Circles of given radius through two points: Difference between revisions

From Rosetta Code
Content added Content deleted
(Nimrod -> Nim)
(Updated D entry)
Line 229: Line 229:
throw new ValueException("radius of zero");
throw new ValueException("radius of zero");


if (feqrel(cast()p1.x, cast()p2.x) >= nBits &&
if (feqrel(p1.x, p2.x) >= nBits &&
feqrel(cast()p1.y, cast()p2.y) >= nBits)
feqrel(p1.y, p2.y) >= nBits)
throw new ValueException("coincident points give" ~
throw new ValueException("coincident points give" ~
" infinite number of Circles");
" infinite number of Circles");

Revision as of 19:28, 27 February 2015

Task
Circles of given radius through two points
You are encouraged to solve this task according to the task description, using any language you may know.

Given two points on a plane and a radius, usually two circles of given radius can be drawn through the points.

Exceptions
  1. r==0.0 should be treated as never describing circles (except in the case where the points are coincident).
  2. If the points are coincident then an infinite number of circles with the point on their circumference can be drawn, unless r==0.0 as well which then collapses the circles to a point.
  3. If the points form a diameter then return two identical circles or return a single circle, according to which is the most natural mechanism for the implementation language.
  4. If the points are too far apart then no circles can be drawn.
Task detail
  • Write a function/subroutine/method/... that takes two points and a radius and returns the two circles through those points, or some indication of special cases where two, possibly equal, circles cannot be returned.
  • Show here the output for the following inputs:
      p1                p2           r
0.1234, 0.9876    0.8765, 0.2345    2.0
0.0000, 2.0000    0.0000, 0.0000    1.0
0.1234, 0.9876    0.1234, 0.9876    2.0
0.1234, 0.9876    0.8765, 0.2345    0.5
0.1234, 0.9876    0.1234, 0.9876    0.0
Ref

AutoHotkey

<lang AutoHotkey>CircleCenter(x1, y1, x2, y2, r){ d := sqrt((x2-x1)**2 + (y2-y1)**2) x3 := (x1+x2)/2 , y3 := (y1+y2)/2 cx1 := x3 + sqrt(r**2-(d/2)**2)*(y1-y2)/d , cy1:= y3 + sqrt(r**2-(d/2)**2)*(x2-x1)/d cx2 := x3 - sqrt(r**2-(d/2)**2)*(y1-y2)/d , cy2:= y3 - sqrt(r**2-(d/2)**2)*(x2-x1)/d if (d = 0) return "No circles can be drawn, points are identical" if (d = r*2) return "points are opposite ends of a diameter center = " cx1 "," cy1 if (d = r*2) return "points are too far" if (r <= 0) return "radius is not valid" if !(cx1 && cy1 && cx2 && cy2) return "no solution" return cx1 "," cy1 " & " cx2 "," cy2 }</lang> Examples:<lang AutoHotkey>data = ( 0.1234 0.9876 0.8765 0.2345 2.0 0.0000 2.0000 0.0000 0.0000 1.0 0.1234 0.9876 0.1234 0.9876 2.0 0.1234 0.9876 0.8765 0.2345 0.5 0.1234 0.9876 0.1234 0.9876 0.0 )

loop, parse, data, `n { obj := StrSplit(A_LoopField, " ") MsgBox, % CircleCenter(obj[1], obj[2], obj[3], obj[4], obj[5]) }</lang>

Output:
0.1234 0.9876 0.8765 0.2345 2.0 > 1.863112,1.974212 & -0.863212,-0.752112
0.0000 2.0000 0.0000 0.0000 1.0 > points are opposite ends of a diameter center = 0.000000,1.000000
0.1234 0.9876 0.1234 0.9876 2.0 > No circles can be drawn, points are identical
0.1234 0.9876 0.8765 0.2345 0.5 > no solution
0.1234 0.9876 0.1234 0.9876 0.0 > No circles can be drawn, points are identical

BASIC

Works with: FreeBASIC

<lang freebasic>

Type Point

   As Double x,y
   Declare Property length As Double

End Type

Property point.length As Double Return Sqr(x*x+y*y) End Property

Sub circles(p1 As Point,p2 As Point,radius As Double)

   Print "Points ";"("&p1.x;","&p1.y;"),("&p2.x;","&p2.y;")";", Rad ";radius
   Var ctr=Type<Point>((p1.x+p2.x)/2,(p1.y+p2.y)/2)
   Var half=Type<Point>(p1.x-ctr.x,p1.y-ctr.y)
   Var lenhalf=half.length
   If radius<lenhalf Then Print "Can't solve":Print:Exit Sub
   If lenhalf=0 Then Print "Points are the same":Print:Exit Sub
   Var dist=Sqr(radius^2-lenhalf^2)/lenhalf
   Var rot= Type<Point>(-dist*(p1.y-ctr.y) +ctr.x,dist*(p1.x-ctr.x) +ctr.y)
   Print " -> Circle 1 ("&rot.x;","&rot.y;")"
   rot= Type<Point>(-(rot.x-ctr.x) +ctr.x,-((rot.y-ctr.y)) +ctr.y)
   Print" -> Circle 2 ("&rot.x;","&rot.y;")"
   Print

End Sub


Dim As Point p1=(.1234,.9876),p2=(.8765,.2345) circles(p1,p2,2) p1=Type<Point>(0,2):p2=Type<Point>(0,0) circles(p1,p2,1) p1=Type<Point>(.1234,.9876):p2=p1 circles(p1,p2,2) p1=Type<Point>(.1234,.9876):p2=Type<Point>(.8765,.2345) circles(p1,p2,.5) p1=Type<Point>(.1234,.9876):p2=p1 circles(p1,p2,0)

Sleep </lang>

Output:
Points (0.1234,0.9876),(0.8765,0.2345), Rad  2
 -> Circle 1 (-0.8632118016581893,-0.7521118016581889)
 -> Circle 2 (1.863111801658189,1.974211801658189)

Points (0,2),(0,0), Rad  1
 -> Circle 1 (0,1)
 -> Circle 2 (0,1)

Points (0.1234,0.9876),(0.1234,0.9876), Rad  2
Points are the same

Points (0.1234,0.9876),(0.8765,0.2345), Rad  0.5
Can't solve

Points (0.1234,0.9876),(0.1234,0.9876), Rad  0
Points are the same

C

<lang C>

  1. include<stdio.h>
  2. include<math.h>

typedef struct{ double x,y; }point;

double distance(point p1,point p2) { return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)); }

void findCircles(point p1,point p2,double radius) { double separation = distance(p1,p2),mirrorDistance;

if(separation == 0.0) { radius == 0.0 ? printf("\nNo circles can be drawn through (%.4f,%.4f)",p1.x,p1.y): printf("\nInfinitely many circles can be drawn through (%.4f,%.4f)",p1.x,p1.y); }

else if(separation == 2*radius) { printf("\nGiven points are opposite ends of a diameter of the circle with center (%.4f,%.4f) and radius %.4f",(p1.x+p2.x)/2,(p1.y+p2.y)/2,radius); }

else if(separation > 2*radius) { printf("\nGiven points are farther away from each other than a diameter of a circle with radius %.4f",radius); }

else { mirrorDistance =sqrt(pow(radius,2) - pow(separation/2,2));

printf("\nTwo circles are possible."); printf("\nCircle C1 with center (%.4f,%.4f), radius %.4f and Circle C2 with center (%.4f,%.4f), radius %.4f",(p1.x+p2.x)/2 + mirrorDistance*(p1.y-p2.y)/separation,(p1.y+p2.y)/2 + mirrorDistance*(p2.x-p1.x)/separation,radius,(p1.x+p2.x)/2 - mirrorDistance*(p1.y-p2.y)/separation,(p1.y+p2.y)/2 - mirrorDistance*(p2.x-p1.x)/separation,radius); } }

int main() { int i;

point cases[] = { {0.1234, 0.9876}, {0.8765, 0.2345}, {0.0000, 2.0000}, {0.0000, 0.0000}, {0.1234, 0.9876}, {0.1234, 0.9876}, {0.1234, 0.9876}, {0.8765, 0.2345}, {0.1234, 0.9876}, {0.1234, 0.9876} };

double radii[] = {2.0,1.0,2.0,0.5,0.0};

for(i=0;i<5;i++) { printf("\nCase %d)",i+1); findCircles(cases[2*i],cases[2*i+1],radii[i]); }

return 0; } </lang>

test run:
Case 1)
Two circles are possible.
Circle C1 with center (1.8631,1.9742), radius 2.0000 and Circle C2 with center (-0.8632,-0.7521), radius 2.0000
Case 2)
Given points are opposite ends of a diameter of the circle with center (0.0000,1.0000) and radius 1.0000
Case 3)
Infinitely many circles can be drawn through (0.1234,0.9876)
Case 4)
Given points are farther away from each other than a diameter of a circle with radius 0.5000
Case 5)
No circles can be drawn through (0.1234,0.9876)

