Display an outline as a nested table

Revision as of 15:36, 6 September 2021 by Hout (talk | contribs) (→‎{{header|JavaScript}}: Added spacing between successive tables, if any, for forest case)

The graphic representation of outlines is a staple of mind-mapping and the planning of papers, reports, and speeches.

Task
Display an outline as a nested table
You are encouraged to solve this task according to the task description, using any language you may know.
Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children)
Task

Given a outline with at least 3 levels of indentation, for example:

Display an outline as a nested table.
    Parse the outline to a tree,
        measuring the indent of each line,
        translating the indentation to a nested structure,
        and padding the tree to even depth.
    count the leaves descending from each node,
        defining the width of a leaf as 1,
        and the width of a parent node as a sum.
            (The sum of the widths of its children)
    and write out a table with 'colspan' values
        either as a wiki table,
        or as HTML.

write a program in your language which translates your outline into a nested table, with WikiTable or HTML colspan values attached (where needed) to parent nodes in the nested table.

The WikiTable at the top of this page was generated from the indented outline shown above, producing the following markup string:

{| class="wikitable" style="text-align: center;"
|-
| style="background: #ffffe6; " colspan=7 | Display an outline as a nested table.
|-
| style="background: #ffebd2; " colspan=3 | Parse the outline to a tree,
| style="background: #f0fff0; " colspan=2 | count the leaves descending from each node,
| style="background: #e6ffff; " colspan=2 | and write out a table with 'colspan' values
|-
| style="background: #ffebd2; " | measuring the indent of each line,
| style="background: #ffebd2; " | translating the indentation to a nested structure,
| style="background: #ffebd2; " | and padding the tree to even depth.
| style="background: #f0fff0; " | defining the width of a leaf as 1,
| style="background: #f0fff0; " | and the width of a parent node as a sum.
| style="background: #e6ffff; " | either as a wiki table,
| style="background: #e6ffff; " | or as HTML.
|-
|  | 
|  | 
|  | 
|  | 
| style="background: #f0fff0; " | (The sum of the widths of its children)
|  | 
|  | 
|}
Extra credit

Use background color to distinguish the main stages of your outline, so that the subtree of each node at level two is consistently colored, and the edges between adjacent subtrees are immediately revealed.

Output

Display your nested table on this page.

AutoHotkey

<lang AutoHotkey>outline2table(db, Delim:= "`t"){ oNum:=[], oMID:=[], oNod := [], oKid := [], oPnt := [], oMbr := [], oLvl := [] oCrl := ["#ffffe6;", "#ffebd2;", "#f0fff0;", "#e6ffff;", "#ffeeff;"] col := 0, out := "", anc := ""

; create numerical index for each line for i, line in StrSplit(db, "`n", "`r") { RegExMatch(line, "^(\t*)(.*)$", m) out .= m1 . i "`n" oNum[i] := m2 } db := Trim(out, "`n")

; create list of members, parents, kids and their ancestors for i, mbr in StrSplit(db, "`n", "`r") { lvl := 1 While (SubStr(mbr, 1, 1) = Delim) lvl++, mbr := SubStr(mbr, 2)

if (pLvl >= lvl) && pMbr col++ , oMbr[pLvl, pMbr] .= "col:" col ",anc:" anc , oKid[pLvl, pMbr] .= "col:" col ",anc:" anc

if (pLvl > lvl) && pMbr loop % pLvl - lvl anc := RegExReplace(anc, "\d+_?$")

if (pLvl < lvl) && pMbr anc .= pMbr "_" , oMbr[pLvl, pMbr] .= "col:" col+1 ",anc:" anc , oPnt[pLvl, pMbr] .= "col:" col+1 ",anc:" anc

pLvl := lvl pMbr := mbr ;~ oMID[lvl] := TV_Add(mbr, oMID[lvl-1], "Expand") } ; last one on the list col++ oMbr[pLvl, pMbr] .= "col:" col ",anc:" anc oKid[pLvl, pMbr] .= "col:" col ",anc:" anc

; setup node color clr := 1 for lvl, obj in oMbr for node, str in obj if (lvl <= 2) oNod[node, "clr"] := clr++ else oNod[node, "clr"] := oNod[StrSplit(str, "_").2, "clr"]

; setup node level/column/width for lvl, obj in oKid for node, str in obj { x := StrSplit(str, ",") col := StrReplace(x.1, "col:") anc := Trim(StrReplace(x.2, "anc:"), "_") for j, a in StrSplit(anc, "_") oNod[a, "wid"] := (oNod[a, "wid"]?oNod[a, "wid"]:0) + 1

oNod[node, "lvl"] := lvl oNod[node, "col"] := col oNod[node, "wid"] := 1 }

for lvl, obj in oPnt for node, str in obj { x := StrSplit(str, ",") col := StrReplace(x.1, "col:") anc := Trim(StrReplace(x.2, "anc:"), "_") oNod[node, "lvl"] := lvl oNod[node, "col"] := col }

; setup members by level for node, obj in oNod oLvl[obj["lvl"], node] := 1

maxW := 0 for node in oLvl[1] maxW += oNod[node, "wid"]

; setup HTML

html := "

`n" for lvl, obj in oLvl { pCol := 1 html .= "`n" for node, bool in obj { while (oNod[node, "col"] <> pCol) pCol++, html .= "`t`n"

pCol += oNod[node, "wid"] if !cNum := Mod(oNod[node, "clr"], 5) cNum := 5

html .= "`t`n"

} while (pCOl <= maxW)

pCol++, html .= "`t`n" html .= "`n" } html .= "
" oNum[node] "

"

; setup wikitable wTable := "{| class=""wikitable"" style=""text-align: center;""`n" for lvl, obj in oLvl { pCol := 1 wTable .= "|-`n" for node, bool in obj { while (oNod[node, "col"] <> pCol) pCol++, wTable .= "| | `n" pCol += oNod[node, "wid"] if !cNum := Mod(oNod[node, "clr"], 5) cNum := 5 wTable .= "| style=""background: " oCrl[cNum] """ colspan=""" oNod[node, "wid"] " |" oNum[node] "`n" } while (pCOl <= maxW) pCol++, wTable .= "| | `n"

} wTable .= "|}`n" return [html, wTable] } </lang> Examples:<lang AutoHotkey>db = ( Display an outline as a nested table. Parse the outline to a tree, measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. count the leaves descending from each node, defining the width of a leaf as 1, and the width of a parent node as a sum. (The sum of the widths of its children) and write out a table with 'colspan' values either as a wiki table, or as HTML. )

Gui, add, ActiveX, vDocument w1000 r14, HTMLFile result := outline2table(db) Document.Write(result.1) Gui, Show MsgBox % "HTML:`n" result.1 "`n`nWikitable:`n" result.2 return</lang>

Output:

HTML:

Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children)

Wikitable:

Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children)

Go

<lang go>package main

import (

   "fmt"
   "strings"

)

type nNode struct {

   name     string
   children []nNode

}

type iNode struct {

   level int
   name  string

}

func toNest(iNodes []iNode, start, level int, n *nNode) {

   if level == 0 {
       n.name = iNodes[0].name
   }
   for i := start + 1; i < len(iNodes); i++ {
       if iNodes[i].level == level+1 {
           c := nNode{iNodes[i].name, nil}
           toNest(iNodes, i, level+1, &c)
           n.children = append(n.children, c)
       } else if iNodes[i].level <= level {
           return
       }
   }

}

func makeIndent(outline string, tab int) []iNode {

   lines := strings.Split(outline, "\n")
   iNodes := make([]iNode, len(lines))
   for i, line := range lines {
       line2 := strings.TrimLeft(line, " ")
       le, le2 := len(line), len(line2)
       level := (le - le2) / tab
       iNodes[i] = iNode{level, line2}
   }
   return iNodes

}

func toMarkup(n nNode, cols []string, depth int) string {

   var span int
   var colSpan func(nn nNode)
   colSpan = func(nn nNode) {
       for i, c := range nn.children {
           if i > 0 {
               span++
           }
           colSpan(c)
       }
   }
   for _, c := range n.children {
       span = 1
       colSpan(c)
   }
   var lines []string
   lines = append(lines, `{| class="wikitable" style="text-align: center;"`)
   const l1, l2 = "|-", "|  |"
   lines = append(lines, l1)
   span = 1
   colSpan(n)
   s := fmt.Sprintf(`| style="background: %s " colSpan=%d | %s`, cols[0], span, n.name)
   lines = append(lines, s, l1)
   var nestedFor func(nn nNode, level, maxLevel, col int)
   nestedFor = func(nn nNode, level, maxLevel, col int) {
       if level == 1 && maxLevel > level {
           for i, c := range nn.children {
               nestedFor(c, 2, maxLevel, i)
           }
       } else if level < maxLevel {
           for _, c := range nn.children {
               nestedFor(c, level+1, maxLevel, col)
           }
       } else {
           if len(nn.children) > 0 {
               for i, c := range nn.children {
                   span = 1
                   colSpan(c)
                   cn := col + 1
                   if maxLevel == 1 {
                       cn = i + 1
                   }
                   s := fmt.Sprintf(`| style="background: %s " colspan=%d | %s`, cols[cn], span, c.name)
                   lines = append(lines, s)
               }
           } else {
               lines = append(lines, l2)
           }
       }
   }
   for maxLevel := 1; maxLevel < depth; maxLevel++ {
       nestedFor(n, 1, maxLevel, 0)
       if maxLevel < depth-1 {
           lines = append(lines, l1)
       }
   }
   lines = append(lines, "|}")
   return strings.Join(lines, "\n")

}

func main() {

   const outline = `Display an outline as a nested table.
   Parse the outline to a tree,
       measuring the indent of each line,
       translating the indentation to a nested structure,
       and padding the tree to even depth.
   count the leaves descending from each node,
       defining the width of a leaf as 1,
       and the width of a parent node as a sum.
           (The sum of the widths of its children) 
   and write out a table with 'colspan' values
       either as a wiki table,
       or as HTML.`
   const (
       yellow = "#ffffe6;"
       orange = "#ffebd2;"
       green  = "#f0fff0;"
       blue   = "#e6ffff;"
       pink   = "#ffeeff;"
   )
   cols := []string{yellow, orange, green, blue, pink}
   iNodes := makeIndent(outline, 4)
   var n nNode
   toNest(iNodes, 0, 0, &n)
   fmt.Println(toMarkup(n, cols, 4))
   fmt.Println("\n")
   const outline2 = `Display an outline as a nested table.
   Parse the outline to a tree,
       measuring the indent of each line,
       translating the indentation to a nested structure,
       and padding the tree to even depth.
   count the leaves descending from each node,
       defining the width of a leaf as 1,
       and the width of a parent node as a sum.
           (The sum of the widths of its children)
           Propagating the sums upward as necessary. 
   and write out a table with 'colspan' values
       either as a wiki table,
       or as HTML.
   Optionally add color to the nodes.`
   cols2 := []string{blue, yellow, orange, green, pink}
   var n2 nNode
   iNodes2 := makeIndent(outline2, 4)
   toNest(iNodes2, 0, 0, &n2)
   fmt.Println(toMarkup(n2, cols2, 4))

}</lang>

Output:
Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children)


Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values Optionally add color to the nodes.
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children) Propagating the sums upward as necessary.

