time: 3310
n: 13
count: 238591

cpu time: 88985 real time: 87683 gc time: 3983

Ruby

Translation of: Python
require 'set'

def translate2origin(poly)
  # Finds the min x and y coordiate of a Polyomino.
  minx = poly.map(&:first).min
  miny = poly.map(&:last).min
  poly.map{|x,y| [x - minx, y - miny]}.sort
end

def rotate90(x,y) [y, -x] end
def reflect(x,y)  [-x, y] end

# All the plane symmetries of a rectangular region.
def rotations_and_reflections(poly)
  [poly,
   poly = poly.map{|x,y| rotate90(x,y)},
   poly = poly.map{|x,y| rotate90(x,y)},
   poly = poly.map{|x,y| rotate90(x,y)},
   poly = poly.map{|x,y| reflect(x,y)},
   poly = poly.map{|x,y| rotate90(x,y)},
   poly = poly.map{|x,y| rotate90(x,y)},
          poly.map{|x,y| rotate90(x,y)} ]
end

def canonical(poly)
  rotations_and_reflections(poly).map{|pl| translate2origin(pl)}
end

# All four points in Von Neumann neighborhood.
def contiguous(x,y)
  [[x - 1, y], [x + 1, y], [x, y - 1], [x, y + 1]]
end

# Finds all distinct points that can be added to a Polyomino.
def new_points(poly)
  points = []
  poly.each{|x,y| contiguous(x,y).each{|point| points << point}}
  (points - poly).uniq
end

def new_polys(polys)
  pattern = Set.new
  polys.each_with_object([]) do |poly, polyomino|
    new_points(poly).each do |point|
      next if pattern.include?(pl = translate2origin(poly + [point]))
      polyomino << canonical(pl).each{|p| pattern << p}.min
    end
  end
end

# Generates polyominoes of rank n recursively.
def rank(n)
  case n
  when 0 then [[]]
  when 1 then [[[0,0]]]
  else        new_polys(rank(n-1))
  end
end

# Generates a textual representation of a Polyomino.
def text_representation(poly)
  table = Hash.new(' ')
  poly.each{|x,y| table[[x,y]] = '#'}
  maxx = poly.map(&:first).max
  maxy = poly.map(&:last).max
  (0..maxx).map{|x| (0..maxy).map{|y| table[[x,y]]}.join}
end

p (0..10).map{|n| rank(n).size}
n = ARGV[0] ? ARGV[0].to_i : 5
puts "\nAll free polyominoes of rank %d:" % n
rank(n).sort.each{|poly| puts text_representation(poly),""}
Output:
[1, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655]

All free polyominoes of rank 5:
#####

####
#   

####
 #  

###
## 

###
# #

###
#  
#  

###
 # 
 # 

### 
  ##

## 
 ##
 # 

## 
 ##
  #

## 
 # 
 ##

 # 
###
 # 

Scala

Translation of Haskell via Java

Works with: Scala version 2.12
object Free {
  type Point = (Int, Int)
  type Polyomino = List[Point]

  def rotate90(p: Point): Point = (p._2, -p._1)

  def rotate180(p: Point): Point = (-p._1, -p._2)

  def rotate270(p: Point): Point = (-p._2, p._1)

  def reflect(p: Point): Point = (-p._1, p._2)

  def minima(polyomino: Polyomino): Point = {
    polyomino.reduce((a,b) => (Math.min(a._1, b._1), Math.min(a._2, b._2)))
  }

  def translateToOrigin(polyomino: Polyomino): Polyomino = {
    val m = minima(polyomino)
    polyomino.map(p => (p._1 - m._1, p._2 - m._2))
  }

  def rotationsAndReflections(polyomino: Polyomino): List[Polyomino] = {
    val refPol = polyomino.map(reflect)
    List(
      polyomino,
      polyomino.map(rotate90),
      polyomino.map(rotate180),
      polyomino.map(rotate270),
      refPol,
      refPol.map(rotate90), // === pol
      refPol.map(rotate180),
      refPol.map(rotate270),
    )
  }

  def canonical(polyomino: Polyomino): Polyomino = {
    import Ordering.Implicits._
    rotationsAndReflections(polyomino)
      .map(translateToOrigin)
      .map(poly => poly.sorted).min
  }

  def contiguous(p: Point): List[Point] = List(
    (p._1 - 1, p._2),
    (p._1 + 1, p._2),
    (p._1, p._2 - 1),
    (p._1, p._2 + 1),
  )

  def newPoints(polyomino: Polyomino): List[Point] = {
    polyomino.flatMap(contiguous).filterNot(polyomino.contains(_)).distinct
  }