D

Translation of: Python

<lang d>import std.stdio, std.typecons, std.math;

class ValueException : Exception {

   this(string msg_) pure { super(msg_); }

}

struct V2 { double x, y; } struct Circle { double x, y, r; }

/**Following explanation at: http://mathforum.org/library/drmath/view/53027.html

  • /

Tuple!(Circle, Circle) circlesFromTwoPointsAndRadius(in V2 p1, in V2 p2, in double r) pure in {

   assert(r >= 0, "radius can't be negative");

} body {

   enum nBits = 40;
   if (r.abs < (1.0 / (2.0 ^^ nBits)))
       throw new ValueException("radius of zero");
   if (feqrel(p1.x, p2.x) >= nBits &&
       feqrel(p1.y, p2.y) >= nBits)
       throw new ValueException("coincident points give" ~
                                " infinite number of Circles");
   // Delta between points.
   immutable d = V2(p2.x - p1.x, p2.y - p1.y);
   // Distance between points.
   immutable q = sqrt(d.x ^^ 2 + d.y ^^ 2);
   if (q > 2.0 * r)
       throw new ValueException("separation of points > diameter");
   // Halfway point.
   immutable h = V2((p1.x + p2.x) / 2, (p1.y + p2.y) / 2);
   // Distance along the mirror line.
   immutable dm = sqrt(r ^^ 2 - (q / 2) ^^ 2);
   return typeof(return)(
       Circle(h.x - dm * d.y / q, h.y + dm * d.x / q, r.abs),
       Circle(h.x + dm * d.y / q, h.y - dm * d.x / q, r.abs));

}

void main() {

   foreach (immutable t; [
                tuple(V2(0.1234, 0.9876), V2(0.8765, 0.2345), 2.0),
                tuple(V2(0.0000, 2.0000), V2(0.0000, 0.0000), 1.0),
                tuple(V2(0.1234, 0.9876), V2(0.1234, 0.9876), 2.0),
                tuple(V2(0.1234, 0.9876), V2(0.8765, 0.2345), 0.5),
                tuple(V2(0.1234, 0.9876), V2(0.1234, 0.9876), 0.0)]) {
       writefln("Through points:\n  %s   %s  and radius %f\n" ~
                "You can construct the following circles:", t[]);
       try {
           writefln("  %s\n  %s\n",
                    circlesFromTwoPointsAndRadius(t[])[]);
       } catch (ValueException v)
           writefln("  ERROR: %s\n", v.msg);
   }

}</lang>

Output:
Through points:
  immutable(V2)(0.1234, 0.9876)   immutable(V2)(0.8765, 0.2345)  and radius 2.000000
You can construct the following circles:
  Circle(1.86311, 1.97421, 2)
  Circle(-0.863212, -0.752112, 2)

Through points:
  immutable(V2)(0, 2)   immutable(V2)(0, 0)  and radius 1.000000
You can construct the following circles:
  Circle(0, 1, 1)
  Circle(0, 1, 1)

Through points:
  immutable(V2)(0.1234, 0.9876)   immutable(V2)(0.1234, 0.9876)  and radius 2.000000
You can construct the following circles:
  ERROR: coincident points give infinite number of Circles

Through points:
  immutable(V2)(0.1234, 0.9876)   immutable(V2)(0.8765, 0.2345)  and radius 0.500000
You can construct the following circles:
  ERROR: separation of points > diameter

Through points:
  immutable(V2)(0.1234, 0.9876)   immutable(V2)(0.1234, 0.9876)  and radius 0.000000
You can construct the following circles:
  ERROR: radius of zero

ERRE

<lang> PROGRAM CIRCLES

! ! for rosettacode.org !

PROCEDURE CIRCLE_CENTER(X1,Y1,X2,Y2,R->MSG$)

 LOCAL D,W,X3,Y3
       D=SQR((X2-X1)^2+(Y2-Y1)^2)
       IF D=0 THEN
            MSG$="NO CIRCLES CAN BE DRAWN, POINTS ARE IDENTICAL"
            EXIT PROCEDURE
       END IF
       X3=(X1+X2)/2  Y3=(Y1+Y2)/2
       W=R^2-(D/2)^2
       IF W<0 THEN
            MSG$="NO SOLUTION"
            EXIT PROCEDURE
       END IF
       CX1=X3+SQR(W)*(Y1-Y2)/D   CY1=Y3+SQR(W)*(X2-X1)/D
       CX2=X3-SQR(W)*(Y1-Y2)/D   CY2=Y3-SQR(W)*(X2-X1)/D
       IF D=R*2 THEN
            MSG$="POINTS ARE OPPOSITE ENDS OF A DIAMETER CENTER = "+STR$(CX1)+","+STR$(CY1)
            EXIT PROCEDURE
       END IF
       IF D>R*2 THEN
            MSG$="POINTS ARE TOO FAR"
            EXIT PROCEDURE
       END IF
       IF R<=0 THEN
            MSG$="RADIUS IS NOT VALID"
            EXIT PROCEDURE
       END IF
       MSG$=STR$(CX1)+","+STR$(CY1)+" & "+STR$(CX2)+","+STR$(CY2)

END PROCEDURE

BEGIN DATA(0.1234,0.9876,0.8765,0.2345,2.0) DATA(0.0000,2.0000,0.0000,0.0000,1.0) DATA(0.1234,0.9876,0.1234,0.9876,2.0) DATA(0.1234,0.9876,0.8765,0.2345,0.5) DATA(0.1234,0.9876,0.1234,0.9876,0.0)

FOR I%=1 TO 5 DO

  READ(PX,PY,QX,QY,RADIUS)
  CIRCLE_CENTER(PX,PY,QX,QY,RADIUS->MSG$)
  PRINT(MSG$)

END FOR END PROGRAM </lang>

Fortran

<lang fortran> ! Implemented by Anant Dixit (Nov. 2014) program circles implicit none double precision :: P1(2), P2(2), R

P1 = (/0.1234d0, 0.9876d0/) P2 = (/0.8765d0,0.2345d0/) R = 2.0d0 call print_centers(P1,P2,R)

P1 = (/0.0d0, 2.0d0/) P2 = (/0.0d0,0.0d0/) R = 1.0d0 call print_centers(P1,P2,R)

P1 = (/0.1234d0, 0.9876d0/) P2 = (/0.1234d0, 0.9876d0/) R = 2.0d0 call print_centers(P1,P2,R)

P1 = (/0.1234d0, 0.9876d0/) P2 = (/0.8765d0, 0.2345d0/) R = 0.5d0 call print_centers(P1,P2,R)

P1 = (/0.1234d0, 0.9876d0/) P2 = (/0.1234d0, 0.9876d0/) R = 0.0d0 call print_centers(P1,P2,R) end program circles

subroutine print_centers(P1,P2,R) implicit none double precision :: P1(2), P2(2), R, Center(2,2) integer :: Res call test_inputs(P1,P2,R,Res) write(*,*) write(*,'(A10,F7.4,A1,F7.4)') 'Point1  : ', P1(1), ' ', P1(2) write(*,'(A10,F7.4,A1,F7.4)') 'Point2  : ', P2(1), ' ', P2(2) write(*,'(A10,F7.4)') 'Radius  : ', R if(Res.eq.1) then

 write(*,*) 'Same point because P1=P2 and r=0.'

elseif(Res.eq.2) then

 write(*,*) 'No circles can be drawn because r=0.'

elseif(Res.eq.3) then

 write(*,*) 'Infinite circles because P1=P2 for non-zero radius.'

elseif(Res.eq.4) then

 write(*,*) 'No circles with given r can be drawn because points are far apart.'

elseif(Res.eq.0) then

 call find_center(P1,P2,R,Center)
 if(Center(1,1).eq.Center(2,1) .and. Center(1,2).eq.Center(2,2)) then
   write(*,*) 'Points lie on the diameter. A single circle can be drawn.'
   write(*,'(A10,F7.4,A1,F7.4)') 'Center  : ', Center(1,1), ' ', Center(1,2)
 else
   write(*,*) 'Two distinct circles found.'
   write(*,'(A10,F7.4,A1,F7.4)') 'Center1 : ', Center(1,1), ' ', Center(1,2)
   write(*,'(A10,F7.4,A1,F7.4)') 'Center2 : ', Center(2,1), ' ', Center(2,2)
 end if

elseif(Res.lt.0) then

 write(*,*) 'Incorrect value for r.'

end if write(*,*) end subroutine print_centers

subroutine test_inputs(P1,P2,R,Res) implicit none double precision :: P1(2), P2(2), R, dist integer :: Res if(R.lt.0.0d0) then