Haskell

<lang haskell>{-# LANGUAGE TupleSections #-}

module OutlineTree where

import Data.Bifunctor (first) import Data.Bool (bool) import Data.Char (isSpace) import Data.List (find, intercalate) import Data.Tree (Tree (..), foldTree, levels)


NESTED TABLES FROM OUTLINE --------------

wikiTablesFromOutline :: [String] -> String -> String wikiTablesFromOutline colorSwatch outline =

 intercalate "\n\n" $
   wikiTableFromTree colorSwatch
     <$> ( forestFromLineIndents
             . indentLevelsFromLines
             . lines
         )
       outline

wikiTableFromTree :: [String] -> Tree String -> String wikiTableFromTree colorSwatch =

 wikiTableFromRows
   . levels
   . paintedTree colorSwatch
   . widthLabelledTree
   . (paddedTree [] =<< treeDepth)

TEST -------------------------

main :: IO () main =

 ( putStrLn
     . wikiTablesFromOutline
       [ "#ffffe6",
         "#ffebd2",
         "#f0fff0",
         "#e6ffff",
         "#ffeeff"
       ]
 )
   "Display an outline as a nested table.\n\
   \    Parse the outline to a tree,\n\
   \        measuring the indent of each line,\n\
   \        translating the indentation to a nested structure,\n\
   \        and padding the tree to even depth.\n\
   \    count the leaves descending from each node,\n\
   \        defining the width of a leaf as 1,\n\
   \        and the width of a parent node as a sum.\n\
   \            (The sum of the widths of its children)\n\
   \    and write out a table with 'colspan' values\n\
   \        either as a wiki table,\n\
   \        or as HTML."

TREE STRUCTURE FROM NESTED TEXT ------------

forestFromLineIndents :: [(Int, String)] -> [Tree String] forestFromLineIndents = go

 where
   go [] = []
   go ((n, s) : xs) =
     let (subOutline, rest) = span ((n <) . fst) xs
      in Node s (go subOutline) : go rest

indentLevelsFromLines :: [String] -> [(Int, String)] indentLevelsFromLines xs =

 let pairs = first length . span isSpace <$> xs
     indentUnit = maybe 1 fst (find ((0 <) . fst) pairs)
  in first (`div` indentUnit) <$> pairs

TREE PADDED TO EVEN DEPTH ---------------

paddedTree :: a -> Int -> Tree a -> Tree a paddedTree padValue = go

 where
   go n tree
     | 1 >= n = tree
     | otherwise =
       Node
         (rootLabel tree)
         ( go (pred n)
             <$> bool nest [Node padValue []] (null nest)
         )
     where
       nest = subForest tree

treeDepth :: Tree a -> Int treeDepth = foldTree go

 where
   go _ [] = 1
   go _ xs = (succ . maximum) xs

SUBTREE WIDTHS MEASURED ----------------

widthLabelledTree :: Tree a -> Tree (a, Int) widthLabelledTree = foldTree go

 where
   go x [] = Node (x, 1) []
   go x xs =
     Node
       (x, foldr ((+) . snd . rootLabel) 0 xs)
       xs

COLOR SWATCH APPLIED -----------------

paintedTree :: [String] -> Tree a -> Tree (String, a) paintedTree [] tree = fmap ("",) tree paintedTree (color : colors) tree =

 Node
   (color, rootLabel tree)
   ( zipWith
       (fmap . (,))
       (cycle colors)
       (subForest tree)
   )

WIKITABLE RENDERED ------------------

wikiTableFromRows :: (String, (String, Int)) -> String wikiTableFromRows rows =

 let wikiRow = unlines . fmap cellText
     cellText (color, (txt, width))
       | null txt = "| |"
       | otherwise =
         "| "
           <> cw color width
           <> "| "
           <> txt
     cw color width =
       let go w
             | 1 < w = " colspan=" <> show w
             | otherwise = ""
        in "style=\"background:"
             <> color
             <> "; \""
             <> go width
             <> " "
  in "{| class=\"wikitable\" "
       <> "style=\"text-align: center;\"\n|-\n"
       <> intercalate "|-\n" (wikiRow <$> rows)
       <> "|}"</lang>
Output:
Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children)

JavaScript

<lang javascript>(() => {

   "use strict";
   // ----------- NESTED TABLES FROM OUTLINE ------------
   // wikiTablesFromOutline :: [String] -> String -> String
   const wikiTablesFromOutline = colorSwatch =>
       outline => forestFromIndentedLines(
           indentLevelsFromLines(lines(outline))
       )
       .map(wikiTableFromTree(colorSwatch))
       .join("\n\n");


   // wikiTableFromTree :: [String] -> Tree String -> String
   const wikiTableFromTree = colorSwatch =>
       compose(
           wikiTableFromRows,
           levels,
           paintedTree(colorSwatch),
           widthLabelledTree,
           ap(paddedTree(""))(treeDepth)
       );
   // ---------------------- TEST -----------------------
   // main :: IO ()
   const main = () => {
       const outline = `Display an outline as a nested table.
   Parse the outline to a tree,
       measuring the indent of each line,
       translating the indentation to a nested structure,
       and padding the tree to even depth.
   count the leaves descending from each node,
       defining the width of a leaf as 1,
       and the width of a parent node as a sum.
           (The sum of the widths of its children)
   and write out a table with 'colspan' values
       either as a wiki table,
       or as HTML.`;
       return wikiTablesFromOutline([
           "#ffffe6",
           "#ffebd2",
           "#f0fff0",
           "#e6ffff",
           "#ffeeff"
       ])(outline);
   };
   // --------- TREE STRUCTURE FROM NESTED TEXT ---------
   // forestFromIndentedLines :: [(Int, String)] ->
   // [Tree String]
   const forestFromIndentedLines = tuples => {
       const go = xs =>
           0 < xs.length ? (() => {
               // First line and its sub-tree,
               const [indented, body] = Array.from(
                       xs[0]
                   ),
                   [tree, rest] = Array.from(
                       span(compose(lt(indented), fst))(
                           tail(xs)
                       )
                   );
               // followed by the rest.
               return [
                   Node(body)(go(tree))
               ].concat(go(rest));
           })() : [];
       return go(tuples);
   };


   // indentLevelsFromLines :: [String] -> [(Int, String)]
   const indentLevelsFromLines = xs => {
       const
           pairs = xs.map(
               x => bimap(length)(cs => cs.join(""))(
                   span(isSpace)(list(x))
               )
           ),
           indentUnit = pairs.reduce(
               (a, tpl) => {
                   const i = tpl[0];
                   return 0 < i ? (
                       i < a ? i : a
                   ) : a;
               },
               Infinity
           );
       return [Infinity, 0].includes(indentUnit) ? (
           pairs
       ) : pairs.map(first(n => n / indentUnit));
   };
   // ------------ TREE PADDED TO EVEN DEPTH ------------
   // paddedTree :: a -> Tree a -> Int -> Tree a
   const paddedTree = padValue =>
       // All descendants expanded to same depth
       // with empty nodes where needed.
       node => depth => {
           const go = n => tree =>
               1 < n ? (() => {
                   const children = nest(tree);
                   return Node(root(tree))(
                       (
                           0 < children.length ? (
                               children
                           ) : [Node(padValue)([])]
                       ).map(go(n - 1))
                   );
               })() : tree;
           return go(depth)(node);
       };
   // treeDepth :: Tree a -> Int
   const treeDepth = tree =>
       foldTree(
           () => xs => 0 < xs.length ? (
               1 + maximum(xs)
           ) : 1
       )(tree);
   // ------------- SUBTREE WIDTHS MEASURED -------------
   // widthLabelledTree :: Tree a -> Tree (a, Int)
   const widthLabelledTree = tree =>
       // A tree in which each node is labelled with
       // the width of its own subtree.
       foldTree(x => xs =>
           0 < xs.length ? (
               Node(Tuple(x)(
                   xs.reduce(
                       (a, node) => a + snd(root(node)),
                       0
                   )
               ))(xs)
           ) : Node(Tuple(x)(1))([])
       )(tree);
   // -------------- COLOR SWATCH APPLIED ---------------
   // paintedTree :: [String] -> Tree a -> Tree (String, a)
   const paintedTree = colorSwatch =>
       tree => 0 < colorSwatch.length ? (
           Node(
               Tuple(colorSwatch[0])(root(tree))
           )(
               zipWith(compose(fmapTree, Tuple))(
                   cycle(colorSwatch.slice(1))
               )(
                   nest(tree)
               )
           )
       ) : fmapTree(Tuple(""))(tree);
   // --------------- WIKITABLE RENDERED ----------------
   // wikiTableFromRows ::
   // (String, (String, Int)) -> String
   const wikiTableFromRows = rows => {
       const
           cw = color => width => {
               const go = w =>
                   1 < w ? (
                       `colspan=${w} `
                   ) : "";
               return `style="background:${color}; "` + (
                   ` ${go(width)}`
               );
           },
           cellText = ctw => {
               const [color, tw] = Array.from(ctw);
               const [txt, width] = Array.from(tw);
               return 0 < txt.length ? (
                   `| ${cw(color)(width)}| ${txt}`
               ) : "| |";
           },
           classText = "class=\"wikitable\"",
           styleText = "style=\"text-align:center;\"",
           header = `{| ${classText} ${styleText}\n|-`,
           tableBody = rows.map(
               cells => cells.map(cellText).join("\n")
           ).join("\n|-\n");
       return `${header}\n${tableBody}\n|}`;
   };
   // ------------------ GENERIC TREES ------------------
   // Node :: a -> [Tree a] -> Tree a
   const Node = v =>
       // Constructor for a Tree node which connects a
       // value of some kind to a list of zero or
       // more child trees.
       xs => ({
           type: "Node",
           root: v,
           nest: xs || []
       });