  def newPolyominos(polyomino: Polyomino): List[Polyomino] = {
    newPoints(polyomino).map(p => canonical(p :: polyomino)).distinct
  }

  val monomino: Polyomino = List((0, 0))
  val monominos: List[Polyomino] = List(monomino)

  def rank(n: Int): List[Polyomino] = {
    require(n >= 0)
    n match {
      case 0 => Nil
      case 1 => monominos
      case _ => rank(n - 1).flatMap(newPolyominos).distinct
    }
  }
}
(0,0) (0,1) (1,1) (1,2) (2,1) 
(0,0) (0,1) (0,2) (1,0) (1,1) 
(0,0) (0,1) (0,2) (0,3) (1,1) 
(0,1) (1,0) (1,1) (1,2) (2,1) 
(0,0) (0,1) (0,2) (1,1) (2,1) 
(0,0) (0,1) (1,1) (1,2) (2,2) 
(0,0) (0,1) (0,2) (1,2) (1,3) 
(0,0) (0,1) (1,1) (2,1) (2,2) 
(0,0) (0,1) (0,2) (1,0) (1,2) 
(0,0) (0,1) (0,2) (0,3) (1,0) 
(0,0) (0,1) (0,2) (1,0) (2,0) 
(0,0) (0,1) (0,2) (0,3) (0,4)

Sidef

Translation of: Ruby
func translate2origin(poly) {
  # Finds the min x and y coordiate of a Polyomino.
  var minx = poly.map(:head).min
  var miny = poly.map(:tail).min
  poly.map {|p| [p.head-minx, p.tail-miny] }.sort
}

func rotate90(x,y) { [y, -x] }
func reflect(x,y)  { [-x, y] }

# All the plane symmetries of a rectangular region.
func rotations_and_reflections(poly) {
    gather {
        take(poly)
        take(poly.map!{ rotate90(_...) })
        take(poly.map!{ rotate90(_...) })
        take(poly.map!{ rotate90(_...) })
        take(poly.map!{  reflect(_...) })
        take(poly.map!{ rotate90(_...) })
        take(poly.map!{ rotate90(_...) })
        take(poly.map!{ rotate90(_...) })
    }
}

func canonical(poly) {
  rotations_and_reflections(poly).map{|pl| translate2origin(pl) }
}

# All four points in Von Neumann neighborhood.
func contiguous(x, y) {
  [[x-1, y], [x+1, y], [x, y-1], [x, y+1]]
}

# Finds all distinct points that can be added to a Polyomino.
func new_points(poly) {
  var points = Set()
  poly.each { points << contiguous(_...)... }
  points - poly
}

func new_polys(polys) {
  var pattern = Set()
  polys.map { |poly|
    gather {
      new_points(poly).each { |point|
        var pl = translate2origin(poly + [point])
        next if pattern.has(pl)
        take canonical(pl).each{ pattern << _ }.min
      }
    }...
  }
}

# Generates polyominoes of rank n recursively.
func rank(n) {
  given (n) {
    when (0) { [[]] }
    when (1) { [[[0,0]]] }
    else     { new_polys(rank(n-1)) }
  }
}

# Generates a textual representation of a Polyomino.
func text_representation(poly) {
  var table = Hash()
  for x,y in (poly) { table{[x,y]} = '#' }
  var maxx = poly.map(:head).max
  var maxy = poly.map(:tail).max
  (0..maxx).map{|x| (0..maxy).map{|y| table{[x,y]} \\ ' ' }.join }
}

say 8.of { rank(_).len }

var n = (ARGV[0] ? ARGV[0].to_i : 5)
say ("\nAll free polyominoes of rank %d:" % n)
rank(n).sort.each{|poly| say text_representation(poly).join("\n")+"\n" }
Output:
[1, 1, 1, 2, 5, 12, 35, 108]

All free polyominoes of rank 5:
#####

####
#   

####
 #  

###
## 

###
# #

###
#  
#  

###
 # 
 # 

### 
  ##

## 
 ##
 # 

## 
 ##
  #

## 
 # 
 ##

 # 
###
 # 

Wren

Translation of: Kotlin
Library: Wren-trait
Library: Wren-math
Library: Wren-sort
Library: Wren-seq
import "./trait" for Comparable
import "./math" for Nums
import "./sort" for Sort, Cmp
import "./seq" for Lst
import "io" for Stdout

class Point is Comparable {
    construct new(x, y) {
        _x = x
        _y = y
    }

    x { _x }
    y { _y }

    rotate90()  { Point.new( _y, -_x) }
    rotate180() { Point.new(-_x, -_y) }
    rotate270() { Point.new(-_y,  _x) }
    reflect()   { Point.new(-_x,  _y) }

    compare(other) {
        if (other.type != Point) Fiber.abort("Argument must be a point.")
        if (_x == other.x && _y == other.y) return 0
        if (_x < other.x || (_x == other.x && _y < other.y)) return -1
        return 1
    }