 Res = -1
 return

elseif(R.eq.0.0d0 .and. P1(1).eq.P2(1) .and. P1(2).eq.P2(2)) then

 Res = 1
 return

elseif(R.eq.0.0d0) then

 Res = 2
 return

elseif(P1(1).eq.P2(1) .and. P1(2).eq.P2(2)) then

 Res = 3
 return

else

 dist = sqrt( (P1(1)-P2(1))**2 + (P1(2)-P2(2))**2 )
 if(dist.gt.2.0d0*R) then
   Res = 4
   return
 else
   Res = 0
   return
 end if

end if end subroutine test_inputs

subroutine find_center(P1,P2,R,Center) implicit none double precision :: P1(2), P2(2), MP(2), Center(2,2), R, dm MP = (P1+P2)/2.0d0 dm = sqrt( (P1(1)-P2(1))**2 + (P1(2)-P2(2))**2 )

Center(1,1) = MP(1) + sqrt(R**2 - (dm/2.0d0)**2)*(P2(2)-P1(2))/dm Center(1,2) = MP(2) + sqrt(R**2 - (dm/2.0d0)**2)*(P2(1)-P1(1))/dm

Center(2,1) = MP(1) - sqrt(R**2 - (dm/2.0d0)**2)*(P2(2)-P1(2))/dm Center(2,2) = MP(2) - sqrt(R**2 - (dm/2.0d0)**2)*(P2(1)-P1(1))/dm end subroutine find_center </lang>

Output:

Point1  :  0.1234  0.9876
Point2  :  0.8765  0.2345
Radius  :  2.0000
 Two distinct circles found.
Center1 : -0.8632  1.9742
Center2 :  1.8631 -0.7521


Point1  :  0.0000  2.0000
Point2  :  0.0000  0.0000
Radius  :  1.0000
 Points lie on the diameter. A single circle can be drawn.
Center  :  0.0000  1.0000


Point1  :  0.1234  0.9876
Point2  :  0.1234  0.9876
Radius  :  2.0000
 Infinite circles because P1=P2 for non-zero radius.


Point1  :  0.1234  0.9876
Point2  :  0.8765  0.2345
Radius  :  0.5000
 No circles with given r can be drawn because points are far apart.


Point1  :  0.1234  0.9876
Point2  :  0.1234  0.9876
Radius  :  0.0000
 Same point because P1=P2 and r=0.

Go

<lang go>package main

import (

   "fmt"
   "math"

)

var (

   Two  = "Two circles."
   R0   = "R==0.0 does not describe circles."
   Co   = "Coincident points describe an infinite number of circles."
   CoR0 = "Coincident points with r==0.0 describe a degenerate circle."
   Diam = "Points form a diameter and describe only a single circle."
   Far  = "Points too far apart to form circles."

)

type point struct{ x, y float64 }

func circles(p1, p2 point, r float64) (c1, c2 point, Case string) {

   if p1 == p2 {
       if r == 0 {
           return p1, p1, CoR0
       }
       Case = Co
       return
   }
   if r == 0 {
       return p1, p2, R0
   }
   dx := p2.x - p1.x
   dy := p2.y - p1.y
   q := math.Hypot(dx, dy)
   if q > 2*r {
       Case = Far
       return
   }
   m := point{(p1.x + p2.x) / 2, (p1.y + p2.y) / 2}
   if q == 2*r {
       return m, m, Diam
   }
   d := math.Sqrt(r*r - q*q/4)
   ox := d * dx / q
   oy := d * dy / q
   return point{m.x - oy, m.y + ox}, point{m.x + oy, m.y - ox}, Two

}

var td = []struct {

   p1, p2 point
   r      float64

}{

   {point{0.1234, 0.9876}, point{0.8765, 0.2345}, 2.0},
   {point{0.0000, 2.0000}, point{0.0000, 0.0000}, 1.0},
   {point{0.1234, 0.9876}, point{0.1234, 0.9876}, 2.0},
   {point{0.1234, 0.9876}, point{0.8765, 0.2345}, 0.5},
   {point{0.1234, 0.9876}, point{0.1234, 0.9876}, 0.0},

}

func main() {

   for _, tc := range td {
       fmt.Println("p1: ", tc.p1)
       fmt.Println("p2: ", tc.p2)
       fmt.Println("r: ", tc.r)
       c1, c2, Case := circles(tc.p1, tc.p2, tc.r)
       fmt.Println("  ", Case)
       switch Case {
       case CoR0, Diam:
           fmt.Println("   Center: ", c1)
       case Two:
           fmt.Println("   Center 1: ", c1)
           fmt.Println("   Center 2: ", c2)
       }
       fmt.Println()
   }

}</lang>

Output:
p1:  {0.1234 0.9876}
p2:  {0.8765 0.2345}
r:  2
   Two circles.
   Center 1:  {1.8631118016581891 1.974211801658189}
   Center 2:  {-0.8632118016581893 -0.752111801658189}

p1:  {0 2}
p2:  {0 0}
r:  1
   Points form a diameter and describe only a single circle.
   Center:  {0 1}

p1:  {0.1234 0.9876}
p2:  {0.1234 0.9876}
r:  2
   Coincident points describe an infinite number of circles.

p1:  {0.1234 0.9876}
p2:  {0.8765 0.2345}
r:  0.5
   Points too far apart to form circles.

p1:  {0.1234 0.9876}
p2:  {0.1234 0.9876}
r:  0
   Coincident points with r==0.0 describe a degenerate circle.
   Center:  {0.1234 0.9876}

Haskell

<lang Haskell>add (a, b) (x, y) = (a + x, b + y) sub (a, b) (x, y) = (a - x, b - y) magSqr (a, b) = (a ^^ 2) + (b ^^ 2) mag a = sqrt $ magSqr a mul (a, b) c = (a * c, b * c) div2 (a, b) c = (a / c, b / c) perp (a, b) = (negate b, a) norm a = a `div2` mag a

circlePoints :: (Ord a, Floating a) =>

               (a, a) -> (a, a) -> a -> Maybe ((a, a), (a, a))

circlePoints p q radius

 | radius == 0      = Nothing
 | p == q           = Nothing
 | diameter < magPQ = Nothing
 | otherwise        = Just (center1, center2)
 where
   diameter = radius * 2
   pq       = p `sub` q
   magPQ    = mag pq
   midpoint = (p `add` q) `div2` 2
   halfPQ   = magPQ / 2
   magMidC  = sqrt . abs $ (radius ^^ 2) - (halfPQ ^^ 2)
   midC     = (norm $ perp pq) `mul` magMidC
   center1  = midpoint `add` midC
   center2  = midpoint `sub` midC

uncurry3 f (a, b, c) = f a b c

main :: IO () main = mapM_ (print . uncurry3 circlePoints)

 [((0.1234, 0.9876), (0.8765, 0.2345), 2),
  ((0     , 2     ), (0     , 0     ), 1),
  ((0.1234, 0.9876), (0.1234, 0.9876), 2),
  ((0.1234, 0.9876), (0.8765, 0.2345), 0.5),
  ((0.1234, 0.9876), (0.1234, 0.1234), 0)]</lang>
Output:
Just ((-0.8632118016581896,-0.7521118016581892),(1.8631118016581893,1.974211801658189))
Just ((0.0,1.0),(0.0,1.0))
Nothing
Nothing
Nothing

Icon and Unicon

Translation of: AutoHotKey

Works in both languages. <lang unicon>procedure main()

   A := [ [0.1234, 0.9876,   0.8765, 0.2345,   2.0],
          [0.0000, 2.0000,   0.0000, 0.0000,   1.0],
          [0.1234, 0.9876,   0.1234, 0.9876,   2.0],
          [0.1234, 0.9876,   0.9765, 0.2345,   0.5],
          [0.1234, 0.9876,   0.1234, 0.9876,   0.0] ]
   every write(cCenter!!A)

end

procedure cCenter(x1,y1, x2,y2, r)

   if r <= 0 then return "Illegal radius"
   r2 := r*2
   d := ((x2-x1)^2 + (y2-y1)^2)^0.5
   if d = 0 then return "Identical points, infinite number of circles"
   if d > r2 then return "No circles possible"
   z   := (r^2-(d/2.0)^2)^0.5
   x3  := (x1+x2)/2.0;     y3 := (y1+y2)/2.0
   cx1 := x3+z*(y1-y2)/d; cy1 := y3+z*(x2-x1)/d
   cx2 := x3-z*(y1-y2)/d; cy2 := y3-z*(x2-x1)/d
   if d = r2 then return "Single circle at ("||cx1||","||cy1||")"
   return "("||cx1||","||cy1||") and ("||cx2||","||cy2||")"

end</lang>

Output:
->cgr
(1.863111801658189,1.974211801658189) and (-0.8632118016581896,-0.7521118016581892)
Single circle at (0.0,1.0)
Identical points, infinite number of circles
No circles possible
Illegal radius
->