   // fmapTree :: (a -> b) -> Tree a -> Tree b
   const fmapTree = f => {
       // A new tree. The result of a
       // structure-preserving application of f
       // to each root in the existing tree.
       const go = t => Node(
           f(t.root)
       )(
           t.nest.map(go)
       );
       return go;
   };


   // foldTree :: (a -> [b] -> b) -> Tree a -> b
   const foldTree = f => {
       // The catamorphism on trees. A summary
       // value obtained by a depth-first fold.
       const go = tree => f(
           root(tree)
       )(
           nest(tree).map(go)
       );
       return go;
   };


   // levels :: Tree a -> a
   const levels = tree => {
       // A list of lists, grouping the root
       // values of each level of the tree.
       const go = (a, node) => {
           const [h, ...t] = 0 < a.length ? (
               a
           ) : [
               [],
               []
           ];
           return [
               [node.root, ...h],
               ...node.nest.slice(0)
               .reverse()
               .reduce(go, t)
           ];
       };
       return go([], tree);
   };


   // nest :: Tree a -> [a]
   const nest = tree => {
       // Allowing for lazy (on-demand) evaluation.
       // If the nest turns out to be a function –
       // rather than a list – that function is applied
       // here to the root, and returns a list.
       const xs = tree.nest;
       return "function" !== typeof xs ? (
           xs
       ) : xs(root(tree));
   };


   // root :: Tree a -> a
   const root = tree =>
       // The value attached to a tree node.
       tree.root;
   // --------------------- GENERIC ---------------------
   // Just :: a -> Maybe a
   const Just = x => ({
       type: "Maybe",
       Nothing: false,
       Just: x
   });


   // Nothing :: Maybe a
   const Nothing = () => ({
       type: "Maybe",
       Nothing: true
   });


   // Tuple (,) :: a -> b -> (a, b)
   const Tuple = a =>
       b => ({
           type: "Tuple",
           "0": a,
           "1": b,
           length: 2
       });


   // apFn :: (a -> b -> c) -> (a -> b) -> (a -> c)
   const ap = f =>
       // Applicative instance for functions.
       // f(x) applied to g(x).
       g => x => f(x)(
           g(x)
       );


   // bimap :: (a -> b) -> (c -> d) -> (a, c) -> (b, d)
   const bimap = f =>
       // Tuple instance of bimap.
       // A tuple of the application of f and g to the
       // first and second values respectively.
       g => tpl => Tuple(f(tpl[0]))(
           g(tpl[1])
       );


   // compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
   const compose = (...fs) =>
       // A function defined by the right-to-left
       // composition of all the functions in fs.
       fs.reduce(
           (f, g) => x => f(g(x)),
           x => x
       );


   // cycle :: [a] -> Generator [a]
   const cycle = function* (xs) {
       // An infinite repetition of xs,
       // from which an arbitrary prefix
       // may be taken.
       const lng = xs.length;
       let i = 0;
       while (true) {
           yield xs[i];
           i = (1 + i) % lng;
       }
   };


   // first :: (a -> b) -> ((a, c) -> (b, c))
   const first = f =>
       // A simple function lifted to one which applies
       // to a tuple, transforming only its first item.
       xy => {
           const tpl = Tuple(f(xy[0]))(xy[1]);
           return Array.isArray(xy) ? (
               Array.from(tpl)
           ) : tpl;
       };


   // fst :: (a, b) -> a
   const fst = tpl =>
       // First member of a pair.
       tpl[0];


   // isSpace :: Char -> Bool
   const isSpace = c =>
       // True if c is a white space character.
       (/\s/u).test(c);


   // length :: [a] -> Int
   const length = xs =>
       // Returns Infinity over objects without finite
       // length. This enables zip and zipWith to choose
       // the shorter argument when one is non-finite,
       // like cycle, repeat etc
       "GeneratorFunction" !== xs.constructor
       .constructor.name ? (
           xs.length
       ) : Infinity;


   // lines :: String -> [String]
   const lines = s =>
       // A list of strings derived from a single
       // string delimited by newline and or CR.
       0 < s.length ? (
           s.split(/[\r\n]+/u)
       ) : [];


   // list :: StringOrArrayLike b => b -> [a]
   const list = xs =>
       // xs itself, if it is an Array,
       // or an Array derived from xs.
       Array.isArray(xs) ? (
           xs
       ) : Array.from(xs || []);


   // lt (<) :: Ord a => a -> a -> Bool
   const lt = a =>
       b => a < b;


   // maximum :: Ord a => [a] -> a
   const maximum = xs => (
       // The largest value in a non-empty list.
       ys => 0 < ys.length ? (
           ys.slice(1).reduce(
               (a, y) => y > a ? (
                   y
               ) : a, ys[0]
           )
       ) : undefined
   )(list(xs));


   // snd :: (a, b) -> b
   const snd = tpl =>
       // Second member of a pair.
       tpl[1];


   // span :: (a -> Bool) -> [a] -> ([a], [a])
   const span = p =>
       // Longest prefix of xs consisting of elements which
       // all satisfy p, tupled with the remainder of xs.
       xs => {
           const i = xs.findIndex(x => !p(x));
           return -1 !== i ? (
               Tuple(xs.slice(0, i))(
                   xs.slice(i)
               )
           ) : Tuple(xs)([]);
       };


   // tail :: [a] -> [a]
   const tail = xs =>
       // A new list consisting of all
       // items of xs except the first.
       "GeneratorFunction" !== xs.constructor
       .constructor.name ? (
           (ys => 0 < ys.length ? ys.slice(1) : [])(
               xs
           )
       ) : (take(1)(xs), xs);


   // take :: Int -> [a] -> [a]
   // take :: Int -> String -> String
   const take = n =>
       // The first n elements of a list,
       // string of characters, or stream.
       xs => "GeneratorFunction" !== xs
       .constructor.constructor.name ? (
           xs.slice(0, n)
       ) : [].concat(...Array.from({
           length: n
       }, () => {
           const x = xs.next();
           return x.done ? [] : [x.value];
       }));


   // uncons :: [a] -> Maybe (a, [a])
   const uncons = xs => {
       // Just a tuple of the head of xs and its tail,
       // Or Nothing if xs is an empty list.
       const lng = length(xs);
       return (0 < lng) ? (
           Infinity > lng ? (
               // Finite list
               Just(Tuple(xs[0])(xs.slice(1)))
           ) : (() => {
               // Lazy generator
               const nxt = take(1)(xs);
               return 0 < nxt.length ? (
                   Just(Tuple(nxt[0])(xs))
               ) : Nothing();
           })()
       ) : Nothing();
   };


   // zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
   const zipWith = f =>
       // A list with the length of the shorter of
       // xs and ys, defined by zipping with a
       // custom function, rather than with the
       // default tuple constructor.
       xs => ys => {
           const n = Math.min(length(xs), length(ys));
           return Infinity > n ? (
               (([as, bs]) => Array.from({
                   length: n
               }, (_, i) => f(as[i])(
                   bs[i]
               )))([xs, ys].map(
                   take(n)
               ))
           ) : zipWithGen(f)(xs)(ys);
       };


   // zipWithGen :: (a -> b -> c) ->
   // Gen [a] -> Gen [b] -> Gen [c]
   const zipWithGen = f => ga => gb => {
       const go = function* (ma, mb) {
           let
               a = ma,
               b = mb;
           while (!a.Nothing && !b.Nothing) {
               const
                   ta = a.Just,
                   tb = b.Just;
               yield f(fst(ta))(fst(tb));
               a = uncons(snd(ta));
               b = uncons(snd(tb));
           }
       };
       return go(uncons(ga), uncons(gb));
   };
   // MAIN ---
   return main();

})();</lang>

Output:
Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children)

Julia

<lang julia>using DataFrames

text = """ Display an outline as a nested table.

   Parse the outline to a tree,
       measuring the indent of each line,
       translating the indentation to a nested structure,
       and padding the tree to even depth.
   count the leaves descending from each node,
       defining the width of a leaf as 1,
       and the width of a parent node as a sum.
           (The sum of the widths of its children)
   and write out a table with 'colspan' values
       either as a wiki table,
       or as HTML.