    // All four points in Von Neumann neighborhood
    contiguous {
        return [
            Point.new(_x - 1, _y), Point.new(_x + 1, _y),
            Point.new(_x, _y - 1), Point.new(_x, _y + 1)
        ]
    }

    toString { "(%(x), %(y))" }
}

var DistinctByString = Fn.new { |list|
    var m = {}
    for (e in list) m[e.toString] = e
    return m.keys.map { |key| m[key] }.toList
}

class Polyomino {
    construct new(points) {
        _points = points
    }

    points { _points }

    // Finds the min x and y coordinates of a Polyomino.
    minima {
        var minX = Nums.min(_points.map { |p| p.x })
        var minY = Nums.min(_points.map { |p| p.y })
        return [minX, minY]
    }

    translateToOrigin() {
        var mins = minima
        var points = _points.map { |p| Point.new(p.x - mins[0], p.y - mins[1]) }.toList
        Sort.quick(points)
        return Polyomino.new(points)
    }

    // All the plane symmetries of a rectangular region.
    rotationsAndReflections {
        return [
            Polyomino.new(_points),
            Polyomino.new(_points.map { |p| p.rotate90()  }.toList),
            Polyomino.new(_points.map { |p| p.rotate180() }.toList),
            Polyomino.new(_points.map { |p| p.rotate270() }.toList),
            Polyomino.new(_points.map { |p| p.reflect()   }.toList),
            Polyomino.new(_points.map { |p| p.rotate90().reflect()  }.toList),
            Polyomino.new(_points.map { |p| p.rotate180().reflect() }.toList),
            Polyomino.new(_points.map { |p| p.rotate270().reflect() }.toList)
        ]
    }

    canonical {
        var toos = rotationsAndReflections.map { |poly| poly.translateToOrigin() }.toList
        var cmp = Fn.new { |i, j| Cmp.string.call(i.toString, j.toString) }
        Sort.quick(toos, 0, toos.count - 1, cmp)
        return toos[0]
    }

    // Finds all distinct points that can be added to a Polyomino.
    newPoints {
        var fn = Fn.new { |p| p.contiguous }
        var t = Lst.flatMap(_points, fn).where { |p| !_points.contains(p) }.toList
        return DistinctByString.call(t)
    }

    newPolys { newPoints.map { |p| Polyomino.new(_points + [p]).canonical }.toList }

    toString { _points.map { |p| p.toString }.join(" ") }
}

var monomino = Polyomino.new([Point.new(0, 0)])
var monominoes = [monomino]

// Generates polyominoes of rank n recursively.
var rank
rank = Fn.new { |n|
    if (n < 0) Fiber.abort("n cannot be negative.")
    if (n == 0) return []
    if (n == 1) return monominoes
    var t = Lst.flatMap(rank.call(n-1)) { |poly| poly.newPolys }.toList
    t = DistinctByString.call(t)
    var cmp = Fn.new { |i, j| Cmp.string.call(i.toString, j.toString) }
    Sort.quick(t, 0, t.count - 1, cmp)
    return t
}

var n = 5
System.print("All free polyominoes of rank %(n):\n")
for (poly in rank.call(n)) {
    for (pt in poly.points) System.write("%(pt) ")
    System.print()
}
var k = 10
System.print("\nNumber of free polyominoes of ranks 1 to %(k):")
for (i in 1..k) {
    System.write("%(rank.call(i).count) ")
    Stdout.flush()
}
System.print()
Output:
All free polyominoes of rank 5:

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) 
(0, 0) (0, 1) (0, 2) (0, 3) (1, 0) 
(0, 0) (0, 1) (0, 2) (0, 3) (1, 1) 
(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) 
(0, 0) (0, 1) (0, 2) (1, 0) (1, 2) 
(0, 0) (0, 1) (0, 2) (1, 0) (2, 0) 
(0, 0) (0, 1) (0, 2) (1, 1) (2, 1) 
(0, 0) (0, 1) (0, 2) (1, 2) (1, 3) 
(0, 0) (0, 1) (1, 1) (1, 2) (2, 1) 
(0, 0) (0, 1) (1, 1) (1, 2) (2, 2) 
(0, 0) (0, 1) (1, 1) (2, 1) (2, 2) 
(0, 1) (1, 0) (1, 1) (1, 2) (2, 1) 

Number of free polyominoes of ranks 1 to 10:
1 1 2 5 12 35 108 369 1285 4655