J

2D computations are often easier using the complex plane. <lang J> [INPUT =: _5]\0.1234, 0.9876 0.8765, 0.2345 2.0 0.0000, 2.0000 0.0000, 0.0000 1.0 0.1234, 0.9876 0.1234, 0.9876 2.0 0.1234, 0.9876 0.8765, 0.2345 0.5 0.1234, 0.9876 0.1234, 0.9876 0.0

average =: +/ % #

circles =: verb define"1

'P0 P1 R' =. (j./"1)_2[\y NB. Use complex plane
C =. P0 average@:, P1
BAD =: ":@:+. C
SEPARATION =. P0 |@- P1
if. 0 = SEPARATION do.
 if. 0 = R do. 'Degenerate point at ' , BAD
 else. 'Any center at a distance ' , (":R) , ' from ' , BAD , ' works.'
 end.
elseif. SEPARATION (> +:) R do. 'No solutions.'
elseif. SEPARATION (= +:) R do. 'Duplicate solutions with center at ' , BAD
elseif. 1 do.
 ORTHOGONAL_DISTANCE =. R * 1 o. _2 o. R %~ | C - P0
 UNIT =: P1 *@:- P0
 OFFSETS =: ORTHOGONAL_DISTANCE * UNIT * j. _1 1
 C +.@:+ OFFSETS
end.

)

  ('x0 y0 x1 y1 r' ; 'center'),(;circles)"1 INPUT

┌───────────────────────────────┬────────────────────────────────────────────────────┐ │x0 y0 x1 y1 r │center │ ├───────────────────────────────┼────────────────────────────────────────────────────┤ │0.1234 0.9876 0.8765 0.2345 2 │_0.863212 _0.752112 │ │ │ 1.86311 1.97421 │ ├───────────────────────────────┼────────────────────────────────────────────────────┤ │0 2 0 0 1 │Duplicate solutions with center at 0 1 │ ├───────────────────────────────┼────────────────────────────────────────────────────┤ │0.1234 0.9876 0.1234 0.9876 2 │Any center at a distance 2 from 0.1234 0.9876 works.│ ├───────────────────────────────┼────────────────────────────────────────────────────┤ │0.1234 0.9876 0.8765 0.2345 0.5│No solutions. │ ├───────────────────────────────┼────────────────────────────────────────────────────┤ │0.1234 0.9876 0.1234 0.9876 0 │Degenerate point at 0.1234 0.9876 │ └───────────────────────────────┴────────────────────────────────────────────────────┘ </lang>

Maxima

<lang Maxima>/* define helper function */ vabs(a):= sqrt(a.a); realp(e):=freeof(%i, e);

/* get a general solution */ sol: block(

 [p1: [x1, y1], p2: [x2, y2], c:  [x0, y0], eq],
 local(r),
 eq: [vabs(p1-c) = r, vabs(p2-c) = r],
 load(to_poly_solve),
 assume(r>0),
 args(to_poly_solve(eq, c, use_grobner = true)))$

/* use general solution for concrete case */ getsol(sol, x1, y1, x2, y2, r):=block([n, lsol],

 if [x1, y1]=[x2, y2] then (
   print("infinity many solutions"),
   return('infmany)),
 lsol: sublist(sol, 'realp),
 n: length(lsol),
 if n=0 then (
   print("no solutions"),
   [])
 else if n=1 then (
   print("single solution"),
   lsol[1])
 else if [assoc('x0, lsol[1]), assoc('y0, lsol[1])]=[assoc('x0, lsol[2]), assoc('y0, lsol[2])] then (
   print("single solution"),
   lsol[1])
 else (
   print("two solutions"),
   lsol))$

/* [x1, y1, x2, y2, r] */ d[1]: [0.1234, 0.9876, 0.8765, 0.2345, 2]; d[2]: [0.0000, 2.0000, 0.0000, 0.0000, 1]; d[3]: [0, 0, 0, 1, 0.4]; d[4]: [0, 0, 0, 0, 0.4];

apply('getsol, cons(sol, d[1])); apply('getsol, cons(sol, d[2])); apply('getsol, cons(sol, d[3])); apply('getsol, cons(sol, d[4]));</lang>

Output:

<lang>apply('getsol, cons(sol, d[1])); two solutions (%o9) [[x0 = 1.86311180165819, y0 = 1.974211801658189],

                           [x0 = - 0.86321180165819, y0 = - 0.75211180165819]]

(%i10) apply('getsol, cons(sol, d[2])); single solution (%o10) [x0 = 0.0, y0 = 1.0] (%i11) apply('getsol, cons(sol, d[3])); no solutions (%o11) [] (%i12) apply('getsol, cons(sol, d[4])); infinity many solutions (%o12) infmany</lang>

МК-61/52

<lang>П0 С/П П1 С/П П2 С/П П3 С/П П4 ИП2 ИП0 - x^2 ИП3 ИП1 - x^2 + КвКор П5 ИП0 ИП2 + 2 / П6 ИП1 ИП3 + 2 / П7 ИП4 x^2 ИП5 2 / x^2 - КвКор ИП5 / П8 ИП6 ИП1 ИП3 - ИП8 * П9 + ПA ИП6 ИП9 - ПC ИП7 ИП2 ИП0 - ИП8 * П9 + ПB ИП7 ИП9 - ПD ИП5 x#0 97 8 4 ИНВ С/П ИП4 2 * ИП5 - ПE x#0 97 ИПB ИПA 8 5 ИНВ С/П ИПE x>=0 97 8 3 ИНВ С/П ИПD ИПC ИПB ИПA С/П</lang>

Input:
 В/О x1 С/П y1 С/П x2 С/П y2 С/П radius С/П
Output:
"8.L" if the points are coincident; "8.-" if the points are opposite ends of a diameter of the circle, РY and РZ are coordinates of the center; "8.Г" if the points are farther away from each other than a diameter of a circle; else РX, РY and РZ, РT are coordinates of the circles centers.

Nim

Translation of: Python

<lang nim>import math

type

 Point = tuple[x, y: float]
 Circle = tuple[x, y, r: float]

proc circles(p1, p2: Point, r: float): tuple[c1, c2: Circle] =

 if r == 0: raise newException(EInvalidValue,
   "radius of zero")
 if p1 == p2: raise newException(EInvalidValue,
   "coincident points gives infinite number of Circles")
 # delta x, delta y between points
 let (dx, dy) = (p2.x - p1.x, p2.y - p1.y)
 # dist between points
 let q = sqrt(dx*dx + dy*dy)
 if q > 2.0*r: raise newException(EInvalidValue,
   "separation of points > diameter")
 # halfway point
 let p3: Point = ((p1.x+p2.x)/2, (p1.y+p2.y)/2)
 # distance along the mirror line
 let d = sqrt(r*r - (q/2)*(q/2))
 # One answer
 result.c1 = (p3.x - d*dy/q, p3.y + d*dx/q, abs(r))
 # The other answer
 result.c2 = (p3.x + d*dy/q, p3.y - d*dx/q, abs(r))

const tries: seq[tuple[p1, p2: Point, r: float]] =

 @[((0.1234, 0.9876), (0.8765, 0.2345), 2.0),
   ((0.0000, 2.0000), (0.0000, 0.0000), 1.0),
   ((0.1234, 0.9876), (0.1234, 0.9876), 2.0),
   ((0.1234, 0.9876), (0.8765, 0.2345), 0.5),
   ((0.1234, 0.9876), (0.1234, 0.9876), 0.0)]

for p1, p2, r in tries.items:

 echo "Through points:"
 echo "  ", p1
 echo "  ", p2
 echo "  and radius ", r
 echo "You can construct the following circles:"
 try:
   let (c1, c2) = circles(p1, p2, r)
   echo "  ", c1
   echo "  ", c2
 except EInvalidValue:
   echo "  ERROR: ", getCurrentExceptionMsg()
 echo ""</lang>
Output:
Through points:
  (x: 0.1234, y: 0.9876)
  (x: 0.8764999999999999, y: 0.2345)
  and radius 2.0
You can construct the following circles:
  (x: 1.863111801658189, y: 1.974211801658189, r: 2.0)
  (x: -0.8632118016581896, y: -0.7521118016581892, r: 2.0)

Through points:
  (x: 0.0, y: 2.0)
  (x: 0.0, y: 0.0)
  and radius 1.0
You can construct the following circles:
  (x: 0.0, y: 1.0, r: 1.0)
  (x: 0.0, y: 1.0, r: 1.0)

Through points:
  (x: 0.1234, y: 0.9876)
  (x: 0.1234, y: 0.9876)
  and radius 2.0
You can construct the following circles:
  ERROR: coincident points gives infinite number of Circles