"""

const bcolor = ["background: #ffffaa;", "background: #ffdddd;",

   "background: #ddffdd;", "background: #ddddff;"]

colorstring(n) = bcolor[n == 1 ? 1  : mod1(n - 1, length(bcolor) - 1) + 1]

function processtable(txt)

   df = DataFrame()
   indents = Int[]
   linetext = String[]
   for line in split(txt, "\n")
       if length(line) > 0
           n = findfirst(!isspace, line)
           push!(linetext, String(line[n:end]))
           push!(indents, n - 1)
       end
   end
   len = length(indents)
   divisor = gcd(indents)
   indents .= div.(indents, divisor)
   parent(i) = (n = findlast(x -> indents[x] < indents[i], 1:i-1)) == nothing ? 0 : n
   children(i) = findall(x -> parent(x) == i, 1:len)
   treesize(i) = (s = children(i); isempty(s) ? 1 : sum(treesize, s))
   prioronlevel(i) = (j = indents[i]; filter(x -> indents[x] == j, 1:i-1))
   treesizeprior(i) = (s = prioronlevel(i); isempty(s) ? 0 : sum(treesize, s))
   startpos(i) = (n = parent(i)) == 0 ? 0 : treesizeprior(n) - treesizeprior(i)
   function leveloneparent(i)
       p = parent(i)
       return p < 1 ? 1 : p ==1 ? sum(x -> indents[x] <= 1, 1:i) : leveloneparent(p)
   end
   df.TEXT = linetext
   df.INDENT = indents
   df.COLSPAN = [treesize(i) for i in 1:len]
   df.PRESPAN = [max(0, startpos(i)) for i in 1:len]
   df.LEVELONEPARENT = [leveloneparent(i) for i in 1:len]
   return df

end

function htmlfromdataframe(df)

println("

A Rosetta Code Nested Table

")
   for ind in minimum(df.INDENT):maximum(df.INDENT)
println("") for row in eachrow(df) if row[:INDENT] == ind if row[:PRESPAN] > 0 println("")
               end
print("") end end println("") end println("
0
                   println("colspan=\"$(row[:COLSPAN])\"")
               end
println(" style = \"$(colorstring(row[:LEVELONEPARENT]))\" >$(row[:TEXT])

")

end

htmlfromdataframe(processtable(text)) textplus = text * " Optionally add color to the nodes." htmlfromdataframe(processtable(textplus))

</lang>

Output:

A Rosetta Code Nested Table

Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children)

A Rosetta Code Nested Table

Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values Optionally add color to the nodes.
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children)

Mathematica / Wolfram Language

<lang Mathematica>s = "Display an outline as a nested table.

   Parse the outline to a tree,
       measuring the indent of each line,
       translating the indentation to a nested structure,
       and padding the tree to even depth.
   count the leaves descending from each node,
       defining the width of a leaf as 1,
       and the width of a parent node as a sum.
           (The sum of the widths of its children)
   and write out a table with 'colspan' values
       either as a wiki table,
       or as HTML.";

s = StringSplit[s, "\n"]; indentation = LengthWhile[Characters[#], EqualTo[" "]] & /@ s; s = MapThread[StringDrop, {s, indentation}]; indentation =

 indentation /. 
  Thread[Union[indentation] -> Range[Length[Union[indentation]]]];

ii = Transpose[{Range[Length[indentation]], indentation}]; (*ii//Grid*)

sel = Table[

  {i, Last@Select[ii, #2 < i2 \[And] #1 < i1 &]}
  ,
  {i, Rest@ii}
  ];

g = Graph[Rule @@@ selAll, All, 1, VertexLabels -> "Name"];

vl = VertexList[g]; head = FirstPosition[vl, 1]1; dm = GraphDistanceMatrix[g]; depth = ReverseSortBy[Transpose[{vl, dmAll, head}], Last]; colspandb = <||>; data = Table[

  vert = d1;
  vd = VertexInDegree[g, vert];
  vics = VertexInComponent[g, vert, {1}];
  vocs = Rest@VertexOutComponent[g, vert];
  cspan = 0;
  Do[
   If[KeyExistsQ[colspandb, vic],
    cspan += colspandb[vic]
    ]
   ,
   {vic, vics}
   ];
  If[cspan == 0, cspan = 1];
  AssociateTo[colspandb, d1 -> cspan];
  {Sequence @@ d, vd, vics, vocs, cspan}
  ,
  {d, depth}
  ];

emptybefore = Table[

  {d1, 
   Length@
    Select[
      data, #1 < d1 \[And] 
        Length[#4] == 0 \[And] #2 < d2 &][[All, {1, 2, 
       3}]]}
  ,
  {d, data}
  ];

emptybefore = Association[Rule @@@ emptybefore];

depthcopy = depth; depthcopyAll, 2 += 1; graphelements =

 SortBy[Sort /@ GatherBy[depthcopy, Last], First /* Last][[All, All, 
   1]];

str = {"

"}; colorsdb = <|1 -> "#ffffe6", 2 -> "#ffebd2", 6 -> "#f0fff0", 10 -> "#e6ffff"|>; Do[ AppendTo[str, ""]; totalspan = 0; Do[ If[KeyExistsQ[colorsdb, g], color = colorsdb[g] , (*Print["sel",SelectFirst[data,First/*EqualTo[g]]5];*) color = colorsdb[ Max[ Intersection[SelectFirst[data, First /* EqualTo[g]]5, Keys[colorsdb]]]] ]; span = SelectFirst[data, First /* EqualTo[g]]6; totalspan += span; empty = emptybefore[g]; str = str~Join~ ConstantArray["",
    empty];
 If[span == 1,
  AppendTo[str, 
    "<td style=\"background-color: " <> color <> ";\">" <> sg <> 
""]; , AppendTo[str, "<tdcolspan=\"" <> ToString[span] <> "\" style=\"background-color: " <> color <> ";\">" <> sg <> ""]; ]; , {g, ge} ]; extra = SelectFirst[data, First /* EqualTo[1]]6 - totalspan - empty; str = str~Join~ ConstantArray["",
   extra];
AppendTo[str, ""]; , {ge, graphelements} ] AppendTo[str, "

"];

StringRiffle[str, "\n"]</lang>

Output:
<table style='text-align: center;'>
<tr>
<tdcolspan="7" style="background-color: #ffffe6;">Display an outline as a nested table.</td>
</tr>
<tr>
<tdcolspan="3" style="background-color: #ffebd2;">Parse the outline to a tree,</td>
<tdcolspan="2" style="background-color: #f0fff0;">count the leaves descending from each node,</td>
<tdcolspan="2" style="background-color: #e6ffff;">and write out a table with 'colspan' values</td>
</tr>
<tr>
<td style="background-color: #ffebd2;">measuring the indent of each line,</td>
<td style="background-color: #ffebd2;">translating the indentation to a nested structure,</td>
<td style="background-color: #ffebd2;">and padding the tree to even depth.</td>
<td style="background-color: #f0fff0;">defining the width of a leaf as 1,</td>
<td style="background-color: #f0fff0;">and the width of a parent node as a sum.</td>
<td style="background-color: #e6ffff;">either as a wiki table,</td>
<td style="background-color: #e6ffff;">or as HTML.</td>
</tr>
<tr>
<td style="background-color: #F9F9F9;"></td>
<td style="background-color: #F9F9F9;"></td>
<td style="background-color: #F9F9F9;"></td>
<td style="background-color: #F9F9F9;"></td>
<td style="background-color: #f0fff0;">(The sum of the widths of its children)</td>
<td style="background-color: #F9F9F9;"></td>
<td style="background-color: #F9F9F9;"></td>
</tr>
</table>

Nim

<lang Nim>import strutils

const Outline = """Display an outline as a nested table.

   Parse the outline to a tree,
       measuring the indent of each line,
       translating the indentation to a nested structure,
       and padding the tree to even depth.
   count the leaves descending from each node,
       defining the width of a leaf as 1,
       and the width of a parent node as a sum.
           (The sum of the widths of its children)
   and write out a table with 'colspan' values
       either as a wiki table,
       or as HTML."""

type Color {.pure.} = enum

 NoColor
 Yellow = "#ffffe6;"
 Orange = "#ffebd2;"
 Green = "#f0fff0;"
 Blue = "#e6ffff;"

const Line1Color = Yellow const Line2Colors = [Orange, Green, Blue]

type Node = ref object

 value: string
 level: Natural
 width: Natural
 color: Color
 parent: Node
 children: seq[Node]
  1. ---------------------------------------------------------------------------------------------------

proc leadingSpaces(line: string): int =

 ## return the number of leading spaces.
 while line[result] == ' ':
   inc result
  1. ---------------------------------------------------------------------------------------------------

proc buildTree(outline: string): tuple[root: Node, depth: Natural] =

 ## Build the tree for the given outline.
 result.root = Node()
 var level: int
 var startPos = @[-1]
 var nodes: seq[Node] = @[result.root]
 var linecount = 0
 for line in Outline.splitLines:
   inc linecount
   if line.len == 0: continue
   let start = line.leadingSpaces()
   level = startPos.find(start)
   if level < 0:
     # Level not yet encountered.
     if start < startPos[^1]:
       raise newException(ValueError, "wrong indentation at line " & $linecount)
     startPos.add(start)
     nodes.add(nil)
     level = startPos.high
   # Create the node.
   let node = Node(value: line.strip(), level: level)
   let parent = nodes[level - 1]
   parent.children.add(node)
   node.parent = parent
   nodes[level] = node   # Set the node as current node for this level.
 result.depth = nodes.high
  1. ---------------------------------------------------------------------------------------------------

proc padTree(node: Node; depth: Natural) =

 ## pad the tree with empty nodes to get an even depth.
 if node.level == depth:
   return
 if node.children.len == 0:
   # Add an empty node.
   node.children.add(Node(level: node.level + 1, parent: node))
 for child in node.children:
   child.padTree(depth)
  1. ---------------------------------------------------------------------------------------------------

proc computeWidths(node: Node) =

 ## Compute the widths.
 var width = 0
 if node.children.len == 0:
   width = 1
 else:
   for child in node.children:
     child.computeWidths()
     inc width, child.width
 node.width = width
  1. ---------------------------------------------------------------------------------------------------

proc build(nodelists: var seq[seq[Node]]; node: Node) =

 ## Build the list of nodes per level.
 nodelists[node.level].add(node)
 for child in node.children:
   nodelists.build(child)
  1. ---------------------------------------------------------------------------------------------------

proc setColors(nodelists: seq[seq[Node]]) =

 ## Set the colors of the nodes.
 for node in nodelists[1]:
   node.color = Line1Color
 for i, node in nodelists[2]:
   node.color = Line2Colors[i mod Line2Colors.len]
 for level in 3..nodelists.high:
   for node in nodelists[level]:
     node.color = if node.value.len != 0: node.parent.color else: NoColor
  1. ---------------------------------------------------------------------------------------------------

proc writeWikiTable(nodelists: seq[seq[Node]]) =

 ## Output the wikitable.
 echo "{| class='wikitable' style='text-align: center;'"
 for level in 1..nodelists.high:
   echo "|-"
   for node in nodelists[level]:
     if node.width > 1:
       # Node with children.
       echo "| style='background: $1 ' colspan=$2 | $3".format(node.color, node.width, node.value)
     elif node.value.len > 0:
       # Leaf with contents.
       echo "| style='background: $1 ' | $2".format(node.color, node.value)
     else:
       # Empty cell.
       echo "|  | "
 echo "|}"
  1. ---------------------------------------------------------------------------------------------------

proc writeHtml(nodelists: seq[seq[Node]]) =

 ## Output the HTML.

echo "