Through points:
  (x: 0.1234, y: 0.9876)
  (x: 0.8764999999999999, y: 0.2345)
  and radius 0.5
You can construct the following circles:
  ERROR: separation of points > diameter

Through points:
  (x: 0.1234, y: 0.9876)
  (x: 0.1234, y: 0.9876)
  and radius 0.0
You can construct the following circles:
  ERROR: radius of zero

ooRexx

Translation of: REXX

<lang oorexx>/*REXX pgm finds 2 circles with a specific radius given two (X,Y) points*/

 a.=
 a.1=0.1234 0.9876 0.8765 0.2345 2
 a.2=0.0000 2.0000 0.0000 0.0000 1
 a.3=0.1234 0.9876 0.1234 0.9876 2
 a.4=0.1234 0.9876 0.8765 0.2345 0.5
 a.5=0.1234 0.9876 0.1234 0.9876 0
 Say '     x1      y1      x2      y2  radius   cir1x   cir1y   cir2x   cir2y'
 Say ' ------  ------  ------  ------  ------  ------  ------  ------  ------'
 Do j=1 By 1 While a.j<>
   Do k=1 For 4
     w.k=f(word(a.j,k))
     End
   Say w.1 w.2 w.3 w.4 format(word(a.j,5),5,1)  twocircles(a.j)
   End
 Exit

twocircles: Procedure

 Parse Arg px py qx qy r .
 If r=0 Then
   Return ' radius of zero gives no circles.'
 x=(qx-px)/2
 y=(qy-py)/2
 bx=px+x
 by=py+y
 pb=rxCalcsqrt(x**2+y**2)
 If pb=0 Then
   Return ' coincident points give infinite circles'
 If pb>r Then
   Return ' points are too far apart for the given radius'
 cb=rxCalcsqrt(r**2-pb**2)
 x1=y*cb/pb
 y1=x*cb/pb
 Return f(bx-x1) f(by+y1) f(bx+x1) f(by-y1)

f: Return format(arg(1),2,4) /* format a number with 4 dec dig.*/

requires 'rxMath' library</lang>
Output:
     x1      y1      x2      y2  radius   cir1x   cir1y   cir2x   cir2y
 ------  ------  ------  ------  ------  ------  ------  ------  ------
 0.1234  0.9876  0.8765  0.2345     2.0  1.8631  1.9742 -0.8632 -0.7521
 0.0000  2.0000  0.0000  0.0000     1.0  0.0000  1.0000  0.0000  1.0000
 0.1234  0.9876  0.1234  0.9876     2.0  coincident points give infinite circles
 0.1234  0.9876  0.8765  0.2345     0.5  points are too far apart for the given radius
 0.1234  0.9876  0.1234  0.9876     0.0  radius of zero gives no circles.

PARI/GP

<lang parigp>circ(a, b, r)={

 if(a==b, return("impossible"));
 my(h=(b-a)/2,t=sqrt(r^2-abs(h)^2)/abs(h)*h);
 [a+h+t*I,a+h-t*I]

}; circ(0.1234 + 0.9876*I, 0.8765 + 0.2345*I, 2) circ(0.0000 + 2.0000*I, 0.0000 + 0.0000*I, 1) circ(0.1234 + 0.9876*I, 0.1234 + 0.9876*I, 2) circ(0.1234 + 0.9876*I, 0.8765 + 0.2345*I, .5) circ(0.1234 + 0.9876*I, 0.1234 + 0.9876*I, 0)</lang>

Output:
%1 = [1.86311180 + 1.97421180*I, -0.863211802 - 0.752111802*I]
%2 = [0.E-9 + 1.00000000*I, 0.E-9 + 1.00000000*I]
%3 = "impossible"
%4 = [0.370374144 + 0.740625856*I, 0.629525856 + 0.481474144*I]
%5 = "impossible"

Perl 6

<lang Perl6>sub circles(@A, @B where (not [and] @A Z== @B), $radius where * > 0) {

   my @middle = .5 X* (@A Z+ @B);
   my @diff = @A Z- @B;
   my @orth = -@diff[1], @diff[0] X/
   2 * tan asin 2*$radius R/ sqrt [+] @diff X**2;
   return (@middle Z+ @orth).item, (@middle Z- @orth).item;

}

my @input = \([0.1234, 0.9876], [0.8765, 0.2345], 2.0), \([0.0000, 2.0000], [0.0000, 0.0000], 1.0), \([0.1234, 0.9876], [0.1234, 0.9876], 2.0), \([0.1234, 0.9876], [0.8765, 0.2345], 0.5), \([0.1234, 0.9876], [0.1234, 0.9876], 0.0),

for @input -> $input {

   say $input.perl, ": ",
   try { say join " and ", circles(|$input) }

}</lang>

Output:
-0.863211801658189 -0.752111801658189 and 1.86311180165819 1.97421180165819
-6.12323399573677e-17 1 and 6.12323399573677e-17 1
NaN NaN and NaN NaN

Another possibility is to use the Complex plane, for it often makes calculations easier with plane geometry:

<lang perl6>sub circles($a, $b where $b != $a, $r) {

   my $h = ($b - $a)/2;
   my $l = sqrt($r**2 - $h.abs**2);
   return map { $a + $h + $l * $_ * $h/$h.abs },
   i, -i;

}

my @input = \(0.1234 + 0.9876i, 0.8765 + 0.2345i, 2.0), \(0.0000 + 2.0000i, 0.0000 + 0.0000i, 1.0), \(0.1234 + 0.9876i, 0.1234 + 0.9876i, 2.0), \(0.1234 + 0.9876i, 0.8765 + 0.2345i, 0.5), \(0.1234 + 0.9876i, 0.1234 + 0.9876i, 0.0),

</lang>

PL/I

Translation of: REXX
<lang PL/I>twoci: Proc Options(main);
Dcl 1 *(5),
     2 m1x Dec Float Init(0.1234,     0,0.1234,0.1234,0.1234),
     2 m1y Dec Float Init(0.9876,     2,0.9876,0.9876,0.9876),
     2 m2x Dec Float Init(0.8765,     0,0.1234,0.8765,0.1234),
     2 m2y Dec Float Init(0.2345,     0,0.9876,0.2345,0.9876),
     2 r   Dec Float Init(     2,     1,     2,0.5   ,     0);
Dcl i Bin Fixed(31);
Put Edit('     x1     y1     x2     y2  r '||
         '  cir1x   cir1y   cir2x   cir2y')(Skip,a);
Put Edit(' ====== ====== ====== ======  = '||
         ' ======  ======  ======  ======')(Skip,a);
Do i=1 To 5;
  Put Edit(m1x(i),m1y(i),m2x(i),m2y(i),r(i))
          (Skip,4(f(7,4)),f(3));
  Put Edit(twocircles(m1x(i),m1y(i),m2x(i),m2y(i),r(i)))(a);
  End;
twoCircles: proc(m1x,m1y,m2x,m2y,r) Returns(Char(50) Var);
Dcl (m1x,m1y,m2x,m2y,r) Dec Float;
Dcl (cx,cy,bx,by,pb,x,y,x1,y1) Dec Float;
Dcl res Char(50) Var;
If r=0 then return(' radius of zero gives no circles.');
x=(m2x-m1x)/2;
y=(m2y-m1y)/2;
bx=m1x+x;
by=m1y+y;
pb=sqrt(x**2+y**2);
cx=(m2x-m1x)/2;
cy=(m2y-m1y)/2;
bx=m1x+x;
by=m1y+y;
pb=sqrt(x**2+y**2)
if pb=0 then return(' coincident points give infinite circles');
if pb>r then return(' points are too far apart for the given radius');
cb=sqrt(r**2-pb**2);
x1=y*cb/pb;
y1=x*cb/pb
Put String(res) Edit((bx-x1),(by+y1),(bx+x1),(by-y1))(4(f(8,4)));
Return(res);
End;
End;</lang>    
Output:
     x1     y1     x2     y2  r   cir1x   cir1y   cir2x   cir2y
 ====== ====== ====== ======  =  ======  ======  ======  ======
 0.1234 0.9876 0.8765 0.2345  2  1.8631  1.9742 -0.8632 -0.7521
 0.0000 2.0000 0.0000 0.0000  1  0.0000  1.0000  0.0000  1.0000
 0.1234 0.9876 0.1234 0.9876  2 coincident points give infinite circles
 0.1234 0.9876 0.8765 0.2345  1 points are too far apart for the given radius
 0.1234 0.9876 0.1234 0.9876  0 radius of zero gives no circles.                     

Python

The function raises the ValueError exception for the special cases and uses try - except to catch these and extract the exception detail.

<lang python>from collections import namedtuple from math import sqrt

Pt = namedtuple('Pt', 'x, y') Circle = Cir = namedtuple('Circle', 'x, y, r')

def circles_from_p1p2r(p1, p2, r):

   'Following explanation at http://mathforum.org/library/drmath/view/53027.html'
   if r == 0.0:
       raise ValueError('radius of zero')
   (x1, y1), (x2, y2) = p1, p2
   if p1 == p2:
       raise ValueError('coincident points gives infinite number of Circles')
   # delta x, delta y between points
   dx, dy = x2 - x1, y2 - y1
   # dist between points
   q = sqrt(dx**2 + dy**2)
   if q > 2.0*r:
       raise ValueError('separation of points > diameter')
   # halfway point
   x3, y3 = (x1+x2)/2, (y1+y2)/2
   # distance along the mirror line
   d = sqrt(r**2-(q/2)**2)
   # One answer
   c1 = Cir(x = x3 - d*dy/q,
            y = y3 + d*dx/q,
            r = abs(r))
   # The other answer
   c2 = Cir(x = x3 + d*dy/q,
            y = y3 - d*dx/q,
            r = abs(r))
   return c1, c2

if __name__ == '__main__':

   for p1, p2, r in [(Pt(0.1234, 0.9876), Pt(0.8765, 0.2345), 2.0),
                     (Pt(0.0000, 2.0000), Pt(0.0000, 0.0000), 1.0),
                     (Pt(0.1234, 0.9876), Pt(0.1234, 0.9876), 2.0),
                     (Pt(0.1234, 0.9876), Pt(0.8765, 0.2345), 0.5),
                     (Pt(0.1234, 0.9876), Pt(0.1234, 0.9876), 0.0)]:
       print('Through points:\n  %r,\n  %r\n  and radius %f\nYou can construct the following circles:'
             % (p1, p2, r))
       try:
           print('  %r\n  %r\n' % circles_from_p1p2r(p1, p2, r))
       except ValueError as v:
           print('  ERROR: %s\n' % (v.args[0],))</lang>
Output:
Through points:
  Pt(x=0.1234, y=0.9876),
  Pt(x=0.8765, y=0.2345)
  and radius 2.000000
You can construct the following circles:
  Circle(x=1.8631118016581893, y=1.974211801658189, r=2.0)
  Circle(x=-0.8632118016581896, y=-0.7521118016581892, r=2.0)

Through points:
  Pt(x=0.0, y=2.0),
  Pt(x=0.0, y=0.0)
  and radius 1.000000
You can construct the following circles:
  Circle(x=0.0, y=1.0, r=1.0)
  Circle(x=0.0, y=1.0, r=1.0)

Through points:
  Pt(x=0.1234, y=0.9876),
  Pt(x=0.1234, y=0.9876)
  and radius 2.000000
You can construct the following circles:
  ERROR: coincident points gives infinite number of Circles

Through points:
  Pt(x=0.1234, y=0.9876),
  Pt(x=0.8765, y=0.2345)
  and radius 0.500000
You can construct the following circles:
  ERROR: separation of points > diameter

Through points:
  Pt(x=0.1234, y=0.9876),
  Pt(x=0.1234, y=0.9876)
  and radius 0.000000
You can construct the following circles:
  ERROR: radius of zero


Racket

Using library `plot/utils` for simple vector operations.

<lang racket>

  1. lang racket

(require plot/utils)

(define (circle-centers p1 p2 r)

 (when (zero? r) (err "zero radius."))
 (when (equal? p1 p2) (err "the points coinside."))
 ; the midle point
 (define m (v/ (v+ p1 p2) 2))
 ; the vector connecting given points
 (define d (v/ (v- p1 p2) 2))
 ; the distance between the center of the circle and the middle point
 (define ξ (- (sqr r) (vmag^2 d)))
 (when (negative? ξ) (err "given radius is less then the distance between points."))
 ; the unit vector orthogonal to the delta
 (define n (vnormalize (orth d)))
 ; the shift along the direction orthogonal to the delta
 (define x (v* n (sqrt ξ)))
 (values (v+ m x) (v- m x)))
error message

(define (err m) (error "Impossible to build a circle:" m))

returns a vector which is orthogonal to the geven one

(define orth (match-lambda [(vector x y) (vector y (- x))])) </lang>

Testing:
> (circle-centers #(0.1234 0.9876) #(0.8765 0.2345) 2.0)
'#(1.8631118016581893 1.974211801658189)
'#(-0.8632118016581896 -0.7521118016581892)

> (circle-centers #(0.0000 2.0000) #(0.0000 0.0000) 1.0)
'#(0.0 1.0)
'#(0.0 1.0)

> (circle-centers #(0.1234 0.9876) #(0.1234 0.9876) 2.0)
. . Impossible to find a circle: "the points coinside."

> (circle-centers #(0.1234 0.9876) #(0.8765 0.2345) 0.5)
. . Impossible to find a circle: "given radius is less then the distance between points."

> (circle-centers #(0.1234 0.9876) #(0.1234 0.9876) 0.0)
. . Impossible to find a circle: "zero radius."

Drawing circles:

<lang racket> (require 2htdp/image)

(define/match (point v)

 [{(vector x y)} (λ (s) (place-image (circle 2 "solid" "black") x y s))])

(define/match (circ v r)

 [{(vector x y) r} (λ (s) (place-image (circle r "outline" "red") x y s))])

(define p1 #(40 50)) (define p2 #(60 30)) (define r 20) (define-values (x1 x2) (circle-centers p1 p2 r))

((compose (point p1) (point p2) (circ x1 r) (circ x2 r))

(empty-scene 100 100))

</lang>

REXX

Translation of: XPL0

<lang rexx>/*REXX pgm finds 2 circles with a specific radius given two (X,Y) points*/ @. = @.1 = 0.1234 0.9876 0.8765 0.2345 2 @.2 = 0 2 0 0 1 @.3 = 0.1234 0.9876 0.1234 0.9876 2 @.4 = 0.1234 0.9876 0.8765 0.2345 0.5 @.5 = 0.1234 0.9876 0.1234 0.9876 0 say ' x1 y1 x2 y2 radius circle1x circle1y circle2x circle2y' say ' ──────── ──────── ──────── ──────── ────── ──────── ──────── ──────── ────────'

     do  j=1  while  @.j\==         /*process all given points&radius*/
        do k=1  for 4;  w.k=f(word(@.j,k))   /*format # with 4 dec digs*/
        end   /*k*/
     say w.1 w.2 w.3 w.4 center(word(@.j,5)/1,9)  "───► " twoCircles(@.j)
     end      /*j*/

exit /*stick a fork in it, we're done.*/ /*──────────────────────────────────F subroutine────────────────────────*/ f: return right(format(arg(1),,4),9) /*format a # with 4 decimal digs.*/ /*──────────────────────────────────SQRT subroutine─────────────────────*/ sqrt: procedure; parse arg x; if x=0 then return 0; d=digits(); numeric digits 11 numeric form; m.=11; p=d+d%4+2; parse value format(x,2,1,,0) 'E0' with g 'E' _ . g=g*.5'E'_%2; do j=0 while p>9; m.j=p; p=p%2+1; end

do k=j+5 to 0 by -1; if m.k>11 then numeric digits m.k; g=.5*(g+x/g); end

numeric digits d; return g/1 /*──────────────────────────────────TWOCIRCLES subroutine───────────────*/ twoCircles: procedure; parse arg px py qx qy r . x=(qx-px)/2; y=(qy-py)/2; bx=px+x; by=py+y; pb=sqrt(x**2+y**2) if r=0 then return 'radius of zero gives no circles' if pb=0 then return 'coincident points give infinite circles' if pb>r then return 'points are too far apart for the given radius' cb=sqrt(r**2-pb**2); x1=y*cb/pb; y1=x*cb/pb return f(bx-x1) f(by+y1) f(bx+x1) f(by-y1)</lang>

Output:

when using the default inputs

     x1        y1        x2        y2     radius          circle1x  circle1y  circle2x  circle2y
  ────────  ────────  ────────  ────────  ──────          ────────  ────────  ────────  ────────
   0.1234    0.9876    0.8765    0.2345     2     ───►     1.8631    1.9742   -0.8632   -0.7521
   0.0000    2.0000    0.0000    0.0000     1     ───►     0.0000    1.0000    0.0000    1.0000
   0.1234    0.9876    0.1234    0.9876     2     ───►  coincident points give infinite circles
   0.1234    0.9876    0.8765    0.2345    0.5    ───►  points are too far apart for the given radius
   0.1234    0.9876    0.1234    0.9876     0     ───►  radius of zero gives no circles