" for level in 1..nodelists.high: echo " " for node in nodelists[level]: if node.width > 1: # Node with children. echo " ".format(node.width, node.color, node.value)
     elif node.value.len > 0:
       # Leaf with contents.
echo " ".format(node.color, node.value)
     else:
       # Empty cell.
echo " " echo " " echo "
$3$2

"

  1. ———————————————————————————————————————————————————————————————————————————————————————————————————

let (root, depth) = Outline.buildTree() root.padTree(depth) root.computeWidths() var nodelists = newSeq[seq[Node]](depth + 1) nodelists.build(root) nodelists.setColors() echo "WikiTable:" nodelists.writeWikiTable() echo "HTML:" nodelists.writeHtml()</lang>

Output:

WikiTable:

Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children)

HTML:

Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children)

Perl

<lang perl>#!/usr/bin/perl

use strict; use warnings;

my @rows; my $row = -1; my $width = 0; my $color = 0; our $bg = 'e0ffe0';

parseoutline( do { local $/; =~ s/\t/ /gr } );

print "

\n"; for ( @rows ) { my $start = 0; print " \n"; for ( @$_ ) # columns { my ($data, $col, $span, $bg) = @$_; print " \n" x ( $col - $start ), " \n";
   $start = $col + $span;
   }
print " \n" x ( $width - $start ), " \n";
 }
print "
$data

\n";

sub parseoutline

 {
 ++$row;
 while( $_[0] =~ /^( *)(.*)\n((?:\1 .*\n)*)/gm )
   {
   my ($head, $body, $col) = ($2, $3, $width);
   $row == 1 and local $bg = qw( ffffe0 ffe0e0 )[ $color ^= 1];
   if( length $body ) { parseoutline( $body ) } else { ++$width }
   push @{ $rows[$row] }, [ $head, $col, $width - $col, $bg ];
   }
 --$row;
 }

__DATA__ Display an outline as a nested table.

   Parse the outline to a tree,
       measuring the indent of each line,
       translating the indentation to a nested structure,
       and padding the tree to even depth.
   count the leaves descending from each node,
       defining the width of a leaf as 1,
       and the width of a parent node as a sum.
           (The sum of the widths of its children)
   and write out a table with 'colspan' values
       either as a wiki table,
       or as HTML.</lang>
Output:
Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children)

Phix

Can output in either html or wikitable markup <lang Phix>constant html = false,

        outlines = {"""

Display an outline as a nested table.

   Parse the outline to a tree,
       measuring the indent of each line,
       translating the indentation to a nested structure,
       and padding the tree to even depth.
   count the leaves descending from each node,
       defining the width of a leaf as 1,
       and the width of a parent node as a sum.
           (The sum of the widths of its children)
   and write out a table with 'colspan' values
       either as a wiki table,
       or as HTML.""",			"""

Display an outline as a nested table.

   Parse the outline to a tree,
       measuring the indent of each line,
       translating the indentation to a nested structure,
       and padding the tree to even depth. 
   count the leaves descending from each node,
       defining the width of a leaf as 1,
       and the width of a parent node as a sum.
           (The sum of the widths of its children)
           Propagating the sums upward as necessary. 
   and write out a table with 'colspan' values
       either as a wiki table,
       or as HTML.
   Optionally add color to the nodes."""}

constant yellow = "#ffffe6;",

        orange = "#ffebd2;",
        green  = "#f0fff0;",
        blue   = "#e6ffff;",
        pink   = "#ffeeff;",
        colours = {{yellow, orange, green, blue, pink},
                   {blue, yellow, orange, green, pink}}

function calc_spans(sequence lines, integer ldx)

   sequence children = lines[ldx][$]
   if length(children)!=0 then
       integer span = 0
       for i=1 to length(children) do
           integer child = children[i]
           lines = calc_spans(lines,child)
           span += lines[child][4]
       end for
       lines[ldx][4] = span

-- else -- (span already 1)

   end if
   return lines

end function

procedure markup(string outline, sequence colours)

   sequence lines = split(outline,"\n",no_empty:=true),
            pi = {},   -- indents (to locate parents)
            pdx = {},  -- indexes for ""
            children = {}
   string text
   integer maxdepth = 0,
           parent, depth, span
   for i=1 to length(lines) do
       string line = trim_tail(lines[i])
       text = trim_head(line)
       integer indent = length(line)-length(text)
       -- remove any completed parents
       while length(pi) and indent<=pi[$] do
           pi = pi[1..$-1]
           pdx = pdx[1..$-1]
       end while
       parent = 0
       if length(pi) then
           parent = pdx[$]
           lines[parent][$] &= i -- (update children)
       end if
       pi &= indent
       pdx &= i
       depth = length(pi)
       span = 1 -- (default/assume no children[=={}])
       lines[i] = {i,depth,indent,span,parent,text,children}
       maxdepth = max(maxdepth,depth)
   end for
   lines = calc_spans(lines,1)

string res = iff(html?"

\n"  :"{| class=\"wikitable\" style=\"text-align: center;\"\n") for d=1 to maxdepth do res &= iff(html?"\n"  :"|-\n") integer cdx = 1 for i=1 to length(lines) do {{},depth,{},span,parent,text,children} = lines[i] if depth=2 then cdx += 1 end if string style = sprintf(`style="background: %s"`,{colours[cdx]}) if depth=d then if span!=1 then style &= sprintf(` colspan="%d"`,span) end if res &= sprintf(iff(html?"\n"
                                      :"| %s | %s\n"),{style,text})
           elsif depth<d and children={} then
-- res &= iff(html?"\n"

--  :"| |\n")

res &= sprintf(iff(html?"\n"
                                      :"| %s |\n"),{style})
           end if
       end for
       if html then
res &= "\n" end if end for res &= iff(html?"
%s

\n"

                  :"|}\n")
   puts(1,res)

end procedure for i=1 to length(outlines) do

   markup(outlines[i],colours[i])

end for</lang>

Output:

in html:

Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children)

and

Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values Optionally add color to the nodes.
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children) Propagating the sums upward as necessary.

or in wikitable markup:

Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children)

and

Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values Optionally add color to the nodes.
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children) Propagating the sums upward as necessary.

Python

Python: Procedural

<lang python>"""Display an outline as a nested table. Requires Python >=3.6."""

import itertools import re import sys

from collections import deque from typing import NamedTuple


RE_OUTLINE = re.compile(r"^((?: |\t)*)(.+)$", re.M)

COLORS = itertools.cycle(

   [
       "#ffffe6",
       "#ffebd2",
       "#f0fff0",
       "#e6ffff",
       "#ffeeff",
   ]

)


class Node:

   def __init__(self, indent, value, parent, children=None):
       self.indent = indent
       self.value = value
       self.parent = parent
       self.children = children or []
       self.color = None
   def depth(self):
       if self.parent:
           return self.parent.depth() + 1
       return -1
   def height(self):
       """Height of the subtree rooted at this node."""
       if not self.children:
           return 0
       return max(child.height() for child in self.children) + 1
   def colspan(self):
       if self.leaf:
           return 1
       return sum(child.colspan() for child in self.children)
   @property
   def leaf(self):
       return not bool(self.children)
   def __iter__(self):
       # Level order tree traversal.
       q = deque()
       q.append(self)
       while q:
           node = q.popleft()
           yield node
           q.extend(node.children)


class Token(NamedTuple):

   indent: int
   value: str


def tokenize(outline):

   """Generate ``Token``s from the given outline."""
   for match in RE_OUTLINE.finditer(outline):
       indent, value = match.groups()
       yield Token(len(indent), value)


def parse(outline):

   """Return the given outline as a tree of ``Node``s."""
   # Split the outline into lines and count the level of indentation.
   tokens = list(tokenize(outline))
   # Parse the tokens into a tree of nodes.
   temp_root = Node(-1, "", None)
   _parse(tokens, 0, temp_root)
   # Pad the tree so that all branches have the same depth.
   root = temp_root.children[0]
   pad_tree(root, root.height())
   return root


def _parse(tokens, index, node):

   """Recursively build a tree of nodes.
   Args:
       tokens (list): A collection of ``Token``s.
       index (int): Index of the current token.
       node (Node): Potential parent or sibling node.
   """
   # Base case. No more lines.
   if index >= len(tokens):
       return
   token = tokens[index]
   if token.indent == node.indent:
       # A sibling of node
       current = Node(token.indent, token.value, node.parent)
       node.parent.children.append(current)
       _parse(tokens, index + 1, current)
   elif token.indent > node.indent:
       # A child of node
       current = Node(token.indent, token.value, node)
       node.children.append(current)
       _parse(tokens, index + 1, current)
   elif token.indent < node.indent:
       # Try the node's parent until we find a sibling.
       _parse(tokens, index, node.parent)


def pad_tree(node, height):

   """Pad the tree with blank nodes so all branches have the same depth."""
   if node.leaf and node.depth() < height:
       pad_node = Node(node.indent + 1, "", node)
       node.children.append(pad_node)
   for child in node.children:
       pad_tree(child, height)


def color_tree(node):

   """Walk the tree and color each node as we go."""
   if not node.value:
       node.color = "#F9F9F9"
   elif node.depth() <= 1:
       node.color = next(COLORS)
   else:
       node.color = node.parent.color
   for child in node.children:
       color_tree(child)


def table_data(node):

   """Return an HTML table data element for the given node."""
   indent = "    "
   if node.colspan() > 1:
       colspan = f'colspan="{node.colspan()}"'
   else:
       colspan = ""
   if node.color:
       style = f'style="background-color: {node.color};"'
   else:
       style = ""
   attrs = " ".join([colspan, style])

return f"{indent}<td{attrs}>{node.value}" def html_table(tree): """Return the tree as an HTML table.""" # Number of columns in the table. table_cols = tree.colspan() # Running count of columns in the current row. row_cols = 0 # HTML buffer buf = ["

"] # Breadth first iteration. for node in tree: if row_cols == 0: buf.append(" ") buf.append(table_data(node)) row_cols += node.colspan() if row_cols == table_cols: buf.append(" ") row_cols = 0 buf.append("

")

   return "\n".join(buf)


def wiki_table_data(node):

   """Return an wiki table data string for the given node."""
   if not node.value:
       return "|  |"
   if node.colspan() > 1:
       colspan = f"colspan={node.colspan()}"
   else:
       colspan = ""
   if node.color:
       style = f'style="background: {node.color};"'
   else:
       style = ""
   attrs = " ".join([colspan, style])
   return f"| {attrs} | {node.value}"


def wiki_table(tree):

   """Return the tree as a wiki table."""
   # Number of columns in the table.
   table_cols = tree.colspan()
   # Running count of columns in the current row.
   row_cols = 0
   # HTML buffer
   buf = ['{| class="wikitable" style="text-align: center;"']
   for node in tree:
       if row_cols == 0:
           buf.append("|-")
       buf.append(wiki_table_data(node))
       row_cols += node.colspan()
       if row_cols == table_cols:
           row_cols = 0
   buf.append("|}")
   return "\n".join(buf)


def example(table_format="wiki"):

   """Write an example table to stdout in either HTML or Wiki format."""
   outline = (
       "Display an outline as a nested table.\n"
       "    Parse the outline to a tree,\n"
       "        measuring the indent of each line,\n"
       "        translating the indentation to a nested structure,\n"
       "        and padding the tree to even depth.\n"
       "    count the leaves descending from each node,\n"
       "        defining the width of a leaf as 1,\n"
       "        and the width of a parent node as a sum.\n"
       "            (The sum of the widths of its children)\n"
       "    and write out a table with 'colspan' values\n"
       "        either as a wiki table,\n"
       "        or as HTML."
   )
   tree = parse(outline)
   color_tree(tree)
   if table_format == "wiki":
       print(wiki_table(tree))
   else:
       print(html_table(tree))


if __name__ == "__main__":

   args = sys.argv[1:]
   if len(args) == 1:
       table_format = args[0]
   else:
       table_format = "wiki"
   example(table_format)</lang>
Output:

Wiki table

Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children)

HTML table

<table style='text-align: center;'>
  <tr>
    <tdcolspan="7" style="background-color: #ffffe6;">Display an outline as a nested table.</td>
  </tr>
  <tr>
    <tdcolspan="3" style="background-color: #ffebd2;">Parse the outline to a tree,</td>
    <tdcolspan="2" style="background-color: #f0fff0;">count the leaves descending from each node,</td>
    <tdcolspan="2" style="background-color: #e6ffff;">and write out a table with 'colspan' values</td>
  </tr>
  <tr>
    <td style="background-color: #ffebd2;">measuring the indent of each line,</td>
    <td style="background-color: #ffebd2;">translating the indentation to a nested structure,</td>
    <td style="background-color: #ffebd2;">and padding the tree to even depth.</td>
    <td style="background-color: #f0fff0;">defining the width of a leaf as 1,</td>
    <td style="background-color: #f0fff0;">and the width of a parent node as a sum.</td>
    <td style="background-color: #e6ffff;">either as a wiki table,</td>
    <td style="background-color: #e6ffff;">or as HTML.</td>
  </tr>
  <tr>
    <td style="background-color: #F9F9F9;"></td>
    <td style="background-color: #F9F9F9;"></td>
    <td style="background-color: #F9F9F9;"></td>
    <td style="background-color: #F9F9F9;"></td>
    <td style="background-color: #f0fff0;">(The sum of the widths of its children)</td>
    <td style="background-color: #F9F9F9;"></td>
    <td style="background-color: #F9F9F9;"></td>
  </tr>
</table>

Python: Functional

<lang python>Display an outline as a nested table

from itertools import chain, cycle, takewhile from functools import reduce from operator import add


  1. wikiTablesFromOutline :: [String] -> String -> String

def wikiTablesFromOutline(colorSwatch):

   Wikitable markup for (colspan) tables representing
      the indentation of a given outline.
      Each key-line point (child of a tree root) has a
      distinct color, inherited by all its descendants.
      The first color in the swatch is for the root node.
      A sequence of tables is generated where the outline
      represents a forest rather than a singly-rooted tree.
   
   def go(outline):
       return '\n\n'.join([
           wikiTableFromTree(colorSwatch)(tree) for tree in
           forestFromLevels(
               indentLevelsFromLines(
                   outline.splitlines()
               )
           )
       ])
   return go


  1. wikiTableFromTree :: [String] -> Tree String -> String

def wikiTableFromTree(colorSwatch):

   A wikitable rendered from a single tree.
   
   return compose(
       wikiTableFromRows,
       levels,
       paintedTree(colorSwatch),
       widthMeasuredTree,
       fullDepthTree
   )


  1. ------------------------- TEST -------------------------
  2. main :: IO ()

def main():

   A colored wikitable rendering of a given outline
   outline = Display an outline as a nested table.
   Parse the outline to a tree,
       measuring the indent of each line,
       translating the indentation to a nested structure,
       and padding the tree to even depth.
   count the leaves descending from each node,
       defining the width of a leaf as 1,
       and the width of a parent node as a sum.
           (The sum of the widths of its children)
   and write out a table with 'colspan' values
       either as a wiki table,
       or as HTML.
   print(
       wikiTablesFromOutline([
           "#ffffe6",
           "#ffebd2",
           "#f0fff0",
           "#e6ffff",
           "#ffeeff"
       ])(outline)
   )


  1. ------------------ TREE FROM OUTLINE -------------------
  1. indentLevelsFromLines :: [String] -> [(Int, String)]

def indentLevelsFromLines(xs):

   Each input line stripped of leading
      white space, and tupled with a preceding integer
      giving its level of indentation from 0 upwards.
   
   indentTextPairs = [
       (n, s[n:]) for (n, s)
       in (
           (len(list(takewhile(isSpace, x))), x)
           for x in xs
       )
   ]
   indentUnit = len(next(
       x for x in indentTextPairs if x[0]
   )) or 1
   return [
       (x[0] // indentUnit, x[1])
       for x in indentTextPairs
   ]


  1. forestFromLevels :: [(Int, String)] -> [Tree a]

def forestFromLevels(levelValuePairs):

   A list of trees derived from a list of values paired
      with integers giving their levels of indentation.
   
   def go(xs):
       if xs:
           level, v = xs[0]
           children, rest = span(
               lambda x: level < x[0]
           )(xs[1:])
           return [Node(v)(go(children))] + go(rest)
       else:
           return []
   return go(levelValuePairs)


  1. -------------- TREE PADDED TO EVEN DEPTH ---------------
  1. fullDepthTree :: Node String -> Node String

def fullDepthTree(tree):

   A tree padded down even evenly
      (with empty string nodes)
      to the depth of its deepest subtree.
   
   return paddedTree("")(
       treeDepth(tree), tree
   )


  1. paddedTree :: a -> (Int, Node a) -> Node a

def paddedTree(padValue):

   A tree vertically padded to a given depth,
      with additional nodes, containing padValue,
      where needed.
   
   def go(n, tree):
       prev = n - 1
       return Node(tree.get('root'))([
           go(prev, x) for x in (
               tree.get('nest') or [Node(padValue)([])]
           )
       ]) if prev else tree
   return go


  1. treeDepth :: Tree a -> Int

def treeDepth(tree):

   Maximum number of distinct levels in the tree.
   
   def go(_, xs):
       return 1 + max(xs) if xs else 1
   return foldTree(go)(tree)


  1. ------------ SPANNING WIDTH OF EACH SUBTREE ------------
  1. widthMeasuredTree :: Tree a -> Tree (a, Int)

def widthMeasuredTree(tree):

   A tree in which each node value is tupled
      with the width of the subtree.
   
   def go(x, xs):
       return Node((x, 1))([]) if not xs else (
           Node((x, reduce(
               lambda a, child: a + (
                   child.get('root')[1]
               ),
               xs,
               0
           )))(xs)
       )
   return foldTree(go)(tree)


  1. ----------------- COLOR SWATCH APPLIED -----------------
  1. paintedTree :: [String] -> Tree a -> Tree (String, a)

def paintedTree(swatch):

   A tree in which every node value is tupled with
      a hexadecimal color string taken from a swatch list.
      The first colour is used for the root node.
      The next n colours paint the root's n children.
      All descendants of those children are painted with
      the same color as their non-root ancestor.
   
   colors = cycle(swatch + [""])
   def go(tree):
       return fmapTree(
           lambda x: ("", x)
       )(tree) if not swatch else (
           Node(
               (next(colors), tree.get('root'))
           )(
               list(map(
                   lambda k, child: fmapTree(
                       lambda v: (k, v)
                   )(child),
                   colors,
                   tree.get('nest')
               ))
           )
       )
   return go