Ruby

Translation of: Python

<lang ruby>Pt = Struct.new(:x, :y) Circle = Struct.new(:x, :y, :r)

def circles_from(pt1, pt2, r)

 raise ArgumentError, "Infinite number of circles, points coincide." if pt1 == pt2 && r > 0
 # handle single point and r == 0
 return [Circle.new(pt1.x, pt1.y, r)] if pt1 == pt2 && r == 0
 dx, dy = pt2.x - pt1.x, pt2.y - pt1.y
 # distance between points
 q = Math.hypot(dx, dy)
 # Also catches pt1 != pt2 && r == 0
 raise ArgumentError, "Distance of points > diameter." if q > 2.0*r
 # halfway point
 x3, y3 = (pt1.x + pt2.x)/2.0, (pt1.y + pt2.y)/2.0
 d = (r**2 - (q/2)**2)**0.5
 [Circle.new(x3 - d*dy/q, y3 + d*dx/q, r),
  Circle.new(x3 + d*dy/q, y3 - d*dx/q, r)].uniq

end

  1. Demo:

ar = [[Pt.new(0.1234, 0.9876), Pt.new(0.8765, 0.2345), 2.0],

     [Pt.new(0.0000, 2.0000), Pt.new(0.0000, 0.0000), 1.0],
     [Pt.new(0.1234, 0.9876), Pt.new(0.1234, 0.9876), 2.0],
     [Pt.new(0.1234, 0.9876), Pt.new(0.8765, 0.2345), 0.5],
     [Pt.new(0.1234, 0.9876), Pt.new(0.1234, 0.9876), 0.0]]

ar.each do |p1, p2, r|

 print "Given points:\n  #{p1.values},\n  #{p2.values}\n  and radius #{r}\n"
 begin
   circles = circles_from(p1, p2, r)
   puts "You can construct the following circles:"
   circles.each{|c| puts "  #{c}"}
 rescue ArgumentError => e
   puts e
 end
 puts

end</lang>

Output:
Given points:
  [0.1234, 0.9876],
  [0.8765, 0.2345]
  and radius 2.0
You can construct the following circles:
  #<struct Circle x=1.8631118016581891, y=1.974211801658189, r=2.0>
  #<struct Circle x=-0.8632118016581893, y=-0.752111801658189, r=2.0>

Given points:
  [0.0, 2.0],
  [0.0, 0.0]
  and radius 1.0
You can construct the following circles:
  #<struct Circle x=0.0, y=1.0, r=1.0>

Given points:
  [0.1234, 0.9876],
  [0.1234, 0.9876]
  and radius 2.0
Infinite number of circles, points coincide.

Given points:
  [0.1234, 0.9876],
  [0.8765, 0.2345]
  and radius 0.5
Distance of points > diameter.

Given points:
  [0.1234, 0.9876],
  [0.1234, 0.9876]
  and radius 0.0
You can construct the following circles:
  #<struct Circle x=0.1234, y=0.9876, r=0.0>

Rust

Translation of: C

<lang rust>use std::fmt;

struct Point {

   x: f64,
   y: f64

}

impl Point { fn new(x : f64, y : f64) -> Point{ Point{x : x, y : y} } fn distance (&self, p : Point) -> f64{ ( (self.x - p.x).powi(2) + (self.y - p.y).powi(2) ).sqrt() } }

impl fmt::Show for Point { // a Point become printable in console

   fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
       write!(f, "({:.4f}, {:.4f})", self.x, self.y)
   }

}

fn is_circle(p1 : Point, p2 : Point, radius : f64){ let separation = p1.distance(p2);

if separation == 0.0 { if radius == 0.0 { println!("No circles can be drawn through {}", p1); } else { println!("Infinitely many circles can be drawn through {}", p1); } } else if separation == 2.0 * radius { println!("Given points are opposite ends of a diameter of the circle with center ({:.4f},{:.4f}) and radius {:.4f}",(p1.x+p2.x) / 2.0, (p1.y+p2.y) / 2.0, radius); } else if separation > 2.0 * radius { println!("Given points are farther away from each other than a diameter of a circle with radius {:.4f}", radius); } else { let mirror_distance = (radius.powi(2) - (separation / 2.0).powi(2)).sqrt();

println!("Two circles are possible."); println!("Circle C1 with center ({:.4f}, {:.4f}), radius {:.4f} and Circle C2 with center ({:.4f}, {:.4f}), radius {:.4f}", ((p1.x + p2.x) / 2.0) + mirror_distance * (p1.y-p2.y)/separation, (p1.y+p2.y) / 2.0 + mirror_distance*(p2.x-p1.x)/separation, radius, (p1.x+p2.x) / 2.0 - mirror_distance*(p1.y-p2.y)/separation, (p1.y+p2.y) / 2.0 - mirror_distance*(p2.x-p1.x)/separation, radius); } }

fn main() { let points : Vec<(Point, Point)> = vec!( (Point::new(0.1234, 0.9876), Point::new(0.8765, 0.2345)), (Point::new(0.0000, 2.0000), Point::new(0.0000, 0.0000)), (Point::new(0.1234, 0.9876), Point::new(0.1234, 0.9876)), (Point::new(0.1234, 0.9876), Point::new(0.8765, 0.2345)), (Point::new(0.1234, 0.9876), Point::new(0.1234, 0.9876)) ); let radii : Vec<f64> = vec!(2.0, 1.0, 2.0, 0.5, 0.0);

for (p, &r) in points.iter().zip(radii.iter()) { println!("\nPoints : {} \t Radius : {:.4f}", p, r); is_circle(p.val0(), p.val1(), r); } }</lang>

Output:
Points : ((0.1234, 0.9876), (0.8765, 0.2345)) 	 Radius : 2.0000
Two circles are possible.
Circle C1 with center (1.8631, 1.9742), radius 2.0000 and Circle C2 with center (-0.8632, -0.7521), radius 2.0000

Points : ((0.0000, 2.0000), (0.0000, 0.0000)) 	 Radius : 1.0000
Given points are opposite ends of a diameter of the circle with center (0.0000,1.0000) and radius 1.0000

Points : ((0.1234, 0.9876), (0.1234, 0.9876)) 	 Radius : 2.0000
Infinitely many circles can be drawn through (0.1234, 0.9876)

Points : ((0.1234, 0.9876), (0.8765, 0.2345)) 	 Radius : 0.5000
Given points are farther away from each other than a diameter of a circle with radius 0.5000

Points : ((0.1234, 0.9876), (0.1234, 0.9876)) 	 Radius : 0.0000
No circles can be drawn through (0.1234, 0.9876)

Seed7

<lang seed7>$ include "seed7_05.s7i";

 include "float.s7i";
 include "math.s7i";

const type: point is new struct

   var float: x is 0.0;
   var float: y is 0.0;
 end struct;

const func point: point (in float: x, in float: y) is func

 result
   var point: aPoint is point.value;
 begin
   aPoint.x := x;
   aPoint.y := y;
 end func;

const func float: distance (in point: p1, in point: p2) is

 return sqrt((p1.x - p2.x) ** 2 + (p1.y - p2.y) ** 2);

const proc: findCircles (in point: p1, in point: p2, in float: radius) is func

 local
   var float: separation is 0.0;
   var float: mirrorDistance is 0.0;
 begin
   separation := distance(p1, p2);
   if separation = 0.0 then
     if radius = 0.0 then
       write("Radius of zero. No circles can be drawn through (");
     else
       write("Infinitely many circles can be drawn through (");
     end if;
     writeln(p1.x digits 4 <& ", " <& p1.y digits 4 <& ")");
   elsif separation = 2.0 * radius then
     writeln("Given points are opposite ends of a diameter of the circle with center (" <&
             (p1.x + p2.x) / 2.0 digits 4 <& ", " <& (p1.y + p2.y) / 2.0 digits 4 <& ") and radius " <&
             radius digits 4); 
   elsif separation > 2.0 * radius then
     writeln("Given points are farther away from each other than a diameter of a circle with radius " <&
             radius digits 4);
   else
     mirrorDistance := sqrt(radius ** 2 - (separation / 2.0) ** 2);
     writeln("Two circles are possible.");
     writeln("Circle C1 with center (" <&
             (p1.x + p2.x) / 2.0 + mirrorDistance*(p1.y - p2.y) / separation digits 4 <& ", " <&
             (p1.y + p2.y) / 2.0 + mirrorDistance*(p2.x - p1.x) / separation digits 4 <& "), radius " <&
             radius digits 4);
     writeln("Circle C2 with center (" <&
             (p1.x + p2.x) / 2.0 - mirrorDistance*(p1.y - p2.y) / separation digits 4 <& ", " <&
             (p1.y + p2.y) / 2.0 - mirrorDistance*(p2.x - p1.x) / separation digits 4 <& "), radius " <&
             radius digits 4);
   end if;
 end func;

const proc: main is func

 local
   const array array float: cases is [] (
       [] (0.1234, 0.9876, 0.8765, 0.2345, 2.0),
       [] (0.0000, 2.0000, 0.0000, 0.0000, 1.0),
       [] (0.1234, 0.9876, 0.1234, 0.9876, 2.0),
       [] (0.1234, 0.9876, 0.8765, 0.2345, 0.5),
       [] (0.1234, 0.9876, 0.1234, 0.9876, 0.0));
   var integer: index is 0;
 begin
   for index range 1 to 5 do
     writeln("Case " <& index <& ":");
     findCircles(point(cases[index][1], cases[index][2]),
                 point(cases[index][3], cases[index][4]), cases[index][5]);
   end for;
 end func;</lang>
Output:
Case 1:
Two circles are possible.
Circle C1 with center (1.8631, 1.9742), radius 2.0000
Circle C2 with center (-0.8632, -0.7521), radius 2.0000
Case 2:
Given points are opposite ends of a diameter of the circle with center (0.0000, 1.0000) and radius 1.0000
Case 3:
Infinitely many circles can be drawn through (0.1234, 0.9876)
Case 4:
Given points are farther away from each other than a diameter of a circle with radius 0.5000
Case 5:
Radius of zero. No circles can be drawn through (0.1234, 0.9876)