  1. ---------------- GENERIC TREE FUNCTIONS ----------------
  1. Node :: a -> [Tree a] -> Tree a

def Node(v):

   Constructor for a Tree node which connects a
      value of some kind to a list of zero or
      more child trees.
   
   return lambda xs: {'root': v, 'nest': xs}


  1. fmapTree :: (a -> b) -> Tree a -> Tree b

def fmapTree(f):

   A new tree holding the results of
      an application of f to each root in
      the existing tree.
   
   def go(x):
       return Node(
           f(x.get('root'))
       )([go(v) for v in x.get('nest')])
   return go


  1. foldTree :: (a -> [b] -> b) -> Tree a -> b

def foldTree(f):

   The catamorphism on trees. A summary
      value defined by a depth-first fold.
   
   def go(node):
       return f(
           node.get('root'),
           [go(x) for x in node.get('nest')]
       )
   return go


  1. levels :: Tree a -> a

def levels(tree):

   A list of lists, grouping the root
      values of each level of the tree.
   
   return tree.get('root') + list(
       reduce(
           zipWithLong(add),
           map(levels, tree.get('nest')),
           []
       )
   )


  1. ----------------- WIKITABLE RENDERING ------------------
  1. wikiTableFromRows :: (String, (String, Int)) -> String

def wikiTableFromRows(rows):

   A wiki table rendering of rows in which each cell
      has the form (hexColorString, (text, colspan))
   
   def cw(color, width):
       def go(w):
           return f' colspan={w}' if 1 < w else 
       return f'style="background: {color}; "{go(width)}'
   def cellText(cell):
       color, (txt, width) = cell
       return f'| {cw(color,width) if txt else ""} | {txt}'
   def go(row):
       return '\n'.join([cellText(cell) for cell in row])
   return '{| class="wikitable" ' + (
       'style="text-align: center;"\n|-\n'
   ) + '\n|-\n'.join([go(row) for row in rows]) + '\n|}'


  1. ----------------------- GENERIC ------------------------
  1. compose :: ((a -> a), ...) -> (a -> a)

def compose(*fs):

   Composition, from right to left,
      of a series of functions.
   
   def go(f, g):
       def fg(x):
           return f(g(x))
       return fg
   return reduce(go, fs, lambda x: x)


  1. head :: [a] -> a

def head(xs):

   The first element of a non-empty list.
   
   return xs[0] if isinstance(xs, list) else next(xs)


  1. isSpace :: Char -> Bool
  2. isSpace :: String -> Bool

def isSpace(s):

   True if s is not empty, and
      contains only white space.
   
   return s.isspace()


  1. span :: (a -> Bool) -> [a] -> ([a], [a])

def span(p):

   The longest (possibly empty) prefix of xs that
      contains only elements satisfying p, tupled with the
      remainder of xs.  span p xs is equivalent to
      (takeWhile p xs, dropWhile p xs).
   
   def match(ab):
       b = ab[1]
       return not b or not p(b[0])
   def f(ab):
       a, b = ab
       return a + [b[0]], b[1:]
   def go(xs):
       return until(match)(f)(([], xs))
   return go


  1. until :: (a -> Bool) -> (a -> a) -> a -> a

def until(p):

   The result of repeatedly applying f until p holds.
      The initial seed value is x.
   
   def go(f):
       def g(x):
           v = x
           while not p(v):
               v = f(v)
           return v
       return g
   return go


  1. zipWithLong :: ((a, a) -> a) -> ([a], [a]) -> [a]

def zipWithLong(f):

   Analogous to map(f, xs, ys)
      but returns a list with the length of the *longer*
      of xs and ys, taking any surplus values unmodified.
   
   def go(xs, ys):
       lxs = list(xs)
       lys = list(ys)
       i = min(len(lxs), len(lys))
       return chain.from_iterable([
           map(f, lxs, lys),
           lxs[i:],
           lys[i:]
       ])
   return go


  1. MAIN ---

if __name__ == '__main__':

   main()</lang>
Output:
Display an outline as a nested table.
Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values
measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
(The sum of the widths of its children)

Raku

(formerly Perl 6)

Works with: Rakudo version 2019.07.1

Use a slightly more complicated outline than the task example to test some edge conditions. Limited to 10 direct subnodes on any one node as is. Easily adapted for larger if necessary.

Strictly speaking, this is not a nested table. It is just a single level table that has some column spans > 1. For an example of using actual nested tables, see the task entry: List_authors_of_task_descriptions#Raku, (and full output).

<lang perl6>my $outline = q:to/END/;

   Display an outline as a nested table.
       Parse the outline to a tree,
           measuring the indent of each line,
           translating the indentation to a nested structure,
           and padding the tree to even depth.
       count the leaves descending from each node,
           defining the width of a leaf as 1,
           and the width of a parent node as a sum.
               (The sum of the widths of its children)
               Propagating the sums upward as necessary.
       and write out a table with 'colspan' values
           either as a wiki table,
           or as HTML.
       Optionally add color to the nodes.
   END
  1. Import outline paragraph into native data structure

sub import (Str $trees, $level = ' ') {

   my $forest;
   my $last = -Inf;
   for $trees.lines -> $branch {
       $branch ~~ / ($($level))* /;
       my $this = +$0;
       $forest ~= do {
           given $this cmp $last {
               when More { "\['{esc $branch.trim}', " }
               when Same { "'{esc $branch.trim}', " }
               when Less { "{']' x $last - $this}, '{esc $branch.trim}', " }
           }
       }
       $last = $this;
   }
   sub esc { $^s.subst( /(<['\\]>)/, -> $/ { "\\$0" }, :g) }
   $forest ~= ']' x 1 + $last;
   use MONKEY-SEE-NO-EVAL;
   $forest.EVAL;

}

my @AoA = import $outline, ' '; my @layout;

  1. Collect information about node depth, position and children

{

   my @width = 0;
   my $depth = -1;
   @AoA.&insert;
   multi insert ($item) {
       @width[*-1]++;
       @layout.push: { :depth($depth.clone), :id(@width[*-1].clone), :text($item) };
   }
   multi insert (@array) {
       @width.push: @width[*-1] * 10;
       ++$depth;
       @array.map: &insert;
       --$depth;
       @width.pop;
   }

}

my $max-depth = @layout.max( *.<depth> )<depth>;

  1. Pad ragged nodes

for (^$max-depth) -> $d {

   my @nodes = @layout.grep( *.<depth> == $d );
   for @nodes.sort( +*.<id> ) -> $n {
       unless @layout.first( *.<id> == $n<id> ~ 1 ) {
           @layout.push: { :depth($n<depth> + 1), :id($n<id> *10 + 1), :text() };
       }
   }

}

  1. Calculate spans (child nodes)

for (0..$max-depth).reverse -> $d {

   my @nodes = @layout.grep( *.<depth> == $d );
   for @nodes.sort( +*.<id> ) -> $n {
       my @span = @layout.grep: {.<depth> == $d + 1 && .<id>.starts-with: $n<id> };
       $n = ( sum @span.map( { . // 0} )) || +@span || 1;
   }

}

  1. Programatically assign colors

for (0..$max-depth) -> $d {

   my @nodes = @layout.grep( *.<depth> == $d );
   my $incr = 1 / (1 + @nodes);
   for @nodes.sort( +*.<id> ) -> $n {
       my $color = $d > 1 ??
       @layout.first( *.<id> eq $n<id>.chop )<color> !!
       "style=\"background: #" ~ hsv2rgb( ++$ * $incr, .1, 1) ~ '" ';
       $n<color> = $n<text> ?? $color !! ;
   }

}

  1. Generate wikitable

say '{| class="wikitable" style="text-align: center;"' ~ "\n" ~ (join "\n|-\n", (0..$max-depth).map: -> $d {

   my @nodes = @layout.grep( *.<depth> == $d );
   (join "\n", @nodes.sort( +*.<id> ).map( -> $node {
       '| ' ~
       ($node<color> //  ) ~
       ($node > 1 ?? "colspan=$node" !!  ) ~
       ' | ' ~ $node<text> }
   ))

}) ~ "\n|}";

say "\n\nSometimes it makes more sense to display an outline as... well... as an outline, rather than as a table." ~ Q|¯\_(ツ)_/¯| ~ "\n";

{ ## Outline - Ordered List #######

   my @type = <upper-roman upper-latin decimal lower-latin lower-roman>;
   my $depth = 0;

multi ol ($item) { "\

  • $item\n" } multi ol (@array) { my $li = $depth ?? "
  • " !! ; $depth++; my $list = "

      \n" ~ ( @array.map( &ol ).join ) ~ "

    $li\n";

           $depth--;
           $list
       }
    

    say "

    \n" ~ @AoA.&ol ~ "

    ";

    }

    sub hsv2rgb ( $h, $s, $v ){

       my $c = $v * $s;
       my $x = $c * (1 - abs( (($h*6) % 2) - 1 ) );
       my $m = $v - $c;
       my ($r, $g, $b) = do given $h {
           when   0..^(1/6) { $c, $x, 0 }
           when 1/6..^(1/3) { $x, $c, 0 }
           when 1/3..^(1/2) { 0, $c, $x }
           when 1/2..^(2/3) { 0, $x, $c }
           when 2/3..^(5/6) { $x, 0, $c }
           when 5/6..1      { $c, 0, $x }
       }
       ( $r, $g, $b ).map( ((*+$m) * 255).Int)».base(16).join
    

    }</lang>

    Output:
    Display an outline as a nested table.
    Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values Optionally add color to the nodes.
    measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
    (The sum of the widths of its children) Propagating the sums upward as necessary.


    Sometimes it makes more sense to display an outline as... well... as an outline, rather than as a table.¯\_(ツ)_/¯

    1. Display an outline as a nested table.
      1. Parse the outline to a tree,
        1. measuring the indent of each line,
        2. translating the indentation to a nested structure,
        3. and padding the tree to even depth.
      2. count the leaves descending from each node,
        1. defining the width of a leaf as 1,
        2. and the width of a parent node as a sum.
          1. (The sum of the widths of its children)
          2. Propagating the sums upward as necessary.
      3. and write out a table with 'colspan' values
        1. either as a wiki table,
        2. or as HTML.
      4. Optionally add color to the nodes.

    Wren

    Translation of: Go
    Library: Wren-dynamic
    Library: Wren-fmt

    <lang ecmascript>import "/dynamic" for Struct import "/fmt" for Fmt

    var NNode = Struct.create("NNode", ["name", "children"]) var INode = Struct.create("INode", ["level", "name"])

    var toNest // recursive function toNest = Fn.new { |iNodes, start, level, n|

       if (level == 0) n.name = iNodes[0].name
       var i = start + 1
       while (i < iNodes.count) {
           if (iNodes[i].level == level+1) {
               var c = NNode.new(iNodes[i].name, [])
               toNest.call(iNodes, i, level+1, c)
               n.children.add(c)
           } else if (iNodes[i].level <= level) {
               return
           }
           i = i + 1
       }
    

    }

    var makeIndent = Fn.new { |outline, tab|

       var lines = outline.split("\n")
       var iNodes = List.filled(lines.count, null)
       var i = 0
       for (line in lines) {
           var line2 = line.trimStart(" ")
           var le  = line.count
           var le2 = line2.count
           var level = ((le - le2) / tab).floor
           iNodes[i] = INode.new(level, line2)
           i = i + 1
       }
       return iNodes
    

    }

    var toMarkup = Fn.new { |n, cols, depth|

       var span = 0
       var colSpan  // recursive closure
       colSpan = Fn.new { |nn|
           var i = 0
           for (c in nn.children) {
               if (i > 0) span = span + 1
               colSpan.call(c)
               i = i + 1
           }
       }
    
       for (c in n.children) {
           span = 1
           colSpan.call(c)
       }
       var lines = []
       lines.add("{| class=\"wikitable\" style=\"text-align: center;\"")
       var l1 = "|-"
       var l2 = "|  |"
       lines.add(l1)
       span = 1
       colSpan.call(n)
       var s = Fmt.swrite("| style=\"background: $s \" colSpan=$d | $s", cols[0], span, n.name)
       lines.add(s)
       lines.add(l1)
    
       var nestedFor // recursive function
       nestedFor = Fn.new { |nn, level, maxLevel, col|
           if (level == 1 && maxLevel > level) {
               var i = 0
               for (c in nn.children) {
                   nestedFor.call(c, 2, maxLevel, i)
                   i = i + 1
               }
           } else if (level < maxLevel) {
               for (c in nn.children) {
                   nestedFor.call(c, level+1, maxLevel, col)
               }
           } else {
               if (nn.children.count > 0) {
                   var i = 0
                   for (c in nn.children) {
                       span = 1
                       colSpan.call(c)
                       var cn = col + 1
                       if (maxLevel == 1) cn = i + 1
                       var s = Fmt.swrite("| style=\"background: $s \" colspan=$d | $s", cols[cn], span, c.name)
                       lines.add(s)
                       i = i + 1
                   }
               } else {
                   lines.add(l2)
               }
           }
       }
       for (maxLevel in 1...depth) {
           nestedFor.call(n, 1, maxLevel, 0)
           if (maxLevel < depth-1) lines.add(l1)
       }
       lines.add("|}")
       return lines.join("\n")
    

    }

    var outline = """ Display an outline as a nested table.

       Parse the outline to a tree,
           measuring the indent of each line,
           translating the indentation to a nested structure,
           and padding the tree to even depth.
       count the leaves descending from each node,
           defining the width of a leaf as 1,
           and the width of a parent node as a sum.
               (The sum of the widths of its children) 
       and write out a table with 'colspan' values
           either as a wiki table,
           or as HTML.
    

    """ var yellow = "#ffffe6;" var orange = "#ffebd2;" var green = "#f0fff0;" var blue = "#e6ffff;" var pink = "#ffeeff;"

    var cols = [yellow, orange, green, blue, pink] var iNodes = makeIndent.call(outline, 4) var n = NNode.new("", []) toNest.call(iNodes, 0, 0, n) System.print(toMarkup.call(n, cols, 4))

    System.print("\n") var outline2 = """ Display an outline as a nested table.

       Parse the outline to a tree,
           measuring the indent of each line,
           translating the indentation to a nested structure,
           and padding the tree to even depth.
       count the leaves descending from each node,
           defining the width of a leaf as 1,
           and the width of a parent node as a sum.
               (The sum of the widths of its children) 
               Propagating the sums upward as necessary.
       and write out a table with 'colspan' values
           either as a wiki table,
           or as HTML.
       Optionally add color to the nodes.
    

    """ var cols2 = [blue, yellow, orange, green, pink] var n2 = NNode.new("", []) var iNodes2 = makeIndent.call(outline2, 4) toNest.call(iNodes2, 0, 0, n2) System.print(toMarkup.call(n2, cols2, 4))</lang>

    Output:
    Display an outline as a nested table.
    Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values
    measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
    (The sum of the widths of its children)


    Display an outline as a nested table.
    Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values Optionally add color to the nodes.
    measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
    (The sum of the widths of its children) Propagating the sums upward as necessary.

    zkl

    <lang zkl>fcn parseOutline(outline){ //--> "tree" annotated with spans

      var [const] indent=" "*100;		// no tabs
    
      parse:=fcn(ow,tree,parent,col,prevD,unit){
         rows,span,spans,cell := 0, 0,List(), Void;
         foreach line in (ow){
    

    if(not line) continue; d,text,d := line.prefix(indent), line[d,*], d/unit; // d==0 is boo-boo

            if(d==prevD){		// assume a leaf
    

    rows=rows.max(d); // zero based col+=1; span+=1; cell=List(d,col,1,text); // cell: (depth, col offset, span, text) tree.append(cell); } else if(d>prevD){ // down a level ow.push(line); r,s := self.fcn(ow,tree,cell,col-1,d,unit); rows = rows.max(r); spans.append(s); } else{ // d<prevD: done with this branch, back out to level above ow.push(line); break; }

         }
         span=( spans and (spans.sum(0) + span - 1) or span ).max(1);
         parent[2]=span;
         return(rows,span);
      };
    
      ow,title,trees := outline.walker(11), ow.next(), List();
      line,unit := ow.peek(), line.prefix(indent);	// no leading space == bad
      rows,cols := 0,0;
      foreach line in (ow){	// the major (same color) columns
         tree:=List(0, cell:=List(1, 1,1, line.strip()) );
         trees.append(tree);
         r,c := parse(ow,tree,cell,0,2,unit);
         tree[0]=c;	// span for this "branch"
         rows,cols = rows.max(r), cols + c;
      }
      return(rows+1,cols,title,trees);
    

    }

    fcn makeMarkup(rows,cols,title,trees){

      var [const] colors=L("#ffebd2","#f0fff0","#e6ffff","#ffeeff");
      out,cell := Data(Void), 0'~| style="background: %s " colspan=%d | %s~.fmt;
      out.writeln(0'~{| class="wikitable" style="text-align: center;"~,"\n|-\n",
        cell("#ffffe6;",cols,title));
      foreach row in ([1..rows-1]){
         clrs:=Walker.cycle(colors);
         out.writeln("|-");
         foreach t in (trees){	// create this row
    

    span,clr := t[0], clrs.next(); col,cols := 1, t[1,*].filter('wrap([(d,_,text)]){ d==row }); foreach _,cpos,cspan,text in (cols){ if(col<cpos){ out.writeln(cell(clr,cpos-col,"")); col=cpos } out.writeln(cell(clr,cspan,text)); col+=cspan; } // col is span+1 after loop if all cells had text if(col<=span) out.writeln(cell(clr,span-col+1,""));

         }
      }
      out.writeln("|}");
      out.text
    

    }</lang> <lang zkl>outlineText:=Data(Void,

    1. <<<

    "Display an outline as a nested table.

       Parse the outline to a tree,
           measuring the indent of each line,
           translating the indentation to a nested structure,
           and padding the tree to even depth.
       count the leaves descending from each node,
           defining the width of a leaf as 1,
           and the width of a parent node as a sum.
               (The sum of the widths of its children)
       and write out a table with 'colspan' values
           either as a wiki table,
           or as HTML.
    

    ");

    1. <<<

    rows,cols,title,trees := parseOutline(outlineText); makeMarkup(rows,cols,title,trees).println();</lang>

    Output:
    Display an outline as a nested table.
    Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values
    measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
    (The sum of the widths of its children)


    And the Raku example: <lang zkl>outlineText:=Data(Void,

    1. <<<

    "Display an outline as a nested table.

       Parse the outline to a tree,
           measuring the indent of each line,
           translating the indentation to a nested structure,
           and padding the tree to even depth. 
       count the leaves descending from each node,
           defining the width of a leaf as 1,
           and the width of a parent node as a sum.
               (The sum of the widths of its children)
               Propagating the sums upward as necessary. 
       and write out a table with 'colspan' values
           either as a wiki table,
           or as HTML.
       Optionally add color to the nodes.
    

    ");

    1. <<<

    rows,cols,title,trees := parseOutline(outlineText); makeMarkup(rows,cols,title,trees).println();</lang>

    Output:
    Display an outline as a nested table.
    Parse the outline to a tree, count the leaves descending from each node, and write out a table with 'colspan' values Optionally add color to the nodes.
    measuring the indent of each line, translating the indentation to a nested structure, and padding the tree to even depth. defining the width of a leaf as 1, and the width of a parent node as a sum. either as a wiki table, or as HTML.
    (The sum of the widths of its children) Propagating the sums upward as necessary.