Tcl

Translation of: Python

<lang tcl>proc findCircles {p1 p2 r} {

   lassign $p1 x1 y1
   lassign $p2 x2 y2
   # Special case: coincident & zero size
   if {$x1 == $x2 && $y1 == $y2 && $r == 0.0} {

return [list [list $x1 $y1 0.0]]

   }
   if {$r <= 0.0} {

error "radius must be positive for sane results"

   }
   if {$x1 == $x2 && $y1 == $y2} {

error "no sane solution: points are coincident"

   }
   # Calculate distance apart and separation vector
   set dx [expr {$x2 - $x1}]
   set dy [expr {$y2 - $y1}]
   set q [expr {hypot($dx, $dy)}]
   if {$q > 2*$r} {

error "no solution: points are further apart than required diameter"

   }
   # Calculate midpoint
   set x3 [expr {($x1+$x2)/2.0}]
   set y3 [expr {($y1+$y2)/2.0}]
   # Fractional distance along the mirror line
   set f [expr {($r**2 - ($q/2.0)**2)**0.5 / $q}]
   # The two answers
   set c1 [list [expr {$x3 - $f*$dy}] [expr {$y3 + $f*$dx}] $r]
   set c2 [list [expr {$x3 + $f*$dy}] [expr {$y3 - $f*$dx}] $r]
   return [list $c1 $c2]

}</lang>

Demo:

<lang tcl>foreach {p1 p2 r} {

   {0.1234 0.9876} {0.8765 0.2345} 2.0
   {0.0000 2.0000} {0.0000 0.0000} 1.0
   {0.1234 0.9876} {0.1234 0.9876} 2.0
   {0.1234 0.9876} {0.8765 0.2345} 0.5
   {0.1234 0.9876} {0.1234 0.9876} 0.0

} {

   puts "p1:([join $p1 {, }]) p2:([join $p2 {, }]) r:$r =>"
   if {[catch {

foreach c [findCircles $p1 $p2 $r] { puts "\tCircle:([join $c {, }])" }

   } msg]} {

puts "\tERROR: $msg"

   }

}</lang>

Output:
p1:(0.1234, 0.9876) p2:(0.8765, 0.2345) r:2.0 =>
	Circle:(1.863111801658189, 1.974211801658189, 2.0)
	Circle:(-0.8632118016581891, -0.752111801658189, 2.0)
p1:(0.0000, 2.0000) p2:(0.0000, 0.0000) r:1.0 =>
	Circle:(0.0, 1.0, 1.0)
	Circle:(0.0, 1.0, 1.0)
p1:(0.1234, 0.9876) p2:(0.1234, 0.9876) r:2.0 =>
	ERROR: no sane solution: points are coincident
p1:(0.1234, 0.9876) p2:(0.8765, 0.2345) r:0.5 =>
	ERROR: no solution: points are further apart than required diameter
p1:(0.1234, 0.9876) p2:(0.1234, 0.9876) r:0.0 =>
	Circle:(0.1234, 0.9876, 0.0)

XPL0

An easy way to solve this: translate the coordinates so that one point is at the origin. Then rotate the coordinate frame so that the second point is on the X-axis. The circles' X coordinate is then half the distance to the second point. The circles' Y coordinates are easily seen as +/-sqrt(radius^2 - circleX^2). Now undo the rotation and translation. The method used here is a streamlining of these steps.

<lang XPL0>include c:\cxpl\codes;

proc Circles; real Data; \Show centers of circles, given points P & Q and radius real Px, Py, Qx, Qy, R, X, Y, X1, Y1, Bx, By, PB, CB; [Px:= Data(0); Py:= Data(1); Qx:= Data(2); Qy:= Data(3); R:= Data(4); if R = 0.0 then [Text(0, "Radius = zero gives no circles^M^J"); return]; X:= (Qx-Px)/2.0; Y:= (Qy-Py)/2.0; Bx:= Px+X; By:= Py+Y; PB:= sqrt(X*X + Y*Y); if PB = 0.0 then [Text(0, "Coincident points give infinite circles^M^J"); return]; if PB > R then [Text(0, "Points are too far apart for radius^M^J"); return]; CB:= sqrt(R*R - PB*PB); X1:= Y*CB/PB; Y1:= X*CB/PB; RlOut(0, Bx-X1); ChOut(0, ^,); RlOut(0, By+Y1); ChOut(0, 9\tab\); RlOut(0, Bx+X1); ChOut(0, ^,); RlOut(0, By-Y1); CrLf(0); ];

real Tbl; int I; [Tbl:=[[0.1234, 0.9876, 0.8765, 0.2345, 2.0],

      [0.0000, 2.0000,    0.0000, 0.0000,    1.0],
      [0.1234, 0.9876,    0.1234, 0.9876,    2.0],
      [0.1234, 0.9876,    0.8765, 0.2345,    0.5],
      [0.1234, 0.9876,    0.1234, 0.9876,    0.0]];

for I:= 0 to 4 do Circles(Tbl(I)); ]</lang>

Output:
    1.86311,    1.97421    -0.86321,   -0.75211
    0.00000,    1.00000     0.00000,    1.00000
Coincident points give infinite circles
Points are too far apart for radius
Radius = zero gives no circles

zkl

Translation of: C

<lang zkl>fcn findCircles(a,b, c,d, r){ //-->T(T(x,y,r) [,T(x,y,r)]))

  delta:=(a-c).hypot(b-d);
  switch(delta){	// could just catch MathError
     case(0.0){"singularity"}  // should use epsilon test
     case(r*2){T(T((a+c)/2,(b+d)/2,r))}
     else{

if(delta > 2*r) "Point delta > diameter"; else{ md:=(r.pow(2) - (delta/2).pow(2)).sqrt(); T(T((a+c)/2 + md*(b-d)/delta,(b+d)/2 + md*(c-b)/delta,r), T((a+c)/2 - md*(b-d)/delta,(b+d)/2 - md*(c-b)/delta,r)); }

      }
   }

}

data:=T(

  T(0.1234, 0.9876,    0.8765, 0.2345,    2.0),
  T(0.0000, 2.0000,    0.0000, 0.0000,    1.0),
  T(0.1234, 0.9876,    0.1234, 0.9876,    2.0),
  T(0.1234, 0.9876,    0.8765, 0.2345,    0.5),
  T(0.1234, 0.9876,    0.1234, 0.9876,    0.0),

);

ppFmt:="(%2.4f,%2.4f)"; pprFmt:=ppFmt+" r=%2.1f"; foreach a,b, c,d, r in (data){

  println("Points: ",ppFmt.fmt(a,b),", ",pprFmt.fmt(c,d,r));
  print("   Circles: ");
  cs:=findCircles(a,b,c,d,r);
  if(List.isType(cs))
      print(cs.pump(List,'wrap(c){pprFmt.fmt(c.xplode())}).concat(", "));
  else print(cs);
  println();

}</lang>

Output:
Points: (0.1234,0.9876), (0.8765,0.2345) r=2.0
   Circles: (1.8631,1.9742) r=2.0, (-0.8632,-0.7521) r=2.0
Points: (0.0000,2.0000), (0.0000,0.0000) r=1.0
   Circles: (0.0000,1.0000) r=1.0
Points: (0.1234,0.9876), (0.1234,0.9876) r=2.0
   Circles: singularity
Points: (0.1234,0.9876), (0.8765,0.2345) r=0.5
   Circles: Point delta > diameter
Points: (0.1234,0.9876), (0.1234,0.9876) r=0.0
   Circles: singularity